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TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR
PARTIAL DIFFERENTIAL EQUATIONS

MATTHEW EMMETT AND MICHAEL L. MINION

A new method for the parallelization of numerical methods for partial differ-
ential equations (PDEs) in the temporal direction is presented. The method is
iterative with each iteration consisting of deferred correction sweeps performed
alternately on fine and coarse space-time discretizations. The coarse grid prob-
lems are formulated using a space-time analog of the full approximation scheme
popular in multigrid methods for nonlinear equations. The current approach is
intended to provide an additional avenue for parallelization for PDE simulations
that are already saturated in the spatial dimensions. Numerical results and tim-
ings on PDEs in one, two, and three space dimensions demonstrate the potential
for the approach to provide efficient parallelization in the temporal direction.

1. Introduction

The last decade has seen an increase in research into the parallelization of numerical
methods for ordinary and partial differential equations in the temporal direction be-
ginning with the introduction of the parareal algorithm in 2001 [20] and the related
PITA scheme in 2003 [11]. Both parareal and PITA are iterative methods where,
in each iteration, each processor (corresponding to distinct time steps) uses both an
accurate (or fine) method and a less computationally expensive (or coarse) method
to propagate an improved solution through the time domain. Parallel speedup can
be achieved because the fine solutions can be computed in parallel.

The main drawback of the parareal algorithm is that it has low parallel efficiency.
Specifically, the parallel efficiency is formally bounded above by 1/K , where K
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is the number of iterations needed to converge to the desired accuracy. Since K
must be at least 2 for any meaningful stopping criteria, the efficiency of parareal
is always less than 1

2 , and in practice can be much worse, particularly if many
processors are used, or high temporal accuracy is desired.

For the parallel solution of partial differential equations (PDEs), parallelization
in the spatial dimensions is well established, and hence temporal parallelization is
only attractive if the temporal parallel efficiency exceeds that of (additional) spatial
parallelization. In [21; 24] a method for the parallelization of ordinary differential
equations (ODEs) is presented, similar in structure to the parareal method but uti-
lizing a defect or deferred correction strategy in place of standard methods for
ODEs as in parareal. Both the fine and coarse propagators in parareal are cast as
spectral deferred correction (SDC) [10] sweeps using different temporal resolutions
to improve the solution on each time step. Hence the method described in [21; 24]
can be heuristically thought of in two different ways:

(1) A modification of the parareal algorithm that replaces direct solves in each
iteration with a deferred correction procedure applied to solutions generated
at previous iterations to reduce the cost of each parareal iteration.

(2) A time parallel version of the SDC method that incorporates a coarse and fine
temporal discretization to achieve better parallel efficiency.

In this paper, the ideas introduced in [21; 24] are extended to the temporal
parallelization of partial differential equations (PDEs). The key difference between
the ODE method and the PDE method is that coarsening can be done in both space
and time in the coarse discretization. This observation has been made previously
for both the parareal and hybrid parareal/SDC methods [3; 2; 12; 13; 24], although
details of how best to translate information from the coarse and fine discretizations
have not been extensively explored. Furthermore, for the parareal method, reducing
the cost of the coarse propagator does not alter the fact that the parallel efficiency
is bounded by 1/K . Here we present a procedure for using coarse grid information
based on the full approximation scheme (FAS) technique developed for the solution
of nonlinear equations by multigrid methods [8] that increases the accuracy of the
coarse grid SDC sweeps. Hence the method introduced here can be considered a
parallel full approximation scheme in space and time (or PFASST for short).

The numerical techniques used in the construction of the PFASST method are
reviewed in Section 2, and the details of how these techniques are synthesized
to construct the PFASST algorithm are outlined in Section 3. The computational
cost and theoretical parallel efficiency and speedup of the PFASST algorithm is
discussed in Section 4, followed by numerical results confirming the convergence
properties and efficiency in Section 5. Finally, a short discussion of the current
results and future research directions can be found in Section 6.
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2. Method components

In this section, the components used to construct the PFASST algorithm are re-
viewed. First, a short description of spectral deferred corrections is presented
and the method is cast in a concise notational formulation used later on. Then
a description of the parareal and hybrid parareal/SDC method from [21; 24] is
provided. Finally a short review of the full approximation scheme is included.

2.1. Spectral deferred corrections. Spectral deferred correction (SDC) methods
are variants of the traditional defect correction methods (or the closely related
deferred correction methods) for ODEs introduced in the 1960s [30; 26; 27; 9;
29; 4]. SDC is introduced in [10], and the method has been modified and analyzed
extensively since (see [22; 23; 19; 18; 17], for instance).

For the following description, consider the ODE initial value problem

u′(t)= f (t, u(t)), u(0)= u0, (1)

where t ∈ [0, T ]; u0, u(t)∈CN ; and f :R×CN
→CN . In the numerical examples

presented in Section 5, a method of lines discretization based on a pseudospectral
approach is used to reduce the PDE in question to a large system of ODEs. To
describe SDC, it is convenient to use the equivalent Picard integral form of (1):

u(t)= u0+

∫ t

0
f
(
τ, u(τ )

)
dτ. (2)

As with traditional deferred correction methods, a single time step [tn, tn+1] is
divided into a set of intermediate substeps by defining intermediate points tm ∈
[tn, tn+1]. In SDC, the intermediate points tm correspond to the nodes in Gaussian
quadrature rules. Here Gauss–Lobatto rules are used so that t = [t0, . . . , tM ] (with
tn = t0 < · · ·< tM = tn+1) corresponds to the Gauss–Lobatto quadrature rule with
M + 1 nodes (which has order 2M).

SDC constructs higher-order accurate solutions within one full time step by it-
eratively approximating a series of correction equations at the intermediate nodes
using lower-order methods. One attractive feature of SDC methods is that, since
only lower-order methods are required, one can construct methods that employ
operator splitting and/or multirate time-stepping and still achieve higher-order ac-
curacy. (See [6; 22; 18; 7], for instance.)

