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We present a high-order finite-volume approach for solving the shallow-water
equations on the sphere, using multiblock grids on the cubed sphere. This ap-
proach combines a Runge–Kutta time discretization with a fourth-order-accurate
spatial discretization and includes adaptive mesh refinement and refinement in
time. Results of tests show fourth-order convergence for the shallow-water
equations as well as for advection in a highly deformational flow. Hierarchical
adaptive mesh refinement allows solution error to be achieved that is comparable
to that obtained with uniform resolution of the most refined level of the hierarchy
but with many fewer operations.

1. Introduction

In this paper, we present a method of local refinement applied to the 2D shallow-
water equations, using test cases that capture some of the essential features that arise
in 3D atmospheric models. We extend a uniform-grid finite-volume discretization
on the surface of a sphere to a locally refined, nested grid hierarchy that can evolve
in time, and can therefore resolve or track small-scale and synoptic features, without
refining the entire computational domain. Similar high-accuracy block-structured
adaptive mesh refinement (AMR) approaches have been applied to problems in
compressible gas dynamics [32; 19]. For climate applications, AMR techniques
hold the promise of spanning global and regional scales as well as tracking synoptic
features that contribute significantly to climate means in the Earth system. Com-
putational cost limits the finest resolution of uniform-resolution climate models
to around 10 km, far larger than the grid spacing necessary for resolving clouds
and features of regional climate. The highest-resolution simulations have become
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important for regional planning issues, which rely on accurate representation of
changes in the behavior of mesoscale storm systems, pressure-blocking events driven
by topography (responsible for heat waves and cold spells), mountain snowpack,
wildfires, topographically driven precipitation, watershed-level hydrology, and urban
development and agriculture. As emphasized in [58], addressing these challenges
requires high-resolution regional climate modeling via either dynamical downscaling
or highly refined grids. Moving synoptic features, such as extratropical and tropical
cyclones, would benefit from space-time adaptivity to better resolve their dynamics.
Thus, AMR can both improve the resolution of atmospheric flows and help test
physical parametrizations across spatial and temporal scales in a global context,
without refining the entire computational domain.

As a first step in the development of a global atmospheric modeling system, in
this paper, we solve the 2D shallow-water equations, which capture many of the
important properties of the equations of motion for the atmosphere. In particular, the
dynamical character of the global shallow-water equations is governed by features
common with atmospheric motions, including barotropic Rossby waves and inertia-
gravity waves, without the added complexity of a vertical dimension. There already
exists a comprehensive literature on the development of numerical methods for the
global shallow-water equations spanning the past several decades. Examples include
the spectral-transform method [25], semi-Lagrangian methods [41; 4; 53; 63; 54;
38], finite-difference methods [21; 42], Godunov-type finite-volume methods [43;
57], staggered finite-volume methods [29; 39; 40], multimoment finite-volume
methods [8; 27; 7], and finite-element methods [51; 12; 52; 17; 33; 26; 11; 2].

As of the time of writing, work targeting AMR for the global shallow-water
equations is much more sparse. Two adaptive numerical methods (finite-volume on
a latitude-longitude grid and nonconservative finite-element on a cubed-sphere grid)
are described in [49]. A discontinuous Galerkin formulation for global tsunami sim-
ulation is described in [5]. The multimoment finite-volume approach has also been
extended to an adaptive formulation by [9]. The present article introduces an AMR
approach for the shallow-water equations that also supports refinement in time.

Atmospheric models include a wide variety of computational grids on the sphere
such as the latitude-longitude mesh [62; 28], icosahedral and hexagonal grids [16;
48; 18; 45; 59], and cubed-sphere meshes [56; 13; 36]. In particular, icosahedral,
hexagonal, and cubed-sphere meshes have become popular over the last decade as
they provide an almost-regular grid-point coverage on the sphere. The uniform dis-
tribution of elements avoids the coordinate singularities at the poles that complicate
the design of stable and accurate methods for such coordinate systems.

The approach in this paper is based on the finite-volume mapped-grid technology
in [10], which is extended to work with AMR in [19]. We apply these methods on
cubed-sphere meshes, which consist of six panels with a separate mapping on each
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panel. To coordinate the different mappings along panel boundaries, we use the
mapped-multiblock approach of [31] with the following modifications:

(1) Because the computational domain is on the surface of a sphere, which is a 2D
manifold in a 3D space, the evolution equations must include metric terms.

(2) Because we have vector quantities (velocities and momenta) that are expressed
in different bases on different panels, the procedure for coordinating them
across a panel boundary must include a basis transformation.

For smooth solutions, this approach can provide fourth-order-accurate results as
also achieved in [57]. Comparing these results to those of [43] shows the advantage
of fourth-order over second-order methods in avoiding artifacts at the boundaries
of the cubed-sphere panels. The dispersive properties of this method have been
analyzed by [55], where it was demonstrated that the use of a fourth-order finite-
volume discretization led to a doubling of the effective resolution compared to a
second-order approach. High-order accuracy is also necessary in the context of grid
refinement since there is a formal drop of one order of accuracy (in the maximum
norm) at grid-refinement boundaries. Hence, a second-order adaptive method would
drop to first-order accuracy in the presence of grid refinement, with disastrous
consequences to the quality of the solution, whereas a fourth-order method only
drops to third-order. Further, compared to other numerical methods, including
standard finite-element discretizations, central finite-volume methods provide the
largest maximum stable time-step size and do not suffer from issues such as the
“spectral gap” that arise from nonuniform treatments. In the absence of limiters
and explicit dissipation, these schemes are also energy-conservative up to temporal
truncation order.

2. Partial differential equations in cubed-sphere coordinates

The equiangular cubed-sphere grid [44; 42] consists of a cube with six Cartesian
patches arranged along each face, which is then “deflated” onto a tangent spherical
shell, as shown in Figure 1. It is a quasiuniform spherical grid; that is, it is
in the class of grids that provide an approximately uniform tiling of the sphere
(see [50], for example, for a review of different options for global grids). The
equiangular cubed-sphere grid has the advantage of being among the most uniform
of cubed-sphere grids: at high resolutions, the ratio of largest to smallest grid cell
approaches

√
2, compared to the equidistant gnomonic cubed-sphere grid, which

approaches a ratio of 3
√

3, and the conformal cubed-sphere grid, where this ratio is
unbounded. Although even more uniformity can be attained via the application of
grid-relaxation techniques such as spring dynamics (see, for example, [37]), these
techniques also lead to nonanalytical forms of the curvature metrics, which in turn
increases the complexity of the discretization.
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Figure 1. A cubed-sphere grid, shown with labels on panels. Panels 1–4 all straddle the
equator (z = 0) of the unit sphere. Panel 5 is centered on the north pole (z = +1) and
Panel 6 on the south pole (z =−1). On the cubed-sphere grid shown here, Nc = 16 (each
panel contains 16× 16 grid cells).

On the equiangular cubed-sphere grid, coordinates are given as (α, β, np), with
central angles α, β ∈ [−π/4, π/4] and panel index np ∈ {1, 2, 3, 4, 5, 6}. By
convention, we choose Panels 1–4 to be along the equator and Panels 5 and 6 to be
centered on the northern and southern poles, respectively.

We will also use spherical coordinates (λ, φ) with longitude λ ∈ [0, 2π ] and lati-
tude φ ∈ [−π/2, π/2] for plotting and specification of tests. Coordinate transforms
between spherical and equiangular coordinates can be found in [56, Appendix A].

2.1. Metrics. Coordinates (X, Y ) are related to equiangular coordinates (α, β) via
the transform

X = tanα, Y = tanβ. (1)

Any straight line in (X, Y ) coordinates is also a great circle arc, which is not the
case for general line segments in equiangular coordinates. Throughout this paper,
we will be making use of the metric term

δ = (1+ tan2 α+ tan2 β)1/2, (2)

which appears frequently in geometric calculations on the cubed-sphere grid.
Cartesian coordinates are related to the equiangular coordinates of a particular

cubed-sphere panel by x(α, β) = (x(α, β), y(α, β), z(α, β)). The natural basis
vectors of the equiangular coordinate system are gα= (∂x/∂α)β and gβ= (∂x/∂β)α ,
which have units of length.

The covariant 2D metric on the cubed sphere of radius r is given by

gpq = gp · gq =
r2(1+ X2)(1+ Y 2)

δ4

(
1+ X2

−XY
−XY 1+ Y 2

)
, (3)
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with contravariant inverse

g pq
=

δ2

r2(1+ X2)(1+ Y 2)

(
1+ Y 2 XY

XY 1+ X2

)
. (4)

The Jacobian on the manifold is then

J =
√

det gpq =
r2(1+ X2)(1+ Y 2)

δ3 (5)

and induces the infinitesimal area element d A = J dα dβ.
For a comprehensive mathematical description of the equiangular cubed-sphere

grid, see [33, Appendices A, B, and C] or [56, Appendices A and B].

