
Communications in
Applied

Mathematics and
Computational

Science

msp

vol. 13 no. 1 2018

ON THE CONVERGENCE OF ITERATIVE
SOLVERS

FOR POLYGONAL DISCONTINUOUS GALERKIN
DISCRETIZATIONS

WILL PAZNER AND PER-OLOF PERSSON

COMM. APP. MATH. AND COMP. SCI.
Vol. 13, No. 1, 2018

dx.doi.org/10.2140/camcos.2018.13.27 msp

ON THE CONVERGENCE OF ITERATIVE SOLVERS
FOR POLYGONAL DISCONTINUOUS GALERKIN

DISCRETIZATIONS

WILL PAZNER AND PER-OLOF PERSSON

We study the convergence of iterative linear solvers for discontinuous Galerkin
discretizations of systems of hyperbolic conservation laws with polygonal mesh
elements compared with traditional triangular elements. We solve the semidiscrete
system of equations by means of an implicit time discretization method, using
iterative solvers such as the block Jacobi method and GMRES. We perform a
von Neumann analysis to analytically study the convergence of the block Jacobi
method for the two-dimensional advection equation on four classes of regular
meshes: hexagonal, square, equilateral-triangular, and right-triangular. We find
that hexagonal and square meshes give rise to smaller eigenvalues, and thus result
in faster convergence of Jacobi’s method. We perform numerical experiments with
variable velocity fields, irregular, unstructured meshes, and the Euler equations
of gas dynamics to confirm and extend these results. We additionally study
the effect of polygonal meshes on the performance of block ILU(0) and Jacobi
preconditioners for the GMRES method.

1. Introduction

In recent years, the discontinuous Galerkin (DG) method has become a popular
choice for the discretization of a wide range of partial differential equations [27; 6;
15]. This is partly because of its many attractive properties, such as the arbitrarily
high degrees of approximation, the rigorous theoretical foundation, and the ability
to use fully unstructured meshes. Also, due to its natural stabilization mechanism
based on approximate Riemann solvers, it has in particular become widely used in
fluid dynamics applications where the high-order accuracy is believed to produce
improved accuracy for many problems [32].

Most work on DG methods has been based on meshes of either simplex elements
(triangles and tetrahedra), block elements (quadrilaterals and hexahedra), or combi-
nations of these such as prism elements. This is likely because of the availability
of excellent automatic unstructured mesh generators, at least for the simplex case

MSC2010: 65F10, 65M60, 65N22.
Keywords: discontinuous Galerkin, iterative solvers, preconditioners.

27

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2018.13-1
http://dx.doi.org/10.2140/camcos.2018.13.27
http://msp.org

28 WILL PAZNER AND PER-OLOF PERSSON

[22; 28; 30], and also because of the advantages with the outer product structure
of block elements. However, it is well known that since no continuity is enforced
between the elements, it is straightforward to apply the DG methods to meshes with
elements of any shapes (even nonconforming ones). For example, vertex-centered
DG methods based on the polygonal dual meshes were studied in [5; 18]. This is a
major advantage over standard continuous FEM methods, which need significant
developments for the extension to arbitrary polygonal and polyhedral elements [19].

In the finite volume CFD community, there has recently been considerable interest
in meshes of arbitrary polygonal and polyhedral elements. In fact, the popular
vertex-centered finite volume method applied to a tetrahedral mesh can be seen as
a cell-centered method on the dual polyhedral mesh. Because of this, a number of
methods have been proposed for generation of polyhedral meshes, which in many
cases have advantages over traditional simplex meshes [21; 12]. Although it is still
unclear exactly what benefits these elements provide, they have been reported to be
both more accurate per degree of freedom and to have better convergence properties
in the numerical solvers than for a corresponding tetrahedral mesh [23; 2]. There
have also been studies showing that vertex-centered schemes are preferred over
cell-centered [10; 9], again indicating the benefits of polyhedral elements.

Inspired by the promising results for the polyhedral finite volume method, and
the fact that DG is a natural higher-order extension of these schemes, in this work
we study some of the properties of DG discretizations on polygonal meshes. To
limit the scope, we only investigate the convergence properties of iterative solvers
for the discrete systems, assuming an equal number of degrees of freedom per
unit area for all element shapes. Future work will also investigate the accuracy of
the solutions on the different meshes. We first consider the iterative block Jacobi
method applied to a pure convection problem, which in the constant-coefficient case
can be solved analytically using von Neumann analysis. Next we apply the solver
to Euler’s equations of gas dynamics for relevant model flow problems, to obtain
numerical results for the convergence of the various element shapes. We consider
regular meshes of hexagons, squares, and two different configurations of triangles,
as well as the dual of fully unstructured triangular Delaunay refinement meshes.
We also perform numerical experiments with the GMRES Krylov subspace solver
and a block ILU preconditioner. Although the results are not entirely conclusive,
most of the results indicate a clear benefit with the hexagonal and quadrilateral
elements over the triangular ones.

The paper is organized as follows. In Section 2, we describe the spatial and
the temporal discretizations, and introduce the iterative solvers. In Section 3 we
perform the von Neumann analysis of the constant-coefficient advection problem,
in 1D and for several mesh configurations in 2D. In Section 4 we show numerical
results for more general advection fields, for more general meshes, as well as for

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 29

the Euler equations and the GMRES solver. We conclude with a summary of our
findings as well as directions for future work.

2. Numerical methods

2.1. The discontinuous Galerkin formulation. We consider a system of m hyper-
bolic conservation laws given by the equation

{
∂t u+∇ · F(u)= 0, (t, x) ∈ [0, T]×�,
u(0, x)= u0(x).

(1)

In order to describe the discontinuous Galerkin spatial discretization, we divide
the spatial domain �⊆ R2 into a collection of elements, to form the triangulation
Th = {Ki }. Often the elements Ki are considered to be triangles or quadrilaterals,
but in this paper we allow the elements to be arbitrary polygons in order to study
the impact of different tessellations on the efficiency of the algorithm.

Let Vh = {vh ∈ L2(�) : vh|Ki ∈ P p(Ki)} denote the space of piecewise poly-
nomials of degree p. We let V m

h denote the space of vector-valued functions of
length m, with each component in Vh . Note that continuity is not enforced between
the elements. We derive the discontinuous Galerkin method by replacing u in (1) by
an approximate solution uh ∈ V m

h , and then multiplying equation by a test function
vh ∈ V m

h . We then integrate by parts over each element. Because the approximate
solution uh is potentially discontinuous at the boundary of an element, the flux
function F is approximated by a numerical flux function F̂, which takes as arguments
u+, u−, and n, denoting the solution on the exterior and interior of the element, and
the outward-pointing normal vector, respectively. Then, the discontinuous Galerkin
method is as follows: find uh ∈ V m

h such that, for all vh ∈ V m
h ,

∫

Ki

∂t uh · vh dx −
∫

Ki

F(uh) : ∇vh dx +
∮

∂Ki

F̂(u+, u−, n) · vh ds = 0. (2)

2.2. Advection equation. As a first example, we consider the two-dimensional
scalar advection equation

ut +∇ · (βu)= 0, (3)

for a given (constant) velocity vector β = (α, β). We solve this equation in the
domain [0, 2π]× [0, 2π], with periodic boundary conditions. The exact solution to
this equation is given by

u(t, x, y)= u0(x −αt, y−βt), (4)

where u0 is the given initial state.

30 WILL PAZNER AND PER-OLOF PERSSON

In order to define the discontinuous Galerkin method for (3), we define the
upwind flux by

F̂(u+, u−, n)=
{

u− if β · n ≥ 0,
u+ if β · n< 0.

(5)

We represent the approximate solution function uh as a vector U consisting of the
coefficients of the expansion of uh in terms of an orthogonal Legendre polynomial
modal basis of the function space V m

h . Discretizing (3) results in a linear system of
equations, which we can write as

M(∂t U)+ LU = 0, (6)

where the mass matrix M corresponds to the first term on the left-hand side of (2),
and L consists of the second two terms on the left-hand side. The mass matrix is
block-diagonal, and the matrix L is a block matrix, with blocks along the diagonal,
and off-diagonal blocks corresponding to the boundary terms from the neighboring
elements.