The SDC method begins by computing a provisional solution U0
=[U 0

1 , . . . ,U
0
M ],

at each of the intermediate nodes with U 0
m ≈ u(tm). As described below, this initial

approximation can be simply the solution at the beginning of the time step repli-
cated at each node. The method then proceeds iteratively. Let Uk

= [U k
1 , . . . ,U

k
M ]

denote the vector of solution values at each point t1 . . . tM and SDC iteration k,
and Fk

= [ f (t0,U k
0 ), . . . , f (tM ,U k

M)] the vector of function values at each point
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t0 . . . tM and SDC iteration k. Note that Uk has M entries but Fk has M + 1. To
compute the approximations Uk+1, one first computes the approximate integrals

Sm+1
m Fk

=

M∑
j=0

qm, j f (t j ,U k
j )≈

∫ tm+1

tm
f
(
τ,U k(τ )

)
dτ (3)

for m = 0 . . .M − 1. These approximations can be calculated by a matrix-vector
multiplication by the M ×M + 1 spectral integration matrix S with entries qm, j .
For a system of ODEs of size N , the integration matrix is applied component-wise,
and hence S must be defined as the Kronecker product of the scalar integration
matrix with the N × N identity matrix (see discussion in [14]).

Using these values, a first-order implicit time-stepping method similar to back-
ward Euler for computing U k+1 at each substep can be written

U k+1
m+1 =U k+1

m +1tm
[

f (tm+1,U k+1
m+1)− f (tm+1,U k

m+1)
]
+ Sm+1

m Fk, (4)

where 1tm = tm+1− tm . The computational cost of each substep is essentially that
of backward Euler (although if an iterative method is used to solve the implicit
system, a very good initial guess is provided by the solution at iteration k). The
process of solving (4) at each node tm is referred to here as an SDC sweep.

The accuracy of the solution generated after k SDC sweeps done with such a
first-order method is formally O(1tk) as long as the spectral integration rule (here
Gauss–Lobatto) is at least order k. In fact, if SDC converges, it converges to the
solution of the spectral collocation or implicit Runge–Kutta method

U = U0+1t SF, (5)

where U0 = [U0, . . . ,U0]. Hence SDC can be considered as an iterative method for
solving the spectral collocation formulation. (See [14] for a technique to accelerate
this convergence.)

For equations which can be split into stiff and nonstiff pieces, the above method
is easily modified to create semi-implicit or IMEX schemes. Consider the ODE

u′(t)= f
(
t, u(t)

)
= fE

(
t, u(t)

)
+ f I

(
t, u(t)

)
, u(0)= u0. (6)

The first term on the right-hand side is assumed to be nonstiff (and hence treated
explicitly), and the second is assumed to be stiff (and hence treated implicitly).
Equation (4) can be easily modified to give a semi-implicit scheme:

U k+1
m+1 =U k+1

m +1tm
[

f I (tm+1,U k+1
m+1)− f I (tm+1,U k

m+1)
]

+1tm
[

fE(tm,U k+1
m )− fE(tm,U k

m)
]
+ Sm+1

m Fk . (7)

Note that unlike semi-implicit or IMEX schemes based on Runge–Kutta (see
[28; 1; 25; 15; 5], for instance), it is straightforward to construct semi-implicit
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SDC schemes with very high formal order of accuracy. This semi-implicit form is
used for all of the numerical examples presented in Section 5.

Following the ideas introduced in [14], we can write an SDC sweep more com-
pactly by using matrix notation. Specifically, one can write all M steps of the
forward Euler time-stepping scheme as

U = U0+1t SE F, (8)

where the M ×M + 1 matrix SE has entries

SE(i, j)=
{
1t j/1t if j ≤ i,
0 otherwise.

(9)

Likewise, all M steps of the backward Euler scheme can be written

U = U0+1t SI F, (10)

where the M ×M + 1 matrix SI has entries

SI (i, j)=
{
1t j−1/1t if 1< j ≤ i + 1,
0 otherwise.

(11)

The matrices SE and SI are also first order approximations to the integration matrix
S that arise from using either the left-hand or right-hand rectangle rule approxima-
tion to the integrals Sm+1

m defined in (3).
Furthermore, let S̃E = S− SE and S̃I = S− SI . Then, one SDC sweep using

the semi-implicit time-stepping scheme in (7) can be compactly expressed as

Uk+1
= U0+1t SE Fk+1

+1t SI Fk+1
+1t (S̃E + S̃I )Fk . (12)

2.2. Parareal and SDC. The parareal method for the temporal parallelization of
ODEs and PDEs was introduced in 2001 by Lions, Maday, and Turinici [20] and
has sparked renewed interest in the construction of time parallel methods. In the
parareal method, the time interval of interest [0, T ] is divided into N intervals with
each interval being assigned to a different processor. On each interval [tn, tn+1] for
n = 0 . . . N − 1, the parareal method iteratively computes a succession of approxi-
mations U k

n+1 ≈ u(tn+1), where k denotes the iteration number.
The parareal algorithm can be described in terms of two numerical approxima-

tion methods typically denoted by G and F. Both G and F propagate an initial
value Un ≈ u(tn) by approximating the solution to (2) from tn to tn+1 and can
in principle be any self-starting ODE method. However, in order for the parareal
method to be efficient, it must be the case that the G propagator is computationally
less expensive than the F propagator, and hence G is typically a low-order method.
Since the overall accuracy of parareal is limited by the accuracy of the F propagator,
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F is typically higher-order and in addition may use a smaller time step than G. For
these reasons, G is referred to as the coarse propagator and F the fine propagator.

The parareal method begins by computing a first approximation in serial, U 0
n+1

for n = 0 . . . N − 1, often performed with the coarse propagator G, i.e.,

U 0
n+1 = G(tn+1, tn,U 0

n ) (13)

with U 0
0 = u(0). Alternatively, one could use the parareal method with a coarser

time discretization to compute the initial approximation [2]. The parareal method
proceeds iteratively, alternating between the parallel computation of F(tn+1, tn,U k

n )

and an update of the initial conditions at each processor of the form

U k+1
n+1 = G(tn+1, tn,U k+1

n )+F(tn+1, tn,U k
n )−G(tn+1, tn,U k

n ) (14)

for n = 0 . . . N − 1. Although this step has serial dependencies, the computations
on independent processors can be scheduled so that each processor can begin the
computation of the new G value G(tn+1, tn,U k+1

n ) as soon as F(tn+1, tn,U k
n ) has

been computed and the new starting value U k+1
n has been received from processor

n− 1 [24]. The calculation in (14), which requires computing the G propagator, is
referred to as here the G correction sweep.

