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The overall effectiveness of finite element methods may be limited by solutions
that lack smoothness on a relatively small subset of the domain. In particular,
standard least squares finite element methods applied to problems with singular
solutions may exhibit slow convergence or, in some cases, may fail to converge.
By enhancing the norm used in the least squares functional with weight functions
chosen according to a coarse-scale approximation, it is possible to recover near-
optimal convergence rates without relying on exotic finite element spaces or
specialized meshing strategies. In this paper we describe an adaptive algorithm
where appropriate weight functions are generated from a coarse-scale approxi-
mate solution. Several numerical tests, both linear and nonlinear, illustrate the
robustness of the adaptively weighted approach compared with the analogous
standard L? least squares finite element approach.

1. Introduction

In this paper we consider partial differential equations that exhibit singular behavior
at isolated locations in the domain. It is well known that problems with smooth
data may fail to provide smooth solutions as a consequence of either the domain or
the operator. To illustrate the main ideas, consider

{f%(u) =f inQ, o

u=g onoas2,

where J{ is a second-order differential operator. If f € L*(Q) and geH 32(Q) is
sufficient to guarantee that u € H?(S2), then we consider the problem to have full
regularity. We consider problems without this property to have a low regularity,
or (potentially) nonsmooth solutions. For example, Poisson’s equation is known
to have full regularity when €2 is convex, but can have nonsmooth solutions when
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d€2 has corners (or edges) with interior angle greater than 7 [20]. This lack of
smoothness is localized, however. In any subdomain excluding a neighborhood
of each corner point, the solution remains smooth. Other elliptic problems have
similar behavior as a consequence of the domain; see, e.g., [24; 25]. The operator K
can also induce a loss of smoothness when coefficients are either singular (i.e.,
— 00) or degenerate (i.e., — 0) at distinct points in 2 [5].

Invariably, numerical methods tend to suffer as a consequence of a loss of
regularity. Finite element convergence rates can be reduced, or in some cases, the
method can fail to converge to the solution of the problem. Moreover, in many
situations, the loss of optimal rates of convergence is effective globally, even though
the nonsmooth behavior of the solution is localized. This global effect from a local
component is known as the pollution effect.

A wide range of computational approaches has been developed to handle the diffi-
culties induced by such singularities and encompass nearly all aspects of the overall
numerical framework. In the finite element context, problems where singularities
cause slow convergence can often be effectively treated with graded meshes or an
adaptive mesh refinement strategy [30; 17; 1; 12]. In more extreme cases, where
standard formulations would not yield discretization convergence, specialized finite
element spaces can be employed to better match the low regularity inherent in the
problem, for example, using Nédélec or Raviart-Thomas elements as in [7; 10].

In cases where the operator kernels are known analytically, an enhanced finite
element basis can be constructed to capture singular solutions better than with
standard polynomial bases [4; 3; 2; 35; 32]. Further, there are a number of paradigms
that are designed around a weak variational formulation that seek solutions in
lower-order Sobolev spaces rather than more traditional approaches. In the context
of discontinuous Galerkin (DG) and discontinuous Petrov—Galerkin (DPG) [18]
methods, for example, continuity requirements in the trial and test spaces are relaxed
and additional degrees of freedom on the element boundaries lead to additional
jump conditions in the variational problem. Additionally, in the least squares
finite element context, for example, dual space norms induced by the operator
adjoint can replace standard L? norms to relax regularity requirements [9; 14]. The
methodology we propose here has parallels to each of these ideas.

In this work we introduce an adaptively weighted least squares finite element
approach for problems with singularities. By generalizing the standard least squares
functional with weighted norms, we may essentially redistribute the strength by
which the variational problem is enforced across the domain. The use of weighted
norms and weighted inner products is, of course, not a new idea. Using weighted
norms to generalize L? residual minimization problems allows for robust treatment
of problems with boundary singularities in weighted H 1(Q) or H(div) norms [27;
28; 15]. Though this approach is effective, it requires the explicit construction of
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a weight function localized to each singular point in the domain. Here we use a
sequence of coarse-scale approximations to generate a customized weighted norm in
which to minimize the error. This adaptive approach can reproduce the effectiveness
of the weighted norm least squares approach, but with the advantage of not requiring
the a priori knowledge of either the power or location of any singularity. By analogy,
this is similar to the advantage of adaptive mesh refinement in allowing approximate
solutions to guide the construction of an optimal mesh. In [34], this adaptive
approach is used in a weighted Galerkin formulation for problems with boundary
layers.

The organization of this paper is as follows. In the next section, we formally
introduce the idea of a weighted least squares finite element method. In Section 3
we provide details of an adaptive framework for choosing effective weight functions
from a sequence of coarse-scale approximations. In Section 4 we provide several
numerical examples that illustrate the robustness of the method.

2. Notation and background

Throughout this paper, 2 and 02 represent the domain and boundary of the PDE,
which has a nonsmooth solution at distinct locations in €. We use standard notation
for the L?(22)? norm || - || and inner product (-, -) and use || - ||p to denote the
L? norm on subdomain D C .

