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A NEW CLASS OF SECANT-LIKE METHODS FOR SOLVING
NONLINEAR SYSTEMS OF EQUATIONS

JOSÉ A. EZQUERRO, ANGELA GRAU, MIQUEL GRAU-SÁNCHEZ

AND MIGUEL A. HERNÁNDEZ-VERÓN

Applying twice an idea of Hernández and Rubio (2002) for constructing a one-
parameter family of secant-like methods, we define a two-parameter family of
secant-like methods for solving nonlinear systems of equations. We analyze the
efficiency of this new family and conclude that the Kurchatov method, which is
one member of the family, is the most efficient. We illustrate this with Troesch’s
problem.

1. Introduction

Iterative methods are typically used for approximating a simple root α of a non-
linear system of equations, say F(x) = 0, where F ≡ (F1, F2, . . . , Fm)— each
component Fi : D ⊆ Rm

→ R, i = 1, 2, . . . ,m, being defined on a nonempty open
convex domain D of Rm . The choice of a method for solving F(x) = 0 usually
depends on its efficiency, which links the order of convergence of the method to
its computational cost. Two classic measurements of the efficiency, in the sense
defined by Traub [25] and Ostrowski [20], are the efficiency index (EI) and the
computational efficiency (CE), by

EI= ρ1/a and CE= ρ1/p, (1)

where ρ is the R-order of convergence of the method [21], a represents the number
of function evaluations necessary to apply the method and p is the number of
multiplications and divisions needed to compute each iteration of the method.

For one-point iterative methods without memory, it is known that the order of
convergence ρ is a natural number and can be achieved for methods that depend
explicitly on the first ρ − 1 derivatives of F . However, the computational cost
increases when it is necessary to calculate successive derivatives.
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In this paper, we are interested in numerical methods that avoid the expensive
computation of derivatives of F at each step. Among such methods, a popular
one is the secant method [2; 3], whose algorithm we recall. Given two points
u = (u1, . . . , um) and v = (v1, . . . , vm) in Rm , with ui 6= vi for each i , define
the (first-order) divided difference of F with respect to u and v as the linear map
[u, v; F] : Rm

→ Rm given by the matrix with the following entries:

[u, v; F]i j =
1

uj−v j

(
Fi (u1, . . . , u j−1, uj , v j+1, . . . , vm)

−Fi (u1, . . . , uj−1, v j , v j+1, . . . , vm)
)
, i, j = 1, 2, . . . ,m.

The secant method prescribes{
x0, x−1 given in D,
xn+1 = xn − [xn−1, xn; F]−1 F(xn), n ≥ 0.

(2)

It is superlinearly convergent with R-order of convergence 1
2(1+

√
5) [22].

In [13] the authors propose a one-parameter family of secant-like methods for
solving F(x)= 0, containing the secant method and Newton’s method. For a given
value of the parameter λ ∈ [0, 1], the method prescribes

x0, x−1 given in D,
yn = λxn + (1− λ)xn−1, n ≥ 0,
xn+1 = xn − [yn, xn; F]−1 F(xn), n ≥ 0.

(3)

Clearly (3) reduces to the secant method if λ = 0; and, if F is differentiable, (3)
reduces to Newton’s method for λ= 1, since in this case [u, v; F] tends to F ′(v)
as u→ v. We know from [14; 15] that the R-order of convergence of (3) is at least
the same as that of the secant method for all λ. In practice, the closer xn and yn ,
the higher the speed of convergence; indeed, it is shown in [13] that the speed of
convergence of (3) increases with λ ∈ [0, 1], approaching that of Newton’s method
when λ is close to 1.

Following the above idea twice, we can generalize the method to two parameters,
one for each component of the divided difference involved in the secant method.
Given γ, δ ∈ R, the generalized method prescribes

x0, x−1 given in D,
yn = γ xn + (1− γ )xn−1, n ≥ 0,
zn = δxn + (1− δ)xn−1, n ≥ 0,
xn+1 = xn − [yn, zn; F]−1 F(xn), n ≥ 0.

(4)

As before we have as particular cases the secant method (γ = 0, δ= 1) and Newton’s
method if F is differentiable (γ =1, δ=1). The family (4) also contains Kurchatov’s
method [4; 5; 16; 24], which corresponds to the case γ = 0, δ = 2; explicitly, this
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method prescribes{
x0, x−1 given in D,
xn+1 = xn − [xn−1, 2xn − xn−1; F]−1 F(xn), n ≥ 0.

