
Communications in
Applied
Mathematics and
Computational
Science

vol. 6 no. 1 2011

mathematical sciences publishers

Communications in Applied Mathematics and Computational Science
pjm.math.berkeley.edu/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

contact@msp.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or pjm.math.berkeley.edu/camcos for submission instructions.

The subscription price for 2011 is US $70/year for the electronic version, and $100/year for print and electronic. Subscriptions, requests
for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers,
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Communications in Applied Mathematics and Computational Science, at Mathematical Sciences Publishers, Department of Mathemat-
ics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA
94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:contact@msp.org
http://pjm.math.berkeley.edu/camcos
http://msp.org/
http://msp.org/

COMM. APP. MATH. AND COMP. SCI.
Vol. 6, No. 1, 2011

msp

A HIGH-ORDER FINITE-VOLUME METHOD FOR
CONSERVATION LAWS ON LOCALLY REFINED GRIDS

PETER MCCORQUODALE AND PHILLIP COLELLA

We present a fourth-order accurate finite-volume method for solving time-depen-
dent hyperbolic systems of conservation laws on Cartesian grids with multiple
levels of refinement. The underlying method is a generalization of that devel-
oped by Colella, Dorr, Hittinger and Martin (2009) to nonlinear systems, and is
based on using fourth-order accurate quadratures for computing fluxes on faces,
combined with fourth-order accurate Runge–Kutta discretization in time. To
interpolate boundary conditions at refinement boundaries, we interpolate in time
in a manner consistent with the individual stages of the Runge–Kutta method, and
interpolate in space by solving a least-squares problem over a neighborhood of
each target cell for the coefficients of a cubic polynomial. The method also uses
a variation on the extremum-preserving limiter of Colella and Sekora (2008), as
well as slope flattening and a fourth-order accurate artificial viscosity for strong
shocks. We show that the resulting method is fourth-order accurate for smooth
solutions, and is robust in the presence of complex combinations of shocks and
smooth flows.

1. High-order finite-volume methods

In the finite-volume approach, the spatial domain in RD is discretized as a union
of rectangular control volumes that covers the spatial domain. For Cartesian-grid
finite-volume methods, a control volume Vi takes the form

Vi = [ih, (i + u)h] for i ∈ ZD, u = (1, 1, . . . , 1),

where h is the grid spacing.
A finite-volume discretization of a partial differential equation is based on

averaging that equation over control volumes, applying the divergence theorem
to replace volume integrals by integrals over the boundary of the control volume,

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
MSC2000: 65M55.
Keywords: high-order methods, finite-volume methods, adaptive mesh refinement, hyperbolic partial

differential equations.

1

2 PETER MCCORQUODALE AND PHILLIP COLELLA

and approximating the boundary integrals by quadratures. In this paper, we solve
time-dependent problems that take the form of a conservation equation:

∂U
∂t
+∇ · EF(U)= 0. (1)

The discretized solution in space is the average of U over a control volume,

〈U 〉i (t)=
1

h D

∫
Vi

U (x, t)dx. (2)

We can compute the evolution of the spatially discretized system by a method-
of-lines approach,

d〈U 〉i
dt
=−

1
h D

∫
Vi

∇ · EFdx =−
1
h
∑
d
〈Fd
〉i+ 1

2 ed −〈Fd
〉i− 1

2 ed , (3)

〈Fd
〉i± 1

2 ed =
1

h D−1

∫
A±d

Fdd A, (4)

where A±d are the high and low faces bounding Vi with normals pointing in the
ed direction. In this case, the finite-volume approach computes the average of the
divergence of the fluxes on the left side of (4) with the sum of the integrals over
faces on the right side, with the latter approximated using some quadrature rule.
Such approximations are desirable because they lead to conserved quantities in the
original PDE satisfying an analogous conservation law in the discretized system.

The approach we take in this paper is a generalization of the method in [5] to
general nonlinear systems of hyperbolic conservation laws on locally refined grids,
using fourth-order quadratures in space to evaluate the flux integrals (4) on the faces
[1], and a Runge–Kutta method for evolving the ODE (3). We use this approach as
the starting point for a block-structured adaptive mesh refinement method along the
lines of that in [3].

2. Single-level algorithm

2.1. Temporal discretization. Given the solution 〈U 〉n ≈ 〈U 〉(tn), we compute a
fourth-order temporal update to 〈U 〉n+1

≈ 〈U 〉(tn
+1t) using the classical fourth-

order Runge–Kutta (RK4) scheme on (1). We are solving the autonomous system
of ODEs

d〈U 〉
dt
=−D · EF,

D · EF = D · EF(〈U 〉)= 1
h

∑
d

〈Fd
〉i+ 1

2 ed −〈Fd
〉i− 1

2 ed .

(5)

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 3

Then, starting with 〈U 〉(0) = 〈U 〉(tn), set

k1 =−D · EF(〈U 〉(0))1t, (6)

〈U 〉(1) = 〈U 〉(0)+ 1
2 k1, k2 =−D · EF(〈U 〉(1))1t, (7)

〈U 〉(2) = 〈U 〉(0)+ 1
2 k2, k3 =−D · EF(〈U 〉(2))1t, (8)

〈U 〉(3) = 〈U 〉(0)+ k3, k4 =−D · EF(〈U 〉(3))1t. (9)

Then to integrate one time step:

〈U 〉(tn
+1t)= 〈U 〉(tn)+ 1

6(k1+ 2k2+ 2k3+ k4)+ O((1t)5). (10)

The method given above is in conservation form. That is,

〈U 〉n+1
= 〈U 〉n − 1t

h
∑
d
〈Fd
〉

tot
i+ 1

2 ed −〈Fd
〉

tot
i− 1

2 ed ,

〈Fd
〉

tot
i+ 1

2 ed =
1
6

(
〈Fd
〉
(0)
i+ 1

2 ed + 2〈Fd
〉
(1)
i+ 1

2 ed + 2〈Fd
〉
(2)
i+ 1

2 ed +〈Fd
〉
(3)
i+ 1

2 ed

)
,

〈Fd
〉
(s)
i+ 1

2 ed = 〈Fd(〈U (s)
〉)〉i+ 1

2 ed .

(11)

2.2. Spatial discretization. To complete the definition of the single-level algorithm,
we need to specify how to compute 〈Fd

〉i+ 1
2 ed as a function of 〈U 〉. Our approach

generalizes that in [5] to the case of nonlinear systems of conservation laws. Fol-
lowing what often is done for second-order methods, we introduce a nonlinear
change of variables W =W (U). In the case of gas dynamics, this is the conversion
from the conserved quantities mass, momentum, and energy, U = (ρ, ρ Eu, ρE),
to primitive variables W = (ρ, Eu, p), where ρ is the gas density, Eu is the velocity
vector, E is the total energy per unit mass, and p is the pressure. Typically, this
transformation is done to simplify the limiting process, for example, to permit
the use of component-wise limiting. Some care is required in transforming from
conservative to primitive variables in order to preserve fourth-order accuracy.

1. Convert from cell-averaged conserved variables to cell-averaged primitive
variables, through cell-centered values, as follows.

Calculate a fourth-order approximation to U at cell centers:

Ui = 〈U 〉i −
h2

24
1(2)〈U 〉i , (12)

where 1(2) is the second-order accurate Laplacian

1(2)qi =
∑

d

1
h2 (qi−ed − 2qi + qi+ed). (13)

4 PETER MCCORQUODALE AND PHILLIP COLELLA

Then convert to primitive variables:

Wi =W (Ui), (14)

W i =W (〈U 〉i). (15)

Calculate a fourth-order approximation to cell-averaged W :

〈W 〉i =Wi +
1
24 h21(2)W i . (16)

2. Interpolate from cell-averaged W to fourth-order face-averaged W over faces
in dimension d, by:

〈W 〉di+ 1
2 ed =

7
12(〈W 〉i +〈W 〉i+ed)− 1

12(〈W 〉i−ed +〈W 〉i+2ed), (17)

for every d-face i + 1
2 ed .

3. Calculate face-centered W :

W d
i+ 1

2 ed = 〈W 〉di+ 1
2 ed −

1
24 h21d,2

〈W 〉di+ 1
2 ed , (18)

where the transverse Laplacian is

1d,2qd
i+ 1

2 ed =
∑

d ′ 6=d

1
h2

(
qd

i+ 1
2 ed−ed′ − 2qd

i+ 1
2 ed + qd

i+ 1
2 ed+ed′

)
. (19)

Then compute the face-averaged fluxes in each dimension d:

〈Fd
〉i+ 1

2 ed = Fd(W d
i+ 1

2 ed

)
+

1
24 h21d,2 Fd(

〈W 〉di+ 1
2 ed

)
, (20)

for every d-face i + 1
2 ed .

Finally, the divergence is computed as in (3).

In Step 1 above, the Laplacian is applied in (16) to W i instead of Wi in order to
minimize the size of stencil required; this substitution makes a difference of O(h4)

in (16) because the discrete Laplacian of (13) is multiplied by h2. Similarly, in
Step 3, 1d,2 is applied in (20) to Fd(〈W 〉di+ 1

2 ed) instead of to Fd(W d
i+ 1

2 ed), in order
to minimize the size of the required stencil without loss of fourth-order accuracy.

2.3. Modified stencils near physical boundaries. Near physical boundaries, the
stencils in the algorithm of Section 2.2 are modified as follows.

In Step 1, in (13), when cell i is adjacent to the physical boundary in dimension
d , we substitute for i the appropriate formula at i± ed so that all cells in the stencil
are within the domain. Likewise, in Step 3, in (19), when face i + 1

2 ed is adjacent
to the physical boundary in dimension d ′, we substitute for i + 1

2 ed the appropriate
formula at i + 1

2 ed
± ed ′ so that all faces in the stencil are within the domain.

In Step 2, the stencil (17) is applied only when face i + 1
2 ed is separated by at

least two cells from physical boundaries along dimension d . In other cases:

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 5

• If face i + 1
2 ed lies on, respectively, the low or high physical boundary in

dimension d , then

〈W 〉di+ 1
2 ed =

1
12(25〈W 〉i+ed − 23〈W 〉i+2ed + 13〈W 〉i+3ed − 3〈W 〉i+4ed)

or

〈W 〉di+ 1
2 ed =

1
12(25〈W 〉i − 23〈W 〉i−ed + 13〈W 〉i−2ed − 3〈W 〉i−3ed). (21)

• If face i + 1
2 ed is separated by a single cell from, respectively, the low or high

physical boundary in dimension d , then

〈W 〉di+ 1
2 ed =

1
12(3〈W 〉i + 13〈W 〉i+ed − 5〈W 〉i+2ed +〈W 〉i+3ed)

or

〈W 〉di+ 1
2 ed =

1
12(3〈W 〉i+ed + 13〈W 〉i − 5〈W 〉i−ed +〈W 〉i−2ed). (22)

2.4. Limiters. For a method of lines such as the one employed here, limiters are
used to suppress oscillations in the presence of shocks and underresolved gradients.
In one approach, the limiter takes the form of replacing the single-valued solution
value at cell faces by two values, each extrapolated from each adjacent cell. This
pair of values is used to compute an upwind flux of some sort, such as one obtained
by solving a Riemann problem. This is the type of limiter we employ here. We
use a variant of the limiter proposed in [8], which is in turn a modification that
preserves extrema of the limiter for the piecewise parabolic method (PPM) in [9].
We have modified this limiter in several ways. First, we have made a small change
to the method in [8] for detecting extrema that to reduce sensitivity to roundoff
error. Second we have modified the limiter to eliminate difficulty that arises in
multidimensional problems. To illustrate this problem, consider a solution of the
form f (x, y)= x3

− xy2. This function, for fixed y, has two extrema as a function
of x located at x =±y/

√
3. It is not difficult to see that, for any fixed h, and all y

sufficiently small, but nonzero, the limiter in [8] will be activated at those extrema,
thus reducing the accuracy of the method in a region where the function is manifestly
smooth enough to be discretized accurately by our underlying fourth-order method.
This leads to a failure to converge at fourth-order accuracy in max norm for smooth
problems. In order to eliminate this difficulty, we change the criterion by which we
decide to apply the limiter in [8] at extrema, so that it is not applied to solutions
that are small perturbations of a cubic profile. Finally, we have found that, in
introducing the above changes, the fundamental structure of the PPM limiter, at
least for the fourth-order Runge–Kutta time discretization used here, introduces too
much dissipation. The PPM limiter limits the solution in two parts of the algorithm.
The first is in the construction of the single value at the face, which is limited to be
within a range defined by the adjacent cell values. The second step in the limiter is
based on limiting parabolic profiles in the two cells adjacent to the face, leading to

6 PETER MCCORQUODALE AND PHILLIP COLELLA

a potentially double-valued solution at the face. We have found that, in the present
setting, the initial limiting of the face values is redundant, and in fact introduces
excessive dissipation for linear advection in one dimension, and that the limiting
introduced in the second step is sufficient.

We make the following additions to Step 2 in the algorithm of Section 2.2, to
apply limiting to 〈W 〉di+ 1

2 ed . For each component w of the primitive variables W :

1. As described in 2.4.1 below, extrapolate 〈w〉di+ 1
2 ed to the left and right of each

d-face to obtain 〈w〉di+ 1
2 ed ,L and 〈w〉di+ 1

2 ed ,R.

2. As described in 2.5.1, apply slope flattening to the extrapolants 〈w〉di+ 1
2 ed ,L and

〈w〉di+ 1
2 ed ,R.

3. Solve the Riemann problem on faces: From 〈w〉di+ 1
2 ed ,L and 〈w〉di+ 1

2 ed ,R, get
the new 〈w〉di+ 1

2 ed .

2.4.1. Limiter on extrapolants. We initialize both left and right extrapolated values
〈w〉di+ 1

2 ed ,{L,R} to 〈w〉di+ 1
2 ed . At each cell i , the limiter may change 〈w〉di− 1

2 ed ,R or
〈w〉di+ 1

2 ed ,L or both.
The limiter for extrapolants 〈w〉di− 1

2 ed ,R and 〈w〉di+ 1
2 ed ,L depends on 〈w〉 at cells

i − 3ed through i + 3ed , as well as the face averages 〈w〉di± 1
2 ed .

For each cell i , set the differences

(δw)
d,f,−
i = 〈w〉i −〈w〉

d
i− 1

2 ed , (δw)
d,f,+
i = 〈w〉di+ 1

2 ed −〈w〉i .

Also set the differences

(δ2w)
d,f
i = 6

(
〈w〉di− 1

2 ed − 2〈w〉i +〈w〉di+ 1
2 ed

)
,

(δ2w)
d,c
i = 〈w〉i−ed − 2〈w〉i +〈w〉i+ed ,

which approximate the second derivative, multiplied by h2, at the center of cell i .
At each cell face, i + 1

2 ed , set the difference

(δ3w)di+ 1
2 ed = (δ

2w)
d,c
i+ed − (δ

2w)
d,c
i , (23)

which approximates the third derivative, multiplied by h3, at the center of face
i + 1

2 ed .

1. If, at cell i , either
(δw)

d,f,−
i · (δw)

d,f,+
i ≤ 0 (24)

or
(〈w〉di −〈w〉

d
i−2ed) · (〈w〉

d
i+2ed −〈w〉

d
i)≤ 0, (25)

then w has an extremum on cell i along dimension d , and we modify

〈w〉di− 1
2 ed ,R and 〈w〉di+ 1

2 ed ,L

as follows.

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 7

• If (δ2w)
d,c
i−ed , (δ2w)

d,c
i , (δ2w)

d,c
i+ed , and (δ2w)

d,f
i , all have the same sign,

s =±1, then set

(δ2w)
d,lim
i

= s ·min
{∣∣(δ2w)

d,f
i
∣∣,C2

∣∣(δ2w)
d,c
i−ed

∣∣,C2
∣∣(δ2w)

d,c
i
∣∣,C2

∣∣(δ2w)
d,c
i+ed

∣∣}, (26)

where C2 = 1.25. Otherwise, set (δ2w)
d,lim
i = 0.

• If |(δ2w)
d,f
i | ≤ 10−12

·max{|wi−2ed |, |wi−ed |, |wi |, |wi+ed |, |wi+2ed |}, then
set ρi = 0. Otherwise, set

ρi =
(δ2w)

d,lim
i

(δ2w)
d,f
i

. (27)

• If ρi ≥ 1− 10−12, a limiter is not applied. Otherwise, to check whether to
apply a limiter, set

(δ3w)
d,min
i =min

{
(δ3w)di−(3/2)ed , (δ

3w)di− 1
2 ed , (δ

3w)di+ 1
2 ed , (δ

3w)di+(3/2)ed

}
,

(δ3w)
d,max
i =max

{
(δ3w)di−(3/2)ed , (δ

3w)di− 1
2 ed , (δ

3w)di+ 1
2 ed , (δ

3w)di+(3/2)ed

}
.

A necessary condition for applying a limiter in this case is

C3 ·max
{∣∣(δ3w)

d,min
i

∣∣, ∣∣(δ3w)
d,max
i

∣∣}≤ (δ3w)
d,max
i − (δ3w)

d,min
i , (28)

where C3 = 0.1. If (28) holds, then:

(a) if (δw)d,f,−i · (δw)
d,f,+
i < 0, set

〈w〉di− 1
2 ed ,R = 〈w〉

d
i − ρi (δ

2w)
d,f,−
i , (29)

〈w〉di+ 1
2 ed ,L = 〈w〉

d
i + ρi (δw)

d,f,+
i ; (30)

(b) otherwise, if |(δw)d,f,−i | ≥ 2|(δw)d,f,+i |, set

〈w〉di− 1
2 ed ,R = 〈w〉

d
i − 2(1− ρi)(δw)

d,f,+
i − ρi (δw)

d,f,−
i ; (31)

(c) otherwise, if |(δw)d,f,+i | ≥ 2|(δw)d,f,−i |, set

〈w〉di+ 1
2 ed ,L = 〈w〉

d
i + 2(1− ρi)(δw)

d,f,−
i + ρi (δw)

d,f,+
i . (32)

2. For cell indices i on which neither (24) nor (25) holds, we modify the extrap-
olants under the following conditions:

(a) if |(δw)d,f,−i | ≥ 2|(δw)d,f,+i |, set

〈w〉di− 1
2 ed ,R = 〈w〉

d
i − 2(δw)d,f,+i ; (33)

(b) if |(δw)d,f,+i | ≥ 2|(δw)d,f,−i |, set

〈w〉di+ 1
2 ed ,L = 〈w〉

d
i + 2(δw)d,f,−i . (34)

8 PETER MCCORQUODALE AND PHILLIP COLELLA

The differences between this extrapolant limiter and the one in [8, §2.4] are:

• Condition (25) tests for differences two cells away, rather than only one cell
away as in [8]. This change reduces the sensitivity of the limiter to roundoff
error.

• The third-derivative condition (28) is new. The purpose of this condition is to
avoid applying the limiter to small perturbations of a cubic.

• There are new, smoother formulae (31)–(32) to be used instead of (29)–(30) in
case (25) holds but (24) does not.

• The second term in the right side of Equations (33) and (34) above replaces a
more complicated formula with square roots, in [8, Equation (26)].

2.5. Dissipation mechanisms for strong shocks. For the case of gas dynamics, it
necessary include additional dissipation mechanisms to suppress oscillations at
strong shocks. We use the approach in [9; 4] of flattening the interpolated profiles
at discontinuities that are too steep, as well as the introduction of a modest artificial
viscosity term in the total flux.

2.5.1. Flattening. In the algorithm of Section 2.2, at the end of Step 2 we apply
slope flattening to the extrapolants. The flattening coefficients are those from [4],
where the flattening coefficient for cell i is ηi (calculated from W). Then the
extrapolants are modified as follows:

• replace 〈w〉d,PPM
i+ 1

2 ed ,L by ηi 〈w〉
d,PPM
i+ 1

2 ed ,L+ (1− ηi)〈w〉i ,

• replace 〈w〉d,PPM
i− 1

2 ed ,R by ηi 〈w〉
d,PPM
i− 1

2 ed ,R+ (1− ηi)〈w〉i .

2.5.2. Artificial viscosity. At the end of a full iteration in the algorithm of Section 2.2,
we apply an artificial viscosity to 〈Fd

〉
tot and 〈U 〉. The artificial viscosity has

constant parameters α and β.
Take velocity Eun

i , pressure pn
i , and density ρn

i , components of W n
i , from (15).

Calculate the face-centered divergence of the velocity:

λd
i+ 1

2 ed =
1
h
((ud)

n
i+ed − (ud)

n
i)+

1
4h

∑
d ′ 6=d

(
(ud ′)

n
i+ed+ed′ − (ud ′)

n
i+ed−ed′ + (ud ′)

n
i+ed′ − (ud ′)

n
i−ed′

)
. (35)

We then compute the artificial viscosity coefficient νd
i+ 1

2 ed at each face by

νd
i+ 1

2 ed = hλd
i+ 1

2 ed min
{

(hλd
i+ 1

2 ed)
2

(cmin)2i+ 1
2 ed ·β

, 1
}

(36)

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 9

at faces where λd
i+ 1

2 ed < 0; otherwise, νd
i+ 1

2 ed is set to zero. Here cmin
i+ 1

2 ed =

min{ci , ci+ed } and ci = c(ρi , pi) is the speed of sound. The artificial viscosity
is then applied as follows:

〈U 〉n+1
i := 〈U 〉n+1

i −
1t
h
∑
d
(µd

i+ 1
2 ed −µ

d
i− 1

2 ed), (37)

µd
i+ 1

2 ed = αν
d
i+ 1

2 ed (〈U 〉ni+ed −〈U 〉ni). (38)

This is equivalent to incrementing the total flux:

〈Fd
〉

tot
i+ 1

2 ed := 〈Fd
〉

tot
i+ 1

2 ed +µ
d
i+ 1

2 ed .

In cases where we use the total flux separately as part of the refluxing algorithm to
maintain conservation on locally refined grids, we must make sure that the total
fluxes are incremented in such a fashion. In regions of smooth flow, λ= O(1), and
the artificial viscosity makes an O(h4) contribution to the total flux, thus preserving
fourth-order accuracy. At strong shocks, where the minimum in (36) takes on
the value 1, the artificial viscosity reduces to the one used in [9; 4]. In all of the
calculations shown here, we have set α = β = 0.3.

3. Adaptive mesh refinement

We extend the uniform grid discretization to a locally refined, nested grid hierarchy.
Our notation follows that in [13]; we review this notation only to the extent that
it is needed to describe the algorithm presented here. We start with a family of
nested discretizations of a rectangular domain {0l

}
lmax
l=0, 0l

⊂ ZD. Each point i ∈ 0l

represents a control volume of the form Vi =[ihl, (i+u)hl
] each with mesh spacing

hl , with hl
= nl

refh
l−1. To relate geometric regions and variables on different levels

of the hierarchy to one another, we define a coarsening operator

Cr (i)=
(⌊ i1

r

⌋
, . . . ,

⌊ i D

r

⌋)
,

where the notation bxc means the largest integer less than or equal to x . We assume
that C−1

nl
ref
(0l−1)= 0l .

At any given time, our computed solution will be defined using

{�l
}
lmax
l=0, �l

=�l(t)⊂ 0l, Cnl
ref
(�l)⊂�l−1, �0

= 00.

We also allow refinement in time, as well as in space, with the assumption that the
time steps at successive levels satisfy the condition that 1t l/1t l+1 is a positive
integer. The sets �l are assumed to satisfy the condition of proper nesting, meaning
that

C−1
nl

ref
(Cnl

ref
(�l))=�l,

10 PETER MCCORQUODALE AND PHILLIP COLELLA

and that there are at least sl > 0 cells in any direction in �l separating

Cnl
ref
(�l+1) and C−1

nl−1
ref
(�l−1)−�l .

In the case of periodic domains, the proper-nesting condition is assumed to hold
with respect to the periodic extensions of the grids. For boundaries in nonperiodic
directions, we also impose the requirement that cells in Cnl

ref
(�l+1) must either be

adjacent to the boundary, or at least sl level-l cells away from the boundary. Our
choice of s is based on the requirement that, in order to interpolate ghost-cell values
for evaluating the spatial operators described in the previous section, only cells at
the next coarser level are required. In the present work,

sl
=

⌈
5

nl+1
ref

⌉
+ 2,

where the notation dxe means the smallest integer greater than or equal to x .
The primary dependent variables on each level are defined on the grids at each

level,
〈U 〉l :�l

→ RM .

In addition to �l , we will also need values for 〈U 〉l on all cells in the stencils
required to compute the right side of (3). We will denote the extended solution
also by 〈U 〉l . To advance the solution in time on such a grid hierarchy, we use the
explicit time-stepping procedure in [3] (see also [7]) as outlined in Sidebar 1 for
the function HyperbolicAdvance.

The only difference between this method and the one in [3], other than our choice
of single-level integration method, is the choice of interpolation schemes that are
used to compute the values that lie outside �l (the “ghost-cell values” required for
Step 1 of HyperbolicAdvance(l)) and are required to evaluate the right side of (3),
and to compute the values on newly refined grids upon regridding in Step 4. In
the previous work, we use a conservative piecewise-linear interpolation in space
for both tasks, along with linear interpolation in time for computing the ghost-cell
values. In the present work, we use fourth-order accurate interpolation in space
derived using the method of least squares, for both ghost cells and regridding. For
computing ghost-cell values, this is combined with a specialized interpolation in
time that is closely related to the fourth-order Runge–Kutta method we are using
for our single-level time discretization.

We first discuss the computation of the ghost cell values. We assume that, from
Step 1 of HyperbolicAdvance(l − 1), we have sufficiently accurate estimates of
〈U l−1

〉(t l−1) and 〈U l−1
〉(t l−1

+1t l−1). In order to evaluate the operator D · EF on�l

for the s-th stage of a Runge–Kutta method beginning at time t l , we first interpolate
the solution in time on all cells in �l−1 that are in the spatial interpolation stencil

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 11

HyperbolicAdvance(l)

1. Advance 〈U 〉l on �l from time t l to time t l
+1t l , using the algorithm

described in Section 2. For each stage of the RK4 scheme, it is necessary to
interpolate a collection of values at cells in 0l

−�l , in order to evaluate the
fluxes. In the process of computing the fluxes, we accumulate values in flux
registers on faces corresponding to the boundaries of �l and �l+1, using the
total fluxes EF tot.

2. Call HyperbolicAdvance for the next finer level:

while t l+1 < t l

call HyperbolicAdvance(l + 1)
end while

3. Synchronize the solution on level l with the solution on the finer levels:

• Fill values of 〈U 〉l on Cnl
ref
(�l+1) with averages of the solution on the next

finer level:
〈U 〉li =

1
(nl

ref)
D

∑
j∈C−1

nl
ref
({i})

〈U 〉l+1
j .

• Increment 〈U 〉l using flux registers defined on boundary between �l+1

and �l
valid.

• Update time: t l
:= t l
+1t l .

4. If necessary, regrid on this level and all finer levels.

end HyperbolicAdvance

Sidebar 1. Pseudocode for adaptive mesh refinement in time algorithm.

for the ghost cells. Then we use those values on level l − 1 to interpolate values
on the level-l cells in 0l

−�l required to evaluate the fluxes. Only the values on
the coarse grid at times t l−1 and t l−1

+1t l−1 are used to interpolate the ghost-cell
values.

3.1. Coarse-fine interpolation in time. For any solution of our autonomous ODE
integrated using fourth-order Runge–Kutta, from t l−1 to t l−1

+ 1t l−1, we can
compute all of the derivatives through third order in terms of the stage values
k1, . . . , k4, using the formula derived by Fok and Rosales [10]. For 0≤ χ ≤ 1:

12 PETER MCCORQUODALE AND PHILLIP COLELLA

〈U 〉(t l−1
+χ1t l−1)= 〈U 〉(0)+χk1+

1
2χ

2(−3k1+ 2k2+ 2k3− k4)

+
2
3χ

3(k1− k2− k3+ k4)+ O((1t l−1)4), (39)

where 〈U 〉(0) = 〈U 〉(t l−1) is the solution at the beginning of the coarse timestep,
and k1, k2, k3, k4 are as defined in (6)–(9).

Hence the derivatives of 〈U 〉 are

d〈U 〉
dt

(t l−1
+χ1t l−1)=

1
1t l−1

(
k1+χ(−3k1+ 2k2+ 2k3− k4)

+ 2χ2(k1− k2− k3+ k4)
)
+ O((1t l−1)3), (40)

d2
〈U 〉

dt2 (t l−1
+χ1t l−1)=

1
(1t l−1)2

(
(−3k1+ 2k2+ 2k3− k4)

+ 4χ(k1− k2− k3+ k4)
)
+ O((1t l−1)2), (41)

d3
〈U 〉

dt3 (t l−1
+χ1t l−1)=

4
(1t l−1)3

(k1− k2− k3+ k4)+ O(1t l−1). (42)

To advance the solution on the level l grid from time t l to time t l
+1t l , we need

to interpolate in time to find fourth-order approximations to 〈U 〉(0), 〈U 〉(1), 〈U 〉(2),
〈U 〉(3). To compute 〈U 〉(0), we evaluate (39) at

χ =
t l
− t l−1

1t l−1 .

To find 〈U 〉(1), 〈U 〉(2), and 〈U 〉(3) at fine timestep s, the simplest approach would
be to substitute

χ =
t l
+1t l/2− t l−1

1t l−1 , χ =
t l
+1t l/2− t l−1

1t l−1 , χ =
t l
+1t l

− t l−1

1t l−1 ,

respectively, in (39). In the absence of limiters, we found that such a procedure
gave fourth-order accurate solution errors. However, when used in conjunction
with the limiters, we found that the mismatch between the interpolated values and
the intermediate steps in the Runge–Kutta time discretization on the fine grid can
trigger the limiters even when the solution is smooth. For that reason, we interpolate
ghost values that agree with the intermediate stages of the Runge–Kutta method to
O(1t)4.

The fourth-order Taylor expansion of 〈U 〉(1) is

〈U 〉(1) = 〈U 〉(0)+ 1
21t l f (〈U 〉(0)), (43)

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 13

while those of 〈U 〉(2) and 〈U 〉(3) are

〈U 〉(2) = 〈U 〉(0)+ 1
21t l f (〈U 〉(1))

= 〈U 〉(0)+ 1
21t l f (〈U 〉(0))+ 1

4(1t l)2
d f

d〈U 〉
f (〈U 〉(0))

+
1
16(1t l)3

d2 f
d〈U 〉2

(f (〈U 〉(0)))2+ O((1t l)4), (44)

〈U 〉(3) = 〈U 〉(0)+1t l f (〈U 〉(2))

= 〈U 〉(0)+1t l f (〈U 〉(0))+ 1
2(1t l)2

d f
d〈U 〉

f (〈U 〉(1))

+
1
8(1t l)3

d2 f
d〈U 〉2

(f (〈U 〉(0)))2+ O((1t l)4)

= 〈U 〉(0)+1t l f (〈U 〉(0))+ 1
2(1t l)2

d f
d〈U 〉

f (〈U 〉(0))

+
1
8(1t l)3

(
d2 f

d〈U 〉2
(f (〈U 〉(0)))2+2

(d f
d〈U 〉

)2
f (〈U 〉(0))

)
+O((1t l)4). (45)

Here we use the notation f (〈U 〉)=−D · EF(〈U 〉), and the derivatives of the vector-
valued f with respect to 〈U 〉 are the appropriate Jacobians and Hessians of f . Note
that, by the chain rule,

d2
〈U 〉

dt2 =
d f
dt
=

d f
d〈U 〉

d〈U 〉
dt
=

d f
d〈U 〉

f, (46)

d3
〈U 〉

dt3 =
d
dt

(d f
d〈U 〉

f
)
=

d2 f
d〈U 〉2

f 2
+

(d f
d〈U 〉

)2
f. (47)

We can approximate these derivatives using the coarse-grid values in (40)–(42). It
follows from (44) and (45) that(d f

d〈U 〉

)2
f (〈U 〉(0))=

4(f (〈U 〉(2))− f (〈U 〉(1)))
(1t l)2

+ O(1t l), (48)

which we can also approximate from the coarser-level data as(d f
d〈U 〉

)2
f =

4(k3− k2)

(1t l−1)2
+ O(1t l−1). (49)

In (43)–(45), the coefficients of the powers of 1t l , such as f (〈U 〉(0)) and the
derivatives, can all be expressed in terms of derivatives of 〈U 〉 evaluated at t = t l .
These in turn are approximated with the formulas (40)–(42), while(d f

d〈U 〉

)2
f (〈U 〉(0))

14 PETER MCCORQUODALE AND PHILLIP COLELLA

is approximated using (49). These substitutions result in fourth-order accurate
formulas for 〈U 〉(1), 〈U 〉(2), and 〈U 〉(3) in terms of k1, k2, k3, k4, and 〈U 〉(0).

3.2. Coarse-fine interpolation in space. We interpolate 〈u〉c, averages over coarse-
level cells, to find 〈u〉f, averages over fine-level cells.

3.2.1. Notations. For each coarse cell indexed by i ∈ ZD, we use these notations:

• F(i) is the set of fine cells contained within i .
• ai, p (for p ∈ ND such that ‖ p‖1 =

∑
d |pd | ≤ 3) are the coefficients that will

be used for interpolation to 〈u〉fk for all k ∈F(i). These will be the coefficients
of the Taylor polynomial of degree 3 for u around the center of cell i . The
number of coefficients for each coarse cell in 2D is 10, and in 3D is 20. The
coefficients will be computed from values of 〈u〉c.