We consider the least squares finite element approach to problems of the form
in (1). Let LU = F be a linear, first-order reformulation of (1). For nonlinear
problems, L represents a linearization about a current approximation and the solution
procedure would involve a sequence of such linearized problems. In either case, we
thus require finding a finite element approximation to U in the function space V.
The standard L? least squares method here is to define the least squares functional

FU; F)=|LU - F|? 2)

and minimize over V" find U € ¥ such that #(U; f) < F(V; f) forall V € V.
This minimization problem is equivalent to the variational problem: find U € V'
such that

(LU,LV)=(F,LV) forallVe.

In general, we assume a least squares finite element formulation that is well posed
and robust for smooth problems. In many cases these formulations contain additional
consistent constraints. The weighting procedure here is designed to extend such
a formulation to recover optimal (or nearly optimal) behavior in the presence of
nonsmooth solutions.

For the general weighted least squares method, let w : @ — [0, 1] denote a
weight function (possibly different for each equation), and define the weighted least
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squares functional
Fu(U; F) = lw(LU - F)|. 3)

Similar to the standard approach, minimizing %, over U € V' is equivalent to finding
U € such that

(wLU, wLV)=(wF,wLV) forallVe¥.

The weighted least squares approach has been used effectively for problems with
singular behavior, essentially seeking to recover optimal finite element convergence
rates away from the singular points and rates similar to the interpolant near singular-
ities. In [27; 28; 15] the weighted least squares approach is developed using weight
functions based on the asymptotic behavior of the solutions near singularities. In
[5] a similar approach is taken for a problem with singular/degenerate coefficients.
Adopting this idea in practice has been effective for other applications (e.g., for
incompressible fluids [29; 16]) and provides a flexible and straightforward way
to modify a least squares finite element method in the presence of singularities.
This approach requires a priori knowledge of the location and an estimate of the
asymptotic behavior of each point of nonsmoothness to define an appropriate weight
function. In the following section, we develop a general adaptive approach that does
not require this a priori information, but rather builds an optimal composite weight
function based on a coarse-scale approximate solution that requires no explicit user
input.

3. The adaptively weighted least squares approach

Let Q" represent a triangulation of the domain and %" an associated finite element
space in which we will approximate the solution. Given a weight function w, the
discrete solution U" is the unique minimizer of %,,(U"; F) over V": find U" € V"
such that

F (U, FY < F (V" F)  forall VF eV, 4)

The adaptive approach is based on defining w from a current approximation to
the exact solution. For this, we define an elementwise measure of the approximation
gradient

1 h
4(1) = ——IIVU ., )
u(r)
where 4; = 4(t;) is the value on t;, the i-th element of ©". In cases where the
elements are of vastly different scales, we take u(r) = h% as a measure of the area
of the element, making %(r) a measure of error density. With quasiuniform meshes,
n(t) =1 can be used. We now define % as a piecewise constant function on Q.
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Figure 1. Two shape function options for constructing the weight function. The affine
model (left) reflects (6), and the inverse model (right) illustrates (7).

The maximum and minimum values of ¢§ are denoted by

Ymin=min 9, and Yp.x = max ;.
7, eQh T, eQh

Locations with large/small gradients imply that the weight function should be
chosen small/large (see, e.g., [27; 28; 15]). By redefining the metric under which
the error is minimized in this way, the variational problem is weakened in regions
where the solution is most difficult to approximate.

We give two options for constructing w as a piecewise constant function from 4:

(gmax - (gi (gmin

i = . 6
v Cgmax - (gmin * (gmax ( )

or
4 b minGmax
= , wherec= ———7—. (7
G +c bmax — Ymin

In each (6) and (7), w; <1 and w; = Wmin = Ymin/Ymax When G; = Gnax. Figure 1
illustrates the shape function for each case (affine and inverse) and suggests a range
of other empirical options.

In an iterative framework, the basic adaptively weighted least squares method is
described in Algorithm 1.

Wi

Start: initially set w = 1 uniformly; choose initial mesh Q"
Solve: obtain initial solution U (ﬁd by solving (4)
while (overall accuracy < goal) {
Refine mesh: (optional) uniformly or adaptively
while (nonlinear error estimate > tolerance) {
Relinearize: about U”,; (for nonlinear problems)
Construct weight: use U;’ld to define G; from (5) and w; from (6) or (7)
Resolve: using w, find U" by solving (4); set U", < U"

Algorithm 1. Adaptively weighted least squares framework.
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The framework here is quite flexible and may be thought of analogously to
the idea of adaptive mesh refinement, where a sequence of increasingly accurate
approximations is found by successively redefining the weight function and resolving
a finer-scale and higher-resolution problem. The mesh refinement step allows the
weight function to be developed through coarse-scale approximations which are
relatively computationally inexpensive. Stopping criteria for the algorithm can be
based on a single metric, like the global value of the least squares functional (3)
or by the total number of refinement levels desired. For nonlinear problems, an
indicator of how well the nonlinear error is resolved can involve a measure of the
change between iterates or a comparison between linear and nonlinear functionals.
It is also possible to simply take a fixed number of linearization steps on each mesh
level, refining the weight function at each opportunity.

