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This article demonstrates the applicability of the parallel-in-time method Parareal
to the numerical solution of the Einstein gravity equations for the spherical
collapse of a massless scalar field. To account for the shrinking of the spatial
domain in time, a tailored load balancing scheme is proposed and compared to
load balancing based on number of time steps alone. The performance of Parareal
is studied for both the subcritical and black hole case; our experiments show
that Parareal generates substantial speedup and, in the supercritical regime, can
reproduce Choptuik’s black hole mass scaling law.

1. Introduction

Einstein’s field equations of general relativity (GR) consist of ten coupled, nonlinear,
hyperbolic-elliptic partial differential equations (PDEs). Because gravity couples to
all forms of energy, there is an enormous dynamic range of spatiotemporal scales
in GR. Hence, usually only the application of advanced numerical methods can
provide solutions and in numerical relativity [1; 3] extensive use of high-performance
computing (HPC) is made [32; 26].

Today, almost all HPC architectures are massively parallel systems connecting
large numbers of compute nodes by a high-speed interconnect. In numerical simula-
tions, the power of these systems can only be harnessed by algorithms that feature
a high degree of concurrency; every algorithm with strong serial dependencies can
only provide inferior performance on massively parallel computers. For the solution
of PDEs, parallelization strategies have been developed mainly for spatial solvers.
However, in light of the rapid increase in the number of cores in supercomputers,
methods that offer additional concurrency along the temporal axis have recently
begun to receive more attention.

The idea of parallelization in time was introduced in 1964 [35]. In the 1980s
and 1990s, time and spacetime multigrid methods were studied [22; 23; 24]. More
recently, the now widely used time-parallel method Parareal was proposed [31].
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Other recently introduced parallel-in-time methods are PFASST [33; 12], RIDC
[9], or MGRIT [13]. A historical overview is offered in [17].

Given the demonstrated potential of parallel-in-time integration methods for
large-scale parallel simulations [42], these methods could be beneficial for the
numerical relativity community. However, their application is not straightforward
and often it is unclear a priori if good performance can be achieved. In this article,
we therefore investigate the principal applicability of the time-parallel Parareal
method to solving Einstein’s equations describing spherical, gravitational collapse
of a massless scalar field. The system is also referred to as an Einstein–Klein–
Gordon system because it is equivalent to a Klein–Gordon equation expressed in
the context of GR, i.e., on a back-reacting, curved geometry. It defines a basic
gravitational field theory and is of interest therefore not only in numerical relativity
but also in, e.g., quantum gravity [25; 44; 29]. A summary of numerically derived
results is given in [21]; the work by Choptuik [7] brought forward novel, physical
results and is of particular interest here because we will show that Parareal correctly
reproduces the expected mass scaling law.

Mathematical theory shows that Parareal performs well for diffusive problems
with constant coefficients [19]. For diffusive problems with space- or time-dependent
coefficients, numerical experiments show that Parareal can converge quickly too
[30]. However, given the theory for basic constant-coefficient hyperbolic PDEs
[19], it can be expected that Parareal applied to convection-dominated problems
converges too slowly for meaningful speedup to be possible. Special cases with
reasonable performance are discussed in [16], and for certain hyperbolic PDEs
it was found that some form of stabilization is required for Parareal to provide
speedup [18; 40; 11; 6]. Surprisingly, no stabilization is required for the equations
describing gravitational collapse; we demonstrate that plain Parareal can achieve
significant speedup. A detailed analytical investigation of why this is the case would
definitely be of interest but is left out for future work. One reason could be that we
solve in characteristic coordinates for which the discretization is aligned with the
directions of propagation [16; 28].

In Section 2 we define the system of Einstein field equations that we solve using
Parareal. In addition, we give details on the numerical approach and discuss the
interplay between Parareal and the particular structure of the spatial mesh. In
Section 3 we discuss the Parareal method. Then, in Section 4 numerical results are
presented. Finally, in Section 5 we conclude with a summary and discussion.

2. Equations

2.1. Gravitational collapse. The Einstein field equations in Planck units normal-
ized to 4πG/c4

= 1 are
Gµν = 2Tµν, (2.1.1)
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where µ, ν ∈ {0, 1, 2, 3} index time (via 0) and space (via 1, 2, and 3).1 Once the
nongravitational matter content is specified by a definition of the energy-momentum
tensor Tµν , possibly along with equations of state that together satisfy the continuity
equations ∇µTµν = 0, (2.1.1) defines a set of ten partial differential equations for
ten unknown metric tensor field components gµν .2 In all generality, the equations
are coupled, nonlinear, and hyperbolic-elliptic in nature. Six of the ten equations
are hyperbolic evolution equations, while the remaining four are elliptic constraints
on the initial data; they represent the freedom to choose spacetime coordinates. For
the matter content, we consider a minimally coupled massless scalar field φ with
energy-momentum tensor

Tµν =∇µφ ∇νφ− 1
2 gµνgαβ ∇αφ ∇βφ. (2.1.2)

For the metric tensor field gµν in spherical symmetry, it is natural to introduce a
parametrization in terms of Schwarzschild coordinates (t, r). Here, t is the time
coordinate of a stationary observer at infinite radius r , which measures the size of
spheres centered at r = 0. In [7] the resulting Einstein field equations are analyzed
numerically. In particular, adaptive mesh refinement [4] is used to resolve the black
hole formation physics. In [20] the same investigation is carried out in double null or
characteristic coordinates (τ, ρ) without mesh refinement (see, however, [39; 43]).
Finally, in [29] the effect of quantum gravity modifications on the collapse is studied
in adjusted characteristic coordinates. Here we use characteristic coordinates (τ, ρ)
as well but exclude quantum gravity modifications. Also, for simplicity, we will
refer to τ as a time coordinate and to ρ as a space coordinate.