Note that after k iterations of the parareal method, the solution U k
m for m ≤ k

is exactly equal to the numerical solution given by using the F propagator in a
serial manner. Hence after N iterations the parareal solution is exactly equal to
applying F in serial, but in practice the iterations converge more quickly for large
N . Since each iteration of the parareal method requires the application of both F

and G (plus the cost of communication between processors), the parareal method
can only provide parallel speedup compared to the using F in serial if the number
of iterations required to converge to the specified criteria (denoted here by K ) is
significantly less than N .

The dominant cost of the parareal method is the computation of F in each it-
eration. It has been well documented that the parallel efficiency of parareal is
bounded by 1/K where K is the number of iterations needed to converge. In [21;
24] a hybrid parareal/SDC method is introduced that replaces the F propagator in
parareal with a deferred correction sweep using the solution from the last iteration
(and the new initial value U k+1

n ). This reduces the cost of the F propagator in two
ways. First, instead of using many steps of a standard method like Runge–Kutta,
the same level of accuracy can be achieved by one step of SDC due to the spectral
accuracy of SDC methods. Second, the SDC sweep has a computational cost of
approximately M steps of a first-order method, rather than many steps of a higher-
order method. In effect, the high-cost of SDC per time step is amortized over the
parallel iterations.
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Furthermore, a connection between the parareal correction sweep defined by
(14) and an SDC sweep is explained in [21; 24]. Hence the hybrid parareal/SDC
method also casts the G correction sweep in (14) as an SDC sweep, which not only
provides an updated starting value for the next processor, but can also be used to
further improve the solution in the interval [tn, tn+1]. The numerical experiments
in [24] suggest that the hybrid parareal/SDC strategy has similar convergence be-
havior as standard parareal, but with a reduced parallel cost and higher parallel
efficiency. Specifically, the parallel efficiency (as compared to the serial SDC
method) is bounded not by 1/K , but Ks/K p where Ks is the number of iterations
required of the serial SDC method to converge to a given tolerance and K p is the
number of iterations for the parallel iterations to converge.

Note there are some disadvantages to the parareal/SDC hybrid approach. Be-
cause F and G in parareal are only used to provide solutions at the values tn ,
parareal can be used in a “black-box” fashion with standard time integration meth-
ods. The gain in efficiency in the parareal/SDC approach requires that SDC be
adopted as the time integration method, although there is still a great deal of flexi-
bility in how the coarse and fine SDC sweeps are formulated (that is in fact one of
the aforementioned advantages of SDC). Also, the parareal/SDC approach requires
that both coarse and fine function values be stored at the intermediate nodes (how-
ever, the storage required is similar to that of higher-order Runge–Kutta methods).

2.3. Full approximation scheme. As mentioned above, when parallelizing PDEs
in the temporal direction, an obvious way to reduce the cost of the coarse propaga-
tor in parareal or a hybrid parareal/SDC approach is to reduce both the temporal
and spatial resolution. In the hybrid parareal/SDC method, it is desirable to use
information from the coarse SDC sweep to not only improve the initial condition
passed forward in time to the next processor, but also to improve the fine resolution
solution on the same processor. To do so, the coarse resolution problem must be
initialized including fine information, and the coarse resolution solution must be
interpolated somehow (in both time and space) once computed. In the PFASST
algorithm described in the next section, the coarse and fine resolution solutions
are connected in the same manner as the full approximation scheme (FAS) method
popular in multigrid methods for nonlinear problems (see [8], for instance). In
fact, although only two resolutions are used here, the PFASST method could be
extended to use a hierarchy of fine and coarse space-time grids, reminiscent of
multigrid methods. Results along these lines will be reported in the future.

To review the FAS procedure, consider a nonlinear equation of the form

A(x)= b, (15)

where the solution vector x and the right side b correspond to spatial discretizations
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of some function. Given an approximate solution x̃, the corresponding residual
equation is

A(x̃+ e)= r + A(x̃), (16)

where e is the error and r = b− A(x̃) is the residual. In a multigrid approach,
the residual equation (16) is solved on a coarser discretization level by introducing
an operator T G

F that restricts solutions at the fine resolution to the coarse. Then,
assuming AG is an appropriate approximation to A on the coarse level, the coarse
residual equation becomes

AG(x̃G
+ eG)= AG(x̃G)+ rG

= AG(x̃G)+ T G
F
(
b− A(x̃)

)
(17)

= bG
+ AG(x̃G)− T G

F A(x̃), (18)

where superscript G denotes the coarse level. With yG
= x̃G

+ eG , the coarse FAS
residual equation becomes

AG( yG)= bG
+ τ , (19)

with the FAS correction term

τ = AG(x̃G)− T G
F A(x̃). (20)

The addition of the FAS correction allows the coarse solution to attain a similar
degree of accuracy as the fine solution, but at the resolution of the coarse level [8].
In particular, if the fine residual is zero (i.e., x̃ is the fine solution), the FAS cor-
rected coarse equation (19) becomes AG( yG)= AG(x̃G), and the coarse solution
yG is the restriction of the fine solution.

Once the coarse solution yG has been computed, the fine approximate solution
is improved using an interpolation operator T F

G

x̃ = T F
G ( yG

− x̃G). (21)

Returning to SDC methods, the FAS correction for coarse SDC iterations is
determined by considering SDC as an iterative method for solving the collocation
formulation given by (5), which can be written

U −1t SF = U0, (22)

where U0, S, and F are defined as in Section 2.1. Therefore, combining (20) and
(22), the FAS correction for coarse SDC iterations is given by

τ =1t
(
SG FG

− T G
F SF

)
, (23)

where SG is the integration matrix defined by the coarse nodes, FG is the vector
of function values at the coarse level, and T G

F is a space-time restriction operator.
This allows the coarse SDC iterations to achieve the accuracy of the fine SDC
iterations at the resolution of the coarse level, and ultimately allows the PFASST
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algorithm to achieve similar accuracy as a serial computation performed on the
fine level. The numerical experiments in Section 5 confirm the benefit of using the
FAS correction term in the coarse SDC sweep.