In [27; 28; 15], several weighted norm least squares methods are designed
around minimizing the approximation error in weighted Sobolev spaces, where
the weight functions are chosen according to the asymptotic nature of the solution.
For example, in [27], assume U ~ r®~! represents the asymptotic behavior of
the solution to LU = F near a boundary singularity, where r is the distance to
the singular point and « € (0, 1) represents the power of the singular solution. A
simple calculation indicates that U € H*(2) for s <« € (0, 1). The a priori weight
function described in [27] requires choosing w ~ r# such that wU € H?(2), which
indicates 8 = 2 — «. With a weight function of this design, it is proved that optimal
finite element error convergence in a weighted Sobolev space is expected. This
indicates that the pollution effect is eliminated, yielding the same convergence as
the L? interpolant in a neighborhood of the singular point and optimal convergence
in a neighborhood excluding the singularity. For the adaptive approach, we mimic
this by choosing the weight construction in (7), where we see that asymptotically

1
r27a

~N — ~

VU] ’

which matches the a priori construction described in [27]. Analysis of the weighted
least squares methods in [27; 28; 15] is done in the context of a hierarchy of Sobolev
spaces weighted by powers of r, whereas here we have a set of spaces weighted by
an evolving approximate solution.

In the following section we present several numerical tests that illustrate the
utility of the adaptively weighted approach described here. The first two examples
have a known analytic solution, and the convergence, both near the singularity and
away from it, is carefully monitored to show how the adaptive approach improves
convergence. The remaining examples provide a variety of other measures to
illustrate the effectiveness and flexibility of the adaptive approach.
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Figure 2. L-shaped domain for Example 1: Q2 is partitioned into subdomains 2 and €2
to distinguish global convergence from local convergence near the singular point.

4. Numerical results

In this section we provide several numerical examples to illustrate the effectiveness
and robustness of the adaptively weighted least squares approach as described in
Algorithm 1. In the first example, we consider a div/curl first-order system induced
by the Laplace operator. In this context, regularity dictates that the standard least
squares approach using H' conforming elements is not applicable for nonconvex
domains. Weighted least squares methods can be used to recover optimal con-
vergence in a weighted H'! norm (see, e.g., [27; 28]), and the results here show
that the adaptively weighted approach achieves similar results, but does so with
no explicit a priori information provided by the user. The second example applies
the adaptively weighted approach to a singularly perturbed elliptic operator that
induces a nonsmooth solution at an interior point in the domain. Here, a mixed
least squares finite element formulation is examined and the adaptively weighted
approach increases slow convergence induced by the loss of smoothness in the
solution. In the next example, we consider a div/curl least squares formulation
of the incompressible Stokes equations in a nonconvex domain. We show how
the adaptively weighted approach ameliorates the pollution effect, yields optimal
convergence in the weighted least squares functional norm, and gives asymptotically
accurate approximations to the velocity in the neighborhood of a reentrant corner. In
addition we show that the adaptively weighted approach improves mass conservation
in the example. The next two examples illustrate the algorithm in the framework of
a nonlinear problem. In these cases we consider two different formulations of the
stationary Navier—Stokes equations applied to standard benchmark problems (the
lid-driven cavity and flow over a square obstacle).
All computational results are implemented in FreeFem++ [21].

Example 1 (Poisson on the L-shaped domain). For this example we define Q2 =
{(x,y) € (—1, D?: (x, y) ¢ [0, 1) x (—1, 0]}, the L-shaped domain pictured in
Figure 2. We also define a partition of the domain to distinguish between a neighbor-
hood of the singular point and the rest of the domain: Q= {(x, y) € Q: x>+ y? <
(0.25)?} denotes the neighborhood of the origin and Q; = Q\ ( represents the
remainder of the domain in which the solution is smooth.
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Standard LS (w = 1)

N | F72 p*=ptle, Ip*—p"la, llu*—u'llg, lu*—u|q,
1716 | 1.22  0.0166 0.0454 0.389 0.448
6898 | 121  0.0157 0.0439 0.382 0.439
27742 | 120 0.0152 0.0431 0.377 0.434
rate~ | 0 0 0 0 0
Adaptively weighted LS
N |2 pt =Pl It —pllle, lut—ulle, lu*—u'e,
1716 | 0.136  0.00140 0.000595 0.1427 0.0470
6898 | 0.0755 0.000313 0.000132 0.0855 0.0151
27742 | 0.0407 0.000104 0.0000412  0.0524 0.00441
rate~ | 0.89  1.58 1.68 0.71 1.78
optimal rate | 1 1.66 2 0.66 2

Table 1. Convergence comparison between the standard least squares approximation
(w = 1) and the adaptively weighted approach. Convergence rate is estimated from results
on the two finest levels, and the optimal rate is based on standard interpolation bounds for
the exact solution.

We consider numerically approximating a nonsmooth solution to the problem

Ap=f inQ,
{ p=p" onodQ, ®)

where we take f = 0, and the boundary data is chosen so that the exact solution
corresponds to p* =r?/3sin(20/3) and (r, 6) corresponds to a local polar coordinate
system centered at the origin. The exact solution here is in the kernel of the Laplacian
and represents the nonsmooth component of a typical Poisson problem on a domain
with a reentrant corner of interior angle 37 /2.