2.2. The shallow-water equations in cubed-sphere coordinates. In conservative
coordinate-invariant form, the 2D shallow-water equations on the sphere can be
written as

∂H
∂t
+∇ · (hu)= 0, (6)

∂hu
∂t
+∇ ·

(
huu+I

Gh2

2

)
=−Gh∇zs− f gr × (hu), (7)

where H denotes the fluid surface height above the reference depth z = 0, h is the
fluid depth above the bottom topography z = zs(λ, φ), u is the velocity vector, uu
denotes the outer product of the velocity, I is the identity matrix, G=9.80616 m·s−2

is the acceleration due to gravity, f = 2� sinφ is the Coriolis parameter in terms
of the rotation rate �= 7.292× 10−5 s−1, and gr is the unit vector perpendicular
to the surface of the sphere. The quantities H , h, and zs are related via H = h+ zs.

Under equiangular coordinates, the velocity field is written as

u = uα gα + uβ gβ . (8)

The coefficients uα and uβ are known as the contravariant components of the
velocity vector and have units of rad/s in the natural basis.

The height evolution equation (6) then takes the form

∂H
∂t
+

1
J
∂

∂α
(Jhuα)+

1
J
∂

∂β
(Jhuβ)= 0. (9)

The momentum evolution equation (7) can be decomposed into an evolution equation
for huα and huβ ,

∂

∂t

(
huα

huβ

)
+

1
J
∂

∂α

(
JTαα

JTβα

)
+

1
J
∂

∂β

(
JTαβ

JTββ

)
=9M+9B+9C, (10)

where Tkn
= hukun

+ gkn 1
2 Gh2 and 9M, 9B, and 9C denote source terms due to

the curvature of the manifold, bottom topography, and Coriolis force, respectively.
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The manifold source term takes the form

9M =

(
−0αnkTkn

−0
β

nkTkn

)
=

2
δ2

(
−XY 2huαuα + Y (1+ Y 2)huαuβ

X (1+ X2)huαuβ − X2Y huβuβ

)
, (11)

where 0m
nk are the Christoffel symbols of the second kind associated with the

metric. The source term due to bottom topography can be written in terms of
derivatives of zs as

9B =−Gh
(

gαk
∇kzs

gβk
∇kzs

)
=−Gh

(
gαα gαβ

gβα gββ

)(
∂zs/∂α

∂zs/∂β

)
. (12)

The Coriolis source term differs depending on whether the underlying panel is
equatorial or polar since

sinφ =
{

Y/δ if np ∈ {1, 2, 3, 4},
p/δ if np ∈ {5, 6},

(13)

where p is a panel indicator given by, for instance,

p = signφ =
{
+1 on the northern panel (np = 5),
−1 on the southern panel (np = 6).

(14)

For equatorial panels, the Coriolis source term is given by

9C,eq =
2�
δ2

(
−XY 2 Y (1+ Y 2)

−Y (1+ X2) XY 2

)(
huα

huβ

)
(15)

and on polar panels by

9C,pol =
2p�
δ2

(
−XY (1+ Y 2)

−(1+ X2) XY

)(
huα

huβ

)
. (16)

Multiplying both sides of the shallow-water equations (9)–(10) by J and using the
fact that J and the topography zs = H − h are independent of t , these evolution
equations can be written

∂

∂t
(J U)+∇ · (J EF)= J9, (17)

where

U =

 h
huα

huβ

 , Fk
=

huk

Tαk

Tβk

 , 9 =

(
0

9M+9B+9C

)
. (18)
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Here U contains the conserved variables, which are functions of the primitive
variables,

W =

 h
uα

uβ

 . (19)

The components of EF are functions of the primitive variables and the metric.

2.3. Advection in cubed-sphere coordinates. In conservative coordinate-invariant
form, the 2D advection equation on the sphere is just the first equation of (17):

∂

∂t
(J U)+∇ · (J EF)= 0 (20)

with only one component, U = h and Fk
= huk . Here, h is interpreted as the

density of the advected quantity, and u(α, β, t) is a prescribed velocity vector field.

3. Finite-volume discretization on cubed-sphere grids

3.1. Discretization of the cubed sphere. The discrete resolution of the cubed
sphere is typically written in the form c{Nc}, where each coordinate direction
consists of Nc grid cells. For instance, the cubed-sphere grid shown in Figure 1
is c16. The total number of grid cells on a cubed sphere is Nc× Nc× 6. A grid
cell on a particular panel is denoted by Vi, j with indices (i, j) ∈ [0, . . . , Nc− 1]2,
which refers to the region bounded by

α ∈ [i1α− 1
4π, (i + 1)1α− 1

4π ], β ∈ [ j1β − 1
4π, ( j + 1)1β − 1

4π ], (21)

where on an equiangular grid the grid spacing is

1α =1β =
π

2Nc
. (22)

The center of Vi, j is the point (αi , β j ) with

αi = (i + 1
2)1α−

1
4π, β j = ( j + 1

2)1β −
1
4π. (23)

Some properties of the cubed-sphere grid for a variety of resolutions are given
in Table 1.

3.2. PDE discretization. We can integrate a PDE of the form

∂

∂t
(J U)+∇ · (J EF)= J9 (24)

over a grid cell Vi, j , giving

d
dt

∫∫
Vi, j

J U dα dβ +
∫∫

Vi, j

∇ · (J EF) dα dβ =
∫∫

Vi, j

J9 dα dβ. (25)
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Resolution 1x Aavg Amin/Amax RLLequiv Tequiv

c16 625 km 3.321× 105 km2 0.7434 6.5◦ T 17
c32 313 km 8.302× 104 km2 0.7249 3.2◦ T 34
c64 156 km 2.076× 104 km2 0.7159 1.6◦ T 68

c128 78.2 km 5.189× 103 km2 0.7115 0.82◦ T 136
c256 39.1 km 1.297× 103 km2 0.7093 0.41◦ T 272

Table 1. Properties of the cubed-sphere grid for different resolutions. Here 1x is the grid
spacing at the equator, Aavg is the average area of all cubed-sphere grid cells, Amin is the
minimum cell area, and Amax is the maximum cell area. RLLequiv denotes the equivalent
grid spacing (in degrees) on the regular latitude-longitude grid with the same number of cells,
and Tequiv denotes the approximate triangular truncation of a spectral transform method.

Then applying the divergence theorem to the second term on the left-hand side
of (25):

d
dt

∫∫
Vi, j

J U dα dβ +
∮
∂Vi, j

J EF · n̂ d`=
∫∫

Vi, j

J9 dα dβ. (26)

We can represent the integrals in (26) in terms of averages over Vi, j and its faces.
The notation for an average of a quantity A(α, β) over Vi, j is

〈A〉i, j =

∫∫
Vi, j

A(α, β) dα dβ∫∫
Vi, j

dα dβ
=

∫ β j+
1
21β

β j−
1
21β

∫ αi+
1
21α

αi−
1
21α

A(α, β) dα dβ

1α1β
. (27)

Averages over faces of Vi, j with constant α = αi ±
1
21α and β = β j ±

1
21β are

denoted, respectively,

〈A〉i± 1
2 , j =

∫ β j+
1
21β

β j−
1
21β

A(αi ±
1
21α, β) dβ

1β
, (28)

〈A〉i, j± 1
2
=

∫ αi+
1
21α

αi−
1
21α

A(α, β j ±
1
21β) dα

1α
. (29)

Then dividing both sides of (26) by 1α1β and substituting the averages as
defined in (27)–(29):

d
dt
〈J U〉i, j =−

1
1α

(
〈J Fα

〉i+ 1
2 , j −〈J Fα

〉i− 1
2 , j

)
−

1
1β

(
〈J Fβ

〉i, j+ 1
2
−〈J Fβ

〉i, j− 1
2

)
+〈J9〉i, j . (30)
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3.3. Temporal discretization. We apply the classical fourth-order Runge–Kutta
method to integrate (30), which can be written in the form

d
dt
〈J U〉i, j = K (〈J U〉)i, j (31)

over grid cell Vi, j , where

K (〈J U〉)i, j =−
1
1α

(
〈J Fα

〉i+ 1
2 , j −〈J Fα

〉i− 1
2 , j

)
−

1
1β

(
〈J Fβ

〉i, j+ 1
2
−〈J Fβ

〉i, j− 1
2

)
+〈J9〉i, j . (32)

In Section 3.4, we show how to derive fourth-order accurate approximations
to K (〈J U〉) on grid cells given 〈J U〉 on grid cells.

The classical Runge–Kutta method applied to the ordinary differential equation
(31) integrated over time step 1t starting with 〈J U〉(0) at the initial time is

k1 = K (〈J U〉(0))1t, (33)

〈J U〉(1) = 〈J U〉(0)+ 1
2 k1, k2 = K (〈J U〉(1))1t, (34)

〈J U〉(2) = 〈J U〉(0)+ 1
2 k2, k3 = K (〈J U〉(2))1t, (35)

〈J U〉(3) = 〈J U〉(0)+ k3, k4 = K (〈J U〉(3))1t. (36)

Then to integrate one time step:

〈J U〉(tn
+1t)= 〈J U〉(tn)+ 1

6(k1+ 2k2+ 2k3+ k4)+ O((1t)5). (37)

With local truncation error of O((1t)5), as shown in (37), the accumulated error
for the classical Runge–Kutta method is then O((1t)4).