3. PFASST

At this point we have reviewed the main ingredients of the PFASST algorithm:
SDC, time parallel iterations, and FAS. Now we describe how these ingredients
are combined to form the PFASST algorithm. As in parareal, the time interval of
interest [0, T ] is divided into N uniform intervals [tn, tn+1] which are assigned to
the processors Pn where n = 0 . . . N − 1. Each interval is subdivided by defining
M + 1 fine SDC nodes tn = [tn,0 · · · tn,M ] such that tn = tn,0 < · · · < tn,M = tn+1;
and M̃+1 coarse SDC nodes t̃n such that tn = t̃n,0 < · · ·< t̃n,M̃ = tn+1. The coarse
SDC nodes t̃n are chosen to be a subset of the fine SDC nodes tn to facilitate
interpolation and restriction between the coarse and fine levels. The solution at
the m-th fine node on processor Pn during iteration k is denoted U k

n,m . Similarly,
the solution at the m̃-th coarse node on processor Pn during iteration k is denoted
Ũ k

n,m̃ . For brevity let

Uk
n = [U

k
n,1, · · · ,U

k
n,M ] and Fk

n = [ f (tn,0,U
k
n,0), · · · , f (tn,M ,U k

n,M)],

with analogous notation for the coarse level (marked with a tilde). Note that the
use of point injection as the coarsening procedure with Gaussian quadrature nodes
means that the coarse nodes may not correspond to Gaussian nodes. This is further
discussed at the beginning of Section 5.

3.1. Initialization. In the parareal method, the processors are typically initialized
by using the coarse grid propagator in serial to yield a low-accuracy initial con-
dition for each processor. This means in practice that all processors except the
first are idle until passed an initial condition from the previous processor. Here
we employ a different initialization scheme wherein each processor begins coarse
SDC sweeps during this idle time. Hence the number of coarse iterations (SDC
sweeps) done on processor Pn in the initialization is equal to n rather than 1. This
has the same total computational cost of doing one SDC sweep per processor in
serial, but the additional SDC sweeps can improve the accuracy of the solution
significantly, as will be demonstrated in Section 5.

Specifically, the initial data u(0) is spread to each processor Pn and stored in
the fine level at each fine SDC node so that U 0

n,m = u(0) for n = 0 . . . N − 1 and
m = 0 . . .M . Next, the fine values U0

n are restricted to the coarse level and stored
in Ũ0,0

n , where the two superscripts denote PFASST iteration and initialization
iteration, respectively. Before beginning the initialization iterations, the function
values F0

n and F̃0,0
n are computed and used to form the first FAS correction τ 0

n .
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The initialization iterations for j = 1 . . . n on processor Pn are comprised of the
following steps:

(1) Receive the new initial value Ũ 0, j
n,0 from processor Pn−1 if n > 0 and j > 1.

(2) Perform one or more coarse SDC sweeps using the values F̃0, j−1
n computed

previously and the FAS correction τ 0
n . This will yield updated values Ũ0, j

n

and F̃0, j
n .

(3) Send Ũ 0, j
n,M̃

to processor Pn+1 (if n < N − 1). This will be received as the new

initial condition Ũ 0, j+1
n+1,0 in the next iteration.

After processor Pn is finished computing the value Ũ 0,n
n,M̃ and sending it to Pn+1,

the correction Ũ0,n
n − Ũ0,0

n is interpolated to the fine grid to yield the initial value
U0

n . The PFASST iterations on each processor are then begun immediately with
this initial value.

3.2. PFASST iterations. The PFASST iterations for k = 1 . . . K on each processor
Pn proceed as follows. Assuming that the fine solution and function values Uk−1

n
and Fk−1

n are available, the iterations are comprised of the following steps:

(1) Perform one fine SDC sweep using the values Fk−1
n . This will yield provi-

sional updated values Uk′
n and Fk′

n .

(2) Restrict the fine values Uk′
n to the coarse nodes to form Ũk′

n and compute F̃k′
n .

(3) Compute the FAS correction τ k
n using Fk′

n and F̃k′
n .

(4) Receive the new initial value U k
n,0 from processor Pn−1 if n > 0.

(5) Perform nG coarse SDC sweeps beginning with the values F̃k′
n , the FAS cor-

rection τ k
n , and the restriction of the new initial value Ũ k

n,0. This will yield
new values Ũk

n and F̃k
n .

(6) Interpolate the coarse correction Ũ k′

n,M̃
−Ũ k

n,M̃
(in space only) and add to U k′

n,M
to yield the updated value U k

n,M .

(7) Send U k
n,M to processor Pn+1 (if n < N − 1). This will be received as the new

initial condition U k+1
n+1,0 in the next iteration.

(8) Interpolate the coarse grid correction Ũk′
n − Ũk

n in space and time at the re-
maining fine time nodes (0<m < M) and add to Uk′

n to yield Uk
n . Recompute

new values Fk
n

The majority of the overhead associated with FAS is done in step 8 above, which
is delayed until after the new initial condition is sent in step 7. This minimizes the
amount of computation done between receiving a new initial condition from the
previous processor (step 4) and sending the data forward (step 7). Pseudocode for
the PFASST algorithm can be found in the Appendix.
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4. Parallel speedup and efficiency

In this section, the theoretical parallel efficiency and speedup of the PFASST algo-
rithm are examined. In the implementation used for the numerical results presented
here, the PFASST method will converge to the collocation formulation (22) using
one time step per processor. The number of substeps used in the fine SDC method
is denoted again by M (which is the number of fine SDC nodes used minus one).
Let ηF denote the cost of the method used for each substep of the fine SDC sweep.
Likewise, let ηG and M̃ be the corresponding constants for the coarse SDC sweep.
Further, define ϒF = MηF and ϒG = M̃ηG to be the cost of one fine/coarse SDC
sweep (assuming that the cost of computing the integration term used in the sweep
is negligible). Let nG denote the number of coarse SDC sweeps performed per
PFASST iteration. To take into consideration the overhead of parallelization, we
define γF and γG as the cost of sending a coarse and fine solution from one proces-
sor to the next. Finally, we define ϒO as the cost of the interpolation and restriction
done in FAS.