2.3. Temporal integration and linear solvers. We consider the solution of (6) by
means of implicit time integration schemes, the simplest of which is the standard
backward Euler scheme,

(M + k L)Un+1
= MUn. (7)

Furthermore, each stage of a higher-order scheme, such as a diagonally implicit
Runge–Kutta (DIRK) scheme [1], can be written as a similar equation. The block
sparse system can be solved efficiently by means of an iterative linear solver. In
this paper, we consider two solvers: the simple block Jacobi method, and the
preconditioned GMRES method.

2.3.1. Block Jacobi method. A popular and simple iterative solver is the block
Jacobi method, defined as follows. Each iteration of the method for solving the
linear system Ax = b is given by

x(n+1)
= D−1b+ RJ x(n), (8)

where D is the block-diagonal part of A, and RJ = I− D−1 A. This simple method
has the advantage that it is possible to analyze the convergence properties of the
method simply by examining the eigenvalues of the matrix RJ . An upper bound
of 1 for the absolute value of the eigenvalues of the matrix RJ is a necessary and
sufficient condition in order for Jacobi’s method to converge (for any choice of
initial vector x(0)). The spectral radius of RJ determines the speed of convergence.

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 31

2.3.2. Preconditioned GMRES method. Another popular and oftentimes more effi-
cient [3] method for solving large, sparse linear systems is the GMRES (generalized
minimal residual) method [26]. As with most Krylov subspace methods, the choice
of preconditioner has a great impact on the efficiency of the solver [24]. A simple
and popular choice of preconditioner is the block Jacobi preconditioner. Each
application of this preconditioner is performed by multiplying by the inverse of
the block-diagonal part of the matrix. Another, often more effective choice of
preconditioner is the block ILU(0) preconditioner [8]. This preconditioner produces
an approximate blockwise LU factorization, whose sparsity pattern is enforced to be
the same as that of the original matrix. This factorization can be performed in place,
and requires no more storage than the original matrix. Unlike the block Jacobi
method, the block ILU(0) preconditioner can be highly sensitive to the ordering of
the mesh elements [11; 4]. Because of this property, it is common to combine the
use of ILU preconditioners with certain orderings of the mesh elements designed
to increase efficiency, such as reverse Cuthill–McKee [7], minimum degree [20],
nested dissection [13], or minimum discarded fill [26].

In this paper, we focus our study on the block Jacobi method, which is simpler
and more amenable to analysis. We then perform numerical experiments using both
the block Jacobi method and the preconditioned GMRES method using ILU(0) and
block Jacobi preconditioning.

3. Jacobi analysis

We compare tessellations of the plane by four sets of generating patterns, each
consisting of one or more polygons. We consider tessellations consisting of squares,
regular hexagons, two right triangles, and two equilateral triangles. The generating
patterns considered are shown in Figure 1. Each generating pattern G j consists of
one or two elements, labeled K j and K̃j . We will refer to these generating patterns
as S, H , R, and E for squares, hexagons, right triangles, and equilateral triangles.

We are interested in computing the spectral radius of the Jacobi matrix RJ
that arises from the discontinuous Galerkin discretization on the mesh resulting

K j K j
K j

K̃ j K j
K̃ j

Figure 1. Examples of generating patterns G j shown with bolded lines. Neighboring
elements are shown unbolded. Left to right: square Cartesian grid, regular hexagons,
isosceles right triangles, and equilateral triangles.

32 WILL PAZNER AND PER-OLOF PERSSON

from tessellating the plane by each of the four generating patterns. For the sake
of comparison, we choose the elements from each of the generating patterns to
have the same area. Therefore, if the side length of the equilateral triangle is
hE = h, then the two equal sides of the isosceles right triangle have side length
h R = (

4
√

3/
√

2)hE , the hexagon has side length hH = (1/
√

6)hE , and the square
has side length hS = (

4
√

3/2)hE . Then, the global system will have the same number
of degrees of freedom regardless of choice of generating pattern.

3.1. Von Neumann analysis. First, we compare the efficiency of each of the four
types of generating patterns when used to solve the advection equation (3) with
the discontinuous Galerkin spatial discretization and implicit time integration. We
compute the spectral radius of the matrix RJ using the classical von Neumann
analysis for each of the generating patterns, in a manner similar to [16].

Let U denote the solution vector, and let its j-th component, U j , which is itself
a vector, denote the degrees of freedom in G j , the j-th generating pattern. We
remark that in the case of squares and hexagons, this corresponds exactly to the
degrees of freedom in the element K j , but in the case of the triangular generating
patterns, this corresponds to the degrees of freedom from both of the elements K j

and K̃j . In order to determine the eigenvalues of RJ , we consider the planar wave
with wavenumber (nx , ny) defined by

U j = ei(nx x j+ny y j)Û, (9)

where (x j , y j) are fixed coordinates in G j . Then, we let ` index the generating
patterns neighboring G j , and we let δ` = (δx`, δy`) = (x j − x`, y j − y`) be the
offsets satisfying G j + δ` = G`. We can then write the solution in each of the
neighboring generating patterns as

U` = ei(nx δx`+nyδy`)U j . (10)

In this case we write the semidiscrete equations (6) in the compact form

M j (∂t U j)+
∑
`

ei(nx δx`+nyδy`)L j`U j = 0, (11)

where the summation over ` ranges over all neighboring generating patterns, M j

denotes the diagonal block of M corresponding to the j-th generating pattern, and
L j` denotes the block of L in the j-th row and `-th column. We can write

L̂ j =
∑
`

ei(nx δx`+nyδy`)L j` (12)

to further simplify and obtain

M j (∂t Û)+ L̂ j Û = 0. (13)

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 33

In order to solve (13) using an implicit method, we consider the backward-Euler-type
equation

(M j + k L̂ j)Ûn+1
= M j Ûn. (14)

The Jacobi iteration matrix RJ can then be written as

R̂J j = I − D−1(M j + k L̂ j), (15)

where the matrix D = M j + k L j j consists of the j-th diagonal block of M + k L.
The eigenvalues of the matrix R̂J j control the speed of convergence of Jacobi’s
method. In the simple cases of piecewise-constant functions (p = 0), or in the case
of a one-dimensional domain, the eigenvalues can be computed explicitly. In the
more complicated case of p ≥ 1 in a two-dimensional domain, we compute the
eigenvalues numerically.

3.2. 1D example. To illustrate the von Neumann analysis, we consider the one-
dimensional scalar advection equation

ut + ux = 0 (16)

on the interval [0, 2π] with periodic boundary conditions. We divide the domain
into N subintervals K j , each of length h. Let U denote the solution vector, and
let U j denote the degrees of freedom for the j-th interval K j . For example, if
piecewise constants are used, the method is identical to the upwind finite volume
method, and each U j represents the average of the solution over the interval. If
piecewise polynomials of degree p are used, each U j is a vector of length p+ 1.

