Vol. 10, No. 1, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Volume 18, Issue 1
Volume 17, Issue 1
Volume 16, Issue 2
Volume 16, Issue 1
Volume 15, Issue 2
Volume 15, Issue 1
Volume 14, Issue 2
Volume 14, Issue 1
Volume 13, Issue 2
Volume 13, Issue 1
Volume 12, Issue 1
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 1
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 1
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 1
Volume 3, Issue 1
Volume 2, Issue 1
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 2157-5452 (e-only)
ISSN: 1559-3940 (print)
Author Index
To Appear
Other MSP Journals
An adaptive finite volume method for the incompressible Navier–Stokes equations in complex geometries

David Trebotich and Daniel T. Graves

Vol. 10 (2015), No. 1, 43–82

We present an adaptive, finite volume algorithm to solve the incompressible Navier–Stokes equations in complex geometries. The algorithm is based on the embedded boundary method, in which finite volume approximations are used to discretize the solution in cut cells that result from intersecting the irregular boundary with a structured Cartesian grid. This approach is conservative and reduces to a standard finite difference method in grid cells away from the boundary. We solve the incompressible flow equations using a predictor-corrector formulation. Hyperbolic advection terms are obtained by higher-order upwinding without the use of extrapolated data in covered cells. The small-cell stability problem associated with explicit embedded boundary methods for hyperbolic systems is avoided by the use of a volume-weighted scheme in the advection step and is consistent with construction of the right-hand side of the elliptic solvers. The Helmholtz equations resulting from viscous source terms are advanced in time by the Crank–Nicolson method, which reduces solver runtime compared to other second-order time integrators by a half. Incompressibility is enforced by a second-order approximate projection method that makes use of a new conservative cell-centered gradient in cut cells that is consistent with the volume-weighted scheme. The algorithm is also capable of block structured adaptive mesh refinement to increase spatial resolution dynamically in regions of interest. The resulting overall method is second-order accurate for sufficiently smooth problems. In addition, the algorithm is implemented in a high-performance computing framework and can perform structured-grid fluid dynamics calculations at unprecedented scale and resolution, up to 262,144 processor cores. We demonstrate robustness and performance of the algorithm by simulating incompressible flow for a wide range of Reynolds numbers in two and three dimensions: Stokes and low Reynolds number flows in both constructed and image data geometries ( Re 1 to Re = 1), flow past a cylinder ( Re = 300), flow past a sphere ( Re = 600) and turbulent flow in a contraction ( Re = 6300).

incompressible Navier–Stokes, embedded boundary method, finite volume method, cut cell method, projection method, adaptive mesh refinement
Mathematical Subject Classification 2010
Primary: 35K57, 35Q35, 76D05, 76D07
Received: 28 February 2014
Revised: 29 October 2014
Accepted: 7 December 2014
Published: 27 March 2015
David Trebotich
Computational Research Division
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Berkeley, CA 94720
United States
Daniel T. Graves
Computational Research Division
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Berkeley, CA 94720
United States