
Communications in
Applied
Mathematics and

Computational
Science

msp

vol. 10 no. 1 2015

AN ADAPTIVELY WEIGHTED GALERKIN FINITE
ELEMENT METHOD FOR BOUNDARY VALUE

PROBLEMS

YIFEI SUN AND CHAD R. WESTPHAL





COMM. APP. MATH. AND COMP. SCI.
Vol. 10, No. 1, 2015

dx.doi.org/10.2140/camcos.2015.10.27 msp

AN ADAPTIVELY WEIGHTED GALERKIN FINITE ELEMENT
METHOD FOR BOUNDARY VALUE PROBLEMS

YIFEI SUN AND CHAD R. WESTPHAL

We introduce an adaptively weighted Galerkin approach for elliptic problems
where diffusion is dominated by strong convection or reaction terms. In such
problems, standard Galerkin approximations can have unacceptable oscillatory
behavior near boundaries unless the computational mesh is sufficiently fine. Here
we show how adaptively weighting the equations within the variational problem
can increase accuracy and stability of solutions on under-resolved meshes. Rather
than relying on specialized finite elements or meshes, the idea here sets a flexible
and robust framework where the metric of the variational formulation is adapted
by an approximate solution. We give a general overview of the formulation and
an algorithmic structure for choosing weight functions. Numerical examples are
presented to illustrate the method.

1. Introduction

In this paper, we consider numerically approximating solutions to the diffusion,
convection, reaction problem{

−ε1u+ b · ∇u+ cu = f in �,

u = 0 on ∂�.
(1-1)

Here, u is the solution, 1u and ∇u are the Laplacian and gradient of u, ∂� is
the boundary of domain �, and f is a known data function. We assume that
coefficients c and ε are positive constants, that b is a constant vector, and that
boundary conditions are homogenous Dirichlet although nonzero boundary data or
Neumann/mixed boundary conditions may easily be considered under appropriate
smoothness assumptions. When |b| � ε, we may consider this as a convection-
dominated diffusion problem, which may have solutions with boundary layers
downstream from b. When c� ε and the reaction term dominates, layer phenomena
are also possible. It is well known that standard finite element and finite difference
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approaches to such problems can yield solutions with undesirable overshoots and/or
oscillatory behavior near these boundary layers when the computational mesh is
not sufficiently resolved.

The difficulty associated with boundary layers is, of course, not limited to
(1-1) but is evident in many applications where diffusive terms are dominated by
convective or reactive terms. Throughout this paper, we assume sufficient regularity
of the data and domain to ensure solutions are sufficiently smooth, which is a
separate issue from boundary layer behavior.

There are many well studied numerical approaches to ameliorate layer effects.
Through the use of specialized graded meshes [24; 25; 11; 8] or adaptive mesh
refinement [9], it is possible to develop a mesh that has sufficient resolution near the
layers to resolve the solution and eliminate the effects of the high gradients on the
solution in areas where the solution is smooth, which are commonly referred to as
the “pollution effects”. It is also possible to augment the weak form of the problem
by adding mesh-dependent stabilization terms to the formulation [16; 17; 2]. These
terms may or may not be consistent with the original problem, but they generally
improve the solution on coarse meshes, and their influence diminishes as the mesh is
resolved. The variational problem can also be modified through a Petrov–Galerkin
formulation, where the test and trial spaces are different. This includes streamline
upwind Petrov–Galerkin (SUPG) formulations [5; 6; 18; 1] as well as methods
with spaces enhanced by bubble functions [4]. Such problems have also been
studied in the context of discontinuous Galerkin (DG) [11; 15] and discontinuous
Petrov–Galerkin (DPG) [10; 13] methods. Here continuity requirements in the
trial and test spaces are relaxed, and additional degrees of freedom on the element
boundaries lead to additional jump conditions in the variational problem. Further
comparisons on earlier work for such problems can be found in [22; 12; 14]. Broadly
speaking, there are many ingredients in designing a finite element formulation (i.e.,
reformulating the equations, choosing/adapting the mesh, choosing test/trial spaces,
etc.), and improvements on the standard Galerkin approach have been realized by
many modifications and combinations of choices in the basic ingredients.