For the purposes of illustration, we choose p = 1, and let U j = (u j,1, u j,2)

represent the value of the solution at the left and right endpoints of the interval K j .
Then, the local basis on the interval K j consists of the functions

φ j,1(x)= j − x/h, φ j,2(x)= x/h− j + 1. (17)

We remark that the upwind flux in this case is always equal to the value of the
function immediately to the left of the boundary point:

[F̂(u+, u−, x)v(x)] jh
(j−1)h = u j,2v j,2− u j−1,2v j,1. (18)

The entries of the j-th block of the mass matrix M are given by

(M j)i` =

∫ jh

(j−1)h
φ j,i (x)φ j,`(x) dx . (19)

Additionally, we remark that the diagonal blocks of L consist of the volume integrals
and right boundary terms given by

(L j j)i` = φ j,i (jh)φi,`(jh)−
∫ jh

(j−1)h
φ′j,i (x)φ j,`(x) dx . (20)

34 WILL PAZNER AND PER-OLOF PERSSON

We let A denote the backward-Euler-type operator defined by

A= M + k L, (21)

and solving the equation Ax= b by means of Jacobi iterations, we define the Jacobi
matrix RJ by

RJ = I − D−1 A, (22)

where D is the matrix consisting of the diagonal blocks of A. The entries of the
diagonal blocks M j and L j j can be computed explicitly using (17) to obtain

M j =

(
1
3 h 1

6 h
1
6 h 1

3 h

)
, L j j =

(
1
2

1
2

−
1
2

1
2

)
, D j =

(
1
3 h+ 1

2 k 1
6 h+ 1

2 k
1
6 h− 1

2 k 1
3 h+ 1

2 k

)
. (23)

In order to perform the von Neumann analysis, we seek solutions of the form
U j = einh j Û , which allows us to explicitly compute the form of the matrix L̂ j .
Recalling the compact form from (13), we obtain

L̂ j =

(
1
2

1
2 − e−ihn

−
1
2

1
2

)
. (24)

Then, the Jacobi matrix R̂J j is given by

R̂J j =




0
2e−ihnk(2h+ 3k)
h2+ 4kh+ 6k2

0 −
2e−ihn(h− 3k)k
h2+ 4kh+ 6k2


 , (25)

whose eigenvalues λ1 and λ2 are given by

λ1 = 0, λ2 =
2k(3k− h)e−ihn

h2+ 4hk+ 6k2 . (26)

Therefore, each wavenumber n from 0 to 2π/h corresponds to an eigenvalue of the
Jacobi matrix RJ , and the magnitude of these eigenvalues determine the speed of
convergence of Jacobi’s method. In this case, the expression

λmax =
2k|h− 3k|

h2+ 4hk+ 6k2 (27)

determines the speed of convergence of Jacobi’s method. This expression can easily
be seen to be bounded above by 1 for all positive values of h and k, therefore indi-
cating that Jacobi’s method is guaranteed to converge, unconditionally, regardless
of spatial resolution or time step.

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 35

3.3. 2D analysis. We now turn to the analysis of the four generating patterns shown
in Figure 1. The analysis proceeds along the same lines as in the one-dimensional
example from Section 3.2. As an example, we present the case of piecewise
constants, for which it is possible to explicitly compute the eigenvalues of the
Jacobi matrix RJ . In this case the discontinuous Galerkin formulation simplifies to
the upwind finite volume method

∫

K j

∂t uh dx +
∮

∂K j

F̂(u+, u−, n) ds = 0. (28)

For the sake of concreteness, we assume without loss of generality that the velocity
vector β = (α, β) satisfies α, β ≥ 0. In order to explicitly write the upwind flux
on the meshes consisting of hexagons and equilateral triangles, we further assume
that
√

3α− β ≥ 0, and on the mesh consisting of right triangles we assume that
α−β ≥ 0. In the case of the square and hexagonal meshes, there is only one degree
of freedom per generating pattern, and we will write u j to represent the average
value of the solution over the generating pattern G j . We then consider the planar
wave with wavenumber (nx , ny) given by u j = ei(nx x j+ny y j)û. In the case of the
square mesh with side length hS = (

4
√

3/2)hE , the method can be written as

h2
S(∂t û)=−hS(α(1− e−inx hS)+β(1− e−inyhS))û. (29)

In this case, the mass matrix M is a diagonal matrix with h2
S along the diagonal,

and the diagonal entries of the matrix L are given by hS(α+ β). Therefore, the
eigenvalues of the Jacobi matrix RS

J = I − D−1(M + k L) are given by

λ(RS
J)= 1−

1
h2

S + hSk(α+β)
(h2

S + hSk(α(1− e−inx hS)+β(1− e−inyhS)))

=
k(αe−inx hS +βe−inyhS)

hS + k(α+β)
. (30)

In the case of the hexagonal mesh with side length hH = (1/
√

6)hE , the method is

3
√

3
2

h2
H (∂t û)=−hH

(
(
√

3α+β)+
(
−

√
3

2 α+
β

2

)
eihH (−(3/2)nx+(

√
3/2)ny)

+
(
−

√
3

2 α−
β

2

)
eihH (−(3/2)nx−(

√
3/2)ny)−βe−ihH

√
3ny
)
û. (31)

A similar analysis shows that the eigenvalues of the matrix RH
J are given by

λ(RH
J)=

ke−(1/2)ihH (3nx+
√

3ny)

9hH + 6αk+ 2
√

3βk
×

(√
3β(2e(1/2)ihH (3nx−

√
3ny)− ei

√
3hH ny + 1)+ 3α(1+ ei

√
3hH ny)

)
. (32)

36 WILL PAZNER AND PER-OLOF PERSSON

In the case of the two triangular meshes, there are two degrees of freedom per
generating pattern, corresponding to the elements K j and K̃j in the generating
pattern G j . We write U j = (u j,1, u j,2), where u j,1 is the average of the solution
over the element K j , and u j,2 is the average of the solution over K̃j . The planar
wave solution is then given by U j = ei(nx x j+ny y j)Û , for Û = (û1, û2). We consider
the case of a right-triangular mesh, where the two equal sides of the isosceles right
triangles have length h R = (

4
√

3/
√

2)hE . The method then reads

∂t

(
û1

û2

)
=−

2
h R

(
αû1− e−ih Rnxαû2

αû2+ (β −α)û1− e−ih Rnyβû1

)
. (33)

In the case of the mesh consisting of equilateral triangles, each with side length hE ,
the method reads

∂t

(
û1

û2

)
=
−4
√

3hE

((√3
2 α+

1
2β
)
û1+

(
e−ihE nx

(
−

√
3

2 α+
1
2β
)
−e−ihE nyβ

)
û2(

−

√
3

2 α−
1
2β
)
û1+

(√3
2 α+

1
2β
)
û2

)
. (34)

Computing the eigenvalues of the corresponding Jacobi matrices RR
J and RE

J , we
obtain

λ(RR
J)=±

2ke−(1/2)ih R(nx+ny)
√
α
√
β + (α−β)eih Rny

h R + 2αk
, (35)

λ(RE
J)=±

2k(3α+
√

3β)
√

2βeihE nx + (
√

3α−β)eihE ny

(3hE + 6αk+ 2
√

3βk)
√
(
√

3α+β)eihE (nx+ny)

. (36)

Then, (30), (32), (35), and (36) completely determine the speed of convergence
for Jacobi’s method of each of the four generating patterns considered. In the case
of a higher-order discontinuous Galerkin method with basis consisting of piecewise
polynomials of degree p > 0, we obtain a Jacobi matrix given by (15), where the
matrices R̂J j , D, M j , and L̂ j are 1

2(p+ 1)(p+ 2)× 1
2(p+ 1)(p+ 2) blocks. In

this case, we do not obtain closed-form expressions for the eigenvalues, but rather
compute them numerically.

We normalize the velocity magnitude and consider β = (cos(θ), sin(θ)). On the
square mesh, θ can range from 0 to π/2. On the hexagonal and equilateral triangle
meshes, θ ranges from 0 to π/3, and on the right-triangular mesh θ ranges from 0
to π/4. We consider a fixed spatial resolution h, and compare the efficiency of the
four patterns for three choices of temporal resolution. We first consider an “explicit”
time step, satisfying the CFL-type condition

kexp =
h
|β|
. (37)

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 37

p = 0 p = 1
k1 k2 k3 k1 k2 k3

hexagons 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
squares 1.128939 1.133989 1.136772 1.058098 1.118222 1.130101

right triangles 1.128939 1.133989 1.136772 1.084223 1.132326 1.137313
equilateral triangles 1.207328 1.215467 1.219948 1.137267 1.201638 1.214376

p = 2 p = 3

hexagons 1.000000 1.000000 1.000000 1.077183 1.070785 1.066101
squares 1.095785 1.118510 1.129314 1.000000 1.000000 1.000000

right triangles 1.111863 1.126951 1.133634 1.010482 1.005391 1.002733
equilateral triangles 1.177503 1.201918 1.213527 1.074570 1.074570 1.074570

Table 1. Ratio of logarithm of eigenvalues log λmax(Rmin
J)/ log λmax(R∗J) ranging over

angle θ and wavenumber (nx , ny), for piecewise polynomials of degree 0, 1, 2, and 3, for
varying choices of time step k. The smallest eigenvalue in each column is in bold.

