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AN IMMERSED BOUNDARY METHOD FOR RIGID BODIES

BAKYTZHAN KALLEMOV, AMNEET PAL SINGH BHALLA,
BOYCE E. GRIFFITH AND ALEKSANDAR DONEV

We develop an immersed boundary (IB) method for modeling flows around fixed
or moving rigid bodies that is suitable for a broad range of Reynolds numbers,
including steady Stokes flow. The spatio-temporal discretization of the fluid
equations is based on a standard staggered-grid approach. Fluid-body interaction
is handled using Peskin’s IB method; however, unlike existing IB approaches to
such problems, we do not rely on penalty or fractional-step formulations. Instead,
we use an unsplit scheme that ensures the no-slip constraint is enforced exactly in
terms of the Lagrangian velocity field evaluated at the IB markers. Fractional-
step approaches, by contrast, can impose such constraints only approximately,
which can lead to penetration of the flow into the body, and are inconsistent for
steady Stokes flow. Imposing no-slip constraints exactly requires the solution
of a large linear system that includes the fluid velocity and pressure as well as
Lagrange multiplier forces that impose the motion of the body. The principal
contribution of this paper is that it develops an efficient preconditioner for this
exactly constrained IB formulation which is based on an analytical approximation
to the Schur complement. This approach is enabled by the near translational and
rotational invariance of Peskin’s IB method. We demonstrate that only a few
cycles of a geometric multigrid method for the fluid equations are required in each
application of the preconditioner, and we demonstrate robust convergence of the
overall Krylov solver despite the approximations made in the preconditioner. We
empirically observe that to control the condition number of the coupled linear sys-
tem while also keeping the rigid structure impermeable to fluid, we need to place
the immersed boundary markers at a distance of about two grid spacings, which is
significantly larger from what has been recommended in the literature for elastic
bodies. We demonstrate the advantage of our monolithic solver over split solvers
by computing the steady state flow through a two-dimensional nozzle at several
Reynolds numbers. We apply the method to a number of benchmark problems at
zero and finite Reynolds numbers, and we demonstrate first-order convergence of
the method to several analytical solutions and benchmark computations.
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I. Introduction

A large number of numerical methods have been developed to simulate interactions
between fluid flows and immersed bodies. For rigid bodies or bodies with prescribed
kinematics, many of these approaches [78; 13; 76; 84; 71] are based on the immersed
boundary (IB) method of Peskin [64]. The simplicity, flexibility, and power of
the IB method for handling a broad range of fluid-structure interaction problems
was demonstrated by Bhalla et al. [13]. In that study, the authors showed that the
IB method can be used to model complex flows around rigid bodies moving with
specified kinematics (e.g., swimming fish or beating flagella) as well as to compute
the motion of freely moving bodies driven by flow. In the approach of Bhalla et al.,
as well as in those of others [78; 76; 71; 84], the rigidity constraint enforcing that the
fluid follows the motions of the rigid bodies is imposed only approximately. Here
and throughout this manuscript, when we refer to the no slip condition, we mean the
requirement that the interpolated fluid velocity exactly match the rigid body velocity
at the positions of the IB marker points. In this work, we develop an effective
solution approach to an IB formulation of this problem that exactly enforces both
the incompressibility and no-slip constraints, thus substantially improving upon a
large number of existing techniques.

A simple approach to implementing rigid bodies using the traditional IB method
is to use stiff springs to attach markers that discretize the body to tether points
constrained to move as a rigid body [77]. This penalty-spring approach leads to
numerical stiffness and, when the forces are handled explicitly, requires very small
time steps. For this reason, a number of direct forcing IB methods [70] have been
developed that aim to constrain the flow inside the rigid body by treating the fluid-
body force as a Lagrange multiplier 3 enforcing a no-slip constraint at the locations
of the IB markers. However, to our knowledge, all existing direct forcing IB methods
use some form of time step splitting to separate the coupled fluid-body problem into
more manageable pieces. The basic idea behind these approaches is first to solve a
simpler system in which a number of the constraints (e.g., incompressibility, or no-
slip along the fluid-body interface) are ignored. The solution of the unconstrained
problem is then projected onto the constraints, which yields estimates of the true
Lagrange multipliers. In most existing methods, the fluid solver uses a fractional
time stepping scheme, such as a version of Chorin’s projection method, to separate
the velocity update from the pressure update [78; 76; 71]. Taira and Colonius also
use a fractional time-stepping approach in which they split the velocity from the
Lagrange multipliers (π,3). They obtain approximations to (π,3) in a manner
similar to that in a standard projection method for the incompressible Navier–Stokes
equations. A modified Poisson-type problem (see [76, Equation (26)]) determines
the Lagrange multipliers and is solved using an unpreconditioned conjugate gradient
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method. The method developed in [13] avoids the pressure-velocity splitting and
instead uses a combined iterative Stokes solver, and in [84] (see supplementary
material), periodic boundary conditions are applied, which allows for the use of a
pseudospectral method. In both works, however, time step splitting is still used to
separate the computation of the rigidity constraint forces from the updates to the
fluid variables. In the approach described in the supplementary material to [84], the
projection step of the solution onto the rigidity constraint is performed twice in a
predictor-corrector framework, which improves the imposition of the constraint;
however, this approach does not control the accuracy of the approximation of the
constraint forces. Curet et al. [25] and Ardekani et al. [5] go a step closer in the
direction of exactly enforcing the rigidity constraint by iterating the correction until
the relative slip between the desired and imposed kinematics inside the rigid body
reaches a relatively loose tolerance of 1%. The scheme used in [25] is essentially
a fixed-point (Richardson) iteration for the constrained fluid problem, which uses
splitting to separate the update of the Lagrange multipliers from a fluid update based
on the SIMPLER scheme [63]. Unlike the approach developed here, fixed point
iterations based on splitting are not guaranteed to converge, yet alone converge
rapidly, especially in the steady Stokes regime for tight solver tolerances.

An alternative view of direct forcing methods that use time step splitting is that
they are penalty methods for the unsplit problem, in which the penalty parameter
is related to the time step size. Such approaches inherently rely on inertia and
implicitly assume that fluid velocity has memory. Consequently, all such splitting
methods fail in the steady Stokes limit. Furthermore, even at finite Reynolds
numbers, methods based on splitting cannot exactly satisfy the no-slip constraint at
fluid-body interfaces. Such methods can thereby produce undesirable artifacts in
the solution, such as penetration of the flow through a rigid obstacle. It is therefore
desirable to develop a numerical method that solves for velocity, pressure, and fluid-
body forces in a single step with controlled accuracy and reasonable computational
complexity.

The goal of this work is to develop an effective IB method for rigid bodies that
does not rely on any splitting. Our method is thus applicable over a broad range
of Reynolds numbers, including steady Stokes flow, and is able to impose rigidity
constraints exactly. This approach requires us to solve large linear systems for
velocity, pressure, and fluid-body interaction forces. This linear system is not new.
For example, Equation (13) in [76] is essentially the same system of equations
that we study here. The primary contributions of this work are that we do not rely
on any approximations when solving this linear system, and that we develop an
effective preconditioner based on an approximation of the Schur complement that
allows us to solve (3). The resulting method has a computational complexity that
is only a few times larger than the corresponding problem in the absence of rigid
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bodies. In the context of steady Stokes flows, a rigid-body IB formulation very
similar to the one we use here has been developed by Bringley and Peskin [16];
however, that formulation relies on periodic boundary conditions, and uses a very
different spatial discretization and solution methodology from the approach we
describe here. Our approach can readily handle a broad range of specified boundary
conditions. In both [16] and a very recent work by Stein et al. [70] on a higher-
order IB smooth extension method for scalar (e.g., Poisson) equations, the Schur
complement is formed densely in an expensive precomputation stage. By contrast,
in the method proposed here we build a simple physics-based approximation of the
Schur complement that can be computed “on the fly” in a scalable and efficient
manner.

Our basic solution approach is to use a preconditioned Krylov solver for the
fully constrained fluid problem, as has been done for some time in the context
of finite element methods for fluid flows interacting with elastic bodies [42; 31].
A key difficulty that we address in this work is the development of an efficient
preconditioner for the constrained formulation. To do so, we construct an analytical
approximation of the Schur complement (i.e., the mobility matrix) corresponding to
Lagrangian rigidity forces (i.e., Lagrange multipliers) enforcing the no-slip condition
at the positions of the IB markers. We rely on the near translational and rotational
invariance of Peskin’s IB method to approximate the Schur complement, following
techniques commonly used for suspensions of rigid spheres in steady Stokes flow
such as Stokesian dynamics [69; 75], bead methods for rigid macromolecules
[46; 20; 61; 26] and the method of regularized Stokeslets [23; 21; 22]. In fact,
as we explain herein, many of the techniques developed in the context of steady
Stokes flow can be used with the IB method both at zero and also, perhaps more
surprisingly, finite Reynolds numbers.

The method we develop offers an attractive alternative to existing techniques in
the context of steady or nearly steady Stokes flow of suspensions of rigid particles.
To our knowledge, most other approaches tailored to the steady Stokes limit rely on
Green’s functions for Stokes flow to eliminate the (Eulerian) fluid degrees of freedom
and solve only for the (Lagrangian) degrees of freedom associated to the surface of
the body. Because these approaches rely on the availability of analytical solutions,
handling nontrivial boundary conditions (e.g., bounded systems) is complicated [86]
and has to be done on a case-by-case basis [48; 72; 73; 74; 55; 2; 56]. By contrast,
in the method developed here, analytical Green’s functions are replaced by an “on
the fly” computation that may be carried out by a standard finite-volume, finite-
difference, or finite-element fluid solver.1 Such solvers can readily handle nontrivial
boundary conditions. Furthermore, suspensions at small but nonzero Reynolds

1In this work, we use a staggered-grid discretization on a uniform grid combined with multigrid-
preconditioned Stokes solvers [34; 18].
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numbers can be handled without any extra work. Additionally, we avoid uncontrolled
approximations relying on truncations of multipole expansions to a fixed order [69;
58; 9; 32], and we can seamlessly handle arbitrary body shapes and deformation
kinematics. For problems involving active particles [53], it is straightforward to
add osmophoretic or electrophoretic coupling between the fluid flow and additional
fluid variables such as the electric potential or the concentration of charged ions
or chemical reactants. Lastly, in the spirit of fluctuating hydrodynamics [27; 50;
6], it is straightforward to generate the stochastic increments required to simulate
the Brownian motion of small rigid particles suspended in a fluid by including a
fluctuating stress in the fluid equations. We also point out that our method also has
some disadvantages compared to methods such as boundary integral or boundary
element methods. Notably, it requires filling the domain with a dense uniform fluid
grid, which is expensive at low densities. It is also a low-order method that cannot
compute solutions as accurately as spectral boundary integral formulations. We do
believe, nevertheless, that the method developed here offers a good compromise
between accuracy, efficiency, scalability, flexibility and extensibility, compared to
other more specialized formulations.

II. Semicontinuum formulation

Our notation uses the following conventions where possible. Vectors (including
multivectors), matrices, and operators are bolded, but when fully indexed down
to a scalar quantity we no longer bold the symbol; matrices and operators are
also scripted. We denote Eulerian quantities with lowercase letters, and the cor-
responding Lagrangian quantity with the same capital letter. We use the Latin
indexes i, j, k, l,m to denote a specific fluid grid point or IB marker (i.e., physical
location with which degrees of freedom are associated), the indices p, q, r, s, t to
denote a specific body in the multibody context, and Greek superscripts α, β, γ to
denote specific Cartesian components. For example, v denotes fluid velocity (either
continuum or discrete), with vαk being the fluid velocity in direction α associated
with the face center k, and V denotes the velocity of all IB markers, with V α

i being
the velocity of marker i along direction α. Our formulation is easily extended to a
collection of rigid bodies, but for simplicity of presentation, we focus on the case
of a single body.

We consider a region D⊂Rd (d = 2 or 3) that contains a single rigid body�⊂D
immersed in a fluid of density ρ and shear viscosity η. The computational domain
D could be a periodic region (topological torus), a finite box, an infinite domain, or
some combination thereof, and we will implicitly assume that some consistent set
of boundary conditions are prescribed on its boundary ∂D even though we will not
explicitly write this in the formulation. We require that the linear velocity of a given
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reference point (e.g., the center of mass of the body) U(t) and the angular velocity
�(t) of the body are specified functions of time, and without loss of generality,
we assume that the rigid body is at rest.2 In addition to features of the fluid flow,
typical quantities of interest are the total drag force F(t) and total drag torque
T (t) between the fluid and the body. Another closely related problem to which IB
methods can be extended is the case when the motion of the rigid body (i.e., U(t)
and �(t)) is not known but the body is subject to specified external force F(t) and
torque T (t). For example, in the sedimentation of rigid particles in suspension,
the external force is gravity and the external torque is zero. Handling this free
kinematics problem [14; 13] requires a nontrivial extension of our formulation and
numerical algorithm.

In the immersed boundary (IB) method [64; 37; 35], the velocity field v(r, t)
is extended over the whole domain D, including the body interior. The body is
discretized using a collection of markers, which is a set of N points that cover the
interior of the body and at which the interaction between the body and the fluid is
localized. For example, the markers could be the nodes of a triangular (d = 2) or
tetrahedral (d = 3) mesh used to discretize �; an illustration of such a volume grid
of markers discretizing a rigid disk immersed in steady Stokes flow is shown in
the left panel of Figure 1. In the case of Stokes flow, the specification of a no slip
condition on the boundary of a rigid body is sufficient to ensure rigidity of the fluid
inside the body [23]. Therefore, for Stokes flow, the grid of markers does not need
to extend over the volume of the body and can instead be limited to the surface
of the rigid body, thus substantially reducing the number of markers required to
represent the body. In this case, the markers could be the nodes of a triangulation
(d = 3) of the surface of the body; an illustration of such a surface grid of markers is
shown in the right panel of Figure 1. We discuss the differences between a volume
and a surface grid of markers in Section VII.

The traditional IB method is concerned with the motion of elastic (flexible) bodies
in fluid flow, and the collection of markers can be viewed as a set of quadrature points
used to discretize integrals over the moving body. The elastic body forces are most
easily computed in a Lagrangian coordinate system attached to the deforming body,
and the relative positions of the markers in the fixed Eulerian frame of reference
generally vary in time. For a rigid body, however, the relative positions of the
markers do not change, and it is not necessary to introduce two distinct coordinate
frames. Instead, we use the same Cartesian coordinate system to describe points in
the fluid domain and in the body; the positions of the N markers in this fixed frame
of reference will be denoted with R = {R1, . . . , RN }, where R ⊂ � for volume
meshes or R ⊂ ∂� for surface meshes.

2The case of more general specified kinematics is a straightforward generalization and does not
incur any additional mathematical or algorithmic complexity [14; 13].
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Figure 1. Two-dimensional steady Stokes flow past a periodic column of circular cylinders
(disks) at zero Reynolds number obtained using our rigid-body IB method (the same setup
is also studied at finite Reynolds numbers in Section F). The markers used to mediate the
fluid-body interaction are shown as small colored circles. The Lagrangian constraint forces
3 that keep the markers at their fixed locations are shown as colored vectors; the color of
the vectors and the corresponding marker i are based on the magnitude of the constraint
force 3i (see color bar). The fluid velocity field is shown as a vector field (black arrows)
in the vicinity and the interior of the body; further from the body, flow streamlines are
shown as solid blue lines. The magnitude of the Eulerian constraint force S3 is shown as
a gray color plot (see grayscale bar). Top panel: a volume marker grid of 121 markers is
used to discretize the disk. The majority of the constraint forces are seen to act near the
surface of the body, but nontrivial constraint forces are seen also in the interior of the body.
Bottom panel: a surface grid of 39 markers is used to discretize the disk, which strictly
localizes the constraint forces to the surface of the body.