We introduce the flux variable u = V p and consider the expanded first-order

system
Viu=f in €2,
Vxu=0 in 2,
u—Vp=90 in €2, )
T-u=1-Vp* onoQ,
p=rp" on 92,

where 7 is the counterclockwise unit tangent vector to 2. The boundary condition
on u is found by differentiating the boundary data on p*, and though this equation is
redundant, including it generally improves the quality of approximations on coarse
meshes. In this example, boundary conditions on # and p are imposed strongly,
though there are a range of boundary condition treatments possible in the least
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s

Figure 3. Adaptively generated weight function for domain with N = 1716 elements.
Larger values are lighter (wmax = 0.507); smaller values are darker (wpi, = 0.0281).

squares context. The associated weighted least squares functional is
Fu, p; ) =llwV-u—HI>+wV xul® +w@-VpI?, (10

which we minimize over standard continuous P1 elements for each unknown,
enforcing boundary conditions on p and u strongly. We follow Algorithm 1 for the
iterative approach, and for this problem (5) takes the form

G(r) = (IVp" 12+ Va2 /2

on each element 7;. The piecewise constant weight function in each step is computed
according to (7).

In Table 1 convergence is summarized for the adaptively weighted approach as
well as the standard approach (corresponding to w = 1). Since the exact solution is
known, we report the L? error in both p and u and in both ¢ and €2;. In each case,
a quasiuniform mesh is used with N total elements, and for the adaptive approach
we take three iterations on each mesh and report the values at the third iteration.

A simple calculation reveals that p* € H I+5(Q) and u* =V pteH S(Q)? for
s < % Since u* ¢ H'(S), convergence is not guaranteed for the standard LS
approach, and it fails as expected. The adaptive approach performs better, showing
near-optimal convergence rates for the L? error for both p and u in each subdomain.
The least squares functional norm, which is essentially a weighted H! seminorm,
converges at the optimal rate. This shows that we can retain the convenience of
using H'! conforming finite element spaces, even when regularity indicates that the
solution is not in H' () locally.

To illustrate the character of the weight function generated by this approach,
Figure 3 shows the weight generated on the coarsest mesh for the results in Table 1.
Smaller values of w (in darker color) occur near the reentrant corner. For context,
the example in Table 1 produces weight with [|w” || 12() ~ 0.876, which in absolute
magnitude does not substantially differ from the scale under uniform weighting,
which gives |[1]|12q) = V3~ 1.73 for this example.
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In this example the domain had one singular point, but applying the method to a
problem with multiple singularities is analogous and straightforward.

Example 2 (a singularly perturbed elliptic problem). For this example we treat a
problem with a singularity in the interior of the domain, induced by the operator
rather than the geometry of the boundary. Consider the problem

{—v PV +r*u=f inQ,

u=0 ono, an

where Q = (—1, 1)? and r is the coordinate distance from (0, 0). When the coeffi-
cients are degenerate (i.e., go to zero) or singular (i.e., blow up) at an interior point,
as is possible here, the solution may be nonsmooth in a neighborhood of the origin.
In [5], a weighted norm least squares finite element method is developed for (11)
where the weight function is chosen by the expected regularity of the problem. For
this example, we choose § = 0.5 and o« = —0.5, which induces a solution with
asymptotic behavior of r* for A &~ 0.618034. The function f is chosen so that the
exact solution is given by

u=(1-x*)(1—-y)Hrk,

which exhibits the expected nonsmooth behavior at the origin, but satisfies homoge-
nous Dirichlet boundary conditions. For this example we recall the weighted least
squares approach in [5], but apply the adaptive approach in choosing the weight
function.

Let 0 = —r?#Vu, and define the weighted least squares functional

Fo,0; f)=w(V -0 +r*u— f)I* +llwle +rfvu)|?.

We use a uniform triangulation of €2 and approximate o in the lowest-order H (div)
conforming Raviart—-Thomas finite element space, RTO, and use conforming P1
elements for u, with boundary conditions on u enforced strongly. As in Example 1,
we define a partition of Q, where Qo= (—0.2, 0.2)? represents a fixed neighborhood
of the origin and 2; = Q\ Q is the remainder of the domain.

We follow Algorithm 1 for the iterative approach and use

G(r) = (IVul2 + Vo |H)'/?

as the elementwise gradient measure and use (7) for the construction of w from %.
Table 2 summarizes numerical results on four nested mesh levels. The standard
least squares approach shows results typical of a problem with reduced regularity.
Even though the functional norm decreases at approximately O(h), the L? error
of u shows slow convergence, even in the subdomain away from the origin. The
adaptively weighted approach yields similarly slowly decreasing errors near the
origin, but faster convergence in the rest of the domain.
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Standard LS (w = 1) Adaptively weighted LS
N | F72  u—dllag, lu—ule, | F>  lu—ullgy lu—u"lg,
512 0.591 0.0154 0.0133 0.591 0.0154 0.0133
2048 0.299  0.00817 0.00270 0.0707 0.00668 0.00704
8192 0.150  0.00406 0.00151 0.0336 0.00314 0.00175
32768 0.0756 0.00222 0.000874 0.0148 0.00183 0.000512
rate ~ | 0.99 0.87 0.79 1.18 0.78 1.77

Table 2. Numerical results for Example 2. Convergence rates are computed relative to the
two finest mesh levels.

