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ADAPTIVELY WEIGHTED LEAST SQUARES
FINITE ELEMENT METHODS FOR

PARTIAL DIFFERENTIAL EQUATIONS WITH SINGULARITIES

BRIAN HAYHURST, MASON KELLER, CHRIS RAI,
XIDIAN SUN AND CHAD R. WESTPHAL

The overall effectiveness of finite element methods may be limited by solutions
that lack smoothness on a relatively small subset of the domain. In particular,
standard least squares finite element methods applied to problems with singular
solutions may exhibit slow convergence or, in some cases, may fail to converge.
By enhancing the norm used in the least squares functional with weight functions
chosen according to a coarse-scale approximation, it is possible to recover near-
optimal convergence rates without relying on exotic finite element spaces or
specialized meshing strategies. In this paper we describe an adaptive algorithm
where appropriate weight functions are generated from a coarse-scale approxi-
mate solution. Several numerical tests, both linear and nonlinear, illustrate the
robustness of the adaptively weighted approach compared with the analogous
standard L2 least squares finite element approach.

1. Introduction

In this paper we consider partial differential equations that exhibit singular behavior
at isolated locations in the domain. It is well known that problems with smooth
data may fail to provide smooth solutions as a consequence of either the domain or
the operator. To illustrate the main ideas, consider{

K(u)= f in �,
u = g on ∂�,

(1)

where K is a second-order differential operator. If f ∈ L2(�) and g ∈ H 3/2(�) is
sufficient to guarantee that u ∈ H 2(�), then we consider the problem to have full
regularity. We consider problems without this property to have a low regularity,
or (potentially) nonsmooth solutions. For example, Poisson’s equation is known
to have full regularity when � is convex, but can have nonsmooth solutions when
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∂� has corners (or edges) with interior angle greater than π [20]. This lack of
smoothness is localized, however. In any subdomain excluding a neighborhood
of each corner point, the solution remains smooth. Other elliptic problems have
similar behavior as a consequence of the domain; see, e.g., [24; 25]. The operator K

can also induce a loss of smoothness when coefficients are either singular (i.e.,
→∞) or degenerate (i.e.,→ 0) at distinct points in � [5].

Invariably, numerical methods tend to suffer as a consequence of a loss of
regularity. Finite element convergence rates can be reduced, or in some cases, the
method can fail to converge to the solution of the problem. Moreover, in many
situations, the loss of optimal rates of convergence is effective globally, even though
the nonsmooth behavior of the solution is localized. This global effect from a local
component is known as the pollution effect.

A wide range of computational approaches has been developed to handle the diffi-
culties induced by such singularities and encompass nearly all aspects of the overall
numerical framework. In the finite element context, problems where singularities
cause slow convergence can often be effectively treated with graded meshes or an
adaptive mesh refinement strategy [30; 17; 1; 12]. In more extreme cases, where
standard formulations would not yield discretization convergence, specialized finite
element spaces can be employed to better match the low regularity inherent in the
problem, for example, using Nédélec or Raviart–Thomas elements as in [7; 10].

In cases where the operator kernels are known analytically, an enhanced finite
element basis can be constructed to capture singular solutions better than with
standard polynomial bases [4; 3; 2; 35; 32]. Further, there are a number of paradigms
that are designed around a weak variational formulation that seek solutions in
lower-order Sobolev spaces rather than more traditional approaches. In the context
of discontinuous Galerkin (DG) and discontinuous Petrov–Galerkin (DPG) [18]
methods, for example, continuity requirements in the trial and test spaces are relaxed
and additional degrees of freedom on the element boundaries lead to additional
jump conditions in the variational problem. Additionally, in the least squares
finite element context, for example, dual space norms induced by the operator
adjoint can replace standard L2 norms to relax regularity requirements [9; 14]. The
methodology we propose here has parallels to each of these ideas.

In this work we introduce an adaptively weighted least squares finite element
approach for problems with singularities. By generalizing the standard least squares
functional with weighted norms, we may essentially redistribute the strength by
which the variational problem is enforced across the domain. The use of weighted
norms and weighted inner products is, of course, not a new idea. Using weighted
norms to generalize L2 residual minimization problems allows for robust treatment
of problems with boundary singularities in weighted H 1(�) or H(div) norms [27;
28; 15]. Though this approach is effective, it requires the explicit construction of
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a weight function localized to each singular point in the domain. Here we use a
sequence of coarse-scale approximations to generate a customized weighted norm in
which to minimize the error. This adaptive approach can reproduce the effectiveness
of the weighted norm least squares approach, but with the advantage of not requiring
the a priori knowledge of either the power or location of any singularity. By analogy,
this is similar to the advantage of adaptive mesh refinement in allowing approximate
solutions to guide the construction of an optimal mesh. In [34], this adaptive
approach is used in a weighted Galerkin formulation for problems with boundary
layers.

The organization of this paper is as follows. In the next section, we formally
introduce the idea of a weighted least squares finite element method. In Section 3
we provide details of an adaptive framework for choosing effective weight functions
from a sequence of coarse-scale approximations. In Section 4 we provide several
numerical examples that illustrate the robustness of the method.

2. Notation and background

Throughout this paper, � and ∂� represent the domain and boundary of the PDE,
which has a nonsmooth solution at distinct locations in �. We use standard notation
for the L2(�)d norm ‖ · ‖ and inner product 〈 · , · 〉 and use ‖ · ‖D to denote the
L2 norm on subdomain D ⊆�.

We consider the least squares finite element approach to problems of the form
in (1). Let LU = F be a linear, first-order reformulation of (1). For nonlinear
problems, L represents a linearization about a current approximation and the solution
procedure would involve a sequence of such linearized problems. In either case, we
thus require finding a finite element approximation to U in the function space V.
The standard L2 least squares method here is to define the least squares functional

F(U ; F)= ‖LU − F‖2 (2)

and minimize over V: find U ∈ V such that F(U ; f ) ≤ F(V ; f ) for all V ∈ V.
This minimization problem is equivalent to the variational problem: find U ∈ V

such that
〈LU, LV 〉 = 〈F, LV 〉 for all V ∈ V.

In general, we assume a least squares finite element formulation that is well posed
and robust for smooth problems. In many cases these formulations contain additional
consistent constraints. The weighting procedure here is designed to extend such
a formulation to recover optimal (or nearly optimal) behavior in the presence of
nonsmooth solutions.

For the general weighted least squares method, let w : �→ [0, 1] denote a
weight function (possibly different for each equation), and define the weighted least
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squares functional
Fw(U ; F)= ‖w(LU − F)‖2. (3)

Similar to the standard approach, minimizing Fw over U ∈V is equivalent to finding
U ∈ V such that

〈wLU, wLV 〉 = 〈wF, wLV 〉 for all V ∈ V.

The weighted least squares approach has been used effectively for problems with
singular behavior, essentially seeking to recover optimal finite element convergence
rates away from the singular points and rates similar to the interpolant near singular-
ities. In [27; 28; 15] the weighted least squares approach is developed using weight
functions based on the asymptotic behavior of the solutions near singularities. In
[5] a similar approach is taken for a problem with singular/degenerate coefficients.
Adopting this idea in practice has been effective for other applications (e.g., for
incompressible fluids [29; 16]) and provides a flexible and straightforward way
to modify a least squares finite element method in the presence of singularities.
This approach requires a priori knowledge of the location and an estimate of the
asymptotic behavior of each point of nonsmoothness to define an appropriate weight
function. In the following section, we develop a general adaptive approach that does
not require this a priori information, but rather builds an optimal composite weight
function based on a coarse-scale approximate solution that requires no explicit user
input.

3. The adaptively weighted least squares approach

Let �h represent a triangulation of the domain and Vh an associated finite element
space in which we will approximate the solution. Given a weight function w, the
discrete solution U h is the unique minimizer of Fw(U h

; F) over Vh : find U h
∈Vh

such that
Fw(U h

; F)≤ Fw(V h
; F) for all V h

∈ Vh . (4)

The adaptive approach is based on defining w from a current approximation to
the exact solution. For this, we define an elementwise measure of the approximation
gradient

G(τ )=
1

µ(τ)
‖∇U h

‖τ , (5)

where Gi = G(τi ) is the value on τi , the i-th element of �h . In cases where the
elements are of vastly different scales, we take µ(τ)= h2

τ as a measure of the area
of the element, making G(τ ) a measure of error density. With quasiuniform meshes,
µ(τ)= 1 can be used. We now define G as a piecewise constant function on �h .
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Figure 1. Two shape function options for constructing the weight function. The affine
model (left) reflects (6), and the inverse model (right) illustrates (7).

The maximum and minimum values of G are denoted by

Gmin = min
τi∈�h

Gi and Gmax = max
τi∈�h

Gi .

Locations with large/small gradients imply that the weight function should be
chosen small/large (see, e.g., [27; 28; 15]). By redefining the metric under which
the error is minimized in this way, the variational problem is weakened in regions
where the solution is most difficult to approximate.

We give two options for constructing w as a piecewise constant function from G:

wi =
Gmax−Gi

Gmax−Gmin
+

Gmin

Gmax
. (6)

or

wi =
c

Gi + c
, where c =

GminGmax

Gmax−Gmin
. (7)

In each (6) and (7), wi ≤ 1 and wi = wmin = Gmin/Gmax when Gi = Gmax. Figure 1
illustrates the shape function for each case (affine and inverse) and suggests a range
of other empirical options.

In an iterative framework, the basic adaptively weighted least squares method is
described in Algorithm 1.

Start: initially set w = 1 uniformly; choose initial mesh �h

Solve: obtain initial solution U h
old by solving (4)

while (overall accuracy < goal) {
Refine mesh: (optional) uniformly or adaptively
while (nonlinear error estimate > tolerance) {

Relinearize: about U h
old (for nonlinear problems)

Construct weight: use U h
old to define G i from (5) and wi from (6) or (7)

Resolve: using w, find U h by solving (4); set U h
old←U h

}
}

Algorithm 1. Adaptively weighted least squares framework.
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The framework here is quite flexible and may be thought of analogously to
the idea of adaptive mesh refinement, where a sequence of increasingly accurate
approximations is found by successively redefining the weight function and resolving
a finer-scale and higher-resolution problem. The mesh refinement step allows the
weight function to be developed through coarse-scale approximations which are
relatively computationally inexpensive. Stopping criteria for the algorithm can be
based on a single metric, like the global value of the least squares functional (3)
or by the total number of refinement levels desired. For nonlinear problems, an
indicator of how well the nonlinear error is resolved can involve a measure of the
change between iterates or a comparison between linear and nonlinear functionals.
It is also possible to simply take a fixed number of linearization steps on each mesh
level, refining the weight function at each opportunity.

In [27; 28; 15], several weighted norm least squares methods are designed
around minimizing the approximation error in weighted Sobolev spaces, where
the weight functions are chosen according to the asymptotic nature of the solution.
For example, in [27], assume U ∼ rα−1 represents the asymptotic behavior of
the solution to LU = F near a boundary singularity, where r is the distance to
the singular point and α ∈ (0, 1) represents the power of the singular solution. A
simple calculation indicates that U ∈ H s(�) for s < α ∈ (0, 1). The a priori weight
function described in [27] requires choosing w∼ rβ such that wU ∈ H 2(�), which
indicates β & 2−α. With a weight function of this design, it is proved that optimal
finite element error convergence in a weighted Sobolev space is expected. This
indicates that the pollution effect is eliminated, yielding the same convergence as
the L2 interpolant in a neighborhood of the singular point and optimal convergence
in a neighborhood excluding the singularity. For the adaptive approach, we mimic
this by choosing the weight construction in (7), where we see that asymptotically

w ∼
1
|∇U |

∼ r2−α,

which matches the a priori construction described in [27]. Analysis of the weighted
least squares methods in [27; 28; 15] is done in the context of a hierarchy of Sobolev
spaces weighted by powers of r , whereas here we have a set of spaces weighted by
an evolving approximate solution.

In the following section we present several numerical tests that illustrate the
utility of the adaptively weighted approach described here. The first two examples
have a known analytic solution, and the convergence, both near the singularity and
away from it, is carefully monitored to show how the adaptive approach improves
convergence. The remaining examples provide a variety of other measures to
illustrate the effectiveness and flexibility of the adaptive approach.
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�1 �0

�=�0 ∪�1

Figure 2. L-shaped domain for Example 1: � is partitioned into subdomains �0 and �1
to distinguish global convergence from local convergence near the singular point.

4. Numerical results

In this section we provide several numerical examples to illustrate the effectiveness
and robustness of the adaptively weighted least squares approach as described in
Algorithm 1. In the first example, we consider a div/curl first-order system induced
by the Laplace operator. In this context, regularity dictates that the standard least
squares approach using H 1 conforming elements is not applicable for nonconvex
domains. Weighted least squares methods can be used to recover optimal con-
vergence in a weighted H 1 norm (see, e.g., [27; 28]), and the results here show
that the adaptively weighted approach achieves similar results, but does so with
no explicit a priori information provided by the user. The second example applies
the adaptively weighted approach to a singularly perturbed elliptic operator that
induces a nonsmooth solution at an interior point in the domain. Here, a mixed
least squares finite element formulation is examined and the adaptively weighted
approach increases slow convergence induced by the loss of smoothness in the
solution. In the next example, we consider a div/curl least squares formulation
of the incompressible Stokes equations in a nonconvex domain. We show how
the adaptively weighted approach ameliorates the pollution effect, yields optimal
convergence in the weighted least squares functional norm, and gives asymptotically
accurate approximations to the velocity in the neighborhood of a reentrant corner. In
addition we show that the adaptively weighted approach improves mass conservation
in the example. The next two examples illustrate the algorithm in the framework of
a nonlinear problem. In these cases we consider two different formulations of the
stationary Navier–Stokes equations applied to standard benchmark problems (the
lid-driven cavity and flow over a square obstacle).

All computational results are implemented in FreeFem++ [21].

Example 1 (Poisson on the L-shaped domain). For this example we define � =
{(x, y) ∈ (−1, 1)2 : (x, y) /∈ [0, 1)× (−1, 0]}, the L-shaped domain pictured in
Figure 2. We also define a partition of the domain to distinguish between a neighbor-
hood of the singular point and the rest of the domain: �0 = {(x, y) ∈� : x2

+ y2 <

(0.25)2} denotes the neighborhood of the origin and �1 = � \�0 represents the
remainder of the domain in which the solution is smooth.
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Standard LS (w = 1)

N F1/2
‖p∗− ph

‖�0 ‖p∗− ph
‖�1 ‖u

∗
− uh
‖�0 ‖u

∗
− uh
‖�1

1716 1.22 0.0166 0.0454 0.389 0.448
6898 1.21 0.0157 0.0439 0.382 0.439

27742 1.20 0.0152 0.0431 0.377 0.434
rate ≈ 0 0 0 0 0

Adaptively weighted LS

N F
1/2
w ‖p∗− ph

‖�0 ‖p∗− ph
‖�1 ‖u

∗
− uh
‖�0 ‖u

∗
− uh
‖�1

1716 0.136 0.00140 0.000595 0.1427 0.0470
6898 0.0755 0.000313 0.000132 0.0855 0.0151

27742 0.0407 0.000104 0.0000412 0.0524 0.00441
rate ≈ 0.89 1.58 1.68 0.71 1.78

optimal rate 1 1.66 2 0.66 2

Table 1. Convergence comparison between the standard least squares approximation
(w = 1) and the adaptively weighted approach. Convergence rate is estimated from results
on the two finest levels, and the optimal rate is based on standard interpolation bounds for
the exact solution.

We consider numerically approximating a nonsmooth solution to the problem{
1p = f in �,

p = p∗ on ∂�,
(8)

where we take f = 0, and the boundary data is chosen so that the exact solution
corresponds to p∗= r2/3 sin(2θ/3) and (r, θ) corresponds to a local polar coordinate
system centered at the origin. The exact solution here is in the kernel of the Laplacian
and represents the nonsmooth component of a typical Poisson problem on a domain
with a reentrant corner of interior angle 3π/2.

We introduce the flux variable u = ∇ p and consider the expanded first-order
system 

∇ · u = f in �,
∇ × u = 0 in �,

u−∇ p = 0 in �,
τ̂ · u = τ̂ · ∇ p∗ on ∂�,

p = p∗ on ∂�,

(9)

where τ̂ is the counterclockwise unit tangent vector to ∂�. The boundary condition
on u is found by differentiating the boundary data on p∗, and though this equation is
redundant, including it generally improves the quality of approximations on coarse
meshes. In this example, boundary conditions on u and p are imposed strongly,
though there are a range of boundary condition treatments possible in the least
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Figure 3. Adaptively generated weight function for domain with N = 1716 elements.
Larger values are lighter (wmax = 0.507); smaller values are darker (wmin = 0.0281).

squares context. The associated weighted least squares functional is

Fw(u, p; f )= ‖w(∇ · u− f )‖2+‖w∇ × u‖2+‖w(u−∇ p)‖2, (10)

which we minimize over standard continuous P1 elements for each unknown,
enforcing boundary conditions on p and u strongly. We follow Algorithm 1 for the
iterative approach, and for this problem (5) takes the form

G(τ )= (‖∇ ph
‖

2
τ +‖∇uh

‖
2
τ )

1/2

on each element τi . The piecewise constant weight function in each step is computed
according to (7).

In Table 1 convergence is summarized for the adaptively weighted approach as
well as the standard approach (corresponding to w = 1). Since the exact solution is
known, we report the L2 error in both p and u and in both �0 and �1. In each case,
a quasiuniform mesh is used with N total elements, and for the adaptive approach
we take three iterations on each mesh and report the values at the third iteration.

A simple calculation reveals that p∗ ∈ H 1+s(�) and u∗ = ∇ p∗ ∈ H s(�)2 for
s < 2

3 . Since u∗ /∈ H 1(�), convergence is not guaranteed for the standard LS
approach, and it fails as expected. The adaptive approach performs better, showing
near-optimal convergence rates for the L2 error for both p and u in each subdomain.
The least squares functional norm, which is essentially a weighted H 1 seminorm,
converges at the optimal rate. This shows that we can retain the convenience of
using H 1 conforming finite element spaces, even when regularity indicates that the
solution is not in H 1(�) locally.

To illustrate the character of the weight function generated by this approach,
Figure 3 shows the weight generated on the coarsest mesh for the results in Table 1.
Smaller values of w (in darker color) occur near the reentrant corner. For context,
the example in Table 1 produces weight with ‖wh

‖L2(�) ≈ 0.876, which in absolute
magnitude does not substantially differ from the scale under uniform weighting,
which gives ‖1‖L2(�) =

√
3≈ 1.73 for this example.
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In this example the domain had one singular point, but applying the method to a
problem with multiple singularities is analogous and straightforward.

Example 2 (a singularly perturbed elliptic problem). For this example we treat a
problem with a singularity in the interior of the domain, induced by the operator
rather than the geometry of the boundary. Consider the problem{

−∇ · (r2β
∇u)+ r2αu = f in �,

u = 0 on ∂�,
(11)

where �= (−1, 1)2 and r is the coordinate distance from (0, 0). When the coeffi-
cients are degenerate (i.e., go to zero) or singular (i.e., blow up) at an interior point,
as is possible here, the solution may be nonsmooth in a neighborhood of the origin.
In [5], a weighted norm least squares finite element method is developed for (11)
where the weight function is chosen by the expected regularity of the problem. For
this example, we choose β = 0.5 and α = −0.5, which induces a solution with
asymptotic behavior of rλ for λ≈ 0.618034. The function f is chosen so that the
exact solution is given by

u = (1− x2)(1− y2)rλ,

which exhibits the expected nonsmooth behavior at the origin, but satisfies homoge-
nous Dirichlet boundary conditions. For this example we recall the weighted least
squares approach in [5], but apply the adaptive approach in choosing the weight
function.

Let σ =−r2β
∇u, and define the weighted least squares functional

Fw(u, σ ; f )= ‖w(∇ · σ + r2αu− f )‖2+‖w(σ + r2β
∇u)‖2.

We use a uniform triangulation of � and approximate σ in the lowest-order H(div)
conforming Raviart–Thomas finite element space, RT0, and use conforming P1
elements for u, with boundary conditions on u enforced strongly. As in Example 1,
we define a partition of�, where�0= (−0.2, 0.2)2 represents a fixed neighborhood
of the origin and �1 =� \�0 is the remainder of the domain.

We follow Algorithm 1 for the iterative approach and use

G(τ )= (‖∇u‖2τ +‖∇σ‖
2
τ )

1/2

as the elementwise gradient measure and use (7) for the construction of w from G.
Table 2 summarizes numerical results on four nested mesh levels. The standard
least squares approach shows results typical of a problem with reduced regularity.
Even though the functional norm decreases at approximately O(h), the L2 error
of u shows slow convergence, even in the subdomain away from the origin. The
adaptively weighted approach yields similarly slowly decreasing errors near the
origin, but faster convergence in the rest of the domain.
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Standard LS (w = 1) Adaptively weighted LS

N F1/2
‖u− uh

‖�0 ‖u− uh
‖�1 F

1/2
w ‖u− uh

‖�0 ‖u− uh
‖�1

512 0.591 0.0154 0.0133 0.591 0.0154 0.0133
2048 0.299 0.00817 0.00270 0.0707 0.00668 0.00704
8192 0.150 0.00406 0.00151 0.0336 0.00314 0.00175

32768 0.0756 0.00222 0.000874 0.0148 0.00183 0.000512
rate ≈ 0.99 0.87 0.79 1.18 0.78 1.77

Table 2. Numerical results for Example 2. Convergence rates are computed relative to the
two finest mesh levels.

For the formulation used for this problem, it’s important to recognize the chal-
lenge here is somewhat different from the previous example. In Example 1, the
flux variable fails to be in H 1(�) in a neighborhood of the corner point, but
we still use a finite element subspace of H 1 for its approximation. Thus, the
standard approach cannot be expected to converge. Here we have u ∈ H 1(�)

and σ ∈ H(div) = {v ∈ L2(�)2 : ∇ · v ∈ L2(�)}, which is consistent with the
approximating spaces, though not smooth enough to achieve optimal L2 rates. The
standard approach converges, albeit slowly, and the adaptively weighted approach
serves to weaken the problem enough near the origin to enhance the convergence
away from the origin, i.e., mitigating the pollution effect.

Example 3 (Stokes flow). For this example we consider steady incompressible
flow in �⊂ R2 modeled by Stokes’ equations

−1u+∇ p = 0 in �,
∇ · u = 0 in �,

u = g on ∂�,
(12)

where u = (u1, u2) represents fluid velocity, p is the pressure, and g gives the ve-
locity on the boundary ∂�. Figure 4 describes the domain and boundary conditions
for this example. By introducing the velocity gradient U =∇u, system (12) can be
reformulated to the first-order system

−∇ ·U +∇ p = 0 in �,
∇ ×U = 0 in �,

U −∇u = 0 in �,
∇ · u = 0 in �,

u = g on ∂�,
τ̂ ·U = τ̂ · ∇ g on ∂�,

(13)

where τ̂ is a unit tangent vector to ∂�. Including the curl constraint of U into
the system is an additional, yet consistent, constraint from the definition of U .
Additionally we note that U11 + U22 = ∇ · u = 0, and we directly substitute
U22 =U11 in (13), reducing the total unknowns by one.
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(0, 0)

centerline u =
(

y(1− y)
0

)

u =
(

0
−x(1+ x)

)

�

Figure 4. Stokes flow domain and boundary conditions. Inflow and outflow boundary
values are shown; no-slip conditions apply to other walls. Conservation of mass is measured
as the velocity flux across the diagonal line along y =−x .

The standard div/curl least squares approach is to minimize the functional

F(u,U, p)= ‖∇ ·U −∇ p‖2+‖∇ ×U‖2+‖U −∇u‖2+‖∇ · u‖2

over an appropriate space of functions for each unknown. When � is sufficiently
smooth and convex, the norm induced by F is equivalent to the H 1(�) norm
of each unknown (up to a constant for p) and accurate discrete approximations
can be found using standard conforming piecewise polynomial spaces for each
unknown. For nonconvex domains, U cannot be guaranteed to remain in H 1(�)

and the H 1 equivalence of LS functional norm breaks down. This well known
loss of regularity has severe consequences for the standard div/curl LS approach —
similar to Examples 1 and 2, singularities at nonconvex corners can cause a loss of
convergence and inaccurate solutions globally. System (13) is certainly not the only
first-order formulation of (12), and the literature in least squares finite elements
reflects a wide range of choices with different advantages and disadvantages (see,
e.g., [6; 22; 13]). The div/curl approach does not require exotic finite element
spaces, it admits realistic boundary conditions for U , and it tends to yield linear
systems that can be solved robustly by multigrid methods. However, this system
exhibits a loss of regularity (see, e.g., [23; 11; 26]), which is what makes the
weighted norm approach a compelling way to deal with problems with singularities.

For the adaptively weighted least squares approach, we directly follow the
procedure defined in Algorithm 1, defining the weighted least squares functional by

Fw(u,U, p)= ‖w(∇ ·U −∇ p)‖2+‖w∇ ×U‖2+‖w(U −∇u)‖2+‖w∇ · u‖2,

where w is chosen from a previous approximation according to elementwise values
of

G(τ )= ‖∇uh
‖

2
τ +‖∇Uh

‖
2
τ +‖∇ ph

‖
2
τ ,

and w is constructed according to (7). All unknowns are approximated with
continuous P2 elements. We follow the nested iteration approach, where the initial
approximation is computed on a coarse quasiuniform mesh, a weight function
is generated on this mesh (see Figure 5), then the mesh is refined uniformly by
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Figure 5. Adaptively generated weight function for Stokes flow example problem. Shown
in grayscale is the first adaptive weight function, based on the initial approximation on
mesh with h−1

= 16. (Larger values are lighter; smaller values are darker.)

splitting each element into four elements, and the next iterate is computed on the
refined mesh. This is then repeated for a total of four refinement levels.

Since no exact solution is available for this problem, we consider several metrics
of convergence. First is the least squares functional norm Fw(uh,Uh, ph)1/2, which
includes the weight function used in finding the approximate solution. The second
metric we use is the unweighted residual norm evaluated on a subdomain that
excludes a neighborhood of the singularity:

R1/2
=
(
‖∇ ·Uh

−∇ ph
‖

2
�1
+‖∇ ×Uh

‖
2
�1
+‖Uh

−∇uh
‖

2
�1
+‖∇ · uh

‖
2
�1

)1/2
,

where �1 = {(r, θ) ∈ � : r > 0.1}. Figure 6 shows a comparison of convergence
between the standard least squares approach and the adaptively weighted approach.
As in Examples 1 and 2, the standard approach stalls, while the adaptive approach
converges at nearly optimal rates. Strong convergence in both the functional and

adaptively weighted LS

rate = OIh2 M

rate = OIh2 M

16 32 64 128
0.002

0.005

0.01

0.02

0.05

0.1

0.2

meshsize parameter, h
-1

Least Squares Functional Norm

16 32 64 128
0.002

0.005

0.01

0.02

0.05

0.1

0.2

meshsize parameter, h
-1

Residual Norm, excluding singularity neighborhood

standard LS

standard LS

adaptively weighted LS

Figure 6. Convergence comparison between standard least squares solution versus the
adaptively weighted approach for increasing refinement level. The left shows the least
squares functional norm F1/2 for the standard approach and the weighted functional norm
F

1/2
w . The right shows the L2 residual norm in a subdomain excluding a neighborhood of

the singularity.
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Figure 7. Trace of uh
1 along the line y =−x through � for increasing refinement level.

The log-log scale shows the asymptotic behavior uh
1 ∼ r0.544.

residual norms shows that no significant pollution effect is present in the weighted
norm approximations.

To examine the quality of the solution near the singularity, we consider the
velocity approximates near the reentrant corner. Through asymptotic analysis, it
can be shown that u ∼ r0.544 near the origin for this problem. Figure 7 gives a
log-log plot of the trace of u1 along the line y = −x in �, which matches the
asymptotic rate well, giving confidence that the method is reproducing a locally
accurate solution.

As a final consideration, we measure the mass flux along the centerline of the
domain (see Figure 4) relative to the inflow. Least squares finite element methods
typically enforce conservation of mass by minimizing the least squares functional
which includes ∇ · u = 0 as one term. Thus, the error in this term is balanced with
the other equations in the system, giving conservation of mass errors on the order
of the total discretization error. Rebalancing terms in the functional can improve
approximation accuracy in one term at the expense of the others, and it is common
to rescale the mass term by a large constant to reduce mass loss. We note that this

% of mass loss at center line
h−1 Adaptive Standard LS
16 30.6% 30.6%
32 7.04% 21.3%
64 2.05% 14.2%

128 0.694% 9.17%

Table 3. Mass loss at center line of symmetry for the adaptively weighted approach versus
the standard approach. Both approaches used the same sequence of triangulations of �
with mesh size parameter h.
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should be done with caution, since introducing a large constant will result in lower
accuracy in other terms and can degrade the conditioning of the resulting linear
system drastically. In Table 3 we show the relative mass loss in the adaptively
weighted approach versus the standard least squares approach, showing a significant
improvement and further evidence that the weighted approach eliminates pollution
effects induced by the singularity at the corner.

Example 4 (Navier–Stokes, lid-driven cavity). Here we consider the div/curl for-
mulation of steady incompressible flow in � ⊂ R2 as modeled by the first-order
system 

−∇ ·U +ReUu+∇ p = 0 in �,
U −∇u = 0 in �,
∇ · u = 0 in �,
∇ ×U = 0 in �,
∇(tr(U))= 0 in �,

u = g on ∂�,
τ̂ ·U = τ̂ · ∇g on ∂�,

(14)

where tr(U) is the trace of U , τ̂ is a unit tangent vector to ∂�, and Re is the
dimensionless Reynolds number, defined to be the ratio of inertial forces to viscous
forces. At low Re, flow is essentially laminar; as Re increases, flow becomes
more turbulent. The nonlinearity induced by the ReUu term makes (14) a natural
candidate for the adaptive weighting procedure since iteration will already be
necessary to resolve the nonlinearity. We present results for Stokes flow (Re= 0)
and turbulent flow at Re = 100 in the lid-driven cavity (LDC) domain shown in
Figure 8. Despite the nonphysical nature of the problem, lid-driven cavity flow
remains a well studied standard test problem for fluid dynamics codes. Our standard
for accuracy is the data presented in [8].

The discontinuous boundary conditions on u in LDC flow induce strong sin-
gularities in p and in some components of U which exclude them from L2(�)

in the neighborhood of the two upper corners (see [19] for details). This poses a
different, seemingly more extreme regularity issue than those induced by noncon-
vex domains. While this loss of smoothness would seem to preclude the use of
H 1(�) conforming elements, we recall that each unknown is sufficiently smooth

(0, 0) u = 0

u = 0 u = 0

u = (−1, 0)

Figure 8. Domain and boundary conditions for the lid-driven cavity test problem.
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in any subdomain excluding the upper corners and that the use of an appropriately
weighted least squares functional can remove any pollution effect due to the loss
of smoothness in the upper corners. Thus, for this problem, we approximate all
unknowns using H 1(�) conforming P2 elements (piecewise continuous quadratics),
and � is discretized using a uniform triangulation. We seek a solution method that
converges robustly to the solution away from the singularities.

We implement Newton’s method within a nonlinear iteration, defining uold and
Uold as current approximations of u and U . The nonlinear inertial term is thus
replaced according to ReUu→ Re(Uoldu+Uuold −Uolduold). When the initial
approximations are taken as Uold= 0 and uold= 0, the first Newton step corresponds
to a Stokes solve. Since the computation of the weight function is essentially free
relative to the PDE solve, we choose to compute a new weight function during each
subsequent Newton step according to Algorithm 1. We find that for Re= 100 using
a fixed number (n = 5) of Newton steps is sufficient to resolve the nonlinearity.