In the standard IB method for flexible immersed bodies, elastic forces are com-
puted in the Lagrangian frame and then spread to the fluid in the neighborhood
of the markers using a regularized delta function δa (r) that integrates to unity
and converges to a Dirac delta function as the regularization width a→ 0. The
regularization length scale a is typically chosen to be on the order of the spacing
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between the markers (as well as the lattice spacing of the grid used to discretize
the fluid equations), as we discuss in more detail later. In turn, the motion of the
markers is specified to follow the velocity of the fluid interpolated at the positions
of the markers.

The key difference between an elastic and a rigid body is that, for a rigid object,
the motion of the markers is known (e.g, they are fixed in place or move with a spec-
ified velocity) and the body forces are unknown and must be determined within each
time step. To obtain the fluid-marker interaction forces 3(t)= {3i (t), . . . ,3N (t)}
that constrain the motion of the N markers, we solve for the Eulerian velocity field
v(r, t), the Eulerian pressure field π(r, t), and the Lagrangian constraint forces
3i (t) the system

ρ(∂tv+ v ·∇v)+∇π = η∇
2v+

N∑
i=1

3iδa(Ri − r),

∇·v = 0,

V i =

∫
δa(Ri − r)v(r, t) d r = 0, i = 1, . . . , N ,

(1)

along with suitable boundary conditions. In the case of steady Stokes flow, we set
ρ = 0. The first two equations are the incompressible Navier–Stokes equations with
an Eulerian constraint force

λ(r, t)=
N∑

i=1

3iδa(Ri − r).

The last condition is the rigidity constraint that requires that the Eulerian velocity
averaged around the position of marker i must match the known marker velocity
V i . This constraint enforces a regularized no-slip condition at the locations of
the IB markers, which is a numerical approximation of the true no-slip condition
on the surface (or interior) of the body. Observe that flow may still penetrate the
body in-between the markers and this leads to a well-known small but nonzero
“leak” in the traditional Peskin IB method. This leak can be greatly reduced by
adopting a staggered-grid formulation [36], as done in the present work. Other
more specialized approaches to reducing spurious fluxes in the IB method have
been developed [65; 38], but will not be considered in this work.

Notice that for zero Reynolds number, the semicontinuum formulation (1) is
closely related to the popular method of regularized Stokeslets, which solves a
similar system of equations for 3 [23; 21]. The key difference3 is that in the
method of regularized Stokeslets, the fluid equations are eliminated using analytic

3Another important difference is that we follow Peskin and use the regularized delta function both
for spreading and interpolation (this ensures energy conservation in the formulation [64]), whereas in
the method of Regularized Stokeslets only the spreading uses a regularized delta function. Our choice
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Green’s functions; this necessitates that nontrivial precomputations of these Green’s
functions be performed for each type of boundary condition [2; 56].

In this work, we treat (1) as the primary continuum formulation of the problem.
This is a semicontinuum formulation in which the rigid body is represented as a
discrete collection of markers but the fluid description is kept as a continuum, which
implies that different discretizations of the fluid equations are possible. One can, in
principle, try to write a fully continuum formulation in which the discrete set of
rigidity forces 3 are replaced by a continuum force density field λ(R ∈�, t). The
well-posedness and stability of such a fully continuum formulation is mathematically
delicate, however, and there can be subtle differences between weak and strong
interpretations of the equations. To appreciate this, observe that if each component
of the velocity is discretized with N f degrees of freedom, it cannot in general be
possible to constrain the velocity strongly at more than N f points (markers). By
contrast, in our strong formulation (1), the velocity is infinite dimensional but it
is only constrained in the vicinity of a finite number of markers. Therefore, the
problem (1) is always well posed and is directly amenable to numerical discretization
and solution, at least when it is well-conditioned. As we show in this work, the
conditioning of the fully discrete problem is controlled by the relationship between
the regularization length a and the marker spacing.

The physical interpretation of the constraint forces 3i depends on details of the
marker grid and the type of the problem under consideration. For fully continuum
formulations, in which the fluid-body interaction is represented solely as a surface
force density, the force 3i can be interpreted as the integral of the traction (normal
component of the fluid stress tensor) over a surface area associated with marker i .
Such a formulation is appropriate, for example, for steady Stokes flow. In particular,
for steady Stokes flow our method can be seen as a discretized and regularized
first-kind integral formulation in which Green’s functions are computed by the fluid
solver. This approach is different from the method of regularized Stokeslets, in
which regularized Green’s functions must be computed analytically [21; 23].

For cases in which markers are placed on both the surface and the interior of a
rigid body, the precise physical interpretation of the volume force density, and thus
of 3, is delicate even for steady Stokes flow. Notably, observe that the splitting
between a volume constraint force density and the gradient of the pressure is not
unique because the pressure inside a rigid body cannot be determined uniquely.
Specifically, only the component of the constraint force density projected onto
the space of divergence-free vector fields is uniquely determined. In the presence
of finite inertia and a density mismatch between the fluid and the moving rigid
bodies, the inertial terms in (1) need to be modified in the interior of the body [9].

ensures that the linear system we solve is symmetric and positive semidefinite, which is crucial if one
wishes to account for Brownian motion and thermal fluctuations.
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Furthermore, sufficiently many markers in the interior of the body are required to
prevent spurious angular momentum being generated by motions of the fluid inside
the body [78]. We do not discuss these physical issues in this work because they do
not affect the numerical algorithm, and because we restrict our numerical studies
to flow past stationary rigid bodies, for which the fluid-body interaction force is
localized to the surface of the body in the continuum limit.

III. Discrete formulation

The spatial discretization of the fluid equation uses a uniform Cartesian grid with grid
spacing h and is based on a second-order accurate staggered-grid finite-difference
discretization, in which vector-valued quantities, including velocities and forces,
are represented on the faces of the Cartesian grid cells, and scalar-valued quantities,
including the pressure, are represented at the centers of the grid cells [37; 35; 9;
13]. Our implicit-explicit temporal discretization of the Navier–Stokes equation is
standard and summarized in prior work; see for example the work of Griffith [35].
The key features are that we treat advection explicitly using a predictor-corrector
approach, and that we treat viscosity implicitly, using either the backward Euler or
the implicit midpoint method. For steady Stokes flow, no temporal discretization
required, although one can also think of this case as corresponding to a backward
Euler discretization of the time-dependent problem with a very large time step
size 1t . A key dimensionless quantity is the viscous CFL number β = ν1t/h2,
where the kinematic viscosity is ν = η/ρ. If β is small, the pressure and velocity
are weakly coupled, but for large β, and in particular for the steady Stokes limit
β→∞, the coupling between the velocity and pressure equations is strong.

We do not use a fractional time-stepping scheme (i.e., a projection method) to
split the pressure and velocity updates; instead, the pressure is treated as a Lagrange
multiplier that enforces the incompressibility and must be determined together with
the velocity at the end of the time step [34]; except in special cases, this is necessary
for small Reynolds number flows. This approach also greatly aids with imposing
stress boundary conditions [34]. The constraint force λ(r, t) is treated analogously
to the pressure, i.e., as a Lagrange multiplier. Whereas the role of the pressure is to
enforce the incompressibility constraint, λ enforces the rigidity constraint. Like the
pressure, λ is an unknown that must be solved for in this formulation.

A. Force spreading and velocity interpolation. In the fully discrete formulation
of the fluid-body coupling, we replace spatial integrals by sums over fluid or body
grid points in the semicontinuum formulation (1). The regularized delta function is
discretized using a tensor product in d-dimensional space (see [9] for more details),

δa(r)= h−d
d∏
α=1

φa(rα),
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where hd is the volume of a grid cell. The one-dimensional kernel function φa is
chosen based on numerical considerations of efficiency and maximized approximate
translational invariance [64]. In this work, for reasons that will become clear in
Section IV, we prefer to use a kernel that maximizes translational and rotational
invariance (i.e., improves grid-invariance). We therefore use the smooth (three-times
differentiable) six-point kernel recently described by Bao et al. [10]. This kernel is
more expensive than the traditional four-point kernel [64] because it increases the
support of the kernel to 62

= 36 grid points in two dimensions and 63
= 216 grid

points in three dimensions; however, this cost is justified because the new six-point
kernel improves the translational invariance by orders of magnitude compared to
other standard IB kernel functions [10].

The interaction between the fluid and the rigid body is mediated through two cru-
cial operations. The discrete velocity-interpolation operator J averages velocities
on the staggered grid in the neighborhood of marker i via

(J v)αi =
∑

k

vαk φa(Ri − rαk ),

where the sum is taken over faces k of the grid, α indexes coordinate directions
(x, y, z) as a superscript, and rαk is the position of the center of the grid face k in
the direction α. The discrete force-spreading operator S spreads forces from the
markers to the faces of the staggered grid via

(S3)αk = h−d
∑

i

3αi φa(Ri − rαk ), (2)

where now the sum is over the markers that define the configuration of the rigid
body. These operators are adjoint with respect to a suitably defined inner product,
J = S? = hd ST , which ensures conservation of energy [64]. Extensions of the
basic interpolation and spreading operators to account for the presence of physical
boundary conditions are described in Appendix D.

B. Rigidly constrained Stokes problem. At every stage of the temporal integrator,
we need to solve a linear system of the form A G −S

−D 0 0
−J 0 0

vπ
3

=
 g

h = 0
W= 0

 , (3)

which is the focus of this work. The right-hand side g includes all remaining fluid
forcing terms, explicit contributions from previous time steps or stages, boundary
conditions, etc. Here, G is the discrete gradient operator, D =−GT is the discrete
divergence operator, and A is the vector equivalent of the familiar screened Poisson
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(or Helmholtz) operator

A=
ρ

1t
I −

κη

h2 Lv,

with κ = 1 for the backward Euler method or for steady Stokes, and κ = 1/2
for the implicit midpoint rule. Here Lv is the dimensionless vector Laplacian
operator, which takes into account boundary conditions for velocity such as no-slip
boundaries. Since the viscosity appears multiplied by the coefficient κ , we will
henceforth absorb this coefficient into the viscosity, η← κη, which allows us to
assume, without loss of generality, that κ=1 and to write the fluid operator in the
form

A= ηh−2(β−1I −Lv). (4)

We remark that making the (3, 3) block in the matrix in (3) nonzero (i.e., regulariz-
ing the saddle-point system) is closely related to solving the Brinkman equations [17]
for flow through a permeable or porous body suspended in fluid [84]. In particular,
by making the (3, 3) block a diagonal matrix with suitable diagonal elements, one
can consistently discretize the Brinkman equations. Such regularization greatly
simplifies the numerical linear algebra except, of course, when the permeability
of the body is so small that it effectively acts as an impermeable body. In this
work, we focus on developing a solver for (3) that is effective even when there is
no regularization (permeability), and even when the matrix A is the discretization
of an elliptic operator, as is the case in the steady Stokes regime. This is the hardest
case to consider, and a solver that is robust in this case will be able to handle the
easier cases of finite Reynolds number or permeable bodies with ease.

It is worth noticing the structure of the linear system (3). First, observe that the
system is symmetric, at least if only simple boundary conditions such as periodic
or no-slip boundaries are present [34]. In the top 1×1 block, A% 0 is a symmetric
positive-semidefinite (SPD) matrix. The top left 2× 2 block represents the familiar
saddle-point problem arising when solving the Navier–Stokes or Stokes equations
in the absence of a rigid body [34]. The whole system is a saddle-point problem for
the fluid variables and for 3, in which the top-left block is the Stokes saddle-point
matrix.

C. Mobility matrix. We can formally solve (3) through a Schur complement ap-
proach, as described in more detail in Section V. For increased generality, which
will be useful when discussing preconditioners, we allow the right hand side to be
general and, in particular, do not assume that h and W are zero.

First, we solve the unconstrained fluid equation for pressure and velocity[
A G
−D 0

] [
v

π

]
=

[
S3+ g

h

]
, (5)
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where we recall that A = ηh−2(β−1I − Lv). The solution can be written as
v =L−1(S3+ g)+L−1

p h, where L−1 is the standard Stokes solution operator for
divergence-free flow (h = 0), given by

L−1
=A−1

−A−1G(DA−1G)−1DA−1, (6)

where we have assumed for now that A−1 is invertible. For a periodic system, the
discrete operators commute, and we can write

L−1
=PA−1

= (I −G(DG)−1D)A−1, (7)

where P is the Helmholtz projection onto the space of divergence-free vector
fields. We never explicitly compute or form L−1; rather, we solve the Stokes
velocity-pressure subsystems using the projection-method based preconditioner
developed by Griffith [34]. Let us define ṽ =L−1 f +L−1

p h to be the solution of
the unconstrained Stokes problem[

A G
−D 0

] [
ṽ

π̃

]
=

[
f
h

]
, (8)

giving v = ṽ+L−1S3.
Next, we plug the velocity v into the rigidity constraint, J v =−W , to obtain

M3=−(W +J ṽ), (9)

where the Schur complement or marker mobility matrix is

M= JL−1S = S?L−1S. (10)

The mobility matrix M% 0 is SPD and has dimensions d N × d N , and the d × d
block Mi j relates the force applied at marker j to the velocity induced at marker i .
Our approach to obtaining an efficient algorithm for the constrained fluid-solid
system is to develop a method for approximating the marker mobility matrix M
in a simple and efficient way that leads to robust preconditioners for solving the
mobility subproblem (9); see Section IV.

Observe that the conditioning of the saddle-point system (3) is controlled by the
conditioning of M. In particular, if the (nonnegative) eigenvalues of M are bounded
away from zero, then there will be a unique solution to the saddle-point system.
If this bound is uniform as the grid is refined, then the problem is well-posed and
will satisfy a stability criterion similar to the well-known Ladyzhenskaya–Babuska–
Brezzi (LBB) condition for the Stokes saddle-point problem (8). We investigate
the spectrum of the marker mobility matrix numerically in Section V. In practice,
there may be some nearly zero eigenvalues of the matrix M corresponding to
physical (rather than numerical) null modes. An example is a sphere discretized
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with markers on the surface: we know that a uniform compression of the sphere will
not cause any effect because of the incompressibility of the fluid filling the sphere.
This compression mode corresponds to a null-vector for the constraint forces 3; it
poses no difficulties in principle because the right-hand side in (9) is always in the
range of M. Of course, when a discrete set of markers is placed on the sphere, the
rotational symmetry will be broken and the corresponding mode will have a small
but nonzero eigenvalue, which can lead to numerical difficulties if not handled with
care.

D. Periodic steady Stokes flow. In the time-dependent context, β is finite, and it
is easy to see that A � 0 is invertible. The same happens even for steady Stokes
flow if at least one of the boundaries is a no-slip boundary. In the case of periodic
steady Stokes flow, however, A = −ηh−2Lv has in its range vectors that sum to
zero, because no nonzero total force can be applied on a periodic domain. This
means that a solvability condition is

〈S3+ g〉 = vol−1
N∑

i=1

3i +〈g〉 = vol−1 1T3+〈g〉 = 0,

where 〈 〉 denotes an average over the whole system, 1 is a vector of ones, and vol is
the volume of the domain. This is an additional constraint that must be added to the
constrained Stokes system (3) for a periodic domain the steady Stokes case. In this
approach, the solution has an indeterminate mean velocity 〈v〉 because momentum
is not conserved. This sort of approach is followed for a scalar (reaction-diffusion)
equivalent of (3) in [62, Appendix], for the traditional Peskin IB method in [77],
and for a higher-order IB method in [70].