Making the ansatz

gµν dxµ dxν =−2∂ρr H dτ dρ+ r2(dϑ2
+ [sin(ϑ) dϕ]2) (2.1.3)

for the metric tensor field and using an auxiliary field h for the spacetime geometry
along with an auxiliary field 8 for the matter content, the complete field equations
are

∂τr =− 1
2 h, ∂τ8=

(H − h)(8−φ)
2r

(2.1.4)

for r and 8 and

∂ρφ =
∂ρr
r
(8−φ), ∂ρH =

∂ρr
r

H(8−φ)2, ∂ρh =
∂ρr
r
(H−h) (2.1.5)

for φ, H , and h [20]. Overall the system can be seen as a wave equation for the
massless scalar field φ on a back-reacting, curved geometry. Boundary conditions

1We omit the addition of the cosmological constant term 3gµν on the left-hand side in (2.1.1)
because observations suggest 0<3� 1 (see, e.g., [27]); the term’s impact on black hole formation
as studied here can be neglected.

2We use the Einstein summation convention.
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at (τ, ρ = τ) are r = 0 and regularity of 8, φ, H , and h, which implies 8= φ and
H = h at the boundary [10; 28]. Consistent initial data at (τ = 0, ρ) are

r = 1
2ρ, 8= (1+ ρ ∂ρ)φ, (2.1.6)

where we choose for φ the Gaussian wave packet

φ(0, ρ)= φ0
ρ3

1+ ρ3 exp
(
−

[
ρ− ρ0

δ0

]2)
. (2.1.7)

We also performed tests for initial data similar in shape to the hyperbolic tangent
function much like Choptuik did in [7] for purely serial time stepping. Since in
this case we found Parareal’s performance to resemble strongly that for the case of
the Gaussian wave packet, we do not include these results here. The initial scalar
field configuration is thus characterized by an amplitude φ0, mean position ρ0,
and width δ0. Depending on the value of these parameters, the solution to (2.1.4)
and (2.1.5) can describe a bounce of the wave packet or black hole formation near
the boundary at r = 0. A black hole appears when the outward null expansion

2+ =
1
r

√
2h
H
, (2.1.8)

which measures the relative rate of change of a cross-sectional area element of a
congruence of outgoing null curves, approaches zero [36]. The black hole mass is

M = 1
2r, (2.1.9)

evaluated at the point (τ+, ρ+) toward which 2+ vanishes.

2.2. Numerical solution. The numerical grid is depicted in Figure 1, left. It is
parametrized by the characteristic coordinates τ and ρ, which are used for numerical
integration; τ is used as the coordinate representing time and ρ as the coordinate
representing space. Integration thus takes place on a right triangle with initial
data defined along the lower right-hand leg. Clearly, the spatial domain becomes
smaller as the solution is advanced in τ . Note that the domain is not exactly a
right triangle because at the upper-most corner a small subtriangle is missing. This
“buffer” zone of extent λ is needed for the spatial part of the numerical stencil to fit.
The computational domain thus consists of all points (τ, ρ) ∈ [0, L − λ]× [0, L]
with L = 80, λ= 0.625, and ρ ≥ τ .

As a time-stepping method for the solution of the equations in (2.1.4), we use
a second-order Lax–Wendroff Richtmyer two-step method on a fine spacetime grid
[28]. To employ the time-parallel method Parareal (see Section 3), we need a second,
computationally cheap, time-integration method. Here, we choose the explicit first-
order Euler method on a coarse spacetime mesh. For Parareal to be efficient, the cost
of the coarse method has to be small compared to that of the fine one: by choosing
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Figure 1. Left: the numerical domain. It is parametrized by the characteristic coordinates
τ and ρ. Right: subcritical gravitational scalar field evolution and scalar field solution
snapshots for a black-hole-free setting. The peak of the Gaussian evolves along the constant
coordinate value ρ ≈ 20, which is also when the bounce occurs in τ .

a simple first-order method on the coarse grid for C, we obtain a good coarse-to-
fine ratio (see Section 3.4). For optimal speedup, the right balance between the
difference in accuracy and difference in cost between C and F has to be found.

For the integration in space of the equations in (2.1.5), we use a second-order
Runge–Kutta method [28]. Snapshots of scalar field evolution resulting from the
chosen fine grid discretization are shown in Figure 1, right, where φ evolves along
constant lines of ρ until a bounce occurs at r = 0. The figure also shows how the
size of the domain decreases during the evolution: for τ = 0 the left boundary is at
ρ = 0 while for τ = 20 it is at ρ = 20.

2.3. Mass scaling. In practice, the simulation terminates when a black hole forms
because H grows without bound in this case (see [10] for details). Figure 2, left,
provides a simplified illustration of a black hole region (dotted portion) and shows
where the simulation comes to a halt (dashed line). Thus, to determine the black hole
mass M , we record minimal expansion values via the scalar (r2+)mi=minρ{r2+}
derived from (2.1.8). The last such recorded minimal value before the termination of
the simulation defines a characteristic coordinate (τ+, ρ+) (see again Figure 2, left),
which we can use to define an r and M via (2.1.9). The scalar (r2+)mi approaches 0
when (τ, ρ) nears (τ+, ρ+), as is shown in the lower portion of Figure 2, right.

Based on numerical experiments, Choptuik presents, among other things, a
relation between the amplitude φ0 of the Gaussian in (2.1.7) and the black hole
mass M [7]. He shows that there is a critical value φ?0 such that for φ0<φ

?
0 there is a

bounce (subcritical case), while for φ0>φ
?
0 there is a black hole (supercritical case).
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Figure 2. Illustrations to clarify supercritical gravitational collapse. Left: the simulation
terminates at τ+, when a black hole forms at ρ+. Right: minimal weighted outward null
expansion indicating a bounce (top) and black hole formation (bottom) are shown.

Based thereon, he demonstrates that the black hole mass scales with φ0−φ
?
0 > 0

according to the law M ∝ (φ0−φ
?
0)
γ with γ being a positive constant of the same

value for various initial data profiles. We demonstrate that Parareal can correctly
capture this black hole mass scaling law although our coarse-level Euler method
alone cannot. Also, Parareal requires less wall-clock time than F, which can be
beneficial for the investigation of the high-accuracy-demanding critical solution
[7; 21] that requires the simulation of numerous black holes [20]. This analysis
however is omitted in this article and left for future work.