• N(i) is the set of coarse cells used as a stencil from which to take 〈u〉c in order
to find the coefficients ai, p.

For z ∈ RD and p ∈ ND, we write 〈z p
〉

c
j or 〈z p

〉
f
k to denote the average, respec-

tively, over coarse cell j or fine cell k, of

z p
=

∏
d

(z pd
d − K (pd)), (50)

where

K (q)=


2−q

q+1
if q > 0 and q is even,

0 otherwise.
(51)

This constant is included to simplify numerical calculations; the average of z p on
the cube

[
−

1
2 ,

1
2

]D is 1 if p= 0, and 0 otherwise.

3.2.2. Cells in the stencil. The stencil N(i) for coarse cell i depends on the number
of cells between i and the boundary of the domain.

N(i) consists of two sets of cells: an inner set and an outer set.

• The inner set is centered on a cell c(i) that is identical to i if i is separated
from the boundary by at least one other cell in every dimension; or if i is
adjacent to the boundary, then c(i) is one cell away from the boundary in each
dimension in which i is adjacent to the boundary. The inner set consists of a
square or cube of 3D cells with c(i) at its center.

• The outer set consists of one cell beyond the inner set in each coordinate
direction from i that is in the domain. Hence in every dimension, N(i) contains
four or five cells in a row including i .

The number of cells in the outer set is at most 2D, and by the proper-nesting
condition, must also be at least D+ 1. Hence the total number of cells in N(i) in

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 15

13 cells, κ = 16.6 12 cells, κ = 17.3 12 cells, κ = 92.0

Figure 1. Three examples of 2D stencils, indicated by circles, of
coarse cells that are used to interpolate to the fine cells (unmarked)
within the shaded coarse cell. Hatching along an edge indicates a
physical boundary on that edge. Modulo reflection and permutation
of axes, these are all of the stencil possibilities that can arise in 2D.
Because of the proper-nesting condition, the coarse cell containing
fine ghost cells must be separated by the physical boundary by
at least two other coarse cells in at least one of the dimensions.
The three possible separations in the other dimension are two or
more cells (left diagram), a single cell (middle), and no separation
(right). In all cases, the stencil consists of a 3× 3 block of cells
together with the next cell beyond this block in each coordinate
direction from the target cell, as long as this next cell is within the
domain. Also shown are the number of cells in each stencil and
the condition number of the matrix that converts stencil cell values
to the 10 coefficients. Figure 3 shows an instance of each of these
stencils being used in a sample set of patches.

2D is either 12 or 13, and in 3D is in the range 31 to 33. Examples of possible
stencils N(i) are illustrated in Figure 1 (2D case) and Figure 2 (3D case).

3.2.3. Calculating fine-cell averages from coarse-cell averages. To obtain the co-
efficients ai, p for coarse cell i , we solve a constrained linear least-squares problem
[11, pages 585–586] for the overdetermined system∑

p∈ND

‖ p‖1≤3

ai, p〈(x− xi)
p
〉

c
j = 〈u〉

c
j , for all j ∈ N(i)−{i}, (52)

with the conservation constraint∑
p∈ND

‖ p‖1≤3

ai, p〈(x− xi)
p
〉

c
i = 〈u〉

c
i , (53)

16 PETER MCCORQUODALE AND PHILLIP COLELLA

33 cells 32 cells 32 cells 31 cells 31 cells 31 cells
κ = 12.7 κ = 13.3 κ = 70.0 κ = 14.0 κ = 73.0 κ = 134.

Figure 2. Six examples of 3D stencils, indicated by circles, of
coarse cells that are used to interpolate to the fine cells (unmarked)
within the shaded coarse cell. Hatching along an edge indicates a
physical boundary on that edge. Modulo reflection and permutation
of axes, these are all of the stencil possibilities that can arise in 3D.
Because of the proper-nesting condition, the coarse cell containing
fine ghost cells must be separated by the physical boundary by
at least two other coarse cells in at least one of the dimensions.
The six stencils shown here represent the possibilities in the other
two dimensions for the target cell to be adjacent to the physical
boundary or separated by a single cell or by two or more cells. In
all cases, the stencil consists of a 3× 3× 3 block of cells together
with the next cell beyond this block in each coordinate direction
from the target cell, as long as this next cell is within the domain.
Also shown are the number of cells in each stencil and the condition
number of the matrix that converts stencil cell values to the 20
coefficients.

where xi is the center of cell i . We then use the coefficients ai, p to interpolate for
each fine cell k ∈ F(i):

〈u〉fk =
∑
p∈ND

‖ p‖1≤3

ai, p〈(x− xi)
p
〉

f
k. (54)

The conservation constraint (53) is derived as follows. The average of all
interpolated 〈u〉f on fine cells within coarse cell i must equal 〈u〉ci . Hence, using
(54):

1
n D

ref

∑
k∈F(i)

∑
p∈ND

‖ p‖1≤3

ai, p〈(x− xi)
p
〉

f
k = 〈u〉

c
i . (55)

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 17

a

b

c

Figure 3. A 2D example of two levels with a refinement ratio
of 4 and the coarser level covering the whole rectangular domain,
whose boundary is indicated by hatching. Dashed lines mark the
limit of coarse cells that are used in stencils to interpolate to fine
ghost cells. The shaded coarse cells contain the fine ghost cells
that need to be filled in. The letters indicate three such coarse cells
where the stencils used are those of Figure 1; the coarse cells of
each stencil are marked with circles. Note that the stencil may
include coarse cells that are covered by the finer level.

But splitting up coarse cell i into its fine subcells, it is also true that for each p,

1
n D

ref

∑
k∈F(i)

〈(x− xi)
p
〉

f
k = 〈(x− xi)

p
〉

c
i . (56)

Reordering the summation in (55) and making the substitution (56) yields (53).
In 2D, (52) has 10 variables and 11 or 12 equations. In 3D, (52) has 20 variables

and 30 to 32 equations. The variables are the coefficients ai, p for p ∈ND such that
‖ p‖1 ≤ 3, and in (52) there is one equation for each j ∈ N(i)−{i}.

18 PETER MCCORQUODALE AND PHILLIP COLELLA

4. Results

We use this method to solve the 1D advection equation, in order to show results
with the new limiter, and then to solve the equations of gas dynamics in 2D and 3D.
Unless otherwise stated, the calculations are performed with the full algorithm, that
is, with limiters and dissipation mechanisms turned on. For gas-dynamics problems
with smooth solutions, we compare our method with that obtained without limiters,
indicated here as limiter off. We also perform a calculation of a standard shock
reflection test problem.

Applying the analysis in [5] to the equations of gas dynamics gives a stability
condition for time step 1t and mesh spacing h, of

1t
h

∑
d

(|v · ed
| + c)/ 1.3925, (57)

where v is velocity and c is the speed of sound. This condition comes from the
combination of constraints for the fourth-order Runge–Kutta method in time, and
first-order upwinding in space, which is the low-order scheme corresponding to the
present method. Note that condition (57) is more restrictive than the one typically
used in the method of [4], because there is no analogue of corner coupling that
permits use of a larger time step.

4.1. 1D advection with new limiter. We test the algorithm with limiter given in
Section 2.4.1 on the 1D advection problem

∂a
∂t
+ u

∂a
∂x
= 0, where u is a constant. (58)

We can compare with the exact solution,

a(x, t)= a(x − ut, 0). (59)

We use the standard 1D test problems:

• Gaussian: a(x, 0)= e−256(x− 1
2)

2
;

• square wave: a(x, 0)= 1 if
∣∣x − 1

2

∣∣≤ 1
4 , otherwise 0.

Problem Norm 1/128 Rate 1/256 Rate 1/512 Rate 1/1024

Gaussian L∞ 4.03e-02 3.91 2.67e-03 4.01 1.66e-04 4.00 1.04e-05
Gaussian L1 4.75e-03 3.99 3.00e-04 3.99 1.88e-05 4.00 1.18e-06
Square wave L1 3.26e-02 0.79 1.89e-02 0.79 1.09e-02 0.80 6.29e-03

Table 1. Errors and convergence rates for 1D advection tests with
the limiter of Section 2.4.1, at time 10, run with CFL number 0.2.
The top row shows the mesh spacing.

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 19

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7

a

x

Gaussian

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

a
x

Square wave

Figure 4. Results using the limiter (red stars) and the exact solution
(black curve) tested on 1D advection of a Gaussian (left) or a square
wave (right). Both test problems were run on 128 cells and with
CFL number 0.2; the results shown are for a at time 10.

All calculations are performed on the unit interval with periodic boundary conditions,
advection velocity u = 1, and CFL number 0.2. The dissipation mechanisms of
Section 2.5 do not apply. Table 1 shows errors and rates of convergence for these
test problems. We find that the Gaussian problem exhibits fourth-order convergence.
The square-wave problem has a convergence rate of 4

5 in L1-norm, as in [8].
Figure 4 shows some results for the two test problems when run with 128 cells.

4.2. Gaussian acoustic pulse. Our first gas-dynamics example is of a Gaussian
acoustic pulse in a polytropic gas, in a periodic domain, [0, 1]D. The initial con-
ditions at a point in this domain are determined by the distance r from the center.
Initially the velocity is zero, and the density is

ρ(r)=
{
ρ0+ (δρ0)e−16r2

cos6(πr) if r ≤ 1
2 ,

ρ0 otherwise;
(60)

with ρ0 = 1.4 and δρ0 = 0.14. The smoothing factor cos6(πr) is present to ensure
that ρ = ρ0 on the domain boundaries. For isentropicity, the initial pressure is

p =
(
ρ

ρ0

)γ
, where γ = 1.4. (61)

We run this example in 2D on a single level, with flattening and artificial viscosity,
and both with and without the limiter. Throughout each run, the time step is fixed,

20 PETER MCCORQUODALE AND PHILLIP COLELLA

1/128: 1/256: 1/512: 1/1024:
limiter 1/256 rate 1/512 rate 1/1024 rate 1/2048

on 1.32e-06 4.18 7.28e-08 4.01 4.53e-09 3.99 2.85e-10
off 1.15e-06 3.99 7.20e-08 4.00 4.51e-09 4.00 2.82e-10

Table 2. Convergence of differences in calculated density at time
0.24 for 2D Gaussian acoustic pulse, run on a uniform grid, and
with the limiter of Section 2.4 either on or off. Columns alternate
between showing the max-norm of the difference in densities be-
tween results with the indicated mesh spacings, and the convergence
rate.

density at time 0 density at time 0.24

Figure 5. Gaussian acoustic pulse in 2D, on two levels.

set to 1t = 0.192h, where h is the mesh spacing. The results in Table 2 show
fourth-order convergence.

We also run this same problem, with and without the limiter, in 2D and 3D on
two levels, with a refinement factor of 2 between the levels. Grids at the coarser
level cover a cube, and grids at the finer level cover half the length of the cube in
each dimension. Figure 5 shows a color plot of density at initial and final times in
2D. Table 3 shows convergence results in 2D and 3D with the limiter either on or
off, and indicates fourth-order convergence in all cases.

Finally, we run the 2D problem, with the limiter on, on two levels such that
the refinement ratio is 2 and the grids on the finer level are determined adaptively,
every two coarse time steps, by refining where |∇〈ρ〉|/〈ρ〉 > 0.2h, with h the
coarse-level mesh spacing. Table 4 shows the convergence of differences between
results on such two-level adaptive grids and on corresponding uniform one-level
grids, where the mesh spacing on the one-level grid is uniformly that on the finer of
the two levels in the adaptive case. The truncation error for this method is O(h4)

away from refinement boundaries, and O(h3) at refinement boundaries. Modified

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 21

1/64: 1/128: 1/256: 1/512:
limiter 1/128 rate 1/256 rate 1/512 rate 1/1024

on 7.28e-06 3.97 4.66e-07 3.95 3.01e-08 3.99 1.90e-09
off 7.29e-06 3.97 4.66e-07 3.95 3.01e-08 3.99 1.90e-09

1/16: 1/32: 1/64: 1/128:
limiter 1/32 rate 1/64 rate 1/128 rate 1/256

on 6.84e-04 3.39 6.54e-05 3.69 5.06e-06 3.78 3.70e-07
off 7.35e-04 3.22 7.88e-05 3.80 5.66e-06 3.94 3.69e-07

Table 3. Convergence of differences in calculated density at time
0.24 for 2D (top) and 3D (bottom) Gaussian acoustic pulse, run
with fixed grids on two levels, and with the limiter of Section 2.4
either on or off. Columns alternate between showing the max-norm
of the difference in densities between results with the indicated
mesh spacings at the coarser of the two levels, and the convergence
rate.

1/128 rate 1/256 rate 1/512 rate 1/1024 rate 1/2048

8.37e-06 3.44 7.69e-07 3.54 6.59e-08 3.73 4.96e-09 3.75 3.69e-10

Table 4. Convergence of differences in density at time 0.24 for
2D Gaussian acoustic pulse, between results calculated on a single-
level grid with the indicated uniform mesh spacing, and results
calculated on adaptive grids on two levels with finer-level mesh
spacing as indicated here and with the coarser-level mesh spacing
being double that. Columns alternate between showing the max-
norm of the difference in densities, and the convergence rate.

equation arguments would indicate that, for adaptive calculations, in which the
refinement boundaries are approximately characteristic, we would see a solution
error somewhere between third and fourth order in the mesh spacing, in max norm.
By combining these results with those in Table 3, top, we obtain a convergence
rate that is approximately O(h15/4) in max norm, which is consistent with such an
analysis.

4.3. Shear problem. In this 2D polytropic gas problem, we start with constant
density ρ = 1.4 and pressure p = 7., with initial velocity on the unit square [0, 1]2

set to
vx(x, y)= cos(2πy), vy(x, y)= cos(2πx).

22 PETER MCCORQUODALE AND PHILLIP COLELLA

time 1/64: 1/128: 1/256: 1/512:
limiter interp. 1/128 rate 1/256 rate 1/512 rate 1/1024

on (43)–(45) 1.32e-04 4.05 7.99e-06 3.95 5.17e-07 3.98 3.27e-08
off (39) 1.13e-04 3.83 7.96e-06 3.92 5.24e-07 3.95 3.39e-08
on (39) 1.32e-04 3.75 9.78e-06 1.39 3.74e-06 1.59 1.24e-06

Table 5. Convergence of max-norm of calculated differences in
x-momentum for 2D shear problem at time 0.15, with limiter on
or off, and time interpolation taking U (1), U (2), U (3) either as
in Equations (43)–(45) or by substitution of χ = (s + 1

2)/nref,
(s+ 1

2)/nref, (s+ 1)/nref, respectively, in (39).

We run on the same fixed two-level hierarchy as in Section 4.2. Throughout each
run, the time step is fixed, with a CFL number of 0.508.

Table 5 shows convergence results with the limiters of Section 2.4 turned either
off or on, and with the time interpolation either as described in Section 3.1 with
U (1), U (2), U (3) from Equations (43)–(45), or from substitution of χ = (s+ 1

2)/nref,
(s+ 1

2)/nref, and (s+ 1)/nref, respectively, in (39). Note that with sufficiently high
refinement, the limiter interferes with the time interpolation using substitution in
(39), so that convergence is not even second order. But when using that same time
interpolation with the limiter turned off, or when using the time interpolation from
(43)–(45) with the limiter turned on, convergence is fourth order.

4.4. Shock-ramp problem. We implement the shock-ramp problem of Woodward
and Colella [14], on two levels (refinement ratio of 4 between them), with effective
resolution 1024× 256. The CFL number is initially 0.3 and is kept to at most
0.8. See Figure 6 for a color plot of the whole domain and Figure 7 for a close-
up. The results we obtain here show that the present method has a treatment of

Figure 6. 2D Woodward–Colella shock-ramp problem, with a
color plot and contour lines of density, and outlines of the blocks
used at the two levels. Figure 7 shows a close-up of this plot.

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 23

Figure 7. Close-up of Figure 6, showing a color plot and contour
lines of density.

multidimensional time-dependent discontinuous flows that is comparable to that of
the best state-of-the-art shock-capturing methods.

5. Conclusions

In this paper, we have described an extension of the finite-volume block-structured
adaptive mesh refinement algorithm for hyperbolic conservation laws in [3] that is
fourth-order accurate in space and time. The underlying single-grid algorithm is
an extension of the algorithm in [5] that is comparably accurate and robust to the
higher-order Godunov methods for problems involving strong shocks. To achieve
this combination of accuracy and robustness, we needed to modify the limiter in [8]
to eliminate sensitivity to roundoff error, and to better distinguish smooth extrema
that arise in multidimensional problems.

There are a number of directions in which it is natural to extend this algorithm.
One is to combine it with the ideas in [5] to compute AMR (adaptive mesh re-
finement) solutions on mapped grids. This is a key step to the application of this
approach to problems such as climate modeling that require mapped-multiblock
grids [6]. One essential issue is the extension of the approach in [2] to higher order

24 PETER MCCORQUODALE AND PHILLIP COLELLA

using the ideas in [5] so that free-stream preservation is satisfied. Another, less
trivial extension is to develop a method analogous to the present one for hyperbolic-
parabolic problems that is semiimplicit, treating the hyperbolic terms explicitly,
and the parabolic terms implicitly. This has been done for advection-diffusion
problems [15] using the fourth-order additive Runge–Kutta method in [12], but
only for refinement in space: the same time step is used on all levels. The extension
to refinement in time will require the use of an appropriate version of the “dense
output” representation for intermediate values described in that paper, analogous to
(39) for the explicit Runge–Kutta method used here.

Acknowledgement

We thank Jeff Hittinger, Dan Martin, and Mike Minion for helpful discussions.

References

[1] M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson’s equation,
J. Comput. Phys. 209 (2005), no. 1, 1–18. MR 2005m:65295 Zbl 1073.65126

[2] J. B. Bell, P. Colella, J. A. Trangenstein, and M. Welcome, Adaptive mesh refinement on moving
quadrilateral grids, Proceedings of the 9th AIAA Computational Fluid Dynamics Conference,
AIAA, June 1989, pp. 471–479.

[3] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput.
Phys. 82 (1989), no. 1, 64–84.

[4] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys.
87 (1990), no. 1, 171–200. MR 91c:76087 Zbl 0694.65041

[5] P. Colella, M. Dorr, J. Hittinger, and D. F. Martin, High-order, finite-volume methods in mapped
coordinates, J. Comput. Phys. 230 (2011), no. 8, 2952–2976.

[6] P. Colella, M. Dorr, J. Hittinger, P. McCorquodale, and D. F. Martin, High-order finite-volume
methods on locally-structured grids, Numerical modeling of space plasma flows: ASTRONUM
2008, Astronomical Society of the Pacific Conference Series, no. 406, 2008, pp. 207–216.

[7] P. Colella, D. T. Graves, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale, D.
Modiano, P. O. Schwartz, T. D. Sternberg, and B. V. Straalen, Chombo software package for
amr applications - design document, 2009.

[8] P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, J.
Comput. Phys. 227 (2008), no. 15, 7069–7076. MR 2009d:76079 Zbl 1152.65090

[9] P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas dynamical
simulations, J. Comput. Phys. 54 (1984), 174–201.

[10] P.-W. Fok and R. R. Rosales, Multirate integration of axisymmetric step-flow equations, (2008),
submitted to J. Comp. Phys. arXiv 0810.2517v1

[11] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in Math.
Sciences, Johns Hopkins University Press, Baltimore, 1996. MR 97g:65006 Zbl 0865.65009

[12] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-
reaction equations, Appl. Numer. Math. 44 (2003), no. 1-2, 139–181. MR 2003m:65111
Zbl 1013.65103

CONSERVATION LAWS ON LOCALLY REFINED GRIDS 25

[13] D. F. Martin, P. Colella, and D. Graves, A cell-centered adaptive projection method for the
incompressible Navier–Stokes equations in three dimensions, J. Comput. Phys. 227 (2008), no. 3,
1863–1886. MR 2009g:76085 Zbl 1137.76040

[14] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong
shocks, J. Comput. Phys. 54 (1984), no. 1, 115–173. MR 85e:76004 Zbl 0573.76057

[15] Q. Zhang, H. Johansen, and P. Colella, A fourth-order accurate finite-volume method with
structured adaptive mesh refinement for solving the advection-diffusion equation, preprint, 2010,
submitted to SIAM J. Sci. Comp.

Received June 4, 2010. Revised November 12, 2010.

PETER MCCORQUODALE: PWMcCorquodale@lbl.gov
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley CA 94720,
United States

PHILLIP COLELLA: PColella@lbl.gov
Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory,
1 Cyclotron Road MS 50A-1148, Berkeley CA 94720, United States

mathematical sciences publishers msp

COMM. APP. MATH. AND COMP. SCI.
Vol. 6, No. 1, 2011

msp

AN UNSPLIT, HIGHER-ORDER GODUNOV METHOD USING
QUADRATIC RECONSTRUCTION

FOR ADVECTION IN TWO DIMENSIONS

SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

Linear advection of a scalar quantity by a specified velocity field arises in a
number of different applications. Important examples include the transport of
species and energy in low Mach number models for combustion, atmospheric
flows and astrophysics, and contaminant transport in Darcy models of saturated
subsurface flow. In this paper, we present a customized finite volume advection
scheme for this class of problems that provides accurate resolution for smooth
problems while avoiding undershoot and overshoot for nonsmooth profiles. The
method is an extension of an algorithm by Bell, Dawson and Shubin (BDS),
which was developed for a class of scalar conservation laws arising in porous
media flows in two dimensions. The original BDS algorithm is a variant of unsplit,
higher-order Godunov methods based on construction of a limited bilinear profile
within each computational cell. The new method incorporates quadratic terms in
the polynomial reconstruction, thereby reducing the L1 error and better preserving
the shape of advected profiles while continuing to satisfy a maximum principle
for constant coefficient linear advection. We compare this new method to several
other approaches, including the bilinear BDS method and unsplit piecewise
parabolic (PPM) methods.

1. Introduction

The focus of much of the literature on numerical methods for hyperbolic partial
differential equations is on general systems of conservation laws, particularly the
compressible Euler equations (see [14] for an overview of the literature). However,
there are a number of important problems in science and engineering where we
need to solve linear advection problems of the form

st + (us)x + (vs)y = 0, (1)

where s = s(x, y, t) is a scalar field and (u, v) represents a known velocity field.
One important example of this type of problem arises in projection algorithms for
incompressible and other low Mach number flows, where the velocity field used

MSC2000: 35-04, 35L65.
Keywords: Godunov method, scalar conservation law, two-dimensional quadratic reconstruction.

27

28 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

for advection is constructed during the time step using a projection that enforces
the divergence constraint. Applications of these low Mach number projection
algorithms include low Mach number terrestrial combustion [11], nuclear flame
simulation [4], low Mach number stratified atmospheric [23] and astrophysical
flows [19], as well as general variable-density incompressible flow [2]. In these
cases the density, species, and other scalar quantities are advected by a velocity
field that is calculated before the advection step is performed. Advection problems
also arise in contaminant transport in saturated groundwater flow [20]. We note that
in several of the above problems, the full evolution equation for s often includes
a right hand side representing reactions, diffusion or other processes. However,
discretization approaches typically separate the computation of the advective flux
from the treatment of the other terms. In particular, diffusion is typically treated
in a form in which explicit hyperbolic fluxes appear as source terms in an implicit
discretization of diffusion; reactions are typically included via operator splitting.
Consequently, here we will focus on the homogeneous system; the reader is re-
ferred to the literature cited above for discussion of how to incorporate other
processes.

There are several aspects of the class of problems we are considering that are
worth noting. First, in most of these applications the velocity field is determined by
solving a constraint equation that explicitly encapsulates a specific discrete form of
the divergence of the velocity field with which we want the hyperbolic discretization
to be consistent. Furthermore, we only have a limited characterization of the velocity
field, typically integral averages of the normal component on edges of grid cells.
Another aspect of the class of problems being considered is that they can be highly
sensitive to overshoot and undershoot. For example, many chemical reaction systems
are ill-defined when a species has a negative concentration. Similarly, although
harder to detect, errors associated with overshoot in a species concentration can be
significantly enhanced by the kinetics mechanism. Thus, we would like a method
that provides an accurate discretization and preserves the shape of advected profiles
while avoiding overshoot and undershoot. One final consequence of the type of
problems we consider is that the computational cost is dominated by elliptic solvers,
reaction networks, and/or calls to the equation of state, so the overall cost of
advection is minor in comparison; thus accuracy is of more importance than cost in
choosing the advection algorithm.

There is a vast literature on numerical methods for first-order hyperbolic partial
differential equations, all of which can potentially be adapted to advection by a
known velocity field. It is beyond the scope of this paper to survey all of that work;
however, we will briefly describe some of the main themes underlying some of these
approaches. We first note that dimensional operator splitting does not work well for
advection by a nonconstant divergence-free velocity field. In a dimensionally split

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 29

approach, the fluid can experience an artificial compression in one sweep combined
with an artificial expansion in another sweep, which can lead to significant artifacts.
An example showing these types of artifacts is presented in [1]. Thus, we restrict
ourselves here to unsplit discretizations.

The first unsplit second-order Godunov method, based on linear reconstruction,
was presented by Colella [7], and was later extended to three dimensions by Saltzman
[21]. Colella [7] motivated the development of the unsplit Godunov algorithm by
introduction of the corner transport upwind (CTU) method. The CTU method is a
first-order upwind advection scheme that incorporates diagonal coupling based on a
piecewise-constant approximation and the geometry of characteristics for constant
coefficient advection. However, the geometric interpretation was abandoned in
the extension to general systems of conservation laws. Miller and Colella [17]
developed a version of the unsplit scheme based on the piecewise parabolic method
(PPM) of Colella and Woodward [9]. This approach uses the same formalism as the
piecewise linear algorithms but constructs a parabolic rather than a linear profile in
each coordinate direction. There has been some recent work aimed at improving
the limiters for PPM. Colella and Sekora [8] developed a new PPM limiter that
preserves accuracy at smooth extrema but suffers from sensitivity to roundoff error;
more recently McCorquodale and Colella [16] introduced an improvement to that
limiter which is less sensitive to roundoff error (P. Colella, private communication,
2010).

LeVeque [13] introduced higher-order advection schemes based on geometric
ideas derived from a wave propagation perspective. The WAF approach of Billett
and Toro [5] and the Mot-ICE-P1 scheme of Noelle [18] use similar geometric
ideas and, in fact, share a number of features of the scheme that will be our starting
point. Smolarkiewicz and collaborators developed multidimensional advection
schemes for geophysical flows based on flux-corrected transport ideas; see [23] and
the references cited therein. Another class of schemes is the ADER-type schemes
developed by Toro and collaborators; see, for example, [24]. These schemes
are somewhat more algebraic in their construction, using a Cauchy–Kowalewski
procedure and Taylor series expansion to evaluate approximations at quadrature
nodes on space-time edges of cells. Another class of schemes that has become
popular for a wide range of problems is WENO-type schemes. The reader is referred
to [22] for a general discussion of these types of methods. Of particular interest
for multidimensional advection are unsplit, multidimensional versions of WENO
such as those by Levy, Puppo, and Russo [15] and Kurganov and Petrova [12]. A
final category of schemes is discontinuous Galerkin finite element methods. There
have been recent special issues of journals focused on discontinuous Galerkin; see
[10; 6]. Unlike the finite volume schemes discussed above, discontinuous Galerkin
methods advance an entire polynomial representation in time.

30 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

Although all of the above literature is applicable to linear advection, most of
these methods are designed for more general conservation laws. One approach
to solving (1) is simply to adapt a method for general systems to the special case
considered here. However, we wish to exploit the special structure of the linear
advection problem to design a finite volume method that best meets the targets
of accuracy and shape preservation without overshoot or undershoot and fits the
existing constraints in terms of specification of the velocity field.

The method presented here is an extension of the two-dimensional, higher or-
der scheme for linear advection and scalar conservation laws developed by Bell,
Dawson and Shubin [3]. It exploits the observation that the equation is (trivially)
diagonalizable and bases the construction of the fluxes on the detailed geometry
of the characteristics. For constant coefficient advection, the Bell, Dawson and
Shubin (BDS) scheme is numerically equivalent to fitting a profile within each
cell, analytically advecting the reconstructed solution and averaging the solution
onto the grid. We note also that both the method presented in this paper and the
original BDS algorithm are fully explicit in time, and do not require a Runge–Kutta
procedure.

This original BDS algorithm constructs a limited bilinear profile within each cell.
The method presented here extends the BDS approach by constructing a limited,
two-dimensional biquadratic representation of the solution within each cell. The two
key elements of the algorithm are the construction of the limited quadratic profile
and the modification of the quadrature rules used to compute the fluxes. In the next
section, we review the original BDS algorithm. We then discuss the modifications
needed to include the quadratic terms in the reconstruction and how to modify the
flux computation to account for those terms. Next we present computational results
comparing the quadratic BDS algorithm with the original BDS algorithm and two
variations of the unsplit PPM algorithm. The initial tests are for advection by a
prescribed velocity field. We then illustrate the performance of the algorithm for
advection of density and a tracer in a variable density projection algorithm. Finally
we present comparisons with some alternative schemes that have been discussed in
the literature along with some discussions of their characteristics.

2. Bilinear BDS method

2.1. Overview. The BDS method was originally developed for scalar conservation
laws that arise in porous media flow, of the form

st + [u f (s)]x + [vg(s)]y = qh(s), (2)

where (u, v) represents a spatially dependent velocity field and the right side
represents point sources and sinks of fluid of strength q(x, y) and composition h.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 31

The fluid was assumed to be incompressible; that is,

ux + vy = 0 (3)

away from the support of q. A detailed description of the method can be found in
[3]. Since our focus here is on linear advection in low Mach number models, we will
restrict our consideration to the case where f (s)= g(s)= s and not consider sources
or sinks of fluid, so that q = 0. Although the test cases will all consider a divergence-
free velocity field so that the equation satisfies a maximum principle, we will not
make any assumptions about the divergence of the velocity in the specification of
the algorithm. We summarize the original BDS method in three steps:

Step I. Construct an appropriately limited bilinear polynomial representation of s
at time tn in each cell (i, j).

Step II. Define edge values si+1/2, j , si, j+1/2, etc., by integrating over time and
space assuming the bilinear profile.

Step III. Update the solution at time tn+1 using a conservative update,

sn+1
i j = sn

i j −
1t
1x

(ui+1/2, j si+1/2, j − ui−1/2, j si−1/2, j)

−
1t
1y

(vi, j+1/2si, j+1/2− vi, j−1/2si, j−1/2). (4)

Here 1t is the time step and 1x and 1y are the mesh spacings in the x- and
y-directions, respectively.

In the next section we describe the construction of the bilinear polynomial;
following that we discuss how to construct the face values by integrating over time
and space.

2.2. Construction of the bilinear polynomial. Here, we describe an algorithm for
Step I, the construction of a bilinear polynomial representation of s at time tn ,
written in the form

pbl
i j (x, y)= sxy,i j (x − xi)(y− y j)+ sx,i j (x − xi)+ sy,i j (y− y j)+ ŝ, (5)

where (xi , y j) denotes the cell center of cell (i, j).
To obtain estimates for the corner values on each cell, a multidimensional analog

of the procedure used by Colella and Woodward [9] was chosen. For equally spaced
grids this leads to

si+1/2, j+1/2 =
[
si−1, j−1− 7(si, j−1+ si+1, j−1)+ si+2, j−1

−7si−1, j + 49(si j + si+1, j)− 7si+2, j

−7si−1, j+1+ 49(si, j+1+ si+1, j+1)− 7si+2, j+1

+si−1, j+2− 7(si, j+2+ si+1, j+2)+ si+2, j+2
]
/144. (6)

32 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

The estimates for the four corner values LL, LH, RL, and RH (left low, left high,
right low, and right high) are then used to calculate slopes on the cell (i, j):

sx,i j =
(RH+RL)− (LH+LL)

21x
, (7a)

sy,i j =
(LH+RH)− (LL+RL)

21y
, (7b)

sxy,i j =
(RH−RL)− (LH−LL)

1x1y
. (7c)

The constant term ŝ is given by si j . Note that the integral over the linear and
bilinear terms vanishes because the polynomial is centered at the cell center. So by
construction, the average value of the polynomial over the cell (i, j) equals the cell
value si j .

Remark. The presence of the bilinear term sxy,i j leads to an improved preservation
of shapes for off-axis movement compared to methods which only include linear
terms (and possibly pure quadratic terms) in their profile reconstruction.

2.3. Limiting the bilinear polynomial. As noted in [3], the limiting of (5) can
be cast as an optimization problem: minimize, in each cell, the L2 norm of the
difference between the limited polynomial and the original interpolation function
given by (7a)–(7c) subject to two constraints:

(1) The average of the polynomial evaluated at the four corners of cell (i, j) must
equal the cell average si j .

(2) The polynomial evaluated at a corner must lie between the minimum and the
maximum of the cell averages of the four cells surrounding the corner.