3.4. Spatial discretization. If � is the set of ordered pairs of indices (i, j) over
which we find 〈J U〉i, j , then let Gm,n(�), with m and n integers, be the set of grid
cells � expanded by m layers of additional cells at both ends in the α direction and
n layers of additional cells at both ends in the β direction. These additional cells
are called ghost cells. For a set of indices 3 of grid cells and ghost cells, let Fα(3)

be the set of their faces of constant α and Fβ(3) the set of their faces of constant β.
In the remainder of this section, we show how to compute the right-hand side

of (30), the evolution equation for 〈J U〉. The method is motivated by that in [32] for
Cartesian grids, extended to mapped grids in [10] and to mapped multiblock grids
in [31]. What is new here is that we are calculating on a 2D manifold in 3D and also
that we have vector components that require a basis transformation (Step (2) below).

The discrete undivided-difference formulae denoted by Dα and Dβ with various
superscripts are defined in Appendix A.
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Figure 2. Sample interpolation stencils of two different ghost cells, used in Step (2). The
procedure for finding the stencil is explained in [31]. The set of grid cells in the stencil is
found as follows. First, find the center of the ghost cell on the cubed sphere, as marked
with ∗ in this figure, and let c be the valid grid cell on a neighboring panel that contains
that point. The stencil set then consists of all the valid cells sharing a vertex with c and also
the cells two away from c in both directions along both coordinate dimensions, making the
appropriate transformation when crossing a panel boundary.

(1) From 〈J U〉 on � and 〈J 〉 on G1,1(�), obtain 〈U〉 on � by using (B-32), with
adjustments at panel boundaries as described in Appendix B4. We then have 〈U〉
accurate to fourth order in 1α =1β.

(2) Interpolate 〈U〉 from � to the ghost cells G3,3(�)−� by the method of least
squares from stencils in [31]. See Figure 2 for an illustration of interpolation stencils
for two sample ghost cells.

Once we find the set of stencil cells for a particular ghost cell, we rotate the
entire sphere so that the center of the ghost cell lies on the equator. Let λ and φ
denote the latitudinal and longitudinal displacements, respectively, of any point
from the ghost cell’s new center on the equator. For each stencil cell indexed by s,
let λs and φs be the latitudinal and longitudinal displacements of its center from
the rotated ghost-cell center. Define the stencil’s average angular distance

θ =
1
N

∑
s

√
λ2

s +φ
2
s , (38)

where N is the number of stencil cells.
For the scalar component 〈h〉 of 〈U〉, we follow the procedure in [31], ap-

proximating h by a Taylor polynomial over latitude and longitude and finding its
coefficients apq for p, q ≥ 0 and p+ q ≤ 3 satisfying as closely as possible the
overdetermined system of N equations∑

p,q≥0;p+q≤3

apq

〈(
λ

θ

)p(
φ

θ

)q〉
s
= 〈h〉s (39)
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for all stencil cells s, where the notation 〈 · 〉s represents averaging over cell s and
(λ, φ) ranges over its values in cell s. The system is overdetermined because there
are 10 coefficients apq for which to solve and the number of equations, N , is either
12 or 13. (It is 12 only if the ghost cell is near the intersection of three panels.) We
then evaluate the Taylor polynomial averaged over the ghost cell g:

〈h〉g =
∑

p,q≥0;p+q≤3

apq

〈(
λ

θ

)p(
φ

θ

)q〉
g
. (40)

The procedure above applies to the scalar component 〈h〉 of 〈U〉, but 〈U〉 also
contains 〈huα〉 and 〈huβ〉, which are components in different bases in adjacent
panels, so in order to find 〈huα〉 and 〈huβ〉 at the ghost cell, a basis transformation
must be made.

At a point (λ, φ), let the basis-transformation matrix from a source panel S,
containing a stencil cell, to a destination panel D, containing the ghost cell, be
denoted

TS→D(λ, φ)=

(
T αα

S→D(λ, φ) T αβ

S→D(λ, φ)

T βα

S→D(λ, φ) T ββ

S→D(λ, φ)

)
.

Then our modification to (39)–(40) is to find coefficients bpq and cpq of two
Taylor polynomials in the basis of the panel P(g) containing the ghost cell g,
satisfying as closely as possible the overdetermined system of 2N equations

∑
p,q≥0;p+q≤3

bpq

〈
T αα

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s

+

∑
p,q≥0;p+q≤3

cpq

〈
T αβ

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s
= 〈huα〉s, (41)

∑
p,q≥0;p+q≤3

bpq

〈
T βα

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s

+

∑
p,q≥0;p+q≤3

cpq

〈
T ββ

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s
= 〈huβ〉s (42)

for all stencil cells s, where P(s) is the panel containing cell s. Then we evaluate

〈huα〉g =
∑

p,q≥0;p+q≤3

bpq

〈(
λ

θ

)p(
φ

θ

)q〉
g
, (43)

〈huβ〉g =
∑

p,q≥0;p+q≤3

cpq

〈(
λ

θ

)p(
φ

θ

)q〉
g
. (44)
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(3) On cells in G3,3(�), deconvolve from averages 〈U〉 to U at centers by

Ui, j = 〈U〉i, j −
1

24(D
2c
α 〈U〉)i, j −

1
24(D

2c
β 〈U〉)i, j for (i, j) ∈ G2,2(�). (45)

This formula is from (B-23) in Appendix B3 and is accurate to fourth order in
1α =1β.

(4) Obtain averages 〈W〉 of primitive variables on G2,2(�) as follows. Set

Wi, j =W(Ui, j ) for (i, j) ∈ G2,2(�), (46)

W i, j =W(〈U〉i, j ) for (i, j) ∈ G3,3(�) (47)

with W(U) being the pointwise function converting conserved variables to primitive
variables. Then convolve:

〈W〉i, j =Wi, j +
1
24(D

2c
α W)i, j +

1
24(D

2c
β W)i, j for (i, j) ∈ G2,2(�). (48)

The result is accurate to fourth order in 1α =1β because it uses (B-22) from
Appendix B3, and W i, j −Wi, j is second-order in 1α =1β. In (48), we apply the
difference operators to W instead of W to reduce the depth of ghost cells required,
without dropping order.

(5) Interpolate 〈W〉 from averages over grid cells and ghost cells to averages over
faces, using the fourth-order-accurate formulae from [32]:

〈W〉i+ 1
2 , j =

7
12(〈W〉i, j +〈W〉i+1, j )−

1
12(〈W〉i−1, j +〈W〉i+2, j )

for (i + 1
2 , j) ∈ Fα(G0,1(�)), (49)

〈W〉i, j+ 1
2
=

7
12(〈W〉i, j +〈W〉i, j+1)−

1
12(〈W〉i, j−1+〈W〉i, j+2)

for (i, j + 1
2) ∈ Fβ(G1,0(�)). (50)

(6) Deconvolve from face-averaged 〈W〉 to face-centered W , using (B-27) to obtain
Wi+ 1

2 , j for (i + 1
2 , j) ∈Fα(�) and (B-29) to obtain Wi, j+ 1

2
for (i, j + 1

2) ∈Fβ(�).
These are fourth-order-accurate in 1α =1β.

(7) Set face-centered fluxes:

Fα

i+ 1
2 , j
= F(Wi+ 1

2 , j ) for (i + 1
2 , j) ∈ Fα(�), (51)

Fα

i+ 1
2 , j
= F(〈W〉i+ 1

2 , j ) for (i + 1
2 , j) ∈ Fα(G0,1(�)), (52)

Fβ

i, j+ 1
2
= F(Wi, j+ 1

2
) for (i, j + 1

2) ∈ Fβ(�), (53)

Fβ

i, j+ 1
2
= F(〈W〉i, j+ 1

2
) for (i, j + 1

2) ∈ Fβ(G1,0(�)). (54)

The difference Fα

i+ 1
2 , j
− Fα

i+ 1
2 , j

is second-order in 1α =1β as is the difference
Fβ

i, j+ 1
2
− Fβ

i, j+ 1
2
.
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(8) Convolve face-centered Fα to obtain face averages 〈Fα
〉 and convolve face-

centered Fβ to obtain face averages 〈Fβ
〉 with the fourth-order accurate formulae

〈Fα
〉i+ 1

2 , j = Fα

i+ 1
2 , j
+

1
24(D

2f
β Fα)i+ 1

2 , j for (i + 1
2 , j) ∈ Fα(�), (55)

〈Fβ
〉i, j+ 1

2
= Fβ

i, j+ 1
2
+

1
24(D

2f
α Fβ)i, j+ 1

2
for (i, j + 1

2) ∈ Fβ(�). (56)

We take derivatives of F instead of F in order to reduce the depth of ghost cells re-
quired. Since F and F differ only by second order in1α=1β, we see from (A-14)
that including F rather than F in (55)–(56) results in a difference in 〈Fα

〉i+ 1
2 , j or

〈Fβ
〉i, j+ 1

2
that is fourth-order in 1α =1β.

(9) Add artificial dissipation: to smooth out oscillations due to the central difference
operator, we add an artificial dissipation to the fluxes. The effect of this modification
is a sixth-order diffusive operator, which retains the order of accuracy of the
underlying scheme.