(5)

In the one-dimensional case, the Kurchatov method has a geometrical interpretation
similar to the secant method [4].

The paper is organized as follows. In Section 2, we determine the order of
convergence of (4) in terms of γ and δ. In Section 3, we compute the efficiencies
(EI and CE) and find the parameter values that maximize it. In Section 4.1 we repeat
the analysis using a more general efficiency index, CEI, which takes into account
both the number of function evaluations and the number of operations. Finally,
in Section 4.2, we give an application to Troesch’s problem [26], illustrating the
theoretical results presented in earlier sections.

To summarize, this paper presents a two-parameter family of iterative methods for
solving nonlinear systems of equations that generalizes both the secant method and
the Kurchatov method, and shows that, within this family, the Kurchatov method
(or in some restricted cases the secant method) is the most efficient.

2. Order of convergence

From now on we assume that F is continuously differentiable four times at α ∈ D.

In this section we state and prove Theorem 1, which gives the order of con-
vergence of the family of iterations defined in (4). We start by writing down the
development to fourth order of the divided difference of F ; this was introduced in
[8], following ideas from [11; 12]. See [8] for details.

Thanks to our assumption on the differentiablity of F , we can approximate the
divided difference by the derivative of F , plus corrections up to the fourth derivative:

[y, x; F] = F ′(α)+
3∑

k=1

(
1

(k+1)!
F (k+1)(α)

k∑
i=0

ek−i ẽi
)
+W (x, e, ẽ), (6)

where e = x − α, ẽ = y − α, the (k+1)-st derivative F (k+1)(α) is understood
as the appropriate (k+1)-linear map acting on the k vectors whose “product” is
written under the inner sum, together with the vector on which [y, x; F] acts, and
finally W (x, e, ẽ) is a linear map Rm

→ Rm satisfying ‖[F ′(α)]−1W (x, e, ẽ)‖ =
o(‖e‖p

‖ẽ‖q), for all p, q = 0, 1, 2, 3 such that p+ q = 3.
In the sequel we assume that F ′(α) is nonsingular. We can then introduce the

maps

Ak =
1
k!
[F ′(α)]−1 F (k)(α) ∈ L

(
Rm
×

k
˘· · · ×Rm,Rm), k = 2, 3, 4.
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Also, it will be convenient to write

wk(e)

for any vector-valued expression in e whose norm is o(‖e‖k); similarly we write

w j,k(e, ẽ)

for any expression in e, ẽ such that whose norm is o(‖e‖ j
‖ẽ‖k). Here j, k are

natural numbers.

Theorem 1. The iterative procedure in (4) has R-order of convergence at least
2 if γ + δ = 2 and at least 1

2(1+
√

5) if γ + δ 6= 2. More precisely, if F ′(α) is
nonsingular, then

en+1 = A2e2
n + (1− γ )

2 A3e2
n−1en +w2,1(en−1, en) if γ + δ = 2 (7)

and

en+1 = (2−γ−δ)A2en−1en+(γ+δ−1)A2e2
n+w2(en−1) if γ+δ 6= 2. (8)

Proof. We set y = yn and x = zn in (6) to obtain the expression of [yn, zn; F] in
terms of en = xn −α. Then, by expanding in formal power series of en−1 and en

and taking into account that [yn, zn; F]−1
[yn, zn; F] = I , we obtain

[yn, zn; F]−1

=

(
I−(2−γ−δ)A2en−1−(γ+δ)A2en

−
(
((1−γ )2+(1−δ)2+(1−γ )(1−δ))A3−(2−γ−δ)2 A2

2
)
e2

n−1+w2(en−1)
)

×[F ′(α)]−1.