3. Parareal

3.1. Algorithm. Parareal [31] is a method for the solution of initial value problems

∂τu(τ )= f (τ, u(τ )), u(0)= u0, 0≤ τ ≤ T . (3.1.1)

Here, as is outlined in the previous section, f comes from discretizing (2.1.4) and
(2.1.5), and T = L −λ marks the end time. Parareal starts with a decomposition of
the time domain into Npr temporal subintervals (TSs) defined in terms of times τ p

such that
[τ 1, τ 2

] ∪ · · · ∪ [τ Npr−1, τ Npr] = [0, L − λ]. (3.1.2)

Now denote by F some serial time-integration method of high accuracy and cost
(in our case this is the second-order Lax–Wendroff Richtmyer two-step method)
and by C a cheap and possibly much less accurate method (in our case this is the
explicit first-order Euler method). Instead of running the fine method subinterval
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by subinterval serially in time, Parareal performs the iteration

u p+1
[i+1] = C(u p

[i+1])−C(u p
[i])+F(u p

[i]), (3.1.3)

where superscripts index time or process number p ∈ {1, . . . , Npr} and subscripts
iterations i ∈ {1, . . . , Nit}. The advantage is that the expensive computation of the
fine method can be performed in parallel over all TSs at once. Here, we assume
that the number of TSs is equal to the number Npr of cores (or processes) used for
the time direction. Good speedup can be obtained if C is fast in comparison to F

but still accurate enough for Parareal to converge rapidly. See Section 3.4 for a
more detailed discussion of Parareal’s speedup.

In Section 2.2 we hinted at the interchangeability of the characteristic coordinates
τ and ρ for the numerical integration. Therefore, theoretically, Parareal could also
be used for the spatial integration to simultaneously parallelize both time and space.
However, such an interweaving of two Parareal iterations is not discussed in this
article; it is put aside for future work.

3.2. Spatial coarsening in Parareal. In order to make C cheaper and improve
speedup, we not only use a less accurate time stepper for C but also employ a
coarsened spatial discretization with a reduced number of degrees of freedom.
Therefore, we need a spatial interpolation I and restriction R operator. In this case
(see, e.g., [14]), the Parareal algorithm is given by

u p+1
[i+1] = IC(Ru p

[i+1])− IC(Ru p
[i])+F(u p

[i]). (3.2.1)

As the restriction operator R, we use point injection. For the interpolation operator I ,
we use polynomial (i.e., Lagrangian) interpolation of order 3, 5, and 7.3 It has been
shown that, even for simple toy problems, convergence of Parareal can deteriorate
if spatial coarsening with low-order interpolation is used. As demonstrated in
Section 4.1, this also holds true for the problem studied here.

3.3. Implementation. We have implemented two different realizations of Parareal.
In a “standard” version Pst (see Listing 1, left), the Parareal correction is computed
on each TS up to a uniformly prescribed iteration number. In contrast, in the
“modified” implementation Pmo (see Listing 1, right), Parareal corrections are only
performed on TSs where the solution may not yet have converged. Because Parareal
always converges at a rate of at least one TS per iteration, we only iterate on a TS
if its assigned MPI rank is greater than or equal to the current Parareal iteration
number (see line 8 in Listing 1, right). Otherwise, no further iterations are needed or
performed, and the process remains idle. Thus, as the iteration progresses, more and

3We also tested barycentric interpolation [5; 15] but found the performance in terms of runtimes
and speedup (see Sections 3.4 and 4) to be inferior.
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1 i f p > 1 then // Initialization
2 Coarse ( co ; τ1

→ τ p )
3 I n t e r p ( co 7→ f i [ 0 ] )
4 i f p < Npr then // Prediction
5 Coarse ( co ; τ p

→ τ p+1 )
6 I n t e r p ( co 7→ f i [ 2 ] )
7 f o r i = 1 : Nit do // Iteration
8 i f p < Npr then
9 Fine ( f i [ 0 ] ; τ p

→ τ p+1 )
10 f i [ 1 ] = f i [ 0 ]
11 f i [ 1 ] −= f i [ 2 ]
12 i f p > 1 then
13 MPI_Recv ( f i [ 0 ] ; p⇐ p− 1 )
14 e l s e
15 I n i t ( f i [ 0 ] )
16 R e s t r i c t ( f i [ 0 ] 7→ co )
17 i f p < Npr then
18 Coarse ( co ; τ p

→ τ p+1 )
19 I n t e r p ( co 7→ f i [ 2 ] )
20 f i [ 1 ] += f i [ 2 ]
21 i f p < Npr then
22 MPI_Send ( f i [ 1 ] ; p⇒ p+ 1 )

1 i f p > 1 then // Initialization
2 Coarse ( co ; τ1

→ τ p )
3 I n t e r p ( co 7→ f i [ 0 ] )
4 i f p < Npr then // Prediction
5 Coarse ( co ; τ p

→ τ p+1 )
6 I n t e r p ( co 7→ f i [ 2 ] )
7 f o r i = 1 : Nit do // Iteration
8 i f p >= i then
9 j = ( i +1) % 2

10 k = i % 2
11 i f p < Npr then
12 Fine ( f i [ j ] ; τ p

→ τ p+1 )
13 i f p > i then
14 MPI_Recv ( f i [ k ] ; p⇐ p− 1 )
15 f i [ j ] −= f i [ 2 ]
16 R e s t r i c t ( f i [ k ] 7→ co )
17 i f p < Npr then
18 Coarse ( co ; τ p

→ τ p+1 )
19 I n t e r p ( co 7→ f i [ 2 ] )
20 f i [ j ] += f i [ 2 ]
21 i f p < Npr then
22 MPI_Send ( f i [ j ] ; p⇒ p+ 1 )

Listing 1. Pseudocode for the standard and modified Parareal implementations. Variable
“co” denotes the coarse grid solution and “fi” an array of three fine grid buffers. Left: the
standard Parareal implementation Pst. Right: the modified Parareal implementation Pmo.

more processes enter an idle state. In an implementation to be realized in future work,
the criterion for convergence used here will be replaced by a check for some residual
tolerance [2]. This could negatively affect the observed performance since it requires
essentially one more iteration to compute the residual.4 It also bears mentioning
that it has very recently been demonstrated that parallel-in-time integration methods
are good candidates to provide algorithm-based fault tolerance [34; 41].