In this work, we introduce an adaptively weighted Galerkin finite element ap-
proach to (1-1) for cases exhibiting boundary layers. By generalizing the standard
Galerkin weak form with weighted inner products, we may essentially redistribute
the strength by which the variational problem is enforced across the domain. The
use of weighted norms and weighted inner products is, of course, not a new idea.
In [21], a weighted Galerkin formulation is used for a parabolic problem where the
diffusion coefficient changes sign within the interior of the domain. A weighted
Galerkin approach is coupled with a mapping technique in [23] to solve elliptic
problems on unbounded domains. And in the least-squares finite element paradigm,
using weighted norms to generalize L2 residual minimization problems allows
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for robust treatment of problems with boundary singularities in weighted H 1(�)

or H(div) norms [19; 20; 7].
For problem (1-1), when the computational mesh is relatively coarse, weakening

the problem near boundary layers in the right way can reduce or eliminate the
pollution effects, stabilizing the numerical approximation. When the mesh is
sufficiently fine to resolve the solution with no ill effects, the approach defaults to
the standard Galerkin approach. Here, we explore this idea via an adaptive approach,
whereby an approximate solution is used to generate a weight function to define
a subsequent problem. While there are many successful methods in the literature,
we are particularly motivated by practicality. In many cases, solutions tend to
be smooth except for small regions representing a layer, and adopting an exotic
approximation space to represent the global solution seems excessive. Generally,
if it were computable, the interpolant of even simple finite element spaces would
provide a sufficient approximation. Our approach is designed to generalize the
standard Galerkin approach, where the mesh and trial space can be chosen based on
resolving the features of the solution, and an initial approximation helps redefine
the metric of an improved variational formulation. For simplicity, we describe our
approach separately from adaptive mesh refinement though mesh adaptation can be
used alongside our weighting approach. The weighted Galerkin approach here can
also be viewed as a Petrov–Galerkin formulation, where the basis functions of the
test space are generated adaptively, based on an approximate solution.

The organization of this paper is as follows. In the following section, we introduce
the idea of an adaptively weighted variational problem and describe the construction
of an appropriate weight function. Numerical results are given in Section 3, and a
brief look at the how the coercivity of the weighted bilinear form is enhanced from
the standard approach is given in Section 4.

2. Weighted Galerkin formulation

Throughout this paper, we use standard notation for the L2(�)d norm, ‖ · ‖, and inner
product, ( · , · ), and use ‖ · ‖H k to denote the norm corresponding to the Sobolev
space H k(�)d . The space of continuous functions on � is denoted by C0(�)d ,
and we recall that for φ ∈ H 1(�)d and ψ ∈ C0(�)d we have φψ ∈ H 1(�)d

for d = 1, 2, 3. When the dimension of the problem is understood in context, we
drop the d superscript. Since the relative balance between diffusion, convection, and
reaction terms in (1-1) determines the behavior of the solution, for the remainder
of this paper, we take ε = 1 without loss of generality.

Defining the space V = {v ∈ H 1(�) : v = 0 on ∂�} and the bilinear form

a(u, v) := (∇u,∇v)+ (b · ∇u, v)+ (cu, v), (2-1)
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the standard variational formulation of (1-1) for a given f ∈ L2(�) is to find u ∈ V
such that a(u, v) = ( f, v) for all v ∈ V . The discrete Galerkin formulation is
analogous: define a finite element space, V h

⊂ V , and find uh
∈ V h such that

a(uh, vh)= ( f, vh) for all vh
∈ V h . (2-2)

Since the main idea in this paper is in modifying the variational framework to
achieve better global approximations on relatively coarse resolutions, the choice
of the finite element space can be made according to its approximation properties
in the interior of the domain or according to simplicity or availability of code. In
Section 3, we give numerical results using simple conforming piecewise polynomial
spaces. In many cases, solutions tend to be relatively smooth up to boundary layers,
and finding accurate approximations up to boundary layers is desirable.

Now let w ∈ C0(�) be a weight function such that 0 < wmin ≤ w(x) ≤ 1. We
define a weighted bilinear form by multiplying each side of the PDE in (1-1) by wv
and integrating by parts:

( f, wv)= (−∇ ·∇u, wv)+ (b · ∇u, wv)+ (cu, wv)

= (∇u,∇(wv))+ (b · ∇u, wv)+ (cu, wv)

= (∇u, w∇v+ v∇w)+ (∇u, wvb)+ (cu, wv)

= (∇u, w∇v)+ (∇u, (∇w+wb)v)+ (cu, wv)=:W (u, v).