The procedure for each nonlinear step is to minimize the weighted functional

Fw(u,U, p; uold,Uold)= ‖w(−∇ ·U +Re(Uoldu+Uuold−Uolduold)+∇ p)‖2

+‖w(U −∇u)‖2+‖w∇ · u‖2+‖w∇ ×U‖2+‖w∇(tr(U))‖2,

where the weight function is computed according to Algorithm 1 and (7) with
elementwise gradient values

G(τ )= (‖∇u‖2τ +‖∇U‖2τ +‖∇ p‖2τ )
1/2.

We first show convergence in the following unweighted residual norm on a
subdomain that excludes the singularities: �1 = {(x, y) ∈� : y ≤ 0.75} and

R1/2
=
(
‖−∇ ·U +ReUu+∇ p‖2�1

+‖U −∇u‖2�1

+‖∇ · u‖2�1
+‖∇ ×U‖2�1

+‖∇(tr(U))‖2�1

)1/2
.

Figure 9 shows convergence of R1/2 versus the size of each element. For Stokes
flow, the adaptively weighted and standard least squares approaches are comparable,
but for Navier–Stokes flow at Re= 100, the adaptively weighted approach shows
improved error reduction at all resolutions and a nearly optimal O(h2) rate.

To further confirm that the adaptively weighted method converges to the exact
solution we compare results with benchmark solutions for Stokes flow in [19] and
for Navier–Stokes flow in [8].

Figure 10 shows plots of the maximum value of the stream function (left) and the
value of the vorticity at (0, 0.95) at increasing resolution (see [19] for a description
of these physical quantities). As the mesh is refined we see that the adaptively
weighted approach and standard approaches both reproduce the benchmark values
asymptotically.
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Figure 9. Unweighted residual norm R1/2 versus mesh size parameter h for Stokes flow
(Re= 0, top) and Navier–Stokes (Re= 100, bottom).

Figure 11 shows components of the velocity along horizontal (left) and vertical
(right) lines through the center of the domain, compared with a benchmark solution
for Re = 100 in [8]. The adaptively weighted approach seems to reproduce the
benchmark solution well, even though the problem has severe regularity issues from
a discontinuous boundary condition.

Example 5 (Navier–Stokes, flow over a square obstacle). In this section, we analyze
the steady state flow around a square obstacle using a stress, velocity, pressure
formulation of the Navier–Stokes equations:

∇ · σ − ρu · ∇u = 0,
σ = µ(∇u+∇uT )− pI,

∇ · u = 0,
(15)
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Figure 10. Stream function extrema over various mesh sizes (top) and vorticity values
near corner (bottom).

where σ =
(
σ11
σ21

σ12
σ22

)
is the total stress tensor, ρ is the density, u = (u1, u2) is the

velocity, µ = 1 is the kinematic viscosity, p is the pressure, and I is the 2× 2
identity tensor. We define the Reynolds number to be Re= ρvd/µ where v = 1 is
the characteristic velocity and d = 1 is the characteristic length. Thus, ρ is chosen
to correspond to the Reynolds number.

Figure 12 shows the domain and boundary conditions used for this test. The
full domain is 200 units long and 100 units high with a 1× 1 square located in the
center. Because the solution is symmetric across y = 0, a half domain is used for
computation. The north and west edges of the domain have boundary conditions
of u1 = 1 and u2 = 0. No-slip boundary conditions are employed on the inner
square. The symmetry line along the south edge has boundary conditions setting
the y derivatives of u1 and p to be zero. The sheer stresses, σ12 and σ21, along with
u2 are also set to zero along the south edge. The east edge is set to be consistent
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Figure 11. Horizontal (top) and vertical (bottom) velocity profiles through a horizontal
center line for Navier–Stokes flow at Re= 100 compared with a benchmark solution.
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dx(u1)= 0
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dy(u1)= 0

σ12 = 0

σ21 = 0

u2 = 0

symmetry boundary

u = 0

u = (1, 0)

u = (1, 0)

200d

50d

Figure 12. Domain and boundary conditions for Stokes flow example.

with a fully developed constant flow. It employs a zero normal velocity gradient
and zero pressure, which implies each component of σ will be zero as well.

Letting uold represent a current approximation (initially starting with uold = 0),
the linearized, weighted least squares functional is given by

Fw(σ , u, p; uold)= ‖w(∇ · σ − ρ(uold · ∇u+ u · ∇uold− uold · ∇uold))‖
2

+‖w(σ − (∇u+∇uT )+ pI )‖2+‖w(∇ · u)‖2. (16)

For the adaptively weighted method, w is chosen from a previous approximation
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Figure 13. Weight functions on reentrant corners for the adaptive weight (left) and a priori
weight (right). White regions represent w = 1 while darker regions are closer to w = 0.

according to elementwise gradient values,

G(τ )=
1
h2
τ

(‖∇σ h
‖

2
τ +‖∇uh

‖
2
τ +‖∇ ph

‖
2
τ )

1/2 (17)

and (6) for the weight. For comparison, we also define an a priori weighting
approach, which uses a predefined weight function with w ∼ rβ (Figure 13) near
each reentrant corner and w= 1 away from the neighborhood of each corner. Based
on the known regularity of (15) we may use β = 1.5 to accelerate convergence. For
the standard approach, w= 1 over the entire domain. Figure 13 shows a comparison
of one adaptively generated weight function and the a priori weight function used.

The computational domain is discretized into N total elements, where we define
n as the number of elements on each side of the square obstacle. Figure 14 shows a
representative mesh (with n = 10) over the computational domain and detail of the
local mesh around the square. Numerical results in Figures 16 and 17 use n = 30.
Computational meshes M1–M4 use n = 4, 8, 16, 32, respectively.

We choose the FE spaces based upon the structure of the equations in the system,
with σ h

∈ RT1 (the next to lowest space of H(div) conforming Raviart–Thomas
elements), uh

∈ P2 (continuous piecewise quadratic elements), and ph
∈ P1dc

(discontinuous piecewise linear elements).
Table 4 summarizes convergence in the functional norm for the three approaches:

standard (w = 1), adaptive, and a priori. We define a composite global mesh size
parameter h = N−1/2 where N is the number of elements in the domain. We
estimate the rate of convergence to be O(hr ), with the weighted functional norm
F

1/2
w = (Fw(σ

h, uh, ph))1/2, where r = log(F1/2
w1 /F

1/2
w2 )/ log(h1/h2).

Figure 14. Low-resolution mesh (n = 10) over the computational domain (left) and detail
around the obstacle (right).
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F1/2 F
1/2
w F

1/2
w

Mesh N standard adaptive a priori
M1 720 0.5682 0.4647 0.5246
M2 2880 0.3915 0.2422 0.3117
M3 11520 0.2873 0.1211 0.1253
M4 46080 0.2196 0.0680 0.0493

rate ≈ 0.39 0.83 1.35

Table 4. Functional norm convergence comparison (at Re = 20) between the standard
least squares approximation (w = 1), the adaptively weighted approach, and the a priori
weighted approach. The meshes are generated in a nested refinement pattern with the
structure shown in Figure 14. Convergence rate is estimated from data on the two finest
mesh levels.

Convergence is slow for the standard approach while each of the weighted
approaches has better convergence.

To further examine computational results, we measure the size of the down-
stream recirculation eddy and the drag coefficient for a range of Reynolds numbers,
comparing values to benchmark solutions published in [31] (noted below as the
work of Sen et al.).

We define the reattachment length to be the horizontal distance from the down-
stream edge of the square to the transition point between recirculation and flow
as shown in Figure 15. Computational results summarized in Figure 16 show that
both weighted approaches match the values in the reference solution well, while the
standard approach significantly under predicts the size of the downstream vortex size.

We define the general coefficient of drag to be

CD =
2

Re

∫
s
(σ n̂ · ı̂) ds (18)

where n̂ is a unit vector normal to the surface of the obstacle and ı̂ is a unit vector
in the horizontal direction [33]. We can decompose the general formula to this

Reattachment Length

Figure 15. The reattachment length is measured as the distance from the back edge of the
square to the transition point between recirculation and flow.
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Figure 16. Comparison of reattachment length between different weighting methods (on
n = 30) and the previous work of Sen et al. At very low Reynolds numbers all methods
can be used to good approximation. At Re> 10 only the a priori and adaptive weighting
methods continue to be a good approximations. At relatively low mesh resolution, the a
priori and adaptive weighting methods produce significantly better results than the stan-

dard method.

specific setup, relative to the full domain, as

CD = CD p+CDv (19)
where

CD p =
2

Re
Fp =

2
Re

∫
E,W

p dy (20)

is the pressure drag, Fp is the force due to pressure,

CDv =
2

Re
Fv =

2
Re

∫
N ,S

∂yu1 dx (21)
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Figure 17. Comparison of the drag coefficient between different weighting methods (on
n = 30) and the previous work of Sen et al. [31]. Although on a comparatively coarse
mesh, both the a priori and adaptive weighting methods are a good approximation to the
reference solution.
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CD CD CD RL RL RL
Mesh standard adaptive a priori standard adaptive a priori

M1 0.60 0.92 0.74 – – –
M2 0.87 1.43 1.21 0.41 0.86 0.71
M3 1.14 1.78 1.86 0.64 1.15 1.20
M4 1.46 2.04 2.09 0.86 1.26 1.29

Table 5. Drag coefficient and reattachment length convergence comparison (at Re= 20)
between the standard least squares approximation (w = 1), the adaptively weighted
approach, and the a priori weighted approach. The published values for the coefficient of
drag and reattachment length are Cd ≈ 2.21 and RL≈ 1.37 [31].

is the viscous drag, and Fv is the force due to viscous shear. Here, N , S, E,W
represents the north, south, east, and west sides of the square obstacle, respectively.
Figure 17 compares drag coefficient values for a range of Reynolds numbers for the
three approaches, each computed on a mesh with n = 30. As before, the standard
approach underpredicts the values while each of the weighted methods produce
values close to the reference solution. As a final consideration, in Table 5 we report
convergence of drag coefficients and reattachment lengths for a fixed Reynolds
number (Re = 20) on a sequence of mesh refinements. For each method, values
seem to be approaching that of the reference solution, but the weighted methods
show better convergence to the reference values, indicating a mitigation of the
pollution effect induced by the nonsmooth solution at the reentrant corners.

5. Conclusion

The adaptively weighted least squares approach presented here represents a practical
way to treat problems with nonsmooth solutions without requiring the use of exotic
finite element spaces or special reformulations of the problem. The general idea
can be implemented naturally within an adaptive mesh refinement routine, or within
a nonlinear or implicit time stepping iteration, and the additional cost of generating
the weight function is small compared with the work required for the full PDE
solve. Numerical results demonstrate that the pollution effect due to problems with
nonsmooth solutions can be reduced or eliminated, suggesting that the adaptively
weighted approach is able to minimize the error in a more optimal norm than using
standard L2 minimization principles.
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ON THE CONVERGENCE OF ITERATIVE SOLVERS
FOR POLYGONAL DISCONTINUOUS GALERKIN

DISCRETIZATIONS

WILL PAZNER AND PER-OLOF PERSSON

We study the convergence of iterative linear solvers for discontinuous Galerkin
discretizations of systems of hyperbolic conservation laws with polygonal mesh
elements compared with traditional triangular elements. We solve the semidiscrete
system of equations by means of an implicit time discretization method, using
iterative solvers such as the block Jacobi method and GMRES. We perform a
von Neumann analysis to analytically study the convergence of the block Jacobi
method for the two-dimensional advection equation on four classes of regular
meshes: hexagonal, square, equilateral-triangular, and right-triangular. We find
that hexagonal and square meshes give rise to smaller eigenvalues, and thus result
in faster convergence of Jacobi’s method. We perform numerical experiments with
variable velocity fields, irregular, unstructured meshes, and the Euler equations
of gas dynamics to confirm and extend these results. We additionally study
the effect of polygonal meshes on the performance of block ILU(0) and Jacobi
preconditioners for the GMRES method.

1. Introduction

In recent years, the discontinuous Galerkin (DG) method has become a popular
choice for the discretization of a wide range of partial differential equations [27; 6;
15]. This is partly because of its many attractive properties, such as the arbitrarily
high degrees of approximation, the rigorous theoretical foundation, and the ability
to use fully unstructured meshes. Also, due to its natural stabilization mechanism
based on approximate Riemann solvers, it has in particular become widely used in
fluid dynamics applications where the high-order accuracy is believed to produce
improved accuracy for many problems [32].

Most work on DG methods has been based on meshes of either simplex elements
(triangles and tetrahedra), block elements (quadrilaterals and hexahedra), or combi-
nations of these such as prism elements. This is likely because of the availability
of excellent automatic unstructured mesh generators, at least for the simplex case
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[22; 28; 30], and also because of the advantages with the outer product structure
of block elements. However, it is well known that since no continuity is enforced
between the elements, it is straightforward to apply the DG methods to meshes with
elements of any shapes (even nonconforming ones). For example, vertex-centered
DG methods based on the polygonal dual meshes were studied in [5; 18]. This is a
major advantage over standard continuous FEM methods, which need significant
developments for the extension to arbitrary polygonal and polyhedral elements [19].

In the finite volume CFD community, there has recently been considerable interest
in meshes of arbitrary polygonal and polyhedral elements. In fact, the popular
vertex-centered finite volume method applied to a tetrahedral mesh can be seen as
a cell-centered method on the dual polyhedral mesh. Because of this, a number of
methods have been proposed for generation of polyhedral meshes, which in many
cases have advantages over traditional simplex meshes [21; 12]. Although it is still
unclear exactly what benefits these elements provide, they have been reported to be
both more accurate per degree of freedom and to have better convergence properties
in the numerical solvers than for a corresponding tetrahedral mesh [23; 2]. There
have also been studies showing that vertex-centered schemes are preferred over
cell-centered [10; 9], again indicating the benefits of polyhedral elements.

Inspired by the promising results for the polyhedral finite volume method, and
the fact that DG is a natural higher-order extension of these schemes, in this work
we study some of the properties of DG discretizations on polygonal meshes. To
limit the scope, we only investigate the convergence properties of iterative solvers
for the discrete systems, assuming an equal number of degrees of freedom per
unit area for all element shapes. Future work will also investigate the accuracy of
the solutions on the different meshes. We first consider the iterative block Jacobi
method applied to a pure convection problem, which in the constant-coefficient case
can be solved analytically using von Neumann analysis. Next we apply the solver
to Euler’s equations of gas dynamics for relevant model flow problems, to obtain
numerical results for the convergence of the various element shapes. We consider
regular meshes of hexagons, squares, and two different configurations of triangles,
as well as the dual of fully unstructured triangular Delaunay refinement meshes.
We also perform numerical experiments with the GMRES Krylov subspace solver
and a block ILU preconditioner. Although the results are not entirely conclusive,
most of the results indicate a clear benefit with the hexagonal and quadrilateral
elements over the triangular ones.

The paper is organized as follows. In Section 2, we describe the spatial and
the temporal discretizations, and introduce the iterative solvers. In Section 3 we
perform the von Neumann analysis of the constant-coefficient advection problem,
in 1D and for several mesh configurations in 2D. In Section 4 we show numerical
results for more general advection fields, for more general meshes, as well as for
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the Euler equations and the GMRES solver. We conclude with a summary of our
findings as well as directions for future work.

2. Numerical methods

2.1. The discontinuous Galerkin formulation. We consider a system of m hyper-
bolic conservation laws given by the equation

{
∂t u+∇ · F(u)= 0, (t, x) ∈ [0, T ]×�,
u(0, x)= u0(x).

(1)

In order to describe the discontinuous Galerkin spatial discretization, we divide
the spatial domain �⊆ R2 into a collection of elements, to form the triangulation
Th = {Ki }. Often the elements Ki are considered to be triangles or quadrilaterals,
but in this paper we allow the elements to be arbitrary polygons in order to study
the impact of different tessellations on the efficiency of the algorithm.

Let Vh = {vh ∈ L2(�) : vh|Ki ∈ P p(Ki )} denote the space of piecewise poly-
nomials of degree p. We let V m

h denote the space of vector-valued functions of
length m, with each component in Vh . Note that continuity is not enforced between
the elements. We derive the discontinuous Galerkin method by replacing u in (1) by
an approximate solution uh ∈ V m

h , and then multiplying equation by a test function
vh ∈ V m

h . We then integrate by parts over each element. Because the approximate
solution uh is potentially discontinuous at the boundary of an element, the flux
function F is approximated by a numerical flux function F̂, which takes as arguments
u+, u−, and n, denoting the solution on the exterior and interior of the element, and
the outward-pointing normal vector, respectively. Then, the discontinuous Galerkin
method is as follows: find uh ∈ V m

h such that, for all vh ∈ V m
h ,

∫

Ki

∂t uh · vh dx −
∫

Ki

F(uh) : ∇vh dx +
∮

∂Ki

F̂(u+, u−, n) · vh ds = 0. (2)

2.2. Advection equation. As a first example, we consider the two-dimensional
scalar advection equation

ut +∇ · (βu)= 0, (3)

for a given (constant) velocity vector β = (α, β). We solve this equation in the
domain [0, 2π ]× [0, 2π ], with periodic boundary conditions. The exact solution to
this equation is given by

u(t, x, y)= u0(x −αt, y−βt), (4)

where u0 is the given initial state.
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In order to define the discontinuous Galerkin method for (3), we define the
upwind flux by

F̂(u+, u−, n)=
{

u− if β · n ≥ 0,
u+ if β · n< 0.

(5)

We represent the approximate solution function uh as a vector U consisting of the
coefficients of the expansion of uh in terms of an orthogonal Legendre polynomial
modal basis of the function space V m

h . Discretizing (3) results in a linear system of
equations, which we can write as

M(∂t U)+ LU = 0, (6)

where the mass matrix M corresponds to the first term on the left-hand side of (2),
and L consists of the second two terms on the left-hand side. The mass matrix is
block-diagonal, and the matrix L is a block matrix, with blocks along the diagonal,
and off-diagonal blocks corresponding to the boundary terms from the neighboring
elements.

2.3. Temporal integration and linear solvers. We consider the solution of (6) by
means of implicit time integration schemes, the simplest of which is the standard
backward Euler scheme,

(M + k L)Un+1
= MUn. (7)

Furthermore, each stage of a higher-order scheme, such as a diagonally implicit
Runge–Kutta (DIRK) scheme [1], can be written as a similar equation. The block
sparse system can be solved efficiently by means of an iterative linear solver. In
this paper, we consider two solvers: the simple block Jacobi method, and the
preconditioned GMRES method.

2.3.1. Block Jacobi method. A popular and simple iterative solver is the block
Jacobi method, defined as follows. Each iteration of the method for solving the
linear system Ax = b is given by

x(n+1)
= D−1b+ RJ x(n), (8)

where D is the block-diagonal part of A, and RJ = I− D−1 A. This simple method
has the advantage that it is possible to analyze the convergence properties of the
method simply by examining the eigenvalues of the matrix RJ . An upper bound
of 1 for the absolute value of the eigenvalues of the matrix RJ is a necessary and
sufficient condition in order for Jacobi’s method to converge (for any choice of
initial vector x(0)). The spectral radius of RJ determines the speed of convergence.
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2.3.2. Preconditioned GMRES method. Another popular and oftentimes more effi-
cient [3] method for solving large, sparse linear systems is the GMRES (generalized
minimal residual) method [26]. As with most Krylov subspace methods, the choice
of preconditioner has a great impact on the efficiency of the solver [24]. A simple
and popular choice of preconditioner is the block Jacobi preconditioner. Each
application of this preconditioner is performed by multiplying by the inverse of
the block-diagonal part of the matrix. Another, often more effective choice of
preconditioner is the block ILU(0) preconditioner [8]. This preconditioner produces
an approximate blockwise LU factorization, whose sparsity pattern is enforced to be
the same as that of the original matrix. This factorization can be performed in place,
and requires no more storage than the original matrix. Unlike the block Jacobi
method, the block ILU(0) preconditioner can be highly sensitive to the ordering of
the mesh elements [11; 4]. Because of this property, it is common to combine the
use of ILU preconditioners with certain orderings of the mesh elements designed
to increase efficiency, such as reverse Cuthill–McKee [7], minimum degree [20],
nested dissection [13], or minimum discarded fill [26].

In this paper, we focus our study on the block Jacobi method, which is simpler
and more amenable to analysis. We then perform numerical experiments using both
the block Jacobi method and the preconditioned GMRES method using ILU(0) and
block Jacobi preconditioning.

3. Jacobi analysis

We compare tessellations of the plane by four sets of generating patterns, each
consisting of one or more polygons. We consider tessellations consisting of squares,
regular hexagons, two right triangles, and two equilateral triangles. The generating
patterns considered are shown in Figure 1. Each generating pattern G j consists of
one or two elements, labeled K j and K̃j . We will refer to these generating patterns
as S, H , R, and E for squares, hexagons, right triangles, and equilateral triangles.

We are interested in computing the spectral radius of the Jacobi matrix RJ
that arises from the discontinuous Galerkin discretization on the mesh resulting

K j K j
K j

K̃ j K j
K̃ j

Figure 1. Examples of generating patterns G j shown with bolded lines. Neighboring
elements are shown unbolded. Left to right: square Cartesian grid, regular hexagons,
isosceles right triangles, and equilateral triangles.
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from tessellating the plane by each of the four generating patterns. For the sake
of comparison, we choose the elements from each of the generating patterns to
have the same area. Therefore, if the side length of the equilateral triangle is
hE = h, then the two equal sides of the isosceles right triangle have side length
h R = (

4
√

3/
√

2)hE , the hexagon has side length hH = (1/
√

6)hE , and the square
has side length hS = (

4
√

3/2)hE . Then, the global system will have the same number
of degrees of freedom regardless of choice of generating pattern.

3.1. Von Neumann analysis. First, we compare the efficiency of each of the four
types of generating patterns when used to solve the advection equation (3) with
the discontinuous Galerkin spatial discretization and implicit time integration. We
compute the spectral radius of the matrix RJ using the classical von Neumann
analysis for each of the generating patterns, in a manner similar to [16].

Let U denote the solution vector, and let its j-th component, U j , which is itself
a vector, denote the degrees of freedom in G j , the j-th generating pattern. We
remark that in the case of squares and hexagons, this corresponds exactly to the
degrees of freedom in the element K j , but in the case of the triangular generating
patterns, this corresponds to the degrees of freedom from both of the elements K j

and K̃j . In order to determine the eigenvalues of RJ , we consider the planar wave
with wavenumber (nx , ny) defined by

U j = ei(nx x j+ny y j )Û, (9)

where (x j , y j ) are fixed coordinates in G j . Then, we let ` index the generating
patterns neighboring G j , and we let δ` = (δx`, δy`) = (x j − x`, y j − y`) be the
offsets satisfying G j + δ` = G`. We can then write the solution in each of the
neighboring generating patterns as

U` = ei(nx δx`+nyδy`)U j . (10)

In this case we write the semidiscrete equations (6) in the compact form

M j (∂t U j )+
∑
`

ei(nx δx`+nyδy`)L j`U j = 0, (11)

where the summation over ` ranges over all neighboring generating patterns, M j

denotes the diagonal block of M corresponding to the j-th generating pattern, and
L j` denotes the block of L in the j-th row and `-th column. We can write

L̂ j =
∑
`

ei(nx δx`+nyδy`)L j` (12)

to further simplify and obtain

M j (∂t Û)+ L̂ j Û = 0. (13)
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In order to solve (13) using an implicit method, we consider the backward-Euler-type
equation

(M j + k L̂ j )Ûn+1
= M j Ûn. (14)

The Jacobi iteration matrix RJ can then be written as

R̂J j = I − D−1(M j + k L̂ j ), (15)

where the matrix D = M j + k L j j consists of the j-th diagonal block of M + k L.
The eigenvalues of the matrix R̂J j control the speed of convergence of Jacobi’s
method. In the simple cases of piecewise-constant functions (p = 0), or in the case
of a one-dimensional domain, the eigenvalues can be computed explicitly. In the
more complicated case of p ≥ 1 in a two-dimensional domain, we compute the
eigenvalues numerically.

3.2. 1D example. To illustrate the von Neumann analysis, we consider the one-
dimensional scalar advection equation

ut + ux = 0 (16)

on the interval [0, 2π ] with periodic boundary conditions. We divide the domain
into N subintervals K j , each of length h. Let U denote the solution vector, and
let U j denote the degrees of freedom for the j-th interval K j . For example, if
piecewise constants are used, the method is identical to the upwind finite volume
method, and each U j represents the average of the solution over the interval. If
piecewise polynomials of degree p are used, each U j is a vector of length p+ 1.

For the purposes of illustration, we choose p = 1, and let U j = (u j,1, u j,2)

represent the value of the solution at the left and right endpoints of the interval K j .
Then, the local basis on the interval K j consists of the functions

φ j,1(x)= j − x/h, φ j,2(x)= x/h− j + 1. (17)

We remark that the upwind flux in this case is always equal to the value of the
function immediately to the left of the boundary point:

[F̂(u+, u−, x)v(x)] jh
( j−1)h = u j,2v j,2− u j−1,2v j,1. (18)

The entries of the j-th block of the mass matrix M are given by

(M j )i` =

∫ jh

( j−1)h
φ j,i (x)φ j,`(x) dx . (19)

Additionally, we remark that the diagonal blocks of L consist of the volume integrals
and right boundary terms given by

(L j j )i` = φ j,i ( jh)φi,`( jh)−
∫ jh

( j−1)h
φ′j,i (x)φ j,`(x) dx . (20)
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We let A denote the backward-Euler-type operator defined by

A= M + k L, (21)

and solving the equation Ax= b by means of Jacobi iterations, we define the Jacobi
matrix RJ by

RJ = I − D−1 A, (22)

where D is the matrix consisting of the diagonal blocks of A. The entries of the
diagonal blocks M j and L j j can be computed explicitly using (17) to obtain

M j =

(
1
3 h 1

6 h
1
6 h 1

3 h

)
, L j j =

(
1
2

1
2

−
1
2

1
2

)
, D j =

(
1
3 h+ 1

2 k 1
6 h+ 1

2 k
1
6 h− 1

2 k 1
3 h+ 1

2 k

)
. (23)

In order to perform the von Neumann analysis, we seek solutions of the form
U j = einh j Û , which allows us to explicitly compute the form of the matrix L̂ j .
Recalling the compact form from (13), we obtain

L̂ j =

(
1
2

1
2 − e−ihn

−
1
2

1
2

)
. (24)

Then, the Jacobi matrix R̂J j is given by

R̂J j =




0
2e−ihnk(2h+ 3k)
h2+ 4kh+ 6k2

0 −
2e−ihn(h− 3k)k
h2+ 4kh+ 6k2


 , (25)

whose eigenvalues λ1 and λ2 are given by

λ1 = 0, λ2 =
2k(3k− h)e−ihn

h2+ 4hk+ 6k2 . (26)

Therefore, each wavenumber n from 0 to 2π/h corresponds to an eigenvalue of the
Jacobi matrix RJ , and the magnitude of these eigenvalues determine the speed of
convergence of Jacobi’s method. In this case, the expression

λmax =
2k|h− 3k|

h2+ 4hk+ 6k2 (27)

determines the speed of convergence of Jacobi’s method. This expression can easily
be seen to be bounded above by 1 for all positive values of h and k, therefore indi-
cating that Jacobi’s method is guaranteed to converge, unconditionally, regardless
of spatial resolution or time step.
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3.3. 2D analysis. We now turn to the analysis of the four generating patterns shown
in Figure 1. The analysis proceeds along the same lines as in the one-dimensional
example from Section 3.2. As an example, we present the case of piecewise
constants, for which it is possible to explicitly compute the eigenvalues of the
Jacobi matrix RJ . In this case the discontinuous Galerkin formulation simplifies to
the upwind finite volume method

∫

K j

∂t uh dx +
∮

∂K j

F̂(u+, u−, n) ds = 0. (28)

For the sake of concreteness, we assume without loss of generality that the velocity
vector β = (α, β) satisfies α, β ≥ 0. In order to explicitly write the upwind flux
on the meshes consisting of hexagons and equilateral triangles, we further assume
that
√

3α− β ≥ 0, and on the mesh consisting of right triangles we assume that
α−β ≥ 0. In the case of the square and hexagonal meshes, there is only one degree
of freedom per generating pattern, and we will write u j to represent the average
value of the solution over the generating pattern G j . We then consider the planar
wave with wavenumber (nx , ny) given by u j = ei(nx x j+ny y j )û. In the case of the
square mesh with side length hS = (

4
√

3/2)hE , the method can be written as

h2
S(∂t û)=−hS(α(1− e−inx hS )+β(1− e−inyhS ))û. (29)

In this case, the mass matrix M is a diagonal matrix with h2
S along the diagonal,

and the diagonal entries of the matrix L are given by hS(α+ β). Therefore, the
eigenvalues of the Jacobi matrix RS

J = I − D−1(M + k L) are given by

λ(RS
J )= 1−

1
h2

S + hSk(α+β)
(h2

S + hSk(α(1− e−inx hS )+β(1− e−inyhS )))

=
k(αe−inx hS +βe−inyhS )

hS + k(α+β)
. (30)

In the case of the hexagonal mesh with side length hH = (1/
√

6)hE , the method is

3
√

3
2

h2
H (∂t û)=−hH

(
(
√

3α+β)+
(
−

√
3

2 α+
β

2

)
eihH (−(3/2)nx+(

√
3/2)ny)

+
(
−

√
3

2 α−
β

2

)
eihH (−(3/2)nx−(

√
3/2)ny)−βe−ihH

√
3ny
)
û. (31)

A similar analysis shows that the eigenvalues of the matrix RH
J are given by

λ(RH
J )=

ke−(1/2)ihH (3nx+
√

3ny)

9hH + 6αk+ 2
√

3βk
×

(√
3β(2e(1/2)ihH (3nx−

√
3ny)− ei

√
3hH ny + 1)+ 3α(1+ ei

√
3hH ny )

)
. (32)
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In the case of the two triangular meshes, there are two degrees of freedom per
generating pattern, corresponding to the elements K j and K̃j in the generating
pattern G j . We write U j = (u j,1, u j,2), where u j,1 is the average of the solution
over the element K j , and u j,2 is the average of the solution over K̃j . The planar
wave solution is then given by U j = ei(nx x j+ny y j )Û , for Û = (û1, û2). We consider
the case of a right-triangular mesh, where the two equal sides of the isosceles right
triangles have length h R = (

4
√

3/
√

2)hE . The method then reads

∂t

(
û1

û2

)
=−

2
h R

(
αû1− e−ih Rnxαû2

αû2+ (β −α)û1− e−ih Rnyβû1

)
. (33)

In the case of the mesh consisting of equilateral triangles, each with side length hE ,
the method reads

∂t

(
û1

û2

)
=
−4
√

3hE

((√3
2 α+

1
2β
)
û1+

(
e−ihE nx

(
−

√
3

2 α+
1
2β
)
−e−ihE nyβ

)
û2(

−

√
3

2 α−
1
2β
)
û1+

(√3
2 α+

1
2β
)
û2

)
. (34)

Computing the eigenvalues of the corresponding Jacobi matrices RR
J and RE

J , we
obtain

λ(RR
J )=±

2ke−(1/2)ih R(nx+ny)
√
α
√
β + (α−β)eih Rny

h R + 2αk
, (35)

λ(RE
J )=±

2k(3α+
√

3β)
√

2βeihE nx + (
√

3α−β)eihE ny

(3hE + 6αk+ 2
√

3βk)
√
(
√

3α+β)eihE (nx+ny)

. (36)

Then, (30), (32), (35), and (36) completely determine the speed of convergence
for Jacobi’s method of each of the four generating patterns considered. In the case
of a higher-order discontinuous Galerkin method with basis consisting of piecewise
polynomials of degree p > 0, we obtain a Jacobi matrix given by (15), where the
matrices R̂J j , D, M j , and L̂ j are 1

2(p+ 1)(p+ 2)× 1
2(p+ 1)(p+ 2) blocks. In

this case, we do not obtain closed-form expressions for the eigenvalues, but rather
compute them numerically.