As one advantage of using an implicit method is that we are not limited by an
explicit time step restriction of the form (37), we consider three implicit time steps
given by k1 = 3kexp, k2 = 2k1, and k3 = 4k1. We then maximize over a discrete
sample of θ ∈ [0, π/4] and over all wavenumbers (nx , ny), in order to compute
the maximum eigenvalue for each of the generating patterns. As the number of
iterations required to converge to a given tolerance scales like the reciprocal of
the logarithm of the spectral radius, we compare the efficiency of the generating
patterns by considering the ratio

log λmax(Rmin
J)

log λmax(R∗J)
,

where λmax(R∗J) is the largest eigenvalue of R∗J , for ∗=H, S, R, E , and λmax(Rmin
J)

is the smallest among all λmax(R∗J). This ratio corresponds to the ratio of iterations
required to converge to a given tolerance when compared with the most efficient
among the generating patterns. The results obtained for p = 0, 1, 2, 3, and k =
k1, k2, k3 for each generating pattern are shown in Table 1 and Figure 2.

p = 0 p = 1 p = 2 p = 3

k1 k2 k3

0.8

1

1.2

k1 k2 k3

0.8

1

1.2

k1 k2 k3

0.8

1

1.2

k1 k2 k3

0.8

1

1.2

Hexagons Squares Right triangles Equilateral triangles

Figure 2. Ratios of the logarithm of the largest eigenvalues for each pattern.

38 WILL PAZNER AND PER-OLOF PERSSON

We remark that for polynomials of degree 0, 1, and 2, the hexagonal mesh
resulted in the smallest eigenvalues for all choices of time step considered, and the
square mesh resulted in the second-smallest eigenvalues. For degree-3 polynomials,
the square mesh resulted in the smallest eigenvalues for all cases considered. We
notice a significant decrease in the expected performance of the hexagonal elements
in the case of p = 3, although we have noticed that the effect observed in practice
is not as significant as the theoretical results would suggest.

4. Numerical results

4.1. Advection with variable velocity field. To perform numerical experiments
extending the analysis of (3) beyond the case of a constant velocity β, we consider
a variable velocity field β(x, y). In this case, the upwind numerical flux

F̂(u+, u−, n, x, y)=
{

u−(x, y) if β(x, y) · n ≥ 0,
u+(x, y) if β(x, y) · n< 0

(38)

is evaluated pointwise. As an example, we define the velocity to be given by the
vector field β(x, y)= (2y− 1,−2x + 1) on the spatial domain �= [0, 1]× [0, 1].
This velocity field is shown in Figure 3. We let the initial conditions be given by
the Gaussian centered at (x0, y0)= (0.35, 0.5):

u0(x, y)= exp(−150((x − x0)
2
+ (y− y0)

2)). (39)

The exact solution is periodic with period π , and is given by the rotation about the
center of the domain:

u(x, y, t)= exp
(
−150

(
(x−0.5+0.15 cos 2t)2+(y−0.5−0.3 cos t sin t)2

))
. (40)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Velocity field β(x, y)= (2y− 1,−2x + 1).

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 39

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 33 57 104 21 41 77 24 41 77 21 39 75
squares 35 61 109 21 42 83 22 42 83 22 42 81

right triangles 39 68 128 26 51 100 25 51 100 25 51 100
equilateral triangles 37 67 123 25 47 92 25 47 92 24 47 91

Table 2. Iterations required for the block Jacobi iterative method to converge in the case
of a nonconstant velocity field. The smallest number of iterations in each column is in

bold.

4.1.1. Convergence of the block Jacobi method. We consider meshes of the domain
created by repeating each of the four generating patterns considered in the previous
section. As before, for fixed spatial resolution h, we choose hH , hS , h R , and hE

such that the number of degrees of freedom is the same for each mesh. We then
solve the advection equation using the backward Euler time discretization, where
the block Jacobi iterative method is used to solve the resulting linear system. The
zero vector is used as the starting vector for the block Jacobi solver. We choose
h = 0.05, and since max(x,y)|β(x, y)| =

√
2, we consider time steps of k1 = h/

√
2,

k2 = 2k1, and k3 = 4k1. The number of iterations required for the block Jacobi
method to converge to a tolerance of 10−14 are given in Table 2.

The results are similar to those from the analysis performed in Section 3.3. We
note that the hexagonal and square meshes resulted in the lowest number of Jacobi
iterations for all of the test cases considered. In contrast to the results of Section 3.3,
we do not observe a decrease in the performance of the hexagonal elements for
the case of p = 3, and instead the performance is similar among all choices of p
considered.

4.1.2. Randomly perturbed mesh. We now consider the effect of polygonal ele-
ments on irregular meshes. To this end, we consider a set of generating points
distributed evenly on a Cartesian grid with mesh size h. Then, each point is
perturbed by a random perturbation sampled uniformly from the interval [−δ, δ].
We obtain two randomized meshes by constructing the Delaunay triangulation and
Voronoi diagram resulting from this set of generating points. The Delaunay mesh
consists entirely of triangular elements, whereas the Voronoi diagram is constructed
out of arbitrary polygonal elements. Examples of the two meshes considered are
shown in Figure 4. In contrast to the regular meshes considered in the previous
examples, these two meshes do not consist of the same number of elements. The
Voronoi diagram consists of about half the number of elements as the Delaunay
triangulation. In the test case considered, the randomized polygonal mesh consists
of 410 polygonal elements, whereas the randomized triangular mesh consists of
759 triangular elements.

40 WILL PAZNER AND PER-OLOF PERSSON

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4. Randomized polygonal and triangular meshes corresponding to the same set of
generating points. Left: Delaunay triangulation. Right: Voronoi diagram.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

Voronoi diagram 27 32 38 24 33 38 24 32 36 22 31 36
Delaunay triangulation 38 48 52 33 45 48 33 46 50 33 44 48

Table 3. Iterations required for the block Jacobi iterative method to converge in the case
of irregular, randomly perturbed meshes. The smallest number of iterations in each column
is in bold.

The governing equations and setup are the same as in the previous section. We
record the number of block Jacobi iterations required to converge to a tolerance of
10−14 in Table 3. Because there is a difference in the number of mesh elements, the
resulting linear system will have a different total number of degrees of freedom.
This difference will then have an additional effect on the speed of convergence of
the block Jacobi method. We note that for polynomials of degree p = 0, 1, 2, 3
and for all choices of time step k considered, solving the system resulting from
the Voronoi diagram requires fewer block Jacobi iterations than does solving the
system resulting from the corresponding Delaunay triangulation.

4.1.3. Convergence of the GMRES method. The above analysis focused on the
block Jacobi method largely because of the simplicity of the method. In practice,
more sophisticated iterative methods are often used [26]. In this section, we consider
the solution of the linear system (7) by means of the GMRES method, using both the
block Jacobi and the block ILU(0) preconditioners. Since the computational work
increases per iteration in GMRES, we choose a restart parameter of 20 iterations
[29]. We repeat the above test case of the advection equation with variable velocity
field and record the number of GMRES iterations required to converge to a tolerance
of 10−14 using the block Jacobi preconditioner in Table 4.