However, to reduce the computational cost a simple heuristic algorithm was devel-
oped that produced results within 10% of the results obtained from the minimization
procedure in terms of overall L1 error in a variety of test cases. This heuristic
algorithm goes as follows:

Step i. Compute the values of the bilinear polynomial at the cell corners:

LLtemp = si j −
1x
2

sx,i j −
1y
2

sy,i j +
1x
2
1y
2

sxy,i j , (8a)

LHtemp = si j −
1x
2

sx,i j +
1y
2

sy,i j −
1x
2
1y
2

sxy,i j , (8b)

RLtemp = si j +
1x
2

sx,i j −
1y
2

sy,i j −
1x
2
1y
2

sxy,i j , (8c)

RHtemp = si j +
1x
2

sx,i j +
1y
2

sy,i j +
1x
2
1y
2

sxy,i j . (8d)

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 33

Step ii. Check to see if each temporary value is in the range defined by the four
neighboring cell values, for example, check whether LLtemp lies between
minLL and maxLL, where these limits are defined by

minLL =min(si−1, j−1, si, j−1, si−1, j , si j), (9a)

maxLL =max(si−1, j−1, si, j−1, si−1, j , si j). (9b)

If all of the temporary values LLtemp, . . . ,RHtemp happen to lie between
their respective bounds, the polynomial does not need to be limited. In that
case, skip Steps iii and iv, and keep the original values for sx , sy , and sxy

as computed in equations (7a)–(7c). Otherwise, constrain these temporary
values so they do not introduce any new extrema, for example, set

LLtemp =max[min(LLtemp,maxLL),minLL]. (10)

Step iii. Iterative Loop:
(a) Compute the difference between the sum of the temporary values and the

cell average, si j , multiplied by four:

sumdif= (LLtemp+LHtemp+RLtemp+RHtemp)− 4si j . (11)

Assume for now that sumdif ≥ 0; the case where sumdif ≤ 0 is analogous.
(b) Find out which temporary corner values are larger (smaller) than si j by

more than ε= 10−10. Let kdp be the number of corners with this property.
(c) Loop over corners: If the temporary corner value is larger than si j by

more than ε = 10−10, make the following assignments (using corner
LLtemp as an example assuming that LLtemp fulfills the criterion in (b)):
• redfac←min[sumdif/kdp,LLtemp−min(si−1, j−1, si, j−1, si−1, j , si j)]

• kdp← kdp− 1
• sumdif← sumdif− redfac
• LLtemp← LLtemp−redfac

Step iv. Compute the final slopes following equations (7a)–(7c), using LLtemp, etc.,
rather than LL, etc.

Remark. Numerical tests have shown that three iterations are sufficient to complete
the limiting process in Step iii.

2.4. Construction of edge states. The other key part of the BDS algorithm is the
calculation of the edge states si+1/2, j , si, j+1/2, etc., in Step II that are used to
construct the update terms in (4) in Step III. For clarity of exposition, we focus
on the problem

st + usx + vsy = 0, u, v > 0 constant; (12)

the extension to spatially varying (u, v) will be described later.

34 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

Figure 1. Characteristic domain of dependence of edge (i+1/2, j).
x- and y-coordinates specified relative to block center. Figure taken
from [3].

2.4.1. Constant velocity. Since u > 0, the characteristic domain of dependence of
edge (i+1/2, j) is the space-time region ABCDE F as depicted in Figure 1. Thus,
to compute si+1/2, j we compute the average of s over the face BC E F , which we
denote sL

i+1/2, j . To obtain sL
i+1/2, j , we integrate (12) over ABCDE F and use the

divergence theorem, taking advantage of the fact that the resulting integral over
face ACDF vanishes to obtain

u sL
i+1/2, j 1t1y = u

∫∫
BC E F

s dy dt

=

∫∫
AB DE

s dx dy+ v
∫∫

ABC
s dx dt − v

∫∫
DE F

s dx dt. (13)

By construction, s is piecewise bilinear and the edges of AB DE are aligned with
the coordinate axes. Therefore, one can use the midpoint formula to evaluate the
integral over AB DE exactly:∫∫

AB DE
s dx dy = u1t1y sM,F , where sM,F =

1x − u1t
2

sx,i j + si j . (14)

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 35

Consequently,

u sL
i+1/2, j =

u
1t1y

∫∫
BC E F

s dy dt

= u sM,F −
v

1t1y

(∫∫
DE F

s dx dt −
∫∫

ABC
s dx dt

)
. (15)

To evaluate the integrals over the surface triangles we use the same idea. Integrating
st +usx +vsy = 0 over the volume DE FG shown in Figure 2, one can express the
integral over DE F in terms of the integral over DEG, using the observation that
contributions over the faces G E F and G F D vanish, to obtain:

v

∫∫
DE F

s dx dt =
∫∫

DEG
s dx dy. (16)

For the evaluation of the integral on the right side, the midpoint quadrature rule
can be applied for the constant and linear parts of the bilinear polynomial on cell
(i, j). For the bilinear term this rule is not exact. Therefore, the bilinear term is
evaluated at the midpoints of the three edges and their sum is divided by three. The
evaluation of the integral over the face ABC in (15) is analogous, noting that the
characteristic domain of dependence extends into cell (i, j−1), and therefore we
evaluate the bilinear polynomial on cell (i, j−1).

Figure 2. Characteristic domain of dependence of triangle DE F .
The x- and y-coordinates are specified relative to block center.
Figure taken from [3].

36 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

2.4.2. Nonconstant velocity. Here we generalize the construction above to the more
general problem where (u, v) is spatially varying. At each edge we need to calculate
the upwind edge state. If we assume ui+1/2, j > 0, then we need to calculate sL

i+1/2, j .
For nonconstant velocity, we write the equation in the form

st + usx + (vs)y + sux = 0,

and integrate over region ABCDE F to obtain

sL
i+1/2, j

= sM,F−
1t
2
(ui+1/2, j − ui−1/2, j)

1x
sM,F−

1t
21y

(vi, j+1/20
+
−vi, j−1/20

−), (17)

where 0+ and 0− represent the average values of the flux vs over the triangles
DEF and ABC, respectively, and

sM,F =
1x − ui+1/2, j1t

2
sx,i j + si j . (18)

Here the term

−
1t
2
(ui+1/2, j − ui−1/2, j)

1x
sM,F

approximates the volume integral of sux over ABCDE F using explicit Euler
quadrature in time and treating ux as a constant given by the difference of the edge
velocities.

To compute the transverse correction term 0+, we write the equation in the form

st + usx + vsy + s(ux + vy)= 0.

If vi, j+1/2 > 0, we define

s+m =
1

m(DEG)

∫∫
DEG

s dx dy

=
sxy,i j

12
[
31x1y−4ui+1/2, j1t1y−2vi, j+1/21x1t+3ui+1/2, jvi, j+1/2(1t)2

]
+

sx,i j

6
(31x − 41tui+1/2, j)+

sy,i j

6
(31y− 21tvi, j+1/2)+ si j . (19)

Then

0+ =
1

m(DEG)

(∫∫
DEG

s dx dy−
∫∫∫

DE FG
s(ux + vy) dx dy dt

)
= s+m −

1
m(DEG)

∫∫∫
DE FG

s(ux + vy) dx dy dt

= s+m ·
[

1−
1t
3

(
ui+1/2, j − ui−1/2, j

1x
+
vi, j+1/2− vi, j−1/2

1y

)]
, (20)

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 37

where we have again used explicit Euler quadrature in time for the volume integral.
Otherwise if vi, j+1/2 < 0, we define

uproj =

{
ui+1/2, j+1 if ui+1/2, j · ui+1/2, j+1 > 0,
0 otherwise,

(21)

that is, in the second case we project corner G in Figure 2 from cell (i+1, j+1) onto
the edge (i+1/2, j+1). This ensures that the characteristic domain of dependence
is contained within one cell. Then s+m is given by

s+m =
sxy,i, j+1

12

[
− 31x1y+ 2(ui+1/2, j + uproj)1t1y− 2vi, j+1/21x1t

+ (ui+1/2, j + 2uproj)vi, j+1/2(1t)2
]

+
sx,i, j+1

6

[
31x − 21t (ui+1/2, j + uproj)

]
+

sy,i, j+1

6

(
−31y− 21tvi, j+1/2

)
+ si, j+1 (22)

and

0+ = s+m ·
[
1−

1t
3

(ui+1/2, j+1− ui−1/2, j+1

1x
+
vi, j+3/2− vi, j+1/2

1y

)]
. (23)

The formula for 0− is analogous. We note that 0+ computed for edge (i+1/2, j)
is, in general, not the same as 0− computed for edge (i+1/2, j+1).

If ui, j+1/2 < 0, we need to calculate the edge value from cell (i+1, j), which
we denote by s R

i+1/2, j , using formulae analogous to the above. The calculation of
si, j+1/2 is done similarly.

3. New quadratic BDS method

3.1. Overview. The main drawback of the bilinear BDS method compared to PPM-
style methods is that it uses only a bilinear polynomial for the profile reconstruction.
As a result, the method is only second-order accurate. To address that limitation
we now include quadratic terms in the polynomial reconstruction. Each step of
the quadratic BDS method is similar to that of the bilinear method; Step III is
unchanged, while Step I and Step II now differ because we work with a quadratic
rather than bilinear polynomial.

3.2. Construction of the quadratic polynomial. Here, we describe an algorithm
for the construction of a quadratic polynomial representation of s at time tn , written
in the form

pq
i j (x, y)= sxx,i j (x − xi)

2
+ syy,i j (y− y j)

2
+ sxy,i j (x − xi)(y− y j)

+sx,i j (x − xi)+ sy,i j (y− y j)+ s̄. (24)

38 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

We denote the constant term by s̄ instead of ŝ (as we did for the bilinear polynomial
pbl) since the constant term will no longer be equal to si j . Note that this is not
a full biquadratic polynomial; no mixed quadratic terms are included. The con-
struction and limiting of a full biquadratic polynomial would be considerably more
complicated and would not lead to a higher order of convergence.

We begin the construction of the quadratic polynomial as in the bilinear method,
using (6) to define corner values for each cell. We will determine the quadratic
terms independently.

To obtain an estimate for sxx at the center of cell (i, j) we construct the quartic
polynomial whose cell average matches the cell averages si−2, j , si−1, j , si j , si+1, j ,
and si+2, j . We then approximate the second derivative of the function s by the
second derivative of the quartic polynomial at the center of cell (i, j). This leads to
the following formulae:

second derivative at cell center of cell (i, j) in x-direction =

1
8(1x)2

(
−si−2, j + 12si−1, j − 22si j + 12si+1, j − si+2, j

)
, (25a)

second derivative at cell center of cell (i, j) in y-direction =

1
8(1y)2

(
−si, j−2+ 12si, j−1− 22si j + 12si, j+1− si, j+2

)
. (25b)

By construction, these formulae are exact for one-dimensional polynomials up
to order four. (In fact, they are even exact for a quintic polynomial due to their
symmetry.) The coefficients for the quadratic terms sxx,i j and syy,i j are then given
by dividing the estimates for the second derivatives by two.

We then want to construct a polynomial out of the above information. We
calculate sxy,i j , sx,i j , and sy,i j from the estimates for the corner values RH, RL,
LH, and LL using equations (7a)–(7c), and sxx,i j and syy,i j out of the estimates for
the second derivatives:

sxx,i j =
1
2(second derivative at cell center of cell (i, j) in x-direction), (26a)

syy,i j =
1
2(second derivative at cell center of cell (i, j) in y-direction). (26b)

To make sure that the average of the polynomial over cell (i, j) equals the cell
average si j , we redefine the constant term

s̄ = si j −
1

1x1y

∫∫
cell(i, j)

sxx,i j (x − xi)
2
+ syy,i j (y− y j)

2 dx dy (27a)

= si j −
1

12

[
sxx,i j (1x)2+ syy,i j (1y)2

]
. (27b)

It is straightforward to show that this algorithm reconstructs a polynomial of the
form (24) exactly.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 39

3.3. Limiting the quadratic profile. The limiting of the quadratic polynomial (24)
is split up into three parts:

Step 1. Test whether all estimated corner values are smaller (or larger) than the cell
average si j . This can happen, for example, if the peak of a Gaussian lies in
the middle of a cell. If that is the case, we set the polynomial to be constant
on that cell with the value si j and the limiting process is complete.

Step 2. Otherwise, we attempt to accept the polynomial with unlimited slopes
sxy,i j , sx,i j , and sy,i j and only limit the quadratic coefficients sxx,i j and syy,i j

appropriately. The resulting polynomial is tested to see if it is suitable. If so,
the limiting is complete.

Step 3. In the third step, we first construct the limited bilinear profile using the
original BDS approach. We then adjust sxx,i j and syy,i j to construct a suitable
quadratic polynomial.

The tests in Step 2 usually fail close to a discontinuity, that is, we need to use
the more restrictive limiting in Step 3 for that case. Furthermore, these tests do
ensure that the minimum and maximum values of the polynomial (if accepted in
Step 2) are bounded by the cell values of neighboring cells (in order to satisfy a
maximum principle for constant coefficient linear advection). We first discuss our
general strategy for limiting the quadratic terms before giving detailed algorithms.

For the limiting of sxx,i j and syy,i j we mainly consider the partial derivatives of
the quadratic polynomial pq in the x- and in the y-direction, or to be more precise:
we determine whether pq

x and/or pq
y vanish in the interior of the cell. In Step 2 of

our limiting procedure we limit the quadratic coefficients if both partial derivatives
happen to vanish in the same cell, that is, if we happen to have an interior extremum
or saddle point. In the more restrictive Step 3 of our limiting we limit sxx,i j if pq

x

vanishes in the interior of the cell independently of pq
y . The limiting is set up in

such a way that the position of the root of pq
x is projected onto the edge closer to

that position (w.r.t. the x-coordinate). The same holds true for syy,i j .
In describing the limiting procedure for sxx,i j in more detail, we will suppress

the i j index in (24). The partial derivative of pq(x, y) with respect to x is given by

pq
x(x, y)= 2sxx(x − xi)+ sxy(y− y j)+ sx . (28)

Setting pq
x(x, y)= 0 then corresponds to

−sx − sxy(y− y j)= 2sxx(x − xi). (29)

The right side of (29) varies within
[
−2|sxx |

1x
2 , 2|sxx |

1x
2

]
in cell (i, j). Therefore,

in order for (29) to never hold within cell (i, j) (which is equivalent to saying that

40 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

pq
x(x, y) 6= 0 within cell (i, j)), we need

|sx + sxy(y− y j)| ≥ 2|sxx |
1x
2

for all y ∈
[

y j −
1y
2
, y j +

1y
2

]
. (30)

Since sx + sxy(y − y j) is a linear function of y, this can’t be true if the function
values for y j −1y/2 and y j +1y/2 have opposite signs. So if

sign
(

sx + sxy
1y
2

)
· sign

(
sx − sxy

1y
2

)
< 0, (31)

then there exists a ŷ ∈ [y j −1y/2, y j +1y/2] such that pq
x(xi , ŷ)= 0. Otherwise

the two terms have the same sign and we can take the one with the smaller absolute
value as a limiting value. We define

cmp=min
(∣∣∣sx + sxy

1y
2

∣∣∣, ∣∣∣sx − sxy
1y
2

∣∣∣) (32)

and ask for cmp≥1x |sxx | to be true. In Step 2, if (31) is satisfied and if additionally
one of the two conditions analogous to (31) and (32) for syy is true then we set
sxx = 0. Otherwise (i.e., (31) not true) if cmp<1x |sxx | and if additionally one of
the two analogous conditions for syy is true we redefine sxx as

sxx = sign(sxx)
cmp
1x

, (33)

that is, we project the position of the root of pq
x from the interior of the cell onto

the edge. The analogous limiting applies for syy . In our second, more restrictive
algorithm used in Step 3 we limit sxx and syy independently of each other. That
means if (31) is true, we set sxx = 0. Otherwise if cmp<1x |sxx |, we define

sxx = sign(sxx)
cmp
1x

. (34)

The limiting for syy is analogous.
With this basic approach to limiting the quadratic term, we now provide the

details of Step 2 and Step 3 of the limiting procedure. We start with the algorithm
used in Step 2 which is designed for smooth areas of the solution.

3.3.1. Limiting in smooth parts of the solution. The idea for this algorithm is
to try to keep the unlimited polynomial if possible, but still satisfy a maximum
principle. To achieve that goal we take the unlimited slopes sx,i j , sy,i j , and sxy,i j as
given by (7a)–(7c). The estimates for the quadratic terms sxx,i j and syy,i j are only
limited if both pq

x and pq
y vanish in the same cell as described above. Since the

overall algorithm is designed to satisfy a maximum principle for constant coefficient
advection, we need to check whether the minimum and maximum values of the
polynomial over the entire cell lie inside the corresponding bounds. The limiting of
sxx,i j and syy,i j ensures that the minimum and maximum lie on the boundary of
the cell. Hence, we check whether all corner values and the minimum/maximum

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 41

on all four edges lie between the cell values of neighboring cells. Since the edges
are aligned with the coordinate axes, the two-dimensional biquadratic polynomial
simplifies to a one-dimensional quadratic polynomial there. Consider the upper
y-edge, that is, fix y =1y/2. If there is an interior extremum at all, that is, if

|sx,i j + sxy,i j1y/2|< |sxx,i j1x |, (35)

then the extremum has to have the x-coordinate

xextr,+ =−
sx,i j + sxy,i j1y/2

2sxx,i j
(36)

relative to xi . The formulae for the other three edges are deduced analogously. This
leads to the following algorithm:

Step 2: Limiting of quadratic profile in smooth parts of solution.

Assume given the estimated corner values LLi j , . . . ,RHi j and estimated coeffi-
cients sxx,i j and syy,i j using equations (6) as well as (25a), (26a) and (25b), (26b).

(1) Calculate the unlimited slopes sx,i j , sy,i j , sxy,i j out of LLi j , . . . ,RHi j using
(7a)–(7c).

(2) Check whether both pq
x and pq

y vanish in the interior of the same cell:
set test1xx ← false, test2xx ← false, test1yy← false, test2yy← false.
• if sign(sx,i j+sxy,i j1y/2) ·sign(sx,i j−sxy,i j1y/2)<0, set test1xx← true.
• else if cmp<1x |sxx,i j |, where cmp is defined by (32), set test2xx← true.

Proceed analogously with test1yy and test2yy . If test1xx evaluates to true and
either one of the tests for yy is true, set sxx,i j ← 0. If test2xx evaluates to true
and either one of the tests for yy is true, set sxx,i j ← sign(sxx,i j) cmp /1x .
Proceed analogous for syy,i j .

(3) Adjust the constant term s̄ using (27b).

(4) Check whether the reconstructed polynomial lies in bounds:
• Evaluate the quadratic polynomial pq given in (24) at the four corners.

For each corner, check whether the value of the polynomial lies between
the cell averages of the four cells surrounding that corner.

• Calculate the extremal position on each of the four edges (if one exists)
using equations (35) and (36) and evaluate pq there. Check whether the
value of that point lies between the cell averages of the four cells closest
to the position of the extremum.

If all tests are satisfied, keep that polynomial and skip (5) immediately below.

(5) Limit sxx,i j independently of syy,i j if one of the following conditions holds
true:

42 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

• if sign(sx,i j + sxy,i j1y/2) · sign(sx,i j − sxy,i j1y/2) < 0, set sxx,i j ← 0.
• else if cmp<1x |sxx,i j | (see (32)), set sxx,i j ← sign(sxx,i j) cmp /1x .

Calculate syy,i j following the same rules. Check again whether the corners
are in bounds. If yes, keep that polynomial. If not, this algorithm was not
successful (and we’ll continue with Step 3 described below).

Remark. In (5), we only need to check the corners, because by limiting sxx,i j and
syy,i j the way we do there, the minimum and maximum values of pq now occur at
the corners.

Numerical tests suggest that this limiting leads to very good performance in the
sense of the overall L1 error for smooth initial data.

3.3.2. Limiting ensuring monotonicity. The algorithm in this subsection is designed
for discontinuities. Whereas we took the unlimited slopes sx,i j , sy,i j , and sxy,i j

in the algorithm above, we now apply the limiting procedure from the original
bilinear BDS method to the slopes sx,i j , sy,i j , and sxy,i j . In this way we make sure
that we preserve the behavior of the bilinear BDS method close to discontinuities.
Additionally, we limit the coefficients sxx,i j and syy,i j using the more restrictive
way described above such that the polynomial on cell (i, j) is monotone in x- and
y-direction over the whole cell. This leads to the following algorithm:

Step 3: Limiting of quadratic profile close to discontinuities.

Assume the estimated corner values LLi j , . . . ,RHi j and estimated coefficients
sxx,i j and syy,i j using equations (6) as well as (25a), (26a) and (25b), (26b) are
given.

(1) Use the limiting procedure in the original bilinear BDS to limit the (bi-)linear
coefficients, i.e., limit sx,i j , sy,i j , and sxy,i j following the algorithm given in
Section 2.3.

(2) Limit sxx,i j if one of the following conditions holds true:
• if sign(sx,i j + sxy,i j1y/2) · sign(sx,i j − sxy,i j1y/2) < 0, set sxx,i j ← 0.
• else if cmp<1x |sxx,i j | (see (32)), set sxx,i j ← sign(sxx,i j) cmp /1x .

Calculate syy,i j analogously.

(3) Adjust the constant term s̄ using (27b) .

(4) Test whether the corner values of the fully reconstructed quadratic polynomial
exceed the cell averages of the neighboring cells. If this is the case, set
sxx,i j ← 0 and syy,i j ← 0, and set the constant term equal to si j .

The last step ensures that the corner values of the quadratic polynomial lie
between the minimum/maximum values of the neighboring cells, that is, it ensures
that the algorithm satisfies a maximum principle for constant coefficient linear

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 43

advection. Without the quadratic terms the four corners of the cell (i, j) have the
values

±
1x1y

4
sxy,i j ±

1x
2

sx,i j ±
1y
2

sy,i j + si j , (37)

which are guaranteed to lie between the minimum/maximum bounds due to the
bilinear limiting strategy. Then we add the quadratic terms and change the constant
term from si j to s̄ = si j−

1
12 sxx,i j (1x)2− 1

12 syy,i j (1y)2. Consequently, the corners
have the values

sxx,i j
(1x)2

4
+ syy,i j

(1y)2

4
±
1x1y

4
sxy,i j ±

1x
2

sx,i j ±
1y
2

sy,i j + s̄

= sxx,i j
(1x)2

6
+ syy,i j

(1y)2

6
±
1x1y

4
sxy,i j ±

1x
2

sx,i j ±
1y
2

sy,i j + si j . (38)

So compared to the bilinear polynomial pbl the values of the quadratic polynomial
pq differ at every corner by 1

6 sxx,i j (1x)2+ 1
6 syy,i j (1y)2 (which is a constant for

every cell).
For smooth initial data, this constant often even helps to keep the corner values in

bounds. In our numerical tests, violations were usually seen only for discontinuous
initial data. Therefore, we chose the straightforward way to fix this problem just
described: at the end of the limiting routine, we check whether the values of the
quadratic polynomial at the corners lie inside bounds. If that’s the case, we are
done. Otherwise, we set sxx,i j = 0 and syy,i j = 0, that is, we go back to the bilinear
polynomial.

This leads to a method that obeys the maximum principle for constant coefficient
linear advection (up to numerical roundoff error):

• The minimum and maximum value of the quadratic polynomial pq
i j on cell

(i, j) are limited by the values on the boundary in Step 2 of the limiting process
and by the values at the corners in Step 3.

• The values on the boundary and the corner values of the quadratic polynomial
don’t exceed the minimum/maximum of the neighboring cell averages.

3.4. Construction of edge states. The formalism based on integrating over the
characteristic domain of dependence remains the same as in the bilinear scheme.
The only changes that we need to make are to substitute higher order quadrature
formulae to evaluate the integrals over the quadratic terms exactly. Let us first
consider the integral ∫∫

AB DE
s(x, y) dx dy, (39)

for the case ui+1/2, j > 0 appearing in the calculation of the flux sL
i+1/2, j in (13). For

the bilinear, linear, and constant terms of the polynomial, we can use the midpoint

44 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

formula as before. The integrals over the quadratic terms can be calculated explicitly:∫∫
AB DE

sxx,i j (x − xi)
2 dx dy

= sxx,i j1y
∫ xi+1/2

xi+1/2−ui+1/2, j1t
(x − xi)

2 dx

= sxx,i j1y
[1

4(1x)2ui+1/2, j1t − 1
21x(ui+1/2, j1t)2+ 1

3(ui+1/2, j1t)3
]
, (40)

and ∫∫
AB DE

syy,i j (y− y j)
2 dx dy = 1

12 syy,i j ui+1/2, j1t (1y)3. (41)

That means that sM,F given by (18) is replaced by the following s Q
M,F in formula

(17):

s Q
M,F = s̄+

1x − ui+1/2, j1t
2

sx,i j

+ sxx,i j
[1

4(1x)2− 1
21xui+1/2, j1t + 1

3(ui+1/2, j1t)2
]
+

1
12 syy,i j (1y)2. (42)

Additionally, we need to adjust the calculations of 0+ and 0− appropriately. This
corresponds to changing the evaluations of the contributions coming from the
triangles DE F and ABC . We evaluate the linear part of the polynomial with the
midpoint rule. For the quadratic and bilinear terms we use the same rule as used
for the bilinear term in the original BDS: we evaluate the terms at the midpoints
of all three edges and divide the corresponding sum by three. In this way, we
are evaluating all two-dimensional integrals exactly. The same changes hold true
for all the other cases considered in Section 2.4.2 (i.e., the calculation of s R

i+1/2, j ,
sL

i, j+1/2, and s R
i, j+1/2). We note that for constant coefficient advection, analogous to

the original BDS algorithm, the quadratic BDS algorithm is equivalent to fitting a
limited quadratic profile to the solution at time tn , advecting that profile exactly
and averaging it back onto the grid, which guarantees that the solution satisfies a
maximum principle.

4. Numerical results

In this section we present a series of numerical tests using our new quadratic method
(BDS_Q). In Section 4.1, we advect smooth and discontinuous initial data using a
constant velocity field. We explore the effects of angle dependence of the velocity
field on the accuracy and overshoot of our method. In Section 4.2, we explore the
effects of advecting smooth and discontinuous data in a velocity field that varies in
space. In Section 4.3, we integrate the algorithm into a variable density projection
method [2], and thus the velocity varies in both space and time. In this example,
we examine the behavior of the density in addition to a passively advected scalar.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 45

In each of these sections, we compare our results to the original bilinear method
(BDS_BL, [3]) and two PPM methods. The first, which we call PPM1, is the
PPM algorithm [9] that has been in use for over 25 years. The second, which we
call PPM2, is based on a recent effort [8] to preserve accuracy at smooth extrema.
The algorithm as described in [8] suffers from sensitivity to roundoff error; we
incorporate the correction to that as described in [16]. Finally, in Section 4.4 we
discuss the performance of BDS_Q on some additional test problems discussed in
the literature and compare results to other schemes.

In Sections 4.1 and 4.2 we solve the equation

st + (us)x + (vs)y = 0 (43)

for both smooth and discontinuous initial conditions, where (u, v) is a specified
velocity field. For the smooth case we define

s(x, y, t = 0)= e−60r2
, (44)

where r2
= (x − 1)2+ (y − 1)2 on the domain (0, 2)2. The discontinuous initial

data is given by a round tophat of the form

s(x, y, t = 0)=
{

1 if r < 0.2,
0 otherwise,

(45)

where r =
√
(x − 0.5)2+ (y− 0.5)2 on the domain (0, 1)2. Given the analytic

profile of s at t = 0, we discretize the smooth initial data using Gaussian quadrature
rules, which give us a fourth-order estimate of the cell average. As a result, while
the maximum of the analytical function in (44) is 1, the numerical maximum will
be slightly lower for each resolution. To discretize the discontinuous round tophat
we approximate the integral of the function over the cell by dividing the cell into
16 subcells, evaluating the analytic function at the center of each subcell, then
averaging the 16 values to define the average over the original cell.

In Section 4.3, we integrate the algorithm into a variable density projection
method [2]. First we consider the advection of a passive tracer in a constant density
incompressible flow. Here although the velocity varies in space and time the tracer
does not couple back to the fluid. In the second example we consider the advection
of density in a variable density flow. For this case, the density couples back into
the evolution of the velocity field.

For all of the tests we set the time step based on the CFL condition

1t = σCFL mini j

(
1x
|ui j |

,
1y
|vi j |

)
,

with a CFL number, σCFL = 0.9, and impose periodic boundary conditions on all
faces.

46 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

Before presenting our results we would like to comment on the computational
efficiency of the BDS_Q algorithm as compared to BDS_BL and PPM2. In our
testing, BDS_BL is a factor of 1.79 times more expensive than PPM2, and BDS_Q
is a factor of 2.47 times more expensive than PPM2. However, in our intended
applications the computational cost is dominated by elliptic solvers, reaction net-
works, and/or calls to the equation of state, so the overall cost of advection is minor,
even with the more expensive BDS_Q algorithm.

4.1. Constant velocity advection.

4.1.1. Smooth initial data. In this section we consider the evolution of s with
initial data given by (44). The motivation for extending BDS_BL to BDS_Q by
adding the quadratic terms was to increase the accuracy for problems with smooth
initial data, while maintaining the lack of under- and overshoot that we see with
BDS_BL for discontinuous problems. We report the L1 norm of error relative
to the exact solution for each method at three different resolutions for both the
limited and unlimited forms of each algorithm in Table 1, where (u, v) = (1, 0),
and Table 2, where (u, v)= (1, 0.2). As expected we see third-order convergence
for unlimited BDS_Q as opposed to second-order convergence for BDS_BL, i.e.,
the error decreases by a factor of 8 rather than 4 for each factor 2 decrease in
mesh spacing. With limiting, the ratio of errors with BDS_Q decreases slightly
in the off-axis test, but we observe that BDS_Q is the only method to maintain
such high convergence rates in this test. All other methods demonstrate second-
order convergence for the off-axis test, even though PPM2 shows a high rate of
convergence for the axis-aligned case.

Looking at the magnitudes of errors as opposed to the ratios, we see that for flow
aligned with the x-axis, the errors are lowest using PPM2, which for this particular
problem is equivalent to PPM without limiters. However, this relative advantage
disappears when the flow does not align with a coordinate axis. At the highest

Method 1002 Error Ratio 2002 Error Ratio 4002 Error

BDS_Q 1.89e-04 8.0 2.36e-05 8.3 2.83e-06
BDS_BL 6.18e-04 4.1 1.49e-04 4.1 3.62e-05
PPM1 5.86e-04 5.0 1.18e-04 5.1 2.30e-05
PPM2 4.48e-05 14. 3.16e-06 12. 2.62e-07

BDS_Q, no limiting 5.80e-05 8.7 6.69e-06 8.2 8.18e-07
BDS_BL, no limiting 5.45e-04 4.0 1.37e-04 4.0 3.45e-05
PPM, no limiting 4.48e-05 14. 3.16e-06 12. 2.62e-07

Table 1. Error in the L1 norm at t = 2 for smooth initial data with
(u, v)= (1, 0).

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 47

Method 1002 Error Ratio 2002 Error Ratio 4002 Error

BDS_Q 1.33e-03 7.2 1.85e-04 7.4 2.51e-05
BDS_BL 4.71e-03 4.1 1.15e-03 4.0 2.89e-04
PPM1 7.88e-03 3.8 2.07e-03 3.9 5.29e-04
PPM2 7.86e-03 4.0 1.98e-03 4.0 4.97e-04

BDS_Q, no limiting 7.49e-04 8.4 8.95e-05 8.1 1.10e-05
BDS_BL, no limiting 4.53e-03 4.0 1.13e-03 4.0 2.82e-04
PPM, no limiting 7.88e-03 4.0 1.98e-03 4.0 4.97e-04

Table 2. Error in the L1 norm at t = 10 for smooth initial data
with (u, v)= (1, 0.2).

resolution of the off-axis test, the error in the solution is more than an order of
magnitude smaller with BDS_Q than with any of the other methods.

Another metric for the performance of a method for scalar advection is the degree
to which it preserves the maximum of a smooth peak, and the degree to which the
final solution under- or overshoots the minimum and maximum, respectively, of
the original solution. Analytically, scalar advection with a divergence-free velocity
field should preserve the maximum and minimum of the original solution.

In Table 3 we show the peak value of the solution for the axis-aligned flow at final
time; in this case, none of the methods exhibit undershoot. In Table 4 we show the
peak value at the final times and the largest value of undershoot for the off-axis case.
Disappointingly, the peak for BDS_Q is slightly lower than the peaks for BDS_BL
and for eitherPPM method; this is an issue we hope to address in future work. It
is clear that the reduction results from the limiting in BDS_Q; without limiting
the maximum for BDS_Q is comparable to that of unlimited PPM. We also verify

Method 1002 max 2002 max 4002 max

Analytic 0.98417 0.99601 0.99900
BDS_Q 0.95344 0.98454 0.99493
BDS_BL 0.95432 0.98493 0.99506
PPM1 0.96476 0.98873 0.99642
PPM2 0.98405 0.99598 0.99900

BDS_Q, no limiting 0.98281 0.99585 0.99897
BDS_BL, no limiting 0.98279 0.99588 0.99899
PPM, no limiting 0.98405 0.99598 0.99900

Table 3. Peak at t = 2 for smooth initial data with (u, v)= (1, 0).
None of the methods exhibit undershoot for this problem.