Another difference between the standard and modified implementations is that in
the former, after each time-parallel fine evolution, a copy of the fine-grid solution
has to be created (see line 10 in Listing 1, left). In the modified Listing 1, right, this
copying is circumvented by the use of two alternating indices “j” and “k” in lines 9
and 10, respectively. The iteration number determines their values, which in turn
determines the fine-grid solution buffer that is used to send or receive data by means
of the corresponding MPI routines (see lines 14 and 22 in Listing 1, right). The
two implementations also have slightly different requirements in terms of storage.

4In [2] a version of Parareal is discussed that can be used to proceed the integration beyond a
given end time. It is based on an optimized scheduling of those tasks which become idle in our
implementation.
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As can be seen in line 15 in Listing 1, left, in Pst on the first TS or, equivalently,
for the first MPI rank, the fine-grid solution has to be assigned initial data at the
beginning of each iteration. This requires one additional buffer to be held in storage.
Other than that both implementations need one coarse-grid solution buffer and three
fine-grid buffers for each TS.

3.4. Speedup. We denote by Rco the coarse and by Rfi the fine time stepper’s
runtime. Recalling that Nit denotes the number of iterations required for Parareal
to converge given Npr processes, Parareal’s theoretically achievable speedup is

S =
[(

1+
Nit

Npr

)
Rco

Rfi
+

Nit

Npr

]−1

≤min
{

Npr

Nit
,

Rfi

Rco

}
, (3.4.1)

as is discussed, e.g., in [33]. The estimate is valid only for the ideal case, where
runtimes across subintervals are perfectly balanced. In the presence of load im-
balances in time, however, i.e., differences in the runtimes of C and F across TSs,
maximum speedup is reduced [30]. Because the spatial domain we consider is
shrinking in time, a tailored decomposition of the time axis has to be used to provide
well balanced computational load, as is discussed in the next section.

3.5. Load balancing. Because we integrate over a triangular computational space-
time domain (see Figure 1, left), a straightforward, uniform partitioning of the time
axis results in imbalanced computational load in time. The first load balancing (LB)
strategy, to which henceforth we will refer as LB1, is based on this straightforward,
basic decomposition of the time axis. It assigns to each TS the same number of time
steps without regard to their computational cost. Because of the shrinking domain,
TSs at later times carry fewer spatial degrees of freedom so that the per-process
runtimes R p

co and R p
fi of the coarse and fine time steppers, respectively, are larger

for the earlier TSs than for the later ones. Figure 3, left, shows how this partition
leads to an imbalanced computational load in time because the portion extending
across the “early-middle” TS [e,m] covers a larger area and thus a larger number
of grid points than the portion over the “middle-late” TS [m, l].

Figure 3 suggests that early-in-time TSs should have a shorter extent in time
than later ones. Thus, in the second strategy, to which in the following we will
refer as LB2, we also consider the cost of time steps in order to balance the runtime
R p

co + R p
fi over all processes p. We use a decomposition of the time axis in TSs

such that the sum of the total coarse and fine runtime is balanced over all TSs,
i.e., such that Rco + Rfi = Npr(R

p
co + R p

fi ) for any process p. This is done by a
bisection approach, making use of the fact the we use explicit rather than implicit
time integrators (see the discussion in [30]) and thus that the cost of a time step
from τ to τ+1τ is directly proportional to the number of spatial degrees of freedom
at τ . Therefore, the total spacetime domain is first divided into two parts of roughly
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Figure 3. Illustration of two different approaches for the decomposition of the time
domain. Left: imbalanced load in time from load balancing LB1. Right: balanced load in
time from load balancing LB2.

Figure 4. Vampir traces for the implementation Pmo with (Npr, Nit) = (8, 3) for two
different load balancing strategies. Top: Vampir trace for LB1. The Parareal runtime is
Rpa = 7.964 s. Bottom: Vampir trace for LB2. The Parareal runtime is Rpa = 5.436 s.

equal number of grid points as is sketched in Figure 3, right. Then, each part is
divided again and again until the required number of TSs is reached. Note that this
limits the possible numbers of TSs to powers of 2.

Figure 4 shows Vampir5 traces for one simulation featuring LB1 (Figure 4, top)
and one LB2 (Figure 4, bottom). The horizontal axes correspond to runtime, while
the vertical axes depict MPI rank numbers from 1 (lower) to 8 (upper). In each
case, three Parareal iterations are performed. Green regions indicate the coarse and
fine integrators carrying out work. Time spent in MPI receives (including waiting
time) is shown in red. We observe how LB1 leads to load imbalance and incurs

5https://www.vampir.eu/

https://www.vampir.eu/
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significant wait times in processes handling a later TS. In contrast, the processes’
idle times (shown in red) in MPI receives are almost invisible in the case of LB2.
Elimination of wait times leads to a significant reduction in runtime and increase in
speedup, as will be shown in Section 4.

4. Results

Speedup and runtime measurements were performed on the Cray XC40 supercom-
puter Piz Dora6 at the Swiss National Supercomputing Center (CSCS) in Lugano.
It features 1256 compute nodes, which all hold two 12-core Intel Xeon E5-2690v3
processors. This results in a total of 30144 compute cores and a peak performance
of 1.254 PFlops; it occupies position 56 in the Top500 November 2014 list.7 On
Piz Dora, we used the GNU Compiler Collection8 version 4.9.2 and the runtimes
we provide do not include the cost of I/O operations. Some simulations measuring
convergence were performed on a machine located at the Università della Svizzera
italiana that is maintained by members of the Institute of Computational Science of
the Faculty of Informatics.9

For the results presented in the following, we use a coarse grid resolution of
(1τ)co = (1ρ)co = 1co = L/2048 ≈ 0.039 and a fine grid resolution of 1fi =

1co/8 ≈ 0.005. We have also determined a reference solution to approximately
measure the serial fine stepper’s discretization error. For this we have used again
the serial fine time stepper but with a step size of 1re =1fi/4≈ 0.001.