The discrete weighted variational formulation of (1-1) is thus to find uh
∈ V h such

that
W (uh, vh)= (w f, vh) for all vh

∈ V h . (2-3)

At this point, the weight function need only be sufficiently smooth and positive.
Within these requirements, the construction of the weight function is motivated by
producing a more robust numerical approximation. Notice that

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2, (2-4)

which indicates in general that choosing (∇w+wb) small will make the cross term
small and W (v, v) will more resemble a weighted H 1(�) measure. In Section 4,
we explore the connection between w and the coercivity of W ( · , · ). In a practical
sense, we may view the role of w in (2-3) as being able to dampen the effect of
large values of |∇uh

|. Formally, we know that asymptotic solutions of (1-1) near
boundaries may have terms of the form

e−kx and e±
√

cx ,

where k = |b|, and thus, boundary layer solutions may change on the order of
max{ekh, e

√
ch
} across individual elements of mesh size h. This dramatic growth
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of the solution is often problematic, and we are motivated to choose w small in
these regions to decouple the effects from the rest of the problem. In other words,
in regions where |∇uh

| is relatively large, w should be chosen to make (∇w+wb)
small. When the mesh size is small enough to reasonably represent the solution, the
standard Galerkin approach yields acceptable results. We now describe an adaptive
approach to generate an appropriate weight function, based on the coefficients from
the original PDE, an initial approximation to the solution, and the mesh size.

If uh
old represents an initial approximation to the solution to (1-1), we simply

want to choose w large/small where the magnitude of ∇uh
old is small/large. While

there are many empirical approaches to constructing w from this guiding principle,
we describe one here that is simple to implement and tends to give robust results.
Let �h be a triangulation of the domain with elements denoted by τi , for i ranging
from 1 to the number of elements, and choose the approximation space V h . Our
approach is given by the following algorithm:

(1) Start: Initially set w = 1 uniformly.

(2) Solve: Obtain an initial solution uh
old by solving (2-2).

(3) Construct weight:
• For each element, τi , compute di := ‖∇uh

old‖τi .
• Denote the minimum/maximum values of this set by dmin = minτi∈�h di and

dmax =maxτi∈�h di .
• Set ŵi = 1− (1−wmin)(di − dmin)/(dmax− dmin).
• Construct w(x) ∈ C0(�) as a piecewise linear function from elementwise values
ŵi . See Section 3 for details.

(4) Re-solve: Using w, find uh by solving problem (2-3).

Algorithm 1. Adaptively weighted Galerkin approximation.

This basic approach can be modified to accommodate other features. As described,
this requires two PDE solves on the same mesh. However, it is straightforward
to refine the mesh, either locally or globally, between steps (2) and (4) and use
the weight from the coarse solve to enhance the fine solve. Similarly, nonlinear or
time-dependent problems that rely on an iterative approach based on an approximate
solution can incorporate steps (3) and (4) to the iterative method.

In the next section, we show numerical test problems and give details on con-
structing w ∈ C0(�) from the elementwise values ŵi .

3. Numerical results

In this section, we consider two test problems in 1D where the features of the
weighted Galerkin approach can clearly be seen. We then provide an example in
2D that shows how the approach can be incorporated into a more realistic setting.
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Figure 1. Standard Galerkin (squares) and weighted Galerkin (circles) approximations
to (3-1) compared with exact solutions (dashed), for n = 10 and k = 10, 20, 50, 100.

3.1. 1D convection-dominated. For this first example, we consider the interplay
between diffusion and convection in the ODE model problem

−u′′+ ku′ = 0 in (0, 1),

u(0)= 1,

u(1)= 0,

(3-1)

which has exact solution u(x)= (ekx
− ek)/(1− ek).