48 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

1002 2002 4002

Method max min max min max min

Analytic 0.98417 0.00000 0.99601 0.00000 0.99900 0.00000
BDS_Q 0.87065 0.00000 0.95442 0.00000 0.98383 0.00000
BDS_BL 0.86967 0.00000 0.95790 0.00000 0.98598 0.00000
PPM1 0.88597 –0.02133 0.96678 –0.00003 0.98907 0.00000
PPM2 0.94632 –0.01701 0.99261 0.00000 0.99877 0.00000

BDS_Q, no limiting 0.96600 0.00000 0.99377 0.00000 0.99873 0.00000
BDS_BL, no limiting 0.99512 –0.00316 0.99321 0.00000 0.99875 0.00000
PPM, no limiting 0.94632 –0.01783 0.99261 0.00000 0.99877 0.00000

Table 4. Maxima and minima at t = 10 for smooth initial data
with (u, v)= (1, 0.2).

in this test that both BDS_BL and BDS_Q show no undershoot for the off-axis
problem, unlike both PPM approaches, which undershoot on the coarser grids.

A final metric we consider is the distortion of the original shape at the final
time. Analytically, the initial data should stay undistorted throughout the entire
evolution. Figure 3 shows contours of the solution at t = 10 for evolution with
(u, v)= (1, 0.2). BDS_Q clearly preserves the round shape most accurately, with
some distortion evident for BDS_BL. The solutions for PPM1 and PPM2 show

(a) BDS_Q (b) BDS_BL (c) PPM1 (d) PPM2

(e) unlim. BDS_Q (f) unlim. BDS_BL (g) unlim. PPM (h) analytic

Figure 3. Final solution for smooth initial data, (u, v)= (1, 0.2),
and 1002 resolution. There are nine contour lines evenly spaced
from 0.1 to 0.9; in addition, the violet contour encloses the region
where s <−0.01.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 49

significant distortion. We can also see in this figure the flattening of the peak for
the limited versions of BDS_BL and BDS_Q, as well as the undershoot for the
PPM methods.

4.1.2. Discontinuous initial data. In this section we consider the evolution of
discontinuous initial data given by (45), again considering two different velocity
fields, (u, v)= (1, 0) and (u, v)= (1, 0.2). In Tables 5 and 6 we show the L1 norm
of error for each method at three different resolutions for both the limited and
unlimited forms of each algorithm. In this table we no longer show the ratios of
error because we do not expect to approach the asymptotic convergence rates with
discontinuous initial data. We make three observations from these tables: first, the
errors for the different methods are much closer to each other for discontinuous
initial data than for smooth initial data; second, unlike for smooth initial data, for
both velocity fields and all the methods, limiting reduces the L1 error of the solution;
third, for the axis-aligned flow field the errors for the PPM methods are slightly

Method 1002 Error 2002 Error 4002 Error

BDS_Q 5.40e-03 3.30e-03 1.99e-03
BDS_BL 5.69e-03 3.56e-03 2.23e-03
PPM1 3.67e-03 2.18e-03 1.29e-03
PPM2 3.83e-03 2.32e-03 1.40e-03

BDS_Q, no limiting 6.97e-03 4.22e-03 2.52e-03
BDS_BL, no limiting 7.65e-03 5.01e-03 3.33e-03
PPM, no limiting 7.71e-03 4.68e-03 2.85e-03

Table 5. Error in the L1 norm at t = 1 for discontinuous initial
data with (u, v)= (1, 0).

Method 1002 Error 2002 Error 4002 Error

BDS_Q 1.23e-02 7.30e-03 4.34e-03
BDS_BL 1.45e-02 9.13e-03 5.82e-03
PPM1 2.31e-02 1.53e-02 1.02e-02
PPM2 2.33e-02 1.57e-02 1.06e-02

BDS_Q, no limiting 1.49e-02 8.79e-03 5.17e-03
BDS_BL, no limiting 2.22e-02 1.49e-02 9.96e-03
PPM, no limiting 2.86e-02 1.91e-02 1.27e-02

Table 6. Error in the L1 norm at t = 5 for discontinuous initial
data with (u, v)= (1, 0.2).

50 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

1002 2002 4002

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_BL 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM1 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM2 1.00000 0.00000 1.00443 0.00000 1.00080 0.00000

BDS_Q, no limiting 1.10593 –0.10032 1.09505 –0.09264 1.09159 –0.08632
BDS_BL, no limiting 1.10527 –0.10060 1.13222 –0.13264 1.15713 –0.15713
PPM, no limiting 1.17344 –0.17344 1.14547 –0.14547 1.16618 –0.16618

Table 7. Maxima and minima at t = 1 for discontinuous initial
data with (u, v)= (1, 0).

1002 2002 4002

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_BL 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM1 1.18611 –0.28803 1.21003 –0.32074 1.22745 –0.30010
PPM2 1.19335 –0.29089 1.21697 –0.29623 1.23178 –0.28074

BDS_Q, no limiting 1.10668 -0.06558 1.09510 -0.07061 1.09311 -0.07344
BDS_BL, no limiting 1.17508 -0.16271 1.19262 -0.18948 1.21179 -0.20986
PPM, no limiting 1.21288 -0.33820 1.23017 -0.32474 1.24244 -0.32613

Table 8. Maxima and minima at t = 5 for discontinuous initial
data with (u, v)= (1, 0.2).

lower; for the diagonal flow the BDS methods have slightly lower error.
In Tables 7 and 8 we show the maxima and minima of the solution at the final

time. For the axis-aligned flow we see that, of the methods with limiters, only
PPM2 introduces new maxima to the solution. However, for the off-axis flow the
solutions for both PPM1 and PPM2 overshoot by more than 20% at the two higher
resolutions, while BDS_BL and BDS_Q retain the initial maximum value of 1. We
see similar results with the minima. We also note that while the L1 error decreases
with mesh spacing, the magnitude of the over- and undershoot does not.

Again we look at the distortion of the final solution for the case with the off-axis
velocity field. In Figure 4 we see contours of the solution with contours in the
regions of undershoot and overshoot given in color. We notice a slight spreading

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 51

(a) BDS_Q (b) BDS_BL (c) PPM1 (d) PPM2

(e) unlim. BDS_Q (f) unlim. BDS_BL (g) unlim. PPM (h) analytic

Figure 4. Final solution for discontinuous initial data, (u, v) =
(1, 0.2), and 4002 resolution. There are three black contours from
0.05 to 0.95, three red contours from 1.05 to 1.15 marking the
overshoot and three blue contours going from −0.15 to −0.05
marking the undershoot.

of the contours for all of the methods but no over- or undershoot for the limited
BDS_Q and BDS_BL methods. All the PPM solutions show severe distortion from
the over- and undershoot.

Finally, we examine the question of how the over- and undershoot vary with
the angle of the velocity relative to the x-axis. Table 9 shows the maximum and
minimum of each solution after 500 time steps for each of the limited methods using
the discontinuous initial data at 1002 resolution. We see that the (u, v)= (1, 0.2)
case is representative of off-axis velocities, and in fact the over- and undershoot
seem to peak for both PPM1 and PPM2 when the velocity field is approximately
30◦ off the x-axis.

4.2. Variable velocity advection. Here we consider the velocity field given by
(u, v) = [1.0, sin(πx)] in the domain (0, 2)2. We advect s until t = 10 for both
smooth and discontinuous initial data, with the discontinuous data now centered at
(1, 1) instead of (0.5, 0.5) as was done earlier. The goal of this test is to examine if
the conclusions of the previous section hold when the velocity field is no longer
spatially constant.

4.2.1. Smooth initial data. Results for smooth initial data are shown in Tables 10
and 11. In Table 10 we report the L1 error at t = 10, in Table 11 we show the

52 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

(u, v)
Method (1, 0) (1, 0.2) (1, 0.4) (1, 0.5) (1, 0.6) (1, 0.8) (1, 1)

Maximum

Analytic 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
BDS_Q 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
BDS_BL 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
PPM1 1.00000 1.18762 1.19635 1.20484 1.20307 1.17445 1.16009
PPM2 1.00324 1.18856 1.21372 1.22929 1.22770 1.17534 1.15975

Minimum

Analytic 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
BDS_Q 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
BDS_BL 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
PPM1 0.00000 –0.28937 –0.32127 –0.32719 –0.32405 –0.32244 –0.28363
PPM2 0.00000 –0.27999 –0.32064 –0.32297 –0.32934 –0.31379 –0.26969

Table 9. Maxima and minima after 500 time steps for each limited
method using discontinuous initial data at 1002 resolution.

minimum and maximum value at t = 10 for all methods considered. Analogously to
the conclusions in Section 4.1.1 for off-axis flow we observe, for smooth initial data:

• third-order accuracy for BDS_Q and second-order accuracy for other methods,

• flattening of the peak for BDS_Q and BDS_BL relative to PPM,

• BDS_Q outperforms BDS_BL by every metric except for a slightly lower peak
at 4002,

• no under- or overshoot for the BDS algorithms, some undershoot for the PPM
algorithms.

Method 1002 Error Ratio 2002 Error Ratio 4002 Error

BDS_Q 2.61e-03 8.0 3.25e-04 7.3 4.45e-05
BDS_BL 4.96e-03 4.4 1.13e-03 4.2 2.70e-04
PPM1 5.29e-03 4.1 1.28e-03 4.2 3.07e-04
PPM2 4.46e-03 4.0 1.11e-03 4.0 2.79e-04

BDS_Q, no limiting 1.88e-03 8.1 2.32e-04 8.2 2.84e-05
BDS_BL, no limiting 4.68e-03 4.4 1.07e-03 4.1 2.58e-04
PPM, no limiting 4.43e-03 4.0 1.12e-03 4.0 2.79e-04

Table 10. Error in the L1 norm at t = 10 for smooth initial data
with (u, v)= [1.0, sin(πx)].

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 53

1002 2002 4002

Method max min max min max min

Analytic 0.98417 0.00000 0.99601 0.00000 0.99900 0.00000
BDS_Q 0.83400 0.00000 0.94420 0.00000 0.98117 0.00000
BDS_BL 0.82682 0.00000 0.94381 0.00000 0.98189 0.00000
PPM1 0.88298 –0.01126 0.97013 –0.00014 0.99172 0.00000
PPM2 0.93607 –0.01069 0.98961 –0.00013 0.99824 0.00000

BDS_Q, no limiting 0.94487 –0.00163 0.99076 0.00000 0.99835 0.00000
BDS_BL, no limiting 0.92712 –0.01581 0.98848 –0.00027 0.99810 0.00000
PPM, no limiting 0.93715 –0.01224 0.98961 -0.00012 0.99824 0.00000

Table 11. Maxima and minima at t = 10 for smooth initial data
with (u, v)= [1.0, sin(πx)].

Note that both BDS implementations, with limiting, do not undershoot at any time
with respect to the scale used in our tables. In fact, neither BDS_Q nor BDS_BL
show any under/overshoot larger than 10−9 at any of our reported resolutions. (This
error depends directly on the choice of ε in the limiting algorithm described in
Section 2.3.) By contrast, the PPM1/PPM2 algorithms first exhibit undershoot with
magnitude greater than 10−5 at t = 0.882 (PPM1, 1002), t = 0.918 (PPM2, 1002),
t = 5.193 (PPM1, 2002), and t = 5.148 (PPM2, 2002). We observe no undershoot
on our finest grid for the PPM methods with respect to the scale in Table 11.

4.2.2. Discontinuous initial data. Repeating the same tests with discontinuous
initial data leads to the results shown in Tables 12, 13, and 14. In these tables, we
report the L1 error at t = 10 as well as the minimum and maximum value both after
only one time step and at t = 10. Analogous to the conclusions in Section 4.1.2 for
off-axis flow, we observe for discontinuous initial data:

Method 1002 Error 2002 Error 4002 Error

BDS_Q 2.98e-02 1.77e-02 1.05e-02
BDS_BL 3.34e-02 2.04e-02 1.25e-02
PPM1 3.59e-02 2.30e-02 1.49e-02
PPM2 3.58e-02 2.27e-02 1.47e-02

BDS_Q, no limiting 3.54e-02 2.13e-02 1.26e-02
BDS_BL, no limiting 4.41e-02 2.87e-02 1.86e-02
PPM, no limiting 4.00e-02 2.50e-02 1.58e-02

Table 12. Error in the L1 norm at t = 10 for discontinuous initial
data with (u, v)= [1.0, sin(πx)].

54 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

1002 2002 4002

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_BL 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM1 1.04271 –0.04141 1.04393 –0.04301 1.04444 –0.04062
PPM2 1.03456 –0.03403 1.03931 –0.03666 1.04231 –0.04037

BDS_Q, no limiting 1.05006 –0.05824 1.05962 –0.05489 1.04745 –0.05812
BDS_BL, no limiting 1.04201 –0.04645 1.04771 –0.04659 1.04002 –0.04863
PPM, no limiting 1.05559 –0.05606 1.06203 –0.06010 1.05846 –0.06410

Table 13. Maxima and minima after one time step for discontinu-
ous initial data with (u, v)= [1.0, sin(πx)].

1002 2002 4002

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 0.99544 0.00000 0.99998 0.00000 1.00000 0.00000
BDS_BL 0.99665 0.00000 0.99999 0.00000 1.00000 0.00000
PPM1 1.10007 –0.09099 1.10253 –0.11853 1.12603 –0.14435
PPM2 1.09626 –0.09067 1.09608 –0.12249 1.12464 –0.15188

BDS_Q, no limiting 1.13956 –0.06600 1.12081 –0.06652 1.11089 –0.06679
BDS_BL, no limiting 1.22656 –0.11437 1.22889 –0.14710 1.22822 –0.17816
PPM, no limiting 1.15451 –0.12074 1.12697 –0.14695 1.13860 –0.17400

Table 14. Maxima and minima at t = 10 for discontinuous initial
data with (u, v)= [1.0, sin(πx)].

• a lower error for BDS_Q than for any of the other algorithms,

• no undershoot or overshoot for the BDS algorithms at any time,

• an overshoot for the PPM algorithms of > 3% after one time step, and > 9%
at t = 10.

We conclude that the behavior of the BDS_Q algorithm with a spatially varying
velocity field is consistent with that observed with a constant velocity field.

4.3. Shear layer example. Here we consider a temporally and spatially evolving
velocity field that is determined by solving the incompressible Euler equations
using the approximate projection algorithm described in [2]. We note that although
the algorithm uses an approximate projection to define the cell-centered velocity

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 55

at the end of each time step, the edge-based velocities that are used for advection
are discretely divergence-free (to the tolerance of the iterative solver that is used
to enforce the constraint). We initialize the problem with parallel shear layers
perturbed slightly; the initial velocity field is given by

(u, v)|t=0 =
(
tanh [60(0.07− |y− 0.5|)] , 0.5 sin(2πx)

)
. (46)

In the first test we initialize the density to be constant everywhere; because
the flow is divergence-free the density will remain constant. We solve (43) for a
passively advected tracer, s, that is initialized with discontinuous data described in
(45). In Tables 15 and 16 we see the over- and undershoot associated with each
method after one time step and at t = 0.23, respectively. Both PPM1 and PPM2
over/undershoot by 3–4% after one time step, and by 6–25% at the final time. The
BDS methods do not over/undershoot at any time during the simulation. Figure 5
shows the solution for both BDS_Q and PPM2; the locations of the overshoot and
undershoot are evident in the blue and red coloring of the figure.

In the second test we consider a variable density case in which the initial density,
ρ, is given by

ρ(x, y, t = 0)= 1.5+ 0.5 tanh [600(0.02− |y− 0.5|)] (47)

1282 2562 5122

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_BL 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM1 1.04177 –0.03766 1.04200 –0.03845 1.04166 –0.04293
PPM2 1.03531 –0.03570 1.03942 –0.03798 1.03976 –0.04026

Table 15. Maxima and minima of s after one time step for the
constant density shear layer problem with discontinuous initial data.

1282 2562 5122

Method max min max min max min

Analytic 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_Q 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
BDS_BL 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
PPM1 1.13413 –0.05983 1.19031 –0.07449 1.20885 –0.09356
PPM2 1.17185 –0.06706 1.23665 –0.08806 1.25714 –0.10572

Table 16. Maxima and minima of s at t = 0.23 for the constant
density shear layer problem with discontinuous initial data.

56 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

(a) BDS_Q (b) PPM2

Figure 5. Solution at time t = 0.23 for the constant density shear
layer problem with discontinuous initial data and resolution 5122.
Undershoot between −0.1 and −0.01 is marked in blue. Overshoot
between 1.01 and 1.15 is marked in red. More intense colors are
used for areas of higher over- and undershoot.

and initial velocity field given by

(u, v)|t=0 = {tanh [600(0.07− |y− 0.5|)] , 3.5 sin(2πx)} . (48)

For this case, the mass conservation equation,

ρt + (uρ)x + (vρ)y = 0, (49)

is part of the evolution. We note that this test differs from all the others in that
the density couples back into the calculation of the velocities at each time step. In
Table 17 we see the over- and undershoot associated with each method at t = 0.19.
As in the previous tests both PPM1 and PPM2 create noticeable under- and overshoot
while neither of the BDS methods do. In fact, the BDS methods do not over- or
undershoot at any time during the simulation, whereas the PPM methods suffer at
early times. For example, for the 5122 simulations, we first observe an overshoot
> 10−5 at t = 0.017 (PPM1) and t = 0.003 (PPM2). Figure 6 shows the solution for

1282 2562 5122

Method max min max min max min

Analytic 2.00000 1.00000 2.00000 1.00000 2.00000 1.00000
BDS_Q 1.92762 1.00000 1.99013 1.00000 1.99967 1.00000
BDS_BL 1.92277 1.00000 1.99376 1.00000 1.99981 1.00000
PPM1 2.02653 0.89027 2.10101 0.86719 2.13961 0.87522
PPM2 2.09583 0.80600 2.09924 0.87192 2.16143 0.84435

Table 17. Maxima and minima of ρ at t = 0.19 for the variable
density shear layer problem.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 57

(a) BDS_Q (b) PPM2

Figure 6. Solution at time t = 0.23 for the variable density shear
layer problem at resolution 5122. Undershoot between 0.85 and
0.99 is marked in blue. Overshoot between 2.01 and 2.15 is marked
in red. More intense colors are used for areas of higher over- and
undershoot.

both BDS_Q and PPM2; the locations of the overshoot and undershoot are again
evident in the blue and red coloring of the figure.

4.4. Additional comparisons. In this section, we examine the results of BDS_Q
on some test problems for linear advection that have been discussed in the literature.
It is impossible to provide a comprehensive comparison of BDS to the full gamut
of possible advection schemes; here we will consider the third-order central WENO
scheme of Levy, Puppo, and Russo (LPR) [15] and the ADER schemes discussed
by Toro and Titarov [24]. LPR is a multidimensional staggered grid scheme that
uses a limited quadratic reconstruction algorithm. The ADER schemes use a similar
reconstuction but use a Cauchy–Kowaleski procedure and Taylor series expansion
to approximate the flux at Gaussian quadrature nodes on the space-time edges of
the control volume.

First we consider the linear advection test problem, st + sx + sy = 0, examined
in [15]. The initial conditions are given by

s(x, y, t = 0)= sin2(πx) sin2(πy)

on the domain (0, 1)2 and errors for LPR are computed at t = 1 based on a CFL of
0.425. The BDS_Q scheme has a less restrictive stability limit so we use a CFL of
0.9, which represents approximately the same fraction of the maximum stable time
step. We first compare the unlimited version of BDS_Q with the unlimited version
of LPR. Tests over a range of resolutions from 102 to 1602 show that both methods
converge at third order accuracy. Furthermore, at each resolution, the accuracy of
BDS_Q is a factor of at least 20 better than LPR in both the L1 and L∞ norms.
When we repeat the experiment with the limited schemes, BDS_Q is approximately

58 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

a factor of 10 more accurate on the 102 grid but the accuracy of LPR improves
relative to BDS_Q to the point that on the 1602 grid, BDS_Q is less than a factor
of two more accurate in the L1 norm and a factor of 2.03 worse in the L∞ norm.

We conjecture that this relative loss of accuracy reflects the more restrictive
limiting of BDS_Q needed to enforce a maximum principle. To test this hypothesis,
we have implemented the WENO reconstruction in [15] and tested it in conjunction
with the BDS_Q flux computation. The resulting hybrid scheme for the smooth
problems has errors that are an order of magnitude less than LPR in the L1 and
L∞ norms on a 1602 grid. However, on a discontinuous advection example, this
less restrictive reconstruction leads to approximately 2% overshoot and undershoot.
These tests confirm the conjecture and indicate that if we do not need to enforce a
maximum principle, a less restrictive reconstruction can be used that will result in
reduced errors for smooth problems.

We next provide a comparison to the higher-order ADER schemes of Toro and
Titarev [24]. They consider a variable coefficient linear advection example of
the form (1), referred to as the frontogenesis problem. The initial conditions are
given by

s(x, y, t = 0)= tanh y
δ
, δ = 1

on the domain (−5, 5)2, and the velocity field is constant in time, given by

(u, v)= ω(r)(−y, x),

with ω(r)= (1/r)UT (r), UT (r)= 2.5980762 sech2 r tanh r , and r2
= x2
+ y2. The

errors are computed at t = 4 as compared to the exact solution,

s(x, y, t)= tanh[y cos(ωt)− x sin(ωt)].

As with the LPR scheme, the stability limit of the ADER schemes appears to be
a CFL of 0.5. Here we compare results of BDS_Q at a CFL of 0.9 for comparison
to the ADER schemes at CFL of 0.45, which again represents the same fraction
of the maximum allowable time step. At a resolution of 1002, errors in the ADER3
scheme are intermediate between the BDS_Q scheme with and without limiting
in both L1 and L∞. (The errors are quite close and lie within a narrow band.) We
conjecture that this again reflects the more restrictive limiting in BDS_Q needed to
enforce a maximum principle. As the grid is refined, the errors in ADER3 improve
more rapidly than BDS_Q. In particular ADER3 shows convergence rates higher
than third order whereas BDS_Q is between second and third order accurate. The
issue here is related to the representation of the velocity field that is used by the
different schemes. For the intended applications of BDS_Q, we typically obtain the
velocity field from the solution of an elliptic PDE, thus the only characterization of
the advection velocity is the integral average of the normal component over an edge.

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 59

This restriction leads to a reduction of convergence to less than third order for the
frontogenesis problem with BDS_Q. The ADER schemes use derivative information
about the velocity field that we assume is not available, allowing them to construct a
more accurate solution on finer grids. Unfortunately, this also implies that the ADER
schemes cannot be directly applied in the context considered here; it is not clear
whether it would be possible to modify the algorithm to work with the restricted
velocity information without a loss of accuracy. We have also considered the case
when δ→ 0 so that the discrete initial scalar field changes from −1 to 1 across the
y = 0 interface. We note that BDS_Q was able to treat the discontinuous initial data
without undershoot or overshoot over a range of mesh spacings and CFL conditions.

5. Summary and conclusions

We have presented a new finite volume scheme for linear advection in two dimen-
sions that is based on reconstructing an appropriately limited multidimensional
biquadratic profile and deriving a flux based on the multidimensional geometry of the
characteristics. This scheme, which we refer to as BDS_Q, is third-order accurate
for smooth problems and satisfies a maximum principle when the advective velocity
field is spatially constant. Numerical evidence shows that the method continues to
satisfy the maximum principle in more general circumstances. The new method
is compared to two variations of unsplit PPM, which represent state-of-the-art
algorithms for general systems of conservation laws. For advection that is not
aligned with one of the coordinate axes, the new algorithm has better accuracy than
either PPM scheme. Furthermore, the PPM algorithms do not satisfy a maximum
principle and are subject to significant overshoot and undershoot. We have also
shown that our method is competitive with modern WENO and ADER schemes.

Two aspects of the BDS_Q algorithm differ from the PPM algorithms and are
important for guaranteeing a maximum principle. First, the BDS_Q algorithm uses
a fully multidimensional limiting, whereas the PPM schemes limit in one direction
only. Thus, the reconstructed profile over the entire cell in PPM can introduce new
maxima and minima. Also, from a geometric point of view, the transverse flux
corrections in the PPM schemes corresponding to 0+,− are not evaluated at the
correct location to mimic exact advection of the reconstructed profile. Note, however,
that the transverse corrections to the edge states represent a higher-order effect in
time so that the differences in the schemes are reduced as the CFL becomes smaller.

The extension of the method presented here to a more general scalar conservation
law as done in [3] is straightforward. There are also a number of potential improve-
ments that could be considered for the reconstruction phase of the algorithm, such
as establishing a more formal approach to limiting, not only in the present context
but also for the construction of higher-order approximations and to avoid limiting

60 SANDRA MAY, ANDREW NONAKA, ANN ALMGREN AND JOHN BELL

smooth extrema. Additionally of interest would be the extension of this approach
to three dimensions; we plan to pursue this in future work.

Acknowledgments

The work at LBNL was supported by the Applied Mathematics Program of the DOE
Office of Advanced Scientific Computing Research under the U.S. Department of
Energy under contract No. DE-AC02-05CH11231. S. May also received support
from the Courant Institute of Mathematical Sciences under the U.S. Department of
Energy under contract No. DE-FG02-88ER25053. Visualization was performed
using the VisIt visualization software [25].

References

[1] A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst, M. J. Lijewski,
A. Nonaka, M. Singer, and M. Zingale, CASTRO: A new compressible astrophysical solver, I:
Hydrodynamics and self-gravity, Astrophys. J. 715 (2010), no. 2, 1221–1238.

[2] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive
projection method for the variable density incompressible Navier–Stokes equations, J. Comput.
Phys. 142 (1998), no. 1, 1–46. MR 99k:76096 Zbl 0933.76055

[3] J. B. Bell, C. N. Dawson, and G. R. Shubin, An unsplit, higher order Godunov method for scalar
conservation laws in multiple dimensions, J. Comput. Phys. 74 (1988), 1–24.

[4] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale, Adaptive low
Mach number simulations of nuclear flame microphysics, J. Comput. Phys. 195 (2004), no. 2,
677–694.

[5] S. J. Billett and E. F. Toro, On WAF-type schemes for multidimensional hyperbolic conservation
laws, J. Comput. Phys. 130 (1997), no. 1, 1–24. MR 97i:65148 Zbl 0873.65088

[6] B. Cockburn and C.-W. Shu, Foreword [to the Proceedings of the First International Symposium
on DG Methods], J. Sci. Comput. 22/23 (2005), 1–3. MR 2142187

[7] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys.
87 (1990), no. 1, 171–200. MR 91c:76087 Zbl 0694.65041

[8] P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, J.
Comput. Phys. 227 (2008), no. 15, 7069–7076. MR 2009d:76079 Zbl 1152.65090

[9] P. Colella and P. R. Woodward, The piecewise parabolic method (ppm) for gas-dynamical
simulations, J. Comput. Phys. 54 (1984), 174–201.

[10] C. Dawson, Foreword [special issue on discontinuous galerkin methods for incompressible
elastic materials], Comput. Methods Appl. Mech. Engrg. 195 (2006), 3183.

[11] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry,
Combust. Theory Modelling 4 (2000), no. 4, 535–556.

[12] A. Kurganov and G. Petrova, A third-order semi-discrete genuinely multidimensional central
scheme for hyperbolic conservation laws and related problems, Numer. Math. 88 (2001), no. 4,
683–729. MR 2002e:65118 Zbl 0987.65090

[13] R. J. Leveque, High-resolution conservative algorithms for advection in incompressible flow,
SIAM J. Numer. Anal. 33 (1996), no. 2, 627–665. MR 98b:76049 Zbl 0852.76057

HIGHER-ORDER GODUNOV METHOD FOR ADVECTION IN TWO DIMENSIONS 61

[14] , Finite volume methods for hyperbolic problems, Cambridge University Press, 2002.
Zbl 1010.65040

[15] D. Levy, G. Puppo, and G. Russo, Compact central WENO schemes for multidimensional
conservation laws, SIAM J. Sci. Comput. 22 (2000), no. 2, 656–672. MR 2001d:65110 Zbl
0967.65089

[16] P. McCorquodale and P. Colella, A high-order finite-volume method for hyperbolic conservation
laws on locally-refined grids, Commun. Appl. Math. Comput. Sci. 6 (2011), no. 1, 1–25.

[17] G. H. Miller and P. Colella, A conservative three-dimensional Eulerian method for coupled
solid-fluid shock capturing, J. Comput. Phys. 183 (2002), no. 1, 26–82. MR 2003j:76080
Zbl 1057.76558

[18] S. Noelle, The MoT-ICE: a new high-resolution wave-propagation algorithm for multidimen-
sional systems of conservation laws based on Fey’s method of transport, J. Comput. Phys. 164
(2000), no. 2, 283–334. MR 2001f:76061

[19] A. Nonaka, A. S. Almgren, J. B. Bell, M. J. Lijewski, C. M. Malone, and M. Zingale, MAESTRO:
An adaptive low Mach number hydrodynamics algorithm for stellar flows, Astrophys. J. Suppl.
188 (2010), no. 2, 358–383.

[20] G. S. H. Pau, A. S. Almgren, J. B. Bell, and M. J. Lijewski, A parallel second-order adaptive
mesh algorithm for incompressible flow in porous media, Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 367 (2009), no. 1907, 4633–4654. MR 2010j:76127 Zbl 1192.76056

[21] J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys.
115 (1994), no. 1, 153–168. MR 1300337 Zbl 0813.65111

[22] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated
problems, SIAM Rev. 51 (2009), no. 1, 82–126. MR 2010a:65162 Zbl 1160.65330

[23] P. K. Smolarkiewicz and L. G. Margolin, MPDATA: a finite-difference solver for geophysical
flows, J. Comput. Phys. 140 (1998), no. 2, 459–480. MR 98m:86002 Zbl 0935.76064

[24] E. F. Toro and V. A. Titarev, ADER schemes for scalar non-linear hyperbolic conservation laws
with source terms in three-space dimensions, J. Comput. Phys. 202 (2005), no. 1, 196–215.
MR 2005h:65140 Zbl 1061.65103

[25] VisIt User’s Manual, version 1.5, Lawrence Livermore National Laboratory, Livermore, CA,
2005.

Received August 23, 2010. Revised February 7, 2011.

SANDRA MAY: may@cims.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
Mail Code: 0711, New York, NY 10012, United States

ANDREW NONAKA: AJNonaka@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720, United States

ANN ALMGREN: ASAlmgren@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720, United States

JOHN BELL: jbbell@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
MS 50A-1148, 1 Cyclotron Road, Berkeley, CA 94720, United States

mathematical sciences publishers msp

COMM. APP. MATH. AND COMP. SCI.
Vol. 6, No. 1, 2011

msp

CONDITIONAL PATH SAMPLING FOR STOCHASTIC
DIFFERENTIAL EQUATIONS THROUGH DRIFT RELAXATION

PANOS STINIS

We present an algorithm for the efficient sampling of conditional paths of sto-
chastic differential equations (SDEs). While unconditional path sampling of
SDEs is straightforward, albeit expensive for high dimensional systems of SDEs,
conditional path sampling can be difficult even for low dimensional systems. This
is because we need to produce sample paths of the SDE that respect both the
dynamics of the SDE and the initial and endpoint conditions. The dynamics
of a SDE are governed by the deterministic term (drift) and the stochastic term
(noise). Instead of producing conditional paths directly from the original SDE,
one can consider a sequence of SDEs with modified drifts. The modified drifts
should be chosen so that it is easier to produce sample paths that satisfy the initial
and endpoint conditions. Also, the sequence of modified drifts should converge
to the drift of the original SDE. We construct a simple Markov chain Monte
Carlo algorithm that samples, in sequence, conditional paths from the modified
SDEs, by taking the last sampled path at each level of the sequence as an initial
condition for the sampling at the next level in the sequence. The algorithm can be
thought of as a stochastic analog of deterministic homotopy methods for solving
nonlinear algebraic equations or as a SDE generalization of simulated annealing.
The algorithm is particularly suited for filtering/smoothing applications. We show
how it can be used to improve the performance of particle filters. Numerical
results for filtering of a stochastic differential equation are included.

Introduction

The study of systems arising in different areas, from signal processing and chemical
kinetics to econometrics and finance [1; 19] often requires the sampling of paths of
stochastic differential equations (SDEs) subject to initial and endpoint conditions.
While unconditional path sampling of SDEs is straightforward, albeit expensive for
high dimensional systems of SDEs, conditional path sampling can be difficult even
for low dimensional systems. This is because we need to produce sample paths of
the SDE that respect both the dynamics of the SDE and the initial and endpoint

MSC2000: 60G35, 62M20, 65C05, 65C30, 93E10.
Keywords: conditional path sampling, stochastic differential equations, particle filters, homotopy

methods, Monte Carlo, simulated annealing.

63

64 PANOS STINIS

conditions. An analogous situation arises in ordinary differential equations, where
it can be considerably more difficult to create solutions to boundary value problems
than it is to construct solutions to initial value problems (see, for example, Chapter
8 in [5]). The problem of conditional path sampling of SDEs has been a subject of
active research in recent years and some very interesting approaches have already
been developed [2; 19; 23].

The dynamics of a SDE are governed by the deterministic term (drift) and the
stochastic term (noise). Instead of producing conditional paths directly from the
original SDE, one can consider a sequence of SDEs with modified drifts. The
modified drifts should be chosen so that it is easier to produce sample paths that
satisfy the initial and endpoint conditions. Also, the sequence of modified drifts
should converge to the drift of the original SDE. We construct a simple Markov
chain Monte Carlo (MCMC) algorithm that samples, in sequence, conditional
paths from the modified SDEs, by taking the last sampled path at each level of the
sequence as an initial condition for the sampling at the next level in the sequence.
We have called the algorithm the drift relaxation algorithm.