Here, we instead impose the mean velocity 〈v〉 = 0 and ensure that the total
force applied to the fluid sums to zero, i.e., we enforce momentum conservation.
Specifically, for the special case of periodic steady Stokes, we solve the system A G −(S− vol−1 1T )

−D 0 0
−J 0 0

vπ
3

=
 g

h
W

 , (11)

together with the constraint 〈v〉 = 0, where we assume that 〈g〉 = 0 for consistency.
This change amounts to simply redefining the spreading operator to subtract the
total applied force on the markers as a uniform force density, S← S − vol−1 1T .
This can be justified by considering the unit cell to be part of an infinite periodic
system in which there is an externally applied constant pressure gradient, which
is balanced by the drag forces on the bodies so as to ensure that the domain as a
whole is in force balance [45; 52; 54].
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IV. Approximating the mobility matrix

A key element in the preconditioned Krylov solver for (3) that we describe in
Section V is an approximate solver for the mobility subproblem (9). The success
of this approximate solver, i.e., the accuracy with which we can approximate the
Schur complement of the saddle-point problem (3), is crucial to an effective linear
solver and one of the key contributions of this work.

Because it involves the inverse Stokes operator L−1, the actual Schur complement
M= S?L−1S cannot be formed efficiently. Instead of forming the true mobility
matrix, we instead approximate M ≈ M̃ by a dense but low-rank approximate
mobility matrix M̃ given by simple analytical approximations. To achieve this, we
use two key ideas:

(1) We ignore the specifics of the boundary conditions and assume that the structure
is immersed in an infinite domain at rest at infinity (in three dimensions) or
in a finite periodic domain (in two dimensions). This implies that the Krylov
solver for Equation (3) must handle the boundary conditions.

(2) We assume that the IB spatial discretization is translationally and rotationally
invariant; that is, M does not depend on the exact position and orientation
of the body relative to the underlying fluid grid. This implies that the Krylov
solver must handle any grid-dependence in the solution.

The first idea, to ignore the boundary conditions in the preconditioner, has worked
well in the context of solving the Stokes system (8). Namely, a simple but effective
approximation of the inverse of the Schur complement for (8), (DA−1G)−1, can
be constructed by assuming that the domain is periodic so that the finite difference
operators commute, and thus the Schur complement degenerates to a diagonal or
nearly diagonal mass matrix [29; 34; 18]. The second idea, to make use of the near
grid invariance of Peskin’s regularized kernel functions, has previously been used
successfully in implicit immersed-boundary methods by Ceniceros et al. [19]. Note
that for certain choices of the kernel function, the assumption of grid invariance can
be a very good approximation to reality; here, we rely on the recently developed six-
point kernel [10], which has excellent grid invariance and relatively compact support.

In the remainder of this section, we explain how we compute the entries in
M̃ in three dimensions, assuming an unbounded fluid at rest at infinity. The
details for two dimensions are given in Appendix B and are similar in nature,
except for complications for two-dimensional steady Stokes flow resulting from the
well-known Stokes paradox.

The mobility matrix M is a symmetric block matrix built from N ×N blocks of
size d×d . The block Mi j corresponding to markers i and j relates a force applied
at marker j to the velocity induced at marker i . Our basic assumption is that Mi j
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does not depend on the actual position of the markers relative to the fluid grid, but
rather only depends on the distance between the two markers and on the viscous
CFL number β in the form

M̃i j = fβ(ri j )I + gβ(ri j )r̂ i j ⊗ r̂ i j , (12)

where r i j = Ri − R j and ri j is the distance between the two markers, and hat
denotes a unit vector. The functions of distance fβ(r) and gβ(r) depend on the
specific kernel chosen, the specific discretization of the fluid equations (in our case
the staggered-grid scheme), and the viscous CFL number β. To obtain a specific
form for these two functions, we empirically fit numerical data with functions with
the proper asymptotic behavior at short and large distances between the markers.
For this purpose, we first discuss the asymptotic properties of fβ(r) and gβ(r) from
a physical perspective.

It is important to note that the true mobility matrix M is guaranteed to be
SPD because of its structure and the adjointness of the spreading and interpolation
operators. This can be ensured for the approximation M̃ by placing positivity
constraints on suitable linear combinations of the Fourier transforms of fβ(r) and
gβ(r), which ensure that the kernel M(r i , r j ) given by (12) is SPD in the sense
of integral operators. It is, however, very difficult to place such constraints on
empirical fits in practice, and in this work, we do not attempt to ensure M̃ is SPD
for all marker configurations.

A. Physical constraints. Let us temporarily focus on the semicontinuum formula-
tion (1) and ignore Eulerian discretization artifacts. The pairwise mobility between
markers i and j for a continuum fluid is

Mi j = η
−1
∫
δa(Ri − r ′′)G(r ′′, r ′)δa(R j − r ′) d r ′′d r ′, (13)

where G(r, r ′) is the Green’s function for the fluid equation, i.e., v(r)= (L−1 f )(r)
=
∫

G(r, r ′) f (r ′)d r ′, where
ρ

1t
v+∇π − η∇2v = f and ∇· v = 0. (14)

It is well-known that G has the same form as (12),

G(R1, R2)= f (r12)I + g (r12) r̂12⊗ r̂12.

For steady Stokes flow (β →∞), G ≡ O is the well-known Oseen tensor or
Stokeslet,4 and corresponds to fS(r)= gS(r)≈ (8πηr)−1. For inviscid flow, β = 0,
and we have that A= (ρ/1t)I and (7) applies, and therefore L−1

= (1t/ρ)P is

4The regularized Stokeslet of Cortez [23] is similar to (13) but contains only one regularized delta
function in the integrand; this makes the resulting mobility matrix asymmetric, which is unphysical.
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a multiple of the projection operator. For finite nonzero values of β, we can obtain
G from the solution of the screened Stokes (i.e., Brinkman) equations (14) [17; 28;
22], and corresponds to the “Brinkmanlet” [28; 22]

fB(r)=
e−αr

4πηr

((
1
αr

)2

+
1
αr
+ 1

)
−

1
4πηα2r3 ,

gB(r)=−
e−αr

4πηr

(
3
(

1
αr

)2

+
3
αr
+ 1

)
+

3
4πηα2r3 ,

(15)

where α2
= ρ/(η1t)= (βh2)−1. Note that in the steady Stokes limit, α→ 0 and

the Brinkmanlet becomes the Stokeslet.
We can use (15) to construct M̃i j when the markers are far apart. Namely, if

ri j � h, then we may approximate the IB kernel function by a true delta function,
and thus fβ(r) and gβ(r) are well-approximated by (15). For steady Stokes flow,
the interaction between markers decays like r−1. For finite β, however, the viscous
contribution decays exponentially fast as exp(−r/(h

√
β)), which is consistent with

the fact that markers interact via viscous forces only if they are at a distance not
much larger than h

√
β =
√
ν1t , the typical distance that momentum diffuses

during a time step. For nonzero Reynolds numbers, the leading order asymptotic
r−3 decay of fβ(r) and gβ(r) is given by the last terms on the right hand side of
(15) and corresponds to the electric field of an electric dipole; its physical origin is
in the incompressibility constraint, which instantaneously propagates hydrodynamic
information between the markers.5

For steady Stokes flow, we can say even more about the approximate form
of fβ(r) and gβ(r). As discussed in more detail by Delong et al. [27], for dis-
tances between the markers that are not too small compared to the regularization
length a, we can approximate (13) with (12) using the well-known Rotne–Prager–
Yamakawa (RPY) [68; 57; 80] tensor for the functions fβ(r) and gβ(r),

fR PY (r)=
1

6πηa


3a
4r
+

a3

2r3
, r > 2a,

1− 9r
32a

, r ≤ 2a,

gR PY (r)=
1

6πηa


3a
4r
−

3a3

2r3
, r > 2a,

3r
32a

, r ≤ 2a,

(16)

where a is the effective hydrodynamic radius of the specific kernel δa , defined by
(6πa)−1

=
∫
δa(r ′′)O(r ′′, r ′)δa(r ′) d r ′′d r ′. Note that for r � a the RPY tensor

5In reality, of course, this information is propagated via fast sound waves and not instantaneously.
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Figure 2. Normalized mobility functions f̃ (x) (left) and g̃(x) (right) defined similarly
to (A.1) as a function of marker-marker distance x = r/h, in three dimensions for the
six-point kernel of Bao et al. [10], over a range of viscous CFL numbers (different colors,
see legend). Numerical data is shown with symbols and obtained using a 2563 periodic
fluid grid, while dashed lines show our empirical fit of the form (A.2) for steady Stokes
(β→∞) and (A.6) for finite β. For steady Stokes flow, the numerical data is in reasonable
agreement with the RPY tensor (16) (dashed red line).

approaches the Oseen tensor and decays like r−1. A key advantage of the RPY
tensor is that it guarantees that the mobility matrix (12) is SPD for all configurations
of the markers, which is a rather nontrivial requirement [80]. The actual discrete
pairwise mobility Mi j obtained from the spatially discrete IB method is well-
described by the RPY tensor [27] (see Figure 2). The only fitting parameter in the
RPY approximation is the effective hydrodynamic radius a averaged over many
positions of the marker relative to the underlying grid [9; 27]; for the six-point
kernel used here,6 a = 1.47 h. For the Brinkman equation, the equivalent of the
RPY tensor can be computed for r ≥ 2a by applying a Faxen-like operator from the
left and right on the Brinkmanlet (see [28, Equation (26)]); the resulting analytical
expressions are complex and are not used in our empirical fitting.

B. Empirical fits. In this work, we use empirical fits to approximate the mobility.
This is because the analytical approximations, such as those offered by the RPY
tensor, are most appropriate for unbounded domains and assume the markers are
far apart compared to the width of the regularized delta function. In numerical
computations, we use a finite periodic domain, and this requires corrections to the
analytic expressions that are difficult to model. For example, for finite β, we find
that the periodic corrections to the inviscid (dipole) r−3 contribution dominate over
the exponentially decaying viscous contribution, which makes the precise form of
the viscous terms in (15) irrelevant in practice. For r � h, only the asymptotically
dominant far-field terms survive, and we make an effort to preserve those in our
fitting because the numerical results are obtained using finite systems and thus not

6As summarized in [9; 27], a ≈ 1.25h for the widely used four-point kernel [64], and a ≈ 0.91h
for the three-point kernel [67].
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reliable at large marker distances. At shorter distances, however, the discrete nature
of the fluid solver and the IB kernel functions becomes important, and empirical
fitting seems to be a simple yet flexible alternative to analytical computations. At
the same time, we feel that is important to constrain the empirical fits based on
known behavior at short and large distances.

Firstly, for r � h, the pairwise mobility can be well-approximated by the self-
mobility (r = 0, corresponding to the diagonal elements M̃i i ), for which we know
the following facts:

• For the steady Stokes regime (β → ∞), the diagonal elements are given by
Stokes’s drag formula, yielding

f∞(0)= (6πηa)−1
∼ 1/ηh and g∞(0)= 0,

where we recall that a is the effective hydrodynamic radius of a marker for the
particular spatial discretization (kernel and fluid solver).

• For the inviscid case (β = 0), it is not hard to show (see [9]) that

f0(0)=
d − 1

d
1t
ρ

V−1
m ∼ β/ηh and g0(0)= 0, (17)

where d = 3 is the dimensionality, and Vm = cV h3 is the “volume” of the marker,
where the constant cV is straightforward to calculate.

• The above indicates that fβ(0) goes from ∼ β/(ηh) for small β to ∼ 1/(ηh) for
large β. At intermediate viscous CFL numbers β, we can set

fβ(0)=
C(β)
ηh

and gβ(0)= 0, (18)

where C(β � 1)≈ 2β/(3cV ) is linear for small β and then becomes O(1) for
large β. We will obtain the actual form of C (β) from empirical fitting.

Secondly, for r�h, we know the asymptotic decay of the hydrodynamic interactions
from (15):

• For the steady Stokes regime (β→∞), we have the Oseen tensor given by

f∞(r � h)≈ g∞(r � h)≈ (8πηr)−1. (19)

• For the inviscid case (β = 0), we get the electric field of an electric dipole,

f0(r � h)≈−
1t

4πρr3 and g0(r � h)≈
31t

4πρr3 , (20)

which is also the asymptotic decay for β > 0 for r � h
√
β.

We obtain the actual form of the functions fβ(r) and gβ(r) empirically by fitting
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numerical data for the parallel and perpendicular mobilities

µ
‖

i j = r̂T
i jM̃i j r̂ i j ≈ fβ(ri j )+ gβ(ri j ) and µ⊥i j = (r̂

⊥

i j )
TM̃i j r̂⊥i j ≈ fβ(ri j ),

where r̂⊥i j · r̂ i j = 0. To do so, we placed a large number of markers N in a cube of
length l/8 inside a periodic domain of length l. For each marker i , we applied a
unit force 3i with random direction while leaving 3 j = 0 for j 6= i , solved (8), and
then interpolated the fluid velocity v at the position of each of the markers. The
resulting parallel and perpendicular relative velocity for each of the N (N − 1)/2
pairs of particles allows us to estimate fβ(ri j ) and gβ(ri j ). By making the number
of markers N sufficiently large, we sample the mobility over essentially all relative
positions of the pair of markers. For the self-mobility M̃i i (ri i = 0), we take
gβ(0)= 0 and compute fβ(0) from the numerical data.

If the spatial discretization were perfectly translationally and rotationally invariant
and the domain were infinite, all of the numerical data points for fβ(r) and gβ(r)
would lie on a smooth curve and would not depend on the actual position of the
pair of markers relative to the underlying grid. In reality, it is not possible to
achieve perfect translational invariance with a kernel of finite support [64], and
so we expect some (hopefully small) scatter of the points around a smooth fit.
Normalized numerical data for fβ(r) and gβ(r) are shown in Figure 2, and we
indeed see that the data can be fit well by smooth functions over the whole range
of distances. To maximize the quality of the fit, we perform separate fits for
β →∞ (steady Stokes flow) and finite β. We also make an effort to make the
fits change smoothly as β grows towards infinity, as we explain in more detail in
Appendix A. Code to evaluate the empirical fits described in Appendices A and
B is publicly available to others for a number of kernels constructed by Peskin
and coworkers (three-, four-, and six-point) in both two and three dimensions at
cims.nyu.edu/∼donev/src/MobilityFunctions.c.

V. Linear solver

To solve the constrained Stokes problem (3), we use the preconditioned flexible
GMRES (FGMRES) method, which is a Krylov solver. We will refer to this as
the “outer” Krylov solver, as it must be distinguished from “inner” Krylov solvers
used in the preconditioner. Because we use Krylov solvers in our preconditioner
and because Krylov solvers generally cannot be expressed as linear operators, it is
crucial to use a flexible Krylov method such as FGMRES for the outer solver. The
overall method is implemented in the open-source immersed-boundary adaptive
mesh refinement (IBAMR) software infrastructure [37]; in this work we focus on
uniform grids and do not use the AMR capabilities of IBAMR (but see [13; 14]).
IBAMR uses Krylov solvers that are provided by the PETSc library [7].

http//cims.nyu.edu/~donev/src/MobilityFunctions.c


AN IMMERSED BOUNDARY METHOD FOR RIGID BODIES 99

A. Preconditioner for the constrained Stokes system. In the preconditioner used
by the outer Krylov solver, we want to approximately solve the nested saddle-point
linear system  A G −S

−D 0 0
−J 0 0

vπ
3

=
cg

h
W

 ,
where we recall that A= (ρ/1t)I−ηh−2Lv . Let us set α=1 if A has a null-space,
(e.g., for a fully periodic domain for steady Stokes flow) and we set α = 0 if A
is invertible. When α = 1, let us define the restricted inverse A−1 to only act on
vectors of mean value zero, and to return a vector of mean zero.