First set vmax to be the maximum wave speed over the whole domain, which for
advection is the maximum of r(|uα| + |uβ |) and for shallow-water equations is the
maximum of

√
Gh+ r max{|uα|, |uβ |}, where h, uα, and uβ are the components

of W . Then modify the fluxes with fifth undivided differences:

〈Fα
〉i+ 1

2 , j = 〈F
α
〉i+ 1

2 , j − γ vmax(D5f
α 〈U〉)i+ 1

2 , j for Fα(�), (57)

〈Fβ
〉i, j+ 1

2
= 〈Fβ

〉i, j+ 1
2
− γ vmax(D5f

β 〈U〉)i, j+ 1
2

for Fβ(�), (58)

where γ = 1
128 for advection and γ =

√
2/64 for shallow-water equations. The

coefficient γ has been chosen empirically so that the artificial dissipation is enough
to smooth out oscillations but not so large as to detract from accuracy.

(10) Find the fourth-order convolution products

〈J Fα
〉i+ 1

2 , j = 〈J 〉i+ 1
2 , j 〈F

α
〉i+ 1

2 , j +
1

12(D
1f
β 〈J 〉)i+ 1

2 , j (D
1f
β 〈F

α
〉)i+ 1

2 , j

for Fα(�), (59)

〈J Fβ
〉i, j+ 1

2
= 〈J 〉i, j+ 1

2
〈Fβ
〉i, j+ 1

2
+

1
12(D

1f
α 〈J 〉)i, j+ 1

2
(D1f

α 〈F
β
〉)i, j+ 1

2

for Fβ(�). (60)

We take differences of Fα and Fβ instead of 〈Fα
〉 and 〈Fβ

〉 in order to reduce the
depth of ghost cells required, without dropping order. These approximations are
fourth-order-accurate in 1α =1β.

(11) For each grid-cell face that is shared by two panels, after 〈J Fα
〉 or 〈J Fβ

〉

is computed on that face separately for each panel in Step (10), replace it by its
average with the corresponding 〈J Fα

〉 or 〈J Fβ
〉 calculated on the same face in
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the other panel that shares it. Note that 〈J Fα
〉 or 〈J Fβ

〉 from the other panel may
need to be reoriented as follows:

• Faces that are shared with equatorial panels 2 or 4 and either of the polar
panels, 5 or 6, have constant β on the equatorial panel and constant α on the
polar panel; hence, on these faces, 〈J Fβ

〉 on the equatorial panel is averaged
with 〈J Fα

〉 on the polar panel.

• Before averaging, sign changes are required for faces on the other panel along
the following interfaces: 〈J Fβ

〉 on Panel 2 with 〈J Fα
〉 on Panel 5, 〈J Fβ

〉 on
Panel 4 with 〈J Fα

〉 on Panel 6, and 〈J Fβ
〉 on Panel 3 with 〈J Fβ

〉 on either
of the polar panels, 5 or 6.

For the vector fluxes, Tαk and Tβk , this is more complicated because the com-
ponents are in different bases in different panels. Write

8α = J
(

Tαα

Tβα

)
on faces of constant α, (61)

8β = J
(

Tαβ

Tββ

)
on faces of constant β. (62)

Then we set the following from (52), (54), and (59)–(60):

• 〈8α〉i+ 1
2 , j , vector components of 〈J Fα

〉i+ 1
2 , j , for (i + 1

2 , j) ∈ Fα(�),

• 8α
i+ 1

2 , j
, vector components of Ji+ 1

2 , j Fα

i+ 1
2 , j

, for (i + 1
2 , j) ∈ Fα(G0,1(�)),

• 〈8β〉i, j+ 1
2
, vector components of 〈J Fβ

〉i, j+ 1
2
, for (i, j + 1

2) ∈ Fβ(�),

• 8
β

i, j+ 1
2
, vector components of Ji, j+ 1

2
Fβ

i, j+ 1
2
, for (i, j + 1

2) ∈ Fβ(G1,0(�)).

We deconvolve to face centers

8α
i+ 1

2 , j
= 〈8α〉i+ 1

2 , j −
1
24(D

2f
β 8

α)i+ 1
2 , j for (i + 1

2 , j) ∈ Fα(�), (63)

8
β

i, j+ 1
2
= 〈8β〉i, j+ 1

2
−

1
24(D

2f
α 8

β)i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�) (64)

and convert to the orthonormal frame with orthonormalization matrices Oα
i+ 1

2 , j
and

O
β

i, j+ 1
2

(see [56]) at face centers:

2α
i+ 1

2 , j
= Oα

i+ 1
2 , j
8α

i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(�), (65)

2
β

i, j+ 1
2
= O

β

i, j+ 1
2
8
β

i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�), (66)

2α
i+ 1

2 , j
= Oα

i+ 1
2 , j
8α

i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(G0,1(�)), (67)

2
β

i, j+ 1
2
= O

β

i, j+ 1
2
8
β

i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(G1,0(�)). (68)
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On each face of a panel boundary, we replace each of 2α and 2α, or each of 2β

and 2β , with the averages from the two panels sharing that face. In the case of
faces shared by either Panel 2 or 4 and either Panel 5 or 6, we flip the sign of the
quantity from the opposite panel before averaging.

Finally, we set the vector components of 〈J Fα
〉i+ 1

2 , j and 〈J Fβ
〉i, j+ 1

2
to

〈8̃α〉i+ 1
2 , j = (O

α

i+ 1
2 , j
)−12α

i+ 1
2 , j
+

1
24(D

2f
β ((O

α)−12α))i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(�), (69)

〈8̃β〉i, j+ 1
2
= (O

β

i, j+ 1
2
)−12

β

i, j+ 1
2
+

1
24(D

2f
β ((O

β)−12β))i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�). (70)

Now for (i, j) ∈�, we have fourth-order-accurate 〈J Fα
〉i± 1

2 , j and 〈J Fβ
〉i, j± 1

2
on the right-hand side of (30), the evolution equation for 〈J U〉i, j .

The source term 〈J9〉i, j in (30) is computed as follows. From (46), we have Wi, j

on centers of grid cells (i, j)∈G2,2(�). Since9 is a function of W , we can find9i, j

for (i, j) ∈ G1,1(�), multiply it by Ji, j , and apply the convolution formula (B-22)
to find the averaged 〈J9〉i, j for (i, j) ∈� to fourth-order accuracy.

4. Adaptive mesh refinement

With adaptive mesh refinement (AMR), we extend the approach of [19] on single-
block mapped grids to the mapped-multiblock grids of the cubed sphere. What
makes the cubed sphere different from single-block mapped grids is that the solution
is on a manifold, we are able to use analytic formulae for integrals of 〈J 〉, and
adjacent panels have different mappings.

To implement adaptive mesh refinement, we make use of the Chombo library
for parallel AMR [1] and follow the strategies used therein. Adaptive-mesh-
refinement calculations are performed on a hierarchy of nested meshes �` ⊂ 0`,
with �` ⊃ Cn`ref

(�`+1) where n`ref denotes the refinement ratio between levels `
and `+ 1 and Cn`ref

denotes coarsening by this ratio. At level `, we label all cells
inside �` as being valid and all cells outside �` (such as ghost cells) as being
invalid. Typically, �` is decomposed into a disjoint union of rectangles in order to
perform calculations efficiently. We assume that there are a sufficient number of
cells on level ` separating the level-(`+ 1) cells from the level-(`− 1) cells such
that interpolations to fill invalid ghost cells on finer levels can be independently
performed. We will refer to grid hierarchies that meet this condition as being
properly nested.

The top-level procedure for advancing level ` from time t` by a time step of
length 1t` is shown in Figure 3.
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Advance(`, t`,1t`):

(1) Regrid levels finer than ` if required (see Section 4.1).

(2) Advance level ` using the methods described in Section 3 with a Runge–Kutta
time-stepping method.

(3) Interpolate to the invalid ghost cells surrounding level `+ 1 (see Section 4.2).
A least-squares algorithm is used to compute the interpolating polynomial
in each coarse cell. The interpolation need not be conservative because the
resulting values in the ghost cells are only used to reconstruct the flux on the
faces of the valid cells.

(4) Start level `+ 1 at Step (1). Level `+ 1 is refined in time (subcycled) with a
time step 1t`+1

=1t`/n`ref.

(5) Average the solution from level `+1 and correct fluxes at coarse-fine interfaces
to ensure conservation.

Figure 3. Pseudocode for advancing level ` from time t` to time t`+1t`.