For the formulation used for this problem, it’s important to recognize the chal-
lenge here is somewhat different from the previous example. In Example 1, the
flux variable fails to be in H'(Q) in a neighborhood of the corner point, but
we still use a finite element subspace of H! for its approximation. Thus, the
standard approach cannot be expected to converge. Here we have u € H'(Q)
and o0 € H(div) = {v € L?>(Q)?: V- v € L*(Q)}, which is consistent with the
approximating spaces, though not smooth enough to achieve optimal L? rates. The
standard approach converges, albeit slowly, and the adaptively weighted approach
serves to weaken the problem enough near the origin to enhance the convergence
away from the origin, i.e., mitigating the pollution effect.

Example 3 (Stokes flow). For this example we consider steady incompressible
flow in © C R? modeled by Stokes’ equations
—Au+Vp=0 inQ,
V-u=0 1in, (12)
u=g onoas,

where u = (u1, uy) represents fluid velocity, p is the pressure, and g gives the ve-
locity on the boundary 9€2. Figure 4 describes the domain and boundary conditions
for this example. By introducing the velocity gradient U = Vu, system (12) can be
reformulated to the first-order system

—-V-U+Vp=0 in €,
VxU=0 in €2,
U—-Vu=0 in 2,
‘ Vou=0 in Q, (13)
u=g on 9€2,
- U=1-Vg ondL,

where 7 is a unit tangent vector to 9. Including the curl constraint of U into
the system is an additional, yet consistent, constraint from the definition of U.
Additionally we note that Uj; + U»» = V - u = 0, and we directly substitute
U,y = Uy in (13), reducing the total unknowns by one.
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u= ()’(10— )’)>

Q
N
. centerline
N
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0,0

B 0
“=\xd+x)

Figure 4. Stokes flow domain and boundary conditions. Inflow and outflow boundary
values are shown; no-slip conditions apply to other walls. Conservation of mass is measured
as the velocity flux across the diagonal line along y = —x.

The standard div/curl least squares approach is to minimize the functional
F@, U, p)=V-U=VpI> +|Vx U+ U~ Vul® + |V -ul|’

over an appropriate space of functions for each unknown. When 2 is sufficiently
smooth and convex, the norm induced by % is equivalent to the H'($2) norm
of each unknown (up to a constant for p) and accurate discrete approximations
can be found using standard conforming piecewise polynomial spaces for each
unknown. For nonconvex domains, U cannot be guaranteed to remain in H ()
and the H'! equivalence of LS functional norm breaks down. This well known
loss of regularity has severe consequences for the standard div/curl LS approach—
similar to Examples 1 and 2, singularities at nonconvex corners can cause a loss of
convergence and inaccurate solutions globally. System (13) is certainly not the only
first-order formulation of (12), and the literature in least squares finite elements
reflects a wide range of choices with different advantages and disadvantages (see,
e.g., [6; 22; 13]). The div/curl approach does not require exotic finite element
spaces, it admits realistic boundary conditions for U, and it tends to yield linear
systems that can be solved robustly by multigrid methods. However, this system
exhibits a loss of regularity (see, e.g., [23; 11; 26]), which is what makes the
weighted norm approach a compelling way to deal with problems with singularities.

For the adaptively weighted least squares approach, we directly follow the
procedure defined in Algorithm 1, defining the weighted least squares functional by

Fu@, U, p)=|w(V-U—-VGp)*+|wVxU|*+ |w@ - Vu)|* + [|wV -u|?,

where w is chosen from a previous approximation according to elementwise values
of

G(r) = Va2 + VU2 4 |V "2,

and w is constructed according to (7). All unknowns are approximated with
continuous P2 elements. We follow the nested iteration approach, where the initial
approximation is computed on a coarse quasiuniform mesh, a weight function
is generated on this mesh (see Figure 5), then the mesh is refined uniformly by
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Figure 5. Adaptively generated weight function for Stokes flow example problem. Shown
in grayscale is the first adaptive weight function, based on the initial approximation on
mesh with h~1 = 16. (Larger values are lighter; smaller values are darker.)

splitting each element into four elements, and the next iterate is computed on the
refined mesh. This is then repeated for a total of four refinement levels.

Since no exact solution is available for this problem, we consider several metrics
of convergence. First is the least squares functional norm %, (u", U", p")!/2, which
includes the weight function used in finding the approximate solution. The second
metric we use is the unweighted residual norm evaluated on a subdomain that
excludes a neighborhood of the singularity:

1/2
R\ = (IV-U" =V p 13, + IV x UG, + 10" = Va5 + 11V -u)"7?,

where Q@ = {(r,0) € Q : r > 0.1}. Figure 6 shows a comparison of convergence
between the standard least squares approach and the adaptively weighted approach.
As in Examples 1 and 2, the standard approach stalls, while the adaptive approach
converges at nearly optimal rates. Strong convergence in both the functional and

Least Squares Functional Norm Residual Norm, excluding singularity neighborhood

02F 02F
standard LS

0.1F 0.19

standard LS

0.05 0.05 -

adaptively weighted LS

0.02 | 0.02 -

S\ rate= O(hz)

0.01 | 0.01 1

adaptively weighted LS

<
0.005 | 0.005 | rate = O(h?) >~
AN
0.002 Lo 1 | | 0.002 L 1 1 1
16 32 64 128 16 32 64 128
meshsize parameter, 1~ meshsize parameter, h~!