Applying our Schur complement based preconditioner for solving (3) consists of
the following steps:

(1) Solve the (unconstrained) fluid subproblem,[
A G
−D 0

] [
v

π

]
=

[
g
h

]
.

To control the accuracy of the solution one can either use a relative tolerance
based stopping criterion or fix the number of iterations Ns in the inner solver.

(2) Calculate the slip velocity on the set of markers, 1V =−(J v+W).

(3) Approximately solve the Schur complement system,

M̃3=1V , (21)

where the mobility approximation M̃ is constructed as described in Section IV.

(4) Optionally, re-solve the corrected fluid subproblem,[
A G
−D 0

] [
v

π

]
=

[
g+S3−α vol−1 1T3

h

]
.

All linear solvers used in the preconditioner can be approximate, and this is in
fact the key to the efficiency of the overall solver approach. Notably, the inner
Krylov solvers used to solve the unconstrained Stokes subproblems in steps 1 and
4 above can be done by using a small number Ns of iterations using a method
briefly described in the next section. If the fluid subproblem is approximately solved
in both steps 1 and 4, which we term the full Schur complement preconditioner,
each application of the preconditioner requires 2Ns applications of the Stokes
preconditioner (22). It is also possible to omit step 4 above to obtain a block lower
triangular Schur preconditioner [30], which requires only Ns applications of the
unconstrained Stokes preconditioner (22). We will numerically compare these two
preconditioners and study the effect of Ns on the convergence of the FGMRES
outer solver in Section A.
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B. Unconstrained fluid solver. A key component we rely on is an approximate
solver for the unconstrained Stokes subproblem,[

A G
−D 0

] [
v

π

]
=

[
g
h

]
,

for which a number of techniques have been developed in the finite-element con-
text [30]. To solve this system, we use GMRES with a preconditioner P−1

S based
on the projection method, as proposed by Griffith [34] and improved to some extent
by Cai et al. [18]. Specifically, the preconditioner for the Stokes system that we
use in this work is

P−1
S =

(
I h2GL̃−1

p

0 B̃−1

)(
I 0
−D −I

)(
Ã−1 0

0 I

)
, (22)

where Lp = h2(DG) is the dimensionless pressure (scalar) Laplacian, and Ã−1 and
L̃−1

p denote approximate solvers obtained by a single V-cycle of a geometric multi-
grid solver for the vector Helmholtz and scalar Poisson problems, respectively. In
the time-dependent case, the approximate Schur complement for the unconstrained
Stokes subproblem is

B̃−1
=−

ρh2

1t
L̃−1

p + ηI,

and for steady Stokes flow, B̃−1
= ηI . Further discussion of the relation of these

preconditioners to the those described in the book [30] can be found in [34].
Observe that one application of P−1

S is relatively inexpensive and involves only
a few scalar multigrid V-cycles. Indeed, solving the Stokes system using GMRES
with this preconditioner is only a few times more expensive than solving a scalar
Poisson problem, even in the steady Stokes regime [18]. Note that it is possible to
omit the upper right off-diagonal block in the first matrix on the right hand side of
(22) to obtain a block lower triangular preconditioner that is also effective, and may
in fact be preferred at zero Reynolds number since it allows one to skip a sweep of
the pressure multigrid solver [18]. We empirically find that including the Poisson
solve (velocity projection) improves the overall performance of the outer solver.

C. Mobility solver. From a computational perspective, one of the most challenging
steps in our preconditioner is solving the mobility subproblem (21). Since this
is done inside a preconditioner, and because M̃ is itself an approximation of the
true mobility matrix M, it is not necessary to solve (21) exactly. In the majority
of the examples presented herein, we solve (21) using direct solvers provided by
LAPACK. This is feasible on present hardware for up to around 105 markers and
allows us to focus on the design of the approximation M̃ and to study the accuracy
of the overall method.
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Let us denote with s the smallest marker-marker spacing. For well-spaced mark-
ers, s/h ' 2, our approximate mobility M̃ is typically SPD even for large numbers
of markers, and in these cases, we can use the Cholesky factorization to solve (21).
In some cases, however, there may be a few small or even negative eigenvalues of M̃
that have to be handled with care. We have found that the most robust (albeit expen-
sive) alternative is to perform an SVD of M̃, and to use a pseudoinverse of M̃ (keep-
ing only eigenvalues larger than some tolerance εSV D > 0) to solve (21). This effec-
tively filters out the spuriously small or negative eigenvalues. The factorization of M̃
needs to be performed only once per constrained Stokes solve since the body is kept
fixed during a time step. In cases where there is a single body, the factorization needs
to be performed only once per simulation and can be reused; if the body is translating
or rotating, one ought to perform appropriate rotations of the right hand side and so-
lution of (21). In some cases of practical interest where the number of markers is not
too large, it is possible to precompute the true mobility M0 with periodic boundary
conditions (for a large enough domain) and to store its factorization. Even if the struc-
ture moves relative to the underlying grid, such a precomputed (reference) mobility
M0 is typically a much better approximation to the true mobility than our empirical
approximation M̃, and can effectively be used in the preconditioner. Determining
effective approaches to solving the mobility subproblem in the presence of multiple
moving rigid bodies remains future work, as discussed further in the Conclusions.

VI. Conditioning of the mobility matrix

The conditioning of the constrained Stokes problem (3) is directly related to the
conditioning of the Schur complement mobility matrix M = JL−1S, which is
intimately connected to the relation between the fluid solver grid spacing h and the
smallest intermarker spacing s. Firstly, it is obvious that if two markers i and j are
very close to each other, then the fluid solver cannot really distinguish between 3i

and 3 j and will instead effectively see only their sum. We also know that using
too many markers for a fixed fluid grid will ultimately lead to a rank-deficient M,
because it is not possible to constrain a finite-dimensional discrete fluid velocity at
too many points. This physical intuition tells us that the condition number of M
should increase as the marker spacing becomes small compared to the grid spacing.
This well-known intuition, however, does not tell us how closely the markers can or
must be placed in practice. Standard wisdom for the immersed boundary method,
which is based on the behavior of models of elastic bodies, is to make the marker
spacing on the order of half a grid spacing. As we show, this leads to extremely
ill-conditioned mobility matrices for rigid bodies. The specific results depend on the
dimensionality, the details of the fluid solver, and the specific kernel used; however,
the qualitative features we report appear to be rather general.
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Figure 3. Eigenvalue spectrum of the mobility matrix for steady Stokes flow around a
spherical shell covered with different numbers of markers (42, 162, 642, or 2562, see
legend) embedded in a periodic domain. Solid lines are for marker spacing of s ≈ 2h,
dashed-dotted lines for spacing s ≈ 1.5 h, and dashed lines for spacing of s ≈ 1h. The
marker spacing is s ≈ 1 in all cases; for s ≈ 2h, the fluid grid size is 1283 for 2562 markers
and 643 for smaller number of markers, and scaled accordingly for other spacings. For
comparison, we show the spectrum of M̃R PY for the most resolved model (N = 2562
markers) at s/h ≈ 2. Also shown is the spectrum of the empirical (fit) approximation to
the mobility M̃ for the two larger spacings; for s ≈ h our empirical approximation is very
poor and includes many spurious negative eigenvalues (not shown).

To determine the condition number of the mobility matrix, we consider “open”
and “filled” sphere models. We discretize the surface of a sphere as a shell of
markers constructed by a recursive procedure suggested to us by Charles Peskin
(private communication). We start with 12 markers placed at the vertices of an
icosahedron, which gives a uniform triangulation of a sphere by 20 triangular faces.
Then, we place a new marker at the center of each edge and recursively subdivide
each triangle into four smaller triangles, projecting the vertices back to the surface
of the sphere along the way. Each subdivision approximately quadruples the number
of vertices, with the k-th subdivision producing a model with 10 · 4k−1

+ 2 markers.
To create filled sphere models, we place additional markers at the vertices of a
tetrahedral grid filling the sphere that is constructed using the TetGen library, starting
from the surface triangulation described above. The constructed tetrahedral grids
are close to uniform, but it is not possible to control the precise marker distances
in the resulting irregular grid of markers. We use models with approximately
equal edges (distances between nearest-neighbor markers) of length ≈ s, which
we take as a measure of the typical marker spacing. We numerically computed
the mobility matrix M for an isolated spherical shell in a large periodic domain
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for various numbers of markers N . Here we keep the ratio s/h fixed and keep the
marker spacing fixed at s ≈ 1; one can alternatively keep the radius of the sphere
fixed.7 In Figure 3, we show the spectrum of M for varying levels of resolution
for three different spacings of the markers, s/h = 1, s/h = 3/2, and s/h = 2.
Similar spectra, but with somewhat improved condition number (i.e., fewer smaller
eigenvalues), are seen for nonzero Reynolds numbers (finite β).

The results in Figure 3 strongly suggest that as the number of markers increases,
the low-lying (small eigenvalue) spectrum of the mobility matrix approaches a
limiting shape. Therefore, the nontrivial eigenvalues remain bounded away from
zero even as the resolution is increased, which implies that for s/h & 1 the system
(3) is uniformly solvable or “stable” under grid refinement. Note that in the case of
a sphere, there is a trivial zero eigenvalue in the continuum limit, which corresponds
to uniform compression of the sphere; this is reflected in the existence of one
eigenvalue much smaller than the rest in the discrete models. Ignoring the trivial
eigenvalue, the condition number of M is O(N ) for this example because the
largest eigenvalue in this case increases like the number of markers N , in agreement
with the fact that the Stokes drag on a sphere scales linearly with its radius. This
is as close to optimal as possible, because for the continuum equations for Stokes
flow around a sphere, the eigenvalues corresponding to spherical harmonic modes
scale like the index of the spherical harmonic. However, what we are concerned
here is not so much how the condition number scales with N , but with the size of
the prefactor, which is determined by the smallest nontrivial eigenvalues of M.

Figure 3 clearly shows that the number of very small eigenvalues increases as we
bring the markers closer to each other, as expected. The increase in the conditioning
number is quite rapid, and the condition number becomes O(106

− 107) for marker
spacings of about one per fluid grid cell. For the conventional choice s ≈ h/2,
the mobility matrix is so poorly conditioned that we cannot solve the constrained
Stokes problem in double-precision floating point arithmetic. Of course, if the
markers are too far apart then fluid will leak through the wall of the structure. We
have performed a number of heuristic studies of leak through flat and curved rigid
walls and concluded that s/h ≈ 2 yields both small leak and a good conditioning
of the mobility, at least for the six-point kernel used here [10]. Therefore, unless
indicated otherwise, in the remainder of this work, we keep the markers about two
grid cells apart in both two and three dimensions. It is important to emphasize that
this is just a heuristic recommendation and not a precise estimate. We remark that
Taira and Colonius, who solve a different Schur complement “modified Poisson

7The scaling used here, keeping s = 1 fixed, is more natural for examining the small eigenvalues
of M, which are dominated by discretization effects, as opposed to the large eigenvalues, which
correspond to physical modes of the Stokes problem posed on a sphere and are insensitive to the
discretization details.
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equation”, recommend s/h ≈ 1 to “achieve a reasonable condition number and to
prevent penetration of streamlines caused by a lack of Lagrangian points.”

It is important to observe that putting the markers further than the traditional
wisdom will increase the “leak” between the markers. For rigid structures, the exact
positioning of the markers can be controlled since they do not move relative to
one another as they do for an elastic bodies; this freedom can be used to reduce
penetration of the flow into the body by a careful construction of the marker grid.
In Section VIII, we discuss alternatives to the traditional marker-based IB method
[38] that can be used to control the conditioning number of the Schur complement
and allow for more tightly spaced markers.

It is worthwhile to examine the underlying cause of the ill-conditioning as the
markers are brought close together. One source of ill-conditioning comes from
the discrete (finite-dimensional) nature of the fluid solver, which necessarily limits
the rank of the mobility matrix. But another contributor to the worsening of the
conditioning is the regularization of the delta function. Observe that for a true
delta function (a→ 0) in Stokes flow, the pairwise mobility is the length-scale-free
Oseen tensor ∼ r−1, and the shape of the spectrum of the mobility matrix has to be
independent of the spacing among the markers. In the standard immersed boundary
method, a ∼ h, so the fluid grid scale h and the regularization scale a are difficult
to distinguish.

To try to separate h from a, we can take a continuum model of the fluid, but keep
the discrete marker representation of the body; see (1). In this case the pairwise
mobility would be given by (13), which leads to the RPY tensor (16) for a kernel
that is a surface delta function over a sphere of radius a (see [80, Equation (4.1)]).
In Figure 3 we compare the spectra of the discrete mobility M with those of
the analytical mobility approximation M̃R PY constructed by using (16) for the
pairwise mobility. We observe that the two are very similar for s ≈ 2h, however, for
smaller spacings M̃R PY does not have very small eigenvalues and is much better
conditioned than M (data not shown). In Figure 3 we also show the spectrum
of our approximate mobility M̃ constructed using the empirical fits described
in Section IV. The resulting spectra show a worsening conditioning for spacing
s ≈ 1.5h consistent with the spectrum of M. These observations suggest that both
the regularization of the kernel and the discretization artifacts contribute to the
ill-conditioning, and suggest that it is worthwhile to explore alternative discrete
delta function kernels in the context of rigid-body IB methods.

We also note that we see a severe worsening of the conditioning of M, indepen-
dent of β, when we switch from a spherical shell to a filled sphere model. Some of
this may be due to the fact that the tetrahedral volume mesh used to construct the
marker mesh is not as uniform as the surface triangular mesh. We suspect, however,
that this ill-conditioning is primarily physical rather than numerical, and comes
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from the fact that the present marker model cannot properly distinguish between
surface tractions and body (volume) stresses. Therefore, 3 remains physically
ill-defined even if one gets rid of all discretization artifacts.

Lastly, it is important to emphasize that in the presence of ill-conditioning, what
matters in practice are not only the smallest eigenvalues but also their associated
eigenvectors. Specifically, we expect to see signatures of these eigenvectors (modes)
in 3, since they will appear with large coefficients in the solution of (9) if the right
hand side has a nonzero projection onto the corresponding mode. As expected,
the small-eigenvalue eigenvectors of the mobility correspond to high-frequency
(in the spatial sense) modes for the forces 3. Therefore, if the markers are too
closely spaced the solutions for the forces3 will develop unphysical high-frequency
oscillations or jitter, even for smooth flows, especially in time-dependent flows, as
observed in practice [82]. We have observed that for smooth flows (i.e., smooth
right hand-side of (9)), the improved translational invariance of the 6-point kernel
reduces the magnitude of this jitter compared to the traditional Peskin four-point
kernel.

VII. Numerical tests

In this section we apply our rigid-body IB method to a number of benchmark
problems. We first present tests of the preconditioned FGMRES solver, and then
demonstrate the advantage of our method over splitting-based direct forcing methods.
We further consider a simple test problem at zero Reynolds number, involving the
flow around a fixed sphere, and study the accuracy of both the fluid (Eulerian)
variables v and π , as well as of the body (Lagrangian) surface tractions represented
by 3, as a function of the grid resolution. We finally study flows around arrays
of cylinders in two dimensions and spheres in three dimensions over a range of
Reynolds numbers, and compare our results to those obtained by Ladd using the
lattice Boltzmann method [54; 52; 44].