The highest local order of convergence for (4) is obtained when γ + δ = 2, since
then the term (2− γ − δ)A2en−1 disappears. In this case, δ = 2− γ and

[yn, zn; F]−1
=
(
I − 2A2en − (1− γ )2 A3e2

n−1)+w2(en−1)
)
[F ′(α)]−1,

so that (4) becomes{
x0, x−1 given in D,

xn+1 = xn−[γ xn+(1−γ )xn−1, (2−γ )xn+(γ−1)xn−1; F]−1 F(xn), n ≥ 0.
(9)

By subtracting the root α from both sides of (9), we deduce that

en+1 = en −
(
I − 2A2en − (1− γ )2 A3e2

n−1+w2(en−1)
)
[F ′(α)]−1 F ′(α)

×
(
en + A2e2

n +w2(en)
)
,

which leads to (7). Taking norms, we then have
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‖en+1‖ ≤ ‖A2‖‖en‖
2
+ (1− γ )2‖A3‖‖en−1‖

2
‖en‖.

Consequently the associated equation is t2
− t−2= 0 [20; 25], whose only positive

root is 2. Thus the R-order of convergence of family (9) is at least 2.
In the other case, γ +δ 6= 2, we argue as above and deduce (8) and the inequality

‖en+1‖ ≤ |2− γ − δ|‖A2‖‖en−1‖‖en‖+ |γ + δ− 1|‖A2‖‖en‖
2.

The associated equation is now t2
− t − 1 = 0, whose unique positive root is

1
2(1+

√
5). Thus the R-order of convergence is at least 1

2(1+
√

5), which is that of
the secant method. �

3. Efficiency

We next turn to the efficiency of the two-parameter family of iterative methods (4),
comparing it with that of the one-parameter family (3). Having just determed the
R-orders of convergence, we need to find the number of function evaluations and
operations (multiplications and divisions) required at each step.

We denote by a1(m) and p1(m), respectively, the number of function evaluations
and operations (per step) for (3) in dimension m. For the two-parameter family (4),
the corresponding numbers are denoted by a2(m) and p2(m) in the case γ + δ 6= 2,
and by a3(m) and p3(m) in the case γ + δ = 2.

To determine a1(m) and p1(m), we rewrite the last line of (3) as

xn+1 = xn + bn, where [yn, xn; F]bn =−F(xn). (10)

We see that m evaluations are needed for the Fi and m2 for functions in the divided
difference matrix, so

a1(m)= m2
+m.

Also needed are m2
+ 2m operations to compute the divided difference matrix

(counting yn = λxn + (1−λ)xn+1 as two multiplications), 1
3(m

3
−m) operations

for its LU decomposition, and m2 operations to solve two triangular linear systems.
Therefore

p1(m)=
1
3

m(m2
+ 6m+ 5).

With these two values we can then compute the two measures of efficiency,

EI=
(

1+
√

5
2

)1/a1(m)

and CE=
(

1+
√

5
2

)1/p1(m)

. (11)

Similarly, for (4) with γ + δ 6= 2, we can write

xn+1 = xn + cn, where [yn, zn; F]cn =−F(xn). (12)
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Figure 1. Plots of EI (left) and CE (right) versus the dimension m. The bottom curves
refer to the general two-parameter algorithm (4); the efficiency indices are given in (11).
The middle curves refer to the “secant-like” specialization (δ = 0); see (13). The top
curves refer to the specialization γ + δ = 2; see (14).

In this case we get a2(m) = a1(m) + m = m2
+ 2m function evaluations and

p2(m) = p1(m)+ 2m = 1
3 m(m2

+ 6m + 8) operations (because zn , too, requires
two multiplications). This leads to

EI=
(

1+
√

5
2

)1/(a1(m)+m)

and CE=
(

1+
√

5
2

)1/(p1(m)+2m)

. (13)

Finally we take (4) with γ + δ = 2. Equation (12) is still valid; however,
since zn = (2− γ )xn + (γ − 1)xn−1) shares a summand with yn , it requires one
fewer multiplication. Consequently, a3(m)= a1(m)+m = m2

+ 2m and p3(m)=
p1(m)+m = 1

3 m(m2
+ 6m+ 8). In this case we obtain

EI= 21/(a1(m)+m) and CE= 21/(p1(m)+m). (14)

The results are summarized in Figure 1. We see that both measures of efficiency,
the EI the the CE, are highest for the case γ +δ= 2 of the two-parameter family (4).
Within this spacial case, the Kurchatov method (γ = 0, δ = 2) is the most efficient
of all, since it saves m function evaluations and 3m multiplications.