Figure 6. Convergence comparison between standard least squares solution versus the
adaptively weighted approach for increasing refinement level. The left shows the least
squares functional norm F1/2 for the standard approach and the weighted functional norm
%w/ % The right shows the L? residual norm in a subdomain excluding a neighborhood of
the singularity.
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Figure 7. Trace of u}l' along the line y = —x through 2 for increasing refinement level.

The log-log scale shows the asymptotic behavior u}l’ ~ r0-544,

residual norms shows that no significant pollution effect is present in the weighted
norm approximations.

To examine the quality of the solution near the singularity, we consider the
velocity approximates near the reentrant corner. Through asymptotic analysis, it
can be shown that u ~ r%3** near the origin for this problem. Figure 7 gives a
log-log plot of the trace of u; along the line y = —x in €2, which matches the
asymptotic rate well, giving confidence that the method is reproducing a locally
accurate solution.

As a final consideration, we measure the mass flux along the centerline of the
domain (see Figure 4) relative to the inflow. Least squares finite element methods
typically enforce conservation of mass by minimizing the least squares functional
which includes V - u = 0 as one term. Thus, the error in this term is balanced with
the other equations in the system, giving conservation of mass errors on the order
of the total discretization error. Rebalancing terms in the functional can improve
approximation accuracy in one term at the expense of the others, and it is common
to rescale the mass term by a large constant to reduce mass loss. We note that this

% of mass loss at center line
h~! Adaptive Standard LS

16 30.6% 30.6%
32 7.04% 21.3%
64 2.05% 14.2%

128  0.694% 9.17%

Table 3. Mass loss at center line of symmetry for the adaptively weighted approach versus
the standard approach. Both approaches used the same sequence of triangulations of €2
with mesh size parameter A.
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should be done with caution, since introducing a large constant will result in lower
accuracy in other terms and can degrade the conditioning of the resulting linear
system drastically. In Table 3 we show the relative mass loss in the adaptively
weighted approach versus the standard least squares approach, showing a significant
improvement and further evidence that the weighted approach eliminates pollution
effects induced by the singularity at the corner.

Example 4 (Navier—Stokes, lid-driven cavity). Here we consider the div/curl for-
mulation of steady incompressible flow in  C R? as modeled by the first-order
system

—V-U+ReUu+Vp=0 in ,
U—-Vu=90 in €2,
V-u=0 in €2,
] VxU=0 in €2, (14)
Vitr(U)) =0 in Q,
u=g on 9€2,
t-U=17-Vg onoQ,

where tr(U) is the trace of U, 7 is a unit tangent vector to 9€2, and Re is the
dimensionless Reynolds number, defined to be the ratio of inertial forces to viscous
forces. At low Re, flow is essentially laminar; as Re increases, flow becomes
more turbulent. The nonlinearity induced by the ReUu term makes (14) a natural
candidate for the adaptive weighting procedure since iteration will already be
necessary to resolve the nonlinearity. We present results for Stokes flow (Re = 0)
and turbulent flow at Re = 100 in the lid-driven cavity (LDC) domain shown in
Figure 8. Despite the nonphysical nature of the problem, lid-driven cavity flow
remains a well studied standard test problem for fluid dynamics codes. Our standard
for accuracy is the data presented in [8].

The discontinuous boundary conditions on # in LDC flow induce strong sin-
gularities in p and in some components of U which exclude them from L?($2)
in the neighborhood of the two upper corners (see [19] for details). This poses a
different, seemingly more extreme regularity issue than those induced by noncon-
vex domains. While this loss of smoothness would seem to preclude the use of
H'(Q) conforming elements, we recall that each unknown is sufficiently smooth

u=(—1,0)

u=>0 u=>0

0,00 u=0

Figure 8. Domain and boundary conditions for the lid-driven cavity test problem.
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in any subdomain excluding the upper corners and that the use of an appropriately
weighted least squares functional can remove any pollution effect due to the loss
of smoothness in the upper corners. Thus, for this problem, we approximate all
unknowns using H'(2) conforming P2 elements (piecewise continuous quadratics),
and € is discretized using a uniform triangulation. We seek a solution method that
converges robustly to the solution away from the singularities.

We implement Newton’s method within a nonlinear iteration, defining u,14 and
U,q as current approximations of # and U. The nonlinear inertial term is thus
replaced according to ReUu — Re(Uggut + Uunolg — Uglattord). When the initial
approximations are taken as Uyg =0 and uyg =0, the first Newton step corresponds
to a Stokes solve. Since the computation of the weight function is essentially free
relative to the PDE solve, we choose to compute a new weight function during each
subsequent Newton step according to Algorithm 1. We find that for Re = 100 using
a fixed number (n = 5) of Newton steps is sufficient to resolve the nonlinearity.

The procedure for each nonlinear step is to minimize the weighted functional

Fo, U, p; o, Usg) = ||lw(=V - U +Re(Ugau + Unog — Ugiattoa) + V)12
+wU = Va)|* + |wV - ul* + [wV x U|* + [wV (t(0))|1?,

where the weight function is computed according to Algorithm 1 and (7) with
elementwise gradient values

G(r) = (IVul|2 + IVU |2+ IV pII)'/2.