A. Empirical convergence of GMRES. Here we consider the model problem of
flow past a sphere in a cubic domain that is either periodic or with no-slip boundaries.
Except for the largest resolutions studied here, the number of markers is relatively
small, and dense linear algebra can be used to solve the mobility subproblem (21)
robustly and efficiently, so that the cost of the solver is dominated by the fluid solver.
We therefore use the number of total applications of the Stokes preconditioner (22)
as a proxy for the CPU effort, instead of relying on elapsed time, which is both
hardware and software dependent. A key parameter in our preconditioner is the
number of iterations Ns used in the iterative unconstrained Stokes solver. We recall
that in the full preconditioner, there are two unconstrained inexact Stokes solves per
iteration, giving a total of 2Ns applications of P−1

S per outer FGMRES iteration. If
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Figure 4. FGMRES convergence for the constrained problem (3) for different numbers of
iterations Ns in the unconstrained Stokes solver used in the preconditioner. The specific
problem is a rigid sphere of hydrodynamic radius R moving through a stationary domain
of length L ≈ 4.35 R, with the marker spacing fixed at s/h ≈ 2 and the GMRES restart
frequency set to 100 iterations. Top left panel: steady Stokes (Re = 0) flow for an empty
162-marker shell and a filled 239-marker sphere moving through a periodic domain of 323

fluid grid cells. Top right panel: same as top left but for Re ≈ 10. Bottom left panel: as
top left panel but now in domain with no slip boundary conditions applied on all sides of
the domain. Bottom right panel: a spherical shell moving in a nonperiodic domain (as in
bottom left panel) for different resolutions of the shell (162, 642, 2562, and 10242 markers,
respectively) and the fluid solver grid (323, 643, 1283, and 2563 grid cells, respectively),
fixing Ns = 4, for both the full Schur complement preconditioner and the lower triangular
approximate Schur complement preconditioner.

the lower triangular preconditioner is used, then the second inexact Stokes solve is
omitted, and we perform only Ns applications of P−1

S per outer FGMRES iteration.
In the first set of experiments, we use the full preconditioner and periodic

boundary conditions. We represent the sphere by a spherical shell of markers that
is either empty (162 markers) or is filled with additional markers in the interior
(239 markers). The top panels of Figure 4 show the relative FGMRES residual as a
function of the total number of applications of P−1

S for several different choices of
Ns , for both steady Stokes flow (left panel) and a flow at Reynolds number Re= 10
(right panel). We see that for spherical shells with well-conditioned M and M̃,
the exact value of Ns does not have a large effect on solver performance. However,
making Ns very large leads to wasted computational effort by “oversolving” the
Stokes system. This degrades the overall performance, especially for tight solver
tolerance. For the ill-conditioned case of a filled sphere model in steady Stokes
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flow, the exact value of Ns strongly affects the performance, and the optimal
value is empirically determined to be Ns = 2. As expected, the linear system
(3) is substantially easier to solve at higher Reynolds numbers, especially for the
filled-sphere models.

In the bottom left panel of Figure 4 we show the FGMRES convergence for a
nonperiodic system. In this case, we know that the Stokes preconditioner P−1

S itself
does not perform as well as in the periodic case [34; 18], and we expect slower
overall convergence. In this case, we see that Ns = 2 and Ns = 4 are good choices.
Investigations (data not shown) show that Ns = 4 is more robust for problems
with a larger number of markers. Also, note that increasing Ns decreases the total
number of FGMRES iterations for a fixed number of applications of P−1

S , and
therefore reduces the overall memory usage and the number of times the mobility
subproblem (21) needs to be solved; however, note that each of these solves is just a
backward/forward substitution if a direct factorization of M̃ has been precomputed.

The bottom right panel of Figure 4 shows the FGMRES convergence for a
nonperiodic system as the resolution of the grid and the spherical shell is refined in
unison, keeping Ns = 4. The results in Figure 4 demonstrate that our linear solver
is able to cope with the increased number of degrees of freedom under refinement
relatively robustly, although a slow increase of the total number of FGMRES
iterations is observed. Comparing the full preconditioner with the lower triangular
preconditioner, we see that the latter is computationally more efficient overall; this
is in agreement with experience for the unconstrained Stokes system [18]. In some
sense, what this shows is that it is best to let the FGMRES solver correct the initial
unconstrained solution for the velocity and pressure in the next FGMRES iteration,
rather than to re-solve the fluid problem in the preconditioner itself. However, if
very tight solver tolerance is required, we find that it is necessary to perform some
corrections of the velocity and pressure inside the preconditioner. In principle,
the second unconstrained Stokes solve in the preconditioner can use a different
number of iterations N ′s from the first, but we do not explore this option further
here. Moreover, if M̃≈M (for example, if M̃ was computed numerically rather
than approximated), then the full Schur complement preconditioner will converge
in one or two iterations and there is no advantage to using the lower triangular
preconditioner.

B. Flow through a nozzle. In this section we demonstrate the strengths of our
method on a test problem involving steady-state flow through a nozzle in two
dimensions. We compare the steady state flow through the nozzle obtained using
our rigid-body IB method to the flow obtained by using a splitting-based direct
forcing approach [78; 13]. Specifically, we contrast our monolithic fluid-solid solver
to a split solver based on performing the following operations at time step n:Solve
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the fluid subproblem as if the body were not present,[
A G
−D 0

] [
ṽn+1

π̃n+ 1
2

]
=

[
gn+ 1

2

0

]
.

(1) Calculate the slip velocity on the set of markers, 1V =−(J n+ 1
2 ṽn+1

+Wn+ 1
2 ),

giving the fluid-solid force estimate 3n+ 1
2 = (ρ/1t)1V .

(2) Correct the fluid velocity to approximately enforce the no-slip condition,

vn+1
= ṽn+1

+ Sn+ 1
21V .

Note that in the original method of [13] in the last step the fluid velocity is
projected onto the space of divergence-free vector fields by re-solving the fluid
problem with the approximation A ≈ (ρ/1t) I (i.e., ignoring viscosity). We
simplify this step here because we have found the projection to make a small
difference in practice for steady state flows, since the same projection is carried out
in the subsequent time step.

We discretize a nozzle constriction in a slit channel using IB marker points about
2 grid spacings apart. The geometry of the problem is illustrated in the top panel
of Figure 5; parameters are ρ = 1, grid spacing 1x = 0.5, nozzle length l = 55.5,
nozzle opening width d ≈ 2.9, and η variable (other parameters are given in the
figure caption). No slip boundary conditions are specified on the top and bottom
channel walls, and on the side walls the tangential velocity is set to zero and the
normal stress is specified to give a desired pressure jump across the channel of
1π = 2. The domain is discretized using a grid of 256×128 cells and the problem
evolved for some time until the flow becomes essentially steady. The Reynolds
number is estimated based on the maximum velocity through the nozzle opening
and the width of the opening.

In the bottom four panels in Figure 5 we compare the flow computed using
our method (left panels) to that obtained using the splitting-based direct forcing
algorithm summarized above (right panels). Our method is considerably slower
(by at least an order of magnitude) for this specific example because the GM-
RES convergence is slow for this challenging choice of boundary conditions at
small Reynolds numbers in two dimensional (recall that steady Stokes flow in
two dimensions has a diverging Green’s function). To make the comparison fairer,
we use a considerably smaller time step size for the splitting method, so that we
approximately matched the total execution time between the two methods. Note
that for steady-state problems like this one with fixed boundaries, it is much more
efficient to precompute the actual mobility matrix (Schur complement) once at
the beginning, instead of approximating it with our empirical fits. However, for
a more fair and general comparison we instead use our preconditioner to solve
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Figure 5. Two-dimensional flow through a nozzle (top panel) in a slit channel computed
by our rigid IB method (left panels) and a simplified version of the splitting-based method
of Bhalla et al. [13] (right panels). Top panel: the geometry of the channel along with
the (approximately) steady state flow at Re≈19, as obtained using our method. The color
plot shows the pressure and the velocity is shown as a vector field. Middle panels: flow
at Re≈ 19, computed at time T = 102. For our method (left) we use a time step size of
1t = 5 · 10−2 (corresponding to advective CFL number of Umax1t/1x ≈ 0.13), while
for the splitting method (right) we use 1t = 10−3. The streamlines are traced from the
entrance to the channel for a time of Ts = 7 · 103 and shown as black lines. Bottom panels:
same as the middle row but now for Re≈ 0.2, final time T = 10 and streamlines followed
up to Ts = 4 · 104, with 1t = 0.125 for our method (left), and 1t = 10−3 for the splitting
method (right).

the constrained fluid problem in each time step anew to a tight GMRES tolerance
of 10−9. For this test we use Ns = 2 iterations in the fluid solves inside our
preconditioner.

The visual results in the right panels of Figure 5 clearly show that the splitting
errors in the enforcement of the no-slip boundary condition lead to a notable “leak”
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through the boundary, especially at small Reynolds numbers. To quantify the
amount of leak we compute the ratio of the total flow through the opening of the
nozzle to the total inflow; if there is no leak this ratio should be unity. Indeed, this
ratio is larger than 0.99 for our method at all Reynolds numbers, as seen in the lack
of penetration of the flow inside the body in the left panels in Figure 5. For Re≈ 19,
we find that even after reducing the time step by a factor of 50, the splitting method
gives a ratio of 0.935 (i.e., 6.5% leak), which can be seen as a mild penetration of the
flow into the body in the middle right panel in Figure 5. For Re≈ 0.2, we find that
we need to reduce 1t by a factor of 1250 to get a flow ratio of 0.94 for the splitting
method; for a time step reduced by a factor of 125 there is a strong penetration of
the flow through the nozzle, as seen in the bottom right panel of Figure 5.

C. Stokes flow between two concentric shells. Steady Stokes flow around a fixed
sphere of radius R1 in an unbounded domain (with fluid at rest at infinity) is
one of the fundamental problems in fluid mechanics, and analytical solutions
are well known. Our numerical method uses a regular grid for the fluid solver,
however, and thus requires a finite truncation of the domain. Inspired by the work
of Balboa Usabiaga et al. [8], we enclose the sphere inside a rigid spherical shell
of radius R2 = 4R1. This naturally provides a truncation of the domain because the
flow exterior to the outer shell does not affect the flow inside the shell. Analytical
solutions remain simple to compute and are given in Appendix C.

We discretize the inner sphere using a spherical shell of markers, since for
steady Stokes flow imposing a rigid body motion on the surface of the inner sphere

Figure 6. Marker configuration for computing Stokes flow between two concentric
spherical shells. Markers are shown as spheres with size on the order of their effective
hydrodynamic radius. The inner shell of markers is shown in red, and the outer shell of
markers is shown in gray. Left: intermediate resolution, inner shell of 162 markers and
outside shell of 2562 markers. Right: highest resolution studied here, inner shell of 642
markers and outside shell of 10242 markers.
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guarantees a stress-free rigid body motion for the fluid filling the inner sphere
[23]. We use the same recursive triangulation of the sphere, described in Section V,
to construct the marker grid for both the inner and outer shells, as illustrated in
Figure 6. The ratio of the number of markers on the outer and inner spheres is
approximately 16 (i.e., there are two levels of recursive refinement between the
inner and outer shells), consistent with keeping the marker spacing similar for the
two shells and a fixed ratio R2/R1= 4. The fluid grid size is set to keep the markers
about two grid cells apart, s ≈ 2h. The rigid-body velocity is set to V = (1, 0, 0) for
all markers on the outer shell, and to V = 0 on all markers on the inner shell. The
outer sphere is placed in a cubic box of length l = 4.15R2 with specified velocity
v = (1, 0, 0) on all of the boundaries; this choice ensures that the flow outside of
the outer shell is nearly uniform and equal to v= (1, 0, 0). In the continuum setting,
this exterior flow does not affect the flow of interest (which is the flow in-between
the two shells), but this is not the case for the IB discretization since the regularized
delta function extends a few grid cells on both sides of the spherical shell.

A spherical shell of geometric radius Rg covered by markers acts hydrodynami-
cally as a rigid sphere of effective hydrodynamic radius Rh ≈ Rg+ a [79], where a
is the hydrodynamic radius of a single marker [16; 9; 27] (we recall that for the six-
point kernel used here, a≈ 1.47 h). A similar effect appears in the lattice Boltzmann
simulations of Ladd, with a being related to the lattice spacing [54; 79; 45]. When
comparing to theoretical expressions, we use the effective hydrodynamic radii of
the spherical shells (computed as explained below) and not the geometric radii. Of
course, the enhancement of the effective hydrodynamic radius over the geometric
one is a numerical discretization artifact, and one could choose not to correct the
geometric radius. However, this comparison makes immersed boundary models
of steady Stokes flow appear much less accurate than they actually are in practice.
For example, one should not treat a line of markers as a zero-thickness object of
zero geometric radius; rather, such a line of rigidly connected markers should be
considered to model a rigid cylinder with finite thickness proportional to a [16].

We can measure the effective hydrodynamic radius Rh of a spherical shell of
markers from the drag force on a periodic cubic lattice of such objects moving with
velocity V . Specifically, we place a single shell of N markers in a triply periodic
domain with cubic unit cell of length l, set V = (1, 0, 0) on all markers, solve (3),
and measure the total drag force as F =

∑N
i=13i . The periodic correction to the

Stokes drag formula is well-known [41]:

F
ηV
=

6πRh

1− 2.8373(Rh/ l)+ 4.19(Rh/ l)3− 27.4(Rh/ l)6+ h.o.t.
, (23)

and allows us to obtain a very accurate estimate of Rh from the drag for l � Rh .
The results are given in the left half of Table 1 in the form of the dimensionless ratio
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resolution number markers number markers
grid size inner shell

Rh/Rg outer shell
Rh/Rg

303 12 1.48 162 0.93
603 42 1.22 642 0.96

1203 162 1.09 2562 0.98
2403 642 1.04 10242 0.99

Table 1. Ratio of the effective hydrodynamic and geometric radii of the inner (left half)
and outer (right half) spherical shells for simulations of steady Stokes flow around a fixed
sphere embedded within a moving spherical cavity, at different resolutions.

Rh/Rg; we see that as the resolution is increased Rh→ Rg with an approximately
linear rate of convergence, as expected. Since this computation refers to flow
outside of the shell of markers, we can call the computed Rh the effective outer
hydrodynamic radius and use it to set the value of R1 in the theory. We use a
similar procedure to measure an effective inner hydrodynamic radius R2 for the
outer spherical shell. Specifically, we obtain R2 from the drag on the inner sphere
based on the theoretical formula (C.1), where we use the previously determined
value of R1 for the effective radius of the inner sphere. The results are given in the
right half of Table 1 and again show that as the grid is refined the hydrodynamic
radii converge to the geometric ones.

1. Convergence of fluid flow (pressure and velocity). The top panel of Figure 7
shows a slice through the middle of the nested spherical shells along with the fluid
velocity v. Recall that the flow inside the inner sphere should vanish, implying
that the pressure inside the inner shell should be constant (set to zero here), and
the flow outside of the outer sphere should be uniform. The bottom right panel of
the figure zooms in around the inner sphere to reveal that there is some spurious
pressure gradient and an associated counterrotating vortex flow generated inside
the inner sphere. The bottom right panel shows the error in the computed fluid
flow (v, π), that is, the difference between the computed flow and the theoretical
solution given in Appendix C. It is clear that the majority of the error is localized in
the vicinity of the inner shell and in the interior of the inner sphere. Note that these
errors would be much larger if the theory had used the geometric radii instead of
the hydrodynamic radii for the shells.