4.1. Regridding. Periodically, it is necessary to change the grid hierarchy in re-
sponse to changes in the solution. During a regrid, we generate a new grid hierarchy,
{�`,new

}`=`base+1,...,`max leaving the mesh at `base and all coarser levels unchanged.
For ` = `base, . . . , `

new
max − 1, we use a least-squares algorithm to interpolate

ghost values. For each ghost cell Vi, j , let I(i, j) denote the set of grid cells of its
interpolation stencil. We solve a least-squares system for the coefficients ai, j

p,q of a
polynomial interpolant of U ,∑

p≥0;q≥0;p+q≤3

ai, j
p,q〈α

pβq
〉i ′, j ′ = 〈U〉i ′, j ′ for all (i ′, j ′) ∈ I(i, j) (71)

(where α p and βq indicate powers of α and β), subject to a conservation constraint
on J U , ∑

(i ′, j ′)∈C−1({(i, j)})

∑
p≥0;q≥0;p+q≤3

ai, j
p,q〈Jα

pβq
〉i ′, j ′ = 〈J U〉i, j . (72)

The moments 〈α pβq
〉 can be determined analytically, and the 〈Jα pβq

〉 are computed
using the product formula. Given this interpolant, we can construct 〈J U〉 on the
grid cells at level `+ 1 within Vi, j :

〈J U〉i ′, j ′ =
∑

p≥0;q≥0;p+q≤3

ai, j
p,q〈Jα

pβq
〉i ′, j ′ for all (i ′, j ′) ∈ C−1({(i, j)}). (73)

This interpolation is conservative.
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4.2. Interpolating to ghost cells at next finer level. As shown in Section 3.4, ad-
vancing one time step by the method of Section 3 requires three layers of ghost cells.
In Step (3) of the algorithm of Figure 3, we must interpolate 〈J U〉 from level ` to
the ghost cells of level `+ 1. In particular, after Step (2) of Advance(`, t`,1t`)
advances the solution at level ` from time t` to time t`+1t`, Step (3) interpolates the
level-` solution to ghost cells of level `+1 at times t`+s1t`+1 for s=0, . . . , n`ref−1,
where 1t`+1

=1t`/n`ref is the length of the time step at level `+ 1. Step (3) has
the following substeps:

(a) Interpolate 〈J U〉 on grid cells of level ` to the same grid cells at the intermediate
times t` + s1t`+1 for s = 1, . . . , n`ref − 1. This temporal interpolation uses
initial 〈J U〉(0) = 〈J U〉(t`) and k1, k2, k3, and k4 in the Runge–Kutta method
defined in (33)–(36) in Section 3.3. As derived in [20], for 0≤ χ ≤ 1, we have

〈J U〉(t`+χ1t`)= 〈J U〉(t`)+χk1+
1
2χ

2(−3k1+ 2k2+ 2k3− k4)

+
2
3χ

3(k1− k2− k3+ k4)+ O((1t`)4). (74)

(b) At each of the times t`+ s1t`+1 for s = 0, . . . , n`ref− 1, fill in d(L + 2)/n`refe

layers of extrapanel ghost cells of 〈J U〉 at level `, by the method of least
squares using interpolation stencils, described in Step (2) of Section 3.4.

(c) Fill in ghost cells of level `+ 1, by least-squares interpolation from the valid
cells and ghost cells at level `.

The temporal interpolation in Step (a) is the same as in [32]. With error of
O((1t`)4), this interpolation preserves the order of the Runge–Kutta temporal
discretization of Section 3.3. The spatial interpolation of Steps (b)–(c) is also
fourth-order in the grid spacing.

5. Numerical tests

The Courant–Friedrichs–Lewy (CFL) number is

1t
1α

cmax, (75)

where 1t is the time step and cmax is the maximum wave speed.
As shown in [10], the stability constraint for the classical Runge–Kutta method

we use is that the CFL number satisfy

1t
1α

cmax . 2.06. (76)

For advection, cmax is the maximum over the domain of r(|uα|+|uβ |). For shallow-
water equations, cmax is the maximum over the domain of the characteristic velocity
2
√

Gh+ r(|uα| + |uβ |).
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We note that the results presented here are for a method that does not employ
any limiters or nonlinear filters that would suppress oscillations at discontinuities.
We have constructed limiters for the Cartesian versions of the method in [32; 6].
While the extension of the approach used in that work to the present setting is
straightforward, we have chosen not to apply it here, in order to obtain a clean
assessment of the properties of the basic high-order method. There is a separate
issue regarding positivity preservation, which historically has been an additional
goal in the design of limiters. Our thinking on this issue is that the use of limiters
for positivity preservation is an excessive constraint on the design choices in the
method. Typically, a limiter can be thought of as a nonlinear hybridization of low-
and high-order fluxes. To obtain a positivity-preserving limiter, it is a necessary
condition for the low-order method to be positivity-preserving. For the case of
advection, it is easy to construct a combination of a discretely divergence-free
velocity field and a density distribution such that the only positivity-preserving
field is donor-cell plus an explicit diffusion, which has a CFL time-step constraint
that scales with the inverse of the dimensionality of the problem. Such a time-step
constraint is stricter than that of the high-order methods of the type described here,
even in 3D. For that reason, we are pursuing a different approach to positivity
preservation based on redistribution of mass as a postprocessing step at the end
of each time step [22]. Such an approach greatly expands the design space of
limiter-based methods; for a discussion, see [6].

5.1. Deformational flow. To test the performance of the model under horizontal
tracer transport, the deformational flow test [34, Test 4] is employed. This test is
significantly more challenging than the solid-body rotation test of [61] since it not
only tests divergent-free advection but also includes deformational stretching and
the formation of thin filaments in the tracer field followed by subsequent recovery
of the original profile. To obtain an analytical reference solution, the deformational-
flow test reverses the time-varying flow field after half the total simulation period.
The availability of an analytical reference solution at the final time means that
error norms can be easily computed. Further, the addition of a solid-body rotation
component to the flow field prevents the possible cancellation of errors when the
flow is reversed.

In the transport equation (20) for h, the longitudinal component uλ and latitudinal
component uφ of the flow field u take the form

uλ = k sin2(λ′) sin(2φ) cos
(π t

T

)
+

2π
T

cosφ, (77)

uφ = k sin(2λ′) cosφ cos
(π t

T

)
, (78)
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Figure 4. Plot of h at initial time in the deformational-flow test example of Section 5.1,
with grids of resolutions c32/c128/c512. At this time, there is 34.4% c128 coverage
and 27.9% c512 coverage. A dashed white contour line is drawn for h at the common
refinement threshold of 5× 10−5, and dotted black contour lines are drawn at values of
the positive tick marks in the legend.

where λ′ = λ− 2π t/T , k = 2, T = 5 days, and k = 2. The height field consists of
two superimposed smooth 2D Gaussian surfaces,

h(λ, φ)=
∑

i∈{1,2}

hi (λ, φ), (79)

hi (λ, φ)= hmax exp{−b0δxyz(λ, φ; λi , φi )}, (80)

where i ∈ {1, 2}, hmax = 1, b0 = 10, and δxyz(λ, φ; λi , φi ) is the 3D absolute
Cartesian distance between (λ, φ) and (λi , φi ) on the unit sphere,

δxyz(λ, φ; λi , φi )=
[
(cosφ cos λ− cosφi cos λi )

2

+ (cosφ sin λ− cosφi sin λi )
2
+ (sinφ− sinφi )

2]1/2. (81)

The centers of the Gaussian surfaces are located at (λ1, φ1) = (5π/6, 0) and
(λ2, φ2) = (7π/6, 0). Although [34] has the setting b0 = 5, here we instead set
b0 = 10 to narrow the width of the Gaussian surfaces, in order to highlight the
benefits of AMR.

We run this example with the following resolutions:

• uniform resolution, with Nc a power of 2 from 32 through 1024,

• on two levels, the coarser level Nc a power of 2 from 32 through 256 and the
finer level consisting of grids that are a factor of 4 finer and are located in
regions where |h| ≥ 8× 10−4/(Nc/64)4, and

• on three levels, the coarsest level Nc either 32 or 64, the middle level consisting
of grids that are a factor of 4 finer and are located in regions where |h| ≥
8× 10−4/(Nc/16)4, and the finest level consisting of grids that are a factor
of 4 finer than the middle-level grids and are located in the same regions.
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Finest Uniform resolution Two levels Three levels
resolution max error rate max error rate max error rate

c32 4.003× 10−2
0.88

c64 2.162× 10−2
1.73

c128 6.527× 10−3
3.33 6.544× 10−3

3.33
c256 6.507× 10−4

3.97 6.506× 10−4
3.97

c512 4.150× 10−5
4.00 4.150× 10−5

4.00 4.150× 10−5
4.00

c1024 2.586× 10−6 2.586× 10−6 2.586× 10−6

Table 2. Maximum solution error at the final time, and convergence rates, for the
deformational-flow test example of Section 5.1. When there is more than one level,
the refinement ratio between consecutive levels is set to 4. Hence, in the two-level runs
with results given here, where the finer levels are c128 through c1024, the coarser level is
c32 through c256. Of the three-level runs, the first one has the refinements of the levels as
c32/c128/c512 and the second has c64/256/c1024.

Figure 4 shows a plot of h at the initial time. The refinement thresholds have
been selected to be comparable to the predicted asymptotically fourth-order solution
error. We pick time step 1t = 0.4 day/Nc, and we find cmax = 5.99 rad/day, so the
CFL number from (75) is 1.53.

Table 2 shows the maximum solution error for each of the different runs. This
table also shows the convergence rate of the maximum solution error, computed
from two successively finer resolutions: since each successive resolution is re-
fined by a factor of 2, this rate is the base-2 logarithm of the ratio of the errors.
We see that the solution error converges to fourth order, and the error in each
multilevel run is as good as that in the single-level run with the resolution of
the finest level, with the level refinement criteria we use. Since the refinement
criteria are such that finer grids are added where h is above a certain thresh-
old, this example is not necessarily good for showing convergence at refinement
boundaries, and so in Section 5.4, we show results of an example with fixed
grids.

For the three simulations of deformational flow with coarsest level c32, Figure 5
shows plots of the error in h at the final time, where the maximum errors are the
numbers shown in the first rows of the columns of Table 2. For these same three
simulations, Figure 6 shows plots of h at the midpoint in time.