If the PFASST iterations converge to the required accuracy in K p iterations, the
total cost on N processors is

C p = NnGϒG + (N − 1)γG + K p(ϒF + nGϒG +ϒO+ γF ). (24)

For simplicity, the communication costs γG and γF (which are relatively small in
the numerical experiments in Section 5) are treated as overhead and are included
in the ϒO term hereafter.

Let Ks denote the number of SDC iterations needed to compute the solution to
the desired accuracy in serial using the fine SDC nodes. Then the cost of the serial
SDC method will be approximately Cs = N KsϒF . Therefore, the parallel speedup
S of the PFASST algorithm is

S =
Cs

C p
=

N KsϒF

NnGϒG + K p(ϒF + nGϒG +ϒO)
. (25)

Defining α = ϒG/ϒF and β = ϒO/ϒF , (25) becomes

S =
N

NnGα

Ks
+

K p

Ks
(1+ nGα+β)

(26)

which gives a parallel efficiency of

E =
1

NnGα

Ks
+

K p

Ks
(1+ nGα+β)

. (27)

To achieve a parallel efficiency that is close to 1, the two quantities NnGα/Ks

and K p/Ks should be as small as possible. If the coarsening ratio between the
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coarse and fine grids is two in both time and space, and the implicit solves in the
method have a cost proportional to the total number of grid points in the problem,
then the cost ratio α between the coarse and fine SDC sweeps is approximately
1/2D+1, where D is the spatial dimension of the problem. This means that the
NnGα/Ks term is well approximated by NnG/(2D+1Ks). Furthermore, since in
each PFASST iteration both coarse and fine SDC sweeps are done, K p/Ks can
actually be less than one (as shown in Section 5). The numerical experiments also
show that increasing the number of coarse SDC sweeps, nG , reduces K p, but at the
cost of increasing all terms containing α. Finally, it should be noted that the cost of
the overhead from the FAS procedure (and communication) signified by ϒO is not
necessarily small. Since in the numerical tests presented here, both the evaluation
of the function values and the interpolation in FAS are done with the FFT, β is in
fact close to 1.

In contrast to the standard parareal method, note that the efficiency is not au-
tomatically bounded above by E < 1/K p but rather E < Ks/K p. That is, by
combining the SDC and parareal iterations into one hybrid parareal/SDC iteration,
the bound on the parallel efficiency is relaxed by a factor of Ks when compared to
the standard parareal method.

5. Numerical examples

In this section numerical results are presented to demonstrate the performance of
the PFASST method for several PDEs of varying complexity. Since we are most
interested in temporal errors, a pseudospectral discretization in space is used for
all examples to minimize spatial errors. Also periodic boundary conditions are
prescribed so that the discrete fast Fourier transform (FFT) can be used to evaluate
the spectral derivatives and to interpolate in space. Temporal interpolation is done
using standard polynomial interpolation from coarse nodes to fine. In both space
and time, coarse grids are formed by taking every other fine point, so that the
restriction operator is simply point-wise injection.

In the numerical tests that follow, the convergence of PFASST iterates is at
times compared with the convergence of a serial SDC method. For the serial SDC
method, the number of iterations reported refers to how many SDC sweeps are
performed during each time step. This relates to the order of the method since
each SDC sweep raises the formal order of accuracy by one, up to the accuracy of
the underlying quadrature rule. In all cases, the errors reported are computed by
comparing to a temporally resolved run on the fine grid (i.e., the solution of the
discretized ODE and not the solution to the underlying PDE).

In all the examples below, the fine nodes in time correspond to either 9 or 5
Gauss–Lobatto nodes. Hence there are 5 or 3 coarse nodes respectively. When
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9 nodes are used on the fine level, the 5 coarse nodes do not correspond to the
Lobatto nodes, and hence the underlying quadrature rule is of order 6 instead of
order 8. For 5 fine nodes, the 3 coarse nodes are the Lobatto nodes (Simpson’s rule).
When errors from serial SDC runs on coarse nodes are reported, the nodes used
correspond to the coarse PFASST level and not the coarse Lobatto rule. One could
instead interpolate the solutions in time to coarse Lobatto nodes or use Clenshaw–
Curtis quadrature nodes at each level so that coarse and fine nodes correspond.
Numerical experiments (not reported here) suggest the convergence of the PFASST
iterations is not improved when using Clenshaw–Curtis nodes, and the accuracy of
the fine solution is reduced. A more careful examination of the impact of different
interpolation and restriction strategies in space and time is in preparation.

5.1. Viscous Burger’s equation. In the first set of examples, the convergence of
the PFASST iterates are examined on a simple one-dimensional equation, namely
the viscous Burger’s (VB) equation

ut + uux = νuxx , (28)

where ν = 0.005 is the diffusion constant. The VB equation (28) is split into
explicit and implicit parts according to fE =−uux and f I = νuxx in (6). That is,
the nonlinear advection term is treated explicitly while the linear diffusion term is
treated implicitly. The domain is the unit interval, and the initial conditions are

u0(x)= e−(x−0.5)2/σ , (29)

with σ = 0.004, so that the solution has a full spatial spectrum. The periodic
images of the Gaussian are included in the initial condition to ensure it is spatially
smooth. The spatial discretization is chosen so that the solution is resolved on the
fine and coarse resolutions: 512 points are used on the fine grid and 256 on the
coarse. The temporal discretizations are done with 5 Gauss–Lobatto SDC nodes
on the fine level, and 3 Gauss–Lobatto SDC nodes on the coarse level. Analysis of
the performance of PFASST when the coarse level is not well-resolved is ongoing
and will be presented elsewhere.