We discretize �= (0, 1) into n evenly spaced subintervals of mesh size h = 1/n,
with nodes 0= x0, x1, . . . , xn = 1, and define V h as the set of continuous piecewise
linear functions satisfying the boundary conditions in (3-1). We follow the basic
approach in Algorithm 1, using wmin = e−hk , and we construct w(x) as a piecewise
linear function on the existing mesh by setting nodal values according to

w(xi )=


ŵ1 for i = 0,
min{ŵi , ŵi+1} for i = 1, 2, . . . , n− 1,
ŵn for i = n.

For k ≤ 2n, the standard Galerkin approach does not give overshoots or oscillatory
behavior, but as k increases beyond this, such undesirable behavior occurs. This
range also corresponds to the spectrum of the system matrix, which is all real
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Figure 2. Basis functions ψi = wφi : on the entire domain (left) and detail near the
boundary layer (right).

for k ≤ 2n and complex for k > 2n. We are thus free to fix the value of n and vary k
to explore the possible numerical behavior of the boundary layer near x = 1. In
Figure 1, results are shown for n= 10 and k= 10, 20, 50, 100. Improved results can
clearly be seen in all cases, where for small k the weighted approach is essentially
the same as the standard approach, and as k increases, the weighted approach
appropriately isolates the behavior of the solution near the boundary layer.

One way to view the role of the weight functions is as a Petrov–Galerkin for-
mulation, where the basis functions on the test space are created by weighting the
basis of the trial space. For example, here {φi }

n
i=0 represents the standard piecewise

linear basis and uh
∈ V h

= span{φi }. Given a weight function, w, the weighted
Galerkin method is to find uh

∈ V h such that

a(uh, zh)= ( f, zh) for all zh
∈W h,

where vh
∈ W h

= span{ψi }, where ψi = wφi for each i = 0, 1, . . . , n. Figure 2
shows this basis for the 1D convection-dominated problem with n = 10 and k = 50.
Near the boundary layer, there is a clear upwinding effect, and in places where the
solution is smooth, the basis functions for W h and V h are essentially the same. Our
adaptive approach tends to resemble the SUPG approach in areas where |∇uh

| is
large and the standard Galerkin approach otherwise.

3.2. 1D reaction-dominated. Consider the reaction-dominated diffusion ODE
−u′′+ cu = c in (0, 1),

u(0)= 0,

u(1)= 0,

(3-2)

which yields a solution, u(x) = 1− (e
√

c(1−x)
+ e
√

cx)/(1+ e
√

c), that develops
boundary layers at x = 0 and x = 1 for c � 1. It’s easy to see that as c→∞
the solution approaches u = 1 for x ∈ (0, 1), yet the boundary conditions require
u(0)= u(1)= 0. We use the weighted Galerkin approach as described above but
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Figure 3. Standard Galerkin (squares) and weighted Galerkin (circles) approximations
to (3-2) for c = 100, 500, 2500, 12500 with exact solutions (dashed).

with wmin = e−
√

c/n , a choice motivated by the change of the asymptotic solution
in the elements nearest each boundary.

Figure 3 shows results qualitatively similar to those in Figure 1. As c increases,
boundary layers form near x = 0 and x = 1. For n small relative to

√
c, both the

standard and weighted Galerkin approaches give accurate approximations, but for
large values of

√
c, the weighted approach yields better solutions.

3.3. 2D convection-dominated. As an example in 2D, we consider

−1u+ b · ∇u = 0 in � with b=
200√

x2+ y2

[
−y

x

]
.

We use �= (0, 1)2 with zero Dirichlet boundary conditions on the north, east, and
west boundaries and u(x, 0)= 16x2(1− x)2 on the south boundary. Here, b repre-
sents a convection term of magnitude k = |b| = 200, which is in a counterclockwise
circular rotation. The solution forms a boundary layer on the west boundary (see
Figure 4).

We discretize � using a uniform mesh of triangles of size h and use standard
P1 elements for the approximation uh . As in the previous examples, we follow the
structure of Algorithm 1. To construct w(x) as a P1 finite element function on the
existing mesh, we choose wmin = e−kh and the nodal values of w as the minimum
of di on all adjacent triangles. We then find uh as the solution of (2-3). Figure 4
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Figure 4. Numerical approximations and adaptively generated weight functions for 2D
convection-dominated diffusion problem. Values in [0, 1] are shown in color (green
corresponds to 0 and pink corresponds to 1) while values greater than 1 are in white.
Overshoot values are given in Table 1.

shows plots of the approximations, comparing the standard Galerkin solution and
the weighted Galerkin solution for three mesh resolutions. Note that the boundary
conditions dictate that u≤ 1, and we take values exceeding u= 1 to be considered an
overshoot. Weighted Galerkin solutions show significantly less oscillatory behavior
than the standard approach. Table 1 shows overshoot values for both approaches.