Figure 7 shows the fraction of the domains covered by finer-level grids during
the multilevel simulations. Owing to the pattern of deformational flow, domain
coverage of refined levels is highest near the midpoint in time and, in our runs,
reaches its maximum of 68.2% for coverage of c128 in the c32/c128/c512 run.
Because the refinement thresholds are equal, the coverage of c512 is almost the
same in the c128/c512 and c32/c128/c512 runs. For the same reason, the coverage
of c1024 is almost the same in the c256/c1024 and c64/c256/c1024 runs.
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Uniform resolution, c32, at t = T : |error| ≤ 4.003× 10−2

Two levels, c32/c128, at t = T : |error| ≤ 6.544× 10−3

Three levels, c32/c128/c512, at t = T : |error| ≤ 4.150× 10−5

Figure 5. Plots of the error in h at the final time in the deformational-flow test example of
Section 5.1, with c32 at the coarsest level. Grids at all levels at this time are shown. Black
contour lines are drawn at values of the tick marks in the legend: dotted for positive and
dashed for negative. For the two-level and three-level runs, dashed white contour lines are
drawn at the refinement threshold for the calculated h at this time.
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Uniform resolution, c32, at t = T/2

Two levels, c32/c128, at t = T/2: 24.2% c128 coverage, with refinement threshold 0.0128

Three levels, c32/c128/c512, at t = T/2: 59.0% c128 coverage and 32.0% c512 coverage,
both with refinement threshold 5× 10−5

Figure 6. Plot of h at the midpoint in time, t=T/2, in the deformational-flow test example
of Section 5.1, with c32 at the coarsest level. Grids at all levels at this time are shown.
Dotted black contour lines are drawn at values of the positive tick marks in the legend, and
in the two multilevel runs, dashed white contour lines are drawn at the refinement threshold.
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Figure 7. Plot of domain coverage of finer levels over time in the deformational-flow test
of Section 5.1. Left: coverage of the finer level in two-level runs. Coverage increases with
greater resolution because the refinement threshold is proportional to the fourth power of
the grid spacing at the coarser level. Right: coverage of the middle and finest levels in
three-level runs. As indicated by the red and dark-blue curves, coverage of the finest level
in each three-level run matches coverage of the finer level in the two-level run with the
same finest-level resolution because the refinement threshold is the same. In each three-
level run, coverage of the middle level (black and green curves) is necessarily higher than
coverage of the finest level (dark-blue and red curves) because proper-nesting conditions
must be maintained. The gap between each three-level run’s middle-level and finest-level
coverage shrinks as resolution increases because proper-nesting conditions are expressed
in terms of number of grid cells and grid cells become smaller with finer resolution.

5.2. Barotropically unstable jet without initial perturbation. The barotropic-
instability test case of [15] consists of a zonal jet with compact support at a latitude
of 45◦. As in [24; 60], we first show the results of this test without the initial height
perturbation that initiates the instability because we can check the order of accuracy
of our method by comparing with the exact steady-state solution.

We pick time step 1t = 0.25 day/Nc, and we find cmax = 10.1rad/day, so the
CFL number from (75) is 1.61. We run this example up to day 5 with the following
resolutions:

• uniform resolution, with Nc a power of 2, from 16 through 1024,

• on two levels, the coarser level Nc a power of 2 from 16 through 256 and the
finer level consisting of grids that are a factor of 4 finer and are located in
regions where relative vorticity exceeds 0.32/π day−1

= 0.102 day−1, and
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Figure 8. Plots of maximum error in height for the example in Section 5.2 of the steady-
state (but unstable) jet of [15] without the initial perturbation, shown at intervals of every
half day. Plots for runs with the same finest-level resolution have the same color.

• on three levels, the coarsest level Nc a power of 2 from 16 through 64,
the middle level consisting of grids that are a factor of 4 finer and are lo-
cated in regions where relative vorticity exceeds 0.32/π day−1

= 0.102 day−1,
and the finest level consisting of grids that are a factor of 4 finer than the
middle-level grids and are located in regions where relative vorticity exceeds
1.28/π day−1

= 0.407 day−1.

Figure 8 shows the maximum error in height for this example. We find that
on uniform grids (left plot), the error is approximately fourth-order in the spatial
resolution for c128 and finer; at coarser resolutions, the barotropic jet is not resolved,
leading to a loss of convergence. For the two-level runs (center plot), the curves of
maximum error over time match those of the finer level with uniform resolution
for c16/c64, c32/c128, and c64/c256; but with more grid resolution, the two-level
error is higher because the refinement threshold is too high to resolve it. For the
three-level runs (right plot), the maximum error for c16/c64/c256 is a little higher
than that for c64/c256 after day 3, and the maximum error for c32/c128/c512 is a
little higher than that for c128/c512 after day 4, but the maximum errors at earlier
times are higher because of the refinement threshold.

5.3. Barotropic instability. In the barotropic-instability test case of [15], a small
height perturbation is added atop the jet, which leads to the controlled formation of
an instability in the flow. The relative vorticity of the flow field at day 6 can then
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be visually compared against a high-resolution numerically computed solution [15;
49]. For comparison, we use the simulation without additional explicit diffusion
since the additional diffusion suggested in [15] leads to a significantly different
flow field.

As in Section 5.2, we pick time step 1t = 0.25 day/Nc. We now find cmax =

10.4 rad/day, so the CFL number from (75) is 1.66. We run this example up to day 6
with the same resolutions and refinement criteria as in Section 5.2. In the absence
of an exact solution, we compare with the uniform c1024 solution as a reference.

Figure 9 shows the relative vorticity field at the final time for uniform c32, two-
level c32/c128, and three-level c32/c128/c512. As shown in this figure, features are
not sufficiently resolved on uniform c32, but the addition of a finer level refined
by a factor of 4 improves the resolution in the region of instability (c32/c128), and
resolution is further improved with the addition of a third level (c32/c128/c512).

Figure 10, on the top half, shows the maximum difference in relative vorticity
between uniform c1024 and each other run at half-day intervals. Above the refine-
ment threshold of 0.102 day−1, curves of maximum difference with c1024 look
approximately the same when the finest level has the same resolution. Specifically,
the result for two-level c16/c64 matches that for uniform c64, c32/c128 matches
uniform c128, c64/c256 and c16/c64/c256 match uniform c256, and c128/c512 and
c32/c128/c512 match uniform c512 above the refinement threshold of 0.102 day−1.
The bottom half of Figure 10 shows the maximum difference in relative vorticity
between each two-level and three-level run and the corresponding run having
uniform resolution of the finest level; this difference stays below the refinement
threshold until approximately day 5, when the instability is fully formed.

Total energy E is invariant under the shallow-water equations and is defined by

E = 1
2 hu · u+ 1

2 G(H 2
− z2

s ). (82)

We calculate total energy by an area-weighted sum over the whole domain, accurate
up to O((1α)2)= O((1β)2). In regions covered by grids with multiple levels of
refinement, we take the sum over the finest level. Figure 11 shows the difference in
total energy over time from its initial value, normalized by the initial total energy,
for several runs: uniform c32, c128, and c512, two-level c32/c128, and three-
level c32/c128/c512. We observe that higher spatial resolution corresponds to a
substantial decrease in energy loss to numerical diffusion, with spatial convergence
occurring at roughly fourth-order accuracy up to about day 4. At the highest
resolutions, the calculation of total integrated shallow-water energy is dominated
by truncation errors, leading to highly oscillatory behavior during the early part of
the simulation. Results for the two-level c32/c128 and especially the three-level
c32/c128/c512 are even more oscillatory because refinement does not necessarily
preserve total energy. Nonetheless, all the simulations show a positive mean energy
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Uniform resolution, c32

Two levels, c32/c128: 54.2% c128 coverage, with refinement threshold 0.102 day−1

Three levels, c32/c128/c512: 54.2% c128 coverage, with refinement threshold 0.102 day−1,
and 32.9% c512 coverage, with refinement threshold 0.407 day−1

Figure 9. Relative vorticity field (in units of day−1) at the final time (6 days) in the
barotropic-instability test of Section 5.3, for c32 at the coarsest level. Black contour lines
are drawn at values of the tick marks in the legend: dotted for positive and dashed for
negative. In the two-level and three-level cases shown here, the second-level grids are the
same and cover an area that coincides approximately with the northern hemisphere.
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Figure 10. Plots of maximum differences in relative vorticity (in units of day−1) between
different runs of the barotropic-instability test of Section 5.3, shown at intervals of every
half day. Plots for runs with the same finest-level resolution have the same color. Top:
difference between uniform c1024 and (left to right) uniform, two-level, and three-level
runs having resolution given in each legend. Bottom: difference between (left to right)
two-level and three-level runs and the run with uniform resolution of the finest level in
each case. On every plot, the refinement threshold of 0.102 day−1 from the coarsest level
is marked with a dashed black line.
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Figure 11. Plot of absolute value over time of the relative difference in total energy from
initial value for five different runs of the barotropic-instability test of Section 5.3. Note
that the curves for uniform c128 and for c32/c128 mostly overlap. The relative difference
is negative at all steps after the initial time in all of these simulations with the exception of
the c32/c128/c512 simulation, in which the relative difference is positive at the time steps
marked with circles on the graph; as can be seen on the graph, all of these time steps occur
before the end of day 1 and the relative difference never exceeds 2× 10−8.

loss, which suggests stability of the underlying numerical scheme. The three-level
c32/c128/c512 simulation is the only one that shows total energy higher than its
initial value at any stage of the simulation, but the stages where this occurs are all
during the first day.