Table 2 shows the norms of the error in the computed flow field as a function
of resolution. Asymptotically first-order convergence is observed in the L1 and
L2 norms for both the velocity and the pressure. In the L∞ norm, we expect the
velocity to also converge linearly, but we do not expect to see convergence in the
pressure, since the velocity is continuous across the interface but the pressure has a
jump; this is consistent with the numerical data.
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Figure 7. Flow field around a fixed sphere inside a moving spherical cavity. The outer
shell is discretized using 2562 markers, while the inner one has 162 markers, shown as
black circles. Top: velocity field. Bottom left: zoom of the velocity (vector field) and
pressure (color plot) around the inner shell. Bottom right: same as bottom left but now
showing the error in the velocity and pressure compared to the theoretical expressions.

markers resol ‖1v‖1/‖v‖1 rate ‖1v‖2/‖v‖2 rate ‖1v‖∞/‖v‖∞ rate

162-12 303 4.08 · 10−2 6.39 · 10−2 0.558
642-42 603 1.14 · 10−2 1.83 2.08 · 10−2 1.62 0.322 0.79

2562-162 1203 4.61 · 10−3 1.30 8.74 · 10−3 1.24 0.160 1.01
10242-642 2403 2.16 · 10−3 1.09 4.26 · 10−3 1.04 0.091 0.82

markers resol ‖1π‖1/‖π‖1 rate ‖1π‖2/‖π‖2 rate ‖1π‖∞/‖π‖∞ rate

162-12 303 0.849 0.788 1.0
642-42 603 0.567 0.58 0.486 0.70 1.0 0.0

2562-162 1203 0.344 0.72 0.275 0.82 0.860 0.22
10242-642 2403 0.196 0.81 0.164 0.75 0.704 0.29

Table 2. Normalized norms of the error in the computed velocity v (top) and the pressure
π (bottom) for steady Stokes flow around a fixed sphere embedded within a moving
spherical cavity, at different resolutions (see two leftmost columns, where “Resol” denotes
resolution grid size). An estimated order of convergence based on successive refinements
is indicated in the column to the right of the corresponding error norm.
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2. Convergence of Lagrangian forces (surface stresses). The first-order conver-
gence of the pressure and velocity is expected and well-known in the immersed
boundary community. The convergence of the tractions (σ · n) on the fluid-body
interface is much less well studied, however. This is in part because in penalty-
based or splitting methods, it is difficult to estimate tractions precisely (e.g., for
penalty methods using stiff springs, the spring tensions oscillate with time), and in
part because a large number of other studies have placed the markers too closely
to obtain a well-conditioned mobility matrix and thus to obtain accurate forces.
Furthermore, there are at least two ways to estimate surface tractions in IB methods,
as discussed in extensive detail in [81]. One method is to estimate fluid stress from
the fluid flow and extrapolate toward the boundary. Another method, which we use
here, is to use the computed surface forces 3 to estimate the tractions.

We obtain pointwise estimates of the tractions at the positions of the markers
from the relation (σ · n)(Ri )≈3i/1Ai , where 1Ai is the surface area associated
with marker i . We obtain 1Ai from the surface triangulation used to construct the
marker of grids by assigning one third of the area of each triangle to each of its
nodes. In Figure 8 we show the computed normal and tangential components of
the traction in polar coordinates, with the z symmetry axes along the direction of
the flow. The theoretical prediction given in Appendix C is shown with a black line
and is based on the geometric radii.

The top row of Figure 8 shows the computed tractions for several resolutions with
marker spacing s ≈ 2h. It is seen that as the grid is refined, the computed tractions
appear to converge pointwise to the correct values. However, the convergence is
very slow, and even for the large resolutions reported here, it is evident that the
asymptotic convergence regime has not been reached. Consequently, no precise
statement about the order of convergence can be made from these data. At lower
resolution, some of the results even show qualitatively wrong behavior. For example,
the normal traction σn = n ·σ ·n for a resolution of 42 inner and 642 outer markers
grows with θ , but the theoretical result decreases with θ . We also see scatter in the
values among individual markers, indicating that the geometrical and topological
nonuniformity of the marker grid affect the pointwise values.

Nonetheless, we remark that low-order moments of the surface tractions are much
more accurate than the pointwise tractions. For example, the total drag on the inner
sphere is much more accurate, as seen in Table 1. Other test problems not reported
here indicate that stresslets are also computed quite accurately, especially if one
accounts for the distinction between geometric and hydrodynamic radii. These
findings suggest that weak convergence of the tractions is more robust than strong
convergence. In fact, lower order moments can show reasonable behavior even if
the marker spacing is small and the pointwise forces are numerically unstable to
compute. Unsurprisingly, we find that the pointwise traction estimates are improved
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Figure 8. Convergence of surface stresses to their theoretical values for the three different
resolutions. Pointwise traction estimates are shown with symbols as a function of the angle
θ relative to the direction of the flow, while the theory is shown with a solid black line. Top
row: normal component of the traction σn = r̂ · σ · n. Center row: tangential component
of traction in direction of flow, σθ = θ̂ · σ · n. Bottom row: tangential component in the
direction perpendicular to the flow, σφ = φ̂ · σ · n, which should vanish by symmetry.
Left column: different resolutions (see legend) for a fixed spacing s ≈ 2h. Note that for
the coarsest resolution of only 12 markers on the inner sphere, the computed tractions
have values off the scale of this plot and are thus not shown. Right column: the most
resolved case of 2562–162 markers for different spacing between markers, as indicated
in the legend. Note that using s ≈ h leads to severe ill-conditioning and the computed
tractions show random scatter well beyond the scale of the plot and are thus not shown.

as the spacing among the markers is increased; see the bottom row in Figure 8.
The improvement is not only due to the reduction of the scatter, as expected from
the improvement in conditioning number of the mobility matrix, but also due to
global reduction of the error in the tractions; the observed global reduction may,
however, be specific to steady Stokes flow. For widely spaced markers, however,
the error in the computed flow field will increase because the flow will penetrate
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the shell boundary. This once again demonstrates the delicate balance that is
required in choosing the marker spacing for rigid bodies, as we discuss further in
the Conclusions.

D. Steady Stokes flow around sphere in a slit channel. In this section we study a
problem at zero Reynolds numbers with nontrivial boundary conditions, namely,
steady Stokes flow around a sphere in a slit channel (flow between two parallel
walls). It is well-known that computing flows in such geometries using Green’s
function based methods such as boundary-integral methods is highly nontrivial [51;
59; 73]. Specific methods for spheres in a channel have been developed [15] but
these are not general, in particular, flow in a square channel requires a different
method, and incorporating the periodicity in some of the dimensions is nontrivial
[1; 59]. At the same time, we wish to point out that boundary-integral methods have
some advantages over our IB method as well. Notably, they are considerably more
accurate, and handling domains unbounded in one or more directions is possible by
using the appropriately decaying Green’s function.

Unlike the case of a single no-slip boundary, writing down an analytical solution
for slit channels is complex and requires numerically evaluating the coefficients in
certain series expansions [73]. For the component of the mobility µ= F/V of a
sphere in an infinite slit channel, Faxen has obtained exact series expansions for
the mobility at the half and quarter channel locations,

µ‖

(
H = d

2

)
=

1
6πηRh

[
1− 1.004 Rh

H
+ 0.418

R3
h

H 3
+ 0.21

R4
h

H 4
− 0.169

R5
h

H 5
+ · · ·

]
,

µ‖

(
H = d

4

)
=

1
6πηRh

[
1− 0.6526 Rh

H
+ 0.1475

R3
h

H 3
− 0.131

R4
h

H 4
− 0.0644

R5
h

H 5
+ · · ·

]
,

(24)

where Rh is the (hydrodynamic) radius of the sphere, H is the distance from the
center of the particle to the nearest wall, and d is the distance between the walls.

To simulate a spherical particle in a slit channel we place a single spherical shell
with different number of IB markers in a domain of size L×L×d , at either a quarter
or half distance from the channel wall. No slip walls are placed at z = 0 and z = L ,
and periodic boundary conditions are applied in the x and y directions. For each L ,
we compute an effective hydrodynamic radius RL by assuming (24) holds with Rh

replaced by RL . We know that as L→∞ we have RL → Rh , however, we are not
aware of theoretical results for the dependence RL(L) at finite L . In Figure 9, we
plot RL/Rh − 1 versus Rh/L for d ≈ 8Rh . Here the effective hydrodynamic radius
of the shell Rh is estimated by using (23), as shown in Table 1 (see inner radius).
We see that we have consistent data for RL(L) among different resolutions, and we
obtain consistency in the limit L→∞. This indicates that even a low-resolution
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Figure 9. Effective hydrodynamic radius RL (L) of a sphere of hydrodynamic radius Rh ,
translating parallel to the walls of a slit channel of dimensions L × L × d. Red symbols
are for the sphere at the midplane of the channel, H/d = 0.5, and blue symbols are for
H/d = 0.25; these two give different dependence RL (L) as expected. The channel width is
taken d ≈ 8RH and different numbers of markers are used for the sphere (see legend), and
the grid spacing is set to give a marker spacing s as close as possible to a/s ≈ 0.5. Note
that similar to the example of flow between concentric spheres the correct value of the drag
is determined by the larger hydrodynamic and not by the geometric radius of the shell.

model with as few as 12 markers offers a reasonably accurate model of a sphere of
effective radius Rh , independent of the boundary conditions.

E. Steady Stokes flow around cylinders. Here we study the drag force on a peri-
odic square array of cylinders (i.e., disks in two dimensions) with lattice spacing l.
The corresponding study in three dimensions is presented in Section G. The analog
of (23) in two dimensions for dilute systems is [41; 52]

F
ηV
=

4π
− ln(
√
φ)− 0.738+φ− 0.887φ2+ 2.038φ3+ O

(
φ4
) , (25)

where φ = πR2
h/ l2 is the packing fraction of the disks and Rh is the hydrodynamic

radius of the cylinder, which is defined from (25). Observe that in two dimensions,
there is no limit as φ→ 0, in agreement with Stokes’s paradox for flow around a
single cylinder; one must account for inertial effects for very small volume fractions
in order to obtain physically relevant results. Table 3 reports Rh for several different
marker models of a cylinder, as estimated by computing the drag for a range of
packing fractions and extrapolating to φ � 1 using (25). As expected, the more
resolved the cylinder, the closer Rh is to Rg. Filling the cylinder with markers
both substantially enlarges the effective hydrodynamic radius and also degrades the
conditioning of the mobility matrix, and is therefore not advised at zero Reynolds
number.
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number markers surface markers interior markers Rh/Rg

39 shell 39 0 1.04
121 cylinder 37 84 1.15

100 shell 100 0 1.02
834 cylinder 100 734 1.03

Table 3. Hydrodynamic radii of several discretizations of a cylinder with different numbers
of markers on the surface and the interior of the body, keeping s/h ≈ 2. Two models have
markers only on the surface of the cylinder (see Figure 12, right panel, for a 39-marker
shell). The rest of the models are constructed from a regular polar grid of markers filling
the interior of the cylinder (see Figure 12, left panel, for a 121-marker cylinder).

Another interesting limit for which there are theoretical results is the dense limit,
in which the disks/cylinders almost touch, so that there is a lubrication flow between
them. In this limit [52],

F
ηV
≈

9π

2
3
2

ε−
5
2 , (26)

where ε= 1−
√

4φ/π = (l−2Rh)/ l is the relative gap between the particles. Note
that because the number of hydrodynamic cells must be an integer, we cannot get
an arbitrary gap between the cylinders for a given cylinder model and fixed s/h
(i.e., a fixed Rh/Rg). Also note that when the gap between the cylinders is too
small, the kernels from markers on two cylinders start to overlap, and the problem
becomes ill-conditioned; we have been able to compute reliable results down to a
relative gap of ε & 10−2 for the resolutions studied here.

Numerical results for the normalized drag over a broad range of volume fractions
are shown in Figure 10 and compared to results obtained using an in-house two-
dimensional version of the spectrally accurate boundary integral method proposed
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Figure 10. The drag coefficient for a periodic array of cylinders in steady Stokes flow for
different resolutions (see Table 3). Left: as function of volume fraction, compared to the
results of a highly accurate boundary-integral method. Right: zoom in for close-packed
arrays with interparticle gap plotted on a log scale to show the asymptotic ε−5/2 divergence
of the lubrication force.
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in [1]. We obtain very good agreement, similar to that observed using the lattice
Boltzmann method [52], indicating that even moderately resolved cylinders are
good representations so long as one uses their hydrodynamic rather than their
geometric radius when computing the effective volume fraction. In particular, in the
right panel, we obtain excellent agreement with the lubrication result (26), seeing
an increase in the drag of over six orders of magnitude consistent with theory.
Of course, the IB method results for the drag do not have a true divergence as
ε→ 0 because of the regularization of the singular kernel; one must use adaptively
refined nonregularized boundary integral methods to truly resolve the divergence.
In practice, however, effects not included in the theoretical model, such as surface
roughness or partial slip, will mollify the unphysical divergence.

F. Unsteady flow around cylinders. Next, we examine the ability of our rigid-body
IB method to model unsteady two-dimensional flow around cylinders (disks). We
define Reynolds number by

Re=
ρV Rh

η
=

V Rh

ν
,

where Rh is the hydrodynamic radius of the cylinder measured at Re = 0 (see
Table 3), and V is the velocity of the incident flow. For small Reynolds numbers,
the mean drag per unit length F is given [52] by

F
ηV
= k0+ k2Re2,

where k0 (φ) and k2 (φ) are constants that depend on the packing fraction φ (defined
using the hydrodynamic radius). In the range Re∼2−5, the drag becomes quadratic
in the flow rate [52], and for moderate Reynolds numbers, a drag coefficient is
defined from the empirical relation

CD =
F

ρV 2 Rh
.

As the Reynolds number is increased, the flow becomes unsteady and vortex
shedding occurs, and eventually there is a transition to three-dimensional flow. Here
we focus on steady flow at Re≤ 100.

A staggered-grid variant of the piecewise-parabolic Godunov method is used for
spatial discretization of the advective terms, as explained in detail by Griffith [34].
In our tests, the time step size is determined by fixing the advective Courant number
V1t/h = 0.1; this value is well bellow the stability limit and ensures that the
discretization errors coming from the (unconstrained) fluid solver are small. The
Adams–Bashforth method is used to handle advection explicitly. The viscous terms
are handled implicitly using the backward Euler method rather than the implicit
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midpoint rule because we are interested in steady states and not transient phenomena.
We initialize the simulations with the fluid moving at a uniform velocity but allow
enough time for a steady-state to be reached.

1. Drag on periodic array of disks. The permeability of a periodic array of aligned
cylinders is a well-studied problem and can be computed by placing a single cylinder
in a periodic domain. To create flow through the periodic system, we follow Ladd
et al. [45; 52] and apply a constant body force f throughout the domain (including
in the interior of the body). We solve the constrained time-dependent problem to
a steady state, keeping the cylinder at rest, and measure the average velocity in
the domain, v̄ = vol−1 ∫

V v d r . In two spatial dimensions, the dimensionless drag
coefficient is defined by

k =
Fx

ηv̄x
,

where the force F = vol f = −1T3 is the total force applied to the fluid, which
must also equal the negative of the total force exerted on the rigid body.