For the VB test, 64 processors are used with the time step on each processor
being 1t = 0.08/64. Note that the real part of the quantity −1tν(2πkmax)

2, where
kmax is the largest Fourier wave number, is approximately −15.16 on the fine grid.
Hence the use of a semi-implicit method (as opposed to a fully explicit method)
avoids a substantial time step restriction.

Figure 1 shows the convergence of the PFASST algorithm and the serial SDC
method for the VB test. The error is computed for each SDC and PFASST iteration
at the end of each time step, and therefore the horizontal axis corresponds to the
time step, which in turn corresponds to the processor number in the PFASST case.
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Figure 1. Maximum absolute error versus time (processor) for several PFASST iterations
applied to the VB equation. The left and right panels correspond to one and two coarse
SDC sweeps per PFASST iteration respectively. Each PFASST line represents the error
at the end of the corresponding PFASST iteration, with 0 representing the solution after
initialization. The G and F serial lines represent the error of serial SDC runs on the coarse
and fine space-time discretizations with varying numbers of SDC sweeps (iterations) per
time step.

Again, keep in mind that the number of iterations reported for the serial SDC runs
refers to how many SDC sweeps are performed during each time step of the serial
method. The PFASST algorithm is run using nG = 1 (left panel) and nG = 2 (right
panel) coarse SDC sweeps per iteration. Several observations can be made from
the data.

Concerning the convergence of the serial SDC method, note first that the mini-
mum error is reached after 4 SDC iterations for the coarse grid, which is in agree-
ment with the formal fourth-order accuracy expected with 3 Gauss–Lobatto nodes.
Similarly, the fine serial SDC method very nearly attains minimum error after 8
iterations, which again is consistent with the formal eighth-order accuracy. Note
that the convergence of SDC to the collocation solution can be slower for very
stiff problems [14], as is the case for the examples in Section 5.2. Because of
the spectral accuracy of the SDC method, the fine solution with 5 Gauss–Lobatto
nodes is substantially more accurate than the coarse.

Turning to the convergence of the PFASST algorithm, the first thing to note is
that the PFASST iterates do converge to the converged SDC solution on the fine
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grid. Next, note that using two coarse SDC sweeps per PFASST iteration in this
example reduces the total number of iterations needed to obtain a highly accurate
solution from 9 iterations to 4 iterations, albeit at a higher cost per iteration. This
behavior is similar to the parareal algorithm in that the overall speed of convergence
of the algorithm depends on the accuracy of the coarse propagator [24]. Although
not shown here, it has been observed that using multiple fine SDC sweeps per
iteration does not have a significant effect on the rate of convergence of the PFASST
algorithm for this example.

Note the effect of the iterative initialization procedure described in Section 3.1.
The error after initialization (labeled 0 in each panel) is significantly less than that
produced using the corresponding number of serial coarse SDC sweeps (one in the
left panel and two in the right) at later times. Of course for the first processor, the
initialization is exactly equivalent to the first step of a serial SDC method.

Figure 2 compares the convergence of the PFASST algorithm and serial SDC
runs by considering error versus iteration computed at the final time. Additional
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Figure 2. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time interval for several PFASST iterations applied to the VB equation.
The left and right panels correspond respectively to one and two coarse SDC sweeps per
coarse PFASST iteration. The G and F serial lines represent the error of serial SDC runs
on the coarse and fine space-time discretizations with varying numbers of SDC sweeps
(iterations) per time step.
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data corresponding to the residual and the maximum change in the initial condition
at each processor is also included. It is again apparent that the PFASST algorithm
achieves the accuracy of the fine serial run despite the relatively poor temporal
accuracy of the coarse resolution. Also, the convergence of the PFASST algorithm
is accelerated by using two coarse SDC sweeps per iteration. Since the problem is
well-resolved at the finest level, the residual and change in initial condition are good
indicators of the error at each iteration, until the accuracy of the time integration
scheme is reached. Using the residual and change in initial condition to adaptively
control the number of PFASST iterations performed will be explored elsewhere.

To demonstrate the importance of including the FAS correction term in the
coarse sweeps, the above test was rerun omitting the FAS correction term defined in
(23). Figure 3 shows the convergence of the algorithm without FAS corrections. It
is clear that when FAS corrections are not included, the algorithm can only achieve
accuracy comparable to the coarse level.

Finally, Figure 4 shows how the performance of the PFASST algorithm depends
on the numbers of processors for the VB example. The left panel shows the conver-
gence results for four different numbers of processors with the final time fixed (so
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Figure 3. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time for several PFASST iterations for the VB equation without FAS
corrections. This figure should be compared to Figure 2.
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Figure 4. Maximum absolute error computed at the final time for several PFASST itera-
tions and number of processors for the VB equation. The left panel shows PFASST errors
at the final time for a fixed final time. The right panel shows PFASST errors at the final
time for a fixed time step.

that the time step decreases as the number of processors increases). The right panel
shows the convergence for the same numbers of processors with a fixed time step
(so that the final integration time increases as the number of processors increases).

When the final time is fixed (left panel) the convergence of the PFASST algo-
rithm improves as N increases in that the number of PFASST iterations required
to achieve a given level of accuracy decreases. When the time step is fixed (right
panel) the convergence is similar for each run despite the difference in simulation
time. In summary, for this example the convergence depends largely on the time
step used, not on the number of processors.

5.2. The Kuramoto–Silvashinsky equation. Next, the performance of the PFASST
algorithm is explored for the Kuramoto–Silvashinsky equation

ut +
1
2 |∇u|2+∇2u+∇4u = 0, (30)

where the solution u is a function of two space variables and time. The KS equation
arises as a model for interfacial instabilities in a variety of physical contexts and
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has been shown to exhibit nontrivial dynamical behavior, both spatially and tempo-
rally, including chaos [16]. It contains a nonlinear term and high-order derivatives
which, from a numerical perspective, make it a challenging equation to solve as it
is nonlinear, very stiff, and highly sensitive to changes in the initial conditions or
numerical error.