5.4. Gaussian pulse. The following example is included to test high-order conver-
gence across refinement boundaries that are not characteristic. The initial velocity
is zero, and the initial height field is a function of the latitude and is specified by a
smoothed Gaussian with parameters h0 = 5000 m as background, hδ = 500 m as
maximum perturbation, and w = π/10 as angular width. With latitude φ, setting

η =

1
2π −φ

w
,

then

h(η)=
{

h0+ hδ exp(−4η2) cos6( 1
2πη) if η < 1,

h0 otherwise.
(83)
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t = 0 t = 1
2 day

Figure 12. Total-height field for the Gaussian-pulse test case of Section 5.4 at (left) initial
time t = 0 and (right) final time t = 1

2 day. The base level is c128. There are fixed grids
refined by a factor of 4 (hence a subset of c512) around the north pole, and these are shown
with darker outlines than the coarse grids. Black contour lines (dotted) are drawn on each
plot at values of the tick marks in the corresponding legend. Note the different color maps
as initial h ranges from 5000 to 5500 meters and final h ranges from 4964 to 5049 meters.

The smoothing factor cos6( 1
2πη) is present in order to ensure that h is C6. We

calculate from times 0 to 1
2 day, at which time the Gaussian has spread to the

equator.
We pick time step1t = 0.4 day/Nc, and we find cmax= 6.30 rad/day, so the CFL

number from (75) is 1.60. We run tests with uniform refinement, Nc a power of 2
and c32 up to c4096, and then with two levels, the coarser level having Nc a power
of 2 and c32 up to c1024 and the finer level, with a refinement ratio of 4, consisting
of grid cells encompassed by a square centered on the north pole, with side length
half that of the north polar panel. Figure 12 shows h at initial time 0 and final
time 1

2 in a two-level c128/c512 run. The two-level runs are chosen so as to see the
effect of a Gaussian initially contained within the finer level but then spreading past
the coarse-fine boundary. Figure 13 shows a contour plot of calculated values of h
in the two-level c128/512 run, at longitude 45◦, as a function of latitude and time.

We take the solution with uniform c4096 to be a reference to compare results
with the other resolutions. As seen in Table 3, the results approach fourth-order
accuracy.

5.5. Zonal flow over an isolated mountain. Zonal flow over an isolated mountain
is a key test of the performance of the model in the presence of topography. However,
the traditionally employed shallow-water test of [61] has the disadvantage of being
only C0, hence preventing meaningful convergence studies beyond first order.
Consequently, this paper uses a modified version of this test where the bottom
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Figure 13. Total-height field for the Gaussian-pulse test case of Section 5.4 at longitude
45◦, over all latitudes from initial time t = 0 to final time t = 1

2 day. The base level is c128,
and there is a finer level, a subset of c512, north of the refinement boundary indicated by
the solid black line. At longitude 45◦, this refinement boundary occurs at a corner of the
grids shown in Figure 12. Contour lines are shown in black for every 25 meters above
5000 meters and in white for every 25 meters below 5000 meters.

topography is given by a C3 cosine hill,

zs =
z0

4

[
1+ cos

(πr
R

)]2
, (84)

where R=π/9 and r2
=min{R2, (λ−λc)

2
+(φ−φc)

2
}. The height of the mountain

is z0 = 2000 m, and its center is at (λc, φc)= (3π/2, π/6). The initial wind field is
given by

uλ = u0 cosφ, uφ = 0 (85)

and surface-height field by

H = h0−
u0

2g
(u0+ a�) sin2 φ (86)

with background height h0 and velocity amplitude u0 chosen to be

h0 = 5960 m, u0 = 20 m · s−1. (87)
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Coarser Uniform resolution Two levels
resolution max error rate max error rate

c32 1.489× 101
1.20 1.286× 101

1.12
c64 6.499× 100

2.11 5.914× 100
2.09

c128 1.509× 100
2.90 1.390× 100

2.86
c256 2.019× 10−1

3.62 1.912× 10−1
3.61

c512 1.641× 10−2
3.95 1.561× 10−2

3.95
c1024 1.059× 10−3 1.012× 10−3

Table 3. Maximum difference between height in meters at final time with given resolutions
and with uniform c4096 reference solution, and rates of convergence, for the Gaussian-
pulse test case of Section 5.4. In the two-level runs, the refinement ratio between the
coarser and finer levels is 4, so the resolution at the finer level is c128 through c4096.

We pick time step 1t = 0.4 day/Nc, and we find cmax = 7.20 rad/day, so the
CFL number from (75) is 1.83. We calculate up to 15 days with uniform refinement,
Nc a power of 2 and c32 up to c1024.

Figure 14 shows the total height after 5, 10, and 15 days of the c128 solution.
Although the mountain shape does not exactly match [61], we still observe an
analogous appearance of a mix of large-scale Rossby waves and smaller-scale
inertia-gravity waves.

We measure the error of the solution at a given time as the difference in total
height between that solution and a c1024 reference solution. For runs with uniform
resolutions from c32 to c512, Figure 15 shows the maximum magnitude of the error
over the sphere after each day of the simulation. Note that up to day 6, the solution
approaches fourth-order convergence. Figure 15 shows a jump in the maximum
error in the c512 solution between day 6 and day 7 and a decrease in convergence
rate to third order. In this case, the error in the c512 solution at day 7 is concentrated
near one of the panel boundaries, in a region where the flow is tangent to the panel
boundary. Where panel boundaries are characteristic, we expect a drop of one order
of accuracy as is happening here in this case.

The longer-term solution approaches second-order convergence. This rate is
expected because, as shown in [35; 47], once wave-breaking occurs the kinetic
energy spectra of large-scale atmospheric flows will approach a decay rate of k−3,
corresponding to, at most, continuity of first derivatives of prognostic quantities.

Figure 16 shows the L1 norm of the error after each day of the simulation, where
the L1 norm of a function is the integral of its absolute value over the sphere:

‖ f ‖1 =
∫
| f | d A. (88)

We see from Figure 16 that the L1 norm of the error converges to fourth order with
increasing refinement.
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Total-height field: day 5

Total-height field: day 10

Total-height field: day 15

Figure 14. Total-height field for the C3 mountain test case of Section 5.5, with c128
refinement. The base of the mountain is indicated with a dashed circle. Black contour lines
(dotted) are drawn at intervals of 50 meters, at values of the tick marks in the legend.
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Figure 15. Top: plot of maximum differences over time between total height in meters
in runs with given resolutions and the c1024 reference solution, for the C3 mountain test
case of Section 5.5. Bottom: plot of convergence rate over time, expressed as the base-2
logarithm of the ratio of the differences shown in the top plot for successive resolutions
refined by a factor of 2.

6. Conclusions and future work

In this paper, we have presented a fourth-order-accurate finite-volume method
on the cubed sphere. Despite formally third-order truncation-error accuracy at
panel boundaries, the approach achieved fourth-order accuracy overall in smooth
advection and the shallow-water equation test cases, with no evidence of panel-
boundary artifacts. In addition, our results with adaptive mesh refinement show that,
by using refined grids, it is possible to obtain overall solution error comparable to
that on a uniform grid having the resolution of the finest level in the AMR hierarchy.

The next step is to extend this approach to the Euler equations on 3D thin
spherical shells and complete a battery of dry atmospheric dynamical core tests. To
that end, future work will include orography, which in 3D can be treated with several
approaches such as cut-cell methods [59; 3], immersed-boundary methods [30], or
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Figure 16. Top: plot of L1 norm of differences over time between total height in meters
in runs with given resolutions and the c1024 reference solution, for the C3 mountain test
case of Section 5.5. Bottom: plot of convergence rate over time, expressed as the base-2
logarithm of the ratio of the differences shown in the top plot for successive resolutions
refined by a factor of 2.

terrain-following coordinates [14; 46]. In the near future, we anticipate incorporate
climate cloud and radiation physics (such as that used in CESM [23]) with the goal
of applying AMR to very high-resolution climate simulations.