We normalize the velocity magnitude and consider β = (cos(θ), sin(θ)). On the
square mesh, θ can range from 0 to π/2. On the hexagonal and equilateral triangle
meshes, θ ranges from 0 to π/3, and on the right-triangular mesh θ ranges from 0
to π/4. We consider a fixed spatial resolution h, and compare the efficiency of the
four patterns for three choices of temporal resolution. We first consider an “explicit”
time step, satisfying the CFL-type condition

kexp =
h
|β|
. (37)
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p = 0 p = 1
k1 k2 k3 k1 k2 k3

hexagons 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
squares 1.128939 1.133989 1.136772 1.058098 1.118222 1.130101

right triangles 1.128939 1.133989 1.136772 1.084223 1.132326 1.137313
equilateral triangles 1.207328 1.215467 1.219948 1.137267 1.201638 1.214376

p = 2 p = 3

hexagons 1.000000 1.000000 1.000000 1.077183 1.070785 1.066101
squares 1.095785 1.118510 1.129314 1.000000 1.000000 1.000000

right triangles 1.111863 1.126951 1.133634 1.010482 1.005391 1.002733
equilateral triangles 1.177503 1.201918 1.213527 1.074570 1.074570 1.074570

Table 1. Ratio of logarithm of eigenvalues log λmax(Rmin
J )/ log λmax(R∗J ) ranging over

angle θ and wavenumber (nx , ny), for piecewise polynomials of degree 0, 1, 2, and 3, for
varying choices of time step k. The smallest eigenvalue in each column is in bold.

As one advantage of using an implicit method is that we are not limited by an
explicit time step restriction of the form (37), we consider three implicit time steps
given by k1 = 3kexp, k2 = 2k1, and k3 = 4k1. We then maximize over a discrete
sample of θ ∈ [0, π/4] and over all wavenumbers (nx , ny), in order to compute
the maximum eigenvalue for each of the generating patterns. As the number of
iterations required to converge to a given tolerance scales like the reciprocal of
the logarithm of the spectral radius, we compare the efficiency of the generating
patterns by considering the ratio

log λmax(Rmin
J )

log λmax(R∗J )
,

where λmax(R∗J ) is the largest eigenvalue of R∗J , for ∗=H, S, R, E , and λmax(Rmin
J )

is the smallest among all λmax(R∗J ). This ratio corresponds to the ratio of iterations
required to converge to a given tolerance when compared with the most efficient
among the generating patterns. The results obtained for p = 0, 1, 2, 3, and k =
k1, k2, k3 for each generating pattern are shown in Table 1 and Figure 2.

p = 0 p = 1 p = 2 p = 3

k1 k2 k3

0.8

1
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k1 k2 k3
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k1 k2 k3
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k1 k2 k3

0.8

1

1.2

Hexagons Squares Right triangles Equilateral triangles

Figure 2. Ratios of the logarithm of the largest eigenvalues for each pattern.



38 WILL PAZNER AND PER-OLOF PERSSON

We remark that for polynomials of degree 0, 1, and 2, the hexagonal mesh
resulted in the smallest eigenvalues for all choices of time step considered, and the
square mesh resulted in the second-smallest eigenvalues. For degree-3 polynomials,
the square mesh resulted in the smallest eigenvalues for all cases considered. We
notice a significant decrease in the expected performance of the hexagonal elements
in the case of p = 3, although we have noticed that the effect observed in practice
is not as significant as the theoretical results would suggest.

4. Numerical results

4.1. Advection with variable velocity field. To perform numerical experiments
extending the analysis of (3) beyond the case of a constant velocity β, we consider
a variable velocity field β(x, y). In this case, the upwind numerical flux

F̂(u+, u−, n, x, y)=
{

u−(x, y) if β(x, y) · n ≥ 0,
u+(x, y) if β(x, y) · n< 0

(38)

is evaluated pointwise. As an example, we define the velocity to be given by the
vector field β(x, y)= (2y− 1,−2x + 1) on the spatial domain �= [0, 1]× [0, 1].
This velocity field is shown in Figure 3. We let the initial conditions be given by
the Gaussian centered at (x0, y0)= (0.35, 0.5):

u0(x, y)= exp(−150((x − x0)
2
+ (y− y0)

2)). (39)

The exact solution is periodic with period π , and is given by the rotation about the
center of the domain:

u(x, y, t)=exp
(
−150

(
(x−0.5+0.15 cos 2t)2+(y−0.5−0.3 cos t sin t)2

))
. (40)

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.6

0.8

1.0

Figure 3. Velocity field β(x, y)= (2y− 1,−2x + 1).
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p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 33 57 104 21 41 77 24 41 77 21 39 75
squares 35 61 109 21 42 83 22 42 83 22 42 81

right triangles 39 68 128 26 51 100 25 51 100 25 51 100
equilateral triangles 37 67 123 25 47 92 25 47 92 24 47 91

Table 2. Iterations required for the block Jacobi iterative method to converge in the case
of a nonconstant velocity field. The smallest number of iterations in each column is in

bold.

4.1.1. Convergence of the block Jacobi method. We consider meshes of the domain
created by repeating each of the four generating patterns considered in the previous
section. As before, for fixed spatial resolution h, we choose hH , hS , h R , and hE

such that the number of degrees of freedom is the same for each mesh. We then
solve the advection equation using the backward Euler time discretization, where
the block Jacobi iterative method is used to solve the resulting linear system. The
zero vector is used as the starting vector for the block Jacobi solver. We choose
h = 0.05, and since max(x,y)|β(x, y)| =

√
2, we consider time steps of k1 = h/

√
2,

k2 = 2k1, and k3 = 4k1. The number of iterations required for the block Jacobi
method to converge to a tolerance of 10−14 are given in Table 2.

The results are similar to those from the analysis performed in Section 3.3. We
note that the hexagonal and square meshes resulted in the lowest number of Jacobi
iterations for all of the test cases considered. In contrast to the results of Section 3.3,
we do not observe a decrease in the performance of the hexagonal elements for
the case of p = 3, and instead the performance is similar among all choices of p
considered.

4.1.2. Randomly perturbed mesh. We now consider the effect of polygonal ele-
ments on irregular meshes. To this end, we consider a set of generating points
distributed evenly on a Cartesian grid with mesh size h. Then, each point is
perturbed by a random perturbation sampled uniformly from the interval [−δ, δ].
We obtain two randomized meshes by constructing the Delaunay triangulation and
Voronoi diagram resulting from this set of generating points. The Delaunay mesh
consists entirely of triangular elements, whereas the Voronoi diagram is constructed
out of arbitrary polygonal elements. Examples of the two meshes considered are
shown in Figure 4. In contrast to the regular meshes considered in the previous
examples, these two meshes do not consist of the same number of elements. The
Voronoi diagram consists of about half the number of elements as the Delaunay
triangulation. In the test case considered, the randomized polygonal mesh consists
of 410 polygonal elements, whereas the randomized triangular mesh consists of
759 triangular elements.
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Figure 4. Randomized polygonal and triangular meshes corresponding to the same set of
generating points. Left: Delaunay triangulation. Right: Voronoi diagram.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

Voronoi diagram 27 32 38 24 33 38 24 32 36 22 31 36
Delaunay triangulation 38 48 52 33 45 48 33 46 50 33 44 48

Table 3. Iterations required for the block Jacobi iterative method to converge in the case
of irregular, randomly perturbed meshes. The smallest number of iterations in each column
is in bold.

The governing equations and setup are the same as in the previous section. We
record the number of block Jacobi iterations required to converge to a tolerance of
10−14 in Table 3. Because there is a difference in the number of mesh elements, the
resulting linear system will have a different total number of degrees of freedom.
This difference will then have an additional effect on the speed of convergence of
the block Jacobi method. We note that for polynomials of degree p = 0, 1, 2, 3
and for all choices of time step k considered, solving the system resulting from
the Voronoi diagram requires fewer block Jacobi iterations than does solving the
system resulting from the corresponding Delaunay triangulation.

4.1.3. Convergence of the GMRES method. The above analysis focused on the
block Jacobi method largely because of the simplicity of the method. In practice,
more sophisticated iterative methods are often used [26]. In this section, we consider
the solution of the linear system (7) by means of the GMRES method, using both the
block Jacobi and the block ILU(0) preconditioners. Since the computational work
increases per iteration in GMRES, we choose a restart parameter of 20 iterations
[29]. We repeat the above test case of the advection equation with variable velocity
field and record the number of GMRES iterations required to converge to a tolerance
of 10−14 using the block Jacobi preconditioner in Table 4.

We now consider the solution of the above problem using the GMRES method
with the block ILU(0) preconditioner. Because of the sensitivity of the block
ILU(0) factorization to the ordering of the mesh elements, and for the sake of a
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p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 31 53 92 25 42 80 28 47 86 28 49 90
squares 37 64 116 27 51 101 27 51 98 27 52 100

right triangles 40 70 134 33 61 123 31 60 117 29 59 115
equilateral triangles 39 67 124 33 58 113 32 59 113 31 57 111

Table 4. Iterations required for the GMRES iterative method with block Jacobi precondi-
tioner to converge. The smallest number of iterations in each column is in bold.
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Figure 5. Illustration of the natural ordering of mesh elements. Left to right: square mesh,
hexagonal mesh, right-triangular mesh, and equilateral-triangular mesh.

fair comparison between the generating patterns, we consider the natural ordering
of mesh elements, illustrated in Figure 5. As in the case of the block Jacobi
preconditioner, we repeat the test case of the advection equation with variable
velocity field. We record the number of GMRES iterations required to converge to
the above tolerance using the block ILU(0) preconditioner in Table 5. In this case,
the square mesh resulted in the smallest number of iterations in all of the trials.
The mesh consisting of right isosceles triangles resulted in the largest number of
iterations in all trials. We further note that the number of GMRES iterations required
when using the block Jacobi preconditioner scales similarly to the number of block
Jacobi iterations required, as recorded in Table 2. We note that the block ILU(0)
preconditioner requires fewer GMRES iterations to converge, and the number
of iterations scales more favorably in k, when compared with the block Jacobi
preconditioner.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 8 11 16 10 13 20 11 15 23 10 13 22
squares 8 10 16 8 11 19 7 10 17 8 10 18

right triangles 13 19 32 10 14 28 10 15 27 11 14 28
equilateral triangles 11 15 27 10 12 22 9 12 22 9 12 22

Table 5. Iterations required for the GMRES iterative method with ILU(0) preconditioner
to converge. The smallest number of iterations in each column is in bold.
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4.2. Compressible Euler equations. The compressible Euler equations of gas dy-
namics in two dimensions (see, e.g., [14]) are given by

ut +∇ · f (u)= 0, (41)

for

u =




ρ

ρu
ρv

ρE


 , f1(u)=




ρu
ρu2
+ p

ρuv
ρHu


 , f2(u)=




ρv

ρuv
ρv2
+ p

ρHv


 , (42)

where ρ is the density, v = (u, v) is the fluid velocity, p is the pressure, and E is
the specific energy. The total enthalpy H is given by

H = E +
p
ρ
, (43)

and the pressure is determined by the equation of state

p = (γ − 1)ρ(E − 1
2v

2), (44)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure and
constant volume.

We consider the model problem of an unsteady compressible vortex in a rectan-
gular domain [32]. The domain is taken to be a 20× 15 rectangle, and the vortex is
initially centered at (x0, y0)= (5, 5). The vortex is moving with the free stream at
an angle of θ . The exact solution is given by

u = u∞

(
cos(θ)−

ε((y− y0)− vt)
2πrc

exp
(

f (x, y, t)
2

))
, (45)

u = u∞

(
sin(θ)−

ε((x − x0)− ut)
2πrc

exp
(

f (x, y, t)
2

))
, (46)

ρ = ρ∞

(
1−

ε2(γ − 1)M2
∞

8π2 exp( f (x, y, t))
)1/(γ−1)

, (47)

p = p∞

(
1−

ε2(γ − 1)M2
∞

8π2 exp( f (x, y, t))
)γ /(γ−1)

, (48)

where f (x, y, t)= (1− ((x − x0)− ut)2− ((y− y0)− vt)2)/r2
c , M∞ is the Mach

number, and u∞, ρ∞, and p∞ are the free-stream velocity, density, and pressure,
respectively. The free-stream velocity is given by (u, v)= u∞(cos(θ), sin(θ)). The
strength of the vortex is given by ε, and its size is rc. We choose the parameters to
be γ = 1.4, M∞ = 0.5, u∞ = 1, θ = arctan( 1

2), ε = 0.3, and rc = 1.5.
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p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 32 49 78 31 50 83 50 90 158 53 97 171
squares 34 51 89 31 54 92 54 99 181 55 105 201

right triangles 37 56 97 41 64 112 58 101 189 59 113 217
equilateral triangles 37 57 95 39 62 113 54 99 179 60 114 215

Table 6. Block Jacobi iterations required per Newton solve of the compressible Euler
equations. The lowest number of iterations in each column is in bold.

In the discontinuous Galerkin discretization of the Euler equations we use the
Lax–Friedrichs numerical flux defined by

F̂(u+, u−, n)= 1
2( f (u−) · n+ f (u+) · n+α(u−− u+)), (49)

where α is the maximum absolute eigenvalue over u− and u+ of the matrix B(u, n)
defined by

B(u, n)= J f1n1+ J f2n2, (50)

where J f1 and J f2 are the Jacobian matrices of the components of the numerical
flux function f defined in (42).

We use the backward Euler time discretization, but remark that (2) results in a
nonlinear set of equations, which is solved using Newton’s method. Each iteration
of Newton’s method requires solving a linear equation of the form (7). We set h= 1,
and consider three time steps: k1= 0.03h, k2= 2k1, and k3= 4k1. We use piecewise
polynomials of degrees p= 0, 1, 2, 3. Each Newton solve requires between 3 and 8
iterations to converge within a tolerance of 5× 10−13. The tolerance used for the
linear solvers is the same as in the previous test cases.

4.2.1. The block Jacobi method. Each iteration of Newton’s method requires the
solution of a linear system of equations. We solve these systems using the block
Jacobi method. We compute the total number of Jacobi iterations required to
complete one solve of Newton’s method, and report the results in Table 6. We note
that for each choice of p and time step k, the hexagonal mesh required the lowest
number of block Jacobi iterations. As in the previous numerical experiments, we do
not see a decrease in performance for the hexagonal elements in the case of p = 3.
The square mesh resulted in the second-smallest number of iterations for most of
the cases considered, while the two configurations of triangles resulted in generally
similar numbers of iterations.

4.2.2. The GMRES method. We now repeat the above test case, using the GMRES
method to solve the resulting linear systems. We consider both the block Jacobi
and block ILU(0) preconditioners. We then compute the total number of GMRES
iterations required to complete one solve of Newton’s method. As in Section 4.1.3,
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p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 55 74 106 50 92 126 61 110 153 76 141 195
squares 62 84 155 52 93 132 67 126 185 78 149 222

right triangles 63 87 162 81 106 184 96 132 242 85 159 299
equilateral triangles 66 90 167 81 108 187 72 133 197 85 161 245

Table 7. GMRES with block Jacobi preconditioner: iterations required per Newton solve
of the compressible Euler equations. The lowest number in each column is in bold.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 24 32 42 21 36 48 29 48 57 29 50 64
squares 24 28 45 21 33 40 24 41 49 27 48 60

right triangles 31 40 70 35 40 60 36 48 69 31 49 75
equilateral triangles 28 37 65 37 44 70 33 56 68 38 64 80

Table 8. GMRES with block ILU(0) preconditioner: iterations required per Newton solve
of the compressible Euler equations. The lowest number in each column is in bold.

the ordering of the mesh elements has a significant effect on the effectiveness of
the block ILU(0) approximate factorization. For this reason, we use the natural
ordering of elements, depicted in Figure 5. We present the results for the block
Jacobi preconditioner in Table 7, and for the block ILU(0) preconditioner in Table 8.
With the block Jacobi preconditioner, the hexagonal mesh required the smallest
number of iterations for all test cases considered, and the square mesh the second-
smallest. In the case of the block ILU(0) preconditioner, the square mesh required
the lowest number of iterations, with the hexagonal mesh usually requiring the
second-smallest number of iterations. As we observed in Section 4.1.3, the number
of iterations required for both the block Jacobi method and GMRES with the
block Jacobi preconditioner scales quite poorly with increasing time steps. The
number of GMRES iterations required when using the block ILU(0) preconditioner
is significantly better.

4.3. Inviscid flow problems. The following two numerical experiments extend the
above results to larger-scale, more realistic flow problems. These problems, in
contrast to the preceding test cases, are characterized by a large number of degrees
of freedom, the presence of geometric features and wall boundary conditions,
variably sized mesh elements, and shocks. As in the previous section, the equations
considered here are the compressible Euler equations. For the following two
problems, we choose the finite element function space to consist of piecewise-
constant functions (corresponding to p = 0), which results in a finite-volume-type
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discretization. This choice of discretization allows for the solution of problems with
shocks, without the use of slope limiters, artificial viscosity, or other shock-capturing
techniques [17]. The Roe numerical flux is used as an approximate Riemann solver
for these problems.

4.3.1. Subsonic flow over a circular cylinder. For a first test case, we consider the
inviscid flow over a circular cylinder at Mach 0.2. The computational domain is
defined as �= R \C , where R = [−10, 30]×[−10, 20], and C is a disk of radius 1
centered at the point (5, 5). Far-field boundary conditions are enforced on ∂R, and
a no-normal-flow condition is enforced on ∂C . The free-stream velocity is taken to
be unity in the x-direction, and ρ∞ = 1.

For this test case we use four unstructured meshes, two consisting entirely of
triangles and two consisting of mixed polygons, generated using the PolyMesher
algorithm [31]. All the meshes are created using a gradient-limited element size
function that determines the initial distribution of seed points according to the
rejection method [25], such that the element edge length near the surface of the
cylinder is about one-fifth the edge length of elements away from the cylinder. For
both the triangular and polygonal meshes, we consider a coarse mesh, with 15,404
elements, and a fine mesh with 62,270 elements. Thus, the average area of each
element is the same for both the polygonal and triangular meshes. Additionally,
the number of degrees of freedom in the solution is the same, allowing for a fair
comparison. The coarse polygonal mesh and a zoom-in around the surface of the
cylinder are shown in Figure 6.

Starting from free-stream initial conditions, we integrate the equations until
t = 5× 10−3 in order to obtain a representative solution. Using this solution, we
then compute 10 time steps using a third-order A-stable DIRK method [1]. Each
stage of the DIRK method requires the solution of a nonlinear system of equations,
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Figure 6. Overview of the coarse mesh with 15,404 elements, with zoom-in showing
polygonal elements near the surface of the cylinder.
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ILU Jacobi ratios
1t polygonal triangular polygonal triangular ILU Jacobi

1.0× 10−1 793 932 2092 3126 0.85 0.67
2.5× 10−1 1569 1829 4405 6870 0.86 0.64
5.0× 10−1 2470 3090 7145 11859 0.80 0.60
1.0 3651 4486 11054 18880 0.81 0.59

1.0× 10−1 1443 1673 4075 6137 0.86 0.66
2.5× 10−1 2998 3344 8732 12741 0.90 0.69
5.0× 10−1 4720 5423 14084 21882 0.87 0.64
1.0 7205 8151 22814 34706 0.88 0.66

Table 9. Total GMRES iterations per 10 time steps for inviscid flow over a circular
cylinder. Top: coarse grid with 15,404 elements. Bottom: fine mesh with 95,932 elements.

1t polygonal triangular ratio polygonal triangular ratio

1.0× 10−1 2474 3159 0.78 4788 6281 0.76
2.5× 10−1 4895 6697 0.73 9609 12406 0.77
5.0× 10−1 7882 12158 0.65 15580 20946 0.74
1.0 13181 19072 0.69 26628 33934 0.78

Table 10. Total block Jacobi iterations per 10 time steps for inviscid flow over a circular
cylinder. Left: coarse grid with 15,404 elements. Right: fine mesh with 95,932 elements.

which we solve by means of Newton’s method. In each iteration of Newton’s
method, we solve the resulting linear system of the form (7) using both the block
Jacobi method and the preconditioned GMRES method. The nonlinear system is
solved to within a tolerance of 10−8, and each linear system is solved using a relative
tolerance of 10−5. For the GMRES method, we consider two preconditioners: block
Jacobi, and block ILU(0). In order to compare the iterative solver performance
differences between meshes, we compute the total number of solver iterations
required to complete all 10 time steps. The results for the GMRES method are
shown in Table 9, and for the block Jacobi solver in Table 10.

These results demonstrate a consistent trend, corroborating both the numerical
results and the analysis from the previous sections. When using the block Jacobi
solver or GMRES with block Jacobi preconditioner, the polygonal mesh results
in convergence in 60–70% of the iterations required for the triangular mesh. The
effect is smaller when using the ILU(0) preconditioner, but we do still observe a
modest reduction in the number of iterations required. When using the block Jacobi
iterative solver, we observe iteration counts very similar to when using GMRES
with block Jacobi as a preconditioner. In these cases, the polygonal mesh requires
70–80% of the iterations as the all-triangular mesh.
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4.3.2. Supersonic flow over a circular cylinder. The next numerical example is
designed to investigate the performance of the iterative solvers for steady-state
problems, in the presence of shocks and h-adapted meshes. For this problem, we let
the domain be �= R \C , where R = [0, 5]× [0, 10] and, as before, C is a circle
of radius 1 centered at (5, 5). Free-stream conditions are enforced at the left, top,
and bottom boundaries, an inviscid wall condition is enforced on the boundary of
the cylinder, and an outflow condition is enforced on the right boundary. The Mach
number is set to M = 2.0, resulting in the formation of a shock upstream from the
cylinder. In order to accurately capture the shock, we refine the mesh in its vicinity.
As in the previous case, we consider a set of four meshes: two all-triangular and
two polygonal. For both the triangular and polygonal meshes, we consider coarse
and fine versions, with 31,162 and 95,932 elements, respectively. The coarse mesh
is depicted in Figure 7, left, with Mach isolines overlaid to indicate the position of
the shock. Additionally, Mach contours of the steady-state solution are shown in
Figure 7, right.

Beginning with free-stream initial conditions, the solution rapidly approaches a
steady state. We integrate in time until t = 100 in order to obtain a solution which
can be used as an initial guess for the steady-state Newton solve. Then, starting with
this solution, we set the time derivative of the solution to zero and solve the resulting
nonlinear equations using Newton’s method to find a steady-state solution. The
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Figure 7. Overview of coarse polygonal mesh with 31,162 elements, showing Mach
number contours for steady-state solution. Left: coarse mesh for supersonic test problem,
showing Mach isolines for steady-state solution. Right: contours of Mach number for
steady-state solution.
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polygonal triangular ratio polygonal triangular ratio

ILU 469 640 0.73 953 1947 0.49
Jacobi 2340 6464 0.36 – – –

Table 11. Total GMRES iterations per steady-state solve for supersonic flow over a
cylinder. Left: coarse grid with 31,162 elements. Right: fine mesh with 95,932 elements.

resulting linear system that is required to be solved at each iteration can be thought
of as corresponding to (7), where formally we set k =∞. The nonlinear system
is solved to within a tolerance of 10−10, and each linear system is solved using a
relative tolerance of 10−5. Since the mass matrix in (7) acts to regularize the linear
system, the conditioning becomes worse for larger values of k, and the number
of iterations required per linear solve grows. Hence, effective preconditioners are
particularly important for the solution of such steady-state problems. For these
problems, the block Jacobi iterative solver did not converge in fewer than 10,000
iterations, and so we consider only the GMRES method, using block ILU(0) and
block Jacobi preconditioners.

We present the comparison of iteration counts for this problem in Table 11. On
the coarse meshes, the ILU(0) preconditioner required about 73% as many iterations
on the polygonal mesh when compared with the triangular mesh. This difference is
more significant when using the block Jacobi preconditioner, consistent with the
results observed in previous sections. In this case, the polygonal mesh requires
only slightly more than one third the number of iterations as the all-triangular
mesh. On the fine mesh, there are close to half a million degrees of freedom. For
a problem of this scale, we did not observe convergence in fewer than 10,000
iterations per linear solve using the block Jacobi preconditioner, and so we only
compare performance using the block ILU(0) preconditioner. In this case, the
polygonal mesh required about half as many iterations per steady-state solve when
compared with the all-triangular mesh.

5. Conclusions

In this paper we have analyzed the effect of the generating pattern of a regular
mesh on the convergence of iterative linear solvers applied to implicit discontinuous
Galerkin discretizations. We considered four generating patterns: a hexagon, a
square, two right triangles, and two equilateral triangles.

A classical von Neumann analysis applied to the constant-velocity advection
equation allowed us to compute the eigenvalues of the block Jacobi matrix, and
therefore estimate the speed of convergence of the block Jacobi method. In more
than half of the cases considered, the hexagonal generating pattern resulted in the
smallest eigenvalues, and in the remaining cases, the square generating pattern
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resulted in the smallest eigenvalues.
In order to extend these results beyond the case of the constant-velocity advection

equation, we performed numerical experiments on the variable-velocity advection
equation and compressible Euler equations. In the case of the advection equation,
in all but one case the hexagonal mesh resulted in the fastest convergence, and in
the remaining case the square mesh resulted in the fastest convergence. In the case
of the Euler equations, the hexagonal mesh resulted in the fastest convergence in
all test cases.

We additionally considered two irregular meshes resulting from the random
perturbation of a set of regularly spaced generating points. We obtain a triangular
mesh by performing the Delaunay triangulation on these points, and we obtain a
polygonal mesh by constructing the Voronoi diagram dual to the Delaunay triangu-
lation. Solving the advection equation on these irregular meshes, we observed that
the block Jacobi method converged faster on the polygonal mesh in every test case.
Additionally, we performed numerical experiments examining the performance of
the GMRES iterative method when used with the ILU(0) preconditioner. We found
that in all of the test cases, the square generating pattern resulted in the lowest
number of GMRES iterations, and in all but two cases, the hexagonal generating
pattern resulted in the second-lowest number of iterations.

For a final set of numerical experiments, we performed two inviscid fluid flow
simulations on sets of coarse and fine meshes. Each mesh was either all-triangular,
or was composed of arbitrary polygons. We measured iteration counts for both
time-dependent and steady-state problems, using the block Jacobi method, and
GMRES with block ILU(0) and block Jacobi preconditioners. We found that the
polygonal meshes resulted in faster convergence of the iterative solvers, with a
larger difference being observed for the block Jacobi method and preconditioner.
This difference was more pronounced for the steady-state problem, with quite a
significant difference observed on the fine mesh using GMRES with ILU(0).

These results suggest that certain types of polygonal meshes have the advantage
of rapid convergence of iterative solvers. Future research directions involve the
study of accuracy of DG methods on polygonal and polyhedral meshes, efficient
computation of quadrature rules over arbitrary polygonal domains, and the extension
of the above results to three spatial dimensions.
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THEORETICALLY OPTIMAL INEXACT
SPECTRAL DEFERRED CORRECTION METHODS

MARTIN WEISER AND SUNAYANA GHOSH

In several initial value problems with particularly expensive right-hand side
evaluation or implicit step computation, there is a tradeoff between accuracy and
computational effort. We consider inexact spectral deferred correction (SDC)
methods for solving such initial value problems. SDC methods are interpreted
as fixed-point iterations and, due to their corrective iterative nature, allow one
to exploit the accuracy-work tradeoff for a reduction of the total computational
effort. First we derive error models bounding the total error in terms of the
evaluation errors. Then we define work models describing the computational
effort in terms of the evaluation accuracy. Combining both, a theoretically optimal
local tolerance selection is worked out by minimizing the total work subject to
achieving the requested tolerance. The properties of optimal local tolerances
and the predicted efficiency gain compared to simpler heuristics, and reasonable
practical performance, are illustrated with simple numerical examples.

1. Introduction

The numerical solution of initial value problems of the form

y′(t)= f (y(t)), y(0)= y0,

can involve a significant amount of computation, where the most effort is usually
spent either on evaluating complex right-hand sides in nonstiff problems or on solv-
ing large linear equation systems in stiff systems. Often, there is an accuracy-effort
tradeoff, such that inexact results can be obtained much faster than exact results.
Examples for the first type of problem are molecular and stellar dynamics, where
the exact evaluation of long-range interactions is O(N 2) but can be approximated
by clustering or fast multipole methods in O(N log N ) or O(N ) time [4; 6], or cycle
jump techniques for highly oscillatory problems of wear or fatigue [10; 13]. Typical
examples of the second type of problem are reaction-diffusion equations, where
implicit time-stepping schemes rely on iterative solvers [24; 28],
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While the possibilities to exploit the tradeoff between accuracy and computational
effort for improved simulation performance are rather limited in usual time-stepping
schemes such as explicit or implicit Runge–Kutta, extrapolation, or multistep
schemes, iterative methods for solving implicit Runge–Kutta equations [3; 12; 26]
can in principle correct inexact evaluations of intermediate quantities in subsequent
iterations. Spectral deferred correction (SDC) methods [11] as iterative solvers for
collocation systems have a particularly simple structure and are therefore considered
here. Inexact implicit SDC methods with errors due to truncation of multigrid
iterations have been investigated numerically in [20; 24], where a small fixed
number of V-cycles has been found to be sufficient for convergence. Mixed-precision
arithmetic for SDC has been proposed in [15] and found to save some computational
effort. In this paper, we will analyze the error propagation through the SDC iteration
and, following the approach of Alfeld [1] for inexact fixed-point iterations, derive
an a priori selection of local tolerances for right-hand side evaluation and substep
computation that leads to theoretically optimal efficiency of the overall integration
scheme. Usually, explicit Runge–Kutta methods are hard to beat in efficiency by
more complex methods such as SDC, but the results derived here indicate that this
might be possible if inexactness can be exploited.

The remainder of the paper is organized as follows. Section 2 states the precise
problem setting before briefly recalling spectral deferred correction methods and
discussing the impact of inexact evaluations. The main Section 3 introduces error
models for quantifying the error propagation, work models for quantifying the
computational cost, and the optimization of accuracy per work to derive an optimal
selection of tolerances. Effectiveness and efficiency of the resulting methods are
illustrated in Section 4 with some numerical examples.

2. Inexactness in spectral deferred correction methods

The autonomous initial value problem (IVP) to be solved is given by{
y′(t)= f (y(t)), t ∈ [0, T ],
y(0)= y0,

(2-1)

where the right-hand side f is a mapping f : Y → Y on a Banach space Y , and
t ∈ [0, T ] denotes the time variable. It is assumed that f is continuous and locally
Lipschitz continuous. Under these assumptions, a unique solution y(t) exists; see,
e.g., [9; 25]. An approximate numerical solution can be determined with time-
stepping schemes. We consider single-step methods, where the time interval [0, T ]
is subdivided into individual steps and the connection between the subintervals
consists of transferring the value of y at the end point of one subinterval as the
initial value for the following subinterval. Without loss of generality, we therefore
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restrict the presentation to a single time step [0, T ]. Also, without loss of generality,
we assume (2-1) to be autonomous.

2A. Collocation conditions. Given the IVP (2-1), a collocation method approxi-
mates the exact solution y over the interval [0, T ] by a polynomial yc satisfying
(2-1) at N discrete collocation points ti , i = 1, . . . , N , within the interval [0, T ]:{

y′c(ti )= f (yc(ti )), i = 1, . . . , N ,
yc(0)= y0.

(2-2)

For simplicity of indexing, we define t0 = 0. Popular choices for collocation points
are equidistant nodes or Gauss–Legendre, Lobatto, or Radau points. For a detailed
discussion of collocation methods, we refer to [9; 17].