We now consider the solution of the above problem using the GMRES method
with the block ILU(0) preconditioner. Because of the sensitivity of the block
ILU(0) factorization to the ordering of the mesh elements, and for the sake of a

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 41

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 31 53 92 25 42 80 28 47 86 28 49 90
squares 37 64 116 27 51 101 27 51 98 27 52 100

right triangles 40 70 134 33 61 123 31 60 117 29 59 115
equilateral triangles 39 67 124 33 58 113 32 59 113 31 57 111

Table 4. Iterations required for the GMRES iterative method with block Jacobi precondi-
tioner to converge. The smallest number of iterations in each column is in bold.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1

2

3

4

5

6

7

8

1
2

3
4

5
6

7
8

Figure 5. Illustration of the natural ordering of mesh elements. Left to right: square mesh,
hexagonal mesh, right-triangular mesh, and equilateral-triangular mesh.

fair comparison between the generating patterns, we consider the natural ordering
of mesh elements, illustrated in Figure 5. As in the case of the block Jacobi
preconditioner, we repeat the test case of the advection equation with variable
velocity field. We record the number of GMRES iterations required to converge to
the above tolerance using the block ILU(0) preconditioner in Table 5. In this case,
the square mesh resulted in the smallest number of iterations in all of the trials.
The mesh consisting of right isosceles triangles resulted in the largest number of
iterations in all trials. We further note that the number of GMRES iterations required
when using the block Jacobi preconditioner scales similarly to the number of block
Jacobi iterations required, as recorded in Table 2. We note that the block ILU(0)
preconditioner requires fewer GMRES iterations to converge, and the number
of iterations scales more favorably in k, when compared with the block Jacobi
preconditioner.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 8 11 16 10 13 20 11 15 23 10 13 22
squares 8 10 16 8 11 19 7 10 17 8 10 18

right triangles 13 19 32 10 14 28 10 15 27 11 14 28
equilateral triangles 11 15 27 10 12 22 9 12 22 9 12 22

Table 5. Iterations required for the GMRES iterative method with ILU(0) preconditioner
to converge. The smallest number of iterations in each column is in bold.

42 WILL PAZNER AND PER-OLOF PERSSON

4.2. Compressible Euler equations. The compressible Euler equations of gas dy-
namics in two dimensions (see, e.g., [14]) are given by

ut +∇ · f (u)= 0, (41)

for

u =




ρ

ρu
ρv

ρE


 , f1(u)=




ρu
ρu2
+ p

ρuv
ρHu


 , f2(u)=




ρv

ρuv
ρv2
+ p

ρHv


 , (42)

where ρ is the density, v = (u, v) is the fluid velocity, p is the pressure, and E is
the specific energy. The total enthalpy H is given by

H = E +
p
ρ
, (43)

and the pressure is determined by the equation of state

p = (γ − 1)ρ(E − 1
2v

2), (44)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure and
constant volume.

We consider the model problem of an unsteady compressible vortex in a rectan-
gular domain [32]. The domain is taken to be a 20× 15 rectangle, and the vortex is
initially centered at (x0, y0)= (5, 5). The vortex is moving with the free stream at
an angle of θ . The exact solution is given by

u = u∞

(
cos(θ)−

ε((y− y0)− vt)
2πrc

exp
(

f (x, y, t)
2

))
, (45)

u = u∞

(
sin(θ)−

ε((x − x0)− ut)
2πrc

exp
(

f (x, y, t)
2

))
, (46)

ρ = ρ∞

(
1−

ε2(γ − 1)M2
∞

8π2 exp(f (x, y, t))
)1/(γ−1)

, (47)

p = p∞

(
1−

ε2(γ − 1)M2
∞

8π2 exp(f (x, y, t))
)γ /(γ−1)

, (48)

where f (x, y, t)= (1− ((x − x0)− ut)2− ((y− y0)− vt)2)/r2
c , M∞ is the Mach

number, and u∞, ρ∞, and p∞ are the free-stream velocity, density, and pressure,
respectively. The free-stream velocity is given by (u, v)= u∞(cos(θ), sin(θ)). The
strength of the vortex is given by ε, and its size is rc. We choose the parameters to
be γ = 1.4, M∞ = 0.5, u∞ = 1, θ = arctan(1

2), ε = 0.3, and rc = 1.5.

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 43

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 32 49 78 31 50 83 50 90 158 53 97 171
squares 34 51 89 31 54 92 54 99 181 55 105 201

right triangles 37 56 97 41 64 112 58 101 189 59 113 217
equilateral triangles 37 57 95 39 62 113 54 99 179 60 114 215

Table 6. Block Jacobi iterations required per Newton solve of the compressible Euler
equations. The lowest number of iterations in each column is in bold.

In the discontinuous Galerkin discretization of the Euler equations we use the
Lax–Friedrichs numerical flux defined by

F̂(u+, u−, n)= 1
2(f (u−) · n+ f (u+) · n+α(u−− u+)), (49)

where α is the maximum absolute eigenvalue over u− and u+ of the matrix B(u, n)
defined by

B(u, n)= J f1n1+ J f2n2, (50)

where J f1 and J f2 are the Jacobian matrices of the components of the numerical
flux function f defined in (42).

We use the backward Euler time discretization, but remark that (2) results in a
nonlinear set of equations, which is solved using Newton’s method. Each iteration
of Newton’s method requires solving a linear equation of the form (7). We set h= 1,
and consider three time steps: k1= 0.03h, k2= 2k1, and k3= 4k1. We use piecewise
polynomials of degrees p= 0, 1, 2, 3. Each Newton solve requires between 3 and 8
iterations to converge within a tolerance of 5× 10−13. The tolerance used for the
linear solvers is the same as in the previous test cases.

4.2.1. The block Jacobi method. Each iteration of Newton’s method requires the
solution of a linear system of equations. We solve these systems using the block
Jacobi method. We compute the total number of Jacobi iterations required to
complete one solve of Newton’s method, and report the results in Table 6. We note
that for each choice of p and time step k, the hexagonal mesh required the lowest
number of block Jacobi iterations. As in the previous numerical experiments, we do
not see a decrease in performance for the hexagonal elements in the case of p = 3.
The square mesh resulted in the second-smallest number of iterations for most of
the cases considered, while the two configurations of triangles resulted in generally
similar numbers of iterations.

4.2.2. The GMRES method. We now repeat the above test case, using the GMRES
method to solve the resulting linear systems. We consider both the block Jacobi
and block ILU(0) preconditioners. We then compute the total number of GMRES
iterations required to complete one solve of Newton’s method. As in Section 4.1.3,

44 WILL PAZNER AND PER-OLOF PERSSON

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 55 74 106 50 92 126 61 110 153 76 141 195
squares 62 84 155 52 93 132 67 126 185 78 149 222

right triangles 63 87 162 81 106 184 96 132 242 85 159 299
equilateral triangles 66 90 167 81 108 187 72 133 197 85 161 245

Table 7. GMRES with block Jacobi preconditioner: iterations required per Newton solve
of the compressible Euler equations. The lowest number in each column is in bold.

p = 0 p = 1 p = 2 p = 3
k1 k2 k3 k1 k2 k3 k1 k2 k3 k1 k2 k3

hexagons 24 32 42 21 36 48 29 48 57 29 50 64
squares 24 28 45 21 33 40 24 41 49 27 48 60

right triangles 31 40 70 35 40 60 36 48 69 31 49 75
equilateral triangles 28 37 65 37 44 70 33 56 68 38 64 80

Table 8. GMRES with block ILU(0) preconditioner: iterations required per Newton solve
of the compressible Euler equations. The lowest number in each column is in bold.

the ordering of the mesh elements has a significant effect on the effectiveness of
the block ILU(0) approximate factorization. For this reason, we use the natural
ordering of elements, depicted in Figure 5. We present the results for the block
Jacobi preconditioner in Table 7, and for the block ILU(0) preconditioner in Table 8.
With the block Jacobi preconditioner, the hexagonal mesh required the smallest
number of iterations for all test cases considered, and the square mesh the second-
smallest. In the case of the block ILU(0) preconditioner, the square mesh required
the lowest number of iterations, with the hexagonal mesh usually requiring the
second-smallest number of iterations. As we observed in Section 4.1.3, the number
of iterations required for both the block Jacobi method and GMRES with the
block Jacobi preconditioner scales quite poorly with increasing time steps. The
number of GMRES iterations required when using the block ILU(0) preconditioner
is significantly better.

