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THEORETICALLY OPTIMAL INEXACT
SPECTRAL DEFERRED CORRECTION METHODS

MARTIN WEISER AND SUNAYANA GHOSH

In several initial value problems with particularly expensive right-hand side
evaluation or implicit step computation, there is a tradeoff between accuracy and
computational effort. We consider inexact spectral deferred correction (SDC)
methods for solving such initial value problems. SDC methods are interpreted
as fixed-point iterations and, due to their corrective iterative nature, allow one
to exploit the accuracy-work tradeoff for a reduction of the total computational
effort. First we derive error models bounding the total error in terms of the
evaluation errors. Then we define work models describing the computational
effort in terms of the evaluation accuracy. Combining both, a theoretically optimal
local tolerance selection is worked out by minimizing the total work subject to
achieving the requested tolerance. The properties of optimal local tolerances
and the predicted efficiency gain compared to simpler heuristics, and reasonable
practical performance, are illustrated with simple numerical examples.

1. Introduction

The numerical solution of initial value problems of the form

y′(t)= f (y(t)), y(0)= y0,

can involve a significant amount of computation, where the most effort is usually
spent either on evaluating complex right-hand sides in nonstiff problems or on solv-
ing large linear equation systems in stiff systems. Often, there is an accuracy-effort
tradeoff, such that inexact results can be obtained much faster than exact results.
Examples for the first type of problem are molecular and stellar dynamics, where
the exact evaluation of long-range interactions is O(N 2) but can be approximated
by clustering or fast multipole methods in O(N log N ) or O(N ) time [4; 6], or cycle
jump techniques for highly oscillatory problems of wear or fatigue [10; 13]. Typical
examples of the second type of problem are reaction-diffusion equations, where
implicit time-stepping schemes rely on iterative solvers [24; 28],

A preprint of this paper appeared as Zuse Institute Berlin report 16-52.
MSC2010: 65L05, 65L20, 65L70, 65M70.
Keywords: spectral deferred corrections, initial value problems, error propagation, adaptive control of

tolerances, inexact, work models, accuracy models.

53

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2018.13-1
http://dx.doi.org/10.2140/camcos.2018.13.53
http://msp.org


54 MARTIN WEISER AND SUNAYANA GHOSH

While the possibilities to exploit the tradeoff between accuracy and computational
effort for improved simulation performance are rather limited in usual time-stepping
schemes such as explicit or implicit Runge–Kutta, extrapolation, or multistep
schemes, iterative methods for solving implicit Runge–Kutta equations [3; 12; 26]
can in principle correct inexact evaluations of intermediate quantities in subsequent
iterations. Spectral deferred correction (SDC) methods [11] as iterative solvers for
collocation systems have a particularly simple structure and are therefore considered
here. Inexact implicit SDC methods with errors due to truncation of multigrid
iterations have been investigated numerically in [20; 24], where a small fixed
number of V-cycles has been found to be sufficient for convergence. Mixed-precision
arithmetic for SDC has been proposed in [15] and found to save some computational
effort. In this paper, we will analyze the error propagation through the SDC iteration
and, following the approach of Alfeld [1] for inexact fixed-point iterations, derive
an a priori selection of local tolerances for right-hand side evaluation and substep
computation that leads to theoretically optimal efficiency of the overall integration
scheme. Usually, explicit Runge–Kutta methods are hard to beat in efficiency by
more complex methods such as SDC, but the results derived here indicate that this
might be possible if inexactness can be exploited.

The remainder of the paper is organized as follows. Section 2 states the precise
problem setting before briefly recalling spectral deferred correction methods and
discussing the impact of inexact evaluations. The main Section 3 introduces error
models for quantifying the error propagation, work models for quantifying the
computational cost, and the optimization of accuracy per work to derive an optimal
selection of tolerances. Effectiveness and efficiency of the resulting methods are
illustrated in Section 4 with some numerical examples.