The IVP (2-1) can be written equivalently as the Picard integral equation

y(t)= y0+

∫ t

0
f (y(τ )) dτ,

which leads to corresponding Picard collocation conditions, as described in [18]:{
yc(ti )= yc(ti−1)+

∑N
k=1 Sik f (yc(tk)), i = 1, . . . , N ,

yc(0)= y0,
(2-3)

where the entries of the spectral quadrature matrix S ∈RN×N are defined in terms of
the Lagrange polynomials Lk ∈PN−1[R] satisfying Lk(ti )= δik for i = 1, . . . , N as

Sik =

∫ ti

τ=ti−1

Lk(τ ) dτ, i, k = 1, . . . , N .

2B. Spectral deferred correction method. The direct solution of the collocation
system (2-2) or (2-3) can be quite involved if N is larger than one or two. As
the time discretization error of the collocation method is present anyway, an exact
solution of (2-2) is not required. Thus, iterative methods form an interesting class
of solvers; see, e.g., [7; 8; 19]. Here we consider spectral deferred correction (SDC)
methods. They were introduced by Dutt, Greengard, and Rokhlin [11] for fixed
iteration number as time-stepping schemes in their own right, and only later on have
been interpreted as fixed-point iterations for collocation systems [18; 27]. In SDC,
the Picard collocation conditions (2-3) are solved iteratively by a defect-correction
procedure. Using the Picard formulation has the advantage of faster convergence
for nonstiff problems [27].

Approximate solutions are polynomials y[ j] ∈ PN [Y ], identified with vectors
in Y N+1 by interpolation of their values y[ j]i := y[ j](ti ) at the N + 1 grid points ti .
Given an approximate solution y[ j], the error yc−y[ j] satisfies the Picard collocation
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conditions

yc(ti )− y[ j]i = (yc− y[ j])(ti−1)+

N∑
k=1

Sik( f (yc(tk))− y[ j]
′
(tk))

= (yc− y[ j])(ti−1)+

N∑
k=1

Sik( f (yc(tk))− f (y[ j]k ))

+

N∑
k=1

Sik( f (y[ j]k )− y[ j]
′
(tk)) (2-4)

for i = 1, . . . , N with initial condition (yc− y[ j])(0)= 0. Defining the correction
d [ j] = yc− y[ j] yields

d [ j](ti )= d [ j](ti−1)+

N∑
k=1

Sik( f (y[ j](tk)+ d [ j](tk))− f (y[ j]k ))

+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1),

which is not easier to solve than the original collocation problem (2-2) above.
Different simple approximations of the middle integration term involving d [ j],
however, at least provide corrections that can be applied repeatedly to form a
convergent stationary iteration.

Explicit SDC. Approximating the spectral integration term by the left-looking
rectangular rule corresponding to the explicit Euler time-stepping scheme yields
the explicit SDC correction

δ
[ j]
i = δ

[ j]
i−1+ (ti − ti−1)( f (y[ j]i−1+ δ

[ j]
i−1)− f (y[ j]i−1))

+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1), i = 1, . . . , N , (2-5)

suitable for nonstiff problems. The initial value is δ[ j]0 = 0. Now, the interpolant δ[ j]

is a polynomial approximation of the exact error function d [ j]. An improved
approximation y[ j+1] is then obtained as y[ j+1]

= y[ j]+ δ[ j]. Note that the value
f (y[ j]i−1+ δ

[ j]
i−1) appears again as f (y[ j+1]

i−1 ) in the next iteration, such that for each
iteration only N right-hand side evaluations are required.

The expensive part in the explicit SDC method is usually the evaluation of the
right-hand sides f (y[c]i ). As mentioned above, an exact evaluation of the right-hand
side f (y[ j]i ) is not necessary, because SDC iteration errors are already present
due to the replacement of the spectral quadrature term by the rectangular rule.
If approximate values f [ j]i ≈ f (y[ j]i ) can be computed faster, we can exploit the
allowed inaccuracy for a reduction of the total computation effort.
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It is clear that the evaluation error f [ j]i − f (y[ j]i ) must be controlled in an
appropriate way such as not to destroy convergence of the fixed-point scheme. We
assume that for evaluation of f (y[ j]i ) we can prescribe a local absolute tolerance ε[ j]i
such that the computed value f [ j]i satisfies ‖ f [ j]i − f (y[ j]i )‖Y ≤ ε

[ j]
i .

As a consequence, the explicit SDC correction δ̂[ j] for inexact right-hand sides
f [ j]i is obtained as

δ̂
[ j]
i = δ̂

[ j]
i−1+ (ti − ti−1)( f [ j+1]

i−1 − f [ j]i−1)+

N∑
k=1

Sik f [ j]k − (y
[ j]
i − y[ j]i−1), (2-6)

for j = 0, . . . , J − 1 and i = 1, . . . , N with δ̂[ j]0 = 0.

Implicit SDC. Assuming f is differentiable, linearizing f around y[ j]i and using
the right-looking rectangular rule corresponds to the linearly implicit Euler scheme
and leads to the implicit SDC correction

δ
[ j]
i = δ

[ j]
i−1+ (ti − ti−1) f ′(y[ j]i )δ

[ j]
i +

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1),

i = 1, . . . , N , (2-7)

suitable for stiff problems. As in the explicit case, N right-hand side evaluations
are required, but additionally N evaluations of f ′ and N linear system solves with
the matrices I − (ti − ti−1) f ′(y[ j]i ).

Solving these systems, usually by an iterative solver, is often the expensive
operation in the implicit SDC method. Early termination of the linear solver can
reduce the computational effort significantly, but incurs a truncation error that
must be controlled appropriately in terms of local tolerances ε[ j]i . Assuming the
residuals r [ j]i are bounded by ‖r [ j]i ‖Y ≤ ε

j
i , the implicit SDC correction δ̂[ j] for

inexact system solves is obtained as

(I − (ti − ti−1) f ′(y[ j]i ))δ̂
[ j]
i = δ̂

[ j]
i−1+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1)+ r [ j]i ,

i = 1, . . . , N , (2-8)

for j = 0, . . . , J − 1 and i = 1, . . . , N with δ̂[ j]0 = 0.
In both cases, the update y[ j] 7→ y[ j+1]

:= y[ j] + δ̂[ j] defines a parametrized
fixed-point operator

F̂ : Y N+1
×RN×J+1

+
×N→ Y N+1, F̂(y[ j]; ε, j) := y[ j+1],

with the exact limit case F(y) := F̂(y; 0, 0).
For convergence analysis, we equip Y N+1 with a norm

‖y‖ := ‖[‖y0‖Y , . . . , ‖yN‖Y ]‖p (2-9)
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in terms of the usual p-norm on RN+1 with p ∈ [1,∞] to be specified later. If F is
Lipschitz continuous with constant ρ < 1, i.e.,

‖F(x)− F(y)‖ ≤ ρ‖x − y‖ for all x, y ∈ Y N+1

(which we will assume throughout the paper), Banach’s fixed-point theorem yields
q-linear convergence of the iteration to the unique collocation solution yc inde-
pendently of the initial iterate y[0]. Note that the contraction property of F and
hence the convergence of SDC depends on f , the collocation points ti , the time
step size T , and whether we use explicit or implicit SDC. For sufficiently small
time steps, however, convergence is guaranteed if f is Lipschitz continuous.

Termination of the fixed-point iteration at iterate J can be based on either a
fixed iteration count, resulting in a particular Runge–Kutta time-stepping scheme,
or on an accuracy request of the form ‖yc− y[J ]‖ ≤ TOL. Given the contraction
rate ρ, and assuming that ‖yc− y[0]‖> TOL, the number of exact iterations is then
bounded by

J ≤
⌈

log(TOL/‖yc− y[0]‖)
log ρ

⌉
.

The choice of the initial iterate y[0] can not only have a significant impact on the
number J of iterations needed to achieve the requested accuracy, but also on the
properties of intermediate solutions. In particular for stiff problems, L-stability of
intermediate solutions is obtained only if y[0] is computed by an L-stable basic
scheme, e.g., implicit Euler, or special DIRK sweeps as proposed in [27]. For
simplicity, however, we choose y[0]i ≡ y0 in this paper.

Given the requirement of computing a final iterate y[J ] satisfying the requested
accuracy ‖yc− y[J ]‖ ≤ TOL, the immediate questions that arise are how to select
the local tolerances ε[ j]i , and how many iterations to perform, in order to obtain the
most efficient method. This question will be addressed in the following section.

3. A priori tolerance selection

Following the approach taken by Alfeld [1], an attractive choice of local tolerances
ε
[ j]
i and iteration count J is to minimize the overall computational effort W (ε, J )

while bounding the final error ‖y[J ]− yc‖ ≤8(ε, J ):

min
J∈N, ε∈E⊂RN×J+1

W (ε, J ) subject to 8(ε, J )≤ TOL. (3-1)

Here, ε denotes the N × (J + 1) matrix of local tolerances ε[ j]i , restricted to an ad-
missible set E. We will consider different admissible sets in Sections 3C–3E below.
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For this abstract framework to be useful, a work model W and an error model 8
are needed. These two building blocks will be established in the following two
subsections.

Remark 3.1. Both the error model and the work model will involve quantities
that are not explicitly known in actual computation. For the error model, these
parameters are in particular the SDC contraction factor ρ, Lipschitz constants,
and the initial iteration error ‖y[0]− yc‖. The work models derived below rely on
typical or asymptotic computational effort, which may not very well describe the
actual effort spent on a concrete problem. Therefore, the efficiency predicted by
the solution of the optimization problem (3-1) may not be reached.

Moreover, even if the assumptions are satisfied and the parameters entering
into the error model are known, the estimates are not sharp. The actual error will
typically be smaller than its bound, which means that the local tolerances derived
from the error bound will be smaller than necessary, and the computational effort
in turn higher than need be. Therefore, solving (3-1) provides only theoretically
optimal local tolerances.

Nevertheless, the approximation results developed in the subsequent sections
provide not only theoretical insight, but can also guide algorithmic choices, if
computable estimates for the required parameters are available. For example, the
SDC contraction factor ρ can be assumed not to change quickly over the integration
time, such that the convergence on the previous time step could provide sufficient in-
formation. Lipschitz constants can at least be bounded from below by inspecting the
evaluated right-hand sides. Inserting such estimates into the optimization problem
can yield reasonable heuristics for choosing local tolerances in actual computations.
Of course, such heuristics will need to be complemented by a posteriori error
estimators and heuristics for updating parameter values in case the estimated actual
error is larger than predicted. This, however, is beyond the scope of the present work.

3A. Error model. The error model bounds the final iteration error by 8(ε, J ) in
terms of the local tolerances ε[ j]i and the iteration count J . Focusing on SDC as a
fixed-point iteration, we estimate8 in terms of inexact fixed-point iterations [1; 22].
Below we consider the convergence of

y[ j+1]
= F̂(y[ j]; ε, j), j = 0, . . . , J − 1, (3-2)

to the fixed point yc of F , and derive a bound on ‖y[J ]− yc‖ for given y[0], J , and ε.
First we establish estimates of how the errors bounded by ε[ j]i are transported

through the SDC sweep, and then address the complete iteration, both for explicit
and implicit SDC schemes. For this we need some notation.

Definition 3.2. Let us assume there is a nonnegative function L f : R+→ R+ such
that the right-hand side f satisfies the following Lipschitz-type conditions: for
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explicit SDC

‖δ+ τ( f (y+ δ)− f (y))‖Y ≤ L f (τ )‖δ‖Y for all τ ∈ ]0, T ] and δ, y ∈ Y (3-3)

and for implicit SDC

‖(I − τ f ′(y))−1
‖Y ≤ L f (τ ) for all τ ∈ ]0, T ] and y ∈ Y . (3-4)

Then we define the invertible lower-triangular matrix L ∈ RN×N as

L im :=

{∏i−1
l=m L f (tl+1− tl), m ≤ i,

0, otherwise,

and introduce ‖e‖L :=‖Le‖p for e∈RN and ‖κ‖L :=max‖e‖L=1‖κe‖L=‖LκL−1
‖p

for κ ∈ RN×N .

Note that the nonstandard Lipschitz condition (3-3) follows from the standard
Lipschitz condition on f (because ‖ f (y+δ)− f (y)‖Y ≤ L∗‖δ‖Y implies L f (τ )≤

1+ τ L∗), but is weaker, in particular for slightly stiff systems. For example, for
f (y)=−y we obtain L f (τ )= |1−τ | � 1+τ for τ ≈ 1. Nevertheless, the weaker
condition (3-3) is sufficient for bounding the error transport through explicit SDC
sweeps in the following theorem. Analogously, condition (3-4) describes the error
transport through linearly implicit Euler sweeps in the implicit SDC method.

Explicit SDC. Now we derive error bounds, first for single SDC sweeps and then
for the whole iteration.

Theorem 3.3. Assume that the ODE’s right-hand side satisfies the Lipschitz-like
condition (3-3). Then, for ε ∈ RN×J+1

+ ,

‖F̂(y; ε, j)− F(y)‖ ≤ ‖κ(ε[ j]+ ε[ j+1])+ |S|ε[ j]‖L (3-5)

holds for the explicit SDC iteration with κ ∈RN×N , κmk := δm−1,k(tm−tm−1), where
δm,k denotes the Kronecker delta. |S| ∈ RN×N denotes the entrywise absolute value
of the integration matrix S.

Proof. From (2-5) and (2-6) we obtain for the SDC corrections δ̂i the estimate

‖F̂(y; ε, j)i − F(y)i‖Y = ‖δ̂
[ j]
i − δ

[ j]
i ‖Y

≤ ‖δ̂
[ j]
i−1− δ

[ j]
i−1+ (ti − ti−1)( f (yi−1+ δ̂

[ j]
i−1)− f (yi−1+ δ

[ j]
i−1))‖Y

+ (ti − ti−1)(ε
[ j+1]
i−1 + ε

[ j]
i−1)+

N∑
k=1

|Sik |ε
[ j]
k

≤ L f (ti − ti−1)‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + (κ(ε

[ j]
+ ε[ j+1]))i + (|S|ε[ j])i
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with δ̂[ j]0 − δ
[ j]
0 = 0. By induction we obtain the discrete Gronwall result

‖δ̂
[ j]
i − δ

[ j]
i ‖Y ≤

i∑
m=1

i−1∏
l=m

L f (tl+1− tl)([κ(ε[ j]+ ε[ j+1])]m + (|S|ε[ j])m)

=

i∑
m=1

L im([κ(ε
[ j]
+ ε[ j+1])]m + (|S|ε[ j])m)

= [L(κ(ε[ j]+ ε[ j+1])+ |S|ε[ j])]i .

Taking the norm over i = 1, . . . , N yields the claim (3-5). �

With the error bound (3-5) for a single inexact SDC sweep at hand, we are in
the position to bound the final time error.

Theorem 3.4. Let y[0] ∈ Y N be given, and let y[ j+1] be defined by

y[ j+1]
= F̂(y[ j], ε, j), j = 0, . . . , J − 1,

for some J ∈ N and some local tolerance matrix ε ∈ RN×J+1. Then

‖y[J ]− yc‖ ≤ α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L +ρ

J
‖y[0]− yc‖ =:8(ε, J ) (3-6)

holds with α = ‖κ + |S|‖L + ρ‖κ‖L and κ and |S| as defined in Theorem 3.3.

Proof. First we show the (slightly stronger) result

‖y[J ]− yc‖ ≤

J∑
j=1

ρ J− j
‖κ(ε[ j−1]

+ ε[ j])+ |S|ε[ j−1]
‖L + ρ

J
‖y[0]− yc‖ (3-7)

by induction over J . The claim holds trivially for J = 0. Otherwise, we obtain

‖y[J ]− yc‖ = ‖F̂(y[J−1]
; ε, j)− F(yc)‖

≤ ‖F̂(y[J−1]
; ε, J − 1)− F(y[J−1])‖+‖F(y[J−1])− F(yc)‖

≤ ‖κ(ε[J−1]
+ ε[J ])+ |S|ε[J−1]

‖L + ρ‖y[J−1]
− yc‖

≤ ‖κ(ε[J−1]
+ ε[J ])+ |S|ε[J−1]

‖L

+ ρ

(J−1∑
j=1

ρ J−1− j
‖κ(ε[ j−1]

+ε[ j])+|S|ε[ j−1]
‖L+ρ

J−1
‖y[0]−yc‖

)
,
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which is just (3-7). Applying the triangle inequality and rearranging terms in the
sum yields

‖y[J ]− yc‖ ≤ ρ
J−1
‖(κ + |S|)ε[0]‖L +

J−1∑
j=1

ρ J−1− j (‖(κ + |S|)ε[ j]‖L + ρ‖κε
[ j]
‖L)

+‖κε[J ]‖L + ρ
J
‖y[0]− yc‖

≤

J−1∑
j=0

ρ J−1− j (‖κ + |S|‖L + ρ‖κ‖L)︸ ︷︷ ︸
=α

‖ε j
‖L+‖κε

[J ]
‖L+ρ

J
‖y[0]− yc‖

and thus the claim (3-6). �

Note that ε[J ] enters the error bound 8(ε, J ) given in (3-6) in a different way
than ε[ j]i for j < J . This is due to the fact that all right-hand sides evaluated enter
twice into the computation (see (2-6)) except for the very last sweep evaluations,
which enter only once. This turns out to be quantitatively important in Section 4.

Implicit SDC. Error bounds for inexact implicit SDC follow the same line of
argument as for the explicit method, but are slightly simpler.

Theorem 3.5. Assume that the ODE’s right-hand side satisfies the Lipschitz-like
condition (3-4). Then, for ε ∈ RN×J+1

+ ,

‖F̂(y; ε, j)− F(y)‖ ≤ ‖σε[ j]‖L (3-8)

holds for the implicit SDC iteration with σ ∈ RN×N , σkk = L f (tk − tk−1).

Proof. From (2-7) and (2-8) we obtain for the SDC corrections δ̂i the estimate

‖F̂(y; ε, j)i − F(y)i‖Y ≤ ‖(I + (ti − ti−1))
−1(δ̂

[ j]
i−1− δ

[ j]
i−1+ r [ j]i )‖Y

≤ L f (ti − ti−1)(‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + ε

[ j]
i )

= L f (ti − ti−1)‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + (σε

[ j])i

with δ̂[ j]0 − δ
[ j]
0 = 0. As before, induction provides the discrete Gronwall result

‖F̂(y; ε, j)i − F(y)i‖Y ≤ [Lσε[ j]]i

and hence the claim (3-8). �

With the error bound (3-8) for a single implicit inexact SDC sweep at hand, we
are in the position to bound the final time error.

Theorem 3.6. Let y[0] ∈ Y N be given, and let y[ j+1] be defined by

y[ j+1]
= F̂(y[ j]; ε, j), j = 0, . . . , J − 1,
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for some J ∈ N and some local tolerance matrix ε ∈ RN×J+1. Then

‖y[J ]− yc‖ ≤ α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L +ρ

J
‖y[0]− yc‖ =:8(ε, J ) (3-9)

holds with α = ‖σ‖L and κ = 0, where σ is defined in Theorem 3.5.

Proof. First we show the (slightly stronger) result

‖y[J ]− yc‖ ≤

J∑
j=1

ρ J− j
‖σε[ j−1]

‖L + ρ
J
‖y[0]− yc‖ (3-10)

by induction over J . The claim holds trivially for J = 0. Otherwise, we obtain as
in the proof of Theorem 3.4, now using (3-8),

‖y[J ]− yc‖ ≤ ‖F̂(y[J−1]
; ε, J − 1)− F(y[J−1])‖+‖F(y[J−1])− F(yc)‖

≤ ‖σε[J−1]
‖L + ρ‖y[J−1]

− yc‖,

which implies (3-10). An index shift in j is all it takes to obtain the claim (3-9). �

Note that the error bounds 8(ε, J ) as given in (3-6) and (3-9) for explicit and
implicit SDC, respectively, have identical structure, and differ only in the values of
the parameters α and κ . This allows a uniform analytical treatment of both explicit
and implicit schemes in the following sections.

Remark 3.7. The choice of collocation nodes ti affects the error bound (3-6) in
three ways. First, the substep sizes ti+1 − ti enter into Lki and hence into ‖ · ‖L .
Second, the integration matrix S enters into the factor α, and third, the contraction
factor ρ depends on the collocation nodes in a nontrivial and up to now not well
understood way.

The error model 8 as defined in (3-6) is an upper bound of the inexact SDC
iteration for arbitrary errors bounded by the local tolerances ε[ j]i , and hence also an
upper bound for the error ρ J

‖y[0]− yc‖ of the exact SDC iteration. Consequently,
meeting the accuracy requirement8(ε, J )≤TOL implies ρ J

‖y[0]−yc‖≤TOL and

J ≥ Jmin :=
log TOL− log‖y[0]− yc‖

log ρ
.

3B. Work models. Let us assume that the computational effort of evaluating f [ j]i
(in explicit SDC) or of solving for δ̂[ j]i (in implicit SDC) is given in terms of the
work W [ j]i :R+→R+ as W [ j]i (ε

[ j]
i ). The total work to spend for J SDC iterations,

W (ε)=

J∑
j=0

N∑
i=1

W [ j]i (ε
[ j]
i ), (3-11)
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is just the sum of all efforts. Hence, common positive factors can be neglected, as
they will not affect the minimizer of the optimization problem (3-1) at all. Note
that, for optimizing just ε with fixed J , additive terms in the work model can also
be neglected.

First we will discuss a few prototypical work models that cover common sources
of controlled inaccuracy.

Finite element discretization. If the computation of basic steps within the SDC
sweeps involves a PDE solution realized by adaptive finite elements, the discretiza-
tion error can be expected to be proportional to n−1/d , where n is the number of
grid points and d is the spatial dimension. Assuming the work to be proportional to
the number of grid points, we obtain

W [ j]i (ε
[ j]
i ) :=

1
d
(ε
[ j]
i )−d . (3-12)

The arbitrary factor d−1 has been introduced for notational convenience only.
Of course, the asymptotic behavior W [ j]i → 0 for ε[ j]i → ∞ is not realistic,

as there is a fixed amount Wmin of work necessary on the coarse grid. Thus, the
work model is valid only for ε[ j]i ≤ εmax = (dWmin)

−1/d . We will address this in
Section 3F.

Truncation errors. Let us assume the basic step computation involves the solution
of a linear equation system by a linearly converging iterative solver. This is usually
the case in implicit SDC methods applied to PDE problems. Starting the iterative
solver at zero, the residual after m iterations may be assumed to be bounded by
‖r [ j]i ‖Y ≤ ρ

m
it R[ j], where ρit < 1 is the contraction rate of the linear solver and

R[ j] ∼ ‖δ[ j]i ‖Y the size of the initial residual. The number of iterations necessary
to reach the local tolerance ‖r [ j]i ‖Y ≤ ε

[ j]
i is expected to be

m ≥
log ε[ j]i − log R[ j]

log ρit
.

If the outer SDC iteration converges linearly with unperturbed contraction factor
ρ, an assumption that will be justified in (3-27), the initial residual is roughly
R[ j] ≈ ρ j

‖y[0]− yc‖, which leads to

W [ j]i (ε
[ j]
i ) := − log ε[ j]i + log‖y[0]− yc‖+ j log ρ. (3-13)

Of course, a negative number of iterations cannot be realized, and therefore, this
work model is limited to log ε[ j]i < ε

[ j]
max = ρ

j
‖y[0]− yc‖.

Remark 3.8. Simplifying the work model (3-13) by ignoring the additive contribu-
tion log(cTOL)+( j− J ) log ρ is sufficient for optimizing the local tolerances ε, but
affects optimizing the number J of iterations and renders work ratios W (ε)/W (ε̂)

for comparing different local tolerance choices ε and ε̂ meaningless.
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Stochastic sampling. In case the right-hand side contains a high-dimensional in-
tegral to be evaluated by Monte Carlo sampling, the accuracy can be expected to
be proportional to the inverse square root of the number of samples. The work
proportional to the number of samples is then

W [ j]i (ε
[ j]
i ) := 1

2(ε
[ j]
i )−2,

just a special case of (3-12). Of course, as the error bound of Monte Carlo sampling
is not strict, the error model from the previous section gives no guarantee in this case.

The prototypical work models presented here share a common structure. Mini-
mization of the total work is based on derivatives of the work with respect to the
local tolerances. Here we see that all three models satisfy

(W [ j]i )′(ε
[ j]
i )= (ε

[ j]
i )−(d+1),

with d = 0 for truncation of iterative solvers, d = 2 for Monte Carlo sampling, and
d giving the spatial dimension in adaptive linear finite element computations. This
will allow us to treat all work models uniformly in the work optimization.

Moreover, the work models exhibit some qualitative properties, which we con-
jecture to be general properties of plausible work models.

Definition 3.9. A work model is a family of strictly convex, positive, and monotoni-
cally decreasing functions W [ j]i : ]0, (εmax)

[ j]
i ]→R+ mapping requested tolerances

to the associated computational effort. The functions W [ j]i exhibit the barrier
property W [ j]i (ε)→∞ for ε→ 0.

The properties of W [ j]i are inherited by the total work W of (3-11), which is
strictly convex and monotone.

3C. Fixed local tolerance. To begin with, we consider heuristic choices of the
admissible set E of local tolerances. The simplest possibility is to take the same
value ε[ j]i ≡ εfix for all right-hand side evaluations. This corresponds to a fixed
absolute solver tolerance in inexact implicit SDC.

In this case, the error bound (3-6) reduces to

‖y[J ]− yc‖ ≤ εfix

(
α‖1‖L

1− ρ J

1− ρ
+‖κ1‖L

)
+ ρ J
‖y[0]− yc‖,

where 1 ∈ RN with 1i = 1. Consequently,

εfix =min
(
εmax,

TOL− ρ J
‖y[0]− yc‖

α‖1‖L(1− ρ J )/(1− ρ)+‖κ1‖L

)
(3-14)

provides the largest admissible choice, and hence the one that incurs the least
computational effort, for given J . With εfix(J ) fixed, what remains is to choose the
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number J of SDC sweeps such that the overall work is minimized. To this extent,
we consider the slightly more restrictive but easier to analyze variant

εfix =min
(
εmax,

TOL− ρ J
‖y[0]− yc‖

α‖1‖L/(1− ρ)+‖κ1‖L

)
.

For the general work model (3-12), the total work is just W=N (J+1)εfix(J )−d/d .
Assuming εfix < εmax and eliminating constant factors, we need to minimize
W (J ) ∼ (J + 1)/(TOL− ρ J

‖y[0] − yc‖)
d . A simple analysis reveals that W (J )

is quasiconvex, such that there is exactly one minimizer in ]Jmin,∞[; see the
Appendix. Unfortunately, no closed expression seems to exist, but a numerical
computation is straightforward. Due to the quasiconvexity, the optimal J ∈ N is
one of the neighboring integer values.

The local tolerance is bounded by εfix ≤ cTOL for some generic constant c
independent of J and TOL. Consequently, the total work is at least

W ≥ c(Jmin+ 1)TOL−d
= c

(
log(TOL/‖y[0]− yc‖)

log ρ
+ 1

)
TOL−d . (3-15)

Apparently, a complexity of O(TOL−d) is unavoidable, as this is already required
for a single right-hand side evaluation to the requested accuracy. The logarithmic
factor in (3-15), however, appears to be suboptimal. As this corresponds to the
number J of SDC sweeps, which, depending on the concrete problem, can easily
exceed a factor of ten, the suboptimality may induce a significant inefficiency in
actual computation. We will address this shortcoming in the following Sections 3D
and 3E and investigate it numerically in Section 4.

For completeness we note that in the less interesting case εfix = εmax, J is
determined by minimizing W = N (J + 1)ε−d

max/d subject to

TOL≥ εmax(α‖1‖L/(1−ρ)+‖κ1‖L)+ρ
J
‖y[0]− yc‖≥8(εmax, J )≥‖y[J ]− yc‖,

i.e.,

J ≥ (log ρ)−1 log
TOL− εmax(α‖1‖L/(1− ρ)+‖κ1‖L)

‖y[J ]− yc‖
.

3D. Geometrically decreasing local tolerances. The next step is to exploit the fact
that, due to the linear convergence of the SDC iteration, larger evaluation errors are
acceptable in the early iterations, and to make the heuristic choice

(εgeo)
[ j]
i =min(εmax, βρ

γ j ) for some β, γ > 0. (3-16)

This has been considered in [5] for γ = 1 as an “adaptive strategy” and is closely
related to evaluating implicit Euler steps up to a fixed relative precision in implicit
SDC methods, as suggested in [16] or realized in [24] by a fixed number of multigrid
V-cycles.
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We will assume that γ is given and optimize β as we have done before with
εfix. Ignoring the impact of εmax, (3-6) results in the slightly stronger accuracy
requirement

‖y[J ]− yc‖ ≤ β

(
α‖1‖L

J−1∑
j=0

ρ J−1− j+γ j
+ ργ J

‖κ1‖L

)
+ ρ J
‖y[0]− yc‖

!

≤ TOL.

Note that this implies a convergence rate of ‖y[J ]− yc‖ = O(ρmin(1,γ )J ). For γ 6= 1
(there is a continuous extension to γ = 1, though) we obtain

β ≤
TOL− ρ J

‖y[0]− yc‖

ργ (J−1)(α‖1‖L(1− ρ(1−γ )J )/(1− ρ1−γ )+ ργ ‖κ1‖L)
. (3-17)

The total work W (ε) is monotonically decreasing in β due to (3-16) and Definition
3.9, such that the work-minimization problem (3-1) is solved by equality in (3-17),
and we obtain

(εgeo)
[ j]
i =min

(
εmax,

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)(α‖1‖L(1− ρ(1−γ )J )/(1− ρ1−γ )+ ργ ‖κ1‖L)
ργ j

)
.

(3-18)
Of course, εfix = limγ→0 εgeo is recovered in the limit.

Optimizing the iteration count J for the generic work model (3-12) with d > 0,
we minimize

W = Nβ−d
J∑

j=0

ρ−dγ j/d ∼ β−d 1− ρ−dγ (J+1)

1− ρ−dγ .

We distinguish between γ < 1 and γ > 1. In the first case, we obtain

1− ρ(1−γ )J

1− ρ1−γ ≤ (1− ρ
1−γ )−1 and thus β ≥

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)c

for some c > 0 independent of J . Neglecting constant factors independent of J
yields the upper bound

W .
(

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)

)−d

ρ−dγ (J+1)

decreasing monotonically with J towards limJ→∞W . TOL−d . Compared to
(3-15), the complexity to reach the requested tolerance is improved, independently
of γ , from O(TOL−d

|log TOL|) to O(TOL−d). In the next section we will see that
this complexity is indeed optimal, but the constants can be improved further by
considering a larger admissible set E.
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In the second case γ > 1, we obtain the upper bound

W .
(

TOL− ρ J
‖y[0]− yc‖

cρ J + ργ (J−1)

)−d

ρ−dγ (J+1)
∼

(
cρ(1−γ )J + b

TOL− ρ J‖y[0]− yc‖

)d

for some generic constants b and c independent of J and TOL. Inserting J ≥
log(TOL/‖y[0] − yc‖)/ log ρ reveals a complexity of O(TOL−γ d), indeed worse
than the fixed choice ε[ j]i ≡ εfix before. As a certain number of SDC iterations have
to be performed with sufficient accuracy, increasing the accuracy too quickly is a
waste of resources. Fortunately, a fixed relative accuracy will always lead to γ ≤ 1.

3E. Variable local tolerances. Finally, let us consider the most general admissible
set E = {ε ∈ RN×J+1

+ | ε
[ j]
i ≤ εmax} in greater detail than we have treated the

heuristic choices. Again, we will proceed in two steps, first assuming J to be given,
optimizing only the local tolerances ε, and considering the integer variable J of the
mixed integer program later on.

We obtain the nonlinear program

min
ε∈RN×J+1

+

W (ε) subject to 8(ε, J )≤ TOL, ε ≤ εmax. (3-19)

From the properties of W and 8, we immediately obtain the following result.