4.3. Inviscid flow problems. The following two numerical experiments extend the
above results to larger-scale, more realistic flow problems. These problems, in
contrast to the preceding test cases, are characterized by a large number of degrees
of freedom, the presence of geometric features and wall boundary conditions,
variably sized mesh elements, and shocks. As in the previous section, the equations
considered here are the compressible Euler equations. For the following two
problems, we choose the finite element function space to consist of piecewise-
constant functions (corresponding to p = 0), which results in a finite-volume-type

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 45

discretization. This choice of discretization allows for the solution of problems with
shocks, without the use of slope limiters, artificial viscosity, or other shock-capturing
techniques [17]. The Roe numerical flux is used as an approximate Riemann solver
for these problems.

4.3.1. Subsonic flow over a circular cylinder. For a first test case, we consider the
inviscid flow over a circular cylinder at Mach 0.2. The computational domain is
defined as �= R \C , where R = [−10, 30]×[−10, 20], and C is a disk of radius 1
centered at the point (5, 5). Far-field boundary conditions are enforced on ∂R, and
a no-normal-flow condition is enforced on ∂C . The free-stream velocity is taken to
be unity in the x-direction, and ρ∞ = 1.

For this test case we use four unstructured meshes, two consisting entirely of
triangles and two consisting of mixed polygons, generated using the PolyMesher
algorithm [31]. All the meshes are created using a gradient-limited element size
function that determines the initial distribution of seed points according to the
rejection method [25], such that the element edge length near the surface of the
cylinder is about one-fifth the edge length of elements away from the cylinder. For
both the triangular and polygonal meshes, we consider a coarse mesh, with 15,404
elements, and a fine mesh with 62,270 elements. Thus, the average area of each
element is the same for both the polygonal and triangular meshes. Additionally,
the number of degrees of freedom in the solution is the same, allowing for a fair
comparison. The coarse polygonal mesh and a zoom-in around the surface of the
cylinder are shown in Figure 6.

Starting from free-stream initial conditions, we integrate the equations until
t = 5× 10−3 in order to obtain a representative solution. Using this solution, we
then compute 10 time steps using a third-order A-stable DIRK method [1]. Each
stage of the DIRK method requires the solution of a nonlinear system of equations,

−10 0 10 20 30
−10

−5

0

5

10

15

20

3.5 4.0 4.5 5.0 5.5 6.0 6.5
3.5

4.0

4.5

5.0

5.5

6.0

6.5

Figure 6. Overview of the coarse mesh with 15,404 elements, with zoom-in showing
polygonal elements near the surface of the cylinder.

46 WILL PAZNER AND PER-OLOF PERSSON

ILU Jacobi ratios
1t polygonal triangular polygonal triangular ILU Jacobi

1.0× 10−1 793 932 2092 3126 0.85 0.67
2.5× 10−1 1569 1829 4405 6870 0.86 0.64
5.0× 10−1 2470 3090 7145 11859 0.80 0.60
1.0 3651 4486 11054 18880 0.81 0.59

1.0× 10−1 1443 1673 4075 6137 0.86 0.66
2.5× 10−1 2998 3344 8732 12741 0.90 0.69
5.0× 10−1 4720 5423 14084 21882 0.87 0.64
1.0 7205 8151 22814 34706 0.88 0.66

Table 9. Total GMRES iterations per 10 time steps for inviscid flow over a circular
cylinder. Top: coarse grid with 15,404 elements. Bottom: fine mesh with 95,932 elements.

1t polygonal triangular ratio polygonal triangular ratio

1.0× 10−1 2474 3159 0.78 4788 6281 0.76
2.5× 10−1 4895 6697 0.73 9609 12406 0.77
5.0× 10−1 7882 12158 0.65 15580 20946 0.74
1.0 13181 19072 0.69 26628 33934 0.78

Table 10. Total block Jacobi iterations per 10 time steps for inviscid flow over a circular
cylinder. Left: coarse grid with 15,404 elements. Right: fine mesh with 95,932 elements.

which we solve by means of Newton’s method. In each iteration of Newton’s
method, we solve the resulting linear system of the form (7) using both the block
Jacobi method and the preconditioned GMRES method. The nonlinear system is
solved to within a tolerance of 10−8, and each linear system is solved using a relative
tolerance of 10−5. For the GMRES method, we consider two preconditioners: block
Jacobi, and block ILU(0). In order to compare the iterative solver performance
differences between meshes, we compute the total number of solver iterations
required to complete all 10 time steps. The results for the GMRES method are
shown in Table 9, and for the block Jacobi solver in Table 10.

These results demonstrate a consistent trend, corroborating both the numerical
results and the analysis from the previous sections. When using the block Jacobi
solver or GMRES with block Jacobi preconditioner, the polygonal mesh results
in convergence in 60–70% of the iterations required for the triangular mesh. The
effect is smaller when using the ILU(0) preconditioner, but we do still observe a
modest reduction in the number of iterations required. When using the block Jacobi
iterative solver, we observe iteration counts very similar to when using GMRES
with block Jacobi as a preconditioner. In these cases, the polygonal mesh requires
70–80% of the iterations as the all-triangular mesh.

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 47

4.3.2. Supersonic flow over a circular cylinder. The next numerical example is
designed to investigate the performance of the iterative solvers for steady-state
problems, in the presence of shocks and h-adapted meshes. For this problem, we let
the domain be �= R \C , where R = [0, 5]× [0, 10] and, as before, C is a circle
of radius 1 centered at (5, 5). Free-stream conditions are enforced at the left, top,
and bottom boundaries, an inviscid wall condition is enforced on the boundary of
the cylinder, and an outflow condition is enforced on the right boundary. The Mach
number is set to M = 2.0, resulting in the formation of a shock upstream from the
cylinder. In order to accurately capture the shock, we refine the mesh in its vicinity.
As in the previous case, we consider a set of four meshes: two all-triangular and
two polygonal. For both the triangular and polygonal meshes, we consider coarse
and fine versions, with 31,162 and 95,932 elements, respectively. The coarse mesh
is depicted in Figure 7, left, with Mach isolines overlaid to indicate the position of
the shock. Additionally, Mach contours of the steady-state solution are shown in
Figure 7, right.

Beginning with free-stream initial conditions, the solution rapidly approaches a
steady state. We integrate in time until t = 100 in order to obtain a solution which
can be used as an initial guess for the steady-state Newton solve. Then, starting with
this solution, we set the time derivative of the solution to zero and solve the resulting
nonlinear equations using Newton’s method to find a steady-state solution. The

0 2 4
0

2

4

6

8

10

0 2 4
0

2

4

6

8

10

0.02

0.24

0.46

0.68

0.90

1.11

1.33

1.55

1.77

1.99

Figure 7. Overview of coarse polygonal mesh with 31,162 elements, showing Mach
number contours for steady-state solution. Left: coarse mesh for supersonic test problem,
showing Mach isolines for steady-state solution. Right: contours of Mach number for
steady-state solution.

48 WILL PAZNER AND PER-OLOF PERSSON

polygonal triangular ratio polygonal triangular ratio

ILU 469 640 0.73 953 1947 0.49
Jacobi 2340 6464 0.36 – – –

Table 11. Total GMRES iterations per steady-state solve for supersonic flow over a
cylinder. Left: coarse grid with 31,162 elements. Right: fine mesh with 95,932 elements.

resulting linear system that is required to be solved at each iteration can be thought
of as corresponding to (7), where formally we set k =∞. The nonlinear system
is solved to within a tolerance of 10−10, and each linear system is solved using a
relative tolerance of 10−5. Since the mass matrix in (7) acts to regularize the linear
system, the conditioning becomes worse for larger values of k, and the number
of iterations required per linear solve grows. Hence, effective preconditioners are
particularly important for the solution of such steady-state problems. For these
problems, the block Jacobi iterative solver did not converge in fewer than 10,000
iterations, and so we consider only the GMRES method, using block ILU(0) and
block Jacobi preconditioners.