We have used the drift relaxation algorithm to modify a popular filtering method
called particle filter [6]. A particle filter is a sequential importance sampling
algorithm based on the recursive (online) Bayesian updating of the values of samples
(called particles) to incorporate information from noisy observations of the state of
a dynamic model. While the particle filter is a very versatile method it may require
a very large number of samples to approximate accurately the conditional density of
the state of the model. This has led to considerable research [8; 20; 24] into how one
can modify a particle filter to make it more efficient (see also [4; 3] for a different
approach to particle filtering). As an application of the drift relaxation algorithm
we show in Section 2 how it can be used to construct a more efficient particle filter.

The paper is organized as follows. Section 1 presents the drift relaxation algorithm
for an SDE conditional path sampling problem. Section 2 shows how to use the
algorithm to modify a particle filter. Section 3 contains numerical results for the
application of the modified particle filter to the standard example of filtering a
diffusion in a double-well potential (more elaborate examples will be presented in
[15]). Finally, Section 4 discusses the results as well as current and future work.

1. Conditional path sampling and drift relaxation

Suppose that we are given a system of stochastic differential equations (SDEs)

d X t = a(X t)dt + σ(X t)d Bt , (1)

Suppose also that we want to construct, in the time interval [0, T], sample paths
from (1) such that the endpoints are distributed according to the densities h(X0)

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 65

and g(XT) respectively. Equation (1) can be discretized in the interval [0, T] by
some numerical approximation scheme [11]. Suppose that we have discretized the
interval [0, T] using a stepsize 1t = T/I . Let 0 = T0 < T1 < . . . < TI = T . To
construct conditional paths of (1) we have to sample the density

h(XT0)
I∏

i=1
p(XTi |XTi−1)g(XTI), (2)

where p(XTi |XTi−1) is the transition probability from XTi−1 at time Ti−1 to XTi at
time Ti . The density (2) can be sampled using MCMC assuming that the transition
densities p(XTi |XTi−1) can be evaluated. However, the major issue with the MCMC
sampling is whether it can be performed efficiently [23; 4]. Instead of MCMC
sampling directly from the density (2) i.e., starting from an arbitrary initial path
and modifying it to become a path corresponding to (2), we can aid the MCMC
sampling process by providing the MCMC sampler of the density (2) with a better
initial condition.

To this end, consider an SDE system with modified drift

dYt = b(Yt)dt + σ(Yt)d Bt , (3)

where b(Yt) can be suitably chosen to facilitate the conditional path sampling
problem (see also comments at the end of this section).

Also, consider the collection of L + 1 modified SDE systems

dY l
t = (1− εl)b(Y l

t)dt + εla(Y l
t)dt + σ(Y l

t)d Bt ,

where εl ∈[0, 1], l=0, . . . , L , with εl <εl+1, ε0=0 and εL=1. Note that the zeroth
level SDE corresponds to (3) while the L-th level SDE corresponds to the original
SDE (1). Also, for the l-th SDE in the sequence we denote as pl(Y l

Ti
|Y l

Ti−1
) the cor-

responding transition probability. With this notation, pL(Y L
Ti
|Y L

Ti−1
)= p(XTi |XTi−1).

The main idea behind drift relaxation is that instead of sampling directly a
conditional path for the SDE (1), one can sample a conditional path for the modified
SDE (3) and gradually morph the path into a path of (1).

Drift relaxation algorithm:
• Sample through MCMC the density h(Y 0

T0
)
∏I

i=1 p0(Y 0
Ti
|Y 0

Ti−1
)g(Y 0

TI
).

• For l = 1, . . . , L take the last sample path from the (l−1)-st level and use it as
an initial condition for MCMC sampling of the density

h(Y l
T0
)

I∏
i=1

pl(Y l
Ti
|Y l

Ti−1
)g(Y l

TI
)

at the l-th level.

• Keep the last sample path at the L-th level.

66 PANOS STINIS

We repeat here that the levels from 0 to L − 1 are auxiliary and only serve the
purpose of providing the sampler at level L with a better initial condition. The final
sampling is performed at the L-th level that corresponds to the original SDE (1).

The drift relaxation algorithm is similar to simulated annealing (SA), used in
equilibrium statistical mechanics [12]. However, instead of modifying a temperature
as in SA, here we modify the drift of the system. Also, the idea behind drift
relaxation resembles the main idea behind homotopy methods used in deterministic
optimization problems [7; 10].

Note that there are two ways to utilize the drift relaxation idea. The first one is
by sampling the densities for the different levels sequentially as in the algorithm
presented above. The second is to consider the L + 1 systems in parallel, sample
simultaneously the conditional densities

h(Y l
T0
)

I∏
i=1

pl(Y l
Ti
|Y l

Ti−1
)g(Y l

TI
), for l = 0, . . . , L ,

and occasionally swap paths between levels (the swapping of paths between levels
should be performed in a manner that preserves detailed balance [12]). This approach
is in the spirit of parallel tempering used in Monte Carlo sampling [12]. In the
current work we have applied the drift relaxation idea only in the form presented in
the algorithm above.

We end this section with a brief discussion on the choice of the modified drift.
For stochastic gradient flows with transitions between multiple metastable states,
one can choose the modified drift as a mollified version of the original drift (see also
the discussion in Section 3). This amounts to making the potential wells shallower
and thus facilitates the transitions between metastable states. For general problems,
one can choose to use for the modified drift a mean-field drift. This has been used
successfully by the author to improve the performance of particle filters for multiple
target tracking [15].

2. Application to particle filtering

We show in this section how the drift relaxation algorithm can be applied to particle
filtering with the aim of bringing the samples closer to the observations.

2.1. Generic particle filter. Suppose that we are given an SDE system and that
we also have access to noisy observations ZT1, . . . , ZTK of the state of the system
at specified instants T1, . . . , TK . The observations are functions of the state of
the system, say given by ZTk = G(XTk , ξk), where ξk, k = 1, . . . , K are mutually
independent random variables. For simplicity, let us assume that the distribution of
the observations admits a density g(XTk , ZTk), i.e., p(ZTk |XTk)∝ g(XTk , ZTk).

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 67

The filtering problem consists of computing estimates of the conditional expecta-
tion E[f (XTk)|{ZT j }

k
j=1], i.e., the conditional expectation of the state of the system

given the (noisy) observations. Equivalently, we are looking to compute the condi-
tional density of the state of the system given the observations p(XTk |{ZT j }

k
j=1).

There are several ways to compute this conditional density and the associated
conditional expectation but for practical applications they are rather expensive.

Particle filters fall in the category of importance sampling methods. Because
computing averages with respect to the conditional density involves the sampling
of the conditional density, which can be difficult, importance sampling methods
proceed by sampling a reference density q(XTk |{ZT j }

k
j=1), which can be easily

sampled and then compute the weighted sample mean

E[f (XTk)|{ZT j }
k
j=1] ≈

1
N

N∑
n=1

f (Xn
Tk
)

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

,

or the related estimate

E[f (XTk)|{ZT j }
k
j=1] ≈

N∑
n=1

f (Xn
Tk
)

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

N∑
n=1

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

, (4)

where N has been replaced by the approximation

N ≈
N∑

n=1

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

.

Particle filtering is a recursive implementation of the importance sampling approach.
It is based on the recursion

p(XTk |{ZT j }
k
j=1)∝ g(XTk , ZTk)p(XTk |{ZT j }

k−1
j=1), (5)

where p(XTk |{ZT j }
k−1
j=1)=

∫
p(XTk |XTk−1)p(XTk−1 |{ZT j }

k−1
j=1)d XTk−1 . (6)

If we set
q(XTk |{ZT j }

k
j=1)= p(XTk |{ZT j }

k−1
j=1),

then from (5) we get

p(XTk |{ZT j }
k
j=1)

q(XTk |{ZT j }
k
j=1)
∝ g(XTk , ZTk).

The approximation in expression (4) becomes

E[f (XTi)|{ZT j }
k
j=1] ≈

∑N
n=1 f (Xn

Tk
)g(Xn

Tk
, ZTk)∑N

n=1 g(Xn
Tk
, ZTk)

. (7)

68 PANOS STINIS

From (7) we see that if we can construct samples from the predictive distribution
p(XTk |{ZT j }

k−1
j=1) then we can define the (normalized) weights

W n
Tk
=

g(Xn
Tk
, ZTk)∑N

n=1 g(Xn
Tk
, ZTk)

and use them to weigh the samples, and the weighted samples will be distributed
according to the posterior distribution p(XTk |{ZT j }

k
j=1).

In many applications, most samples will have a negligible weight with respect
to the observation, so carrying them along does not contribute significantly to the
conditional expectation estimate (this is the problem of degeneracy [12]). To create
larger diversity one can resample the weights to create more copies of the samples
with significant weights. The particle filter with resampling is summarized in the
following algorithm, due to Gordon et al. [9].

Particle filter:

(1) Begin with N unweighted samples Xn
Tk−1

from p(XTk−1 |{ZT j }
k−1
j=1).

(2) Prediction: Generate N samples X ′nTk
from p(XTk |XTk−1).

(3) Update: Evaluate the weights

W n
Tk
=

g(X ′nTk
, ZTk)∑N

n=1 g(X ′nTk
, ZTk)

.

(4) Resampling: Generate N independent uniform random variables {θn
}

N
n=1 in

(0, 1). For n = 1, . . . , N let Xn
Tk
= X ′ jTk

where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk

where j can range from 1 to N .

(5) Set k = k+ 1 and proceed to Step 1.

The particle filter algorithm is easy to implement and adapt for different problems
since the only part of the algorithm that depends on the specific dynamics of the
problem is the prediction step. This has led to the particle filter algorithm’s increased
popularity [6]. However, even with the resampling step, the particle filter can
still need a lot of samples in order to describe accurately the conditional density
p(XTk |{ZT j }

k
j=1). Snyder et al. [18] have shown how the particle filter can fail

in simple high dimensional problems because one sample dominates the weight
distribution. The rest of the samples are not in statistically significant regions.
Even worse, as we will show in the numerical results section, there are simple
examples where not even one sample is in a statistically significant region. In the

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 69

next subsection we present how drift relaxation can be used to push samples closer
to statistically significant regions.

2.2. Particle filter with MCMC step. Several authors (see, e.g., [8; 24]) have sug-
gested the use of a MCMC step after the resampling step (Step 4) in order to move
samples away from statistically insignificant regions. There are many possible ways
to append an MCMC step after the resampling step in order to achieve that objective.
The important point is that the MCMC step must preserve the conditional density
p(XTk |{ZT j }

k
j=1).

We begin by noting that one can use the resampling step (Step 4) in the particle
filter algorithm to create more copies not only of the good samples according
to the observation, but also of the values (initial conditions) of the samples at
the previous observation. These values are the ones who have evolved into good
samples for the current observation (see more details in [24]). The motivation
behind producing more copies of the pairs of initial and final conditions is to use
the good initial conditions as starting points to produce statistically more significant
samples according to the current observation. This process can be accomplished in
two steps. First, Step 4 of the particle filter algorithm is replaced by:

Resampling. Generate N independent uniform random variables {θn
}

N
n=1 in (0, 1).

For n = 1, . . . , N let (Xn
Tk−1

, Xn
Tk
)= (X ′ jTk−1

, X ′ jTk
) where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk
.

Also, with Bayes’ rule [24] one can show that the posterior density p(XTk |{ZT j }
k
j=1)

is preserved if one samples from the density

g(XTk , ZTk)p(XTk |XTk−1),

where XTk−1 are given by the modified resampling step. This is a problem of
conditional sampling for (continuous-time or discrete) stochastic systems. The
important issue is to perform the necessary sampling efficiently [4; 24]. We propose
to do that here using drift relaxation (see Section 1). The particle filter with MCMC
step algorithm is given by:

Particle filter with MCMC step.
(1) Begin with N unweighted samples Xn

Tk−1
from p(XTk−1 |{ZT j }

k−1
j=1).

(2) Prediction: Generate N samples X ′nTk
from p(XTk |XTk−1).

(3) Update: Evaluate the weights

W n
Tk
=

g(X ′nTk
, ZTk)∑N

n=1 g(X ′nTk
, ZTk)

.

70 PANOS STINIS

(4) Resampling: Generate N independent uniform random variables {θn
}

N
n=1 in

(0, 1). For n = 1, . . . , N let (Xn
Tk−1

, Xn
Tk
)= (X ′ jTk−1

, X ′ jTk
) where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk
, j = 1, . . . , N .

(5) MCMC step: For n = 1, . . . , N choose a modified drift (possibly different for
each n). Construct through drift relaxation a Markov chain for Y n

Tk
with initial

value Xn
Tk

and stationary distribution

g(Y n
Tk
, ZTk)p(Y

n
Tk
|Xn

Tk−1
).

(6) Set Xn
Tk
= Y n

Tk
.

(7) Set k = k+ 1 and proceed to Step 1.

3. Numerical results

We present numerical results of the particle filter algorithm with MCMC step
for the standard problem of diffusion in a double-well potential (more elaborate
applications of the method will be presented elsewhere [15]). Our objective here is
to show how the generic particle filter’s performance can be significantly improved
by incorporating the MCMC step via drift relaxation.

The problem of diffusion in a double well potential is described by the scalar
SDE

d X t =−4X t(X2
t − 1)+ 1

2 d Bt . (8)

The deterministic part (drift) describes a gradient flow for the potential U (x) =
x4
− 2x2, which has two minima, at x =±1. In the notation of Section 1 we have

a(X t)=−4X t(X2
t − 1) and σ(X t)=

1
2 . If the stochastic term is zero the solution

wanders around one of the minima depending on the value of the initial condition.
A weak stochastic term leads to rare transitions between the minima of the potential.
We have chosen the coefficient 1

2 to make the stochastic term rather weak. This is
done because we plan to enforce the observations to alternate among the minima,
and thus check if the particle filter can track these transitions.

The SDE (8) is discretized by the Euler–Maruyama [11] scheme with step size
1t = 10−2. The initial condition is set to −1 and there is a total of 10 observations
at Tk = k, k = 1, . . . , 10. The observations are given by ZTk = XTk + ξk , where
ξk ∼ N (0, 0.01) for k= 1, . . . , 10. Note that we have chosen a rather small variance
for the observation noise, which in turn makes the filtering problem more difficult.
For this choice of observation noise, the observation density (also called likelihood)
is given by

g(XTk , ZTk)∝ exp
[
−
(ZTk − XTk)

2

2× 0.01

]
. (9)

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 71

The observations alternate between 1 and −1. In particular, for k = 1, . . . , 10 we
have ZTk =−1 if k is odd and ZTk = 1 if k is even. Given that the stochastic term
is rather weak, such frequent transitions between the two potential minima are rare.

In order to apply the MCMC step with drift relaxation we need to define the
modified drift b(Yt) for the process Yt given by

dYt = b(Yt)+
1
2 d Bt . (10)

The modified drift can be the same for all the samples or different for each sample.
Since the difficulty in tracking the observations comes from the inability of the
original SDE (8) to make frequent transitions between the two minima of the double
well, an intuitively appealing choice for b(Yt) is b(Yt) = −α4Yt(Y 2

t − 1), where
0 < α < 1. This drift corresponds to the potential W (y) = α(y4

− 2y2). The
potential W (y) has its minima also located at y =±1. However, the value of the
potential at the minima is −α instead of −1 for the potential U (x). This means
that the wells corresponding to the minima of W (y) are shallower than the wells
corresponding to the minima of U (x). This makes the transitions between the two
wells for the process Yt more frequent than for the original process X t . For the
numerical experiments we have chosen α = 0.1.

The sequence of modified SDEs for the drift relaxation algorithm with L levels
is given by

dY l
t = (1− εl)b(Y l

t)dt + εla(Y l
t)dt + 1

2 d Bt , (11)

where εl ∈ [0, 1], l= 0, . . . , L , with εl <εl+1, ε0= 0 and εL = 1. For our numerical
experiments we chose L = 10 and εl = l/10.

Recall that the density we want to sample during the MCMC step is given by

g(XTk , ZTk)p(XTk |XTk−1),

where p(XTk |XTk−1) is the transition probability between XTk−1 and XTk . For many
applications, sampling directly from p(XTk |XTk−1) may be impossible. Thus, one
needs to resort to some numerical approximation scheme to approximate the path
between XTk−1 and XTk by a discretized path. However (see [24] for details), even
the evaluation of the discretized path’s density may not be efficient. Instead, by
using the fact that each Brownian path in (8) gives rise to a unique path for X t

[17], we can replace the sampling of g(XTk , ZTk)p(XTk |XTk−1) by sampling from
the density

exp
[
−
(ZT − Xn

T ({1Bn
i }

I−1
i=0))

2

2× 0.01

] I−1∏
i=0

exp
[
−
(1Bn

i)
2

21t

]
=

exp
[
−

(
(ZT − Xn

T ({1Bn
i }

I−1
i=0))

2

2× 0.01
+

I−1∑
i=0

(1Bn
i)

2

21t

)]
, (12)

72 PANOS STINIS

where {1Bn
i }

I−1
i=0 are the Brownian increments of the discretized path connecting

XTk−1 and XTk . Also, note that the final point XTk has now become a function of the
entire Brownian path {1Bn

i }
I−1
i=0 . For the numerical experiments we have chosen

1t =
Tk − Tk−1

I
= 10−2,

which, since Tk − Tk−1 = 1, gives I = 100.
We use drift relaxation to produce samples from the density (12). The Markov

chain at each level of the drift relaxation algorithm is constructed using hybrid
Monte Carlo (HMC) [12]. At the l-th level, we can discretize (11), say with the
Euler–Maruyama scheme, and the points on the path will be given by

Y l,n
i1t = Y l,n

(i−1)1t + (1− εl)b(Y
l,n
(i−1)1t)1t + εla(Y

l,n
(i−1)1t)1t + 1

21Bl,n
i−1,

for i = 1, . . . , I . We can use more sophisticated schemes than the Euler–Maruyama
scheme for the discretization of the simplified SDE (10) at the cost of making the
expression for the density more complicated.

We can define a potential Vεl ({1Bl,n
i }

I−1
i=0) for the variables {1Bl,n

i }
I−1
i=0 . The

potential is given by

Vεl

(
{{1Bl,n

i }
I−1
i=0

)
=
(ZT − Y l,n

I1t({1Bl,n
i }

I−1
i=0))

2

2× 0.01
+

I−1∑
i=0

(1Bl,n
i)2

21t
,

and the density to be sampled can be written as

exp
[
−Vεl

(
{1Bl,n

i }
I−1
i=0

)]
.

The subscript εl is to denote the dependence of the potential on the drift relaxation
parameter εl . In HMC one considers the variables on which the potential depends
as the position variables of a Hamiltonian system. In our case we have I position
variables so we can define a I -dimensional position vector {qi }

I
i=1. The next step is

to augment the position variables vector by a vector of associated momenta {pi }
I
i=1.

Together they form a Hamiltonian system with Hamiltonian given by

Hεl ({qi }
I
i=1, {pi }

I
i=1)= Vεl ({qi }

I
i=1)+

pT p
2
,

where p = (p1, . . . , pI) is the vector of momenta. Thus, the momenta variables
are Gaussian distributed random variables with mean zero and variance 1. The
equations of motion for this Hamiltonian system are given by Hamilton’s equations

dqi

dτ
=
∂Hεl

∂pi
and

dpi

dτ
=−

∂Hεl

∂qi
, for i = 1, . . . , I. (13)

HMC proceeds by assigning initial conditions to the momentum variables (through
sampling from exp(−pT p/2)), evolving the Hamiltonian system in fictitious time

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 73

τ for a given number of steps of size δτ and then using the solution of the system to
perform a Metropolis accept/reject step (more details in [12]). After the Metropolis
step, the values of the momenta are discarded. The most popular method for solving
the Hamiltonian system, which is the one we also used, is the Verlet leapfrog scheme.
In our numerical implementation, we did not attempt to optimize the performance
of the HMC algorithm. For the sampling at each level of the drift relaxation process
we used 10 Metropolis accept/reject steps and 1 HMC step of size δτ = 10−2 to
construct a trial path. A detailed study of the drift relaxation/HMC algorithm for
conditional path sampling problems outside of the context of particle filtering will
be presented in a future publication.

For the chosen values of the parameters for the drift relaxation and HMC steps,
the particle filter with MCMC step is about 500 times more expensive per sample
(particle) than the generic particle filter. However, we show that this increase in
cost per sample is worthwhile. Figure 1 compares the performance of the particle
filter with MCMC step with 10 samples and the generic particle filter with 5000
samples. It is obvious that the particle filter with MCMC step follows accurately
all the transitions between the two minima of the double-well. On the other hand,
the generic particle filter captures accurately only every other observation. It fails
to perform the transitions between the two minima of the double-well.

0 2 4 6 8 10
Time

-2

-1

0

1

2

C
o
n
d
it

io
n
al

 e
x
p
ec

ta
ti

o
n
 o

f
X

_
t

PF with MCMC (drift relaxation) 10 samples

PF 5000 samples

Observations

Figure 1. Comparison of the conditional expectation of X t as
computed by the generic particle filter and the particle filter with
MCMC step.

74 PANOS STINIS

Since the particle filter with MCMC step uses only 10 samples the conditional
expectation estimate of the hidden signal is not as smooth as the estimate of the
generic particle filter, which uses 5000 samples. The generic particle filter needs
about 105 samples to capture accurately the transitions between the two minima.
However, from the 105 samples, only 2 or 3 dominate the observation weight
distribution at each transition, thus making the use of the generic particle filter very
inefficient.

Finally, we compare the performance of the particle filter with MCMC step and
drift relaxation to a particle filter with MCMC step without drift relaxation. This
comparison is made to examine whether the drift relaxation algorithm offers any
advantage over direct sampling of the conditional density (12). The particle filter
with MCMC step without drift relaxation involved 110 Metropolis accept/reject
steps and 1 HMC step of size δτ = 10−2 to construct a trial path for each observation.
This makes the computational complexity the same as for the particle filter with
drift relaxation.

From Figure 2 one can see that there is an advantage in the use of drift relaxation
as far as the conditional expectation estimate is concerned. For the majority of
the observations, the MCMC step with drift relaxation gives superior results to the
particle filter with MCMC step without drift relaxation. In particular, the particle
filter without drift relaxation is not as effective in bringing the samples close to the

0 2 4 6 8 10
Time

-2

-1

0

1

2

C
o
n
d
it

io
n
al

 e
x
p
ec

ta
ti

o
n
 o

f
X

_
t

PF with MCMC (drift relaxation) 10 samples

PF with MCMC (No drift relaxation) 10 samples

Observations

Figure 2. Comparison of the conditional expectation of X t as
computed by the particle filter with MCMC step and drift relaxation
and the particle filter with MCMC step without drift relaxation.

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 75

observations as the particle filter with drift relations. The mathematical reason for
the better performance of the MCMC step with drift relaxation is that the shallower
modified potential allows the density of the observation g(XTk , ZTk) to alter faster
the Brownian increments that give rise to the path between the two wells (this is
straightforward to see by examination of Hamilton’s equations (13) for the HMC
sampler). Indeed, for the particle filter with drift relaxation, about 70% of the
samples have already crossed from one well to the other after the zeroth level
MCMC sampling. Numerical experiments with different choices in the number
of drift relaxation levels and/or number of Metropolis accept/reject steps in HMC
support the trend shown in Figure 2.

In Figure 3 we plot the error estimate of the conditional expectation estimate
of X t as computed by the particle filter with MCMC step with and without drift
relaxation. The error is a measure of the tightness of the distribution of the sample
values around the mean. It is obvious that the use of drift relaxation leads to a
tighter distribution of the samples around the mean.

In order for the particle filter with MCMC step without drift relaxation to obtain
an estimate comparable to the one of the filter with drift relaxation shown in Figure 2,
one needs to use about 1000 Metropolis accept/reject steps. This is about 10 times
more expensive than the particle filter with drift relaxation. This corroborates the

2 4 6 8 10
Time

0.05

0.1

0.15

0.2

E
rr

o
r

o
f

th
e

co
n
d
it

io
n
al

 e
x
p
ec

ta
ti

o
n
 e

st
im

at
e

o
f

X
_
t

PF with MCMC (drift relaxation) 10 samples

PF with MCMC (no drift relaxation) 10 samples

Figure 3. Comparison of the error estimate of the conditional
expectation estimate of X t as computed by the particle filter with
MCMC step and drift relaxation and the particle filter with MCMC
step without drift relaxation.

76 PANOS STINIS

conclusion reached in [24], that the use of an MCMC step on its own is not enough
to make for a more efficient particle filter. In particular, one has to use an efficient
algorithm for implementing the MCMC step. A more thorough comparison between
the MCMC step with and without drift relaxation will be published elsewhere.

4. Discussion

We have presented an algorithm for conditional path sampling of SDEs. The
proposed algorithm is based on drift relaxation, which allows to sample conditional
paths from a modified drift equation. The conditional paths of the modified drift
equation are then morphed into conditional paths of the original equation. We have
called this process of gradually enforcing the drift of the original equation drift
relaxation. The algorithm has been used to create a modified particle filter for SDEs.
We have shown that the modified particle filter’s performance is significantly better
than the performance of a generic particle filter.

In the current work, we have examined the application of drift relaxation to the
filtering problem of diffusion in a double-well potential, a standard example in the
filtering literature. The same algorithm can be applied to the problem of tracking
a single target. A problem of great practical interest is that of tracking not only
one but multiple moving targets [13; 16; 21; 22]. The multitarget tracking problem
is much more difficult than the single-target problem due to the combinatorial
explosion of the number of possible target-observation association arrangements. In
this context, the accurate tracking of each target becomes crucial. Suppose that only
one of the targets is of interest and the rest act as decoys [14]. The inability to track
each potential target accurately can lead to ambiguity about the targets’ movement
if the observations for different targets are close. We have already applied the
drift relaxation modified particle filter to multitarget tracking problems with very
encouraging results that will appear elsewhere [15].

Acknowledgements

I am grateful to Profs. V. Maroulas and J. Weare for many helpful discussions and
comments. I would also like to thank for its hospitality the Institute for Mathematics
and its Applications (IMA) at the University of Minnesota where the current work
was completed.

References

[1] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Transition path sampling: throwing
ropes over rough mountain passes in the dark, Ann. Rev. Phys. Chem. 53 (2002), 291–318.

[2] A. J. Chorin, Monte Carlo without chains, Commun. Appl. Math. Comput. Sci. 3 (2008), 77–93.
MR 2425547 Zbl 1165.65302

CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS 77

[3] A. J. Chorin, M. Morzfeld, and X. Tu, Implicit filters for data assimilation, Comm. Appl. Math.
Comp. Sc. 5 (2010), no. 2, 221–240. Zbl 05833566

[4] A. J. Chorin and X. Tu, Implicit sampling for particle filters, Proc. Nat. Acad. Sc. USA 106
(2009), 17249–17254.

[5] P. Deuflhard and F. Bornemann, Scientific computing with ordinary differential equations, Texts
in Applied Mathematics, no. 42, Springer, New York, 2002. MR 2003e:65001 Zbl 1001.65071

[6] A. Doucet, N. de Freitas, and N. Gordon (eds.), Sequential Monte Carlo methods in practice,
Springer, New York, 2001. MR 2003h:65007

[7] D. Dunlavy and D. O’Leary, Homotopy optimization methods for global optimization, technical
report SAND2005-7495, Sandia National Labs, 2005.

[8] W. R. Gilks and C. Berzuini, Following a moving target: Monte Carlo inference for dynamic
Bayesian models, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), no. 1, 127–146. MR 2001m:
62038 Zbl 0976.62021

[9] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, Novel approach to nonlinear/non-Gaussian
bayesian state estimation, Proc. Inst. Elect. Eng. F 140 (1993), 107–113.

[10] C. Hillermeier, Nonlinear multiobjective optimization: A generalized homotopy approach,
International Series of Numerical Math., no. 135, Birkhäuser, Basel, 2001. MR 2002b:90002
Zbl 0966.90069

[11] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications
of Mathematics, no. 23, Springer, Berlin, 1992. MR 94b:60069 Zbl 0752.60043

[12] J. S. Liu, Monte Carlo strategies in scientific computing, Springer Series in Statistics, no. 16,
Springer, New York, 2001. MR 2002i:65006 Zbl 0991.65001

[13] R. P. S. Mahler, Statistical multisource-multitarget information fusion, Artech House, London,
2007. Zbl 1126.68080

[14] R. P. S. Mahler and V. Maroulas, Tracking spawning objects, preprint, 2010.

[15] V. Maroulas and P. Stinis, A drift relaxation Monte Carlo approach to particle filtering for
multi-target tracking, preprint, 2010. arXiv 1006.3100v3

[16] W. Ng, J. F. Li, S. J. Godsill, and J. Vermaak, A hybrid approach for online joint detection and
tracking for multiple targets, 2005, pp. 2126–2141.

[17] B. Oksendal, Stochastic differential equations: An introduction with applications, 6th ed.,
Springer, 2005.

[18] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, Obstacles to high-dimensional particle
filtering, Mon. Wea. Rev. 136 (2008), 4629–4640.

[19] A. M. Stuart, J. Voss, and P. Wiberg, Conditional path sampling of SDEs and the Langevin
MCMC method, Commun. Math. Sci. 2 (2004), no. 4, 685–697. MR 2119934

[20] P. J. Van Leeuwen, Nonlinear data assimilation in geosciences: an extremely efficient particle
filter, Q. J. R. Meteorol. Soc. 136 (2010), 1991–1996.

[21] J. Vermaak, S. Godsill, and P. Perez, Monte Carlo filtering for multi-target tracking and data
association, IEEE Trans. Aero. Elect. Sys. 41 (2005), no. 1, 309–332.

[22] B.-N. Vo, S. Singh, and A. Doucet, Sequential Monte Carlo methods for multi-target filtering
with random finite sets, IEEE Trans. Aero. Elect. Sys. 41 (2005), no. 4, 1224–1245.

[23] J. Weare, Efficient Monte Carlo sampling by parallel marginalization, Proc. Natl. Acad. Sci.
USA 104 (2007), no. 31, 12657–12662.

[24] J. Weare, Particle filtering with path sampling and an application to a bimodal ocean current
model, J. Comput. Phys. 228 (2009), no. 12, 4312–4331. MR 2010g:86010 Zbl 1165.76045

78 PANOS STINIS

Received August 30, 2010. Revised February 23, 2011.

PANOS STINIS: stinis@math.umn.edu
School of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455,
United States
http://www.math.umn.edu/~stinis/

mathematical sciences publishers msp

COMM. APP. MATH. AND COMP. SCI.
Vol. 6, No. 1, 2011

msp

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN
THREE DIMENSIONS

M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

We present a kernel-independent, adaptive fast multipole method (FMM) of arbi-
trary order accuracy for solving elliptic PDEs in three dimensions with radiation
and periodic boundary conditions. The algorithm requires only the ability to
evaluate the Green’s function for the governing equation and a representation
of the source distribution (the right-hand side) that can be evaluated at arbitrary
points. The performance is accelerated in three ways. First, we construct a
piecewise polynomial approximation of the right-hand side and compute far-field
expansions in the FMM from the coefficients of this approximation. Second, we
precompute tables of quadratures to handle the near-field interactions on adaptive
octree data structures, keeping the total storage requirements in check through
the exploitation of symmetries. Third, we employ shared-memory parallelization
methods and load-balancing techniques to accelerate the major algorithmic loops
of the FMM. We present numerical examples for the Laplace, modified Helmholtz
and Stokes equations.

1. Introduction

Many problems in scientific computing call for the efficient solution to linear
partial differential equations with constant coefficients. On regular grids with
separable Dirichlet, Neumann or periodic boundary conditions, such equations
can be solved using fast, direct methods. For free-space boundary conditions and
highly nonuniform source distributions defined on adaptive and/or unstructured
grids, alternative approaches are necessary. We describe a direct high-order adaptive
solver for inhomogeneous linear constant-coefficient PDEs in three dimensions
with decay conditions at infinity. A typical case is the Poisson equation

−1u = g, supp(g)⊂�, (1)

Langston’s work was supported by the U.S. Department of Energy CPES contract; Greengard’s was
supported in part by the U.S. Department of Energy under contract DEFG0288ER25053; Zorin’s was
supported by the U.S. Department of Energy (CPES contract) and the National Science Foundation
(contract DMS-0612624).
MSC2010: primary 31B10, 65N99, 65R10, 65Y20; secondary 65N15, 76D07.
Keywords: volume integrals, Poisson solver, fast multipole method, adaptive methods,

kernel-independent fast multipole method.

79

80 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

where � is a bounded domain in R3, and u(x)= O(1/|x|) as |x| goes to infinity.
Our solver uses a kernel-independent fast multipole method (FMM) [60; 61] which
can be applied to any PDE for which a free-space Green’s function evaluation
routine is provided. It handles highly nonuniform sources in an efficient manner,
using an adaptive approximation of the right-hand side in (1). The structure of the
solver allows for natural integration with FMM-based boundary integral equation
techniques, leading to the construction of an adaptive kernel-independent solver for
inhomogeneous PDEs in complex geometries, to be described elsewhere.

Related work. For regular grids in separable coordinate systems (rectangles, disks,
spheres, etc.), fast methods for constant-coefficient second order PDEs are well
established [15; 16]. These methods generally rely on cyclic reduction and/or fast
Fourier transforms (FFTs) to achieve nearly linear scaling. For many problems,
however, adaptive meshes resulting from adaptive mesh refinement (AMR) strategies
are essential [2; 7; 49], and existing solvers typically rely on domain decomposition
strategies [23] or multigrid acceleration [18; 37; 40; 44]. For complex geometries,
unstructured grid generation techniques are often used [45]. In such cases, both
the grid generation process and the solution of the resulting linear systems can
be computationally expensive. The lack of regularity in the data structures adds
complexities in parallelization as well [1; 18].