Theory suggests that the correction to the drag scales as Re2 for small Reynolds
numbers due to the antisymmetry of the correction to the flow (relative to steady
Stokes) of order Re [52], so that

k = k0+ k2Re2, (27)

where the values k0(φ) and k2(φ) depend on the packing fraction φ. To obtain
k0, we move the body at a constant velocity and obtain the drag force 1T3 from
the solution of the constrained steady Stokes problem (11). Because marker-based
models of rigid bodies do not have perfect symmetry, the force f 0=− vol−1 (1T3)

has small nonzero components in the direction perpendicular to the flow. To ensure
that in the limit Re→ 0+ we have perfect consistency between the finite Re and
zero Re computations, we use the force f = (k/k0) f 0 to drive the flow at finite
Re numbers. Note that it can take thousands of time steps for the steady state to be
established for Re & 1; to accelerate convergence, we initialize the computation for
a given Re from the steady state for the closest smaller Re. Also note that the exact
mobility matrix M and its factorization can be precomputed once at the beginning
and used repeatedly for these steady-state calculations.

Figure 11 shows the dimensionless excess drag k − k0 as a function of Re at
packing fraction φ = 0.193, which is close to the packing fraction φ = 0.2 studied
using the lattice Boltzmann method in [52]. We see very good agreement of the
theoretical formula (27) with our results using the values of k0= 49.2 and k2= 0.24,
which are in good agreement with the values of k0 = 51.2 and k2 = 0.26 given in
Figure 1 of [52].
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Figure 11. The dimensionless excess (over Stokes flow) drag coefficient for a square array
of disks with packing fraction φ ≈ 0.193 (129-marker filled cylinder model, fluid grid of
642 cells). Comparison is made to known small-Re dependence of the form k0+ k2Re2,
with the coefficients k0 and k2 taken from the work of Koch and Ladd [52] at φ = 0.2.

2. Flow past a periodic column of cylinders. Here we compute several solutions for
flow past a column of cylinders at somewhat larger Reynolds numbers, mimicking
the setup of Ladd [54]. The domain is a long narrow channel of 2048× 128 grid
cells8 with grid spacing h = 0.5, keeping the markers at a distance 2h. Periodic
boundary conditions are used in the direction of the short side of the channel (y).
The flow is driven by “uniform” inflow and outflow boundary conditions in the
long direction (x). Specifically, we impose a specified normal velocity V and zero
tangential velocity at both ends of the channel.9 The center of the cylinder is fixed
at a quarter channel length from the inlet. The cylinders in the periodic column are
separated by approximately 10 hydrodynamic radii in the y direction (the separation
is 9.958Rh for the 121-marker cylinder, and 9.875Rh for the 39-marker shell).

Representative flow fields are shown in Figure 12 for Re= 10 for a filled cylinder
model (left) and an empty shell model (right). Note that for the computation of
total drag on a fixed cylinder either model can be used since the spurious flow seen
inside the empty shell does not generate any overall acceleration of the fluid inside
the body. Also note that the spurious counterrotating vortex pair inside the shell
diminishes under refinement, at an approximately linear convergence rate, just as
for steady Stokes flow. Computed drag coefficients k and wake lengths are shown
in Table 4, and good agreement is seen with the results of lattice Boltzmann and
finite difference schemes [54]. The wake length measures the distance from the

8For very elongated domains, our multigrid-based preconditioner converges much faster for grid
sizes that are powers of two.

9An alternative is to use zero tangential stress on both boundaries, or zero normal and tangential
stress on the outflow; such stress boundary conditions are supported in the fluid solver in the IBAMR
library [34].
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Figure 12. Steady incompressible flow at Re = 10 past a periodic column of cylinders
represented as either filled disks of 121 markers (top) or a shell of 39 markers (bottom). We
show the magnitude of the Eulerian constraint force S3 (gray color map), the streamlines
outside of the wake (solid blue lines), the wake velocity field (black arrows), and the
Lagrangian constraint forces associated with each marker (color arrows). The red arrow
marks the stagnation point where vx = 0, as used to determine the wake length.

cylinder center to the stagnation point, which is obtained by finding the largest x
coordinate on the contour of zero horizontal velocity, vx = 0.

G. Flow past periodic arrays of spheres. Finally, we study the drag on a cubic
arrays of spheres of radius a at zero and finite Reynolds numbers, and compare
our results to those of Hill et al. [45]. At small packing (volume) fractions φ and
Reynolds numbers, according to Equations (1-2) in [44], F− F0 = 3Re/8+h.o.t. if
√
φ�Re� 1, or, more relevant to our study, F− F0 ∼Re2/

√
φ if Re�

√
φ� 1.

For small Re and at larger densities, the theoretical arguments in [45; 52] predict
that the dimensionless drag is quadratic in Re because the linear term vanishes by
symmetry, so that

k =
F

6πηaV
≈ k0+ k2Re2.
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Re 121 cyl 39 shell LB FD

5 4.31 4.35 4.21 4.32
10 2.96 2.99 2.91 2.98
20 2.16 2.19 2.17 2.19

50 1.55 1.58 1.67 1.61

Re 121 cyl 39 shell LB FD

5 1.52 1.40 1.5 1.49
10 2.55 2.59 2.6 2.65
20 4.50 4.61 4.7 4.74
50 9.96 9.91 10.7 10.3

Table 4. Numerical results for steady flow past a periodic column of cylinders at different
Reynolds number, for two different models of the body (see Figure 12), either a filled
cylinder or an empty shell of markers. For comparison we reproduce the results in Table 5
in [54], which are computed either using either a lattice Boltzmann (LB) or a finite
difference (FD) method. Top half: mean drag coefficient. Bottom half: wake length in
units of Rh .

For larger Re, the dependence is expected to switch to linear in Re.
Here we focus on close-packed cubic lattices of spheres with packing fraction

φ = π/6 ≈ 0.5236. Note that unlike the case of two spatial dimensions, in three
dimensions the flow does not need to squeeze in-between the (nearly) touching
bodies, so the drag does not diverge even at close packing. The value of the steady
Stokes drag k0 is tabulated in Table 5 for several resolutions. Different resolutions
are examined: an empty shell (see Table 1) of 162 (grid size is 163) or 642 markers
(303 grid), as well as a filled sphere of 56 (42 on the surface, 103 grid) or 239 (162
on the surface, 163 grid) markers; the actual value of the packing fraction based on
the effective hydrodynamic radius of the model is indicated in the table. A large
difference is seen between the filled and empty shell models at this high packing
fractions because the spheres are very close to each other and discretization artifacts

number of markers φ k0

56 filled 0.5236 40.08
239 filled 0.5238 40.73

162 shell 0.5213 44.49
642 shell 0.5236 43.29

Table 5. Dimensionless drag force k0 for steady Stokes flow (Re= 0) past a simple-cubic
array of spheres at volume fraction φ ≈ π/6 (close packing). For the highest-resolution
LB simulations in [54] the reported value is k0 = 42.8.



124 KALLEMOV, BHALLA, GRIFFITH AND DONEV

become pronounced. We have also performed simulations at a lower (but still high)
packing fraction of φ = 0.44, and there we see much better agreement between
the filled and empty sphere models; note that at small φ� 1 the value of k0 must
match among resolutions since we define the packing fraction from Rh , which is
itself determined from the value of k0 at small φ using (25).

Numerical results for the dimensionless drag coefficient k near the close-packed
density φ ≈ 0.52 are shown in Figure 13. Because our discrete models of spheres
do not have the same symmetry as a perfect sphere, we numerically observe a small
O(Re) correction that can dominate the true correction k2Re2 for Re� 1; this is
especially evident in the right panel of Figure 13 for coarsely resolved models (e.g.,
a 56-marker sphere).10 Empirical fits to literature data for k0, k1, k2, and the range
of Re values over which the various fits are valid are tabulated in [12]. Figure 13

10In two dimensions, we can more easily make the discrete models symmetric and this is why
Figure 11 does not show deviations from the expected quadratic behavior even at rather small Re.
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Figure 13. Numerical values (symbols) for the drag coefficient of a periodic array of
spheres close packed in a cubic lattice of volume fraction φ = π/6 ≈ 0.52, for several
resolutions (see legend), using a linear (top) or log scaling (bottom). Comparison is
made to empirical formulas given in [12] (lines), as well as lattice Boltzmann results for
close-packed cubic arrays given in Table 6 of [54] (crosses).
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compares our results to these fits, as well as to reference results obtained using the
lattice Boltzmann method [54] at close packing. We observe the expected switch
from linear to quadratic dependence on Re and also a reasonable agreement with
the literature data, and the agreement appears to improve with increasing resolution.

VIII. Conclusions

This paper develops an immersed boundary method that enforces strict rigidity
of immersed bodies at both zero and finite Reynolds numbers. Unlike existing
approaches, we do not rely on penalty or splitting approaches, and we instead
directly solve a saddle-point system that couples the fluid velocity and pressure to
the unknown rigidity forces. We developed a physics-inspired approximation M̃
to the Schur complement (mobility matrix) M of the constrained system, based on
analytical considerations for a continuum fluid model, and demonstrated that this
leads to a robust preconditioner so long as the immersed boundary markers are kept
sufficiently far to ensure a well-conditioned mobility matrix. Contrary to common
practice, we found that the markers should be kept approximately two fluid grid cells
apart in rigid-body models in order to obtain accurate and stable pointwise estimates
for the traction. We tested our method on a number of standard test problems in
both two and three spatial dimensions, and at both zero and finite Reynolds number,
and we observed good agreement with theory and literature values. Although in
this work we focused on rigid bodies, our method can directly be applied to study
fluid flow around bodies with specified kinematics. For example, it can be used
to model the flow around a swimming body deforming with a specified gait. We
have implemented the method described here in the open-source IBAMR software
infrastructure [37] in the hope it will be useful to other users of the IB method.

Another challenge that we did not explore here is the efficient computation
of the action of M̃−1 when there are many markers present; there are many
approximate solvers and emerging fast solvers we plan to explore in the future.
Of course, using dense linear algebra to solve (21) is likely to be suboptimal,
as these solves have O(N 2) memory complexity and O(N 3) time complexity.
The problem of solving a linear systems similar in structure to (21) appears in
many other methods for hydrodynamics of suspensions, including Brownian [43;
49] and Stokesian [69] dynamics, the method of regularized Stokeslets [21; 23],
computations based on bead models of rigid bodies [46; 20; 61; 26], and first-kind
boundary integral formulations of Stokes flow [66]. Similar matrices appear in
static Poisson problems such as electrostatics or reaction-diffusion models [62],
and there is a substantial ongoing work that can be applied to our problem. Notably,
the approximate mobility matrix M̃ is dense but has a well-understood low-rank
structure that can be exploited. Specifically, matrix-vector products M̃3 can be
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performed in almost linear time using the Fast Multipole Method [57]. If the
condition number of M̃ is not too large, one can solve linear systems involving M̃
efficiently using an unpreconditioned Krylov solver. For poorly conditioned cases,
however, a good preconditioner based on an approximate factorization of M̃ is
required. In recent years, several approximate low-rank factorizations of matrices
of this type have been developed [3; 47; 4], and can be used as preconditioners
in Krylov methods. We have had reasonable success using a fast hierarchically
off-diagonal low-rank (HODLR) factorization code developed by Ambikasaran and
Darve [3], with significant improvement offered by a recently developed boundary
distance low-rank approximation [4]. Preliminary results indicate great promise for
the inverse fast multipole (iFMM) method [24]; we have been able to use iFMM
to solve the system (21) for as many as 5 · 105 markers to a relative tolerance of
10−8. These methods are, however, still under active development, and a significant
amount of investigation is necessary to integrate them into the method described
here. Notably, we only require an approximate solver for (21) and the impact of the
inaccuracy in solving (21) on the overall convergence of the outer Krylov solver
needs to be assessed.

The type of linear system we solve here is closely connected to those appearing in
implicit immersed boundary methods [60; 39; 85]. It is in fact possible to recast the
saddle-point problem we consider here into a form closely related to that appearing
in implicit IB methods; the Schur complement for this system is in Eulerian rather
than Lagrangian variables as it was for this work, and involves the matrix

Lv + κS (JS)−1 J , (28)

for some constant κ that need not go to infinity. It may be that geometric multigrid
methods [39] developed for implicit IB methods can be applied to the Eulerian Schur
complement (28). At the same time, techniques developed herein may be useful
in the development of more efficient implicit IB methods for nearly rigid bodies.

Our work is only the first step toward the ultimate goal of developing methods able
to handle large numbers of rigid bodies in flow. Several computational challenges
need to be tackled to realize this goal. Firstly, and most importantly, it is crucial to
develop a preconditioner for the enlarged linear system that appears in the context of
freely moving rigid bodies. An additional Schur complement appears when solving
this saddle-point problem, and the challenge for future work is approximating
the body mobility matrix N = (K?M−1K)−1. Initial investigations have shown
great promise in block-diagonal preconditioners with one block per body. In this
approach, we neglect the hydrodynamic interactions between bodies, but use the
mobility approximation developed in this work together with dense linear algebra
for each body.
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In the marker-based method described in this work, one must adjust the marker
spacing to be “neither too small nor too large”. The sensitivity of the solver perfor-
mance and the numerical results to the exact spacing of the markers, which comes
from the ill-conditioning of the mobility matrix, is one of the key deficiencies of the
marker-based representation inherent to the traditional IB method. Recently, Griffith
and Luo have proposed an alternative IB approach that models the deformations and
stresses of immersed elastic body using a finite element (FE) representation [38].
In their IB/FE approach, the degrees of freedom associated with 3 are represented
on an FE mesh that may be coarser than the fluid grid, and the interaction between
the fluid grid and body mesh is handled by placing IB markers at the numerical
quadrature points of the FE mesh. When such an approach is generalized to rigid
bodies, the conditioning of the mobility becomes much less sensitive to the marker
spacing. Using a finite-element basis to represent the unknown fluid-body interaction
force amounts to applying a filter9 to the marker-based mobility matrix, which is a
well-known and robust technique to regularize ill-conditioned systems. Specifically,
in the context of the IB/FE approach, the mobility operator becomes

MF E =9(JL−1S)9T
=9M9T,

where 9 is a matrix that contains quadrature weights as well as geometric informa-
tion about the relation between the nodes and quadrature points of the FE mesh.
The FE mobility matrix MF E is still symmetric, but now can be much smaller
because the number of unknowns is equal to the number of FE degrees of freedom
rather than the number of markers. Even if markers are closely spaced, the filtering
of the high-frequency modes performed by representing forces in a smooth FE
basis makes the mobility much better conditioned than for marker-based schemes.
Furthermore, the mobility matrix, or approximations of it used for preconditioning,
will be smaller and thus easier to fit in memory. We also expect the resulting method
to be more accurate because the tractions are represented in a smoother basis. We
will explore this promising extension of our rigid-body IB methods in future work.

Appendix A: Approximating the mobility in three dimensions

In this appendix we give the details of our empirical fits for the approximations
to the functions fβ(r) and gβ(r) in (12) in three spatial dimensions, following the
physics-based constraints discussed in Section IV. To maximize the quality of the
fit, we perform separate fits for β→∞ (steady Stokes flow) and finite β. We also
make an effort to make the fits change smoothly as β grows towards infinity.

1. Steady Stokes flow. Because our numerical computations are done in a periodic
domain of length l rather than an unbounded domain, we need to apply a well-known
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correction to the Oseen tensor [41; 9],

f∞(h� r � l)≈ (8πηr)−1
− 2.84(6πηl)−1.