The KS equation (30) is split into explicit and implicit parts according to fE =

−
1
2 |∇u|2 and f I = −∇

2u − ∇4u in (6). That is, the nonlinear term is treated
explicitly while the linear antidiffusion and hyper-diffusion terms are treated im-
plicitly. As with the VB equation, periodic boundary conditions are used, all spatial
operators are evaluated spectrally, and the computational grid is chosen so that the
solution is fairly well resolved on the fine grid. The domain size used throughout is
a two-dimensional square domain with sides of length L = 100.0, with 512 points
in each dimension on the fine grid and 256 on the coarse. The initial condition used
throughout is shown in Figure 5. This initial condition was obtained by running
the KS equation from a simple initial condition with only three Fourier modes to a
final time of approximately 97, and subsequently removing high frequency modes
(magnitude of wave-number greater than 121). This produces an initial condition
with a broad spectrum of Fourier modes but without any fast initial transients. The
temporal discretization uses 9 Gauss–Lobatto SDC nodes on the fine level, and 5
nodes on the coarse level. Note that the coarse nodes do not correspond to the
5-point Gauss–Lobatto rule.

Figure 5. Initial condition for the KS and AD equation examples.
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Figure 6. Maximum absolute error versus time (processor) for several PFASST iterations
applied to the KS equation. The left and right panels show PFASST errors for one and
two coarse SDC sweeps per PFASST iteration respectively. Each PFASST line represents
the error at the end of the corresponding PFASST iteration, with 0 representing the solu-
tion after initialization. The G and F serial lines represent the error of serial SDC runs
on the coarse and fine space-time discretizations with varying numbers of SDC sweeps
(iterations) per time step.

For the KS test, 32 processors are used with the time step on each being 1t =
1.0/32. Figures 6 and 7 compare the convergence of the PFASST algorithm and
serial SDC runs by considering the error versus processor (or simulation time) for
each PFASST iteration, and the error versus iteration at the final time, respectively.

The results for KS shown in Figures 6 and 7 are qualitatively the same as those
for VB shown in Figures 1 and 2. Again one can note the benefit of the iterative ini-
tialization procedure for the PFASST algorithm in that the error after initialization
is considerably lower than a serial SDC method with the corresponding number of
sweeps (except for at the first processor where they are identical). Note also that
the PFASST method converges faster when using nG = 2 coarse SDC sweeps per
iteration instead of one, and this can improve the parallel efficiency (as discussed
in Section 5.3).

For the KS equation, the minimum error achieved by both the serial and parallel
methods is higher than in the VB case despite the use of 9 fine nodes for the KS
equation instead of 5 for VB. To highlight the difficulty inherent in the parallel
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Figure 7. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time for PFASST iterations applied to the KS equation. The left and right
panels correspond to one and two coarse SDC sweeps per PFASST iteration respectively.
The G and F serial lines represent the error of serial SDC runs on the coarse and fine
space-time discretizations with varying numbers of SDC sweeps (iterations) per time step.

numerical approximations of the KS equation, a final numerical experiment is per-
formed using the same initial conditions as the KS example (Figure 5), but with a
simpler linear advection-diffusion equation

ut +∇ · u = ν∇2u (31)

with ν = 0.02. The domain size, spatial discretization, and temporal discretiza-
tion are the same as in the KS example. Figure 8 shows the convergence of the
PFASST algorithm for this linear advection/diffusion (AD) equation. It is clear
that PFASST converges much faster than in the KS example, specifically in four
and two iterations for one and two coarse SDC sweeps per iteration respectively.

5.3. Parallel timing results. The results in Section 5.2 show that the PFASST algo-
rithm exhibits reasonable convergence behavior for a selection of PDEs in simple
geometries. In this section, the parallel speedup and efficiency of the PFASST
algorithm are explored. The PFASST algorithm has been implemented in F90
using MPI for communication between processors. The timing results correspond
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Figure 8. Maximum absolute error versus iteration at the final time for PFASST iterations
applied to the AD equation. The left and right panels correspond to one and two coarse
SDC sweeps per PFASST iteration respectively.

to numerical experiments performed using 8 and 16 processors on a multicore
UNIX machine with 2× 8 2GHz AMD Opteron cores, and run times reported
were computed using the MPI wtime command. Preliminary timings have also
been performed on a distributed memory cluster using up to 512 cores. Initial
results suggest that communication costs across interconnects do not significantly
impact the efficiency of the PFASST method. A more thorough analysis of these
costs will be presented elsewhere.

For the following tests, the PFASST method is applied to a scalar VB equation
(28) in three dimensions

ut + u∇ · u = ν∇2u, (32)

hereafter referred to as the 3d NAD equation. The spatial resolution is 128 points
in each dimension on the fine grid and 64 on the coarse. The initial condition used
was a periodic image of

u0(x)= (4πν)−3/2e−(x−0.5)2/(4πν). (33)

The parameter values used were ν = 0.02 and Tend = 0.002. The temporal dis-
cretizations are done with 5 Gauss–Lobatto SDC nodes on the fine level, and 3
Gauss–Lobatto SDC nodes on the coarse level.
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Figure 9. PFASST iteration timings for the third NAD equation on 8 processors. For all
series except the predictor, each line corresponds to a different PFASST iteration from 1

to 8.

Figure 9 shows a timing breakdown of PFASST iterations for the 3d NAD
equation using 8 processors. As expected, the predictor time grows linearly with
the processor number. This “burn-in” time is unavoidable, but the slope could be
reduced by introducing even coarser levels in the iterative initialization procedure.
The ratio of the cost of fine to coarse SDC sweeps (denoted by α in Section 4)
is approximately 16, which is consistent with a factor of two coarsening in both
time and space. The communication cost associated with passing the fine solution
forward in time from Pn to Pn+1 is greater than the cost of a coarse SDC sweep,
but less than that of a fine SDC sweep. Finally, the overhead of interpolation and
restriction performed to compute the FAS correction is slightly more costly than
a fine SDC sweep (i.e., β > 1). This is because the FFT is used for both spatial
interpolation and the “explicit” computation of the nonlinear advective terms.