4.1. Subcritical. First we consider the subcritical case, where no black holes form.
Figure 5 shows for Npr = 256 and two different sets of initial data parameters the
relative defect

D[i] =
‖r[i]− rfi‖2

‖rfi‖2
, (4.1.1)

which measures the difference between the Parareal solution r[i] after i iterations
and the serial fine solution rfi as a function of the characteristic coordinate τ .

In Figure 5, left, we use the initial data parameters (φ0, ρ0, δ0)= (0.035, 20, 1),
which results in an “early” bounce of the wave packet at about τ = 20. For the
simulations in Figure 5, right, the values are (φ0, ρ0, δ0) = (0.01, 75, 1), which
leads to a “late” bounce at about τ = 75. Defects are plotted for Nit ∈ {1, 2, 3, 4}
along with the estimated discretization errors ‖rco− rre‖2/‖rfi‖2 of serial coarse
and ‖rfi − rre‖2/‖rfi‖2 of serial fine solutions. We observe that in Figure 5, left,
the data for Nit = 3 is somewhat jagged because for LB2 there are various start

6http://www.cscs.ch/computers/piz_daint_piz_dora/
7http://www.top500.org/list/2014/11
8https://gcc.gnu.org
9https://www.ics.usi.ch/index.php/ics-research/resources

http://www.cscs.ch/computers/piz_daint_piz_dora/
http://www.top500.org/list/2014/11
https://gcc.gnu.org
https://www.ics.usi.ch/index.php/ics-research/resources
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Figure 5. Defect in r between Parareal and the fine method over time for fixed Npr = 256.
Left: early bounce scenario. Right: late bounce situation.

and end times of TSs near the bounce region. In any case, Parareal converges in
two iterations: for Nit = 2, the defect is below the discretization error for all τ . In
fact, without the bounce region near τ = 20, only one iteration would be required
for convergence. For the late bounce scenario in Figure 5, right, we also observe
that the rate of convergence at the final time τ = L − λ gives an indication of the
convergence at all τ . In the following we thus focus on convergence at the final
time. Convergence for the other evolved field 8 is not shown but was found to be
at least as good as for r .10

Figure 6, left and middle, illustrate the defect of Parareal at the end of the
simulation at τ = L − λ for various values of Npr with third-order interpolation
(left) and fifth-order interpolation (middle). For third-order interpolation, Parareal
does not converge at all. The configuration stalls at a defect of about 10−2 until
the iteration count equals Npr. There, Parareal converges by definition but cannot
provide any speedup. In contrast, Parareal shows good convergence behavior for
fifth-order interpolation. For Npr less than 64, the defect of Parareal falls below
the approximate discretization error of the fine method after a single iteration.
Otherwise, for Npr ≥ 64 up to Npr = 512, two iterations are required.

The resulting speedups with correspondingly adjusted values for Nit are shown in
Figure 6, right, for both load balancing strategies (see the discussion in Section 3.5).
In addition, the projected speedup according to (3.4.1) is shown. The fine-to-coarse
ratio Rfi/Rco was determined experimentally and found to be about 74. Up to
Npr = 64, for the advanced load balancing, speedup closely mirrors the theoretical
curve while the basic load balancing performs significantly worse. For Npr ≥ 64,
measured speedups fall short of the theoretical values, peak at Npr = 256, and

10Convergence seems to be unaffected by the load balancing. In tests not documented here, we
found that for LB1 it takes two iterations for Parareal to converge as well.
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Figure 6. Parareal’s performance for the subcritical case in terms of convergence for
polynomial interpolation orders 3 and 5 and in terms of speedup. Left: defect for late
bounce and interpolation order 3. Middle: defect for late bounce and interpolation order 5.
Right: Parareal speedup for fifth-order interpolation.

then start to decrease. Note that the theoretical model (blue line in Figure 6, right)
does take into account the scaling limit from the serial correction step according to
Amdahl’s law. The difference between theory and measured speedup is therefore due
to other overheads (communication and transfer between meshes) as analyzed below.

Although the load balancing strategy LB2 results in significantly better speedup
than the basic approach LB1, the peak value provided by both schemes is essentially
the same. This is because, for increasingly large numbers of cores, the computa-
tional load per TS eventually becomes small and imbalances in computational load
insignificant. Instead, runtime is dominated by overhead from, e.g., communication
in time. The communication load is independent of the chosen load balancing and
depends solely on the number of TSs; for every TS one message has to be sent
and received once per iteration (save for the first and last TS). Therefore, it can
be expected that ultimately both approaches to load balancing lead to comparable
peak values. Below we demonstrate that the saturation in speedup is related to a
significant increase in time spent in MPI routines; eventually, communication cost
starts to dominate over the computational cost left on each time slice and the time
parallelization saturates just as spatial parallelization does.

Figure 7 illustrates the reason behind the drop-off in speedup beyond Npr = 256.
First, define

R p
pa = R p

co+ R p
fi +

∑
st

R p
st, (4.1.2)

where R p
st denotes runtime spent in stages that are different from coarse and fine

integration on the TS assigned to process p. For now, we consider only overhead
from sending and receiving data as well as from interpolation; other overheads are



122 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

2 8 32 128 512

0

0.3

0.6

0.9

Cores Npr

O
ve

rh
ea

d
O

av

2 8 32 128 512
10−8

10−5

10−2

101

Core p

O
ve

rh
ea

d
O

p st
fo

r
N

p
r
∈

{3
2
,5

1
2
}

Receive, Npr = 512
Receive, Npr = 32
Interpolate, Npr = 512
Interpolate, Npr = 32
Send, Npr = 512
Send, Npr = 32

Figure 7. Overhead from communication and other sources increases with Npr, which
leads to Parareal’s speedup decay. Left: average overhead. Right: overhead caused by
three different Parareal stages.

not further analyzed here. Next, we introduce the total overhead on a TS as the
sum of all stage runtimes or

O p
to =

∑
st

R p
st, (4.1.3)

which is also the runtime spent neither in the coarse nor fine integrator for a given p.
The average overhead is now defined as the geometric mean value of O p

to over all
TSs, which is

Oav =

∑Npr
p=1 O p

to

Npr
. (4.1.4)

Finally, we define the relative overhead for individual stages on a TS as

O p
st =

R p
st

R p
pa
, (4.1.5)

where R p
pa is the runtime of Parareal at processor p. Ideally, as is assumed for the

derivation of the speedup model given in (3.4.1), R p
co and R p

fi are the dominant
costs. In this case, R p

co+ R p
fi ≈ R p

pa so that according to (4.1.2) we have O p
to ≈ 0

and therefore Oav ≈ 0 by definition. However, as can be seen in Figure 7, left,
Oav is small only for small values of Npr. For Npr ≥ 32 it increases rapidly, which
indicates that the overhead from communication and other sources starts to play a
more dominant role when Npr is increased.