We first show convergence in the following unweighted residual norm on a
subdomain that excludes the singularities: 2 = {(x, y) € Q:y <0.75} and

R'2 = (|-V-U+ReUu+Vpl3, + U - Vuld,
1/2
HIV - ulld, + 1V x UG, + IV @@)IE,)".

Figure 9 shows convergence of %!/2 versus the size of each element. For Stokes
flow, the adaptively weighted and standard least squares approaches are comparable,
but for Navier—Stokes flow at Re = 100, the adaptively weighted approach shows
improved error reduction at all resolutions and a nearly optimal O(h?) rate.

To further confirm that the adaptively weighted method converges to the exact
solution we compare results with benchmark solutions for Stokes flow in [19] and
for Navier—Stokes flow in [8].

Figure 10 shows plots of the maximum value of the stream function (left) and the
value of the vorticity at (0, 0.95) at increasing resolution (see [19] for a description
of these physical quantities). As the mesh is refined we see that the adaptively
weighted approach and standard approaches both reproduce the benchmark values
asymptotically.
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Figure 9. Unweighted residual norm R1/2 versus mesh size parameter & for Stokes flow
(Re = 0, top) and Navier—Stokes (Re = 100, bottom).

Figure 11 shows components of the velocity along horizontal (left) and vertical
(right) lines through the center of the domain, compared with a benchmark solution
for Re = 100 in [8]. The adaptively weighted approach seems to reproduce the
benchmark solution well, even though the problem has severe regularity issues from
a discontinuous boundary condition.

Example 5 (Navier—Stokes, flow over a square obstacle). In this section, we analyze
the steady state flow around a square obstacle using a stress, velocity, pressure
formulation of the Navier—Stokes equations:

V-o—pu-Vu=0,
o =u(Vu+vul)—pI, (15)
V.u=0,
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Figure 10. Stream function extrema over various mesh sizes (top) and vorticity values
near corner (bottom).

where o = (gi Z;) is the total stress tensor, p is the density, u = (i1, uy) is the

velocity, u = 1 is the kinematic viscosity, p is the pressure, and [ is the 2 x 2
identity tensor. We define the Reynolds number to be Re = pvd/u where v =1 is
the characteristic velocity and d =1 is the characteristic length. Thus, p is chosen
to correspond to the Reynolds number.

Figure 12 shows the domain and boundary conditions used for this test. The
full domain is 200 units long and 100 units high with a 1 x 1 square located in the
center. Because the solution is symmetric across y = 0, a half domain is used for
computation. The north and west edges of the domain have boundary conditions
of u1 =1 and u, = 0. No-slip boundary conditions are employed on the inner
square. The symmetry line along the south edge has boundary conditions setting
the y derivatives of u; and p to be zero. The sheer stresses, o2 and o071, along with
uy are also set to zero along the south edge. The east edge is set to be consistent
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Figure 11. Horizontal (top) and vertical (bottom) velocity profiles through a horizontal
center line for Navier—Stokes flow at Re = 100 compared with a benchmark solution.

u=,0)

N =0

= (1 =

soa | [ 4= 1O p=0

— u:\(‘) d M2_O dx(ul):O

— o2=0 dy(p)=0 | 4xw2)=0
I , | o2=0 d ) =0

Figure 12. Domain and boundary conditions for Stokes flow example.

with a fully developed constant flow. It employs a zero normal velocity gradient
and zero pressure, which implies each component of ¢ will be zero as well.

Letting u,1q represent a current approximation (initially starting with uqq = 0),
the linearized, weighted least squares functional is given by

Fu(o,u, piuga) = |w(V-0 —p(Uog- Vit +u - Vitgg — thgiq - Vo)) ||
+llw(e — (Vu+Vu') + pD)|I* + |lw(V -w)|*>. (16)

For the adaptively weighted method, w is chosen from a previous approximation
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Figure 13. Weight functions on reentrant corners for the adaptive weight (left) and a priori
weight (right). White regions represent w = 1 while darker regions are closer to w = 0.

according to elementwise gradient values,

1

G0 =0n

(Va7 + Va2 +1Vp" 1)1 (17
and (6) for the weight. For comparison, we also define an a priori weighting
approach, which uses a predefined weight function with w ~ r# (Figure 13) near
each reentrant corner and w = 1 away from the neighborhood of each corner. Based
on the known regularity of (15) we may use 8 = 1.5 to accelerate convergence. For
the standard approach, w =1 over the entire domain. Figure 13 shows a comparison
of one adaptively generated weight function and the a priori weight function used.

The computational domain is discretized into N total elements, where we define
n as the number of elements on each side of the square obstacle. Figure 14 shows a
representative mesh (with n = 10) over the computational domain and detail of the
local mesh around the square. Numerical results in Figures 16 and 17 use n = 30.
Computational meshes M1-M4 use n =4, 8, 16, 32, respectively.

We choose the FE spaces based upon the structure of the equations in the system,
with ¢ € RT; (the next to lowest space of H(div) conforming Raviart-Thomas
elements), u" € P, (continuous piecewise quadratic elements), and ph € Pigc
(discontinuous piecewise linear elements).