2. Inexactness in spectral deferred correction methods

The autonomous initial value problem (IVP) to be solved is given by{
y′(t)= f (y(t)), t ∈ [0, T ],
y(0)= y0,

(2-1)

where the right-hand side f is a mapping f : Y → Y on a Banach space Y , and
t ∈ [0, T ] denotes the time variable. It is assumed that f is continuous and locally
Lipschitz continuous. Under these assumptions, a unique solution y(t) exists; see,
e.g., [9; 25]. An approximate numerical solution can be determined with time-
stepping schemes. We consider single-step methods, where the time interval [0, T ]
is subdivided into individual steps and the connection between the subintervals
consists of transferring the value of y at the end point of one subinterval as the
initial value for the following subinterval. Without loss of generality, we therefore
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restrict the presentation to a single time step [0, T ]. Also, without loss of generality,
we assume (2-1) to be autonomous.

2A. Collocation conditions. Given the IVP (2-1), a collocation method approxi-
mates the exact solution y over the interval [0, T ] by a polynomial yc satisfying
(2-1) at N discrete collocation points ti , i = 1, . . . , N , within the interval [0, T ]:{

y′c(ti )= f (yc(ti )), i = 1, . . . , N ,
yc(0)= y0.

(2-2)

For simplicity of indexing, we define t0 = 0. Popular choices for collocation points
are equidistant nodes or Gauss–Legendre, Lobatto, or Radau points. For a detailed
discussion of collocation methods, we refer to [9; 17].

The IVP (2-1) can be written equivalently as the Picard integral equation

y(t)= y0+

∫ t

0
f (y(τ )) dτ,

which leads to corresponding Picard collocation conditions, as described in [18]:{
yc(ti )= yc(ti−1)+

∑N
k=1 Sik f (yc(tk)), i = 1, . . . , N ,

yc(0)= y0,
(2-3)

where the entries of the spectral quadrature matrix S ∈RN×N are defined in terms of
the Lagrange polynomials Lk ∈PN−1[R] satisfying Lk(ti )= δik for i = 1, . . . , N as

Sik =

∫ ti

τ=ti−1

Lk(τ ) dτ, i, k = 1, . . . , N .

2B. Spectral deferred correction method. The direct solution of the collocation
system (2-2) or (2-3) can be quite involved if N is larger than one or two. As
the time discretization error of the collocation method is present anyway, an exact
solution of (2-2) is not required. Thus, iterative methods form an interesting class
of solvers; see, e.g., [7; 8; 19]. Here we consider spectral deferred correction (SDC)
methods. They were introduced by Dutt, Greengard, and Rokhlin [11] for fixed
iteration number as time-stepping schemes in their own right, and only later on have
been interpreted as fixed-point iterations for collocation systems [18; 27]. In SDC,
the Picard collocation conditions (2-3) are solved iteratively by a defect-correction
procedure. Using the Picard formulation has the advantage of faster convergence
for nonstiff problems [27].

Approximate solutions are polynomials y[ j] ∈ PN [Y ], identified with vectors
in Y N+1 by interpolation of their values y[ j]i := y[ j](ti ) at the N + 1 grid points ti .
Given an approximate solution y[ j], the error yc−y[ j] satisfies the Picard collocation
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conditions

yc(ti )− y[ j]i = (yc− y[ j])(ti−1)+

N∑
k=1

Sik( f (yc(tk))− y[ j]
′
(tk))

= (yc− y[ j])(ti−1)+

N∑
k=1

Sik( f (yc(tk))− f (y[ j]k ))

+

N∑
k=1

Sik( f (y[ j]k )− y[ j]
′
(tk)) (2-4)

for i = 1, . . . , N with initial condition (yc− y[ j])(0)= 0. Defining the correction
d [ j] = yc− y[ j] yields

d [ j](ti )= d [ j](ti−1)+

N∑
k=1

Sik( f (y[ j](tk)+ d [ j](tk))− f (y[ j]k ))

+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1),

which is not easier to solve than the original collocation problem (2-2) above.
Different simple approximations of the middle integration term involving d [ j],
however, at least provide corrections that can be applied repeatedly to form a
convergent stationary iteration.

Explicit SDC. Approximating the spectral integration term by the left-looking
rectangular rule corresponding to the explicit Euler time-stepping scheme yields
the explicit SDC correction

δ
[ j]
i = δ

[ j]
i−1+ (ti − ti−1)( f (y[ j]i−1+ δ

[ j]
i−1)− f (y[ j]i−1))

+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1), i = 1, . . . , N , (2-5)

suitable for nonstiff problems. The initial value is δ[ j]0 = 0. Now, the interpolant δ[ j]

is a polynomial approximation of the exact error function d [ j]. An improved
approximation y[ j+1] is then obtained as y[ j+1]

= y[ j]+ δ[ j]. Note that the value
f (y[ j]i−1+ δ

[ j]
i−1) appears again as f (y[ j+1]

i−1 ) in the next iteration, such that for each
iteration only N right-hand side evaluations are required.