A more recent class of methods combines ideas from potential theory with finite
difference methods. In [39], fast direct solvers were used on a sequence of refined
grids with boundary conditions inherited from the coarser levels. This results in
discontinuities at coarse-fine interfaces, which are corrected using a second pass
through the grid hierarchy. In [4], the method of local corrections (MLC) [3] was
combined with multigrid methods to solve the Poisson equation on a hierarchy of
nested grids. The fastest free-space Poisson solver for three-dimensional problems
of which we are aware is described in [47]. It first solves local Poisson problems
on fine grids using FFT-based techniques and then couples together the solutions on
coarser grids using MLC. This approach was shown to be very effective in parallel,
with good scaling up to 1024 processors. (A similar two-dimensional scheme is
described in [29].) For unstructured meshes, the preceding methods do not apply
without significant modification and most fast solvers are based on iterative methods
using multigrid or domain decomposition acceleration [13; 14; 17].

Here we concentrate on the integral equation (or, more precisely, the integral
transform) viewpoint. Rather than solving (1), for example, we simply compute

u(x)=
1

4π

∫
R3

1
|x− y|

g(y) dy. (2)

Among the advantages of this approach is the increase in precision in computing
derivatives. In PDE-based methods, if first or second derivatives of the solution are

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 81

needed, accuracy tends to degrade due to the need for numerical differentiation.
Instead, we can differentiate the kernel in (2) and compute derivatives from their
integral representation as well. Other advantages are that free-space radiation
conditions are automatically satisfied, we can obtain simple a priori error estimates,
and high order accuracy is straightforward to achieve. However, the computational
complexity of a naïve implementation is high: computing the solution u at N
points x given N discretization points y requires O(N 2) work. There have been
a number of methods proposed to overcome this barrier. These include panel-
clustering techniques [11; 36], hierarchical matrices (H,H2-matrices) [10; 34; 35],
the Barnes–Hut method [5], and the fast multipole method (FMM) [20; 32; 25;
51] originally designed for gravitational/Coulomb interactions. These schemes all
achieve linear O(N) or nearly linear O(N log N) scaling. Most of these methods
fall into the class of what are often called tree codes because they separate near-
and far-field interactions on a hierarchy of spatial scales using quadtree (2D) or
octree (3D) data structures. Because it can achieve arbitrary precision at modest
cost with straightforward error estimates, we concentrate on the FMM in the present
setting. The classical FMM is kernel-specific and relies on detailed separation
of variables solutions of the governing PDE. While the FMM references above
considered the Laplace equation, the Helmholtz equation was subsequently treated
in [52]. A three-dimensional version effective for all frequencies (and additional
references) can be found in [21]. The modified Helmholtz equation was discussed
in [12; 27], and the biharmonic equation in [28; 33; 58]. The Stokes equations
are somewhat exceptional, since they can be handled by a sequence of calls to the
original (Coulomb) FMM [56; 50]. An attractive alternative that avoids much of the
detailed analytic work of these methods is the kernel-independent approach of [60;
61]. In this approach, expansions in special functions are replaced with equivalent
source densities. The result is that the same numerical apparatus can be used for a
variety of PDEs, and the user need only supply a subroutine for the evaluation of
the relevant Green’s function.

While the bulk of the work on FMMs over the last two decades has concentrated
on particle interactions or the acceleration of boundary integral equation methods,
there has been some work on solving inhomogeneous PDEs. One option is to
couple the FMM with finite difference methods to allow for fast solvers in complex
geometries [46; 48; 9]. While this is a significant improvement in terms of range of
applicability over classical fast solvers, these methods require a regular volume mesh
on which is superimposed an irregular boundary. Adaptive FMMs for volume source
distributions in two dimensions were described in [22; 24; 29]. The present paper
extends these two-dimensional schemes to three dimensions, incorporates them into
kernel-independent FMMs, and introduces several new performance optimizations.
The result is an efficient, adaptive method that is capable of computing volume

82 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

integrals in three dimensions for a broad variety of PDE kernels.
Before turning to the method itself, we should also note that there has been a

significant body of work in the quantum chemistry community on accelerating
volume integral calculations using the FMM, where collections of Gaussians are
typically used to describe the charge distribution [53; 59]. These are Poisson
problems in free-space but with a different approach to defining the right-hand side.

2. Equations and kernels

Given a linear, constant-coefficient PDE

L(u)(x)= g(x), (3)

classical mathematical methods can be used to compute the corresponding Green’s
function K (x, y) in free space, such that

u(x)=
∫
�

K (x, y)g(y) dy, (4)

where � is the support of g. K (x, y) is, in general, weakly singular; assuming
g(x) is given at N points and u(x) is desired at N points, the nonlocal character of
the integral representation, as indicated above, would lead to an O(N 2) solution
procedure. Thus, we need both a suitable quadrature approach and a fast algorithm
for (4) to yield a useful numerical technique. Assuming this is achieved, a number
of advantages follow. First, no linear system needs to be solved. Second, adaptivity
is achieved through the approximation of the right-hand side. Third, as mentioned in
the previous section, derivatives can be computed without loss of precision. (There
is some loss in accuracy for derivatives of order greater than two, since at that point
the integral operator becomes hypersingular and some catastrophic cancellation
cannot be avoided.) Finally, we have simple a priori error estimates. To see this,
let ĝ(x) be the approximation to g(x), and let Q̂[f](x) denote the quadrature
approximation of

∫
�

K (x, y) f (y) dy. Assuming the near field is computed exactly,
the quadrature error satisfies an estimate of the form∣∣∣∣ Q̂[f](x)− ∫

�

K (x, y) f (y) dy
∣∣∣∣≤ ε‖ f ‖1,

where ε is the approximation error in the FMM. In turn, ε is controlled by the
parameter p that determines the number of discretization points used for equivalent
densities, as described in Section 4.1 and [60].

To estimate the total error, let us assume ĝ(x) is a k-th order polynomial approx-
imation of the right-hand side,

ĝ(x)− g(x)≤ δ = O(hk),

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 83

and that

û(x)= Q̂[ĝ](x) . (5)

Then

e(x)= u(x)− û(x)=
∫
�

K (x, y)g(y)dy−
∫
�

Q̂[ĝ](x)

≤

∫
�

K (x, y)[g(y)− ĝ(y)]dy+
∣∣∣∫
�

K (x, y)ĝ(y)dy− Q̂[ĝ](x)
∣∣∣

≤ C1‖g(y)− ĝ(y)‖∞+‖ĝ(y)‖1 ε, (6)

where

C1 =max
x

∫
�

|K (x, y)| dy ≤ C1δ+‖ĝ(y)‖1 ε.

This estimate is much sharper than one typically obtained when discretizing the
PDE itself, where the order of accuracy is determined by high derivatives of the
solution. Here, it depends only on the quality of the approximation of the right-hand
side (δ= O(hk)) and the FMM tolerance (ε). Note that the constant C1 is a bounded
quantity determined by the volume of � with no dependence on the data. If ε is
chosen to be of the same order as δ, the scheme is formally k-th order accurate. In
practice, it is convenient to decouple the right-hand side approximation error from
the FMM tolerance, as above, permitting the user to control them independently.

The principal drawback with the integral formulation is that, when implemented
naïvely, the complexity of the approach is quadratic in the number of sample points.
FMM algorithms overcome this computational barrier by making systematic use
of the smoothness of distant interactions on a hierarchy of spatial scales [6; 24;
30]. The kernel-independent versions of the FMM [60; 61] are particularly useful
because of their generality; they make it possible to compute solutions of the form
(4) for any (nonoscillatory) elliptic PDE, provided only a module which evaluates
the kernel.

After describing the details of the approach, we demonstrate its performance for
the Poisson equation

−1u(x)= g(x), (7)

the modified Helmholtz equation

αu(x)−1u(x)= g(x), α > 0, (8)

and the Stokes equations

∇p(x)−µ1u(x)= g(x), µ > 0,

∇ · u(x)= 0.
(9)

84 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Defining r = x− y and r = ‖r‖, the corresponding kernels in three dimensions are
given, respectively, by

K (x, y)= 1
4πr

, (10)

K (x, y)= 1
4πr

e−
√
αr , (11)

K (x, y)= 1
8πµ

(1
r

I +
r ⊗ r

r3

)
. (12)

The classical FMM is reviewed briefly in Section 3, the kernel-independent
method is described in Section 4, and symmetries for optimizing storage are dis-
cussed in Section 5. Numerical experiments are presented in Section 6 as well
as a brief discussion on extending our method to periodic boundary conditions or
including a singular source component along with a smooth background force. We
provide additional error analysis in the Appendix as well as a brief summary of how
the method is optimized using OpenMP and load-balancing techniques to achieve
near-linear strong scaling.

3. Analytic fast multipole method

We briefly review the structure of the original two-dimensional FMM for the case of
particle interactions [30]. Given a set of Nsrc charges of strength g(yi) at locations
(y)i , the FMM was designed to compute the induced potentials u j at Ntrg target
locations, x j ,

u j = u(x j)=
Nsrc∑
i=1

K (x j , yi)g(yi), j = 1, . . . , Ntrg, (13)

where K (x, y) = − log | {x− y} |/2π . For Nsrc ≈ Ntrg = N , the FMM decreases
the computational cost from O(N 2) to O(N) for fixed user-prescribed accuracy
by introducing a hierarchical partition (represented by a tree data structure T) of a
regular bounding domain D and two series expansions for each box at each level
of the hierarchy. More precisely, the root of T is associated with the entire box D
and defined to be at level `= 0. Level `+ 1 is obtained from level ` recursively,
dividing each subdomain at level ` into four equal-sized children. For a regular
box B of width H , B’s near field, NB , is defined as the set of all boxes in D
that lie within a box centered at B of width 3H . The neighbor list L B

N is defined
as the set of boxes in NB which share a vertex with B. In the nonadaptive case,
L B

N = NB . The far field, FB , is the complement of the near field: FB
= D \NB .

Finally, the interaction list L B
I is the set of children of B’s parent’s neighbors that

are not neighbors themselves. Thus, L B
I ⊆FB . The depth of T is chosen so that the

smallest boxes (leaves in T) contain no more than some fixed number of points —

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 85

say, s. We first consider uniformly refined trees, where all leaves T are at the same
level. Note that the total number of boxes in a 2D quadtree is bounded by 4N/3s
(and 8N/3s in a 3D octree). Thus, if the workload per box is constant, the net
algorithm has O(N) complexity.

A local expansion is used to represent within each box B the influence of all
sources in the far field of B. A multipole expansion about the center of B is used
to represent the influence of sources inside B on boxes in the far field FB [30].

The FMM computes the total field at a target point in leaf box B as the sum of
(a) the field due to the source points contained in the boxes of the neighbor list L B

N
and (b) the contribution from sources in the far field FB . The contributions from
source points inside the boxes of L B

N are computed directly using (13), while the
contributions from FB are obtained by evaluating the local expansion of box B at
the target. The essential task of the FMM is the construction of the local expansions
in a hierarchical manner. This takes place in two steps.

The upward pass. This pass begins at the finest level of the tree data structure,
converting charge strengths at source points into multipole expansions for each
leaf box; this computation is carried out by the source-to-multipole (S2M) operator.
Multipole expansions for each nonleaf box B at each coarser level are obtained
recursively. More precisely, the multipole expansions for the four children of B are
merged into a single expansion about B’s center using the multipole-to-multipole
(M2M) operator.

The downward pass. For each box B, starting at the coarsest level, the local expan-
sion of FB is obtained by shifting the local expansion of B’s parent to the center of
B using the local-to-local (L2L) operator and by mapping multipole expansions
centered at each box in L B

I to B’s local expansion using the multipole-to-local
(M2L) operator. For leaf box B, local expansions are then evaluated at each target
point using the local to target (L2T) operator.

Figure 1. Boxes used by M2M, L2L and M2L operators. For box
B at level `, P in the L2L operator represents the parent of B at
level `− 1, and in the M2M operator, C represents the children of
B at level `+1. Boxes labeled V in the M2L operator reside in L B

I .

86 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Summary. FMM uses S2M, M2M, M2L, L2L, and L2T linear operators: M2M
and L2L operators are determined uniquely by the relative position of a box and its
parent; each M2L operator is determined by the relative position of a box in the
interaction list; S2M and L2T operators depend on source and target point locations
and can be different for each (finest level) box. Figure 1 on the previous page
illustrates the data flow involved in the M2M, M2L and L2L operators.

For the Laplace kernel in three dimensions, far-field expansions are represented
using a mixture of spherical harmonics [31] and plane-wave representations [32].

We turn now to the kernel-independent approach [60; 61] in order to design a
volume integral FMM in three dimensions that can handle a broad class of PDEs.

4. 3D kernel-independent FMM volume integral solver

Given an octree T for our 3D bounding domain D, let D =
∑
{Bi }, i = 1 . . .M

be the set of leaf boxes resulting from hierarchical subdivision. For a single-layer
kernel K , we compute the integral (4) at some point x as

u(x)=
M∑

i=1
K [Bi , gBi](x), (14)

where K [B, gB
](x)=

∫
B K (x, y)g(y) d y, and gB represents the restriction of the

source distribution to the box B.
The principal difference between the approach of this paper and the analytic FMM

for point sources is that we use sampled equivalent densities instead of classical
special functions and series expansions to account for far-field interactions, as in
[60; 61]. This requires only a black-box kernel evaluation routine and allows for a
kernel-independent implementation. A second difference between the approach of
this paper and prior kernel-independent FMM schemes is that we are dealing with
a continuous source distribution rather than a collection of point-like particles. To
extend the method of [60; 61] to this setting, we use polynomial basis functions
to approximate the source distribution g on each leaf box, following the two-
dimensional approach of [22; 29; 24]. More precisely, we assume that the input
source is given on each leaf box B by a polynomial gB of degree k + 1 with
coefficients γ B :

gB
=

Nk∑
j=1
γ B

j β j (2`(x− cB)), (15)

where β j are polynomial basis functions, ` is the depth of the box B (` = 0 at
the root of T), and cB is its center. We use monomials for low-order accuracy
and tensor-product Chebyshev polynomials for higher-order accuracy. The number
of coefficients is Nk = k(k + 1)(k + 2)/6 for each scalar source function g. We
describe an interpolation scheme to convert a set of source values defined on a

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 87

grid of sample points to a polynomial representation in Section 4.6. As output, our
algorithm can return either point values of the potential at each target point or a
polynomial approximation of the potential on each leaf box (which can then be
evaluated at arbitrary locations).

To simplify the exposition, we present our algorithm first for a uniformly refined
octree of depth ` and then discuss the changes necessary for the adaptive octree case
separately. The final algorithmic steps are outlined in Section 4.8, and we briefly
discuss how the major loops are optimized for shared-memory parallelization in
the Appendix (Section A.4).

4.1. Equivalent densities. The kernel-independent approach to translation opera-
tors is based on the following idea. For kernel K , suppose we have an arbitrary
(smooth or nonsmooth) source distribution gs in a volume �s with surface 0s . Let
0t denote an auxiliary surface in the exterior of 0s , and let 0check denote yet another
auxiliary surface in the exterior of 0t . Finally, let E denote the exterior of 0check.
We will compute a charge density φt on 0t such that the potentials K [�s, gs] and
K [0t , φt] coincide in E . This is always possible if the exterior Dirichlet problem
on 0t has a unique solution and the exterior field can be represented in terms of a
single layer potential.1

Remark. For some problems, such as the Helmholtz equation, a combination of
single and double layer sources may be required because of nonphysical resonances
in the single layer representation, but it is generally sufficient for nonoscillatory
kernels ([41] for the Poisson equation, [42] for the Stokes equations).

Our goal is to use K [0t , φt] to represent the far-field instead of a multipole
expansion. For this, we let 0check approximate the outer boundary of the neighbor
list L B

N and solve a Fredholm integral equation of the first kind for φt ,

K [0t , φt](x)= K [�s, gs](x) for all x ∈ 0check. (16)

Having matched the field on 0check, the fields will match in the exterior E (with
precise estimates depending on the specific kernel). We refer to 0t as an equivalent
surface with equivalent density φt , and 0check as a check surface. In the case when
the original density is concentrated on the surface 0s , then (16) can be written as

K [0t , φt](x)= K [0s, φs](x) for all x ∈ xt . (17)

We match the field created by charges outside the near neighbors of a box by a
discretized layer potential defined on a surface enclosing the box, and a different
equivalent density will be used to replace the local expansion. The number of
samples used to represent the equivalent density is the analog of the number of

1For some kernels (Stokes), a low-dimensional nullspace may need to be eliminated.

88 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

expansion terms in a classical FMM. 0t and 0check are cubic surfaces, uniformly
sampled at p locations. In discretized form, (17) can be written as

K0t ,xtφt = K0s ,xtφs, (18)

where φs and φt are vectors of point-sampled densities, and K a,b are matrices with
entries given by K a,b

i j = K (ai , b j) for sample points ai and a j on surfaces a and b.
For known φs and solving for φt , (18) is a discretization of a Fredholm equation
of the first kind. For large p, linear systems may be poorly conditioned; in such
cases, we choose to utilize Tikhonov regularization methods [41] to invert K0t ,xt .
We discuss this approach and its accuracy in the Appendix (sections A.1 and A.3).

Kernel invariance and matrix precomputation. For all equations we consider, the
kernels are invariant with respect to a rigid transformation T: for scalar kernels,
K (Tx,T y) = TK (x, y), and for matrix kernels, K (Tx,T y) = TK (x, y)TT.
Hence, all matrices K need to be computed only once for each class of pairs of
equivalent surfaces, closed with respect to a specific T. Furthermore, many kernels
are homogeneous: for all c > 0, there exists a scaling exponent r 6= 0 such that
K (cx, c y) = cr K (x, y), further reducing the number of classes of surface pairs
requiring separate matrices. We consider optimizations due to invariance for each
translation operator in the next sections, assuming scalar kernels for simplicity,
although our implementation can handle matrix kernels.

4.2. Upward pass. For the upward pass, recall now that for each leaf box, the
sources are polynomials approximating the source distribution. For consistency
with the FMM summary above, we use S, M, etc. in describing translation operator
names.

Source to multipole S2M translations. For each leaf box B, we choose yB,u , the
upward equivalent surface, and x B,u , the upward check surface, as in [60]. Equation
(16) for upward equivalent density φB,u in this case becomes

K [yB,u, φB,u
](x)= K [B, gB

](x), (19)

K [B, gB
](x)≈

Nk∑
j=1
γ B

j F B
j (x), (20)

where F B
j (x)=

∫
B
β j (2`(y− cB))K (x, y)d y for x ∈ x B,u . (21)

By translation invariance, F B
j (x) depends only on the choice of β j and level `

of B. To evaluate the integrals in (21), we use adaptive Gaussian quadrature [8]. In
matrix form, the Nyström discretization of (19)–(21) at p sample points φB,u on
yB,u yields

K B
S2MφB,u

= FB
S2Mγ

B, (22)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 89

where FB
S2M is the matrix of precomputed weights (21) and K B

S2M is the matrix with
entries K (xi , y j), i = 1 . . . p, j = 1 . . . p. Solving for φB,u ,

φB,u
= (K B

S2M)
−1 FB

S2Mγ
B
= T B

S2Mγ
B . (23)

For a uniformly refined tree, T B
S2M depends only on `, so one matrix is computed.

Figure 2, left, illustrates the computation of φB,u from γ B .

Multipole to multipole (M2M) translations. M2M translation operators translate
φC,u at a child box C to φB,u for the parent box B, shown in Figure 2, right: for all
x ∈ x B,u ,

K [yB,u, φB,u
](x)=

∑
C

K [yC,u, φC,u
](x),

or, in matrix form,
K B,B

M2MφB,u
=
∑
C

K C,B
M2Mφ

C,u . (24)

Similar to the S2M computations, these systems are solved as

φB,u
=
∑
C
(K B,B

M2M)
−1 K C,B

M2MφC,u
=
∑
C

T C,B
M2Mφ

C,u . (25)

For any two children C1 and C2, rotation R maps C1 to C2; therefore, only one
T C,B

M2M is computed per level, with the contribution to φB,u from any other child
obtained by composing this matrix with an appropriate permutation of φC,u . Further,
for homogeneous kernels, only one matrix is stored at a single level ` and scaled as
necessary.

4.3. Downward pass. In the downward pass downward equivalent densities are
computed through the M2L, L2L, and L2T operators.

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xB,u

yB,u

yC,u

FB
S2M

xB,u

KC,B
M2M

yB,u

(KB,B
M2M)−1(KB

S2M)−1

Upw. Equ. Surface
Upw. Check Surface

Figure 2. Kernel-independent FMM translation operators for S2M
(left) and M2M (right).

90 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

(KB,B
L2L)−1

KP,B
L2L

Dwn. Check Surface
Dwn./Upw. Equ. Surface

(KB,B
L2L)−1

xB,d

yB,d

yP,dyV,u

KV,B
M2L

yB,d

xB,d

Figure 3. Kernel-independent FMM translation operators for M2L
(left) and L2L (right).

Multipole to local (M2L) translations. For any box B, M2L operators (Figure 3, left)
translate φV,u , approximating the field of sources inside of V ∈ L B

I , to a downward
equivalent density φB,d . In this case, we seek to induce identical potentials inside of
B, effectively swapping upward equivalent and check surfaces to obtain downward
equivalent and check surfaces: yB,d

= x B,u and x B,d
= yB,u . Equation (17) takes

the form

K [yB,d , φB,d
](x)=

∑
V

K [yV,u, φV,u
](x) for all x ∈ x B,d , (26)

where φB,d is discretized at p uniformly spaced samples on yB,d . The right-hand
side of (26) is computed and stored as a downward check potential, u B,d at x B,d ,
and φB,d is recovered after the L2L contribution is added.

u B,d
M2L =

∑
V

K V,B
M2LφV,u . (27)

We efficiently evaluate u B,d with FFTs by treating densities as being defined
on extensions of yV,u and x B,d to 3D Cartesian grids with zero values in the
interior. This results in O(p3/2) sample locations, and the computational cost of
O(p3/2 log p) for evaluation.

There are at most 189 possible locations for V ∈ L B
I relative to any particular

B; however, using translation and rotation invariance of the kernel as discussed in
Section 5, we store at most 16 total K V,B

M2L matrices for a homogeneous kernel.

Local to local (L2L) translations. Contributions from FB
\LB

I are captured through
the local field computed for B’s parent box, P , using L2L operators (Figure 3,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 91

right). We translate φP,d at yP,d to φB,d at yB,d using the equation

K [yB,d , φB,d
](x)= K [yP,d , φP,d

](x) for all x ∈ x B,d . (28)

The right-hand side is computed as a contribution to u B,d , so (28) for B at depth
` becomes

u B,d
L2L = K P,B

L2L φP,d , (29)

such that
φB,d
= (K B,B

L2L)
−1(u B,d

M2L+ u B,d
L2L

)
. (30)

The precomputation of matrix K P,B
L2L is completely analogous to K C,B

M2M, with
parent and child swapped.

Local to grid target (L2T) translations. For each leaf box B, we evaluate u B,g at
grid locations, x B,g. At depth `, φB,d accounts for all contributions from FB while
direct near-field calculations (discussed in detail in Section 4.4) account for the
contributions from NB . The far-field potential is computed using L2T operators
(Figure 4).

u(x)= K [yB,d ,φB,d
](x), x ∈ x B,g,

or, in matrix form
u B,g
= K B,B

L2T φB,d . (31)

For a uniformly refined tree, all leaves are at the same level, so we precompute
and store one K B,B

L2T matrix.

4.4. Near-field interactions. After the far-field contributions are computed, the
final step is to compute near-field interactions for leaf boxes. This is the most
expensive step in the computation, if carried out naïvely, and it is essential to

KB,B
L2T

Dwn. Equ. Surface

xB,g

yB,d

Figure 4. Kernel-independent FMM translation operators for L2T.

92 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

optimize this part of the algorithm. For each leaf box B, we need to compute the
influence of the volume density gU for every box U ∈ L N

B (the near field boxes).
Given a polynomial approximation γU to gU , we evaluate the potential on an
n×n×n grid of samples x B,g on B, which we then add to the far field contribution
computed in (31).

The principal mechanism to accelerate this step is based on the observation that we
may use a regular grid pattern of points in B, permitting the use of precomputation.
More precisely,

u B,g(x)=
∑
U

K [U, g](x)=
∑
U

Nk∑
j=1
γU

j FU,B
j (x), (32)

FU,B
j (x)=

∫
U
β j
(
2`(y− cU)

)
K (x, y) d y for x ∈ x B,g, (33)

where cU is the center of box U . We evaluate u B,g on a uniform grid x B,g
i , i =

1 . . . n3 for n < 6 and on a tensor product Chebyshev grid for n > 6 to avoid
condition problems, as discussed in Section A.2 of the Appendix. In matrix form
(32) becomes

u B,g
=
∑
U

FU,BγU . (34)

For a uniform octree, there are at most 27 possible locations for U ∈ L B
N with

respect to B itself; using symmetries, however, only 4 are unique up to translation
and rotation (Section 5). As in the S2M computations, adaptive Gaussian quadrature
[8] is used to precompute and store the weights for these matrices. This can be
done to machine precision for the function u and its first or second derivatives.

As each leaf box, B is not dependent on the near-field computations of any
leaf box in T , it can quickly be seen how even the simplest approaches can take
advantage of parallel architectures in the near-field computations. In Section A.4 of
the Appendix, we discuss how we use OpenMP [19] and load-balancing approaches
to parallelize the near-field and other computational steps of the FMM for shared-
memory, multiprocessor architectures.

4.5. Polynomial approximation of the solution. In order to compute the value of
u B at an arbitrary point in the box, it is convenient to approximate it as a polynomial
υB using a least-squares fit: minimizing

n3∑
i=1

∥∥∥u B(xi)−
Nn∑
j=1
υB

j β j (xi − cB)

∥∥∥2
for xi ∈ x B, (35)

where β j ∈ {Pa(x)Pb(y)Pc(z), 0≤ a+ b+ c ≤ n− 1} using either a monomial or
Chebyshev polynomial basis, depending on the desired order n. For n ≤ 6 it is more
convenient to use regular grids, while for n > 6 Chebyshev grid points provide

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 93

greater stability. In Section A.2 we demonstrate the accuracy of equispaced points
and Chebyshev points for n = 4, 6, 8. For box B at depth `, if 0 is the matrix with
entries 0i j = β j (2`(x− cB)), (35) leads to the equation υB

= 0(+)u B,g, where the
pseudoinverse 0(+) needs to be precomputed only once as it does not depend on
the kernel and is scale-invariant in all cases; that is, 0i j = β j (x∗i) where x∗i are grid
points in B∗ = [−1, 1]3. Once the vB

j are known, we can evaluate the solution at
an arbitrary point xt ∈ B as

u(xt)=
Nn∑
j=1
υB

j β j (xt − cB). (36)

In general, we assume that k, the order of the approximation γ B of the force
gB , is equal to n, the order of approximation of υB ; however, as source and target
locations need not be the same, k and n can be different.

4.6. Polynomial force approximation from grid samples. We have assumed the
right-hand side is already given as a polynomial. However, if the force is available
in another form (e.g., as samples on an AMR grid or polynomials on an unstructured
finite element grid), we need simply to build a k-th order approximation of the
right-hand side to the desired tolerance at regular grid points on each leaf node,
followed by conversion to a polynomial representation, as in the preceding section.
We view this step as outside the scope of the present paper.

4.7. Nonuniform source distributions and adaptive FMM. For nonuniform source
distributions, leaf boxes may appear at different levels, leading to several additional
types of interactions between boxes that need to be taken into account. For adaptive
octrees, the number of relative positions of boxes one needs to consider can become
very large. To avoid storing large number of precomputed matrices, we consider
level-restricted refinement: we require adjacent leaf boxes be within one level of
each other, a common restriction in tree codes and structured grids. Many fast
approaches exist to convert arbitrary octrees to ones satisfying this constraint [55];
we currently use a straightforward sequential algorithm similar to [24].

Lists for adaptive FMM. Our definitions and notation follow [26; 30; 31]. For leaf
box B, we define U and W lists:

• The U-list, L B
U , consists of leaves adjacent to B, including itself; L B

U = L B
N

for uniform trees.

• The W-list, L B
W , is the set of descendants of B’s neighbors, not adjacent to B,

but whose parents are adjacent to B. For any W ∈ L B
W , W is at a finer level

than B and W ∈ NB (conversely, B ∈ FW).

For leaf and nonleaf boxes B, we define V and X lists.

94 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

• The V-list, L B
V , is the set of B’s parent’s neighbor’s children, not adjacent to

B. L B
V = L B

I for uniform trees.

• The X-list, L B
X , is the set of boxes A such that B ∈ L A

W .

We note that

B ∈ L A
U ⇐⇒ A ∈ L B

U , B ∈ L A
V ⇐⇒ A ∈ L B

V , B ∈ L A
W ⇐⇒ A ∈ L B

X .

An example domain with labeled lists is shown in [60]; possible positions of boxes
in the L B

U , L B
V , L B

W and L B
X are shown in Figure 5.

By the following lemma, for level-restricted trees, boxes in W and X lists have
finite possible positions.

Lemma 4.1. For a level-restricted tree T in which all neighboring leaf boxes are
within one level of each other in the octree, for a box, B, all boxes in L B

W and L B
X

must also be within one level of B.

Proof. For box B assume there exists W ∈ L B
W such that `W − `B ≥ 2. Then W ’s

parent, PW , satisfies `PW −`B ≥ 1, so there exist descendants D of PW with D ∈ L B
U

and `D − `B ≥ 2, violating our tree-level restriction. Thus, `W − `B ≤ 1. Since
W ∈ L B

W implies B ∈ LW
X , we have `B − `X ≤ 1 for all X ∈ L B

X . �

Boxes in L B
U and L B

V are handled as boxes in L B
N and L B

I , respectively, are in the
uniform case. For leaf box B, if W ∈ L B

W , then W 6∈FB ; therefore, W ’s contribution
to B is not accounted for through its parent, PB , but since B ∈FW , we can evaluate
φW,u at x B,g. Hence, using notation analogous to other operators, M2T operators
need to be defined. Further, for X ∈ L B

X , B ∈ NX , but X ∈ FB . Thus, we need to

Figure 5. Possible box positions for different lists in a level-
restricted tree in 2D. The configurations in 3D are analogous.

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 95

evaluate contributions from X directly but can apply them to φB,d ; that is, we need
to define an S2L operator.

To summarize, for adaptive FMM, in addition to M2M, M2L, L2L, and L2T,
two additional operators, M2T and S2L need to be defined, and S2M and near-field
(S2T) operators need to handle leaf boxes at arbitrary levels. We begin by describing
changes to S2M and S2T operators and follow with a discussion of M2T and S2L
operators.

S2M operators for the adaptive case. For homogeneous kernels, we store a single
matrix T B∗

S2M, scaling for level ` as was done for the M2M and L2L operators. Let
B∗ = [−1, 1]3 at `= 0. Then, for x ∈ B at level `, let x∗ = 2`(x− cB) for x∗ ∈ B∗.
For scaling exponent r , we have K (xi , y j)= 2−r`K (x∗i , y∗j), and (21) becomes

F B
j (x)=2−(r+2)`K [B∗, β j](x∗)=2−(r+2)`F B∗

j (x∗) for all x∈ x B,g, x∗∈ x B∗,g.

In matrix form, FB
S2M = 2−(r+2)`FB∗

S2M and K B
S2M = 2−r`K B∗

S2M. Solving for φB,u ,
(23) becomes

φB,u
= T B∗

S2Mγ
B, (37)

where T B∗
S2M is precomputed and stored. (For inhomogeneous kernels, we store one

matrix per leaf level).

Neighbor list interactions for adaptive trees. For adaptive level-restricted trees,
leaves may exist at any level and U ∈ L B

U may exist at one level finer or coarser
than B. As above for the S2M operators, for homogeneous kernels with scaling
exponent r , we only compute matrices for pairs (B,U) with B scaled to B∗ (U is
appropriately scaled as well to U∗) such that (33) and (34) become

FU,B
j (x)= 2−(r+2)`K [U∗, β j](x∗)= 2−(r+2)`F (U,B)

∗

j (x∗),
for all x ∈ x B,g, x∗ ∈ x B∗,g,

u B,g
=
∑
U

FU,B
S2T γ

U
= 2−(r+2)`∑

U
F(U,B)∗

S2T γU .

Along with 27 possible same-level neighbors, there are 56 fine-level neighbors
(one level deeper) and 7 coarse-level neighbors (one level higher), all constituting the
90 possible locations for boxes in L B

U in a level-restricted octree. Using symmetries
(Section 5), we only precompute and store 10 matrices. For inhomogeneous kernels,
this set of matrices is precomputed for each level for which leaf boxes exist.