Table 4 summarizes convergence in the functional norm for the three approaches:
standard (w = 1), adaptive, and a priori. We define a composite global mesh size
parameter & = N—1/?
estimate the rate of convergence to be O(4"), with the weighted functional norm
Fo> = (Fu(ah, ul, p")'/2, where r =log(F/ L /F L) log(h1/ ha).

where N is the number of elements in the domain. We

Figure 14. Low-resolution mesh (n = 10) over the computational domain (left) and detail
around the obstacle (right).
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l/2 6‘111]/2 mllv/2
Mesh N standard adaptive a priori

M1 720 0.5682  0.4647  0.5246
M2 2880 0.3915  0.2422  0.3117
M3 11520 0.2873  0.1211  0.1253
M4 46080 0.2196  0.0680  0.0493

rate ~ 0.39 0.83 1.35

Table 4. Functional norm convergence comparison (at Re = 20) between the standard
least squares approximation (w = 1), the adaptively weighted approach, and the a priori
weighted approach. The meshes are generated in a nested refinement pattern with the
structure shown in Figure 14. Convergence rate is estimated from data on the two finest
mesh levels.

Convergence is slow for the standard approach while each of the weighted
approaches has better convergence.

To further examine computational results, we measure the size of the down-
stream recirculation eddy and the drag coefficient for a range of Reynolds numbers,
comparing values to benchmark solutions published in [31] (noted below as the
work of Sen et al.).

We define the reattachment length to be the horizontal distance from the down-
stream edge of the square to the transition point between recirculation and flow
as shown in Figure 15. Computational results summarized in Figure 16 show that
both weighted approaches match the values in the reference solution well, while the
standard approach significantly under predicts the size of the downstream vortex size.

We define the general coefficient of drag to be

2
Cp= —/(aﬁ-i)ds (18)
Re J;

where 71 is a unit vector normal to the surface of the obstacle and 7 is a unit vector
in the horizontal direction [33]. We can decompose the general formula to this

Reattachment Length

Figure 15. The reattachment length is measured as the distance from the back edge of the
square to the transition point between recirculation and flow.
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Figure 16. Comparison of reattachment length between different weighting methods (on
n = 30) and the previous work of Sen et al. At very low Reynolds numbers all methods
can be used to good approximation. At Re > 10 only the a priori and adaptive weighting
methods continue to be a good approximations. At relatively low mesh resolution, the a
priori and adaptive weighting methods produce significantly better results than the stan-
dard method.

specific setup, relative to the full domain, as

Cp=Cpp+Cpv (19)
where
Cope 2 F, =2 / d (20)
Dp_Re p_RC E’Wp Y
is the pressure drag, F), is the force due to pressure,
C 2 F, 2 / oyur d 21
V= — = —
P Re ' Re N.S yurax
8
— Sen
= a priori
6 adaptive
standard

Drag Coefficient
N

Figure 17. Comparison of the drag coefficient between different weighting methods (on
n = 30) and the previous work of Sen et al. [31]. Although on a comparatively coarse

mesh, both the a priori and adaptive weighting methods are a good approximation to the
reference solution.
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Cp Cp Cp RL RL RL
Mesh standard adaptive apriori standard adaptive a priori
M1 0.60 0.92 0.74 - - -
M2 0.87 1.43 1.21 0.41 0.86 0.71
M3 1.14 1.78 1.86 0.64 1.15 1.20
M4 1.46 2.04 2.09 0.86 1.26 1.29

Table 5. Drag coefficient and reattachment length convergence comparison (at Re = 20)
between the standard least squares approximation (w = 1), the adaptively weighted
approach, and the a priori weighted approach. The published values for the coefficient of
drag and reattachment length are Cy &~ 2.21 and RL ~ 1.37 [31].

is the viscous drag, and F) is the force due to viscous shear. Here, N, S, E, W
represents the north, south, east, and west sides of the square obstacle, respectively.
Figure 17 compares drag coefficient values for a range of Reynolds numbers for the
three approaches, each computed on a mesh with n = 30. As before, the standard
approach underpredicts the values while each of the weighted methods produce
values close to the reference solution. As a final consideration, in Table 5 we report
convergence of drag coefficients and reattachment lengths for a fixed Reynolds
number (Re = 20) on a sequence of mesh refinements. For each method, values
seem to be approaching that of the reference solution, but the weighted methods
show better convergence to the reference values, indicating a mitigation of the
pollution effect induced by the nonsmooth solution at the reentrant corners.

5. Conclusion

The adaptively weighted least squares approach presented here represents a practical
way to treat problems with nonsmooth solutions without requiring the use of exotic
finite element spaces or special reformulations of the problem. The general idea
can be implemented naturally within an adaptive mesh refinement routine, or within
a nonlinear or implicit time stepping iteration, and the additional cost of generating
the weight function is small compared with the work required for the full PDE
solve. Numerical results demonstrate that the pollution effect due to problems with
nonsmooth solutions can be reduced or eliminated, suggesting that the adaptively
weighted approach is able to minimize the error in a more optimal norm than using
standard L? minimization principles.
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