4. Applications

As already discussed, the EI and CE are based, respectively, on the number of
function evaluations and the number of operations. To take both into account at
once we can use what we call the computational efficiency index, defined as

CEI= ρ1/C. (15)
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Here ρ is the R-order of convergence and C is the computational cost per step,
defined as the number of operations plus µ times the number of function evaluations.
The factor µ reflects the cost of a function evaluation relative to that of an operation,
and depends on the machine, the software and the arithmetic used. (Some discussion
of the CEI can be found in [22].) In Section 4.1 we use the CEI to refine the analysis
of the previous section. In Section 4.2 we illustrate with Troesch’s problem [26].

4.1. Optimal computational efficiency. We have seen in Section 3 that two special
cases stand out for efficiency among the algorithm of the family (4): the secant
method (2), with (γ, δ)= (0, 1), and the Kurchatov method (5), with (γ, δ)= (0, 2).
Combining the definition of C in the previous paragraph with the results of Section 3,
we have

Csec(µ,m)= m2µ+ 1
3 m(m2

+ 6 m− 1), ρsec
=

1
2(1+

√
5),

CKur(µ,m)= (m2
+ m)µ+ 1

3 m(m2
+ 6 m− 1), ρKur

= 2.

Theorem 2. If m = 2, then CEIsec > CEIKur for µ > µ0 :≈ 18.48023, and
CEIKur > CEIsec for µ < µ0. If m ≥ 3, then CEIKur > CEIsec.

Proof. It is enough to consider the borderline case of the ratio

log CEIsec

log CEIKur =
CKur

Csec

log ρsec

log ρKur .

Equating this ratio to 1 gives a curve in the (m, µ) plane with vertical asymptote
m = 2.270559 . . . . For higher m, the ratio is always less than 1. For m = 2, the
ratio is less than 1 if and only if µ > µ0. �

Therefore, the CEI of the Kurchatov method is almost always better than that of
the secant method.

4.2. Troesch’s problem. Troesch’s problem [26] is the following nonlinear two-
point boundary value problem in one dimension:

u′′(x)= λ sinh(λu(x)), 0≤ x ≤ 1, (16)

with boundary conditions u(0)= 0 and u(1)= 1 and the real positive parameter λ.
It arises from modeling the confinement of a plasma column by radiation pressure.
A closed-form solution to the problem is known [6; 7; 9; 17; 23]. It can be written
in terms of the Jacobian elliptic function sc as

u(x)= 2
λ

sinh−1{12u′(0) sc
(
λx, 1− 1

4 u′(0)2
)}
, (17)

where u′(0) is the derivative at t = 0; we have u′(0) = 2
√

1− κ , where κ is the
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digits x ∗ y x/y
√

x exp(x)

32 1.1µs 1 11 25

Table 1. Estimated computational cost of elementary functions computed with Maple@
13 on an Intel R© CoreTM 2 Duo CPU P8800 (32-bit machine) running Microsoft Windows
7 Professional, where x =

√
3− 1 and y =

√
5. The last three entries are relative to the

second (multliplication).

solution to the equation
sinh(λ/2)
√

1− κ
= sc(λ, κ). (18)

Given a value of λ, we can find κ from (18) and the defining equation sc(λ, κ)=
tanφ, where φ is determined by∫ φ

0

dθ√
1− κ sin2 θ

= λ

(see [1]). Following [7; 9] we consider two cases: λ= 0.5 and λ= 1.

In the remainder of this section we use two finite-difference schemes to solve
Troesch’s problem numerically, using the closed-form solution for comparison. The
numerical computations were performed using Maple with 32 digits. To specify
the computational cost, an estimation of the factor µ is necessary. We used the data
in Table 1, based on [10; 19].

A classic finite difference scheme. We partition the interval [0, 1] as follows:

x0 = 0< x1 < x2 < · · ·< xn−1 < xn = 1 , x j+1 = x j + h, h = 1/n, (19)

and define y0 = y(x0)= 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn)= 1. If we
discretize (16) by using the standard numerical formula for the second derivative,

y′′k =
yk−1− 2yk + yk+1

h2 + O(h2), k = 1, 2, . . . , n− 1, (20)

we obtain the following system of (n− 1)× (n− 1) nonlinear equations:

yk−1− (2yk + h2λ sinh(λyk))+ yk+1 = 0, k = 1, 2, . . . , n− 1. (21)

Setting n = 20, the approximate solution is computed taking the initial points
x−1 = (1, 1, . . . , 1) and x0 = (0, 0, . . . , 0) and applying methods (2) and (5), the
secant and Kurchatov methods.