Theorem 3.10. If ρ J
‖y[0] − yc‖ < TOL, i.e., the exact SDC iteration converges

to the given tolerance, the optimization problem (3-19) has a unique solution
ε(y[0], J ). In the generic case ε[ j]i < (εmax)

[ j]
i for some i and j , i.e., if not all of

the local tolerance constraints are active, the accuracy constraint is active, i.e.,
8(ε(y[0], J ), J )= TOL.

Proof. From (3-6) it is apparent that sufficiently small values ε[ j]i > 0 lead to

α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L ≤ TOL− ρ J

‖y[0]− yc‖,

such that the admissible set is nonempty. Strict convexity of W and convexity of 8
imply uniqueness of a solution. Strict convexity and monotonicity of W imply
its strict monotonicity, and hence, the constraint must be active unless all local
tolerances are actively bound by ε ≤ εmax. �

The activity of the accuracy constraint in the generic case means that, as expected,
no effort is wasted on reducing the error below the requested tolerance.

We may reasonably expect the local tolerances to decrease monotonically. This
is indeed true in general, as the following result shows.
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Theorem 3.11. Assume that ρ ∈ (0, 1), J ∈N, and TOL ∈ R+ are given constants.
Let the local tolerance matrix ε be the minimizer of (3-19). Then ‖ε[ j]‖L≤‖ε

[ j−1]
‖L

holds for all j = 1, . . . , J − 1.
For the norm exponent p = 1 in (2-9), componentwise monotonicity holds as

well, i.e., ε[ j]i ≤ ε
[ j−1]
i holds for all i and j < J .

Proof. Let ε̃ be an admissible point for (3-19) with ‖ε̃[k1]‖L < ‖ε̃
[k2]‖L for some

1 ≤ k1 < k2 < J . Then we consider ε with ε[ j] = ε̃[ j] except for ε[k2] = ε̃[k1] and
ε[k1] = ε̃[k2]. Obviously, W (ε)=W (ε̃).

The error bound (3-6), however, is reduced:

8(ε̃, J )−8(ε, J )

= α(ρ J−1−k1(‖ε̃[k1]‖L −‖ε
[k1]‖L)+ ρ

J−1−k2(‖ε̃[k2]‖L −‖ε
[k2]‖L))

= α(ρ J−1−k1(‖ε̃[k1]‖L −‖ε̃
[k2]‖L)+ ρ

J−1−k2(‖ε̃[k2]‖L −‖ε̃
[k1]‖L))

= α(ρ J−1−k1 − ρ J−1−k2)(‖ε̃[k1]‖L −‖ε̃
[k2]‖L) > 0,

as α > 0 and the other two factors on the last line are negative. Since 8(ε, J ) <
8(ε̃, J ) ≤ TOL, ε is feasible. The constraint, however, is inactive, such that ε
cannot be the minimizer ε(y[0], J ). We conclude that

W (ε(y[0], J )) < W (ε)=W (ε̃),

such that ε̃ 6= ε(y[0], J ). The same line of argument holds for p= 1 and component-
wise monotonicity, where however ε is constructed such that only ε[k1]

i and ε[k2]
i

are swapped. �

Below the necessary and, due to convexity, also sufficient conditions for the
solution of the constrained optimization problem are derived for p <∞.

Theorem 3.12. Let the norm exponent p be finite. Assume ρ J
‖y[0]− yc‖ < TOL

and W [ j]i ∈ C1(0,∞). Then ε ∈ RN×J+1
+ solves (3-19), if and only if there exist

multipliers µ ∈ R and η ∈ RN×J+1 such that

(W [ j]i )′(ε
[ j]
i )+µαρ J−1− j

‖ε[ j]‖
1−p
L

N∑
k=1

(Lε[ j])p−1
k Lki + η

[ j]
i = 0,

j = 0, 1, . . . , J − 1,

(W [J ]i )′(ε
[J ]
i )+µ‖κε[J ]‖

1−p
L

N∑
k=1

(Lκε[J ])p−1(Lκ)ki + η
[J ]
i = 0,

(TOL−8(ε, J ))µ= 0, µ≥ 0,

(εmax− ε) : η = 0, η ≥ 0.

(3-20)

Here, ε : η denotes contraction or Frobenius product, and we use the convention
00
:= 0 (for κ = 0 and p = 1 this expression can formally arise).



70 MARTIN WEISER AND SUNAYANA GHOSH

Proof. The necessary and also sufficient condition for optimality of ε is the station-
arity of the Lagrangian

L(ε, µ, η)=W (ε, J )+µ(8(ε, J )−TOL)+ η : (εmax− ε)

for some multiplier µ ∈ R and η ∈ RN×J+1; see, e.g., [21]. According to the
(structurally identical) error bounds (3-6) and (3-9), and the total work (3-11), its
partial derivatives are just the expressions in (3-20). �

At this point, the unique minimizer ε(y[0], J ) of the convex program (3-19) can
in principle be computed numerically. For an exponent p= 1 in the norm definition
(2-9), however, explicit analytical expressions can easily be derived due to (3-6)
reducing to

8(ε, J )= α
J−1∑
j=0

ρ J−1− j
N∑

k=1

N∑
i=1

Lkiε
[ j]
i +

N∑
k=1

N∑
i=1

(Lκ)kiε
[J ]
i + ρ

J
‖y[0]− yc‖

= q : ε+ ρ J
‖y[0]− yc‖ (3-21)

with

q [ j]i =

{
αρ J−1− j ∑N

k=1 Lki , j < J,∑N
k=1(Lκ)ki , j = J.

(3-22)

Then, the first-order necessary conditions (3-20) assume the particularly simple
form

(W [ j]i )′(ε
[ j]
i )+µq [ j]i + η

[ j]
i = 0. (3-23)

Below we will derive the analytical structure of solutions for p = 1 and different
work models, which also sheds some more light on the structure of the solution
as well as on the achieved efficiency. The following theorem applies to all work
models from Section 3B, with d = 0 for iterative solvers and d = 2 for stochastic
sampling.

Theorem 3.13. Let p = 1 and (W [ j]i )′(ε
[ j]
i )=−(ε

[ j]
i )−(d+1). Then there is µ > 0

such that the solution ε = ε(y[0], J ) of (3-19) is given by

ε
[ j]
i =

{
(εmax)

[ j]
i , q [ j]i = 0,

min((εmax)
[ j]
i , (µq [ j]i )−1/(d+1)), otherwise,

(3-24)

with q [ j]i given in (3-22). Locally unconstrained tolerances ε[ j]i < (εmax)
[ j]
i decrease

linearly up to j = J − 1:
ε
[ j]
i ∼ ρ

j/(d+1). (3-25)

Proof. From the necessary condition (3-23) we obtain a multiplier µ̂≥ 0. If µ̂= 0,
then η[ j]i > 0 for all i and j due to (W [ j]i )′ < 0, which implies ε = εmax via com-
plementarity in (3-20). Choosing µ > 0 sufficiently small verifies the claim (3-24).
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Otherwise we choose µ= µ̂ > 0 and obtain

ε
[ j]
i = (µq [ j]i + η

[ j]
i )−1/(d+1) (3-26)

from (3-23). In case ε[ j]i <(εmax)
[ j]
i , η[ j]i =0 holds due to complementarity in (3-20),

such that the claim (3-24) is satisfied. For j < J , the definition (3-22) of q [ j]i implies

ε
[ j]
i = (µαρ

J−1− j
N∑

k=1

Lki )
−1/(d+1)

∼ ρ j/(d+1)

and hence the geometric decrease (3-25).
In case ε[ j]i = (εmax)

[ j]
i and q [ j]i 6= 0, (3-26) implies

(µq [ j]i )−1
= (((εmax)

[ j]
i )−(d+1)

− η)−1
≥ ((εmax)

[ j]
i )d+1

and hence the claim (3-24). �

The result (3-25) reveals that the heuristic of geometrically decreasing local
tolerances is indeed of optimal complexity, at least for γ < 1, and now theoretically
justified. Beyond that, an optimal value of γ = (d + 1)−1 and different accuracies
for the collocation points are provided. We will see in Section 4 that the last issue
can have a nonnegligible impact on the computational effort. Moreover, the result
(3-25) shows that the contraction rate of optimal inexact SDC iterations depends on
the work model: ρ for the truncation of linearly convergent iterations and ρ1/(d+1)

for linear finite element solutions. The latter convergence is actually slower than
the exact SDC iteration. This is a consequence of the different work required to
reduce the error: while a reduction of the SDC iteration error is relatively cheap, re-
ducing finite element discretization errors is rather expensive. An optimal tolerance
selection therefore assigns a larger portion of the total error to the discretization
and has to ensure that the SDC iteration error is by a certain factor smaller than the
discretization error.

As expected, the geometric decrease (3-25) translates directly into linear conver-
gence of the inexact SDC iteration:

Corollary 3.14. If ε < εmax holds, there is some c independent of j (though it
depends on J ) such that

‖y[ j]− yc‖ ≤ cρ j/(d+1). (3-27)
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Proof. The result (3-25) yields

‖y[ j]− yc‖ ≤ α

j−1∑
k=0

ρ j−1−k
‖ε[k]‖L +‖κε

[ j]
‖L + ρ

j
‖y[0]− yc‖

≤ c
( j−1∑

k=0

ρ j−1−kρk/(d+1)
+ ρ j/(d+1)

)
+ ρ j
‖y[0]− yc‖

≤ cρ j/(d+1) (3-28)

and hence the claim. �

For d = 0, this linear convergence justifies the contraction rate assumed in
defining the work model (3-13) for iterative solvers.

Let us state two more observations. First, it pays off to treat the final local
tolerances ε[J ]i separately in Theorem 3.4: now ε

[J ]
i > ε

[J−1]
i holds instead of

ε
[J ]
i = ρε

[J−1]
i . Thus, the effort for the otherwise greatest expense, due to having

the most accurate right-hand side evaluations, is reduced, as illustrated in Figure 1.
Similarly, for implicit SDC schemes with κ = 0 defined in Theorem 3.6, q [J ]i = 0
holds, which implies ε[J ]i = (εmax)

[J ]
i .

Second, (3-24) is monotone in µ, such that the actual value of µ and in turn ε is
easily computed numerically by solving8(ε, J )=TOL. In case εmax is sufficiently
large such that ε < εmax holds, combining (3-24), (3-22), and (3-21) yields an
explicit expression

ε
[ j]
i =

TOL− ρ J
‖y[0]− yc‖∑J

j=0
∑N

i=0(q
[ j]
i )d/(d+1)

(q [ j]i )−1/(d+1). (3-29)

3F. Iteration count optimization. As in the case of uniform local tolerances, the
number J of inexact SDC iterations has to be selected in order to minimize the
total work. For the generic work model (3-12), and stripping it of common factors
and additive terms, we obtain with Theorem 3.13

W (J )=
J∑

j=0

N∑
i=1

(ε
[ j]
i )−d

=

J∑
j=0

N∑
i=1

(µq [ j]i )d/(d+1)

as long as ε[ j]i < (εmax)
[ j]
i for all i and j . Inserting the definition (3-22) of q [ j]i and

neglecting constant factors independent of J and N yields

W ≤
J∑

j=0

N∑
i=1

(
µαρ J−1− j

N∑
k=1

Lki

)d/(d+1)

∼ Nµd/(d+1)
J∑

j=0

ρ(d/(d+1))(J−1− j)

∼ Nµd/(d+1) 1− ρ
d(J+1)/(d+1)

1− ρd/(d+1) (3-30)

as long as maxi (ti − ti−1)≤ c/N for some constant c.
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The multiplier µ is obtained from 8(ε, J )= TOL with ε[ j]i = (µq [ j]i )−1/(d+1).
We obtain

TOL= α
J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L + ρ

J
‖y0
− yc‖

= µ−1/(d+1)
(
α

J−1∑
j=0

ρ J−1− j
‖(q [ j])−1/(d+1)

‖L+‖κ(q [J ])−1/(d+1)
‖L

)
+ρ J
‖y0
−yc‖

= µ−1/(d+1)
(

a
J−1∑
j=0

ρ(d/(d+1))(J−1− j)
+ b

)
+ ρ J
‖y0
− yc‖

= µ−1/(d+1)
(

a
1− ρd J/(d+1)

1− ρd/(d+1) + b
)
+ ρ J
‖y0
− yc‖

with constants a = α‖(α
∑N

k=1 Lki )
−1/(d+1)

‖L and b = ‖κ(q [J ])−1/(d+1)
‖L inde-

pendent of J . Consequently,

µd/(d+1)
=

(
a(1− ρd J/(d+1))/(1− ρd/(d+1))+ b

TOL− ρ J‖y0− yc‖

)d

holds. Entering this into the work bound (3-30) yields

W . N
(

a(1− ρd J/(d+1))/(1− ρd/(d+1))+ b
TOL− ρ J‖y0− yc‖

)d 1− ρd(J+1)/(d+1)

1− ρd/(d+1) .

Replacing 1− ρd J/(d+1) by 1 and neglecting constant factors independent of J
and TOL provides the upper bound

W . N (TOL− ρ J
‖y0
− yc‖)

−d . (3-31)

The upper bound (3-31) is monotonically decreasing and suggests choosing J as
large as possible. In the limit J →∞, the total work is bounded by

W . NTOL−d . (3-32)

Compared to the work bound (3-15) for uniform local tolerances, the logarithmic
factor log TOL is missing, which yields the optimal complexity of evaluating N
steps of the basic Euler scheme up to the requested tolerance.

Remark 3.15. The result (3-32) suggests that inexact explicit SDC methods might
be able to reach or even surpass the efficiency of standard explicit Runge–Kutta
methods.

However, the practical bound ε ≤ εmax induces a lower bound W j
i ≥ Wmin on

the work per iteration, and hence, the total work W (J ) grows linearly with J
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for J →∞. This contradicts the asymptotic work bound (3-32), which means
that the assumption ε < εmax used to derive (3-32) can only hold up to some finite
iteration count. As closed expressions for a global minimizer of W (J ) when taking
the local tolerance constraint ε ≤ εmax into account are hard to get, a heuristic
selection of J appears to be most promising in practice. The convexity of (3-31)
and linear growth of W for large J suggest that we may select J as

J =min{ j ∈ N |W ( j + 1) > W ( j)}.

4. Numerical examples

Here we will illustrate and compare the effectiveness of the inexact SDC strategies
worked out above. First, the properties of the strategies will be explored using
a simple academic test problem. Then, inexactness due to iterative solvers and
Monte Carlo sampling are considered with the heat equation and a molecular
dynamics example, respectively.

4A. An illustrative example.

Problem setup. As a particularly simple example that allows a detailed investigation
of the theoretical predictions, we consider the harmonic oscillator

u̇ = v,

v̇ =−u,

with initial values u0 = 0 and v0 = 1, on the time interval [0, π] subdivided into n
equidistant time steps. The Lipschitz constant of the right-hand side is L∗ = 1, and
we estimate L f (τ )= 1+τ using the triangle inequality. We use N Gauss–Legendre
collocation points in each of the n time steps. The collocation error ec at final
time π can easily be obtained by comparing the result with the exact solution
u(t) = sin(t), v(t) = cos(t). The contraction rate ρ of the exact SDC iteration is
estimated numerically, and is virtually independent of the actual time t .

Exact right-hand side evaluation is of course straightforward, such that artificial
inexactness and associated computational work are quite arbitrary. Here we use
normally distributed random additive errors and the generic work model (3-12) with
parameter d unless otherwise stated.

Aiming at a final time error comparable to the collocation error, we choose a
tolerance TOL= ec/

√
n for each time step, based on the assumption that the random

errors of each time step simply add up, and yield a standard deviation of the final
result of

√
nTOL. With this setting, the quantities entering into the computation

of the local tolerances ε are the same for all time steps. Unless otherwise stated
N = 3 is used throughout, such that the collocation scheme is of order 6.
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Figure 1. Left: exemplary local tolerances versus iteration number j for the different
admissible design sets: fixed (εfix, stars), geometrically decreasing (εgeo, squares, γ = 0.5),
and variable (εopt, circles). Here n = 2 steps have been used to define the problem data
ρ = 0.35, TOL = 0.05. Right: relative work Wgeo/Wopt for geometrically decreasing
local tolerances versus the exponent γ . For larger γ , the work grows exponentially. The
horizontal line denotes the relative work Wfix/Wopt for fixed local tolerances.

Theoretical predictions. Let us first investigate the structure of local tolerances and
the predicted efficiency gain in different situations.

To begin, we fix the iteration count J and time step T and compare local
tolerances εfix, εgeo, and εopt as given by the three considered strategies in (3-14),
(3-18), and (3-24), respectively. Exemplary values for TOL = 0.05, J = 11,
εmax =∞, n = 2, and estimated ‖y[0] − yc‖ ≈ 2.4 are shown in Figure 1, left,
versus the iteration number j . For the geometrically decreasing local tolerances,
an exponent γ = 1

2 has been chosen arbitrarily, but less than one due to the worse
computational complexity for γ >1; see Section 3D. For optimal variable tolerances,
εopt has been obtained via (3-29). Clearly visible is the slow geometric decrease of
the optimal variable local tolerances ε[ j]opt with an order ρ j/3, even slower than the
explicitly chosen geometrical decrease ργ j with γ = 1

2 . The relative predicted work
is Wfix/Wopt = 2.06 and Wgeo/Wopt = 2.67. Somewhat surprisingly, exploiting the
linear convergence of the SDC iteration does not necessarily pay off compared
to a fixed accuracy, depending on the chosen parameter γ . The variable local
tolerances approach achieves its low work by (i) choosing the appropriate decrease
rate γ = 1/(d + 1), (ii) allowing for larger errors in later collocation points with
less global impact, and (iii) imposing less restrictive requirements on the final
sweep according to the definition (3-22) of q [ j]i . The latter two aspects make up
a reduction of work by a factor of 1.67 compared to the geometrically decreasing
local tolerances with γ = 1/(d + 1). The relative work for different values of γ is
shown in Figure 1, right, where the predicted total work induced by geometrically
decreasing tolerances is plotted over the exponent γ . The optimum with a relative
work of 1.48 is attained around γ = 0.21, even less than 1/(d + 1). This can be
attributed to avoiding high costs in the very last sweep, where high accuracy is
actually not necessary, while ensuring sufficient accuracy in the next to last sweep.
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Figure 2. Left: local tolerances ε for the inexact SDC iterations versus number n of time
steps. For optimal variable local tolerances (εopt, squares), the range between minimal and
maximal local tolerance is shown. The requested tolerance TOL is shown with stars, the
fixed local tolerance εfix with circles. Right: optimal number J of inexact SDC iterations
versus number n of time steps for optimal variable (Jopt, squares) and fixed (Jfix, circles)
local tolerances.

Next we look into the dependence of local tolerances and optimal iteration counts
on the time step size T . Let us consider tolerances TOL = ec/

√
n depending on

the time step size π/n. As shown in Figure 2, left, they decrease as n−2N−1/2

according to the sixth-order collocation error and the error accumulation of order 1
2 .

As expected, the fixed local tolerance εfix and the minimal variable local tolerance
mini, j ε

[ j]
i stay very close to each other and also close to TOL, but decrease roughly

one order slower. This is due to α, κ = O(tN )= O(n−1), and leads to the surprising
fact that for small time steps the allowed evaluation error can be larger than the
requested tolerance. Obviously, the heuristic choice εfix = cTOL for some fixed
c < 1 is suboptimal for small time steps.

As intended, the maximal local tolerance, encountered in the very first inexact
SDC sweep, is much larger than the minimal one, which is the basis for the
envisioned performance gain. It also decreases much slower than the step tolerance
TOL due to the fact that ρ→ 0 for tN → 0.

The optimal number of sweeps shown in Figure 2, right, is rather different for
fixed and variable local tolerances, with a factor of two in between. This is due to
the intended slower contraction rate in (3-24) compared to (3-14). As each sweep
increases the order of the SDC integrator by one, and the tolerance TOL is of
order n−6.5, we expect at least seven sweeps to be necessary. This is nicely reflected
by the fixed local tolerance scheme resorting to an optimal value of eight sweeps
over a range of step sizes. For larger step sizes, the growth in the contraction rate ρ
destroys this asymptotic property.

Finally, we take a look at the predicted efficiency gain over the simple fixed
local tolerance strategy in dependence on time step size and overall tolerance. The
total work per step induced by the choices of local tolerances is shown in Figure 3.
The ratio of more than 1015 of computational effort between n = 2 and n = 64
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Figure 3. Left: total work per time step for fixed (Wfix, circles) and variable (Wopt,
squares) local tolerances versus the number of time steps. Right: ratio of total work of
fixed and variable local tolerances versus the requested tolerance TOL, for work model
parameter d = 2 (solid lines) and d = 3 (dotted lines), number of collocation points
N ∈ {1, 2, 3, 4} (circles, stars, crosses, triangles), and different number n of time steps.

is due to the high accuracy of the Gauss collocation and the slow convergence of
linear finite elements assumed with d = 2. According to (3-12), the work is of
order O(ε−d)= O(nd(2N−1/2)), which amounts here to a growth of n11. Obviously,
the high accuracies reached in the model problem are unrealistic in practical finite
element computation. The ratio between the work for fixed and local tolerances
shown in detail in Figure 3, right, adheres to the theoretical order − log TOL, with
minor differences due to different collocation order N . A small but consistent
impact of spatial dimension d can be observed, with slightly larger efficiency gain
for higher dimension.

Numerical computations. Up to here, the results were just predictions, theoretical
values obtained from the work and error models derived in Section 3. Of particular
interest is whether these model predictions coincide with actual computation.

In Figure 4, contraction rate and final time error of inexact SDC computations
are shown. Inexact evaluation of the right-hand side is imitated by adding a random
perturbation of size ε[ j]i and uniformly distributed direction. On the left, estimated
contraction rates are shown, obtained by regression over the complete SDC iteration.
As expected, the exact SDC contraction factor ρ decreases roughly linearly with the
time step size. The fixed local tolerance iteration converges with a very similar rate,
since the rather small allowed errors can only affect the last sweeps. The optimal
rate for variable local tolerances is larger: from (3-24) we expect a rate of ρ1/(d+1),
which is indeed achieved. The slightly faster convergence can be attributed to the
errors in actual computation not realizing the theoretical worst case.

In Figure 4, right, the final time deviation of the inexact SDC iterations from the
limit point, the collocation solution, is shown, relative to the error of the collocation
solution itself. The sample mean of twenty realizations is plotted together with the
standard deviation, since, in contrast to all other figures, the actual errors depend
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Figure 4. Left: observed contraction factors ρ for exact SDC (ρexact, crosses), fixed
local tolerances (ρfix, circles), and optimal variable local tolerances (ρopt, squares) versus
number n of time steps. The theoretical contraction rate of ρ1/(d+1) for variable local
tolerances is plotted for reference. Right: final time difference between inexact SDC
methods and collocation solution, relative to the collocation error. Solid lines are sample
means, and dotted lines show the standard deviation.

significantly on the random inexactness of the realizations. We observe that the error
model used in defining local tolerances works reasonably well, with comparable
final time errors for fixed and optimal variable local tolerances. Again, numerical
computations are more accurate than predicted by the worst case estimates. The
slow but steady increase with the number n of time steps suggests that the normally
distributed local errors do not simply add up, as has been assumed when choosing
the tolerance TOL∼ n−1/2.

4B. Iterative solver example: heat equation. Diffusion processes like heat con-
duction are usually solved by implicit time-stepping schemes, where solving the
arising sparse large-scale linear systems may dominate the computational effort.
Here we consider as a prototypical example the linear heat equation

ẏ =1y, in �,

y = 0, on ∂�,

y = y0, for t = 0,

on the domain�=]0, 2π [ and the initial value y0=χ]0,π ]. For spatial discretization,
we employ second-order equidistant finite differences on n = 128 intervals. We
consider a single SDC time step of length T = 1 using N = 4 Radau-IIa collocation
nodes and implicit Euler as the basic method. The exact SDC contraction factor
can thus be assumed to be ρ ≈ 0.62 [27].

The arising linear systems (2-7) assume the form (I−(ti−ti−1)A)δ
[ j]
i = R[ j]i with

stiffness matrix A. Even though these tridiagonal systems can be solved efficiently
with a direct solver, we use iterative solvers in order to evaluate the impact of
truncation on inexact SDC performance. As extreme cases we consider simple
Jacobi iterations with asymptotic contraction rate ρJac ≈ 1− 50/n2 and multigrid
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Figure 5. Computational effort of computing an inexact SDC step for the heat equation
versus the desired accuracy TOL ∈ [10−9, 10−1

]‖y[0] − yc‖. Left: predicted computa-
tional effort W (ε) in arbitrary work units for fixed absolute tolerance and optimized local
tolerances. Right: total number of linear solver iterations for fixed and optimized local
tolerances, for both Jacobi and multigrid linear solvers. The numbers of Jacobi iterations
have been scaled down by a common factor such that they have the same mean as the
multigrid iteration numbers, in order to allow a comparison of relative effort between fixed
and optimized tolerance choices.

V-cycles with two damped Jacobi presmoothing steps resulting in a contraction rate
ρMG ≈ 0.25. The truncation work model (3-13) and consequently also the optimal
local tolerances are, however, independent of the iterative solver’s contraction rate.

Let us focus on the computational effort incurred by the different local tolerance
choices, both predicted and realized. The predicted work W (ε) for fixed and
optimized local tolerances is plotted versus the requested SDC iteration accuracy
TOL in Figure 5, left, and shows a significant expected benefit of local tolerance
optimization. The choice of geometrically decreasing local tolerances ε[ j]i = βρ

γ j

as considered in Section 3D with optimal value γ = 1 leads to results almost indistin-
guishable from the optimized tolerances, and is therefore not considered separately.

The actually required work, in terms of number of linear solver iterations, is
shown in Figure 5, right, for both Jacobi and multigrid solvers. Note that the
iteration numbers of the Jacobi solver have been scaled down by a common factor,
such that the relative work between fixed and optimized local tolerances can be
observed. While the actual work reduction is less than the predicted one, a factor
of five rather than ten for high accuracy, the qualitative behavior is captured very
well by the theoretical work model. Moreover, despite the huge difference in
convergence speed between Jacobi and multigrid solvers, the relative effort between
fixed and optimized local tolerances, and between different required SDC tolerances,
is essentially unaffected by the choice of solver, which agrees rather well with the
truncation work model derivation in Section 3B.

As before, the accuracy actually achieved is better than the requested tolerance.
The ratio ‖y[J ] − yc‖/TOL of actual error and tolerance is (almost) always less
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Figure 6. Left: relative deviation of achieved accuracy ‖y[J ]− yc‖ from the requested
tolerance TOL for different choices of local tolerances and linear solvers. Right: total num-
ber of linear solver iterations versus the achieved SDC accuracy ‖y[J ]− yc‖ for different
strategies of solving linear systems. Shown are fixed and optimized local tolerances with
multigrid solver, as well as simple heuristics of performing exactly one or two multigrid

V-cycles.

than one, as predicted by the error bound (3-9). The inefficiency incurred by the
error bound not being sharp is, however, moderate, since the achieved accuracy is
less than TOL by a factor between two and ten. It depends on the choice of local
tolerances, but not much on the linear solver; see Figure 6, left. Consequently, the
computational effort required to achieve a certain accuracy, shown in Figure 6, right,
resembles very much the work versus requested tolerance shown in Figure 5.

Using a fixed number of linear solver iterations is a simple heuristic for inexact
implicit SDC methods [20; 24]. With this choice, linearly convergent solvers can
lead to a convergent scheme with expected contraction factor max(ρ, ρit), and
resembles the geometrically decreasing local tolerances with γ ≤ 1. The efficiency
on the heat equation example is comparable to optimized local tolerances for just
one V-cycle, and slightly worse for two V-cycles. The best number of iterations
will, of course, depend on the problem. A reasonable value can be assumed to be
dlog ρ/ log ρite.

4C. Monte Carlo example: smoothed molecular dynamics. Classical molecular
dynamics [2] is generally described by Newtonian mechanics of the positions x ∈Rnd

of n atoms in Rd with mass M influenced by a potential V :

Mẍ =−∇V (x). (4-1)

One interesting quantity is the time it takes to exit a given potential well or to move
between two wells. The computation of these times is expensive as the transitions
are rare events, and long trajectories need to be computed before such an event
is observed. Statistic reweighting techniques [23] allow one to compute the exit
times of interest from exit times induced by a modified potential V with shorter
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Figure 7. Potential and considered trajectory. Left: original potential V from (4-2). Right:
the smoothed potential V for λ= 0.316. The equipotential lines are at the same levels in
both pictures.

exit times. One of the modifications in use is potential smoothing by diffusion, i.e.,
V := V (λ) with ∂V/∂λ=1V . As the number n of involved atoms is usually large,
computing V by finite element or finite difference methods is out of the question.
Instead, pointwise evaluation by convolution with the Green’s function is performed
[14] using importance sampling:

∇V (x)= (λ
√

2π)−nd
∫

Rnd
∇V (x + s) exp(−s2/(2λ2)) ds

= (λ
√

2π)−nd
∫

Rnd
(∇V (x + s)− Hs) exp(−s2/(2λ2)) ds

≈
1
m

m∑
i=1

(∇V (ξi )− H(ξi − x))=: ∇ V̂m(x),

where the random variable ξ is normally distributed with mean x and covariance λI ,
and H ∈ Rnd is arbitrary. The expected error is proportional to m−1/2 and can be
estimated in terms of the sample covariance

σ 2
m =

1
m− 1

m∑
i=1

si sT
i , si =∇V (ξi )− H(ξi − x)−∇ V̂ (x),

as

E[‖∇V (x)−∇ V̂m(x)‖] ≈
‖σm‖
√

m
.

Obviously, si and consequently σm are particularly small if H is the Hessian of V .
When evaluating V̂ with a requested local tolerance ε, the number of sampling

points is doubled until ‖σm‖ ≤
√

mε. This defines a realization of V̂ε(x). Note that
this does not give an actual error bound, such that the error analysis and tolerance
selection from Section 3 only hold in a probabilistic sense.
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Figure 8. Numerical result averaged over fifteen realizations. Left: estimated error after
the first time step of length T (circles) and at final time tend (crosses) versus the requested
tolerance TOL. Right: maximal, average, and minimal observed contraction factors ρopt
of the inexact SDC method in all time steps versus the requested step tolerance.

As a simple test problem of this type we consider n = 1 and d = 2 with M = I ,

V (x)= 3 exp(−‖x − e2‖
2)− 3 exp(−‖x − 5e2‖

2)− 5 exp(−‖x − e1‖
2)

− 5 exp(−‖x + e1‖
2)+ (x4

1 + (x2− 1/3)4)/5, where (ei ) j = δi j , (4-2)

initial value x(0)= [−1, 0.4]T , ẋ(0)= [2.1, 0]T in the vicinity of one of the three
local energy minimizers, final time tend = 6, and variance λ = 0.316. Despite its
simplicity, the potential (4-2) as shown in Figure 7 is an interesting test case, as the
direct path between the two deep wells crosses a higher potential barrier than the
indirect path via the third, shallow well.

Figure 7 shows the original potential V as defined in (4-2) and the considered
trajectory on the left, and the smoothed potential V for λ= 0.1 on the right. The
shallow well on the top has almost vanished, and the potential barrier between the
two dominant wells is much lower. Consequently, the trajectory crosses the barrier
easily now and alternates between the two wells.

The ODE (4-1) is transformed into a first-order system to fit into the setting (2-1).
For the tests, N = 4 collocation points have been used and n = 15 equidistant time
steps. The numerically observed exact SDC contraction factor varies roughly in a
range [0.15, 0.24]. For simplicity, a fixed value of 0.2 has been used for computing
local tolerances. For the Lipschitz condition (3-3), we notice that f ′ has values with
purely imaginary spectrum, and estimate L f (τ )=maxy∈B‖I+τ f ′(y)‖ numerically
by evaluating f ′(y0) in each step using Monte Carlo integration of V ′′. In each
time step, the initial iteration error ‖y[0]− yc‖ is estimated by substituting a single
explicit Euler step for yc, which here yields a reasonable estimation error of usually
less than 50% with a minor impact on local tolerances.