Table 1 shows the parallel speedup and efficiency of the PFASST algorithm for
the 3d NAD equation. The number of iterations used for each method was chosen
so that the accuracy of the solution at the final time was consistent between the runs
and approximately equal to 10−13. The number of PFASST iterations required is
less than the number of serial SDC iterations required since, during each PFASST
iteration, at least two SDC sweeps are performed (one on the fine level and one or
more on the coarse level). That is, K p/Ks is less than one (see (26)). The parallel
speedup and efficiency achieved are well predicted by the theoretical formulas (26)
and (27).
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method processors iterations time speedup efficiency

Serial SDC 1t = Tend/8 7 SDC 1115.34s
PFASST, one G sweep 8 5 PFASST 310.47s 3.59 0.45
PFASST, two G sweeps 8 3 PFASST 212.48s 5.25 0.66
Serial SDC 1t = Tend/16 5 SDC 1606.69s
PFASST, one G sweep 16 4 PFASST 216.20s 7.43 0.46
PFASST, two G sweeps 16 3 PFASST 202.13s 7.95 0.50

Table 1. Parallel speedup and efficiency of the PFASST algorithm for the 3d NAD equation.
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Figure 10. Maximum absolute error for the serial and PFASST iterations computed at
the final time for the 3d NAD equation used for parallel timings.

Figure 10 compares the convergence of the PFASST runs and serial SDC runs
by considering error versus iteration for the 3d NAD equation computed at the
final time. All runs eventually achieve an accuracy of roughly 10−13. This figure
justifies the number of iterations used to perform the timings in Table 1.

6. Discussion

The preliminary results included in the previous section suggest that it is possible
to achieve reasonable parallel efficiency in the temporal direction. Hence for PDE
computations for which spatial parallelization has been saturated, parallelizing in
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time appears attractive. Efforts to implement the PFASST algorithm within an
existing spatial parallelization infrastructure are underway and will be reported on
in the future. For problems in which many more time steps are desired than pro-
cessor groups available, an algorithm for terminating the iterations at one time step
so that the processors can begin computation on a new time step will be required.
There are also several other immediate research directions we are pursuing that
may increase the efficiency of the PFASST approach.

The test problems examined in this paper use spectrally accurate derivative and
interpolation operators so that the convergence of the temporal scheme is easy to
identify. One drawback of this approach is that the relative cost of interpolation
and recomputing explicit function values in the FAS procedure is high. Of obvious
interest is the performance of the PFASST method on problems discretized with
finite-differences, finite-volumes, or finite-elements. Also, the performance of the
PFASST approach on hyperbolic problems or those dominated by dispersive waves
has not yet been fully investigated.

For the pseudospectral discretization used throughout the test cases here, the
implicit equation at each substep is solved directly using the FFT. In practice, such
equations for PDEs are usually solved using an iterative method such as a Krylov
subspace or multigrid method. When combined with the PFASST algorithm, an-
other avenue for a further gain in efficiency for PDEs employing iterative solvers
is to reduce or vary the number of iterations of the implicit solver in different
parts of the algorithm. For example, it may not be necessary to solve implicit
equations within SDC substeps to full precision at every iteration, although it is
difficult to predict a priori how a reduction in spatial solver accuracy will affect
the convergence of the time parallel iterations.

Finally, the two-level method used in the paper can be easily extended to multi-
ple levels as in standard multigrid methods. Such a method then resembles a space-
time multigrid method where the “relaxation” operator in the temporal direction is
an SDC sweep. Analysis and numerical testing of such a multilevel approach is
ongoing.

Appendix: Pseudocode for the PFASST algorithm

See Figure 11 for a scheduling diagram of the algorithm.

Initialization on processor Pn.
Spread initial condition and compute FAS correction
SET: U0,0

= u(0), and evaluate F0,0

RESTRICT: fine U0,0 to coarse Ũ0,0, and evaluate F̃0,0

COMPUTE: FAS correction τ 0 between F0,0 and F̃0,0

FOR j = 0, . . . , n− 1:



PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS 129

P0 P1 P2 P3 P4 P5 . . .

To
ta

lT
im

e

N
ϒ

G
K

P
(ϒ

F
+
ϒ

G
)

Figure 11. Cost diagram for the PFASST method with two space/time discretizations
and the new iterative initialization procedure. Thinner darker rectangles correspond to
coarse SDC sweeps, while finer correspond to fine SDC sweeps. Dots correspond to
communication between processors.

Get new coarse initial value, sweep, and send forward
IF j > 0 and n > 0:

RECEIVE: Ũ 0, j
0 = Ũ 0, j

M̃
from Pn−1

SWEEP: perform one SDC sweep with Ũ0, j and F̃0, j

UPDATE: during sweep, update Ũ0, j+1 and evaluate F̃0, j+1 appropriately
IF n < N − 1:

SEND: Ũ 0, j+1
M̃

to Pn+1

PFASST iterations on processor Pn.

SET: Ũ0 to last coarse initialization Ũ0,n−1, and evaluate F̃0

INTERPOLATE: coarse correction Ũ0
− Ũ0,0 to fine U0, and evaluate F0

FOR k = 1, . . . , K
Sweep on fine level, restrict, and compute FAS correction
SWEEP: perform one SDC sweep with Uk−1 and Fk−1

UPDATE: during sweep, update Uk and evaluate Fk appropriately
RESTRICT: fine Uk to coarse Ũk , and evaluate F̃k

COMPUTE: FAS correction τ k between Fk and F̃k

Receive new fine initial condition, restrict
IF n > 0:

RECEIVE: U k
0 =U k

M from Pn−1

RESTRICT: fine U k
0 to coarse Ũ k

0
Sweep on coarse level, interpolate final value, and send forward
SWEEP: perform one SDC sweep with Ũk , F̃k , and τ k
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UPDATE: during sweep, update Ũk and evaluate F̃k appropriately
INTERPOLATE: coarse correction Ũ k

M̃
− Ũ k−1

M̃
to fine U k

M
IF n < N − 1:

SEND: U k
M to Pn+1

Interpolate coarse to fine and set initial condition
INTERPOLATE: coarse correction Ũk

− Ũk−1 to fine Uk , and evaluate Fk
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