Figure 7, right, shows the relative overhead from (4.1.5) for Npr ∈ {32, 512} and
p ∈ {1, . . . , Npr} for the three different stages st ∈ {Interpolation,Send,Receive};

“Send” and “Receive” refer to the corresponding MPI routines. There is a significant
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Figure 8. Parareal’s performance for the supercritical case. Left: Choptuik scaling from
Parareal. Right: Parareal speedup.

increase in relative overhead in all three stages as the number of cores grows,
causing the eventual drop-off in speedup for increasing Npr.

4.2. Supercritical. We consider now the more complex case in which a black
hole forms at some time during the simulation. The goal is to compute the black
hole’s position via (2.1.8) so that its mass can be determined from (2.1.9) (see
Section 2.3). Because the characteristic coordinates (τ, ρ) do not allow us to
continue the simulation past the black hole formation event, we need a way to keep
the simulation from terminating when 2+ approaches 0 (see Figure 2, right).

To avoid the need to adaptively modify the decomposition of the time domain,
we carry out the supercritical case study using initial data parameter values near
(φ0, ρ0, δ0) = (0.01, 75, 1), which we have also used for the results in Figure 5,
right. With these parameters and in particular for φ0 ≥ 0.01, for all investigated
partitions of the time axis with Npr ≤ 256, the black hole generated by the fine
time integrator forms in the last TS unless φ0 becomes too large (ρ0 and δ0 are
fixed). Thus, Parareal can be used over all TSs except for the last one, where
only the fine method is executed to compute the black hole’s position. The C++
implementation uses a try-throw-catch approach to prevent complete termination
of the simulation; if the radicand in the definition of 2+ in (2.1.8) fails to be
nonnegative, an exception is thrown such that the Parareal iteration can continue.
As the Parareal iteration converges and better and better starting values are provided
for F on the last TS, the accuracy of the computed black hole position improves. A
more general implementation aiming at production runs would need to allow for
black hole formation in TSs before the last one, but this is left for future work. In
this article, the focus lies on investigating the principal applicability of Parareal to
the simulation of gravitational collapse.
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φ?0 γ

Value Error (%) Value Error (%)

Coarse 0.01057748 7.25 · 10−1 0.458 20.21
Nit = 1 0.01055915 5.51 · 10−1 0.377 1.05
Nit = 2 0.01050240 1.01 · 10−2 0.370 2.89
Nit = 3 0.01050135 9.52 · 10−5 0.381 0

Fine 0.01050134 0 0.381 0

Table 1. Approximate values and relative errors for the critical amplitude φ?0 and resulting
straight line slope γ .

Figure 8, left, depicts the Choptuik scaling that results from solutions computed
with Parareal for Npr= 256 after the first three iterations. Table 1 lists the generated
values of φ?0 and γ (see Section 2.3) and errors compared to the value provided
by the fine integrator, which agrees with the result in [20]. As can be seen in
Figure 8, left, the coarse integrator C alone cannot adequately resolve black holes
with φ0−φ

?
0 . 10−9 (they are too small for C to be “visible”) and its γ is wrong

by about 20%. This means that the coarse method is too “coarse” in the sense
that, on its own, it cannot correctly capture the physics underlying the investigated
problem. Nonetheless, Parareal is not only capable of generating the correct black
hole physics but can do so after only one iteration.

Figure 8, right, visualizes the speedup achieved in the supercritical case including
the theoretical estimate according to (3.4.1). The numbers of iterations required
for Parareal to converge are derived from an analysis just like the one plotted in
Figure 6, middle, for the subcritical case, and basically the values are identical. Up
to 64 processes, good speedup close to the theoretical bound is observed. For larger
core numbers, however, speedup reaches a plateau and performance is no longer
increasing. As in the subcritical case, as Npr increases, the computing times per TS
eventually become too small and Parareal’s runtime becomes dominated by, e.g.,
communication (see Figure 7). Even though the temporal parallelization eventually
saturates, substantial acceleration of almost a factor of 30 using 128 cores in time
is possible, corresponding to a parallel efficiency of about 23%.

5. Conclusion

The article assesses the performance of the parallel-in-time integration method
Parareal for the numerical simulation of gravitational collapse of a massless scalar
field in spherical symmetry. It gives an overview of the dynamics and physics
described by the corresponding Einstein field equations and presents the employed
numerical methods to solve them. Because the system is formulated and solved in
characteristic coordinates, the computational spacetime domain is triangular so that
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later time steps carry fewer spatial degrees of freedom. A strategy for balancing
computational cost per subinterval instead of just number of steps is discussed, and
its benefits are demonstrated by traces using the Vampir tool. Numerical experiments
are presented for both the sub- and supercritical case. Parareal converges rapidly
for both and, for the latter, correctly reproduces Choptuik’s mass scaling law after
only one iteration despite the fact that the used coarse integrator alone generates
a strongly flawed mass scaling law. This underlines the capability of Parareal to
quickly correct a coarse method that does not resolve the dynamics of the problem.
The results given here illustrate that Parareal and presumably other parallel-in-
time methods as well can be used to improve utilization of parallel computers for
numerical studies of black hole formation.