We present the comparison of iteration counts for this problem in Table 11. On
the coarse meshes, the ILU(0) preconditioner required about 73% as many iterations
on the polygonal mesh when compared with the triangular mesh. This difference is
more significant when using the block Jacobi preconditioner, consistent with the
results observed in previous sections. In this case, the polygonal mesh requires
only slightly more than one third the number of iterations as the all-triangular
mesh. On the fine mesh, there are close to half a million degrees of freedom. For
a problem of this scale, we did not observe convergence in fewer than 10,000
iterations per linear solve using the block Jacobi preconditioner, and so we only
compare performance using the block ILU(0) preconditioner. In this case, the
polygonal mesh required about half as many iterations per steady-state solve when
compared with the all-triangular mesh.

5. Conclusions

In this paper we have analyzed the effect of the generating pattern of a regular
mesh on the convergence of iterative linear solvers applied to implicit discontinuous
Galerkin discretizations. We considered four generating patterns: a hexagon, a
square, two right triangles, and two equilateral triangles.

A classical von Neumann analysis applied to the constant-velocity advection
equation allowed us to compute the eigenvalues of the block Jacobi matrix, and
therefore estimate the speed of convergence of the block Jacobi method. In more
than half of the cases considered, the hexagonal generating pattern resulted in the
smallest eigenvalues, and in the remaining cases, the square generating pattern

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 49

resulted in the smallest eigenvalues.
In order to extend these results beyond the case of the constant-velocity advection

equation, we performed numerical experiments on the variable-velocity advection
equation and compressible Euler equations. In the case of the advection equation,
in all but one case the hexagonal mesh resulted in the fastest convergence, and in
the remaining case the square mesh resulted in the fastest convergence. In the case
of the Euler equations, the hexagonal mesh resulted in the fastest convergence in
all test cases.

We additionally considered two irregular meshes resulting from the random
perturbation of a set of regularly spaced generating points. We obtain a triangular
mesh by performing the Delaunay triangulation on these points, and we obtain a
polygonal mesh by constructing the Voronoi diagram dual to the Delaunay triangu-
lation. Solving the advection equation on these irregular meshes, we observed that
the block Jacobi method converged faster on the polygonal mesh in every test case.
Additionally, we performed numerical experiments examining the performance of
the GMRES iterative method when used with the ILU(0) preconditioner. We found
that in all of the test cases, the square generating pattern resulted in the lowest
number of GMRES iterations, and in all but two cases, the hexagonal generating
pattern resulted in the second-lowest number of iterations.

For a final set of numerical experiments, we performed two inviscid fluid flow
simulations on sets of coarse and fine meshes. Each mesh was either all-triangular,
or was composed of arbitrary polygons. We measured iteration counts for both
time-dependent and steady-state problems, using the block Jacobi method, and
GMRES with block ILU(0) and block Jacobi preconditioners. We found that the
polygonal meshes resulted in faster convergence of the iterative solvers, with a
larger difference being observed for the block Jacobi method and preconditioner.
This difference was more pronounced for the steady-state problem, with quite a
significant difference observed on the fine mesh using GMRES with ILU(0).

These results suggest that certain types of polygonal meshes have the advantage
of rapid convergence of iterative solvers. Future research directions involve the
study of accuracy of DG methods on polygonal and polyhedral meshes, efficient
computation of quadrature rules over arbitrary polygonal domains, and the extension
of the above results to three spatial dimensions.

Acknowledgements

This work was supported by the AFOSR Computational Mathematics program
under grant number FA9550-15-1-0010. Pazner was supported by the Department of
Defense through the National Defense Science and Engineering Graduate Fellowship
Program and by the Natural Sciences and Engineering Research Council of Canada.

50 WILL PAZNER AND PER-OLOF PERSSON

References

[1] R. Alexander, Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s, SIAM J. Numer. Anal.
14 (1977), no. 6, 1006–1021. MR Zbl

[2] G. Balafas, Polyhedral mesh generation for CFD-analysis of complex structures, master’s thesis,
Technische Universität München, 2014.

[3] F. Bassi and S. Rebay, GMRES discontinuous Galerkin solution of the compressible Navier–
Stokes equations, Discontinuous Galerkin methods (B. Cockburn, G. E. Karniadakis, and C.-W.
Shu, eds.), Lect. Notes Comput. Sci. Eng., no. 11, Springer, 2000, pp. 197–208. MR Zbl

[4] M. Benzi, W. Joubert, and G. Mateescu, Numerical experiments with parallel orderings for ILU
preconditioners, Electron. Trans. Numer. Anal. 8 (1999), 88–114. MR Zbl

[5] M. Berggren, A vertex-centered, dual discontinuous Galerkin method, J. Comput. Appl. Math.
192 (2006), no. 1, 175–181. MR Zbl

[6] B. Cockburn and C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-
dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173–261. MR Zbl

[7] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, ACM ’69:
proceedings of the 1969 24th National Conference, Association for Computing Machinery, 1969,
pp. 157–172.

[8] L. T. Diosady and D. L. Darmofal, Preconditioning methods for discontinuous Galerkin solutions
of the Navier–Stokes equations, J. Comput. Phys. 228 (2009), no. 11, 3917–3935. MR Zbl

[9] B. Diskin and J. L. Thomas, Comparison of node-centered and cell-centered unstructured
finite-volume discretizations: inviscid fluxes, AIAA J. 49 (2011), no. 4, 836–854.

[10] B. Diskin, J. L. Thomas, E. J. Nielsen, H. Nishikawa, and J. A. White, Comparison of node-
centered and cell-centered unstructured finite-volume discretizations: viscous fluxes, AIAA J.
48 (2010), no. 7, 1326–1338.

[11] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gradients, BIT
29 (1989), no. 4, 635–657. MR Zbl

[12] R. V. Garimella, J. Kim, and M. Berndt, Polyhedral mesh generation and optimization for
non-manifold domains, Proceedings of the 22nd International Meshing Roundtable (J. Sarrate
and M. Staten, eds.), Springer, 2014, pp. 313–330.

[13] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973),
345–363. MR Zbl

[14] R. Hartmann, Discontinuous Galerkin methods for compressible flows: higher order accuracy,
error estimation and adaptivity, 34th CFD: higher order discretization methods (H. Deconinck
and M. Ricchiuto, eds.), Von Karman Institute Lecture Series, no. 2006-01, Von Karman Institute,
2006.

[15] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis,
and applications, Texts in Applied Mathematics, no. 54, Springer, 2008. MR Zbl

[16] E. J. Kubatko, C. Dawson, and J. J. Westerink, Time step restrictions for Runge–Kutta discontin-
uous Galerkin methods on triangular grids, J. Comput. Phys. 227 (2008), no. 23, 9697–9710.
MR Zbl

[17] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University, 2002.
MR Zbl