M2T and S2L operators. For leaf box B and W ∈ L B
W , we need an operator that

evaluates φW,u at x B,g:

u B,g(x)=
∑
W

K [yW,u,φW,u
](x)for x ∈ x B,g,

96 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

or, in matrix form,
u B,g
=
∑
W

K W,B
M2Tφ

W,u, (38)

for precomputed K W,B
M2T . For all boxes B, L B

X contains leaves X , for which contri-
butions to B are computed at x B,d :

u B,d(x)=
∑
X

K [X, gX
](x)≈

∑
X

Nk∑
j=1
γ X

j F j (x) for x ∈ x B,d ,

or, in matrix form,
u B,d
=
∑
X

FX,B
S2L γ

X . (39)

There are 152 possible locations for W ∈ L B
W ; however, only six locations

are distinct up to translation and rotation; also, due to the inverse relationship
between L B

X and L B
W , the number of symmetry classes is the same (Section 5). For

homogeneous kernels, only six K W,B
M2T and six FX,B

S2L matrices are precomputed for
level `= 0 and scaled as necessary. For inhomogeneous kernels we compute and
store these sets for each leaf level.

Remark. In cases where the order of γ is low compared to the order of φB,u and
φB,d , the size of M2T and S2L operators may actually be larger than those needed
for direct computation of contributions from W ∈ L B

W or X ∈ L B
X to x B,g. Assuming

we have a homogeneous kernel, if W ∈ L B
W is a leaf box, we can replace K W,B

M2T
by FW,B

S2T , constructed exactly in the same way as for boxes in the neighbor list
L B

U . Similarly, for leaf box B and a box X ∈ L B
X , we can replace FX,B

S2L with FX,B
S2T .

For homogeneous kernels, these operators are computed for B∗ only and scaled as
necessary as in Section 4.4.

4.8. Pseudocode and complexity for kernel-independent FMM volume solver.

Pseudocode. The algorithm is summarized on the next page. We assume that a
tree-level restricted octree T already exists [24] and that for each box, B, we are
given the approximation, γ B , to the force gB (we discuss how to construct γ from
g in Section 4.6). For clarity, we do not include the optimization of replacing M2T
and S2L with S2T operators when more efficient as discussed above.

Computational complexity and storage requirements. We analyze the complexity
for a uniformly refined octree. The analysis for the adaptive FMM is similar but
slightly more complicated. We assume a homogeneous scalar kernel such as the
Laplace kernel in (10) for analyzing the storage and computational complexities.
Further, we assume that there are ` levels in the octree T. For a uniform tree, this
implies we have M` = 8` leaves and Mt = (8`+1

− 1)/7 total boxes in T . If we are
using a k-th order polynomial approximation to the force at each leaf, we further
assume there are approximately N = M`n3 total target points and C = M`Nk total

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 97

STEP 1 - BUILD LISTS
for each box B in preorder traversal of T do

build L B
U , L B

W , L B
X , and L B

V (Section 4.7)
end for
STEP 2 - UPWARD PASS (Section 4.2)
for each box B in postorder traversal of T do

if B is a leaf box then
Convert local force approximations to upward densities:
φB,u
:= T B

S2Mγ
B (23)

else
Translate children’s upward densities to parent’s upward density:

φB,u
:=

∑
C

T C,B
M2Mφ

Ci ,u (25)

end if
end for
STEP 3 - DOWNWARD PASS (Section 4.3)
for each nonroot box B in preorder traversal of T do

Add potentials due to parent downward density, U and X boxes to get the
downward check potential:

uB,d
:= K P,B

L2L φ
P,d
+

∑
V∈L B

V

K V,B
M2Lφ

V,u
+

∑
X∈L B

X

FX,B
S2L γ X (29), (27), (39)

Translate the check potential to the downward density:
φB,d
:= (K B,B

L2L)
−1u B,d (30)

if B is a leaf box then
Compute potentials from adjacent and W boxes to the potential at grid
locations:

uB,g
:=

∑
U∈L B

U

FU,B
S2T γ

U
+

∑
W∈L B

W

K W,B
M2Tφ

W,u (34), (38)

Add the potential from the far field:
uB,g
:= uB,g

+ FL2Tφ
B,d (31)

end if
end for

Algorithm 1. Kernel-independent volume FMM.

coefficients. Let p be the number of coefficients sought in the multipole expansion,
affecting the size of the equivalent densities and surfaces. For a desired level of
precision in the expansion, say εfmm = 10−n p , we have p = n3

p − (n p − 2)3. In
Table 1, we indicate the computational complexity of each step of the nonadaptive
FMM algorithm as well as the amount of precomputation and storage used for
operators at each step. For nonuniform source distributions, we store additional

98 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Operator Complexity Storage

S2M: T B
S2M O(Cp) pNk

M2M: T C,B
M2M O((Mt −M`)p2) p2

M2L: K V,B
M2L O(Mt p3/2 log p+ 189Mt p3/2) 16p3/2

L2L:K P,B
L2L , (K B,B

L2L)
−1 O(Mt p2) 2p2

L2T: K B,B
L2T O(N p) pn3

Near Interaction: FU,B
S2T O(27N Nk) 4Nkn3

U -list (adaptive): FU,B
S2T 10Nkn3

W -list: FW,B
S2T , K W,B

M2T 6n3(Nk + p)

X -list: FX,B
S2T , FX,B

S2L 6Nk(n3
+ p)

Table 1. Computational complexity and storage requirements for a
scalar homogeneous kernel. These values scale linearly for matrix
and inhomogeneous kernels.

operators for the near-field interactions in the U, W, and X operators; the complexity
of these operators are based on the degree of adaptivity.

Finally, we note that the computational and storage complexities will scale
linearly for matrix or inhomogeneous kernels. For example, for the Stokes kernel
in (12), the number of coefficients, p, scales as a results of the matrix kernel
size to p = 9(n3

p − (n p − 2)3). For the modified Helmholtz kernel in (11), the
inhomogeneous nature of the kernel results in an increased storage complexity,
which varies depending on the number of different levels in the tree.

5. Symmetries for precomputed interaction operators

For a box B and all boxes in L B
U , L B

V , L B
W and L B

X , the number of different relative
positions can be large, so precomputing all possible interaction matrices may require
significant time and storage. Performance can also be affected by the need for
random access of large amounts of precomputed data. The number of precomputed
matrices can be substantially reduced via symmetries; that is, many box positions
are equivalent in the sense that there is a rigid transformation T, mapping box Z1

to Z2 and box B to itself. We store a single matrix for a representative box for each
symmetry class, obtaining matrices for all elements of the class by applying T to
the matrix for the representative box.

For every list type Z ∈{U, V,W, X}, we define a set of possible positions Pos(Z)
and a set of symmetry classes which form a partition of Pos(Z). For each class, we

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 99

define a reference box, and for each box position in Pos(Z), we need an efficient
way to determine its class and a transformation T(B) : R3

→ R3 mapping it to the
reference box.

For all lists, the symmetries are related to the transformations of space which map
a grid of cubes to itself. We consider N 3 grids of sizes 13 to 73 (we discuss which
lists correspond to which cubes in more detail below) and begin by classifying all
symmetries of such grids.

Grid symmetries. The cubes on the N 3 grid are indexed by (i, j, k) with values
−M . . .− 1, 0, 1 . . .M for odd N = 2M + 1 and −M . . .− 1, 1 . . .M for even
N = 2M . We skip index 0 for even grids to ensure cube centers and indices are
transformed by symmetries in the same way. If the cube size is 1, cube centers
are exactly the indices (i, j, k) for odd N and differ by ± 1

2 for even N , depending
on the index sign. Each N 3 grid can be partitioned into M (for even N) or M + 1
(for odd N) layers. Layer 0 consists of one cube and exists for odd N , and layer
M consists of cubes on the surface of the N 3 grid. For odd N , layer l has size
(2l + 1)3 and for even N , layer l has size (2l)3.

The group of symmetries Gcube of a cube has order 48. For a cube centered at zero,
transformations in Gcube are compositions of rotations and reflections, mapping
each axis direction to another, possibly with orientation reversed. Any permutation
of directions is possible, so we identify the group with S3× J 3, where S3 is the
group of permutations of length 3, and J is the two-element group of reflections.
The rotational part of any element of Gcube can be specified as a permutation of
length 3 on the set of axes {x, y, z}, with an orientation 1 or −1 specified for each
axis. Transformations from Gcube encoded in this way can be applied to points very
efficiently: for a point x ∈ R3, the permutation is applied to its coordinates, which
are then scaled by 1 or −1.

For the N 3 grid, the equivalence classes under the action of Gcube can be
enumerated combinatorially. If two indices (i, j, k) and (i ′, j ′, k ′) differ only
by signs of components, corresponding cubes are in the same class, mapped by
reflections. To enumerate all classes, we consider cubes with nonnegative indices.
Two cubes with nonnegative indices (i, j, k) and (i ′, j ′, k ′) are in the same class if
and only if there is a permutation mapping (i, j, k) to (i ′, j ′, k ′). For i 6= j 6= k and
i, j, k ∈ [1,M], seven series of equivalence classes are
easily enumerated, corresponding to signatures (i, j, k),
(i, i, j), (i, i, i), (0, i, i), (0, 0, i) and (0, 0, 0). A refer-
ence box in every class is uniquely defined by requiring
that its three indices are all nonnegative and are in non-
decreasing order. As an example, the figure shows the
representative box for the (1, 2, 3) class in the 73 grid
for M = 3.

100 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

The properties of classes in each series are summarized in Table 2. For a box
Z , with grid index (i, j, k) relative to B, the reference box is obtained by taking
absolute values and sorting the indices; sign changes and a permutation mapping
(i, j, k) to the reference box index also encode the transformation.

series
signature 73 classes reference

cube
classes
per grid

classes
per layer

class
size

(i, j, k) (|i |, | j |, |k|),
|i |< | j |< |k|

(M
3

) (M−1
2

)
48

(i, i, j)
(|i |, |i |, | j |),
|i |< | j |

or (|i |, | j |, | j |)
M(M−1) 2(M−1) 24

(i, i, i) (|i |, |i |, |i |) M 1 8

(0, i, j) (0, |i |, | j |)
(M

2

)
M−1 24

(0, i, i) (0, |i |, |i |) M 1 12

(0, i, i) (0, 0, |i |) M 1 6

(0, 0, 0) — (0, 0, 0) 1 — 1

Table 2. Series of equivalence classes of cubes in an N 3 grid, with
M = bN/2c. For even N only the first 3 series of classes may be
nonempty. For odd N all classes are present. For M ≤ 2, (i, j, k)
classes are empty, and for M = 1, (i, i, j) and (0, i, j) classes
are also empty. Class (0, 0, 0), corresponding to the center of
the grid, exists only in layer 0. Boxes in different classes in one
series are marked with circles of different colors; representative
boxes are marked with circles with black border. The view is from
the top, with first index direction to the right, second direction
up and third towards the viewer, as in the figure on page 99. The
total number of classes for (2M)3 layers is (M+1)M/2 (classes
(i, j,M) with i, j = 1 . . .M , i ≤ j), and for (2M+1)3 layers, it
is (M+2)(M+1)/2 (classes (i, j,M) with i, j = 0 . . .M , i ≤ j).

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 101

Symmetries of L B
U . Due to the tree-level restriction, boxes U ∈ L B

U are either
neighbors of B, neighbors of B’s parent and adjacent to B, or adjacent children
of neighbors of B. We denote these three sublists of L B

U by L B
U,n , L B

U,p and L B
U,c

respectively. Note that A ∈ L B
U,p is equivalent to B ∈ L A

U,c; hence, it is sufficient
to consider L B

U,n and L B
U,c. The neighbors of B on the same level as B form a 33

grid centered at B, so from Table 2, the number of classes is 4: (1, 1, 1), (0, 1, 1),
(0, 0, 1), and (0, 0, 0). Locations of U ∈ L B

U,c can be thought of as the outer layer
of a 43 grid, with M = 2 and B as the 23 subgrid in the center, so we obtain 3
classes: (1, 1, 2), (1, 2, 2), (2, 2, 2), giving 10 classes for L B

U .

Symmetries of L B
V . Boxes in L B

V are children of neighbors of the parent of B, so
they can all be represented by cubes of a 63 grid; however, the group of rigid
transformations of the grid mapping to itself do not necessarily preserve B. Hence,
instead regard L B

V as a subset of a 73 grid centered at B with M = 3. All V ∈ L B
V are

in layers 2 and 3, and there are 10 classes: for layer 3, classes (i, j, 3), i, j = 1 . . . 3,
i ≤ j and for layer 2, classes (i, j, 2), i, j = 0, 1, 2, i ≤ j . Because we consider
only a subset of the full 73 grid, the class sizes are smaller, but it can easily be seen
that no class becomes empty, so the number is optimal.

Symmetries of L B
W , L B

X . For a level-restricted tree, boxes W ∈ L B
W are children of

neighbors of B not adjacent to B, that is, they reside in the surface layer of a 63 grid
with B as the central 23 grid. For M = 3, we have 6 classes from Table 2: (i, j, 3),
i, j = 1 . . . 3, i ≤ j . Due to duality, the number of classes for L B

X is the same, but
the class sizes may not be the same.

Summary. For a given pair (B, Z), if Z ∈ {L B
U,n, L B

U,c, L B
V , L B

W }, determine the
translation and scaling which map B to the central box or 23 subgrid of a larger
grid. Then, apply the same transformation to the center of Z ; resulting coordinates
yield the index (i, j, k), which is translated into the reference box and rotation as
described above.

6. Numerical results

Our algorithm has been implemented in C++, and we have tested several kernels
and source and target point distributions. Our tests were run on an Intel Xeon-based
X7560 (2.27 GHz, 64 bit) system with 16 CPUs and 128 GB of RAM; the major
computation loops are accelerated with OpenMP [19] as discussed in Section A.4.

We first test the free-space Poisson solver on three different types of problems
designed to show how our algorithm handles increasing levels of complexity in the
force distribution.

We use an adaptive-refinement strategy similar to [24]. For this, we compute
a k-th order polynomial approximation, γ B , to the force gB(x) sampled on a

102 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Figure 6. Sample force distributions based on adaptive refinement.
Each point, colored by its tree level, indicates the center of a
leaf box B. Top left: A single sharply peaked Gaussian function
(Example 1). Top right: A discontinuous force distribution, equal
to 1 inside a sphere and 0 outside (Example 2). Bottom: A discon-
tinuous force distribution involving oscillatory functions restricted
to the interiors of a set of three spheres (Example 3).

k× k× k grid. We let g̃B be the force evaluated on a refined 2k× 2k× 2k grid. If
‖gB(x)− g̃B(x)‖2 > εrhs, B is subdivided, and the octree is balanced as needed.
Three force distributions, used in Examples 1–3 below, are shown in Figure 6.

Example 1. The first experiment tests the accuracy of our method for solving the
Poisson equation — Equation (7) with kernel (10) — with a fast-decaying smooth
right-hand side:

−1u(x)=
8∑

i=0
−e−L‖x−xi‖

2
(4L‖x− xi‖

2
− 6L), L = 250,

with solution

u(x)=
8∑

i=0
−e−L‖x−xi‖

2
,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 103

where xi =
(
±

3
40 ,±

3
40 ,±

3
40

)
inside the [−1, 1]3 box. This test requires a high

degree of adaptivity to achieve good accuracy with a limited number of points.
In Table 3, εfmm is the precision of the translation operators, εrhs is the refinement

criterion for the adaptive refinement of the source distribution, and M` is the number
of leaves in the tree T with LT levels. The number of points Npts is computed as
M`k3 where k is the order of the polynomial. This number of points per leaf is
chosen to be sufficiently large to build the polynomial approximation of order k.
The computation time TFMM is given in seconds, and the rate is in points per second.
E2 and E∞ are the relative L2 and L∞ errors, respectively. Timings include FMM
evaluation times only; when the precision εfmm remains constant, the rate of work

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 736 47104 6 2.3·10−2 2.4·10−2 9.1453·10−3 5.15·10+6

10−4 10−2 736 47104 6 1.1·10−3 6.8·10−4 2.4328·10−2 1.94·10+6

10−4 10−4 3088 197632 7 1.1·10−4 2.7·10−4 9.6590·10−2 2.05·10+6

10−6 10−4 3088 197632 7 3.8·10−5 2.5·10−5 3.7906·10−1 5.21·10+5

10−6 10−6 19328 1236992 8 3.8·10−6 3.6·10−6 2.3889·10+0 5.18·10+5

10−8 10−6 19328 1236992 8 3.7·10−6 1.3·10−6 6.2057·10+0 1.99·10+5

10−8 10−8 143088 9157632 9 1.6·10−7 8.8·10−8 4.5280·10+1 2.02·10+5

sixth-order force approximation

10−4 10−4 1408 304128 6 1.1·10−4 2.3·10−4 1.1016·10−1 2.76·10+6

10−6 10−4 1408 304128 6 1.4·10−5 3.5·10−5 1.8717·10−1 1.62·10+6

10−6 10−6 4936 1066176 7 9.0·10−7 2.2·10−6 6.6737·10−1 1.60·10+6

10−8 10−6 4936 1066176 7 3.3·10−7 1.6·10−7 1.6155·10+0 6.60·10+5

10−8 10−8 20112 4344192 8 2.4·10−8 6.2·10−8 6.8652·10+0 6.33·10+5

10−10 10−8 20112 4344192 8 1.8·10−8 1.0·10−8 1.5771·10+1 2.76·10+5

10−10 10−10 92072 19887552 9 6.3·10−9 9.7·10−9 7.5103·10+1 2.65·10+5

eighth-order force approximation

10−6 10−6 2024 1036288 7 9.2·10−7 3.5·10−6 4.6688·10−1 2.22·10+6

10−8 10−6 2024 1036288 7 3.7·10−7 8.2·10−7 7.4189·10−1 1.40·10+6

10−8 10−8 5440 2785280 7 1.9·10−8 6.6·10−8 2.1128·10+0 1.32·10+6

10−10 10−8 5440 2785280 7 7.7·10−9 7.6·10−9 4.3588·10+0 6.40·10+5

10−10 10−10 22800 11673600 8 4.1·10−9 5.6·10−9 1.9449·10+1 6.00·10+5

10−12 10−10 22800 11673600 8 2.6·10−9 4.7·10−9 4.1602·10+1 2.81·10+5

10−12 10−12 50352 25780224 9 2.1·10−9 4.6·10−9 9.2139·10+1 2.80·10+5

Table 3. Results for free-space Poisson equation (Example 1):
Gaussian bump at the origin.

104 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

per source and target point remains close to constant, as we would expect since the
FMM algorithm scales linearly.

Example 2. In this example, we consider a discontinuous right-hand side, with
g(x) = 1 inside a sphere of radius R = 0.75, and g(x) = 0 outside the sphere.
Letting r = ‖x‖, the problem becomes

−1u(x)=
{

1 if r ≤ R,
0 else,

with solution

−1u(x)=
{
(R2
− r2)/6+ R2/3 if r ≤ R,

R3/3r2 else.
While this problem can be handled analytically, it serves as a useful test of

performance on adaptive data structures that are refined in the neighborhood of a
surface. The number of points indicates the total number of points both inside and
outside the sphere. Since the coefficient representation of the force for a leaf node
entirely outside of the sphere is zero, these boxes are ignored in all evaluation phases;
this increases the computed rate somewhat. A greater speedup is achieved from the
observation that leaf nodes entirely in the interior have a constant source distribution,
so that only one polynomial coefficient is nonzero. This significantly accelerates
both the near-field and S2M calculation stages. Results are shown in Table 4.

εfmm εrhs k M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 4 232 14848 4 1.1·10−2 1.6·10−2 1.8346·10−3 8.09·10+6

10−3 10−3 4 1184 75776 5 4.3·10−3 4.6·10−3 1.1007·10−2 6.88·10+6

10−4 10−4 4 5888 376832 6 1.4·10−4 2.5·10−4 1.1327·10−1 3.33·10+6

10−5 10−5 6 11432 2469312 7 1.6·10−5 3.3·10−5 6.2147·10−1 3.97·10+6

10−6 10−6 6 80088 17299008 8 7.2·10−6 1.8·10−5 6.0647·10+0 2.85·10+6

10−7 10−7 8 127856 65462272 8 9.4·10−7 3.3·10−6 1.8852·10+1 3.47·10+6

10−8 10−8 8 528984 270839808 10 3.7·10−7 9.8·10−7 1.2335·10+2 2.20·10+6

10−9 10−9 8 2074360 1062072320 10 3.2·10−8 2.6·10−7 6.4900·10+2 1.64·10+6

Table 4. Free-space Poisson equation (Example 2): discontinuous force.

Example 3. For our third example, we replicate an experiment from [47] for a
highly oscillatory force with discontinuities along multiple surfaces, setting

fm(r)=
{
((r − r2) sin (2mπr))2 if r < 1,
0 if r ≥ 1,

−1u(x)= 1
R3

2∑
i=0

fm(|x− ci |/R), (40)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 105

where c0 =
(3

16 ,
7
16 ,

13
16

)
, c1 =

(7
16 ,

13
16 ,

3
16

)
, c2 =

(13
16 ,

3
16 ,

7
16

)
, R = 0.05, and the

wavelength of fm is λm = R/(2m)= (1/40m). Defining

φm(r)=
(10r6

− 28r5
+ 21r4

− 7)
840

+
(60r − 120)

rλ6
m

−
9
λ4

m

+

[(300r − 120)
rλ6

m
−+

(30r2
− 36r + 9)
λ4

m
+
(r4
− 2r3

+ r2)

2λ2
m

]
cos (rλm)

+

[
−

360
rλ7

m
+
(120r2

− 96r + 12)
rλ5

m
+
(5r3
+ 8r2

− 3r)
λ3

m

]
sin (rλm),

and

θm(r)=
(360
λ6

m
−

12
λ4

m
−

1
120

)
/r,

we write the solution to (40) as

uexact(x)=


φ(‖x− c0‖/R)+

∑
i=1,2 θ(‖x− ci‖/R) if ‖x− c0‖< R,

φ(‖x− c1‖/R)+
∑

i=0,2 θ(‖x− ci‖/R) if ‖x− c1‖< R,

φ(‖x− c2‖/R)+
∑

i=0,1 θ(‖x− ci‖/R) if ‖x− c2‖< R,∑2
i=0 θ(‖x− ci‖/R) else.

In order to compare our results to [47], we use the error metric introduced there.
Let εB be the vector of errors calculated as the difference between the calculated
and exact solutions on B and calculate the following norm over all leaf boxes.

‖εB
all‖2 =

∑
B

(∫ εB

‖uexact‖∞

)1/2
.

As indicated in [47],

‖uexact
‖∞ =

∣∣∣∣(− 6
λ4

m
−

1
120

)
/R+

(720
λ6

m
−

24
λ4

m
−

1
120

)
/‖ci − c j‖

∣∣∣∣
for all i, j = 0, 1, 2, i 6= j.

Our automatic refinement strategy refines within or near the sphere surfaces, with
refinement taking place in the exterior of the spheres only for the purpose of tree-
balancing. We build coefficients only on leaf boxes which contain nonzero source
distributions: either interior to or intersecting one of the three spheres. Results are
shown in Table 5.

While the performance of our code cannot be compared easily to the optimized
and parallelized scheme presented in [47], we have implemented schemes accurate
to much higher order. Thus, as expected, we are able to reach comparable accuracies
with significantly fewer points. To compare the number of points required, we con-
sider the number of points in the finest level solve of their three-level examples. For

106 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

m εfmm εrhs M` Npts LT k ‖εB
all‖2 ‖εB

all‖∞

1 10−6 10−6 3984 254976 8 4 2.3·10−7 2.2·10−5

1 10−8 10−8 7296 1575936 9 6 1.1·10−8 7.1·10−7

1 10−10 10−10 24144 12361728 9 8 1.6·10−10 1.8·10−8

7 10−6 10−6 93816 6004224 10 4 2.2·10−6 1.8·10−4

7 10−8 10−8 195984 42332544 10 6 9.3·10−9 1.1·10−6

7 10−10 10−10 228312 116895744 10 8 1.1·10−10 4.3·10−8

15 10−6 10−6 140568 8996352 10 4 6.4·10−7 8.6·10−5

15 10−8 10−8 1092456 235970496 11 6 7.2·10−8 4.2·10−6

15 10−10 10−10 1596672 817496064 11 8 4.8·10−10 6.1·10−8

30 10−6 10−6 148272 9489408 10 4 5.8·10−7 6.2·10−5

30 10−8 10−8 1491216 322102656 11 6 2.1·10−8 3.8·10−6

30 10−10 10−10 1720152 880717824 12 8 4.9·10−9 2.0·10−6

60 10−6 10−6 150288 9618432 11 4 6.0·10−7 9.6·10−5

60 10−8 10−8 1502592 324559872 11 6 9.2·10−8 1.4·10−5

60 10−10 10−9 1659312 849567744 11 8 7.7·10−8 1.7·10−5

Table 5. Free-space Poisson equation (Example 3): Discontinuities
along several spherical surfaces containing oscillating source dis-
tributions.

m= 7, we achieve accuracy on par with their most accurate tests with approximately
1

100 as many points. For m = 15, we require approximately 1
5 as many points, and

with 1
4 as many points, we achieve about two orders of magnitude greater accuracy.

For m = 30, we achieve equivalent results with approximately 1
4 as many points.

Additionally, we extended the examples for an even higher wavenumber component
(m = 60), decreasing the wavelength to 4.17 ·10−4, and achieving good results with
fewer than 109 points.

Example 4. For the modified Helmholtz equation — (8) with kernel (11) — we use
a right-hand side similar to that of Example 1, setting the Helmholtz parameter
(inverse Debye length) to α = π :

α u(x)−1u(x)=
8∑

i=0
−e−L‖x−xi‖

2
(4L‖x− xi‖

2
− 6L −α), L = 250,

with solution

u(x)=
8∑

i=0
−e−L‖x−xi‖

2
, for xi =

(
±

3
40 ,±

3
40 ,±

3
40

)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 107

εfmm εrhs M` Npts LT E2 E∞

fourth-order force approximation

10−2 10−2 736 47104 6 2.3·10−2 2.4·10−2

10−4 10−2 736 47104 6 6.0·10−4 5.6·10−4

10−4 10−4 3088 197632 7 1.1·10−4 1.8·10−4

10−6 10−4 3088 197632 7 2.4·10−5 2.1·10−5

10−6 10−6 19328 1236992 8 2.3·10−6 3.4·10−6

sixth-order force approximation

10−4 10−4 1408 304128 6 1.1·10−4 2.4·10−4

10−6 10−4 1408 304128 6 1.4·10−5 3.5·10−5

10−6 10−6 4936 1066176 7 8.5·10−7 2.5·10−6

10−8 10−6 4936 1066176 7 1.4·10−7 1.3·10−7

10−8 10−8 20112 4344192 8 1.5·10−8 7.5·10−8

10−10 10−8 20112 4344192 8 8.9·10−9 7.4·10−9

10−10 10−10 92072 19887552 9 2.2·10−9 5.7·10−9

eighth-order force approximation

10−6 10−6 2024 1036288 7 1.9·10−6 4.7·10−6

10−8 10−6 2024 1036288 7 1.8·10−7 4.6·10−7

10−8 10−8 5440 2785280 7 1.2·10−8 1.4·10−8

10−10 10−8 5440 2785280 7 7.7·10−9 7.6·10−9

10−10 10−10 22800 11673600 8 3.4·10−9 5.6·10−9

10−12 10−10 22800 11673600 8 1.3·10−9 2.0·10−9

10−12 10−12 50352 25780224 9 2.0·10−9 2.6·10−9

Table 6. Free-space modified Helmholtz equation (Example 4):
Gaussian bump at the origin.

inside of the [−1, 1]3 box. All translation matrices are computed to a precision
of εfmm/10. These matrices can be computed at run-time in a lazy manner; if α
is known before run-time, these tables can be precomputed, stored, and loaded as
necessary. Additionally, since the right-hand side is the same as in Example 1, we
use the same point distribution; hence, the timings are essentially the same as in
that example and are omitted here. Results are shown in Table 6.

Example 5. We test the ability of our code to handle matrix kernels by solving
the Stokes equations — (9) with kernel (12) — with the following divergence-free
fast-decaying force.

−µ1u(x)+∇ p(x)=
8∑

i=0
(8L3
‖x− xi‖

2
− 20L2)e−L‖x−xi‖

2(
∇ × (x− xi)

)
,

108 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 2038 130432 6 1.3·10−1 1.5·10−1 1.3485·10−1 9.67·10+5

10−4 10−2 2038 130432 6 1.0·10−3 8.4·10−4 9.4899·10−1 1.37·10+5

10−4 10−4 10606 678784 7 9.1·10−4 9.4·10−4 5.1145·10+0 1.33·10+5

10−6 10−4 10606 678784 7 8.4·10−6 1.1·10−5 2.2359·10+1 3.04·10+4

10−6 10−6 69140 4424960 8 7.5·10−6 1.4·10−5 1.4655·10+2 3.02·10+4

10−8 10−6 69140 4424960 8 2.2·10−7 4.4·10−7 4.8311·10+2 9.16·10+3

10−8 10−8 484408 31002112 9 1.4·10−7 4.4·10−7 3.2253·10+3 9.61·10+3

sixth-order force approximation

10−4 10−4 2696 582336 7 4.9·10−4 8.6·10−4 1.5720·10+0 3.70·10+5

10−6 10−4 2696 582336 7 4.3·10−6 9.9·10−6 5.9948·10+0 9.71·10+4

10−6 10−6 10396 2245536 7 8.1·10−6 1.3·10−6 2.3602·10+1 9.51·10+4

10−8 10−6 10396 2245536 7 1.6·10−7 4.1·10−7 7.7862·10+1 2.88·10+4

10−8 10−8 59830 12923280 8 1.4·10−7 4.3·10−7 4.1067·10+2 3.15·10+4

10−10 10−8 59830 12923280 8 5.4·10−9 1.3·10−8 1.0326·10+3 1.25·10+4

10−10 10−10 295100 63741600 9 5.2·10−9 1.1·10−8 5.3102·10+3 1.20·10+4

eighth-order force approximation

10−6 10−6 4894 2505728 7 4.8·10−6 1.5·10−5 1.4287·10+1 1.75·10+5

10−8 10−6 4894 2505728 7 8.0·10−8 4.3·10−7 4.1362·10+1 6.06·10+4

10−8 10−8 12860 6584320 7 1.5·10−7 4.5·10−7 1.0268·10+2 6.41·10+4

10−10 10−8 12860 6584320 7 6.0·10−9 1.5·10−8 2.3717·10+2 2.78·10+4

10−10 10−10 55854 28597248 8 4.7·10−9 1.6·10−8 1.0489·10+3 2.73·10+4

10−12 10−10 55854 28597248 8 6.3·10−9 8.8·10−9 1.9641·10+3 1.46·10+4

10−12 10−12 132490 67834880 9 5.6·10−9 7.0·10−9 4.4599·10+3 1.52·10+4

Table 7. Free-space Stokes equation (Example 5): Gaussian bump
at the origin.

with solution

u(x)=
2L
µ

8∑
i=0

e−L‖x−xi‖
2(
∇ × (x− xi)

)
,

for xi =
(
±

3
40 ,±

3
40 ,±

3
40

)
, µ= 1, L = 125, inside of the [−1, 1]3 box. Errors are

again similar to those seen in the fast-decaying experiments from examples 1 and
4; timings are worse, as expected, since we are dealing with nine times as many
degrees of freedom per point. Results are shown in Table 7.

Example 6. It is straightforward to extend the solver infrastructure described above
to the case of periodic boundary conditions, using the classical method of images of

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 109

Lord Rayleigh [54], following the discussion of [24]. The influence of all separated
image boxes can be incorporated using either a recursive approach [38] or a scheme
based on lattice sums [30]. In either case, the additional work depends only on
εfmm and not on the number of degrees of freedom. The main difference is that
the unit cell B now has near neighbors, whose influence must be accounted for.
This, too, has relatively little impact on performance. A small number of additional
boxes are added to both the interaction and near neighbor lists, but no additional
data structures are created; instead, everything is handled via careful book-keeping
to minimize additional memory consumption.

As an example, we consider the periodic source function

f (x)= C M2π2 sin(πMx) sin(πMy) sin(πMz),

for which the solution is

u(x)= C sin(πMx) sin(πMy) sin(πMz).

We conduct our experiments for a nontrivial oscillatory force, choosing C = 5
and M = 7 on the domain [−1, 1]3 with varying degrees of depth and precision.
We check the relative L2 and L∞ with results shown in Table 8.

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 32768 2097152 6 2.6·10−2 3.3·10−2 3.3250·10−1 6.31·10+6

10−4 10−4 262144 16777216 7 2.9·10−4 7.6·10−4 1.6296·10+1 1.03·10+6

10−6 10−6 2097152 134217728 8 5.6·10−6 1.9·10−5 2.9403·10+2 4.56·10+5

sixth-order force approximation

10−2 10−2 32768 7077888 6 2.7·10−2 3.4·10−2 6.0730·10−1 1.17·10+7

10−4 10−4 37248 8045568 7 2.7·10−4 8.2·10−4 1.7895·10+0 4.50·10+6

10−6 10−6 262144 56623104 7 5.5·10−6 1.8·10−5 3.6250·10+1 1.56·10+6

10−8 10−8 2097152 452984832 8 1.0·10−7 3.0·10−7 7.2101·10+2 6.28·10+5

eighth-order force approximation

10−2 10−2 4096 2097152 5 1.8·10−2 2.8·10−2 2.5445·10−1 8.24·10+6

10−4 10−4 32768 16777216 6 3.7·10−4 9.5·10−4 2.9459·10+0 5.70·10+6

10−6 10−6 242432 124125184 7 6.5·10−6 2.0·10−5 5.4881·10+1 2.26·10+6

10−8 10−8 262144 134217728 7 1.4·10−7 5.3·10−7 1.3578·10+2 9.88·10+5

10−10 10−10 2097152 1073741824 8 9.0·10−9 4.3·10−8 1.8685·10+3 5.75·10+5

Table 8. Periodic boundary conditions: Example 6.