From the numerical data, we calculated the normalized functions

f̃ (x)= (8πηr)( f∞(r)+ 2.84/(6πηl)−1),

g̃(x)= (8πηr)g∞(r),
(A.1)

where x = r/h is the normalized distance between the markers. As explained
previously, we know that f̃ ≈ (8πηr)/(6πηa) = 4r/(3a) for x � 1 (in practice,
markers are never too close to each other so we only need the self-mobility, i.e.,
x = 0), and that g̃ grows at least quadratically for small x (since g(0)= 0). We also
know that f̃ ≈ 1 and g̃ ≈ 1 for large r � h. The numerical data for the normalized
functions f̃ (x) and g̃(x) are shown in Figure 2 along with fits to the following
semiempirical rational functions,

f̃ (x)=


x

(3a)/(4h)+ b0x2 if x < 0.8,

b1xe−b2x
+

b3x2
+ x4

1+ b4x2+ x4 if x ≥ 0.8,

g̃(x)=
x3

b5+ b6x2+ x3 .

(A.2)

As the figure shows, the numerical data are well described by these formulas,
and there is only small scatter of the numerical data around the fit, indicating
approximate discrete translational and rotational invariance.11 We also obtain
a reasonable agreement with the RPY tensor (16) approximation; however, as
expected, the empirical fits yield a better match to the data.

2. Nonzero Reynolds numbers. For finite β, we consider separately the case r = 0
(giving the diagonal elements M̃i i ) and r > 0.1h (giving the off-diagonal elements).
For r = 0 we use an empirical fit designed to conform to (18),

ϕ0 (β)=
ηh fβ(0)
β

=
1+ z1

√
β + z2β

z0+ z3β + 6π(a/h)z2β2 and gβ(0)= 0, (A.3)

where z1−z3 are coefficients obtained by fitting the numerical data for the self mobil-
ity for different β. Note that z0 = 2h3/(3Vm) is fixed by the inviscid condition (17).
Also note that as β→∞, our fit obeys the correct Stokes limit,

ϕ0(β� 1)→
1

6π(a/h)
·

1
β
.

11Most of the scatter comes from the finite size of the periodic box and can be explained using a
known periodic correction to the RPY tensor [11].
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We show the empirical fit for ϕ0 (β) in Figure 15 in Appendix B.
For nonzero r , we introduce normalized functions f̃β and g̃β via

fβ(r)=−
β

ηh
·

1
4πx3 · f̃β(x), gβ(r)=

β

ηh
·

3
4πx3 · g̃β(x), (A.4)

where x = r/h is the normalized distance, and β/η = 1t/ρh2. For finite β, we
know that f̃β(x �

√
β) ≈ g̃β(x �

√
β) ≈ 1 according to (20). As β →∞, we

want to reach the Stokes limit

f̃∞(x � 1)→−
x2

2β
, g̃∞(x � 1)→

x2

6β
, (A.5)

and for finite β, we want the viscous contribution to decay as exp(−x/(C
√
β))

for some constant C that should be close to unity. Furthermore, we would like to
ensure continuity near the origin with the fit for r = 0,

f̃β(x→ 0)→−4πx3ϕ0(β).

A fitting formula that obeys these conditions that we find to work well for
r > 0.1h is

f̃β(x)= ϕ0(β)
−4πx3

+ a4[x5
− x7e(−a3x/

√
β)/(2β)]

1+ a0x + a1x2+ a2x3+ a4x5ϕ0(β)
+

a5x4e−a6x
+ a7x4

1+ a8x3+ a9x5 ,

g̃β(x)= ϕ0(β)
b5[x5

+ x7e(−b0x/
√
β)/(6β)]

1+ b1x + b2x2+ b3x3+ b4x4+ b5ϕ0(β)x5 ,

(A.6)

where a0-a9 and b0-b5 are empirical coefficients. It is important to emphasize
that (A.6) was chosen in large part based on empirical trial and error. Many other
alternatives exist. For example, one could use the analytical Brinkmanlet (15)
for sufficiently large distances and then add short-ranged corrections for nearby
markers. Alternatively, one could first subtract the inviscid part f0(r) and g0(r) and
then fit the viscous contribution only. As discussed above, ideally the fits would
be constrained to guarantee an SPD approximate mobility matrix, but this seems
difficult to accomplish in practice.

We computed the fitting coefficients in (A.6) for

β ∈ {0, 0.1, 0.25, 0.5, 1, 10, 100, 1000};

the coefficients for other values in the range 0< β < 1000 are interpolated using
linear interpolation, and β > 1000 is treated using the steady Stokes fitting. We
see a good match between the numerical data and our empirical fits in Figure 14,
with good translational and rotational invariance (i.e., relatively small scatter of the
numerical points around the fits).
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Figure 14. Normalized fitting functions f̃β (x) (left) and g̃β (x) (right) at finite β in three
dimensions for the 6-point kernel, for different values of the viscous CFL number (see
legend). Symbols are numerical data obtained by using a 2563 periodic fluid grid, and
dashed lines show the best fit of the form (A.6).

Appendix B: Approximating the mobility in two dimensions

To construct empirical approximations to the functions fβ(r) and gβ(r) in (12) in
two spatial dimensions, we follow the same approach as we did for three dimensions
in Appendix A. Specifically, we first discuss the known asymptotic behavior of
these functions at short and large distances, and use this to guide the construction
of empirical fitting formulas.

1. Physical constraints. In two dimensions, we need to modify (18) to agree with
(17) for small β. For d = 2, Vm = c′V h2 and f0(0)∼ β/η so that we use the fit

fβ(0)=
C(β)
η

and gβ(0)= 0, (B.1)

where C(β) has the same asymptotic scaling as in three dimensions and is obtained
from empirical fits (see Figure 15). A key difference exists between two and three
spatial dimensions in the limit Re→ 0. For steady Stokes flow in a square two
dimensional periodic domain, the Green’s function diverges logarithmically with
the system size l. Therefore, it is not possible to write a formula for the asymptotic
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Figure 15. Empirical fit for ϕ0 (β) as a function of β for different values of β. Left: three
dimensions, 2563 grid. Right: two dimensions, 5122 grid.
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behavior at large distances for an infinite system. Instead, we must subtract the
divergent piece to get a well-defined answer. The standard Green’s function for
Stokes flow in two dimensions has logarithmic growth at infinity, which suggests
that (19) should be replaced by

f∞(r � h)− f∞(r = 0)≈−
ln (r/h)

4πη
and g∞(r � h)≈

1
4πη

. (B.2)

For inviscid flow we should replace (20) by the field of a dipole in two dimensions,

f0(r � h)≈−
1t

2πρr2 and g0(r � h)≈
1t
πρr2 . (B.3)

In two dimensions the solutions of the Brinkman equation (14) are analytically
complicated and involve special functions. Even without solving these equations,
however, physical scaling suggests that the same physical length scale h

√
β should

enter, in particular, the viscous corrections should decay to zero exponentially fast
with h

√
β.

2. Empirical fits. We have used the analytical results above to construct empirical
fitting formulas that have the correct asymptotic behavior, as we now explain in
more detail.

a. Steady Stokes flow. In two dimensions, steady Stokes flow (β→∞) is not well
behaved because the Green’s function does not decay sufficiently rapidly (Stokes
paradox). This makes the mobility an essentially dense matrix that is sensitive to
boundary conditions and difficult to approximate. Nevertheless, we have used a
periodic system to fit empirical data based on the theory (B.2). The diagonal value
f∞(0) diverges logarithmically with the system size L for periodic boundaries.
Specifically, for a square unit cell of length l� h, it is known that [41]

f∞(0)= (4πη)−1 ln
(

l
3.708 a

)
,

and this relation defines the effective hydrodynamic radius of a marker a (note
that a/h is a universal value for a given spatial discretization, as it is in three
dimensions). Since the precise form depends on boundary conditions and is not
known in general, we treat f∞(0) as an input parameter.

From the numerical data, we calculated the normalized functions

f̃ (x)=−(4πη)( f∞(x)− f∞(0)) and g̃(x)= (4πη)g∞(x), (B.4)

where x = r/h is the normalized distance between the markers. Observe that
from (B.2) we know that f̃ (x � 1)≈ ln x and g̃(x � 1)≈ 1. For the normalized
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Figure 16. Empirical fits (lines) to numerical data (symbols) for f̃ (x) (left) and g̃(x)
(right), for the 6-point kernel in two dimensions, obtained using a periodic system of either
2562 or 5122 grid cells. Observe that both follow the correct asymptotic behavior at large
distances, with scatter dominated by boundary effects.

functions, we use the fits

f̃ (x)=
a0x2
+ a1x3

+ a2x3 ln x
1+ a3x + a4x2+ a2x3 ,

g̃(x)=
b0x2
+ b1x3

1+ b2x + b3x2+ b1x3 .

(B.5)

Numerical results and empirical fits for f̃ (x) and g̃(x) are shown in Figure 16.
While the numerical data do conform to the theoretical asymptotic behavior, there
is substantial scatter for larger distances because of the strong sensitivity to the
boundaries.

b. Nonzero Reynolds numbers. For r = 0, we use a fitting formula in agreement
with (B.1),

ϕ0 (β)=
η fβ(0)
β
=

z0+ z1β
3 log(β)

1+ z2β + z3β2+ z4β4 and gβ(0)= 0, (B.6)

where z1− z4 are coefficients (obtained by fitting for each kernel data over a range
of β’s) and z0 is fixed from the inviscid condition (17). The empirical fit for ϕ0 (β)

is shown in Figure 15. Note that for finite β, one must ensure that the system size
used to tabulate the values of fβ and gβ is sufficiently large, l� h

√
β.

For r > 0.1h we introduce normalized functions f̃β and g̃β via

fβ(r)=−
β

2πηx2 · f̃β(x) and gβ(r)=
β

πηx2 · g̃β(x), (B.7)

where in the inviscid case we take β/η =1t/ρh2, and x = r/h is the normalized
distance. For finite β, we know that f̃β(x �

√
β)≈ g̃β(x �

√
β)≈ 1 according to
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Figure 17. Empirical fitting of f̃β (r) and g̃β (r) in two dimensions for different values of
β for the 6-point kernel, 5122 grid.

(B.3). The numerical data is fitted with the empirical fitting functions

f̃β(x)=
x3 ln(x)
β(a0+ 2x)

e−
p1x
√
β +

a1x2
+ a2x3

+ a3x4

1+ b1x2+ b2x3+ a3x4 ,

g̃β(x)=
x3

β(c0+ 4x)
e−

p2x
√
β +

x3

e−p3x(c1+ c2x + c3x2)+ x3 ,

(B.8)

as shown in Figure 17. Here a0− a3, p1− p3, b1− b3, c0− c3 are empirical coeffi-
cients, computed by fitting numerical data for β in {0, 0.1, 0.25, 0.5, 1.0, 5.0, 10.0}.
Intermediate values in the range 0< β < 10.0 are interpolated using linear interpo-
lation, and larger β’s are handled using the steady Stokes fit (B.5).

Appendix C: Stokes flow between two concentric spheres

Consider steady Stokes flow around a rigid shell or sphere of radius a, placed in
a centered position inside another spherical shell or cavity of radius b = a/λ. We
consider the case when the outer shell is moving with velocity V and the inner shell
is at rest, and for simplicity set the viscosity to unity, η = 1. Brenner [40] gives the
drag force on the inner sphere for no slip boundary conditions as

F =−6πaVK , (C.1)

where

K =
1− λ5

α
and α = 1−

9
4
λ+

5
2
λ3
−

9
4
λ5
+ λ6.

Define the constants

A =−
15V
4a2 ·

λ3
− λ5

α
, B =

3Va
2
·

1− λ5

α
,

C =
V
2
·

1+ 5
4λ

3
−

9
4λ

5

α
, D =

Va3

4
·

1− λ3

α
.
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The velocity in the region between the two spherical shells can be obtained from
the expressions given by Brenner as

vr =− cos θ
(

A
5

r2
−B

1
r
+2C+2D

1
r3

)
, vθ = sin θ

(
A
5

r2
−

B
2

1
r
+2C−D

1
r3

)
,

vφ = 0,

and the pressure is

π = π∞+µB
cos θ

r2 − 2µAr cos θ,

where π∞ = 0 since we impose that the pressure have mean zero to remove the null
mode for pressure. In spherical coordinates, with the symmetry axes aligned with
the direction of the flow, the traction on the surface of the inner sphere, which is
the jump in the stress across the inner shell, is

λ= σ · n= µ cos θ
(

2Ar −
B
r2

)
r̂ +µ sin θ

(
Ar +

B
r2

)
θ̂ ,

where
r̂ = (sin θ cosφ, sin θ sinφ, cos θ),

θ̂ = (cos θ cosφ, cos θ sinφ, − sin θ).

Appendix D: Imposing physical boundary conditions

The local averaging and spreading operators have to be modified near physical
boundaries, specifically, when the support of the kernel δa overlaps with a boundary.
A proposal for how to do that has been developed by Yeo and Maxey [83], and an
alternative proposal has been developed in the context of the immersed boundary
method by Griffith et al. [33]. Here we have chosen to use the former approach
because of its simplicity and the fact that it is independent of the kernel, as well as
the fact that it ensures that the interpolated velocity strictly vanishes at a no-slip
boundary; this ensures that the mobility of a marker is a monotonically decreasing
function as it approaches a no-slip boundary. Since the description in [83] is limited
to steady Stokes flow and a single no-slip boundary, we give here an algebraic
formulation that extends to a variety of boundary conditions; this formulation is
implemented in the IBAMR library and used in the examples in this paper in
nonperiodic domains.

The basic idea in the handling spreading and interpolation near boundaries is to
use the standard IB kernel functions in a domain extended with sufficiently many
ghost cells so that the support of all kernels is strictly within the extended domain.
For interpolation, we first fill ghost cells and then interpolate as usual using the
ghost cell values. For spreading, we take the adjoint operator, which basically
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means that we first spread to the extended domain including ghost cells in the
usual manner, and then we accumulate the value spread to the ghost cell in the
corresponding interior grid point, using the same weight (coefficient) that was used
when filling ghost cells for the purposes of interpolation.

This process requires a consistent method for filling ghost cells, that is, for
extending a (cell-centered or staggered) field u from the interior to the extended
domain. In general, this will be an affine linear mapping of the form

uext = Euint+ c,

where E is an extension matrix and c encodes inhomogeneous boundary conditions.
Let J 0 denote the standard IB interpolation operator that interpolates an extended
field at a position inside the interior of the domain. The interpolated value in the
presence of physical boundary conditions is then given by the affine linear mapping

J BC (uint)= J 0uext = J 0 Euint+J 0c.

The corresponding spreading operation is defined to be the adjoint of J BC for
homogeneous boundary conditions, as this ensures energy conservation in the
absence of boundary forcing. Specifically, we use

SBC = ETJ ?
0 = ETS0.

The specific form of the extension operator E used in our implementation is
based on linear extrapolation to a given ghost point based on the corresponding
value in the interior and the values at the boundary as specified in the boundary
conditions. Specifically, for homogeneous Neumann conditions we do a mirror
image ughost =−uint, while for homogeneous Dirichlet boundary conditions, such
as no slip boundaries, we simply do a mirror inversion ughost =−uint. This makes
our implementation exactly identical to that proposed by Yeo and Maxey [83] in the
context of the FCM method. One can think of this approach to no-slip boundaries
as taking an inverted mirror image of the portion of the kernel outside of the
domain [83]. Note that the same E is used to implement boundary conditions both
in the fluid solver and when interpolating/spreading near boundaries; this greatly
simplifies the implementation without lowering the second-order accuracy of the
fluid solver [34]. In our implementation, we use simple transpose for spreading
which is the adjoint E? with respect to the standard inner product.
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