Multiple directions for future research emerge from the presented results. Evaluat-
ing performance gains for computing the critical solution [7; 21] would be valuable.
Next, more complex collapse scenarios such as in the Einstein–Yang–Mills system
[8], axial symmetry [37], or binary black hole spacetimes [38] could be addressed.
An extended implementation of Parareal could utilize a more sophisticated conver-
gence criterion [2], more flexible black hole detection, and parallelism in space via,
e.g., again Parareal. The latter would be possible because the integration along the
characteristic we took to represent space is for the solution of initial value problems
just like in the temporal direction. Another topic of interest is that of adaptive
mesh refinement (J. Thornburg, personal communication, 2015): how it can be
used efficiently in connection with Parareal or other time-parallel methods seems
to be an open problem. As discussed in the introduction, a mathematical analysis
of the convergence behavior of Parareal for Einstein’s equations would be of great
interest as well, particularly since the good performance is unexpected in view of
the negative theoretical results for basic hyperbolic problems. Finally, incorporating
a parallel-in-time integration method into a software library widely used for black
hole or other numerical relativity simulations would be the ideal way to make this
new approach available to a large group of domain scientists.11

Acknowledgments

We would like to thank Matthew Choptuik from the University of British Columbia
in Vancouver, Canada and Jonathan Thornburg from the Indiana University in
Bloomington for providing feedback and suggestions on an earlier version of the
manuscript. We would also like to thank Jean-Guillaume Piccinali and Gilles
Fourestey from the Swiss National Supercomputing Center (CSCS) in Lugano and

11A copy of the library Lib4PrM for the Parareal method can be obtained by cloning the Git
repository https://scm.ti-edu.ch/repogit/lib4prm.

https://scm.ti-edu.ch/projects/lib4prm/


126 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

Andrea Arteaga from the Swiss Federal Institute of Technology Zurich (ETHZ) for
discussions concerning the hardware at CSCS.

This research is funded by the Deutsche Forschungsgemeinschaft (DFG) as
part of the “ExaSolvers” project in the Priority Programme 1648 “Software for
Exascale Computing” (SPPEXA) and by the Swiss National Science Foundation
(SNSF) under the lead agency agreement as grant SNSF-145271. The research
of Kreienbuehl, Ruprecht, and Krause is also funded through the “Future Swiss
Electrical Infrastructure” (FURIES) project of the Swiss Competence Centers for
Energy Research (SCCER) at the Commission for Technology and Innovation (CTI).

References

[1] M. Alcubierre, Introduction to 3+ 1 numerical relativity, International Series of Monographs on
Physics, no. 140, Oxford University, 2008.

[2] E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Comput. 37 (2011), no. 3,
172–182.

[3] T. W. Baumgarte and S. L. Shapiro, Numerical relativity: solving Einstein’s equations on the
computer, Cambridge University, 2010.

[4] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations,
J. Comput. Phys. 53 (1984), no. 3, 484–512.

[5] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004),
no. 3, 501–517.

[6] F. Chen, J. S. Hesthaven, and X. Zhu, On the use of reduced basis methods to accelerate and
stabilize the parareal method, Reduced order methods for modeling and computational reduction
(A. Quarteroni and G. Rozza, eds.), Modeling, Simulation and Applications, no. 9, Springer,
Cham, 2014, pp. 187–214.

[7] M. W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field,
Phys. Rev. Lett. 70 (1993), no. 1, 9–12.

[8] M. W. Choptuik, E. W. Hirschmann, and R. L. Marsa, New critical behavior in Einstein–Yang–
Mills collapse, Phys. Rev. D 60 (1999), no. 12, 124011.

[9] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci.
Comput. 32 (2010), no. 2, 818–835.

[10] D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field
equations, Comm. Pure Appl. Math. 46 (1993), no. 8, 1131–1220.

[11] X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic
systems, SIAM J. Sci. Comput. 35 (2013), no. 1, A52–A78.

[12] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential
equations, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 105–132.

[13] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time
integration with multigrid, SIAM J. Sci. Comput. 36 (2014), no. 6, C635–C661.

[14] P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the
Navier–Stokes equations, Domain decomposition methods in science and engineering (Berlin,
2003) (R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, eds.), Lecture
Notes in Computational Science and Engineering, no. 40, Springer, Berlin, 2005, pp. 433–440.

http://dx.doi.org/10.1093/acprof:oso/9780199205677.001.0001
http://dx.doi.org/10.1016/j.parco.2010.10.004
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/10.1007/978-3-319-02090-7_7
http://dx.doi.org/10.1007/978-3-319-02090-7_7
http://dx.doi.org/10.1103/PhysRevLett.70.9
http://dx.doi.org/10.1103/PhysRevD.60.124011
http://dx.doi.org/10.1103/PhysRevD.60.124011
http://dx.doi.org/10.1137/09075740X
http://dx.doi.org/10.1002/cpa.3160460803
http://dx.doi.org/10.1002/cpa.3160460803
http://dx.doi.org/10.1137/110861002
http://dx.doi.org/10.1137/110861002
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.1137/130944230
http://dx.doi.org/10.1137/130944230
http://dx.doi.org/10.1007/3-540-26825-1_44
http://dx.doi.org/10.1007/3-540-26825-1_44


TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 127

[15] M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates
of approximation, Numer. Math. 107 (2007), no. 2, 315–331.

[16] M. J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using charac-
teristics, Bol. Soc. Esp. Mat. Apl. (2008), no. 42, 21–35.

[17] , 50 years of time parallel time integration, Multiple shooting and time domain de-
composition methods (Heidelberg, 2013) (T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,
eds.), Contributions in Mathematical and Computational Sciences, no. 9, Springer, Cham, 2015,
pp. 69–113.

[18] M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, ESAIM Proc. 25 (2008), 114–129.

[19] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578.

[20] D. Garfinkle, Choptuik scaling in null coordinates, Phys. Rev. D 51 (1995), no. 10, 5558–5561.

[21] C. Gundlach and J. M. Martín-García, Critical phenomena in gravitational collapse, Living Rev.
Relativ. 10 (2007), no. 5.

[22] W. Hackbusch, Parabolic multigrid methods, Proceedings of the sixth International Symposium
on Computing Methods in Applied Sciences and Engineering (Versailles, 1983) (R. Glowinski
and J.-L. Lions, eds.), North-Holland, Amsterdam, 1984, pp. 189–197.