The errors in the solution are shown in Table 2 and more information about
efficiencies is shown in Table 3. The cost is computed in the following way: the
cost of the function sinh is 27 (25 for the exponential function plus 2 divisions);
each component function Fk is equal to yk−1− (2yk + h2λ sinh(λyk))+ yk+1 with
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λ= 0.5 λ= 1.0

x u(x) |u(x)− y(x)| |u(x)− z(x)| u(x) |u(x)− y(x)| |u(x)− z(x)|

0.1 0.095944349292 4.1627 ·10−7 3.4372 ·10−12 0.084661256551 5.9888 ·10−6 5.6178 ·10−11

0.2 0.192128747660 8.0952 ·10−7 6.6447 ·10−12 0.170171358178 1.1732 ·10−5 1.0262 ·10−10

0.3 0.288794400893 1.1563 ·10−6 9.3965 ·10−12 0.257393908080 1.6965 ·10−5 1.3041 ·10−10

0.4 0.386184846362 1.4323 ·10−6 1.1475 ·10−11 0.347222855110 2.1385 ·10−5 1.3243 ·10−10

0.5 0.484547164744 1.6118 ·10−6 1.2675 ·10−11 0.440599835168 2.4626 ·10−5 1.0472 ·10−10

0.6 0.584133248445 1.6674 ·10−6 1.2810 ·10−11 0.538534398077 2.6221 ·10−5 4.8544 ·10−11

0.7 0.685201148302 1.5690 ·10−6 1.1717 ·10−11 0.642128609191 2.5561 ·10−5 2.6357 ·10−11

0.8 0.788016522650 1.2837 ·10−6 9.2672 ·10−12 0.752608094046 2.1818 ·10−5 9.6507 ·10−11

0.9 0.892854216136 7.7458 ·10−7 5.3721 ·10−12 0.871362519798 1.3843 ·10−5 1.1578 ·10−10

Table 2. Exact and approximate solutions u(x), y(x) and z(x) defined in (17), (21) and
(22), respectively.

λ= 0.5

I a aµ ν C EI CE CEI TF τ

method (2) 3 3m 87m 6m− 4 1763 1.0084780 1.0043842 1.0002730 8435.91 0.024516
method (5) 2 3m 87m 6m− 4 1763 1.0122347 1.0063212 1.0003932 5856.56 0.018875

λ= 1.0

I a aµ ν C EI CE CEI TF τ

method (2) 3 3m 84m 6m− 4 1706 1.0084780 1.0043842 1.0002821 8163.16 0.024438
method (5) 2 3m 84m 6m− 4 1706 1.0122347 1.0063212 1.0004064 5667.21 0.019000

Table 3. Numerical efficiency for system (21) with m = 19.

h2
= 1/400 and h2λ prefixed, so that we have an evaluation of sinh and 2 products

if λ = 0.5 (in total 29), whereas we have an evaluation of sinh and 1 product (in
total 28) if λ= 1. In short, µλ=0.5 = 29 and µλ=1 = 28.

A nonstandard finite difference scheme. As a consequence of the low accuracy
obtained in the previous section, we now discretize (16) in a different way. We
again consider the partition of the interval [0, 1] given in (19), define z0= z(x0)= 0,
z1 = z(x1), . . . , zn−1 = z(xn−1), zn = z(xn) = 1 and discretize (16) by using the
following smart numerical formula for the second derivative [7]:

z′′k =
w2

k (zk−1− 2zk + zk+1)

2(cosh(wkh)− 1)
+ O(h4) , k = 1, 2, . . . , n− 1 ,

where

wk = λ

√
(zk+1− zk−1)2

4h2 + cosh(λzk).
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Next, we obtain the following system of (n− 1)× (n− 1) nonlinear equations:

w2
k (zk+1−2zk+zk−1)−2λ sinh(λzk)(cosh(wkh)−1)=0, k=1, . . . , n−1. (22)