In Figure 5, we compare the weighted and standard Galerkin approaches by
plotting the L2 error, ‖uh

− u∗‖, and the H 1 seminorm error, ‖∇(uh
− u∗)‖, for

increasing mesh resolution (n = 10, 20, 40, 80). We use the numerical solution on
a very fine mesh, u∗ (n = 600), as a proxy for the exact solution. Both methods ap-
proach the asymptotic optimal rates of O(h2) and O(h), but the weighted approach
gives better approximations on under-resolved meshes.

h Standard scheme Weighted scheme
0.05 1.70 1.15
0.025 1.44 1.04
0.0125 1.10 1.00

Table 1. Overshoot values for numerical approximations, maxx∈�|uh
|.
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Figure 5. L2 norm and H1 seminorm errors for 2D convection-dominated diffusion problem.

4. On coercivity

We briefly explore the connection between the behavior of convection-dominated
problems and the coercivity of the variational problem. Understanding when
coercivity is lost and the effects on the linear systems leads to a better understanding
of how to construct an improved variational problem using weighted inner products.

Definition 4.1. A bilinear form a( · , · ) on a normed linear space H is said to be
coercive on V ⊆ H if there exists α > 0 such that

a(v, v)≥ α‖v‖2H for all v ∈ V .

Coercivity is of great interest since, if (H, ( · , · )) is a Hilbert space, V is a
subspace of H , and a( · , · ) is an inner product on V , then (V, a( · , · )) need not
be complete if a( · , · ) is not coercive [3]. When many standard approaches are
employed for (1-1), solutions exhibit the well known numerical instability of
oscillatory behavior near boundary layers for h not sufficiently fine (e.g., see [17;
12; 22; 14]).

The Galerkin variational formulation of (1-1) for a given f ∈ L2(�) is to find
a u ∈ V such that

a(u, v)= ( f, v) for all v ∈ V ,

where a(u, v) := (∇u,∇v)+ (b · ∇u, v)+ (cu, v).
In the following, we assume constant b and examine coercivity of a( · , · ) in the

absence of boundary conditions:

Proposition 4.2. If we choose H = V = H 1(�), then coercivity holds for a( · , · )
if and only if k < 2

√
c, where k = |b|.

Proof. We first prove the “if” part. Since k < 2
√

c, we can find 0< c0 <min{1, c}
such that

k ≤ 2
√
(1− c0)(c− c0).
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By the Cauchy–Schwarz inequality, we have that

|(b · ∇v, v)| ≤ ‖b · ∇v‖‖v‖ ≤ k · ‖∇v‖‖v‖

≤ 2
√
(1− c0)(c− c0) · ‖∇v‖‖v‖

≤ (1− c0)‖∇v‖
2
+ (c− c0)‖v‖

2. (4-1)

Thus,

(1− c0)‖∇v‖
2
+ (b · ∇v, v)+ (c− c0)‖v‖

2
≥ 0,

which gives us

‖∇v‖2+ (b · ∇v, v)+ c‖v‖2 ≥ c0(‖∇v‖
2
+‖v‖2)= c0‖v‖

2
H1 .

To prove the “only if” part, we need to show that, for every c0 > 0, we can always
find v ∈ H 2(�)∩ V such that

a(v, v) < c0‖v‖
2
H1 .

Since k ≥ 2
√

c, for all c0 > 0 satisfying c0 <min{1, c}, we have

2
√
(c− c0)(1− c0) < k.

We let x ∈ Rd , where d is the dimension of b, and

a =−
1
k

√
c− c0

1− c0
b.

Then if we choose v = ea·x , we will get

∇v = va (4-2)

and

b · ∇v = (a · b)v = k2
·

(
−

1
k

√
c− c0

1− c0
v

)
=−k

√
c− c0

1− c0
v. (4-3)

We notice (4-2) and (4-3) give us the following relation:

|∇v| =

√
c− c0

1− c0
|v|.