The results shown in Figure 8 indicate that the inexact SDC method works
essentially as expected, even though the obtained errors ‖y(T )− yc(T )‖ are smaller
than the target value TOL by one to two orders of magnitude. This is probably
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due to the error propagation result (3-5) reflecting the worst case rather than the
average case. Replacing the generously used triangle inequality by sharper bounds,
however, would require not only prescribing the magnitude of the evaluation error
but also restricting its direction. If possible and practicable at all, this would require
the error analysis to be very much specific for particular problems or right-hand
side evaluation schemes.

The interpretation that the observed, better than desired accuracies are due to
average versus worst case is supported by the observed inexact SDC contraction
rates shown in Figure 8, right. With an exact SDC contraction rate ρ ≈ 0.2, the
targeted inexact contraction rate is ρ1/(d+1)

≈ 0.58, very close to the worst cases
observed in actual computation. There is, however, a significant gap between the
best and the worst encountered contraction rates, suggesting that the worst-case
behavior is captured well by the theoretical derivations.

Conclusion

The theoretically optimal choice of iteration counts and local tolerances when
evaluating basic steps in SDC methods as derived here allows significant savings in
computational effort compared to naive strategies. Effort reduction factors between
two and six have been observed in examples. Thus, exploiting the inexactness that
is possible in SDC methods appears to be attractive for expensive simulations.

The local tolerances are defined in terms of problem-dependent quantities, in
particular Lipschitz constants L f , initial iteration error ‖y[0]− yc‖, and contraction
factor ρ of exact SDC iterations, which are usually not directly available a priori. For
a practical implementation of the optimal choice, adaptive methods based on cheap
a posteriori estimates of these quantities are needed. We have considered a particular
weak model of error type: independent errors for each evaluation, which are likely
to line up to the worst case. Correspondingly, worst-case error bounds have been
derived and optimized. In concrete computational problems, often more of the error
structure is known, and slightly different approaches would be more appropriate. In
sampling problems such as the smoothed molecular dynamics example, the random
errors tend to cancel out to some extent. Looking at the average behavior instead of
the worst case allows us to use larger local tolerances. On the other hand, the errors
are highly correlated in several finite element computations. Consequently, the error
differences are small, which leads to different error propagation through the SDC
iteration. Extending the approach to these settings is the subject of further research.
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Appendix: Uniqueness of work minimizer

Here we prove that for fixed local tolerance εfix, the continuous relaxation of the
work model with respect to the iteration count J is quasiconvex and thus has a
unique minimizer.

Theorem. Let

W (J )=
J + 1

(TOL− ρ J δ)d

with δ > TOL> 0, d > 0, and 0< ρ < 1. Then W has exactly one local minimizer
on ]Jmin,∞[, where Jmin = log(TOL/δ)/ log ρ.

Proof. The derivative of W is

W ′(J )=
(TOL− ρ J δ)d − (J + 1)d(TOL− ρ J δ)d−1(−δ)ρ J log ρ

(TOL− ρ J δ)2d .

We are just interested in the zeros and the sign of the derivative, and multiply with
δ−1(TOL−ρ J δ)d+1> 0 for simplification, which gives sgn W ′(J )= sgn q(J ) with

q(J ) :=
TOL
δ
− ρ J

+ (J + 1)dρ J log ρ.

We obtain q(Jmin)= (Jmin+1)dρ Jmin log ρ < 0 and q(J )→TOL/δ > 0 for J→∞.
Since q is continuous, it has an odd number of zeros in ]Jmin,∞[.

Next we consider

q ′(J )= ρ J log ρ((J + 1)d log ρ− 1)+ ρ J d log ρ

= ρ J log ρ((J + 1)d log ρ+ d − 1).

Any zeros of q ′ have to satisfy (J +1)d log ρ+d−1= 0, such that there is at most
one zero of q ′ and correspondingly at most one extremum of q . If q had more than
one zero, i.e., at least three zeros, it would have at least two extrema, which is not
the case. Thus, q has exactly one zero and consequently W exactly one extremum.
The sign of W ′ changes from negative to positive there, such that W has exactly
one local minimizer. �
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A THIRD ORDER FINITE VOLUME WENO SCHEME
FOR MAXWELL’S EQUATIONS ON TETRAHEDRAL MESHES

MARINA KOTOVSHCHIKOVA, DMITRY K. FIRSOV AND SHIU HONG LUI

A third order type II WENO finite volume scheme for tetrahedral unstructured
meshes is applied to the numerical solution of Maxwell’s equations. Stability
and accuracy of the scheme are severely affected by mesh distortions, domain
geometries, and material inhomogeneities. The accuracy of the scheme is en-
hanced by a clever choice of a small parameter in the WENO weights. Also,
hybridization with a polynomial scheme is proposed to eliminate unnecessary
and costly WENO reconstructions in regions where the solution is smooth. The
proposed implementation is applied to several test problems to demonstrate the
accuracy and efficiency, as well as usefulness of the scheme to problems with
singularities.

1. Introduction

Weighted essentially nonoscillatory (WENO) schemes are high order numerical
methods developed to solve hyperbolic partial differential equations (PDEs) with
solutions containing discontinuities. In a finite volume (FV) framework these
schemes can be implemented on unstructured meshes making them an attractive
option for solving problems with singularities due to geometry and/or inhomogeneity
in material properties. For linear nondispersive media the system of Maxwell’s
equations is linear, and for simple geometries it can be solved analytically. In many
practical applications the challenge in solving Maxwell’s equations is due to complex
geometrical features, broadband complex signal types, and/or inhomogeneous
material properties. In these cases, finite volume time-domain (FVTD) algorithms
are often implemented with success. FV schemes were adapted to Maxwell’s
equations from computational fluid dynamics (CFD) in the late 1980s by Shankar
et al. [26] and include both central [25; 23] and upwind formulations [26; 7; 6].

The upwind FVTD formulation based on the method of characteristics and
MUSCL reconstruction has shown good results on a wide range of problems. The
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main drawback of the MUSCL scheme is that it is only second order accurate. More-
over, in the presence of singularities, it employs a slope limiter [5; 12] to suppress
oscillations and maintain monotonicity. This unavoidably decreases the accuracy
to first order at critical points. Higher order finite volume approximation schemes
based on polynomial reconstruction are implemented in [22; 13]. These schemes are
not a good choice for problems with nonsmooth signals or heterogeneous media nor
for simulations on highly distorted meshes, where such schemes can be oscillatory
or unstable. Also flux limiters when used with higher order schemes may produce
results that are even less accurate than those by MUSCL schemes.

Essentially nonoscillatory (ENO) schemes were developed by Harten et al. [16]
to overcome the problem of order degeneracy at critical points. Instead of using
limiters to overcome a possible growth of total variation, ENO schemes use an
adaptive selection of stencils according to the smoothness of the solution. Better
accuracy near discontinuities is achieved by selecting the stencil that doesn’t contain
a singularity. ENO schemes for multidimensional unstructured meshes can be found
in [15; 1; 29], and their implementations to Maxwell’s equations in [9; 32].

WENO schemes were developed in [20] to improve the performance of ENO
schemes. The key idea of WENO schemes is to use a weighted combination of
all ENO stencils for the reconstruction. For unstructured 3D meshes there are two
types of WENO schemes. Type I WENO schemes [10; 11; 31; 24] are easier to
construct because the linear coefficients can be chosen as arbitrary positive numbers
(usually a larger linear weight is given to the central small stencil). The accuracy
of the resulting type I WENO scheme is not higher than that on each small stencil.
In this work we employ the type II WENO scheme proposed by Zhang and Shu
in [33] in which the weighted combination of second order reconstructions is third
order accurate. The scheme is more difficult to construct for unstructured meshes
as there is no freedom in selecting the linear weights. Linear weights depend solely
on the mesh geometry, and in most cases there are negative weights which create
stability issues. To overcome this, the criterion proposed in [21] can be used to
eliminate reconstructions for which linear weights are large negative numbers.

Different modifications to the computation of nonlinear weights are suggested
in the literature to improve the quality of the WENO reconstruction. For unstruc-
tured meshes the mapping technique introduced by Henrick et al. in [17] is often
suggested [33; 21]. While theoretically mapping applied to third order classical
WENO weights does not improve convergence, numerically this technique reduces
computational errors. Another approach to improve the accuracy of WENO schemes
is to modify the smoothness indicator [8]. In this work the accuracy of WENO
schemes is controlled by appropriately choosing the small parameter ε in the WENO
weights as a function of linear cell sizes. This choice was originally studied for
WENO schemes on uniform meshes in 1D by Aràndiga et al. in [2].
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This paper is devoted to an efficient application of the type II WENO scheme
to a 3D FVTD approximation of Maxwell’s equations. Based on the analysis for
1D nonuniform meshes, we implement the optimal choice of the small parameter
in WENO weights for maximum achievable spatial accuracy. A threshold for
very negative linear weights has been employed to eliminate possible instability.
Moreover, to improve CPU time we use a criterion to determine when to apply
WENO reconstruction. Basically, the WENO reconstruction is performed only for
elements with large smoothness indicators in the WENO weights. The proposed
implementation was tested on electromagnetic problems with analytic solutions to
confirm that the accuracy and nonoscillatory effect are achieved with the proposed
choices of parameters. The robustness of the type II WENO scheme for inhomoge-
neous media is also demonstrated numerically. Maxwell’s equations are challenging
due to discontinuities in the solution where the advantages of WENO schemes can
be leveraged. The implementation discussed in this paper can be applied to other
hyperbolic systems of PDEs.

The paper is organized as follows. Section 2 describes Maxwell’s equations in
time-domain and their finite volume discretization. Section 3 presents an overview
of the type II finite volume WENO scheme together with improvements necessary
for its efficient implementation. In Section 4, a 1D analysis of a third order WENO
scheme on nonuniform meshes is discussed to support the choices made for accurate
3D applications. Finally, Section 5 presents numerical validations of the proposed
implementation of a WENO scheme on tetrahedral meshes.

2. The finite volume scheme for Maxwell’s equations

Consider the propagation of electromagnetic waves in a 3D heterogeneous linear
isotropic medium with space varying electric permittivity ε = ε(x) and magnetic
permeability µ= µ(x). Given a bounded region �⊂ R3, the electric field E(x, t)
and the magnetic field H(x, t) are governed by the system of Maxwell’s equations

ε ∂E
∂t −∇ ×H= JE in [0, T ]×�,

µ ∂H
∂t +∇ ×E= JH in [0, T ]×�,

an̂×E+ bn̂× (n̂×H)= 0 on [0, T ]× ∂�,
(1)

where JE and JH are the sources consisting of imposed currents and term introduced
by scattered field formulation, and n̂ is the outward unit normal of the boundary ∂�.
Parameters a and b define different boundary conditions:

• perfect electric conductor (PEC), a = 1 and b = 0,

• perfect magnetic conductor (PMC), a = 0 and b = 1, and

• Silver–Müller absorbing boundary condition, a = 1 and b =
√
µ/ε.
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Consider the normalized quantities

x = l−1x, t = c0l−1t, (2)

where l is a reference length, c0 = (µ0ε0)
−1/2 is a dimensional speed of light in

vacuum with ε0 ≈ 8.854 · 10−12 A·s
V·m , and µ0 = 4π · 10−7 V·s

A·m . The fields E and H
can be normalized to a typical electric field intensity E by

E =
E
E
, H =

Z0

E
H, JE =

l Z0

E
JE , JH =

l
E

JH , (3)

where Z0 =
√
µ0/ε0 is the dimensional free-space intrinsic impedance. Then the

system (1) can be written in nondimensional form as
εr
∂E
∂t −∇ × H = JE in [0, c0l−1T ]×�,

µr
∂H
∂t +∇ × E = JH in [0, c0l−1T ]×�,

ar n̂× E+ br n̂× (n̂× H)= 0 on [0, c0l−1T ]× ∂�,

(4)

where εr=ε/ε0,µ=µ/µ0, ar=a, and br=b/Z0. For a finite volume discretization,
the first two equations of (4) are written in conservative form as

α
∂U
∂t
+∇ · F(U)= J,

where

U =
[

E
H

]
, F(U)=

[
F1(U) F2(U) F3(U)

]T
, Fi =

[
−ei × H

ei × E

]
,

and

α =

[
εr 0
0 µr

]
, J =

[
JE

JH

]
.

Consider a partition of the bounded domain � ⊂ R3 into a tetrahedral mesh
�T =

⋃N
i=1 T i . It is assumed that material properties are constant in each cell Ti .

Integrating (4) over each tetrahedron Ti and defining the cell averaged values of a
given function u as ui = (1/|Ti |)

∫
Ti

u dV , the semidiscrete finite volume scheme
for Maxwell’s equations is derived:

αi
∂U i

∂t
+

1
|Ti |

∫
∂Ti

n̂ · F d S = αi
∂U i

∂t
+

1
|Ti |

4∑
j=1

|Si j |n̂ · F|Si j = Ji , (5)

where n̂ is the outward unit normal of the tetrahedron boundary ∂Ti consisting
of four triangular surfaces Si j , j = 1, . . . , 4. Fluxes in (6) are computed using
physical properties on elements Ti and T j . Physical properties are the same inside
homogenous media and different on boundaries between dielectrics. To approximate
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the flux on each triangular surface Si j , an upwind scheme based on the Steger–
Warming flux vector splitting [30] is used. The splitting is based on the method of
characteristics and separates the flux on a face into outgoing and incoming parts
according to the sign of the eigenvalues of a 6× 6 flux matrix [7]. An application
of the flux splitting on each face Si j of a tetrahedron Ti gives the upwind finite
volume scheme

n̂ · F|Si j =

[
−n̂i j ×[n̂i j × (Ei j − E j i )+ (Zi Hi j + Z j H j i )]/(Zi + Z j )

n̂i j ×[−n̂i j × (Hi j − H j i )+ (Yi Ei j + Y j E j i )]/(Yi + Y j )

]
, (6)

where Zi =
√
µi/εi denotes the intrinsic impedance, Yi = Z−1

i , and n̂i j denotes
the outward unit normal of Si j . The surface averaged electromagnetic fields con-
sisting of outgoing (Ei j , Hi j ) and incoming (E j i , H j i ) plane wave contributions
are approximated with the desired accuracy from cell averaged values on Ti and
its neighbors. Third order approximations of the field components can be obtained
with the four-point Gaussian quadrature rule [18; 33]

Ui j =

4∑
k=1

gkU(x( j)
k ), (7)

where gk and x( j)
k are the Gaussian quadrature weights and points, respectively.

At each Gaussian quadrature point x( j)
k , a third order WENO reconstruction is

implemented to approximate the components of U(x( j)
k ) using the fields averages.

3. Third order WENO reconstruction on tetrahedra

In this work we employ the type II third order WENO scheme developed by
Zhang and Shu [33]. Its key idea is to construct a nonlinear combination of
second order reconstructions on small stencils {Sl}

s
l=1 that gives a third order

accurate approximation of a smooth solution on the big stencil S =
⋃s

l=1 Sl for
each quadrature point x( j)

k . Therefore, the main advantage over the type I WENO
scheme is that much more compact stencils are used to achieve third order accurate
nonoscillatory numerical solutions.

The big stencil S = {Vm}
r
m=0 is formed by the cell V0 = Ti and two layers of

its neighbors, and consists of r ≤ 17 elements. A third order approximation of u
at each quadrature point x( j)

k is obtained from a quadratic polynomial p2(x) for
which

u0 =
1
|V0|

∫
V0

p2(x) dV . (8)

In local variables

ξ = (ξ1, ξ2, ξ3)= ξ(x)=
x− x0

h
, h = |V0|

1/3, (9)
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where x0 is the barycenter of V0, the quadratic polynomial p2(x) can be written as

p2(x)=
∑

0≤i1+i2+i3≤2

ai1i2i3ξ
i1
1 ξ

i2
2 ξ

i3
3 . (10)

Coefficients ai1i2i3 are computed by matching the cell averages of p2(x) on every
element of S \ {V0} to the cell averages of u in a least square sense [4]. To avoid
computation of integrals [ξ i1

1 ξ
i2
2 ξ

i3
3 ]m over each element Vm , we use the approach

from [22]. At the k-th quadrature point on the j-th face x( j)
k , the third order

reconstruction polynomial is given by

p2(x
( j)
k )=

r∑
m=0

cmum . (11)

The coefficients cm , m=1, . . . , r , depend on the geometry only and are precomputed
for each quadrature point x( j)

k at initialization.
Each small stencil consists of four elements from the big stencil, and includes

the target element V0. Typically there are up to s = 16 candidates for small stencils⋃s
l=1 Sl = S [33]. For each small stencil Sl = V0 ∪ {V

(l)
m }

3
m=1, a linear polynomial

p(l)1 (x)= a(l)0 +
∑3

i=1 a(l)i ξi is constructed using a similar procedure as for p2(x
( j)
k ).

Just as with the big stencil, the coefficients c(l)m in

p(l)1 (x
( j)
k )=

3∑
m=0

c(l)m u(l)m (12)

depend on the local geometry only and are precomputed at initialization.
A third order type II WENO reconstruction is built as a nonlinear combination

of linear polynomials p(l)1 . The nonlinear weights of the WENO scheme are defined
using the weights of the third order linear reconstruction. For each quadrature point
x( j)

k of the face S j , the linear weights {γl}
s
l=1 are such that the linear combination

of polynomials p(l)1 x( j)
k is closest to p2x( j)

k . The weights for each Gaussian point
are found from the system of linear equations constructed from two parts. The first
part is formed by taking u = 1, ξ 2

1 , ξ
2
2 , ξ

2
3 , ξ1ξ2, ξ1ξ3, ξ2ξ3 in

u(x( j)
k )=

s∑
l=1

γl p(l)1 (x
( j)
k ). (13)

The second part is constructed using the requirement that

p2(x
( j)
k )

1
=

s∑
l=1

γl p(l)1 (x
( j)
k ) (14)

holds for an arbitrary u, where 1
= represents the equality in the least square sense.

Solution of two systems together gives the optimal linear weights for the type II
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third order linear reconstruction of u at the quadrature point x( j)
k :

uLin(x( j)
k )=

s∑
l=1

γl p(l)1 (x
( j)
k ). (15)

While the reconstruction based on linear weights works well for smooth solutions
and relatively good unstructured meshes, our goal is to adapt it to the case where
the solution is not smooth and the mesh quality is arbitrary. We still take a linear
combination of the reconstructions using small stencils, but now so-called nonlinear
weights {ωl}

s
l=1 are employed. Those are designed so that ωl ≈ γl in cells where

the solution is smooth (so third order accuracy is maintained) and ωl ≈ 0 otherwise
to suppress oscillations. The classic WENO weights are defined as

ωl =
ω̃l∑s

m=1 ω̃m
, ω̃l =

γl

(ε+SIl)2
, (16)

where ε is a small number traditionally chosen to be between 10−2 and 10−40 to
avoid division by zero, and SIl is the smoothness indicator on the l-th small stencil:

SIl =

3∑
i=1

∫
T0

|T0|
−1/3

(
∂p(l)1 (x)
∂xi

)2

dV . (17)

As was pointed out in [2; 17], the choice of ε has a crucial effect on the accuracy of
classic 1D WENO reconstructions. It was shown that SIl ∼ h2 for smooth solutions
and SIl ∼ h4 near critical points, suggesting ε ∼ h2 as an optimal choice to preserve
the accuracy near critical points. Assuming that this dependence is even more
important for reconstructions on 3D unstructured meshes with high ratios between
linear cell sizes, we implemented the choices

εi = hk
i , k = 1, 2, 4, (18)

in numerical experiments. These choices are based on the accuracy analysis for
the 1D WENO3 scheme which will be presented in the next section. As suggested
in [33] we also employ the mapped weights technique [17].

Now to form the type II WENO reconstruction at the point x( j)
k , we replace the

linear weights γl in (15) by the nonlinear ωl defined in (16)

uWENO(x( j)
k )=

s∑
l=1

ωl p(l)1 (x
( j)
k ). (19)

Since the type II WENO scheme uses smaller stencils than type I WENO, linear
weights are completely dependent on the geometry. In 3D problems with complex
geometry, the mesh quality is hard to control. The least square solution for linear
weights always gives some negative weights. For mildly negative weights, the



94 MARINA KOTOVSHCHIKOVA, DMITRY K. FIRSOV AND SHIU HONG LUI

splitting technique from [27] is implemented. But on unstructured meshes there is
always a small percentage of large negative linear weights which compromise the
stability of the computation. To overcome this Liu and Zhang in [21] proposed to
replace approximations for which

max
l
(|γl |) > ζ, 1≤ ζ ≤ 10, (20)

by a more expensive type I WENO reconstruction. To have the same compact stencil
in all reconstructions, we replace a type II WENO reconstruction at quadrature
points where (20) holds with a third order polynomial reconstruction (11). In
numerical experiments we did not encounter any problem with such substitution
even for discontinuous solutions. This can be explained by the fact that very negative
linear weights appear only for some quadrature points of a given face. As a result the
surface integral (7) is a combination of both WENO and polynomial reconstructions.
Therefore, the WENO scheme partially compensates for the oscillatory effect of
the polynomial scheme. While using ζ values of up to 10 gives good results on 2D
triangular meshes [21], we used the upper limit of ζ = 1 on 3D tetrahedral meshes
for stability.

The CPU time for computations using a WENO scheme is significantly larger
than that for third order polynomial schemes. Therefore, from a practical point of
view, WENO schemes should only be used when their nonoscillatory properties
benefit the solution. One way to reduce computational cost is to switch between
polynomial and WENO reconstructions depending on the values of smoothness
indicators. A naive criterion, such as

max
l

SIl >
ε

2
, (21)

for WENO reconstruction can significantly reduce the computational time without
compromising either the smooth or discontinuous numerical solutions. This is
referred to as accelerated WENO (WENOA) in the numerical experiments.

4. Accuracy of third order WENO scheme on nonuniform grid in 1D

Since the numerical solution of 3D Maxwell’s equations using a WENO scheme
with a fixed small value of ε in (16) has unpredictable accuracy, we turned to a 1D
theory for selecting a proper value of ε. It was shown by Aràndiga et al. in [2] that
the accuracy of WENO schemes in 1D can be controlled by defining ε based on
the mesh size h. The focus of this section is on an analysis of a third order WENO
scheme for 1D nonuniform meshes. We use it as a guideline to choose ε in 3D
simulations.

Consider a nonuniform 1D mesh a = x1/2 < · · · < xi−1/2 < xi+1/2 < xi+3/2 <

· · ·< xN+1/2= b with sizes hi = xi+1/2−xi−1/2 on an interval Ii = [xi−1/2, xi+1/2].
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The linear polynomials p(l)1,i (x) defined on small stencils S(l)i = {Ii+l−2, Ii+l−1},
l = 1, 2, can be obtained as

p(l)1,i (x)= ui +
2hi

hi+l−2+ hi+l−1
[ui+l−1− ui+l−2]ξ, l = 1, 2. (22)

The classic WENO3 weights in 1D are defined by [20; 19]

ωl,i =
ω̃l,i

ω̃1,i + ω̃2,i
with ω̃l,i =

γl

(ε+SIl,i )p , l = 1, 2, (23)

where the linear weights are given by γ1 =
1
3 and γ2 =

2
3 , and the smoothness

indicators SIl,i , l = 1, 2, can obtained as

SIl,i=hi

∫
Ii

(p(l)1,i (x))
2
x dx=

4h2
i

(hi+l−2+hi+l−1)2
[ui+l−1−ui+l−2]

2, l=1, 2. (24)

If u(x) is a smooth function on the big stencil Si =
⋃2

l=1 S(l)i , then the finite volume
WENO3 reconstruction with weights given by (23) has the accuracy property [19]

uWENO
i+1/2 = u(xi+1/2)+ O(h2+k), (25)

provided that

ωl,i = γl + O(hk), k ∈ {0, 1}, l = 1, 2. (26)

Theorem 1. Let u(x)∈C3 on the big stencil Si . Then the smoothness indicators (24)
have the following properties.

(1) If u′(x) 6= 0 for all x ∈ Si , then

SIl,i = αi (xi )h2
i + O(h3

i ), l ∈ {1, 2}, (27)

SI2,i −SI1,i = βi (xi )h3
i + O(h4

i ) (28)

for some locally Lipschitz continuous αi (x) and βi (x).

(2) If u(x) has a point x∗ ∈ Si \ {xi } such that u′(x∗)= 0, then

SIl,i = αl,i (xi )h4
i + O(h5

i ), l ∈ {1, 2}, (29)

SI2,i −SI1,i = βi (xi )h4
i + O(h5

i ) (30)

for some locally Lipschitz continuous αl,i (x) and βi (x).
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Proof. Using the Taylor series of the primitive function U (x) =
∫ x
−∞

u(ξ) dξ
about xi , we get

SI1,i =
4h2

i

(hi−1+ hi )2
[ui − ui−1]

2

=
4h2

i

(hi−1+hi )2

(
U (xi+

1
2 hi )−U (xi−

1
2 hi )

hi
−

U (xi−
1
2 hi )−U (xi−

1
2 hi − hi−1)

hi−1

)2

=
(
u′(xi )hi −

1
3 u′′(xi )(

1
2 hi + hi−1)hi + O(h3

i )
)2
.

Similarly one can get

SI2,i =
(
u′(xi )hi +

1
3 u′′(xi )(

1
2 hi + hi+1)hi + O(h3

i )
)2
.

Let κl = hi/hi−2l−3; then

SIl,i =
(
u′(xi )hi + (

2
3 l − 1)( 1

2 + κl)u′′(xi )h2
i + O(h3

i )
)2
. (31)

Therefore, we deduce (27) and (28) with

αi (xi )= [u′(xi )]
2, βi (xi )=

1+ κ1+ κ2

3
u′(xi )u′′(xi ).

Now consider the case when u′(x∗)= 0 for some x∗ ∈ Si \{xi }. Let xi−x∗= κhi

with 0< |κ|< 3
2 . Then using the Taylor series of u′(x) about xi at x∗, we get

u′(xi )= u′′(xi )κhi + O(h2
i ),

which is then substituted into (31) to derive

SIl,i = (δlu′′(xi )h2
i + O(h3

i ))
2,

where δl = κ + (
2
3 l − 1)( 1

2 + κl). Therefore, we obtain the estimates (29) and (30)
with αl,i (xi )= [δlu′′(xi )]

2 and βi (xi )= (δ
2
2− δ

2
1)[u

′′(xi )]
2. �

Theorem 2. Let u(x) ∈ C3 on the big stencil Si , and ε = Mhm in (23), for some
M > 0 and m ≥ 0. Then the following hold.

(1) If u′(x) 6= 0 for all x ∈ Si , then

uWENO
i+1/2 − u(xi+1/2)= O(h3). (32)

(2) If there is a point x∗ ∈ Si \ {xi } such that u′(x∗)= 0, then

uWENO
i+1/2 − u(xi+1/2)=

{
O(h3), m ≤ 3,
O(h2), m ≥ 4.

(33)

Proof. As in [2] we start by writing

1
(ε+SI1,i )p =

1
(ε+SI2,i )p

(
1+

SI2,i −SI1,i

ε+SI1,i

)p

. (34)
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(1) Consider the case when u′(x) 6= 0 for all x ∈ Si . Then using (27) and (28),

SI2,i −SI1,i

ε+SI1,i
=

pβi (xi )

η1 M + η2αi (xi )
hr
+ O(hr+1), (35)

where

r =max(1, 3−m)≥ 1, η1 =

{
1, m ≤ 2,
0, m > 2,

η2 =

{
0, m < 2,
1, m ≥ 2.

Using (35) in (34) and substituting into (23), we get

ω̃1,i + ω̃2,i =
1

(ε+SI2,i )p (1+ γ1ν1,i (xi )hr
+ O(hr+1)),

where ν1,i = pβi (xi )/(η1 M + η2αi (xi )) is a locally Lipschitz continuous function.
Then

ω2,i =
γ2

1+ γ1ν1,i (xi )hr + O(hr+1)
= γ2+ O(hr ).

Following the same steps, one can derive the same estimate for ω1,i . From (26)
and (25) we deduce that (32) holds on Si regardless of the value of ε.

(2) Now assume that at some point x∗ ∈ Si \ {xi }, we have u′(x∗)= 0. Then

SI2,i −SI1,i

ε+SI1,i
=

βi (xi )hr

η1 M + η2α1,i (xi )
+ O(hr+1), (36)

where

r =max(0, 4−m)≥ 0, η1 =

{
1, m ≤ 4,
0, m > 4,

η2 =

{
0, m < 4,
1, m ≥ 4.

Following the same steps as before for m ≤ 3, we get the third order estimate in (33).
For m ≥ 4 using (36) in (34) we get that

1
(ε+SI1,i )p =

1
(ε+SI2,i )p [1+ ν1,i (xi )+ O(h)],

where ν1,i (xi )= (1+βi (xi )/(η1 M+α1,i (xi )))
p
−1 is a locally Lipschitz continuous

function. Therefore,

ω2,i =
γ2

(1+ γ1ν1,i (xi )+ O(h))
=

γ2

(1+ γ1ν1,i (xi ))
+O(h)+γ2−γ2 = γ2+O(1).

The same result can be obtained for ω1,i . As follows from (25)–(26) for m ≥ 4,
WENO3 gives only second order reconstruction near the critical point x∗. �

Theorem 3. Let u(x) be a piecewise smooth function with a jump discontinuity
[u∗] = [u(x∗)] in Si \ S(l)i , l ∈ {1, 2}, at the point x∗. If ε = Mhm , where m ≥ 1,
in (23), then the WENO3 reconstruction with weights defined by (16) gives

uWENO
i+1/2 = u(xi+1/2)+ O(h2). (37)
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Proof. Assume that x∗ ∈ Si \ S(1)i ; then we have

u(1)i+1/2 = u(xi+1/2)+ O(h2), u(2)i+1/2 = u(xi+1/2)+ O([u∗]). (38)

Since SI1,i = O(hr ), r ∈ {2, 4}, and SI2,i = O([u∗]2) for ε = O(hm), we get

ω1,i = O(h2 min(m,r)
[u∗]−4), ω2,i = O(1). (39)

Therefore,

uWENO
i+1/2 =ω1,i u

(1)
i+1/2+ω2,i u

(2)
i+1/2=u(xi+1/2)+O(h2 min(m,r)

[u∗]−3)+O(h2), (40)

which, for m ≥ 1, gives (37). �

Numerical experiments support the validity of the above theory in 1D. Since
it would be much more difficult to analyze the general 3D case with unstructured
meshes, we use the analysis above to choose ε in (16) for our 3D experiments.

5. Numerical examples

In this section a set of 3D electromagnetic (EM) test problems that include plane
wave propagation in a parallel plate waveguide, the scattering of a plane wave
from a perfectly conducting (PEC) sphere, and plane wave reflection/transmission
through a dielectric prism are discussed. Numerical experiments were carried out
on an Intel i7-4790k 4.4 GHz quad core CPU with 32 GB of RAM. C++ OpenMP
is used to utilize multicore architecture. For the temporal discretization we employ
the third order strong stability-preserving (SSP) Runge–Kutta scheme [28].

Example 1: parallel plate waveguide. Consider the problem of a plane wave prop-
agation in a parallel plate wave guide. In this example the computational domain is
represented by a cube with linear size l = 2 m. We impose PEC boundary conditions
on cube faces parallel to the x-y plane, and PMC boundary condition on two faces
parallel to the z-x plane. A plane wave excited at x = −1 and propagating in x
direction is given by the boundary conditions

E in
z = f (t), H in

y =− f (t)ε1/2
0 µ

−1/2
0 , E in

x = E in
y = H in

x = H in
z = 0. (41)

The geometry of the problem is shown in Figure 1.
First consider an incoming plane wave (41) given by the Gaussian pulse

f (t)= e−b−2(t−t0)2, (42)

where b = 1.2× 10−9 s and t0 = 0.5lc−1
0 . Experiments are performed on meshes

with relatively uniform linear size of tetrahedrons equal to 0.2, 0.1, and 0.05. To
validate WENO schemes with ε = h, h2, h4 in (16) (WENO-h, h2, h4) the discrete
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Figure 1. Propagation in a parallel plate waveguide: geometry of the problem.