Setting n = 20, the approximate solution is computed taking the initial points

x−1 =
(
.0480, .0959, .144, .192, .240, .289, .337, .386, .435, .485,

.534, .584, .634, .685, .736, .788, .840, .893, .946
)t
,

and

x0 =
(
.047957,.095944,.14399,.19213,.24039,.28879,.33738,.38618,.43523,.48455,

.53417,.58413,.63447,.68520,.73637,.78802,.84016,.89285,.94612
)t
,

and applying again methods (2) and (5). The errors in the solution are shown
in Table 2 and more information about efficiencies is given in Table 4. The cost
of the function cosh is the same as that of sinh if this function is not computed
before. In this case, the cost is 1. Every component function Fk is equal to
w2

k (zk+1 − 2zk + zk−1)− 2λ sinh(λzk)(cosh(hwk)− 1), w2
k with cost equal to 31

or 29, wk with cost equal to 11, sinh(λzk) with cost equal to 28 or 27, cosh(wkh)
with cost equal to 39 (27 (cosh)+11 (sqrt)+1 (prod)), and some isolated products.
Finally, we obtain µλ=0.5 = 73 and µλ=1 = 72.

In Table 2, for λ = 0.5 and λ = 1, we present the exact solution u(x`), the
numerical solution y(x`) of (21) and the numerical solution z(x`) of (22), where
` = 1, 2, . . . , 9 and k = 2`, which k is given in (21) and (22). In both cases the
results are independent of the application of methods (2) and (5).

Table 2 confirms the theoretical results. It is interesting that inaccurate tabulated
“exact” solutions are given in [9; 18], but those numerical results would approximate
exact results more closely if their calculations of the later where properly done.

Tables 3 and 4 show the results obtained for both methods. In each table we show
the number of iterations, I , needed to get the required precision, the computational
cost C, the computational efficiency index CEI defined in (15) and the time factor
T F defined by 1/log(CEI). If the values of the CEI are so close as to be almost
indistinguishable in practice, we can then observe the T F that tell better the
difference between iterative methods. While in the definition of the CEI we have
considered functions with the divided difference full of terms, we observe that the
two given discretizations to solve Troesch’s problem provide a tridiagonal operator.

If both methods are applied to solve systems of m nonlinear equations, we have
to solve a triangular linear system per iteration, 2(m− 1) operations (products and
divisions) are required in the LU decomposition, 2m−1 operations in the backward
substitution and m−1 operations in the forward substitution. Therefore, the number
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λ= 0.5

I a aµ ν C EI CE CEI TF τ

method (2) 5 5m−2 73(5m−2) 8m−6 7028 1.005188 1.003301 1.000069 33183.78 .155234
method (5) 5 5m−2 73(5m−2) 8m−6 7028 1.007481 1.004759 1.000099 23163.80 .147970

λ= 1.0

I a aµ ν C EI CE CEI TF τ

method (2) 5 5m−2 72(5m−2) 8m−6 6842 1.005188 1.003301 1.000070 32738.78 .151870
method (5) 4 5m−2 72(5m−2) 8m−6 6842 1.007481 1.004759 1.000101 22728.63 .131109

Table 4. Numerical efficiency for system (22) with m = 19.

of operations needed per iteration is 5m − 4 for both methods. The number of
function evaluations is computed in the following way:

- We have m evaluations of the function F : F1, F2, . . . , Fm .

- For the classic finite difference scheme, we have 2m evaluations and m divisions
to evaluate the divided difference, so that C= 3mµ+ 6m− 4.

- For the nonstandard finite difference scheme, we have to compute 4m − 2
evaluations and 3m − 2 divisions in the divided difference matrix, so that
C= (5m− 2)µ+ 8m− 6.

Tables 3 and 4 confirm the theoretical results. For Troesch’s problem, the costs
are the same and we then observe that method (5) has the highest value of CEI in
all cases, since CEIKur > CEIsec, which confirms the results of Section 4.1.

5. Concluding remarks

We present a two-parameter family of iterative methods for solving nonlinear
systems of equations with local R-order of convergence higher than other com-
petitive iterative methods. Between the members of the family we point out the
Kurchatov method and the secant method. Moreover, we analyze a generalization
of the efficiency used in the one-dimensional case to several variables. Finally, we
show an application, where Troesch’s problem is considered, which illustrates the
theoretical results presented in the paper and conclude that the Kurchatov method
is more efficient than the secant method for solving Troesch’s problem.
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