Thus,

‖∇v‖ =

(∫
�

(∇v · ∇v)

)1/2

=

(∫
�

|∇v|2
)1/2

=

√
c− c0

1− c0

(∫
�

v2
)1/2

=

√
c− c0

1− c0
‖v‖, (4-4)
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and

(b · ∇v, v)=−k
√

c− c0

1− c0
‖v‖2

<−2
√
(c− c0)(1− c0)

√
c− c0

1− c0
‖v‖2

=−2(c− c0)‖v‖
2. (4-5)

By plugging (4-4) into (4-5), we have

(b · ∇v, v) <−2(1− c0)‖∇v‖
2. (4-6)

After adding up (4-5) and (4-6), we get

(b · ∇v, v) <−(c− c0)‖v‖
2
− (1− c0)‖∇v‖

2,

which leads to

a(v, v)= ‖∇v‖2+ (b · ∇v, v)+ c‖v‖2 < c0(‖∇v‖
2
+‖v‖2)= c0‖v‖

2
H1 . �

This shows, in part, why convection-dominated problems using the standard
Galerkin approach may perform poorly in practice. To address how the weighted
variational approach improves the outlook, we recall (2-4),

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2.

When |b| is large and w = 1, it is clear that the cross term can dominate the
expression. To illustrate the impact of this term, let k = |b| and assume that w is
such that

|∇w+wb| ≤ θ |wb| = θk|w|

for the smallest θ ≥ 0 possible. The unweighted case (w = 1) corresponds to θ = 1,
and we can expect θ → 0 as ∇w+wb→ 0 whenever w is uniformly bounded
away from zero (i.e., w ≥wmin > 0). The construction of w described in this paper
leads to ∇w · b< 0 (i.e., boundary layers form downstream of b, where w increases
in the opposite direction to b), and thus, typically θ ∈ [0, 1]. Experimental evidence
with the construction of w in the test problem in Section 3.1 shows that in regions
of � near boundary layers elementwise values of θ are in [0, 1) while throughout
the interior of � values of θ are near 1.
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Recalling the general inequality xy ≤ (ε/2)x2
+ (1/2ε)y2 for any ε > 0 and the

Cauchy–Schwarz inequality, the coercivity of W ( · , · ) then follows from

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2

≥ ‖w1/2
∇v‖2− θk‖w1/2

∇v‖‖w1/2v‖+ c‖w1/2v‖2

≥ ‖w1/2
∇v‖2− θk

(ε
2
‖w1/2

∇v‖2+
1
2ε
‖w1/2v‖2

)
+ c‖w1/2v‖2

=

(
1−

θkε
2

)
‖w1/2

∇v‖2+
(

c−
θk
2ε

)
‖w1/2v‖2

≥ c0(‖w
1/2
∇v‖2+‖w1/2v‖2),

where 0< c0=min{1−θkε/2, c−θk/2ε} when ε ∈ [θk/2c, 2/θk] and k ≤ 2
√

c/θ .
This somewhat formal view shows that the weighted variational problem induces
a weighted H 1 norm that may be more desirable than the standard H 1 measure
since when θ < 1 the coercivity of W ( · , · ) will hold for a larger range of k than
the standard Galerkin approach, which requires k ≤ 2

√
c.

When coercivity holds, both the standard Galerkin and weighted Galerkin ap-
proaches can easily be shown to have optimal-order error bounds. That is, when (1-1)
has full regularity, we have

‖u− uh
‖ = Ch2

‖u‖H2 and ‖∇u−∇uh
‖ = Ch‖u‖H2,

where u is the exact solution, uh is the numerical approximation with mesh size h
(see, e.g., Figure 5). When the coercivity bound holds for a wider range of parame-
ters, it is reasonable to expect more robust numerical results.

5. Conclusion

The weighted scheme we present in this paper seeks to provide a natural refor-
mulation of the variational approach that has an underlying metric adapted to the
specific problem. The approach tends to induce an upwinding effect and is flexible
in that it does not require specialized meshing or the use of exotic elements. It is
possible also to extend the idea to problems with boundary singularities, where
overall convergence rates are affected by the loss of smoothness. This study is the
subject of a forthcoming investigation.
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