[23] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods 8 (1992), no. 9,
585–595.

[24] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for
solving parabolic partial differential equations, SIAM J. Sci. Comput. 16 (1995), no. 3, 531–541.

[25] V. Husain, Critical behaviour in quantum gravitational collapse, Adv. Sci. Lett. 2 (2009), no. 2,
214–220.

[26] L. E. Kidder, M. A. Scheel, S. A. Teukolsky, E. D. Carlson, and G. B. Cook, Black hole evolution
by spectral methods, Phys. Rev. D 62 (2000), no. 8, 084032.

[27] E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson,
M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker,
J. L. Weiland, E. Wollack, and E. L. Wright, Five-year Wilkinson microwave anisotropy probe
observations: cosmological interpretation, Astrophys. J. Suppl. S. 180 (2009), no. 2, 330–376.

[28] A. Kreienbuehl, Quantum cosmology, polymer matter, and modified collapse, Ph.D. thesis,
University of New Brunswick, 2011.

[29] A. Kreienbuehl, V. Husain, and S. S. Seahra, Modified general relativity as a model for quantum
gravitational collapse, Classical Quant. Grav. 29 (2012), no. 9, 095008.

[30] A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, Numerical
simulation of skin transport using Parareal, Comput. Vis. Sci. 17 (2015), no. 2, 99–108.

[31] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”,
C. R. Acad. Sci. Paris I 332 (2001), no. 7, 661–668.

[32] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D.
Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, The Einstein Toolkit: a community
computational infrastructure for relativistic astrophysics, Classical Quant. Grav. 29 (2012),
no. 11, 115001.

[33] M. L. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math.
Comput. Sci. 5 (2010), no. 2, 265–301.

http://dx.doi.org/10.1007/s00211-007-0093-y
http://dx.doi.org/10.1007/s00211-007-0093-y
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1051/proc:082508
http://dx.doi.org/10.1051/proc:082508
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1103/PhysRevD.51.5558
http://dx.doi.org/10.12942/lrr-2007-5
http://dx.doi.org/10.1002/cnm.1630080906
http://dx.doi.org/10.1137/0916034
http://dx.doi.org/10.1137/0916034
http://dx.doi.org/10.1166/asl.2009.1028
http://dx.doi.org/10.1103/PhysRevD.62.084032
http://dx.doi.org/10.1103/PhysRevD.62.084032
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://search.proquest.com/docview/1324727787
http://dx.doi.org/10.1088/0264-9381/29/9/095008
http://dx.doi.org/10.1088/0264-9381/29/9/095008
http://dx.doi.org/10.1007/s00791-015-0246-y
http://dx.doi.org/10.1007/s00791-015-0246-y
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.2140/camcos.2010.5.265


128 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

[34] A. S. Nielsen and J. S. Hesthaven, Fault tolerance in the Parareal method, Proceedings of the
ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (Kyoto, 2016), ACM, New York,
2016.

[35] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7
(1964), no. 12, 731–733.

[36] E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge University,
2004.

[37] F. Pretorius, Numerical simulations of gravitational collapse, Ph.D. thesis, University of British
Columbia, 2002.

[38] , Evolution of binary black-hole spacetimes, Phys. Rev. Lett. 95 (2005), no. 12, 121101.

[39] F. Pretorius and L. Lehner, Adaptive mesh refinement for characteristic codes, J. Comp. Phys.
198 (2004), no. 1, 10–34.

[40] D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection
system, Comput. Fluids 59 (2012), 72–83.

[41] R. Speck and D. Ruprecht, Toward fault-tolerant parallel-in-time integration with PFASST ,
Parallel Comput. 62 (2017), 20–37.

[42] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon, A mas-
sively space-time parallel N-body solver, SC ’12: proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (Salt Lake City, 2012),
IEEE, Los Alamitos, CA, 2012.

[43] J. Thornburg, Adaptive mesh refinement for characteristic grids, Gen. Relativity Gravitation 43
(2011), no. 5, 1211–1251.

[44] J. Ziprick and G. Kunstatter, Dynamical singularity resolution in spherically symmetric black
hole formation, Phys. Rev. D 80 (2009), no. 2, 024032.

Received April 24, 2016. Revised December 28, 2016.

ANDREAS KREIENBUEHL: akreienbuehl@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

PIETRO BENEDUSI: pietro.benedusi@usi.ch
Institute of Computational Science, Faculty of Informatics, Università della Svizzera italiana,
Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

DANIEL RUPRECHT: d.ruprecht@leeds.ac.uk
School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT,
United Kingdom

ROLF KRAUSE: rolf.krause@usi.ch
Institute of Computational Science, Faculty of Informatics, Università della Svizzera italiana,
Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

mathematical sciences publishers msp

http://dx.doi.org/10.1145/2909428.2909431
http://dx.doi.org/10.1145/355588.365137
http://dx.doi.org/10.1017/CBO9780511606601
http://search.proquest.com/docview/305430765
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1016/j.jcp.2004.01.001
http://dx.doi.org/10.1016/j.compfluid.2012.02.015
http://dx.doi.org/10.1016/j.compfluid.2012.02.015
http://dx.doi.org/10.1016/j.parco.2016.12.001
http://dx.doi.org/10.1109/SC.2012.6
http://dx.doi.org/10.1109/SC.2012.6
http://dx.doi.org/10.1007/s10714-010-1096-z
http://dx.doi.org/10.1103/PhysRevD.80.024032
http://dx.doi.org/10.1103/PhysRevD.80.024032
mailto:akreienbuehl@lbl.gov
mailto:pietro.benedusi@usi.ch
mailto:d.ruprecht@leeds.ac.uk
mailto:rolf.krause@usi.ch
http://msp.org

	1. Introduction
	2. Equations
	2.1. Gravitational collapse
	2.2. Numerical solution
	2.3. Mass scaling

	3. Parareal
	3.1. Algorithm
	3.2. Spatial coarsening in Parareal
	3.3. Implementation
	3.4. Speedup
	3.5. Load balancing

	4. Results
	4.1. Subcritical
	4.2. Supercritical

	5. Conclusion
	Acknowledgments
	References