# of cells L2 error order L2 error order L2 error order

MUSCL Polynomial
8040 2.747358 · 10−2 1.580182 · 10−2

64076 1.263663 · 10−2 1.12 2.045965 · 10−3 2.95
554668 6.040267 · 10−3 1.06 2.235041 · 10−4 3.19

4028196 3.140725 · 10−3 0.94

WENO-h WENO-h2 WENO-h4

8040 1.338234 · 10−2 1.409145 · 10−2 1.959543 · 10−2

64076 1.942162 · 10−3 2.78 2.106160 · 10−3 2.74 5.156885 · 10−3 1.93
554668 2.133779 · 10−4 3.19 2.554968 · 10−4 3.04 1.268922 · 10−3 2.02

Table 1. Propagation in a parallel plate waveguide: L2 errors at T = lc−1
0 (l = 2 m) for

MUSCL, third order polynomial, and WENO-h, h2, h4 schemes.

L2 errors at time T = lc−1
0 are computed by

l2(U(T ))=

[∑N
i=1|Ti |

∑3
j=1

1
2(εrε0(E

j
i )

2
+µrµ0(H

j
i )

2)
]1/2[

ε0
∑N

i=1|Ti |
]1/2 . (43)

In Table 1 discrete L2 errors for WENO-h, h2, h4 schemes are compared to the
ones by MUSCL [7] and third order polynomial schemes. Comparison of time-
domain solutions at the observation point P = (0.5, 0, 0) (see Figure 1) is shown in
Figure 2. The best resolution of peaks is obtained with WENO-h, while WENO-h4

significantly distorts the solution near critical points. These results suggest that the
1D theory on the choice of ε is applicable to 3D simulations.

Table 2 shows storage requirements as well as the CPU times for MUSCL,
WENO, accelerated WENO (WENOA), and polynomial schemes. The speedup
achieved by WENOA scheme compared to WENO is due to the application of
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Figure 2. Propagation in a parallel plate waveguide: time-domain solution for the propa-
gation of Gaussian pulse at the observation point (0.5, 0, 0).

Storage (GB) CPUT (s), T = lc−1
0

# of cells MUSCL Polyn. WENO MUSCL Polyn. WENO-h2 WENOA-h2

64076 0.04 0.2 1.2 118 197 6601 851
554668 0.3 1.5 11.8 2193 3490 136194 16128

4028196 2.2 31580

Table 2. Propagation in a parallel plate waveguide: storage and CPU time for MUSCL,
third order polynomial, and WENO schemes.

the criterion maxl SIl > ε/2 for WENO reconstructions. In this case less than 5%
of all flux computations use the expensive WENO approximation. At the same
time computation of SIl itself is computationally expensive, which degrades the
performance of WENOA compared to the polynomial scheme. Therefore, a more
efficient criterion could further improve the performance of WENOA schemes.

Next consider a discontinuous signal given by

f (t)= H(t − ts)H(te− t),

where H(t) is the Heaviside step function and ts = 1
8 lc−1

0 and te = 7
8 lc−1

0 . Figure 3
shows time-domain solutions of the Ez field at the observation point P = (0.5, 0, 0)
using polynomial and WENO-h, h2, h4 schemes. The results illustrate that the 1D
analysis of the WENO3 scheme for discontinuous solutions regarding the choice
of ε is also valid for 3D numerical simulations.

Example 2: scattering from a PEC sphere. Consider the classical scattering prob-
lem of a plane wave at a PEC sphere for which the analytic series solution is known
[14; 3]. The computational domain is represented by a sphere of radius 3 m with
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Figure 3. Propagation in a parallel plate waveguide: time-domain solution in time for the
propagation of a discontinuous pulse at the observation point (0.5, 0, 0).

a sphere (PEC) of radius 0.5 m cut out at the origin (see Figure 4). The mesh
consists of smaller tetrahedrons with average edge length 0.0625 in the region
near a PEC surface and larger tetrahedrons with linear size 0.125 at the outer free
space boundary. The generated mesh contains 539332 tetrahedra with 2026 of them
containing a PEC face. The x component of the electric field of the incident plane
wave E I

x is given by the derivative of the Gaussian pulse

E inc
x =−2

t − t0
b2 Ae−(t−t0)2/b2

, (44)

where A = 1.7489× 10−9 V·s
m , b = 1.5× 10−9 s, and t0 = 6× 10−9 s.

The solution of the scattered FVTD formulation using WENO-hi , h2
i , h4

i schemes
as well as the polynomial scheme are compared to the analytic solution at the ob-
servation point shown in Figure 4. The results for the Ex field presented in Figure 5
demonstrate that WENO-h4

i generates much larger errors than those of WENO-hi

or WENO-h2
i . This again agrees with the theory for WENO3 in the 1D case.
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Figure 4. Scattering from PEC sphere: problem geometry and mesh.
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Figure 5. Scattering from PEC sphere: time-domain solution at observation points using
third order linear and WENO schemes.

Example 3: glass prism in a waveguide. The last example demonstrates how a
WENO scheme handles a problem with inhomogeneous media. This is also the test
case where a third order polynomial scheme may not be stable for a reasonable
time step. Like in the first example, consider a free space cube domain enclosed
between two parallel PEC and two PMC plates. A plane wave signal propagating
in the x direction is given by the Gaussian pulse (41)–(42). Inside the cube a
glass rhombus prism with dielectric properties εr = 2 and µr = 1 is placed. The
dimensions of the prism are shown in Figure 6. Numerical simulation using a third
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Figure 6. Glass prim in a waveguide: problem geometry and mesh. Observation points
shown have coordinates P1 = (−0.2, 0, 0) and P2 = (0, 0, 0), and rhombus diagonals are
d1 = 0.28 and d2 = 1.0.
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Figure 7. Glass prism in a waveguide: time-domain solution at observation points P1 =
(−0.2, 0, 0) (top row) and P2 = (0, 0, 0) (bottom row) using MUSCL and WENO-h, h2

schemes on a mesh with h = 0.05 compared to the reference solution by the MUSCL
scheme on a mesh with h = 0.0125.
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order polynomial scheme is unstable for this configuration. Therefore, we only
compare numerical results obtained by WENO-h, h2 schemes on a mesh of average
linear cell size 0.05 to the result by the MUSCL scheme [7] on the same mesh.
Numerical solution by the MUSCL scheme on a finer mesh with linear cell size
0.0125 is used as a reference solution. Figure 7 shows the time-domain solution for
the Ez field as well as a pointwise error with reference solution at two observation
points (before and inside the glass prism) shown in Figure 6. We find that while the
polynomial scheme diverges for this problem, WENO schemes still converge with
better accuracy than the MUSCL scheme. We notice higher level oscillations in the
results by the WENO-h scheme compared to WENO-h2. This suggests WENO-h2

as a better choice for problems with dielectric contrasts.

6. Summary

In this paper we have successfully implemented a third order type II WENO scheme
developed in [33] to solve the linear Maxwell’s equations on tetrahedral meshes. An
efficient implementation of the scheme is challenging due to its strong dependence
on mesh geometry, mesh scale, and high computational cost. Because of the
unstructured mesh, the least square solution of the system for finding linear weights
almost always contains negative components which create unstable and inaccurate
results. To solve this problem we used a hybridization with a third order polynomial
scheme at quadrature points with very negative linear weights. Also due to irregular
geometries a small number of small stencil matrices are singular. These stencils
are removed at the initialization step to avoid polluting the linear scheme. We
also implemented specific choices of ε dependent on cell sizes in the definition of
nonlinear weights which allowed us to control both the accuracy and dissipation in
the numerical solution. In our study we used a 1D accuracy analysis as a guideline
for the 3D scheme and our numerical experiments confirmed its validity. As in earlier
work for uniform meshes in 1D [2], we found that e= h2

i for each cell is optimal for
solutions containing both smooth and singular parts. To reduce computational cost
associated with WENO reconstruction, we implemented a criterion that determines
which stencils could use cheaper polynomial reconstruction instead. The resulting
WENOA-h2 scheme is more efficient than lower order FV schemes such as MUSCL,
and is nonoscillatory and more stable than linear schemes for EM problems with
varying material properties and complex geometries.
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ON A SCALABLE NONPARAMETRIC DENOISING
OF TIME SERIES SIGNALS

LUKÁŠ POSPÍŠIL, PATRICK GAGLIARDINI,
WILLIAM SAWYER AND ILLIA HORENKO

Denoising and filtering of time series signals is a problem emerging in many
areas of computational science. Here we demonstrate how the nonparametric
computational methodology of the finite element method of time series analysis
with H1 regularization can be extended for denoising of very long and noisy
time series signals. The main computational bottleneck is the inner quadratic
programming problem. Analyzing the solvability and utilizing the problem
structure, we suggest an adapted version of the spectral projected gradient method
(SPG-QP) to resolve the problem. This approach increases the granularity of
parallelization, making the proposed methodology highly suitable for graphics
processing unit (GPU) computing. We demonstrate the scalability of our open-
source implementation based on PETSc for the Piz Daint supercomputer of the
Swiss Supercomputing Centre (CSCS) by solving large-scale data denoising
problems and comparing their computational scaling and performance to the
performance of the standard denoising methods.

1. Introduction

Time series signals (i.e., data measured in intervals over a period of time) are typical
for many practical areas such as econometrics (e.g., movement of stock prices
[17]), climatology (e.g., temperature changes [39]), or molecular dynamics (e.g., in
conformational changes of the molecule [19]). The analysis of time series signals
aims to extract meaningful characteristics and understand the process which has
generated those data. Such an analysis is the key ingredient in forecasting the process
beyond the observed and measured time. However, one of the main difficulties in
the analysis of real measurements is the presence of measurement/experimental
noise. Additionally, an almost exponentially growing amount of collected data
in many practical applications requires a development of better and faster data-
driven denoising, modeling, and classification tools suitable for high performance
computing (HPC).
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Suppose we observed time series signal xt ∈ Rn , t = 1, . . . , T , (where n is the
data dimension and T is the length of time series) and those data are appropriately
described by the model function µ(t,2) with parameters 2 ∈ Rm and an additive
noise ε, i.e.,

xt = µ(t,2)+ εt , t = 1, . . . , T, (1)

where {εt } is a family of independent and identically distributed (i.i.d.) random
variables with zero expectation. The explicit model function µ(t,2) is chosen
a priori based on our knowledge of the particular application. In general, the aim of
the modeling process is to determine optimal parameters 2 such that the observed
data xt are described by (1) in the most optimal way, for example using maximum
likelihood estimation (MLE) or minimizing mean-square error. Finally, the denoised
signal can be obtain as an output of (1) with known 2 and without the presence of
the (eliminated) noise term εt .

In the first part of the introduction, we shortly review the general classification
of time series modeling methodologies based on the choice of µ. In the second
part, we investigate methods from the point of computational cost and highlight
the importance of developing the optimization algorithms for effective solution.
The final part of the introduction presents the finite element method of time series
analysis with H1 regularization (FEM-H1) methodology used in the approach
presented in this paper.

1.1. General model classification. In the simple case, the form of the model func-
tion µ is known and, for instance, it can be expressed as some a priori defined
function dependent on time. If the dimension of the underlying parameters 2 is
finite, then this method is called parametric.

For example, in the case of a linear regression

µ(t, θ0, θ1)= θ1t + θ0 (2)

the unknown model parameters θ0, θ1 ∈ R can be found using MLE (or minimizing
least-square error) as a solution of an appropriate optimization problem

[θ0, θ1] = arg min
θ0,θ1

T∑
t=1

‖xt −µ(t, θ0, θ1)‖
2. (3)

The recovered signal is obtained as values of µ(t, θ0, θ1), t = 1, . . . , T . However,
the model used (2) is valid only if the original data was generated by a linear
model — and if no nonlinear effects had a significant impact on the underlying
process.

Another example of parametric methods are hidden Markov models (HMMs).
Here, it is a priori assumed that there exist regimes such that data in each regime is
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distributed according to some explicit parametric distribution from a known and
fixed family of parametric distributions (e.g., Gaussian, Poisson, etc.). The aim
is then to search for an optimal regime-switching homogeneous Markov process
represented by unknown components of transition matrix and initial states [1].

In general, parametric methods are usually based on rather strong explicit as-
sumptions about the problem structure. These assumptions help create a tractable
finite-dimensional formulation of the problem, which can be solved analytically or
numerically and efficiently. In general, the more model assumptions are imposed,
the less general the model is — and the simpler the numerical optimization problem
to be solved is. On the other hand, imposing an unspecific parametric structure
leads to models that incorrectly describe the problem under consideration.

The way to avoid the (possibly inappropriate) restrictive a priori explicit paramet-
ric assumptions about the dynamics of the model parameters is to use nonparametric
models. In the case of nonparametric models, the dimension of the underlying
parameters 2 is infinite and we assume that optimal parameters are represented
as functions from an a priori restricted class of feasible functions. However, the
larger generality and complexity of the nonparametric models used also imposes a
much higher computational cost on the resulting infinite-dimensional optimization
problem. Therefore, the nonparametric models are much more challenging in
numerical implementation and execution.

An example of a nonparametric method is a generalized additive model (GAM)
[25]. In comparison to linear regression (2)–(3), the model function µ in GAM can
be defined as an arbitrary, nonlinear, and nonparametric smooth function from the
Sobolev space on an interval [t1, tT ] = [1, T ]

W 2([t1, tT ])=

{
µ( · ) ∈ C(2)([t1, tT ]) :

∫ tT

t1
[µ′′(t̂)]2 dt̂ <∞

}
. (4)

The optimal (i.e., sufficiently smooth) modeling function is then given by solving
the optimization problem

µ= arg min
T∑

t=1

(xt −µ(t))+ λ
∫ tT

t1
[µ′′(t̂)]2 dt̂ . (5)

Here λ > 0 represents the regularization parameter which has to be estimated [49].

1.2. Computational cost. Choosing the “most optimal” tools in every particular
application is not a trivial task and is made more difficult by the interplay of many
factors [36], most of all by the following two factors: (i) the amount of bias that
is introduced by the analysis method (for example, coming from the eventually
wrong a priori assumptions about the linearity, Gaussianity, and homogeneity of
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the underlying processes) and (ii) the computational scalability of different data-
driven algorithms — as well as the possibility to deploy these algorithms in an HPC
setting — to be able to process the data en masse.

Experience shows that the analysis algorithms that introduce the highest-potential
bias (e.g., standard linear Fourier filtering methods based on the fast Fourier trans-
form (FFT) or parametric Bayesian methods like HMM with Gaussian or Poisson
outputs and a time-homogenous Markov model assumption [36; 37; 47]) demon-
strate the best HPC scaling performance whereas the nonlinear and non-Gaussian
approaches like convolutional neural networks (CNNs) need more communication
and scale worse — so only the deployment of massively parallel GPU architectures
helped to reach the scale-up that was necessary to apply these methods to large
realistic problems [11; 46].

From the mathematical perspective, essentially all of the data analysis and
classification methods currently available in the standard analysis packages can be
formulated as the numerical algorithms for solutions of large optimization problems.

To give some examples, the standard Fourier, wavelet, and kernel filtering algo-
rithms for denoising the signals xt ∈ Rn — as well as the parameter identification
methods for support vector machine (SVM) classification, linear discriminant anal-
ysis, and linear autoregressive models (AR) — can be formulated and implemented
as solution algorithms for the same type of unconstrained quadratic minimization
problem (QP)

y = arg min
y
‖x −8y‖2,

where ‖ · ‖2 denotes the Euclidean norm, y∈Rr (r is typically much less then n), and
8 ∈ Rn×r is a known filtering matrix. Variational methods (like regularized kernel
filtering, compressed sensing, and regularized model inference) [8; 50; 48] can be
obtained by adding the regularizing inequality constraints to this convex problem:
for example, a very popular compressed sensing algorithm in a dual formulation
can be obtained by adding the linear inequality constraint ‖y‖1 ≤ ε (where ‖ · ‖1
denotes the L1 norm and ε is some a priori fixed “sparsity” parameter) to the
above unconstrained QP. Neural networks can be straightforwardly approached as
parametric nonconvex optimization problems of the type

y = arg min
y
‖x −8(y)‖2,

where 8 is some a priori fixed nonlinear operator characterizing the network
topology and y are unknown network parameters.

Finally, the nonstationary and nonparametric denoising and modeling methods
based on regularized nonconvex clustering algorithms (like the FEM-H1 methodol-
ogy developed in [20]) can be implemented as the solution of a minimization problem
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of a regularized clustering functional with equality and inequality constraints. In
following we briefly review this approach.

1.3. Nonparametric nonstationary FEM-H1 methodology. We will consider ob-
served data as time series xt ∈Rn , t = 1, . . . , T . Our aim is to find coefficients2(t)
of some model function µ(t,2) such that this function in some sense fits the data
in the best way. This fitting condition (i.e., the distance between observed data and
values of the model function) is measured by a metric g, which can be for example
defined by means of the function

g(xt ,2(t))= (xt , E[µ(t,2(t))])2. (6)

Therefore, the most appropriate parameters 2(t) can be obtained by solving the
variational problem

2= arg min
2( · )∈�2

L(2), L(2)=
T∑

t=1

g(xt ,2(t)), (7)

where L refers to a model distance function and �2 represents the space of all
feasible parameters of parameter functions2( · ) for the considered model. However,
this problem is ill posed if only one sequence of data {x1, . . . , xT } is available (this
is a typical situation for many practical applications, e.g., computational finance
or climatology, where only one historical sequence of data is available for each
particular time series). One option of regularizing this problem and making it well
posed is based on the clustering of 2(t); i.e., one can assume that there exist K
different stationary parameters 2= [21, . . . ,2K ] such that the fitness function (6)
can be expressed as a convex combination

g(xt ,2(t))=
K∑

i=1

γi (t)g(xt ,2i ),

where γk(t) ∈ {1, . . . , T } → [0, 1], k = 1, . . . , K , are so-called model indicator
functions [38; 29]. These functions define the activeness of an appropriate i-th
cluster at a given time t ; if γi (t)= 1, then the data are modeled by the i-th model
in time t . These properties can be written in the form of constraints

K∑
i=1

γi (t)= 1 for all t, 0≤ γi (t)≤ 1 for all t, i . (8)

Hence, model indicator functions could be considered switching functions between
individual models on clusters. Additionally, one can incorporate additional infor-
mation about observed processes, for example by assuming that switching between
clusters is in some sense slower than the changes of the signal caused by the presence
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Set feasible initial approximation 00
∈�0

while ‖Lε(2k, 0k)− Lε(2k−1, 0k−1)‖ ≥ ε

Solve 2k
= arg min2∈�2 Lε(2, 0k−1) (with fixed 0k−1)

Solve 0k
= arg min0∈�0 Lε(2k, 0) (with fixed 2k)

k = k+ 1
end while

Return approximation of model parameters 2k and approximation of model indicator
functions 0k

Algorithm 1. Outer optimization algorithm.

of the modeling error or the noise in data. In our notation, this approach means
that model indicator functions γi are smooth in some appropriately chosen function
space. For example, one can enforce the smoothness in H1 space by introducing
the Tikhonov-based penalization term

[2,0] = arg min
2∈�2
0∈�0

Lε(2, 0),

Lε(2, 0)=
T∑

t=1

K∑
i=1

γi (t)g(xt ,2i )+ ε
2

K∑
i=1

T∑
t=2

(γi (t − 1)− γi (t))2,
(9)

where�0 is a feasible set defined by conditions (8) and ε2 denotes the regularization
parameter.

This methodology was called FEM-H1, and it was introduced and developed in
[27; 28; 31; 29; 30; 32; 33]. For the unified and simplified derivation of the method,
as well as its relation to classical methods of unsupervised learning, please see [38].
Moreover, the method was extended for spatial regularization using the network
information in the graph-based form of the regularization matrix [20]. In this case,
the only difference appears in the formulation of the smoothing term.

From a numerical point of view, the problem (9) can be solved as a sequence of
split optimization problems; see Algorithm 1.

Please notice that the first optimization problem in Algorithm 1 is strongly
connected to the type of modeling problem and model used. However, if we are able
to solve the stationary variant of the problem, then this clustered problem includes
only one modification represented by the multiplication by constant coefficients γi (t).
Beyond that, this problem can be reduced into K completely independent problems;
for each cluster we are solving the stationary problem. And also the size of this
problem is typically small since we suppose that the number of clusters is reasonably
small.

One of the main challenges in applying this framework to the analysis of real time
series data (e.g., in computational finance, climatology, or neuroscience) is the high
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computational cost of the second optimization subproblem in this algorithm. Due
to this limitation, published applications of these methods are confined to relatively
small data sets [27; 28; 31; 29; 30; 32; 33]. This second optimization subproblem
is completely independent of the type application, i.e., independent of the choice
of fitness function (6). Nevertheless, the size of this problem is given by K T and
cannot be separated because of the conditions (8) and the form of regularization
term in (9). In optimization theory, the problem of this form (quadratic cost function
with a feasible set formed by linear equality and inequality constraints) is called
a quadratic programming problem (QP) [42; 14]. Therefore, if we develop the
efficient solver to deal with this main computational bottleneck of the FEM-H1
data analysis framework, then we will be able to apply the framework to very
large realistic data sets from different application areas (finance, image processing,
bioinformatics, etc.). A central goal of this paper is to provide an algorithmic
solution to this fundamental problem of the FEM-H1 framework.

Therefore, we will subsequently concentrate on the HPC solution of the problem
of unknown model indicator functions 0. For practical reasons, we define a column
vector with all (unknown) model indicator functions by

γ := [γ1, . . . , γK ] ∈ RK T

and problem (9) for constant 2 can be written in the form of block-structured QP
problem

γ := arg min
γ∈�0

Lε(γ ),

γ := [γ1, . . . , γK ] ∈ RK T ,

γi := [γi (1), . . . , γi (T )] ∈ RT ,

Lε(γ ) :=
1
T

bᵀ2γ +
ε2

T
γ ᵀHγ,

�0 :=

{
γ ∈ RK T

: γ ≥ 0∧
K∑

k=1

γk(t)= 1 for all t = 1, . . . , T
}
,

(10)

where H ∈ RK T×K T is a block-diagonal matrix, whose blocks Hi ∈ RT×T are
formed by Laplace matrices, and

b2 := [g(xt ,21), . . . , g(xt ,2K )] ∈ RK T

denotes the column block-structured vector of modeling errors [29]. Notice that
we scaled the cost function by positive coefficient 1/T to control the scale of the
function values for the cases with large T .
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The paper is organized as follows. In Section 2, we examine the solvability
and properties of the QP problem (10). Afterwards in Section 3, we present the
modification of the spectral projected gradient method for QP problems suitable for
an HPC implementation and discuss its advantages in comparison to other standard
algorithms. In our project, we are interested in the HPC implementation of the
FEM-H1 methodology to be able to deal with very long time series. From the
beginning, we consider a situation when even the input data cannot be stored and
operated on on one computational node; therefore, the distributed layout of the
vectors and matrices has to be introduced and considered during the whole solution
process. In Section 4 we briefly introduce our parallel implementation approach.
Section 5 presents the performance of our algorithm on a data denoising problem,
which is constructed to mimic the main features (like the very high noise-to-signal
ratios and non-Gaussianity of the noise) that are typical for time series from practical
applications. In contrast to the analysis of the “real life” practical data (where the
underlying “true signal” is hidden in the noise and is not known a priori), analysis
of this test data that we propose allows for a direct comparison of the introduced
method to different standard denoising algorithms. It also allows the assessment of
the denoising performance of the methods for various ratios of signal-to-noise —
an assessment that cannot be achieved for the “real life” data. We also present
the scalability results of our implementation on the Piz Daint supercomputer. In
this section, we show the efficiency of FEM-H1 methodology in comparison with
other standard denoising approaches. We show that our method outperforms other
standard denoising methods in terms of the denoising quality in the situations when
the signal-to-noise ratio of the data becomes small.

Finally, Section 6 concludes the paper and presents some ideas for our future
research.

2. Solvability of inner QP

For the simplicity of our analysis, we rewrite the problem (10) using the convenient
notation

min
x∈�

f (x), f (x) := 1
2 xᵀAx − bᵀx, (11)

where A := (ε2/T )H ∈RK T×K T is a symmetric positive semidefinite (SPS) Hessian
matrix of a quadratic cost function f :RK T

→R and b :=−(1/T )bᵀ2 is the so-called
right-hand side vector. This name came from the necessary optimality condition
for the unconstrained problem �= RK T , which is given by [42; 7; 14]

∇ f (x)= Ax − b = 0 ⇐⇒ Ax = b. (12)
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Since Hessian matrix A of the quadratic function f is SPS, this cost function is
continuous and (not strictly) convex. Moreover, the null space (kernel) is given by

Ker A= span{[1ᵀ,0, . . . ,0]ᵀ, [0,1ᵀ,0, . . . ,0]ᵀ, . . . , [0, . . . ,0,1ᵀ]ᵀ} ⊂RK T , (13)

where we denote 1 := [1, . . . , 1]ᵀ ∈ RT and 0 := [0, . . . , 0]ᵀ ∈ RT .
The feasible set �⊂RK T is a (nonempty) bounded closed convex set, and it can

be equivalently defined by

�= {γ ∈ RK T
: γ ≥ 0∧ Bγ = c},

where B := [I, . . . I ] ∈ RT×K T , c := 1, and I ∈ RT×T denotes the identity matrix.
Using this notation, we can easily conclude that the optimization problem (11) is a
QP problem with the SPS Hessian matrix, linear equality constraints, and bound
constraints

min 1
2 xᵀAx − bᵀx subject to Bx = c, x ≥ 0. (14)

The existence of a solution of (14) is implied by the Weierstrass extreme value
theorem: the real-valued cost function is continuous, and the nonempty feasible set
is bounded.

However, the uniqueness of this solution is not so straightforward. It is given by
the relationship between the null space (kernel) of Hessian matrix A, linear term b,
and the feasible set �, since the differences between solutions lies in this vector
space. For instance, if A is symmetric positive definite (SPD), then the cost function
is strictly convex and the solution is unique on any nonempty closed convex feasible
set [14]. Unfortunately, in our case the Hessian matrix is only SPS and the solution
is not unique for an arbitrary feasible set. For example in the unconstrained case,
if � := Rn , then the problem could possibly be nonsolvable; if b /∈ Im A, then the
linear system (12) has no solution. If b ∈ Im A, then the system of all solutions
of the unconstrained problem is given by x = A+b + d, where A+ denotes the
Moore–Penrose pseudoinverse of the singular matrix A and the vector d represents
an arbitrary vector from (in this case nontrivial) Ker A. Therefore, all solutions of
the problem differ by the vector from Ker A.

At first, we present the generalization of previous observations from the uncon-
strained case to solutions of a problem (14).

Lemma 1. Let x1, x2 be two solutions of problem (14). Then

x1− x2 ∈ Ker A∩Ker B.

Proof. Let us denote d := x2− x1. Then using the definition of a quadratic cost
function f and simple manipulations, we obtain

f (x2)= f (x1+ d)= f (x1)+ dᵀ∇ f (x1)+
1
2 dᵀAd. (15)
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We suppose that both x1 and x2 are minimizers (both f (x1) and f (x2) are minimal
values of f on the feasible set); therefore, f (x1)= f (x2). Using this and comparing
sides of equality (15), we can write

1
2 dᵀAd =−dᵀ∇ f (x1). (16)

The left side of this equation is always nonnegative because A is SPS. Moreover,
the right side is nonpositive because x1 is a solution of the convex optimization
problem with differentiable f and the necessary optimality condition is given by [7]

∇ f (x1)
ᵀ(y− x1)≥ 0 for all y ∈�.

Combining these two inequalities, we obtain

dᵀAd = 0 ∧ dᵀ∇ f (x1)= 0. (17)

The first equality implies d ∈ Ker A.
We suppose that both of the solutions belong to the feasible set; therefore, they

satisfy constraint conditions. From equality conditions for x2 and using Bx1 = c,
we get

c = Bx2 = B(x1+ d)= Bx1+ Bd = c+ Bd;

therefore, Bd = 0 or equivalently d ∈ Ker B. �

In the proof of the previous lemma, we did not yet use one important property,
which appears in (17). Using d ∈ Ker A from the first equality of (17), we get
equivalent condition

dᵀ∇ f (x1)= dᵀ(Ax1− b)=−dᵀb = 0

or equivalently (using d ∈ Ker A∩Ker B; see Lemma 1)

b ⊥ Ker A∩Ker B.

This condition forms the sufficient condition for the possible existence of two
different solutions of the general QP problem (14).

However, these solutions could be constrained by additional inequality constraints
and the full system of necessary conditions is more complicated. Let us introduce a
Lagrange function [42; 14] corresponding to the problem (14):

L(x, λE , λI ) :=
1
2 xᵀAx − bᵀx + λᵀE(Bx − c)− λᵀI x, (18)

where λI and λE are Lagrange multipliers corresponding to the equality and in-
equality constraints. So-called Karush–Kuhn–Tucker (KKT) optimality conditions
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are given by

Ax − b+ BᵀλE − λI = 0,

Bx − c = 0,

x, λI ≥ 0,

[x] j [λI ] j = 0 for all j = 1, . . . , K T ,

(19)

where we use the notation [v] j to denote the j-th component of vector v.
Additionally, we can utilize the block-diagonal structure of our specific problem

(10) given by the decomposition into clusters. Let us denote the block of matrix A
by Â ∈ RT×T and corresponding blocks of vectors xk, bk, λI k ∈ RT , k = 1, . . . , K .
Then we can write the first KKT system in a form

Âxk − bk + λE + λI k = 0, k = 1, . . . , K .

Now we can sum all these equations to get

Â
( K∑

k=1

xk

)
−

K∑
k=1

(bk + λI k)+ KλE = 0,

and since from the equality constraint we have
∑K

k=1 xk=1 and 1∈Ker Â (see (13)),
we can write

λE =
1
K

K∑
k=1

(bk + λI k) (20)

and substitute back into first KKT condition (19). Using the definition of a matrix B,
we obtain

Ax − Qb− QλI = 0, Q := I −
1
K

BᵀB. (21)

Here the orthogonal matrix Q ∈ RK T×K T represents the projector onto Ker B.
Using KKT optimality conditions and the block structure of the problem, we are

able to prove the following lemma, which gives the relationship between Lagrange
multipliers corresponding to different solutions.

Lemma 2. Let x1, x2 be two different solutions of the problem (11) and let λ1I ,

λ1E , λ2I , λ2E be corresponding Lagrange multipliers in KKT system (19). Then

λ1I = λ2I and λ1E = λ2E .

Proof. We have already shown that the Lagrange multipliers corresponding to
equality constraints are uniquely given by the values of the Lagrange multipliers
corresponding to the inequality constraints (20). Therefore, in the proof we will
focus on a relationship between λ1I and λ2I .
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Let us consider two different solutions x1 and x2. These solutions satisfy all
KKT conditions (19) and (21):

Ax1− Qb− Qλ1I = 0, Ax2− Qb− Qλ2I = 0,

x1, λ1I ≥ 0, x2, λ2I ≥ 0,

[x1] j [λ1I ] j = 0, [x2] j [λ2I ] j = 0.
Let us denote

x2− x1 =: d, λ2I − λ1I =: p (22)

and substitute this into the first KKT condition for (x2, λ2I ):

A(x1+ d)− Qb− Q(λ1I + p)= 0. (23)

Since d ∈Ker A (see Lemma 1) and using the first KKT condition for (x1, λ1I ), we
can write (23) in the form

Qp = 0 =⇒ p ∈ Im Bᵀ.