Appendix A: Discrete undivided differences

This appendix gives the discrete undivided difference formulae that are used in
Section 3 and their relationships to derivatives. The undivided differences are all
denoted D with a subscript of α or β to indicate the direction in which the difference
is taken and superscripts to indicate the order of the difference and whether the
results are centered on the grid cells themselves (superscript c) or on their faces
(superscript f).
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A1. First differences on grid cells: D1c{C,L,R}

{α,β}
. First differences D1cC

α and D1cC
β

on a grid cell take the 3-point centered finite-difference stencils:

(D1cC
α a)i, j =

ai+1, j − ai−1, j

2
, (D1cC

β a)i, j =
ai, j+1− ai, j−1

2
. (A-1)

One-sided differences D1c{L,R}
α are given by

(D1cL
α a)i, j =

−3ai, j + 4ai+1, j − ai+2, j

2
, (A-2)

(D1cR
α a)i, j =

ai−2, j − 4ai−1, j + 3ai, j

2
(A-3)

and one-sided differences D1c{L,R}
β by

(D1cL
β a)i, j =

−3ai, j + 4ai, j+1− ai, j+2

2
, (A-4)

(D1cR
β a)i, j =

ai, j−2− 4ai, j−1+ 3ai, j

2
. (A-5)

These differences are related to partial derivatives as

D1c{C,L,R}
α a=1α

∂a
∂α
+O((1α)3), D1c{C,L,R}

β a=1β
∂a
∂β
+O((1β)3). (A-6)

A2. Second differences on grid cells: D2c
{α,β}

. Second differences D2c
α and D2c

β

take the 3-point centered finite-difference stencils:

(D2c
α a)i, j = ai+1, j−2ai, j+ai−1, j , (D2c

β a)i, j = ai, j+1−2ai, j+ai, j−1. (A-7)

These differences are related to partial derivatives as

D2c
α a = (1α)2

∂2a
∂α2 + O((1α)4), D2c

β a = (1β)2
∂2a
∂β2 + O((1β)4). (A-8)

A3. First transverse differences on faces of grid cells: D1f
{α,β}

. The first trans-
verse differences, D1f

β on faces of constant α and D1f
α on faces of constant β, take

the 3-point centered finite-difference stencils:

(D1f
β a)i+ 1

2 , j =
ai+ 1

2 , j+1− ai+ 1
2 , j−1

2
, (A-9)

(D1f
α a)i, j+ 1

2
=

ai+1, j+ 1
2
− ai−1, j+ 1

2

2
. (A-10)

These differences are related to partial derivatives as

D1f
β a =1β

∂a
∂β
+ O((1β)3), D1f

α a =1α
∂a
∂α
+ O((1α)3). (A-11)
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A4. Second transverse differences on faces of grid cells: D2f
{α,β}

. The second
transverse differences, D2f

β on faces of constant α and D2f
α on faces of constant β,

take the 3-point centered finite-difference stencils:

(D2f
β a)i+ 1

2 , j = ai+ 1
2 , j−1− 2ai+ 1

2 , j + ai+ 1
2 , j+1, (A-12)

(D2f
α a)i, j+ 1

2
= ai−1, j+ 1

2
− 2ai, j+ 1

2
+ ai+1, j+ 1

2
. (A-13)

These differences are related to partial derivatives as

D2f
β a = (1β)2

∂2a
∂β2 + O((1β)4), D2f

α a = (1α)2
∂2a
∂α2 + O((1α)4). (A-14)

A5. Fifth differences on faces of grid cells: D5f
{α,β}

. For the artificial dissipation
in Step (9) in Section 3.4, we need fifth undivided differences on faces, from data
on grid cells:

(D5f
α a)i+ 1

2 , j = 10(ai+1, j − ai, j )− 5(ai+2, j − ai−1, j )+ ai+3, j − ai−2, j , (A-15)

(D5f
β a)i, j+ 1

2
= 10(ai, j+1− ai, j )− 5(ai, j+2− ai, j−1)+ ai, j+3− ai, j−2. (A-16)

These differences are related to partial derivatives as

D5f
α a = (1α)5

∂5a
∂α5 + O((1α)7), D5f

β a = (1β)5
∂5a
∂β5 + O((1β)7). (A-17)

Appendix B: High-order averages over grid cells and faces

We use angle brackets 〈 · 〉i, j to denote the average of a quantity over a computational
grid cell Vi, j . An average over the face of Vi, j where α = αi ±

1
21α and β ∈

[β j −
1
21β, β j +

1
21β] is denoted by 〈 · 〉i± 1

2 , j , and an average over the face where
β = β j ±

1
21β and α ∈ [αi −

1
21α, αi +

1
21α] is denoted by 〈 · 〉i, j± 1

2
.

B1. Exact 〈J〉 on grid cells. For J defined in (5), the average 〈J 〉 on a grid cell Vi, j

can be computed exactly:

〈J 〉i, j =
1

1α1β

∫ β j+
1
21β

β j−
1
21β

∫ αi+
1
21α

αi−
1
21α

J dα dβ

=
r2

1α1β

1∑
p=0

1∑
q=0

(−1)p+q tan−1 X pYq√
1+ X2

p + Y 2
q

, (B-18)

where X0 = tan(αi −
1
21α), X1 = tan(αi +

1
21α), Y0 = tan(β j −

1
21β), and

Y1 = tan(β j +
1
21β).
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B2. Exact 〈J〉 on faces of grid cells. We can also compute exactly the average
of J over faces of grid cells.

• On faces of constant α = αi +
1
21α, with β extending from β j −

1
21β to

β j +
1
21β:

〈J 〉i+ 1
2 , j =

∫ β j+
1
21β

β j−
1
21β

J dβ =
r2Y1√

1+ X2+ Y 2
1

−
r2Y0√

1+ X2+ Y 2
0

, (B-19)

where X = tan(α), Y0 = tan(β j −
1
21β), and Y1 = tan(β j +

1
21β).

• On faces of constant β = β j +
1
21β, with α extending from αi −

1
21α to

αi +
1
21α:

〈J 〉i, j+ 1
2
=

∫ αi+
1
21α

αi−
1
21α

J dα =
r2 X1√

1+ X2
1 + Y 2

−
r2 X0√

1+ X2
0 + Y 2

, (B-20)

where X0 = tan(αi −
1
21α), X1 = tan(αi +

1
21α), and Y = tan(β).

B3. High-order conversion between averaged and centered values.

• If we have a at centers of grid cells, then by expanding Taylor series, we can
obtain averages of a over grid cells:

〈a〉i, j = ai, j +
(1α)2

24

(
∂2a
∂α2

)
i, j
+
(1β)2

24

(
∂2a
∂β2

)
i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-21)

Using the discrete-differences notation of Appendix A2, this can be written as

〈a〉i, j = ai, j +
1

24(D
2c
α a)i, j +

1
24(D

2c
β a)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4), (B-22)

ai, j = 〈a〉i, j −
1
24(D

2c
α 〈a〉)i, j −

1
24(D

2c
β 〈a〉)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-23)

• With a at centers of faces of grid cells, we can also expand the Taylor series
to obtain an approximation to averages over faces:

〈a〉i+ 1
2 , j = ai+ 1

2 , j +
(1β)2

24

(
∂2a
∂β2

)
i+ 1

2 , j
+ O((1β)4), (B-24)

〈a〉i, j+ 1
2
= ai, j+ 1

2
+
(1α)2

24

(
∂2a
∂α2

)
i, j+ 1

2

+ O((1α)4). (B-25)
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Hence, taking the discrete differences of Appendix A4,

〈a〉i+ 1
2 , j = ai+ 1

2 , j +
1

24(D
2f
β a)i+ 1

2 , j + O((1β)4), (B-26)

ai+ 1
2 , j = 〈a〉i+ 1

2 , j −
1

24(D
2f
β 〈a〉)i+ 1

2 , j + O((1β)4), (B-27)

〈a〉i, j+ 1
2
= ai, j+ 1

2
+

1
24(D

2f
α a)i, j+ 1

2
+ O((1α)4), (B-28)

ai, j+ 1
2
= 〈a〉i, j+ 1

2
−

1
24(D

2f
α 〈a〉)i, j+ 1

2
+ O((1α)4). (B-29)

B4. High-order product formulae.

• As shown in [10], the average of a product of a and b over a grid cell is

〈ab〉 = 〈a〉〈b〉+
(1α)2

12
∂a
∂α

∂b
∂α
+
(1β)2

12
∂a
∂β

∂b
∂β

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-30)

Hence on Vi, j , using (A-6) with the undivided differences D1cC
α and D1cC

β from
Appendix A1,

〈ab〉i, j = 〈a〉i, j 〈b〉i, j +
1

12(D
1cC
α a)i, j (D1cC

α b)i, j +
1

12(D
1cC
β a)i, j (D1cC

β b)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4), (B-31)

and the average of one of the factors can be obtained from the average of the
product by

〈b〉i, j=

〈ab〉i, j −
1
12

(
D1cC
α

〈ab〉
〈a〉

)
i, j
(D1cC

α 〈a〉)i, j −
1

12

(
D1cC
β

〈ab〉
〈a〉

)
i, j
(D1cC

β 〈a〉)i, j

〈a〉i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-32)

In (B-32), we can substitute the one-sided D1cL
α or D1cR

α for the centered D1cC
α

if Vi−1, j or Vi+1, j , respectively, is not a grid cell of the panel containing Vi, j .
Similarly, we can substitute D1cL

β or D1cR
β for D1cC

β if Vi, j−1 or Vi, j+1, respec-
tively, is not a grid cell of the panel containing Vi, j .

• Also from [10] and using (A-11), the average of a product of a and b over the
face of a grid cell with constant α is

〈ab〉i+ 1
2 , j = 〈a〉i+ 1

2 , j 〈b〉i+ 1
2 , j +

1
12(D

1f
β a)i+ 1

2 , j (D
1f
β b)i+ 1

2 , j + O((1β)4) (B-33)

and over the face of a grid cell with constant β is

〈ab〉i, j+ 1
2
= 〈a〉i, j+ 1

2
〈b〉i, j+ 1

2
+

1
12(D

1f
α a)i, j+ 1

2
(D1f

α b)i, j+ 1
2
+ O((1α)4). (B-34)
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