110 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

It is straightforward to extend this approach to a variety of homogeneous Dirichlet,
Neumann or mixed boundary conditions by the method of images as well with very
little additional effort.

Example 7. A number of applications require the modeling of source distributions
that contain both a smooth component and a singular component. In electrostatics,
for example, positively charged ions are often approximated as point charges and
the neutralizing electrons as an We consider such a case here. The relevant Poisson
equation takes the form

1u(x)= fsmooth(x)+
N∑

i=1
qiδ(x− xi),

where the qi are positive and the neutralizing background takes the form of a sum
of Gaussian distributions

f i
smooth(x)= 1/(

√
2πσ 2)e−(x−σ)

2/2σ 2

centered on each δ-function.
The smooth portion can be handled as above, while the particle sources can

be handled with the corresponding particle-based kernel-independent FMM [61].

Npts εfmm M` LT S2M/M2M Near M2L L2L/L2T TFMM

10−2 4096 5 2.52·10−2 6.42·10−1 5.09·10−2 4.84·10−3 7.23·10−1

1.
02

4·
10
+

6

10−4 4096 5 6.97·10−2 6.49·10−1 1.29·10−1 2.35·10−2 8.71·10−1

10−6 4096 5 1.41·10−1 6.50·10−1 3.77·10−1 6.66·10−2 1.24·10+0

10−8 4096 5 2.48·10−1 6.41·10−1 1.03·10+0 1.58·10−1 2.08·10+0

10−2 32768 6 1.11·10−1 1.58·10+0 2.39·10−1 1.85·10−2 1.95·10+0

4.
09

6·
10
+

6

10−4 32768 6 3.04·10−1 1.61·10+0 1.32·10+0 1.01·10−1 3.34·10+0

10−6 32768 6 6.29·10−1 1.61·10+0 3.55·10+0 2.92·10−1 6.08·10+0

10−8 32768 6 1.17·10+0 1.60·10+0 9.20·10+0 6.48·10−1 1.26·10+1

10−2 262144 7 1.58·10+0 4.31·10+1 2.14·10+0 2.58·10−1 4.71·10+1

1.
63

8·
10
+

7

10−4 262144 7 4.31·10+0 4.34·10+1 1.14·10+1 1.48·10+0 6.06·10+1

10−6 262144 7 8.79·10+0 4.38·10+1 3.05·10+1 4.20·10+0 8.72·10+1

10−8 262144 7 1.55·10+1 4.32·10+1 8.26·10+1 9.96·10+0 1.51·10+2

10−2 2097152 8 7.00·10+0 1.04·10+2 1.80·10+1 1.40·10+0 1.31·10+2

6.
55

4·
10
+

7

10−4 2097152 8 1.93·10+1 1.05·10+2 9.14·10+1 6.76·10+0 2.23·10+2

10−6 2097152 8 4.01·10+1 1.07·10+2 2.61·10+2 1.93·10+1 4.27·10+2

10−8 2097152 8 7.34·10+1 1.06·10+2 7.00·10+2 4.19·10+1 9.21·10+2

Table 9. Example 7: Poisson equation with a mixture of smooth
and singular sources.

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 111

However, it is trivial to modify our solver to incorporate the particle sources into
the S2M operator of Section 4.2 by modifying (22):

K B
S2MφB,u

= FB
S2Mγ

B
+

N∑
i=1

qi G(x, xi), (41)

where G is the kernel used for evaluating the singular component, consisting of the
point charges. Once the point charges are incorporated into φB,u , the rest of the
components of the algorithm (i.e., M2M, M2L, and L2L) take care of the far-field
interactions. We need only calculate the influence of near-field particle interactions
directly, and evaluate both the local expansions (L2T) and the smooth contributions
at particle locations. The latter is done by interpolation, as discussed in Section 4.5.

The performance of our scheme is shown in Table 9 on the previous page.
The upward pass timings are minimally larger than for the particle-only case, and

the downward pass timings are agnostic about the nature of the sources, dependent
only on the tree-structure itself. The Near computation timings are simply the sum
of the particle and volume-based cases, since there is no amortization of cost in
this step.

7. Conclusions

We have presented a kernel-independent FMM for solving a variety of constant-
coefficient elliptic PDEs in free space, allowing for arbitrary levels of adaptivity,
highly nonhomogeneous forces and arbitrarily distributed target locations. Results
for the Poisson, modified Helmholtz, and Stokes equations show that the perfor-
mance is similar for each. Applying the method to other equations requires only a
kernel evaluation routine.

Compared to the state-of-the-art technique [47], our method is accurate to higher
order and therefore solves similar problems with fewer degrees of freedom, and
the work per point is approximately the same. Our current implementation uses
OpenMP (but not MPI), although we expect the extension to be straightforward, as
our solver is built on top of the MPI-based code of [61]. We discuss how the major
loops are optimized for OpenMP shared-memory parallelization in Section A.4 for
this current implementation.

As in [24], we have extended our solver to handle periodic, Dirichlet and Neu-
mann boundary conditions for problems on cubic domains using the method of
images. We are also coupling the present volume integral code with boundary
integral methods to allow for the solution of linear, constant-coefficient, inhomo-
geneous elliptic PDEs in complex geometries, as in [9]. Additional current work
involves incorporating this solver into the state-of-the-art in [43]. These extensions
will be reported at a later date.

112 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Appendix

In this appendix, we first verify numerically that the equivalent density representation
yields the expected accuracy, followed by a discussion of how the choice of grids
affects the order of convergence and an overall numerical justification for the use of
Tikhonov regularization. We close with a discussion of how we accelerate the major
computation loops of our algorithm using OpenMP shared-memory parallelization
and load-balancing techniques.

A.1. Equivalent density accuracy. As discussed in Section 4.1, we invert several
matrices of discretized Fredholm equations of the first kind in order to build out
far-field representations,

K yd ,xdφd = K ys ,xdφs .

As in [60], we choose to use Tikhonov regularization [41] when solving these ill-
conditioned systems. This solves two problems: in this way, we eliminate the null
space in the cases when it is present (Stokes kernel) and we significantly improve
accuracy of the inversion for higher numbers of samples (Section A.3). We verify
the potential we get from φB,u , computed using our regularized method in the S2M
operation, approximates well u(x), computed directly from a force. We test using
gB
=
∑(a+b+c)≤(k−1)

a,b,c xa ybzc for box B of width 2 and compute

u(x)=
∫

B
K (x, y)gB(y)d y, x ∈ x B,u,

to within 10−16 accuracy using adaptive Gaussian quadrature [8]. We then compute
φB,u at yB,u using (23) where (KS2M)

−1 is replaced with

(α I + (KS2M)
∗KS2M)

−1 K ∗S2M.

For FMM precision, n p, we choose α = 10−(n p+1). More details on the choice of α
are available in [60]. Our algorithm relies on the fact that for surfaces outside the
near field of B, φB,u is a sufficiently accurate representation of B’s volume force.
We compute

u(x)equiv =

∫
yB,u

K (x, y)φB,u(y) d y

for x ∈ S, some surface. To evaluate the accuracy of this approximation, we compute

u(x)exact =

∫
B

K (x, y)gB(y) d y

up to an accuracy of 10−16 [8]. In Figure 7, we compare the infinity-norm of the
resulting error for three different kernels (Laplace, modified Helmholtz, Stokes)
and varying levels of the polynomial approximation and multiple degrees of FMM

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 113

Figure 7. Error due to upward equivalent density approximation
of the field. From left to right, three columns show the errors
for the polynomial force approximations of degree 4, 6 and 8.
Each plot shows four levels of FMM precision, εfmm = 10−n p ,
p = n3

p − (n p − 2)3 points are used on the surfaces yB,u and x B,u .
For the evaluation surfaces S, we vary the radius RS from 3.1 to
5.9, the region covering L B

I ∈ FB . The y-axis of each plot is the
infinity norm ‖uequiv− uexact‖∞ computed over 488 samples on S.

evaluation precision. For each of the kernels of interest, φB,u , computed by in-
verting our ill-conditioned kernels, is recovered on each surface S to within the
requested degree of precision. For evaluating the accuracy of the kernel inversion
and regularization in the computation of φB,d , we note that this computation is
equivalent to the particle-based FMM, of which numerical analysis for the M2L
and L2L operators is available in [60].

A.2. Polynomial basis and grid spacing. As discussed in Section 4.4, we evaluate
the solution at a leaf box B on a grid of points x B,g, and construct an approximating
polynomial from these points. Additionally, we construct a k-th order polynomial

114 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0

Poly approx k = 4

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

Regular Spacing

Chebyshev Spacing

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0

Poly approx k = 6

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

2 4 6 8 10
−10

−8

−6

−4

−2

0

Poly approx k = 8

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

Figure 8. For each of the test examples, the x-axis indicates the
negative log of the requested FMM accuracy, εfmm, and the y-axis
indicates the log of E2. The number of points chosen for each
εfmm is equivalent to those in Example 1 (page 102) for εrhs= εfmm.
Left: for polynomial approximation of degree 4 and x B,g of size
43 on each leaf B, overall relative error is close for equispaced and
Chebyshev points. Middle: For n, k = 6 differences are visible but
insignificant. Right: For n, k = 8, solutions based on equispaced
grid are less accurate.

approximation to B’s distributed force if gB is given on a grid (see Section 4.6).
For consistency with AMR codes and efficiency of implementation, it would have
been desirable to use uniform grid samples. This approach works well for n ≤ 6,
but it is well-known for large n that equispaced grids lead to instabilities [57]; as a
result, for n > 6 we use Chebyshev grid points. To show that regularly spaced grid
points perform poorly for n, k > 6, we consider the following test case:

−1u(x)= e−L(‖x‖2)2(4L(‖x‖2)2− 6L), L = 250, x ∈ [−1, 1]3.

In Figure 8, we compare the overall relative L2 error, E2, for solutions using equi-
spaced and Chebyshev grid points in the evaluation of the solution and construction
of the polynomial approximations of degree 4, 6 and 8. Errors for discretizations
using equispaced or Chebyshev grid points are similar for k ≤, but for k = 8,
Chebyshev points are more accurate.

A.3. Tikhonov regularization. As discussed in Section A.1, we use Tikhonov
regularization [41] to invert Fredholm equations of the first kind, specifically the
S2M, M2M, and L2L operators in Section 4. Further, in Section A.1, we looked
specifically at the accuracy resulting from this inversion process. To justify the
overall use of Tikhonov regularization, we consider for the Poisson equation the
test case

−1u(x)= e−L(‖x‖2)2(4L(‖x‖2)2− 6L), L = 250, x ∈ [−1, 1]3,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 115

Figure 9. For each of the test examples, the x-axis indicates the
negative log of the requested FMM accuracy, εfmm, and the y-axis
indicates the log of E2. The number of points chosen for each
εfmm is equivalent to those in Examples 1 and 5 of Section 6 for
εrhs = εfmm. Left: for polynomial approximation of degree 6 for
the Laplace kernel with and without regularization. Right: for
polynomial approximation of degree 6 for the Stokes kernel with
and without regularization.

and for the Stokes equation

−1u(x)+∇ p(x)=
(
8L3
‖x− xi‖

2
− 20L2)e−L‖x−xi‖

2(
∇ × (x− xi)

)
,

L = 125, x ∈ [−1, 1]3.

In Figure 9, we compare the overall relative L2 error, E2, solutions, resulting
from Tikhonov regularization versus no regularization and the construction of
polynomial approximations of degree k = 6 for the right-hand sides (errors for
k = 4, 8 are similar). For decreasing levels of εfmm, we choose εfmm = εrhs.

We notice that for εfmm > 10−7, the effect of not employing regularization
is equivalent to using regularization for both the Laplace and Stokes operators.
However, as εfmm decreases, the number of sample points on the equivalent and
check surfaces increases, resulting in larger linear systems, which as mentioned
earlier, may be poorly conditioned. Indeed, for such larger systems resulting from
εfmm ≤ 10−7, it is necessary to regularize the systems to achieve desirable results.

A.4. Shared-memory parallelization and load-balancing. We have designed the
code to take advantage of shared-memory architectures through the use of OpenMP
(see Section 7). In particular, we highlight the steps to accelerate the various major
steps in Algorithm 1. For details on the nature of OpenMP and its usage, see [19].

S2M and M2M computations. In the upward pass (step 2 of Algorithm 1 and
Section 4.2), we begin by building a list of all leaf boxes, B in the octree T , which
have sources. We then do a simple OpenMP parallelization step over these boxes

116 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

for the S2M step. As all components of (23) are of the same size for each leaf box,
there is no need to rebalance the load among threads.

In order to ensure proper order of computation, we proceed by sorting all non-
leaves in reverse-order by depth. For each nonleaf level in T , beginning at the
deepest level, we translate a box B’s children’s upward equivalent densities to its
own through the M2M computation in (25). Again, as each of the components is
of the same size, there is no need to rebalance among threads. As we parallelize
only among boxes at the same depth in T , level ` is not processed until `+ 1 has
completed. Further, once we have reached coarse level `= 1 (which only occurs
for periodic or Dirichlet boundary conditions), we discontinue the parallelization.

M2L, L2L, and L2T computations. In the downward pass of Algorithm 1 (see
Section 4.3), we perform a similar operation as above for the M2M step. First, we
sort all boxes B in T from the shallowest to deepest levels in the tree. For each
level, `, we parallelize among the boxes being processed at that level for the M2L
and L2L computations. The L2L components in (29) are of equivalent size for each
box B; however, for each box B, the size of L B

V vary greatly from other boxes (for
example, this list is much smaller for boxes on the edge or corners of our domain).
To ensure proper balancing among threads, we further sort all boxes for each level,
` by the size of L B

V and then reorder the boxes such that the sum of all L B
V for each

thread is of roughly the same size.
For the L2T computations in (31), we once again build a list of only leaf boxes,

for which the target solution is desired, and we parallelize the computations in this
list. The components of the discretized equation are all the same size, as with the
S2M computation, so there is no need to rebalance among threads for this step.

Near-field computations. We focus our discussion here on the U -list computations.
Parallelizing the near-field computations in (34) is the most straightforward in that
no leaf box B is dependent on the completion of computations by any other box.
That is, we can simply parallelize the computations among leaf boxes, for which the
L B

U exists. However, even more so than with the M2L computations, the sizes of L B
U

can be very different among leaf boxes (especially in the most adaptively refined
octrees). Thus, we sort all leaf boxes B in T by the size of L B

U and reorder the list of
leaves such that the sum of the size of L B

U among each thread is roughly equivalent,
ensuring a relatively well-balanced load among threads. The size of the components
and operators are the same for each box B, so balancing by list sizes is optimal.
We note that this rebalancing is largely unnecessary for uniformly refined trees.

Additionally, for matrix kernels (e.g., Stokes) and larger orders of polynomial
approximation, constantly loading large matrices into memory results in little
speedup as we increase the number of processes. To correct this, for each equivalence
class as described in Section 5, we perform all of the operations involving a single

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 117

class first before performing all computations for other classes of operators. Hence,
we only load each matrix operator at most once per processor.

We note that for the M2L step, as we have to process level ` before moving to level
`− 1, operators will constantly have to be reloaded. Performing all computations
in order for each equivalence class at each level is done, but we have seen little
time savings for this in practice as opposed to the near-field computations, where it
is essential for good speedup.

Remark. As with the near-field computations, for adaptively refined trees, we
rebalance the loads among threads for the X and W lists, which involve additional
near-field S2T M2T, and S2L computations in Equations (39) and (38), based on
the sizes of L B

X and L B
W , respectively. Additionally, we perform all computations in

order of equivalence class, again loading each matrix operator at most once.

Timing results versus number of processors. To see the effect of our use of OpenMP
and load-balancing strategies, we investigate the strong scaling of two fixed prob-
lems. First, in Example 1 (page 102), we set the polynomial order, εrhs, and εfmm

to 8. The reasoning behind this is to ensure that for a single processor, neither
the near-field nor far-field computations fully dominate the timings. In Table 10

Nprocs S2M/M2M Near M2L L2L/L2T TFMM scaling rate

Poisson equation (Example 1) εrhs = εfmm = 8 M` = 5440 Npts = 2785280

1 1.125 ·10+0 8.534 ·10+0 1.464 ·10+1 9.340 ·10−1 2.523 ·10+1

2 5.880 ·10−1 5.112 ·10+0 7.285 ·10+0 4.779 ·10−1 1.346 ·10+1 1.874 ·10+0

4 3.750 ·10−1 2.377 ·10+0 4.559 ·10+0 2.927 ·10−1 7.604 ·10+0 1.770 ·10+0

8 1.838 ·10−1 1.231 ·10+0 2.279 ·10+0 1.459 ·10−1 3.841 ·10+0 1.979 ·10+0

16 9.700 ·10−2 6.894 ·10−1 1.240 ·10+0 8.546 ·10−2 2.112 ·10+0 1.818 ·10+0

Stokes equations (Example 5) εrhs = εfmm = 6 M` = 4894 Npts = 2505728

1 8.794 ·10+0 5.416 ·10+1 9.402 ·10+1 6.832 ·10+0 1.638 ·10+2

2 5.182 ·10+0 2.857 ·10+1 5.213 ·10+1 3.617 ·10+0 8.951 ·10+1 1.830 ·10+0

4 2.866 ·10+0 1.307 ·10+1 3.029 ·10+1 1.733 ·10+0 4.797 ·10+1 1.865 ·10+0

8 1.569 ·10+0 6.781 ·10+0 1.613 ·10+1 8.367 ·10−1 2.532 ·10+1 1.894 ·10+0

16 8.248 ·10−1 3.611 ·10+0 9.452 ·10+0 3.918 ·10−1 1.428 ·10+1 1.772 ·10+0

Table 10. Timings (in wall-time seconds) for the various com-
ponents of the FMM volume solver for two fixed problem sizes.
The tree level, LT , is 7 and the polynomial order is 8 and in each
case. Nprocs, M`, and Npts are the number of processors, leaves,
and points; we scale Nprocs linearly. We separate the S2M/M2M,
Near (U ,W , X -list computations), M2L (V -list computations), and
L2L/L2T timings, with the total shown as TFMM.

118 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

-�

-�

0

�

�

6

0 0�� 1 1�� � ��� 3 3�� �

L
�
�

�
�

�
�
	

�
�

��� �� ������ �� ����������

��P���� �����P��

Total

M2L

Near

S2M/M2M

L2L/L2T

-�

0

�

4

6

8

0 0�� 1 1�� � ��� 3 3�� 4

L
�
�

�
�

�
�
�
	

�
�

�� �� ������ �� ����������

S����� ������� �

Total

M2L

Near

S2M/M2M

L2L/L2T

Figure 10. Log-log plots for timings from Table 10.

(top part) we look at the timings for the different algorithmic steps (note that the
near-field computation times include U , W , and X list computation times) and we
plot the decreasing times in Figure 10, top.

For our second study of the effect of shared-memory parallelization, we look at
the Stokes kernel tests from Example 5 (page 107). We fix the polynomial order at

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 119

8 and look at εrhs = εfmm = 6, again in an effort to not have one step fully dominate
the computational time, allowing us to look at the effect of scaling the number
of processors. Timing results can be seen in the bottom parts of Table 10 and
Figure 10.

As can be seen in Table 10, our scheme exhibits the desirable result of nearly
linear speedup as we scale the number of processors. As indicated in the conclusion,
current work is being done to incorporate this work with [43] in order to achieve
parallelization on a significantly larger scale.

Acknowledgement

The authors acknowledge the New York University HPC resources,2 which con-
tributed to the research results reported within this paper. These resources have
been largely funded by the NYU Information Technology Services group and an
Office of Naval Research DURIP program grant from the Center for Atmosphere
Ocean Science (CAOS) at the Courant Institute.

References

[1] M. F. Adams and J. Demmel, Parallel multigrid solver algorithms and implementations for 3D
unstructured finite element problem, Internat. J. Numer. Methods Engrg. 48, no. 8, 1241–1262.

[2] M. J. Aftosmis, M. J. Berger, and J. E. Melton, Adaptive Cartesian mesh generation, The
handbook of grid generation (J. F. Thompson, ed.), CRC Press, Boca Raton, FL, 1998, pp. 22–1–
22–26.

[3] C. R. Anderson, A method of local corrections for computing the velocity field due to a distribu-
tion of vortex blobs, J. Comput. Phys. 62 (1986), no. 1, 111–123. MR 87d:76050 Zbl 0575.
76031

[4] G. T. Balls and P. Colella, A finite difference domain decomposition method using local cor-
rections for the solution of Poisson’s equation, J. Comput. Phys. 180 (2002), no. 1, 25–53.
MR 2003c:65102 Zbl 1003.65140

[5] J. Barnes and P. Hut, A hierarchical O(N log N) force calculation algorithm, Nature 324 (1986),
446–449.

[6] R. Beatson and L. Greengard, A short course on fast multipole methods, Wavelets, multilevel
methods and elliptic PDEs (M. Ainsworth et al., eds.), Clarendon Press, Oxford, 1997, pp. 1–37.
MR 99a:65142 Zbl 0882.65106

[7] M. J. Berger, M. Aftosmis, and J. Melton, Accuracy, adaptive methods and complex geometry,
Proc. 1st AFOSR Conference on Dynamic Motion CFD (L. Sakell and D. Knight, eds.), 1996.

[8] J. Berntsen, T. O. Espelid, and A. Genz, Algorithm 698: DCUHRE: an adaptive multidimensional
integration routine for a vector of integrals, ACM Trans. Math. Software 17 (1991), no. 4, 452–
456. MR 1140035 Zbl 0900.65053

[9] G. Biros, L. Ying, and D. Zorin, A fast solver for the Stokes equations with distributed forces
in complex geometries, J. Comput. Phys. 193 (2004), no. 1, 317–348. MR 2022697 Zbl 1047.
76065

2http://www.nyu.edu/its/research/hpc

120 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

[10] S. Börm, H2-matrix arithmetics in linear complexity, Computing 77 (2006), no. 1, 1–28. MR
2006k:65111 Zbl 1086.65036

[11] S. Börm and W. Hackbusch, Hierarchical quadrature for singular integrals, Computing 74
(2005), no. 2, 75–100. MR 2006c:41037 Zbl 1003.65140

[12] A. H. Boschitsch, M. O. Fenley, and W. K. Olson, A fast adaptive multipole algorithm for
calculating screened Coulomb (Yukawa) interactions, J. Comput. Phys. 151 (1999), no. 1,
212–241. MR 1701576 Zbl 1017.92500

[13] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977),
no. 138, 333–390. MR 55 #4714 Zbl 0373.65054

[14] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial, 2nd ed., Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 2001h:65002
Zbl 0958.65128

[15] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s equations,
SIAM J. Numer. Anal. 7 (1970), 627–656. MR 44 #4920 Zbl 0217.52902

[16] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics,
Springer, New York, 1988. MR 89m:76004 Zbl 0658.76001

[17] T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, Domain decomposition methods, SIAM,
Philadelphia, 1989. MR 89j:65010

[18] T. F. Chan and B. F. Smith, Domain decomposition and multigrid algorithms for elliptic prob-
lems on unstructured meshes, Electron. Trans. Numer. Anal. 2 (1994), no. Dec., 171–182.
MR 95i:65173 Zbl 0852.65108

[19] B. Chapman, G. Jost, and R. Pas, Using openmp: Portable shared memory parallel programming
(scientific and engineering computation), (2007).

[20] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions,
J. Comput. Phys. 155 (1999), no. 2, 468–498. MR 2000h:65178 Zbl 0937.65126

[21] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin,
N. Yarvin, and J. Zhao, A wideband fast multipole method for the Helmholtz equation in three
dimensions, J. Comput. Phys. 216 (2006), no. 1, 300–325. MR 2007a:65193 Zbl 1093.65117

[22] H. Cheng, J. Huang, and T. J. Leiterman, An adaptive fast solver for the modified Helmholtz
equation in two dimensions, J. Comput. Phys. 211 (2006), no. 2, 616–637. MR 2006e:65242
Zbl 1117.65161

[23] G. Chesshire and W. D. Hanshaw, Composite overlapping meshes for the solution of partial
differential equations, J. Comput. Phys. 90 (1990), no. 1, 1–64. MR 91f:76043 Zbl 0709.65090

[24] F. Ethridge and L. Greengard, A new fast-multipole accelerated Poisson solver in two dimensions,
SIAM J. Sci. Comput. 23 (2001), no. 3, 741–760. MR 2002i:65146 Zbl 1002.65131

[25] L. Greengard, The rapid evaluation of potential fields in particle systems, MIT Press, Cambridge,
MA, 1988. MR 89k:31008 Zbl 1001.31500

[26] , Fast algorithms for classical physics, Science 265 (1994), no. 5174, 909–914. MR
95f:65236

[27] L. Greengard and J. Huang, A new version of the fast multipole method for screened Coulomb
interactions in three dimensions, J. Comput. Phys. 180 (2002), no. 2, 642–658. MR 2003h:
78014 Zbl 1143.78372

[28] L. Greengard, M. C. Kropinski, and A. Mayo, Integral equation methods for Stokes flow and
isotropic elasticity in the plane, J. Comput. Phys. 125 (1996), no. 2, 403–414. MR 97a:73022
Zbl 0847.76066

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 121

[29] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.
Comput. Phys. 125 (1996), no. 2, 415–424. MR 96m:65090 Zbl 0851.65090

[30] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73
(1987), no. 2, 325–348. MR 88k:82007 Zbl 0629.65005

[31] , The rapid evaluation of potential fields in three dimensions, Vortex methods: Proceed-
ings of the U.C.L.A. Workshop (C. Anderson and C. Greengard, eds.), Lecture Notes in Math.,
no. 1360, Springer, Berlin, 1988, pp. 121–141. MR 979565 Zbl 0661.70006

[32] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta Numer., no. 6, Cambridge Univ. Press, 1997, pp. 229–269.
MR 99c:65012 Zbl 0889.65115

[33] N. A. Gumerov and R. Duraiswami, Fast multipole method for the biharmonic equation in three
dimensions, J. Comput. Phys. 215 (2006), no. 1, 363–383. MR 2006j:65373 Zbl 1103.65122

[34] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices,
Computing 62 (1999), no. 2, 89–108. MR 2000c:65039 Zbl 0927.65063

[35] W. Hackbusch and S. Börm, H2-matrix approximation of integral operators by interpolation,
Appl. Numer. Math. 43 (2002), no. 1-2, 129–143. MR 1936106 Zbl 1019.65103

[36] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math. 54 (1989), no. 4, 463–491. MR 89k:65162 Zbl 0641.
65038

[37] W. Hackbusch and U. Trottenberg (eds.), Multigrid methods, Lecture Notes in Mathematics, no.
960, Springer, Berlin, 1982. MR 84b:65007 Zbl 0497.00015

[38] J. Helsing, Fast and accurate calculations of structural parameters for suspensions, Proc. Roy.
Soc. Lond. A 445 (1994), 127–140.

[39] J. Huang and L. Greengard, A fast direct solver for elliptic partial differential equations on
adaptively refined meshes, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1551–1566. MR 2001c:
65132 Zbl 0957.65091

[40] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation
on irregular domains, J. Comput. Phys. 147 (1998), no. 1, 60–85. MR 99m:65231 Zbl 0923.
65079

[41] R. Kress, Linear integral equations, 2nd ed., Applied Mathematical Sciences, no. 82, Springer,
New York, 1999. MR 2000h:45001 Zbl 0920.45001

[42] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, 2nd ed., Math-
ematics and its Applications, no. 2, Gordon and Breach, New York, 1969. MR 40 #7610
Zbl 0184.52603

[43] I. Lashuk, A. Chandramowlishwaran, M. Langston, T. Nguyen, R. Sampath, A. Shringarpure, R.
Vuduc, L. Ying, D. Zorin, and G. Biros, A massively parallel adaptive fast-multipole method on
heterogeneous architectures, SC’2009 Conference, IEEE/ACM SIGARCH, 2009.

[44] D. Martin and K. Cartwright, Solving Poisson’s equations using adaptive mesh refinement,
technical report M96/66, Electronic Research Laboratory, University of California, Berkeley,
1996.

[45] D. J. Mavriplis, Unstructured grid techniques, Annu. Rev. Fluid Mech. (1997), no. 29, 473–514.
MR 97j:76044

[46] A. Mayo, Fast high order accurate solution of Laplace’s equation on irregular regions, SIAM J.
Sci. Statist. Comput. 6 (1985), no. 1, 144–157. MR 86i:65066 Zbl 0559.65082

122 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

[47] P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden, A local corrections algorithm for
solving Poisson’s equation in three dimensions, Commun. Appl. Math. Comput. Sci. 2 (2007),
57–81. MR 2008i:65291 Zbl 1133.65106

[48] A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries, J.
Comput. Phys. 118 (1995), no. 2, 348–355. MR 96a:65179 Zbl 0823.65115

[49] M. L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1996), no. 1,
158–178. MR 97g:76072 Zbl 0859.76047

[50] G. J. Rodin and Y. Fu, Fast solution method for three-dimensional Stokesian many-particle
problems, Comm. Numer. Methods Engrg. 16 (2000), no. 2, 145–149.

[51] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys.
60 (1985), no. 2, 187–207. MR 86k:65120 Zbl 0629.65122

[52] , Rapid solution of integral equations of scattering theory in two dimensions, J. Comput.
Phys. 86 (1990), no. 2, 414–439. MR 90k:76081 Zbl 0686.65079

[53] M. Strain, G. Scuseria, and M. Frisch, Achieving linear scaling for the electronic quantum
Coulomb problem, Science 271 (1996), 51–53.

[54] J. W. Strutt (Lord Rayleigh), On the influence of obstacles arranged in rectangular order upon
the properties of a medium, Phil. Mag. 34 (1892), 481–502.

[55] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of
linear octrees in parallel, SIAM J. Sci. Comput. 30 (2008), no. 5, 2675–2708. MR 2010d:68192
Zbl 1186.68554

[56] A.-K. Tornberg and L. Greengard, A fast multipole method for the three-dimensional Stokes
equations, J. Comput. Phys. 227 (2008), no. 3, 1613–1619. MR 2009g:76110 Zbl 05248608

[57] L. N. Trefethen and D. Bau, III, Numerical linear algebra, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997. MR 98k:65002 Zbl 0874.65013

[58] H. Wang, T. Lei, J. Li, J. Huang, and Z. Yao, A parallel fast multipole accelerated integral
equation scheme for 3D Stokes equations, Internat. J. Numer. Methods Engrg. 70 (2007), no. 7,
812–839. MR 2008a:76120 Zbl 1194.76221

[59] C. Whitea, B. Johnson, P. M. W. Gill, and M. Head-Gordon, The continuous fast multipole
method, Chem. Phys. Lett. 230 (1994), 8–16.

[60] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, J. Comput. Phys. 196 (2004), no. 2, 591–626. MR 2005d:65235
Zbl 1053.65095

[61] L. Ying, G. Biros, D. Zorin, and M. H. Langston, A new parallel kernel-independent fast
multipole method, SC’2003 Conference CD, IEEE/ACM SIGARCH, 2003.

Received April 1, 2011. Revised July 20, 2011.

M. HARPER LANGSTON: harper@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York 10012, United States
http://cs.nyu.edu/~harper/

LESLIE GREENGARD: greengard@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York NY 10012, United States
http://math.nyu.edu/faculty/greengar/

DENIS ZORIN: dzorin@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York 10012, United States
http://mrl.nyu.edu/~dzorin/

mathematical sciences publishers msp

Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
pjm.math.berkeley.edu/camcos.

Originality. Submission of a manuscript acknowledges that the manuscript is
original and and is not, in whole or in part, published or under consideration
for publication elsewhere. It is understood also that the manuscript will not be
submitted elsewhere while under consideration for publication in this journal.

Language. Articles in CAMCoS are usually in English, but articles written in
other languages are welcome.

Required items. A brief abstract of about 150 words or less must be included. It
should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and subject
classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of
TEX, and exceptionally in other formats, are acceptable. Initial uploads should be
in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to
submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure
that what you are saving is vector graphics and not a bitmap. If you need help,
please write to graphics@mathscipub.org with details about how your graphics
were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated
corresponding author) at a Web site in PDF format. Failure to acknowledge the
receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.

http://pjm.math.berkeley.edu/camcos
mailto:graphics@mathscipub.org

Communications in Applied Mathematics
and Computational Science

vol. 6 no. 1 2011

1A high-order finite-volume method for conservation laws on locally refined
grids

Peter McCorquodale and Phillip Colella

27An unsplit, higher-order Godunov method using quadratic reconstruction for
advection in two dimensions

Sandra May, Andrew Nonaka, Ann Almgren and John Bell

63Conditional path sampling for stochastic differential equations through drift
relaxation

Panos Stinis

79A free-space adaptive FMM-Based PDE solver in three dimensions
M. Harper Langston, Leslie Greengard and Denis Zorin

1559-3940(2011)6:1;1-6

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.6,
no.1

2011

	 vol. 6, no. 1, 2011
	Masthead and Copyright
	Peter McCorquodale and Phillip Colella
	Sandra May and Andrew Nonaka and Ann Almgren and John Bell
	Panos Stinis
	M. Harper Langston and Leslie Greengard and Denis Zorin
	Guidelines for Authors
	Table of Contents