Now we focus on the inequality conditions. We use our notation (22) and substitute
into KKT conditions (for all j = 1, . . . , K T ):

[x2] j − [d] j ≥ 0, [x1] j + [d] j ≥ 0,

[λ2I ] j − [p] j ≥ 0, [λ1I ] j + [p] j ≥ 0.

We multiply these inequalities by nonnegative numbers [λ2I ] j , [λ1I ] j , [x2] j , [x1] j

and use complementarity KKT conditions. We get

[d] j [λ2I ] j ≤ 0, [d] j [λ1I ] j ≥ 0,

[p] j [x2] j ≤ 0, [p] j [x1] j ≥ 0.

Adding complementarity conditions with substitution (22) and using original com-
plementarity conditions

−[d] j [λ2I ] j − [p] j [x2] j + [d] j [p] j = 0,

[d] j [λ1I ] j + [p] j [x1] j + [d] j [p] j = 0,
we end up with

[d] j [p] j = 0 for all j = 1, . . . , K T . (24)

Let us remark that this condition is much stronger than dᵀ p = 0, which could be
obtained directly from

d ∈ Ker A∩Ker B,

p ∈ Im Bᵀ,

using Ker B ⊥ Im BT [35].
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Now we are ready to prove that p = 0. Since p ∈ Im Bᵀ, there exists α ∈ RT

such that

pk = α for all k = 1, . . . , K .

Suppose by contradiction that there exists an index i ∈ {1, . . . , T } such that [α]i 6= 0.
Due to (24) corresponding components of d have to be zero, i.e.,

[d]i = [d]i+T = · · · = [d]i+(K−1)T = 0. (25)

However, if we suppose that d 6= 0 (solutions x1 and x2 are different), then the
vector d with property (25) is not from Ker A (see (13)), which is a contradiction.
Therefore, p = 0. �

In the general case, we still cannot prove the uniqueness conditions. The following
presents the situation when our problem (11) has an infinite number of solutions:

Lemma 3. Let us consider the problem (11) with

b ∈ Im Bᵀ

and K ≥ 2. Then this problem has an infinite number of solutions. Moreover, one
of these solutions is given by

x =
1
K

1. (26)

Proof. At first, we prove that (26) is a solution. This point is not on the boundary
of a feasible set; therefore, we can ignore the inequality constraints — all of them
are satisfied and correspondingly λI = 0. The first KKT condition (21) is given by

Ax = Qb.

Since Q is an orthogonal projector onto Ker B and we suppose b ⊥ Ker B, the
right-hand side of this equation is equal to 0. Notice that x ∈ Ker A; therefore, the
left-hand side is also equal to zero and the first KKT condition is satisfied. Moreover,
the equality constraint could be also easily checked; therefore, x is solution.

Now it remains to show that there exists at least one additional solution, i.e., that
there exists a nonzero vector d ∈ Ker A∩Ker B such that

x + d ∈�.

Since we suppose K ≥ 2, the vector space Ker A ∩Ker B is nontrivial and it is
possible to choose a nonzero vector from this space. Additionally, x does not belong
to the boundary of �; therefore, there exists a nonzero vector in any direction. �



120 LUKÁŠ POSPÍŠIL, PATRICK GAGLIARDINI, WILLIAM SAWYER AND ILLIA HORENKO

3. Spectral projected gradient method for QP problems

There exist several types of algorithms for solving a general QP problem (14). Since
the manipulation with both constraint types is usually difficult, these algorithms
are based on elimination of one type of constraint in the outer loop, and then they
solve the sequence of inner problems with the remaining type of constraint.

To be more specific, one can use popular interior-point (IP) methods [42; 51].
These methods enforce the inequality constraints using a barrier function:

min
Bx=c, x≥0

f (x)≈ min
Bx=c

f (x)+µ
T∑

i=1

log xi .

Here µ > 0 represents the barrier parameter. Using this approach, the algorithm
transforms the original KKT system with inequalities (19) to the system of nonlinear
equations with so-called duality gap µ. The new problem is not equivalent to the
original, but as the duality gap approaches zero, it becomes a better and better
approximation. The barrier function increases all function values near the boundary
of the feasible set to create an impenetrable barrier for a step-based algorithm which
solves the inner problem with the remaining equality constraints. Usually µ is
not implemented as a constant but is a sequence µk → 0, and the solution of a
previous inner problem is used as an initial approximation of the inner algorithm
for a new µk+1. Since the nonquadratic term (logarithm) is added to the original
quadratic function f , the corresponding KKT system of this inner problem is
nonlinear. To solve this system, one can use Newton-type methods with step size
control to be sure that the new step will not jump through the barrier. Newton-type
methods for solving nonlinear systems introduce the sequence of linear equations
which have to be solved. For more details, see [42; 51].

Another approach is to deal with equality constraints first. This can be performed
using augmented Lagrangian methods [42; 14]. The algorithm enforces the equality
constraints using a penalty term:

min
Bx=c, x≥0

f (x)≈min
x≥0

f (x)+ ρ‖Bx − c‖2.

Again, the new problem is not equivalent to the original one, although if ρ→∞,
then ‖Bx − c‖→ 0. Therefore, the penalty parameter ρ is usually implemented as
the increasing sequence. The main advantage of this approach is the structure of
the inner problem with inequalities — this new problem is again a QP. However,
the Hessian matrix of the new problem is given by

∇
2( f (x)+ ρ‖Bx − c‖2)= A+ ρBᵀB;
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therefore, since the condition number depends on the value ρ and while ρ→∞, the
problem becomes harder and harder to solve. Similar to the interior-point methods,
there exists extensive theory about the connection between the stopping criterion
for solving ill-conditioned inner problems and the value of a penalty parameter; see
the semimonotonic augmented Lagrangian algorithm of [14] or [16]. The inner QP
problem can be solved using the interior-point method, active-set algorithms, or
projected gradient methods. In the case of bound constraints, the projection onto a
feasible set is trivial. Therefore, in the case of the active-set algorithm and projected
gradient methods, the inequality constraints are satisfied accurately, which is not
the case for the interior-point methods. The barrier function makes it impossible to
find the solution on the boundary of a feasible set, because in that case the value of
a barrier term is equal to infinity.

This property brings us to the main disadvantage of both approaches. In the
case of interior-point methods, it is impossible to satisfy inequality constraints
accurately. In the case of the penalization technique, it is impossible to satisfy
equality constraints exactly.

Fortunately, our QP problem (10) is not a general QP (14). To be more specific,
the feasible set in our case is a separable set composed of T simplexes of size K .
There exists an efficient algorithm for computing the projection of a general point
onto simplex

P�t (y) := arg min
x∈�t
‖y− x‖,

�t :=

{
γt ∈ RK

: γt ≥ 0∧
K∑

k=1

[γt ]k = 1
}
, t = 1, . . . T,

γt := [γ1(t), . . . , γK (t)]ᵀ.

The algorithm was presented in [10], and it computes the projection onto the simplex
of dimension K in at most K steps; see Algorithm 2.

If we use these projections in our algorithm, all constraint conditions will be
satisfied accurately. Moreover, computation of the projection can be performed as T
independent processes, and since T is the largest parameter of problem dimension,
this approach increases the granularity of the overall solution process — making
it suitable for GPU computation. We can also use the value of the original cost
function to stop our algorithm with respect to sufficient decrease given by demands
from Algorithm 1.

Therefore, we are mainly interested in the projected gradient descent methods,
i.e., in the algorithms which use x0

∈ � as an initial approximation and suitable
step lengths αk > 0 to generate the approximations of the solution by

xk+1
= P�(xk

−αk∇ f (xk)), k = 0, 1, . . . . (27)
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Given arbitrary y ∈ RK

if K = 1 then set P(y) := 1 and stop
Sort y in ascending order and set k := K − 1
while k > 0

α :=
(∑K

j=k+1[y] j − 1
)
/(K − k)

if α > [y]k then α̂ := α and k := −1
else k := k− 1

end while
if k = 0 then α̂ :=

(∑K
j=1[y] j − 1

)
/K

Set [P(y)]k :=max{[y]k − α̂, 0} for all k = 1, . . . , K
Return P(y)

Algorithm 2. Projection onto simplex [10].

In this case, the feasibility of generated approximations is enforced by using the
projections, and the descent of the object function is induced by using −∇ f (x),
which is generally the best local decrease direction. One of the most efficient
projection gradient methods is a spectral projected gradient method (SPG) [5].
The first part of one SPG iteration is based on generating the point using (27)
with step size defined by the Barzilai–Borwein algorithm (BB) [3]. However, the
projected variant of BB is not convergent in general and the original proof of
convergence cannot be applied [12] and an additional line-search technique has to
be implemented.

In this section, we shortly review both components of SPG, i.e., the projected BB
method and additional generalized Armijo condition. The method was developed to
solve general optimization problems, and in this paper, we add our own modification
for solving QP problems using the properties of the quadratic objective function.

Let us follow [45]. BB is the nonmonotone gradient descent method for solv-
ing unconstrained convex optimization problems. These methods are based on a
construction of a sequence of solution approximations using the recursive formula

xk+1
= xk
−αk gk, k = 0, 1, . . . , (28)

with a step size αk ∈ R+ and a vector of steepest descent −gk
:= −∇ f (xk). The

most popular gradient descent method is the steepest descent method (SD, first
presented by Cauchy [9]). This method uses the step length, which minimizes the
function f (xk+1) using locally optimal step size

αk = arg min
α∈R

f (xk
−α∇ f (xk))=

〈gk, gk
〉

〈Agk, gk〉
, (29)

which leads to the monotone descent of the objective function.
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However, the step size of BB is based on a different idea. To briefly review the
relation of BB for the solution of unconstrained problems to Newton’s method for
solving a scalar nonlinear equation

g(x)= 0, g : R→ R,

let us replace the derivative g′(xk) in Newton’s method by its secant approximation
to get

xk+1
= xk
−

1
g′(xk)

g(xk)≈ xk
−

xk
− xk−1

g(xk)− g(xk−1)
g(xk). (30)

Denoting gk
= g(xk)= f ′(xk)=∇ f (xk) and

αk =
xk
− xk−1

gk − gk−1 , (31)

we can see that the secant method (30) can be considered as a gradient descent
method (28). If g(x) : Rn

→ Rn , then we cannot evaluate αk by (31), but we can
assemble the secant equation

1
αk
(xk
− xk−1)= gk

− gk−1. (32)

After denoting
sk
= xk
− xk−1, gk

− gk−1
= Ask

and solving (32) in the least-square sense

αk = 1/ arg min
β∈R

(〈sk, sk
〉β2
− 2〈Ask, sk

〉β +〈Ask, Ask
〉)

and some simplifications, we get

αk =
〈sk, sk

〉

〈Ask, sk〉
. (33)

This is the step size of BB. The proof of convergence with estimates for solving the
unconstrained QP problem (i.e., (14) with �= Rn) was presented in [13].

However, the projected variant of BB (i.e., (27) with (33)) is not convergent in
general and the original proof of convergence cannot be applied [12]. One option
how to enforce the convergence of the method is to use an additional line-search.
Let us denote the difference

gP
αk
(xk)= P�(xk

−αk∇ f (xk))− xk (34)

as a projected gradient at point xk
∈� with the step length αk > 0. To enforce the

convergence, the SPG algorithm uses an additional line-search step

xk+1
= xk
+βkdk (35)
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Figure 1. Projected gradient descent method with the additional line-search in two steps.
Left: computation of projected gradient. Right: an additional line-search.

with dk := gP
αk
(xk) and an appropriate choice of the step size βk ∈ (0, 1]. The

method with these two steps (computation of the projected gradient and an additional
line-search) is demonstrated in Figure 1.

The next lemma demonstrates the reason for using the projected gradient as a
search direction in (35): it is a descent direction.

Lemma 4. Let x ∈�, α > 0, and gP
α (x)= P�(x −α∇ f (x))− x 6= 0. Then

〈gP
α (x),∇ f (x)〉< 0. (36)

Proof. We suppose �⊂ Rn is a closed convex set; therefore [4],

〈P�(y)− P�(z), y− z〉 ≥ ‖P�(y)− P�(z)‖2 for all y, z ∈ Rn.

If we choose y = x −α∇ f (x) and z = x = P�(x), then we can estimate

−α〈gP
α (x),∇ f (x)〉 = 〈gP

α (x), (x −α∇ f (x))− x〉

≥ ‖gP
α (x)‖

2 > 0. �

The SPG algorithm uses the Grippo–Lampariello–Lucidi method (GLL) [21]
to find appropriate step size βk . This algorithm is based on a bisection method to
satisfy the so-called generalized Armijo condition

f (xk
+βkdk) < fmax+ τβk〈∇ f (xk), dk

〉. (37)

Here τ ∈ (0, 1) represents a safeguarding parameter and

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}.

The main difference between this generalized version and the original Armijo
conditions [42] is in the utilization of function values in m previous approximations
instead of using only the previous f (xk−1). This approach supplies the nonmono-
tonic behavior of BB and at the same time controls the descent. The proof of
convergence of SPG is based on satisfying the generalized Armijo condition in
every step [5]. We present SPG by Algorithm 3 and GLL by Algorithm 4.
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Given cost function f : Rn
→ R, initial approximation x0

∈�, projection onto feasible set
P�(x), safeguarding parameters 0< αmin� αmax, precision ε > 0, and initial step size
α0 > 0

k := 0
while ‖P�(xk

−∇ f (xk))− xk
‖> ε

dk
:= P�(xk

−αk∇ f (xk))− xk

Compute step size βk using GLL
xk+1
:= xk

+βkdk

sk
:= xk+1

− xk

yk
:= ∇ f (xk+1)−∇ f (xk)

if 〈sk, yk
〉 ≤ 0 then

αk+1 := αmax

else
αk+1 :=min{αmax,max{αmin, 〈sk, sk

〉/〈sk, yk
〉}}

end if
k := k+ 1

end while
Return approximation of solution xk+1

Algorithm 3. The original SPG method [6].

The main bottleneck of GLL is the computational complexity, which cannot be
estimated in general. To be more specific, it is hard to say when the bisection will
be finished.

The SPG was developed to solve more general optimization problems on convex
sets. In our problems, the cost function is a quadratic function. We can use its
particular form and its properties to simplify the GLL algorithm, obtaining an
algorithm with fewer cost function evaluations, i.e., with a smaller number of the
most time-consuming operations — multiplications by the Hessian matrix A. The
motivation came from the other well known algorithms for solving QP, like the
steepest descent method and the conjugate gradient method [26].

This modification was initially presented in [43], and it reduces the bisection in
GLL to a simple formula.

First, let us present the basic equality in QP [14]: (for all x, d ∈ Rn and b ∈ R)

f (x +βd)= f (x)+β〈Ax − b, d〉+ 1
2β

2
〈Ad, d〉. (38)

We start the simplification of SPG for solving QP problems with the most obvious
simplifications. Notice that in the Algorithm 3 we can write

yk
=∇ f (xk+1)−∇ f (xk)= (Axk+1

− b)− (Axk
− b)

= A(xk+1
− xk)= Ask .
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Given cost function f : Rn
→ R, parameter m ∈ N, approximation and direction

xk, dk
∈ Rn , parameter τ ∈ (0, 1), safeguarding parameters 0< σ1 < σ2 < 1 for σ1, σ2 ∈ R

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}
xtemp := xk

+ dk

δ := 〈∇ f (xk), dk
〉

β := 1
while f (xtemp) > fmax+ δβδ

βtemp := −
1
2β

2δ/( f (xtemp)− f (xk)−βδ)

if βtemp ∈ 〈σ1, σ2β〉 then
β := βtemp

else
β := β/2

end if
xtemp := xk

+βdk

end while
Return step size β

Algorithm 4. GLL line-search [21].

Since matrix A is SPS, we can write for any sk
∈ Rn
\Ker A

〈sk, yk
〉 = 〈sk, Ask

〉> 0,

and the condition in SPG (Algorithm 3) is always satisfied.
Moreover, the BB step length (33) is the inverse Rayleigh quotient (with sk /∈

Ker A) and it can be bounded by

1
λmax
≤ αk+1 ≤

1

λ̂min
,

where λ̂min is the smallest nonzero eigenvalue and λmax is the largest eigenvalue of
the matrix A (in our case, the Hessian matrix is SPS; see (9) and (13)). Therefore,
we can omit the safeguarding parameters αmin and αmax in Algorithm 3.

Let us take a better look into GLL line-search (Algorithm 4). The computation
of βtemp can be simplified using (38). We obtain

βtemp := −
β2δ

2( f (xk +βdk)− f (xk)−βδ)

=−
β2δ

2βδ+β2〈Adk, dk〉− 2βδ
=−
〈∇ f (xk), dk

〉

〈Adk, dk〉
=: β.

This is a simple Cauchy step size (29). Since the vector dk is the descent direction
(36) and A is SPS, our optimal β is positive. Obviously, the computation of a new
βtemp is independent of the previous value and the original GLL method solely
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Figure 2. Possible situations in a GLL condition for QP.

performs the bisection method, i.e., tries to halve the coefficient β and verify the
generalized Armijo condition. Furthermore, the value of a step size β has to be
from the interval [σ1, σ2] ⊆ [0, 1], because a smaller or larger value may cause a
departure from the feasible set.

The division of step size β by 2 now modifies only the generalized Armijo
condition. This condition can be also simplified as

0> f (xk
+βdk)− fmax− τβδ

= f (xk)+β〈∇ f (xk), dk
〉+

1
2β

2
〈Adk, dk

〉 fmax− τβ〈∇ f (xk), dk
〉

=
1
2β

2
〈Adk, dk

〉+ (1− τ)β〈∇ f (xk), dk
〉+ f (xk)− fmax,

0> 1
2β

2
+ (1− τ)β

〈∇ f (xk), dk
〉

〈Adk, dk〉
+

1
〈Adk, dk〉

( f (xk)− fmax).

Afterwards, we denote the function on the right-hand side and the constant term by

8(β) := 1
2β

2
− (1− τ)ββ − ξ, ξ :=

1
〈Adk, dk〉

( fmax− f (xk)).

We are interested in β such that the generalized Armijo condition in a form

8(β) < 0 (39)

is satisfied. The positive root of 8(β) is given by

β̂ := (1− τ)β +
√
(1− τ)2β2

+ 2ξ .

There exist only two possible situations; see Figure 2. Therefore, we can conclude
that the feasible step size in the second step of SPG could be defined as

βk ∈ [σ1,min{σ2, β̂}].

This simple interval can replace GLL; i.e., any βk from this interval satisfies the
generalized Armijo condition.

The computation of the function values can be also simplified using (38):

f (xk+1)= f (xk)+βk〈gk, dk
〉+

1
2β

2
k 〈Adk, dk

〉.
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Given cost function f : Rn
→ R, initial approximation x0

∈�, projection onto feasible set
P�(x), parameters m ∈ N, τ ∈ (0, 1), safeguarding parameters 0< σ1 < σ2 < 1 for
σ1, σ2 ∈ R, precision ε > 0, and initial step size α0 > 0

k := 0
g0
:= Ax0

− b
f 0
:=

1
2 〈g

0
− b, x0

〉

for k = 0, 1, . . .
dk
:= P�(xk

−αk gk)− xk

Compute matrix-vector multiplication Adk

Compute multiple dot-product 〈dk, {dk, Adk, gk
}〉

if
√
〈dk, dk〉 ≤ ε then stop

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}
ξ := ( fmax− f k)/〈dk, Adk

〉

β := −〈gk, dk
〉/〈dk, Adk

〉

β̂ := τβ +
√
τ 2β2+ 2ξ

Choose βk ∈ 〈σ1,min{σ2, β̂}〉

xk+1
:= xk

+βkdk

gk+1
:= gk

+βk Adk

f k+1
:= f k

+βk〈dk, gk
〉+

1
2β

2
k 〈d

k, Adk
〉

αk+1 := 〈dk, dk
〉/〈dk, Adk

〉

k := k+ 1
end for

Return approximation of solution xk

Algorithm 5. SPG for QP problems (SPG-QP).

Finally, we can simplify the computation of the BB step length using (35) to

αk+1 =
〈sk, sk

〉

〈sk, yk〉
=
〈sk, sk

〉

〈sk, Ask〉
=
〈βkdk, βkdk

〉

〈βkdk, βk Adk〉
=
〈dk, dk

〉

〈dk, Adk〉

and using the recursive formula for the computation of a new gradient:

gk+1
:= Axk+1

− b = A(xk
+βkdk)− b = gk

+βk Adk .

We use all these simplifications to form Algorithm 5. For the sake of simplicity, we
relabel the coefficient τ := 1− τ ∈ (0, 1).

Notice that the most time-consuming operation — multiplication by Hessian
matrix A — is performed only once per iteration. Moreover, all scalar products in
every iteration can be performed as a single operation. This feature decreases the
amount of global communication during the solution process.
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Figure 3. Large global vector of time series data X is distributed into nodes in a natural
time-splitting way. Moreover, each node owns the part of global vector γ which corre-
sponds to the time part of local data. Since the number of model parameters 2 is small,
each node owns its own local copy.

4. HPC implementation

We are developing and maintaining a new HPC library [44] for nonstationary time
series analysis in C++ using PETSc [2]. This library supports the manipulation of
vectors distributed on multiple nodes. These data can be used during computation
on CPUs or GPUs. Therefore, the user of our library can decide which architecture
will be used for computation.

The solution of our problem consists of two different types of parallelization.
The first type is straightforward: the problem (9) has to be solved for several values
of regularization parameters ε2 and various numbers of clusters K . Moreover,
the solution obtained by the iterative process depends on an initial approximation.
Each combination of these parameters can be used to run a completely independent
instance of Algorithm 1. The parallelization in this case is embarrassingly parallel.

A more complicated parallelization scheme has to be used in a case where one
instance of Algorithm 1 cannot be run on a single node, because of the size of the
input data and/or the size of the unknowns, especially the size of vector γ . To deal
with this problem, we naturally distribute the given long time series data X ∈ RT×n

into nodes as successive disjoint time subintervals with approximately the same
size; see Figure 3.

Decomposition in time plays a key role in the effective computation of projections
used in SPG-QP; see Algorithm 5. Using our approach, all data of one simplex are
stored in one particular node; therefore, the projection is computed on each node
fully independently. However, this decomposition in time brings new difficulties
like disruption of diagonal-block structure of A defined in analysis in form (10);
therefore, we had to implement an additional local-to-global index recomputation.
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Figure 4. The beginning part of the benchmark signal of total length T = 107. Here the
black box represents a part of the signal which is further enlarged to present the difference
between the original signal (red) and the solution, namely the denoised signal (green). This
denoised signal was obtained using optimal penalty parameter ε2

= 3000 (obtained with
the standard L-curve method [22]) with norm of absolute error 0.04.

5. Numerical experiments

To demonstrate the scalability of our QP solver, we consider a time series K -means
clustering problem. This problem is characterized by the most basic modeling
functions: the piecewise-constant functions. We are trying to model the given
data using the constant mean value in every cluster in least-square sense with the
FEM-H1 regularization penalty in time:

for all t ∈ Tk, xt = θk + εt ,

Lε(θ1, . . . , θK , 0)=

T∑
t=0

K∑
k=1

γk(t)(xt − θk)
2
+ ε2

K∑
k=1

T−1∑
t=0

(γk,t+1− γk,t)
2.

As a benchmark, we take a short signal of length 104 and repeat this short signal
to obtain long time series Xexact(t). This long signal is considered to be an exact
benchmark solution of our denoising algorithm. As an input of our problem we
consider the signal with a variable noise ε:

X (t)= Xexact+ ε, ε ∼ N(0, 10). (40)

Figure 4 presents a beginning part of the considered long signal of length T = 107.
We provide the exact parameter solution K = 2, θ1 = 1, θ2 = 2 and solve the

pure QP problem that represents the computational bottleneck of this time series
denoising procedure. In SPG-QP, we choose τ = 0.9 and m = 20 with respect to
original SPG recommendations [5]. As a stopping criterion we choose the Euclidean
norm of a projected gradient:

‖gP(x)‖ := ‖P(x −α∇ f (x))− x‖< 10−6.
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Figure 5. The mean value of L1 norm of absolute error for several values of penalty
parameter (top). The left part of the graph represents the error which arises due to
insufficient regularization, and the right part is caused by too much regularization, for
the beginning part of benchmark signal of total length T = 107. The L-curve (bottom)
presents the relation between values of the linear term (modeling error) and quadratic term
(regularization) which depends on the choice of regularization parameter.

We implement Algorithms 1 and 5 in the PETSc framework and solve this
problem for several values of penalty parameter ε; see Figure 5. Standard methods
like L-curve [22] are then used to identify the optimal values for ε. Based on these
results, we choose value ε = 3000 for the following scalability tests.

To demonstrate the scalability of our implementation, we solve the abovemen-
tioned problem of parameters T = 107, K = 2, ε2

= 3000 with θ1 = 1 and
θ2 = 2 on CSCS Piz Daint using N ∈ {1, 2, 4, 8, 16, 32, 64} nodes. For complete
specifications of this machine, see http://www.cscs.ch/computers/piz_daint/. For
GPU computation, we run one MPI process per hybrid node (Intel Xeon E5-2690
v3 with NVIDIA Tesla P100), which uses the GPU for computation. In the case of
CPU, we use pure CPU-nodes (2×Intel Xeon E5-2695, each with 18 cores) and run
36 MPI processes per node. PETSc deliberately chose not to support a multithreaded
model, but rather only a multitask model (i.e., multiple MPI processes). Since we

http://www.cscs.ch/computers/piz_daint/
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Figure 6. The strong scalability results: solution of QP problem of size 2 · 107 on Piz
Daint using different architectures — the computation time of one iteration (upper right),
relative speed-up of computation time of one iteration (upper left), the number of iterations
per second (lower left), and computation times on CPU and GPU (lower right).

are using PETSc, we are left with no choice and we do not use any CPU-thread
parallelization (e.g., OpenMP) in our implementation.

We generated a time series signal of the length 107 and denoise it on different
numbers of nodes. For statistical reasons, we decided to focus on the average
numbers of QP iterations — where averaging was performed over different numbers
of involved nodes. Please see the computation time of one iteration and number of
iterations per second provided in Figure 6. Here we can observe good scalability of
CPU for a small number of nodes. However, the problem is too small for larger
number of CPUs or GPUs; therefore, the speedup is rapidly decreasing due to MPI
communication. In all cases, the GPU computation is faster, but in this case, we
should also consider the energy consumption; see Figure 7. These values were
computed using the technique presented in [18].

Next, we would like to compare the introduced SPG-QP method for solving
the inner QP problem with other existing HPC open-source implementations. The
most straightforward choice is to use methods already implemented in PETSc,
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Figure 7. The energy consumption for one iteration of SPG-QP (left) and the power
consumption (right).

for instance the Toolkit for Advance Optimization (TAO) [40]. However, for the
combination of linear equalities and bound constraints (8), one can only use the
interior-point method. Unfortunately, the actual manual pages say that the state-of-
the-art implementation of the interior-point method in TAO is more of a placeholder
for future constrained optimization algorithms and should not yet be used for
large problems or production code. The most promising implementation of QP
solvers in PETSc is PERMON (http://permon.it4i.cz/). The results for solving QP
problems arising in linear elasticity contact problems [24] suggest good scalability
performance and efficiency in the case of massively parallel CPU computation.
However, our problem (10) has particular properties, especially the null spaces of
the Hessian matrix and the matrix of linear equality constraints being not disjoint;
see Lemma 1. Therefore, in our case the QP problem could have more then one
solution. Besides that, we have tried to solve our problem with PERMON, but the
algorithm is not able to solve problems with larger dimensions T > 104. Also the
parameters of the algorithm have to be more precisely investigated and their tuning
is nontrivial. Luckily, authors are working on generalization of the inner solver for
solving the problems with singular Hessian matrices [15] and this approach should
be implemented soon. Moreover, the GPU implementation is also future work.
Summarizing these experiences, we were not able to find any QP solver that would
be applicable to the particularly structured problem (10) of time series analysis —
when the time series data is big (i.e., when T � 104). For a complete survey of
existing HPC QP libraries, see [23].

Next, we also compare the introduced FEM-H1 with implementations of standard
denoising methods. We were not able to find any HPC open-source library which
includes the HPC implementation of the denoising methods for time series on
hybrid architectures. In our implementation, we decided to use PETSc for basic vec-
tor/matrix operations; therefore, we are directly able to switch between CPU/GPU

http://permon.it4i.cz/
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Figure 8. Dependence of the mean filtering error from the original signal-to-noise ra-
tio (SNR). Results were obtained for the signal with Gaussian noise by averaging 100
independent realizations of the noisy signal data for each of the methods.

computations. Existing denoising libraries (e.g., Dlib C++ [34]) usually implement
these operations from scratch using their own code, including basic vector/matrix
operations, or (in the best case) use only sequential external BLAS libraries and
cannot run on distributed memory architectures. Therefore, we decided to compare
the denoising efficiency only for relatively short signals using the uniform sequential
implementations in MATLAB [41]. To be more specific, we compare the following
denoising algorithms.

• Fourier uses the MATLAB implementation of fft/ifft and has one parameter s,
which defines the size of the window.

• Fourier L2 is Fourier filtering with an additional L2 regularization term. There
are two parameters: s as a size of the window and λ as a regularization
parameter.

• Fourier Sobolev is Fourier filtering with an additional Sobolev prior penalty.
This algorithm uses two parameters: size of the window s and regularization
parameter λ.

• Fourier TVR is Fourier transformation with total variation regularization. The
method leads to the system of nonlinear equations, which is typically solved
using gradient method with constant step size and monotone descent of the
solution error. The method uses three parameters: size of the window s and
regularization parameters λ, ε.

• Bayesian HMM is the Bayesian hidden Markov model method [41]. This
machine-learning algorithm uses random initial guesses; therefore, we run it
10 times and take the best solution with respect to the absolute error.
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We have generated a large set of abovementioned testing signals of length
T = 1000. For every standard deviation

σ ∈ 0.1 · {2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288},

we generated 100 signals with random noise using formula (40) and then denoised
the signal using the proposed algorithms. We set various algorithm parameters
s ∈ {5, 20, 30, 40, 60, 80}, λ ∈ {0.1, 1, 10, 50, 100}, ε ∈ {0.001, 0.01, 0.1} and
consider only the best solution with respect to the absolute norm computed as a
difference between the denoised signal and the exact signal Xexact. Similarly for
FEM-H1, we solved the problem for various values of penalty parameter.

At the end of the solution process, we computed the average absolute error
value through all random noises. The results are presented in Figure 8. Here, the
signal-to-noise ratio (SNR) was computed as the ratio of the maximum variation of
the true signal to the maximum variation of the noisy signal.

As can be seen from Figure 8, FEM-H1 methodology outperforms the standard
methods when the signal-to-noise ratio becomes smaller (i.e., when the noise is
becoming larger as compared to the true underlying signal).

6. Conclusion

In this paper, we introduced an extension of the nonparametric FEM-H1 framework
allowing it to be applied to denoising of very large time series data sets. We
investigated basic properties of the inner large-scale QP subproblem — being the
most expensive part of the FEM-H1 nonstationary time series analysis methodology.
To solve this problem with HPC, we presented a modification of the spectral
projected gradient method for QP problems. This method is based on projections,
enjoys high granularity of parallelization, and is suitable to run on GPU clusters,
such as Piz Daint at the Swiss Supercomputing Centre (CSCS). We presented
numerical results for solving a large-scale time series denoising problem.

In future work, we will compare SPG-QP with state-of-the-art parallel imple-
mentations of popular optimization methods for solving not only benchmarks, but
also solving problems in practical applications, such as the inference of causality
networks from multiscale economical data. Additionally, our code will be extended
by spatial regularization to increase the number of data analysis applications which
could be practically solved by our emerging open-source HPC library.
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