[18] H. Luo, J. D. Baum, and R. Löhner, A discontinuous Galerkin method based on a Taylor basis
for the compressible flows on arbitrary grids, J. Comput. Phys. 227 (2008), no. 20, 8875–8893.
MR Zbl

http://dx.doi.org/10.1137/0714068
http://msp.org/idx/mr/0458890
http://msp.org/idx/zbl/0374.65038
http://www.cie.bgu.tum.de/publications/masterthesis/2014_Balafas.pdf
http://dx.doi.org/10.1007/978-3-642-59721-3_14
http://dx.doi.org/10.1007/978-3-642-59721-3_14
http://msp.org/idx/mr/1842174
http://msp.org/idx/zbl/0989.76040
https://eudml.org/doc/119978
https://eudml.org/doc/119978
http://msp.org/idx/mr/1694189
http://msp.org/idx/zbl/0923.65012
http://dx.doi.org/10.1016/j.cam.2005.04.057
http://msp.org/idx/mr/2227001
http://msp.org/idx/zbl/1091.65098
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1023/A:1012873910884
http://msp.org/idx/mr/1873283
http://msp.org/idx/zbl/1065.76135
http://dx.doi.org/10.1145/800195.805928
http://dx.doi.org/10.1016/j.jcp.2009.02.035
http://dx.doi.org/10.1016/j.jcp.2009.02.035
http://msp.org/idx/mr/2524507
http://msp.org/idx/zbl/1185.76812
http://dx.doi.org/10.2514/1.J050897
http://dx.doi.org/10.2514/1.J050897
http://dx.doi.org/10.2514/1.44940
http://dx.doi.org/10.2514/1.44940
http://dx.doi.org/10.1007/BF01932738
http://msp.org/idx/mr/1038122
http://msp.org/idx/zbl/0687.65037
http://dx.doi.org/10.1007/978-3-319-02335-9_18
http://dx.doi.org/10.1007/978-3-319-02335-9_18
http://dx.doi.org/10.1137/0710032
http://msp.org/idx/mr/0388756
http://msp.org/idx/zbl/0259.65087
http://elib.dlr.de/44203/
http://elib.dlr.de/44203/
http://dx.doi.org/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1007/978-0-387-72067-8
http://msp.org/idx/mr/2372235
http://msp.org/idx/zbl/1134.65068
http://dx.doi.org/10.1016/j.jcp.2008.07.026
http://dx.doi.org/10.1016/j.jcp.2008.07.026
http://msp.org/idx/mr/2469028
http://msp.org/idx/zbl/1154.65071
http://dx.doi.org/10.1017/CBO9780511791253
http://msp.org/idx/mr/1925043
http://msp.org/idx/zbl/1010.65040
http://dx.doi.org/10.1016/j.jcp.2008.06.035
http://dx.doi.org/10.1016/j.jcp.2008.06.035
http://msp.org/idx/mr/2459540
http://msp.org/idx/zbl/05355908

CONVERGENCE OF ITERATIVE SOLVERS FOR POLYGONAL DG DISCRETIZATIONS 51

[19] G. Manzini, A. Russo, and N. Sukumar, New perspectives on polygonal and polyhedral finite
element methods, Math. Models Methods Appl. Sci. 24 (2014), no. 8, 1665–1699. MR Zbl

[20] H. M. Markowitz, The elimination form of the inverse and its application to linear programming,
Management Sci. 3 (1957), 255–269. MR Zbl

[21] W. Oaks and S. Paoletti, Polyhedral mesh generation, 9th International Meshing Roundtable,
Sandia National Laboratories, 2000, pp. 57–67.

[22] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, Adaptive remeshing for compressible
flow computations, J. Comput. Phys. 72 (1987), no. 2, 449–466. Zbl

[23] M. Peric, Flow simulation using control volumes of arbitrary polyhedral shape, ERCOFTAC
Bull. 62 (2004), 25–29.

[24] P.-O. Persson and J. Peraire, Newton–GMRES preconditioning for discontinuous Galerkin
discretizations of the Navier–Stokes equations, SIAM J. Sci. Comput. 30 (2008), no. 6, 2709–
2733. MR Zbl

[25] P.-O. Persson, Mesh generation for implicit geometries, Ph.D. thesis, Massachusetts Institute of
Technology, 2005. MR

[26] , Scalable parallel Newton–Krylov solvers for discontinuous Galerkin discretizations,
47th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics,
2009.

[27] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, technical
report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[28] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation, J.
Algorithms 18 (1995), no. 3, 548–585. MR Zbl

[29] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., Society for Industrial and Applied
Mathematics, 2003. MR Zbl

[30] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Comput. Geom.
22 (2002), no. 1–3, 21–74. MR Zbl

[31] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, PolyMesher: a general-purpose
mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim. 45 (2012),
no. 3, 309–328. MR Zbl

[32] Z. J. Wang, K. Fidkowski, R. Abgrall, and et al., High-order CFD methods: current status and
perspective, Internat. J. Numer. Methods Fluids 72 (2013), no. 8, 811–845. MR

Received August 8, 2016. Revised September 25, 2017.

WILL PAZNER: will_pazner@brown.edu
Division of Applied Mathematics, Brown University, Providence, RI, United States

PER-OLOF PERSSON: persson@berkeley.edu
Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1142/S0218202514400065
http://dx.doi.org/10.1142/S0218202514400065
http://msp.org/idx/mr/3200245
http://msp.org/idx/zbl/1291.65322
http://dx.doi.org/10.1287/mnsc.3.3.255
http://msp.org/idx/mr/0112244
http://msp.org/idx/zbl/0995.90592
http://www.imr.sandia.gov/papers/abstracts/Oa171.html
http://dx.doi.org/10.1016/0021-9991(87)90093-3
http://dx.doi.org/10.1016/0021-9991(87)90093-3
http://msp.org/idx/zbl/0631.76085
http://dx.doi.org/10.1137/070692108
http://dx.doi.org/10.1137/070692108
http://msp.org/idx/mr/2452363
http://msp.org/idx/zbl/1362.76052
https://search.proquest.com/docview/305359338
http://msp.org/idx/mr/2717235
http://dx.doi.org/10.2514/6.2009-606
https://www.osti.gov/scitech/biblio/4491151
http://dx.doi.org/10.1006/jagm.1995.1021
http://msp.org/idx/mr/1334364
http://msp.org/idx/zbl/0828.68122
http://dx.doi.org/10.1137/1.9780898718003
http://msp.org/idx/mr/1990645
http://msp.org/idx/zbl/1031.65046
http://dx.doi.org/10.1016/S0925-7721(01)00047-5
http://msp.org/idx/mr/1893652
http://msp.org/idx/zbl/1016.68139
http://dx.doi.org/10.1007/s00158-011-0706-z
http://dx.doi.org/10.1007/s00158-011-0706-z
http://msp.org/idx/mr/2897115
http://msp.org/idx/zbl/1274.74401
http://dx.doi.org/10.1002/fld.3767
http://dx.doi.org/10.1002/fld.3767
http://msp.org/idx/mr/3069929
mailto:will_pazner@brown.edu
mailto:persson@berkeley.edu
http://msp.org

Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2018 is US $100/year for the electronic version, and $150/year (+$15, if shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to
MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.org/camcos
http://msp.org/
http://msp.org/

Communications in Applied Mathematics
and Computational Science

vol. 13 no. 1 2018

1Adaptively weighted least squares finite element methods for partial
differential equations with singularities

Brian Hayhurst, Mason Keller, Chris Rai, Xidian Sun and
Chad R. Westphal

27On the convergence of iterative solvers for polygonal discontinuous Galerkin
discretizations

Will Pazner and Per-Olof Persson

53Theoretically optimal inexact spectral deferred correction methods
Martin Weiser and Sunayana Ghosh

87A third order finite volume WENO scheme for Maxwell’s equations on
tetrahedral meshes

Marina Kotovshchikova, Dmitry K. Firsov and Shiu Hong

Lui

107On a scalable nonparametric denoising of time series signals
Lukáš Pospíšil, Patrick Gagliardini, William Sawyer and
Illia Horenko

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.13,
no.1

2018

	1. Introduction
	2. Numerical methods
	2.1. The discontinuous Galerkin formulation
	2.2. Advection equation
	2.3. Temporal integration and linear solvers
	2.3.1. Block Jacobi method
	2.3.2. Preconditioned GMRES method

	3. Jacobi analysis
	3.1. Von Neumann analysis
	3.2. 1D example
	3.3. 2D analysis

	4. Numerical results
	4.1. Advection with variable velocity field
	4.1.1. Convergence of the block Jacobi method
	4.1.2. Randomly perturbed mesh
	4.1.3. Convergence of the GMRES method

	4.2. Compressible Euler equations
	4.2.1. The block Jacobi method
	4.2.2. The GMRES method

	4.3. Inviscid flow problems
	4.3.1. Subsonic flow over a circular cylinder
	4.3.2. Supersonic flow over a circular cylinder

	5. Conclusions
	Acknowledgements
	References
	
	