The expensive part in the explicit SDC method is usually the evaluation of the
right-hand sides f (y[c]i ). As mentioned above, an exact evaluation of the right-hand
side f (y[ j]i ) is not necessary, because SDC iteration errors are already present
due to the replacement of the spectral quadrature term by the rectangular rule.
If approximate values f [ j]i ≈ f (y[ j]i ) can be computed faster, we can exploit the
allowed inaccuracy for a reduction of the total computation effort.
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It is clear that the evaluation error f [ j]i − f (y[ j]i ) must be controlled in an
appropriate way such as not to destroy convergence of the fixed-point scheme. We
assume that for evaluation of f (y[ j]i ) we can prescribe a local absolute tolerance ε[ j]i
such that the computed value f [ j]i satisfies ‖ f [ j]i − f (y[ j]i )‖Y ≤ ε

[ j]
i .

As a consequence, the explicit SDC correction δ̂[ j] for inexact right-hand sides
f [ j]i is obtained as

δ̂
[ j]
i = δ̂

[ j]
i−1+ (ti − ti−1)( f [ j+1]

i−1 − f [ j]i−1)+

N∑
k=1

Sik f [ j]k − (y
[ j]
i − y[ j]i−1), (2-6)

for j = 0, . . . , J − 1 and i = 1, . . . , N with δ̂[ j]0 = 0.

Implicit SDC. Assuming f is differentiable, linearizing f around y[ j]i and using
the right-looking rectangular rule corresponds to the linearly implicit Euler scheme
and leads to the implicit SDC correction

δ
[ j]
i = δ

[ j]
i−1+ (ti − ti−1) f ′(y[ j]i )δ

[ j]
i +

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1),

i = 1, . . . , N , (2-7)

suitable for stiff problems. As in the explicit case, N right-hand side evaluations
are required, but additionally N evaluations of f ′ and N linear system solves with
the matrices I − (ti − ti−1) f ′(y[ j]i ).

Solving these systems, usually by an iterative solver, is often the expensive
operation in the implicit SDC method. Early termination of the linear solver can
reduce the computational effort significantly, but incurs a truncation error that
must be controlled appropriately in terms of local tolerances ε[ j]i . Assuming the
residuals r [ j]i are bounded by ‖r [ j]i ‖Y ≤ ε

j
i , the implicit SDC correction δ̂[ j] for

inexact system solves is obtained as

(I − (ti − ti−1) f ′(y[ j]i ))δ̂
[ j]
i = δ̂

[ j]
i−1+

N∑
k=1

Sik f (y[ j]k )− (y[ j]i − y[ j]i−1)+ r [ j]i ,

i = 1, . . . , N , (2-8)

for j = 0, . . . , J − 1 and i = 1, . . . , N with δ̂[ j]0 = 0.
In both cases, the update y[ j] 7→ y[ j+1]

:= y[ j] + δ̂[ j] defines a parametrized
fixed-point operator

F̂ : Y N+1
×RN×J+1

+
×N→ Y N+1, F̂(y[ j]; ε, j) := y[ j+1],

with the exact limit case F(y) := F̂(y; 0, 0).
For convergence analysis, we equip Y N+1 with a norm

‖y‖ := ‖[‖y0‖Y , . . . , ‖yN‖Y ]‖p (2-9)
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in terms of the usual p-norm on RN+1 with p ∈ [1,∞] to be specified later. If F is
Lipschitz continuous with constant ρ < 1, i.e.,

‖F(x)− F(y)‖ ≤ ρ‖x − y‖ for all x, y ∈ Y N+1

(which we will assume throughout the paper), Banach’s fixed-point theorem yields
q-linear convergence of the iteration to the unique collocation solution yc inde-
pendently of the initial iterate y[0]. Note that the contraction property of F and
hence the convergence of SDC depends on f , the collocation points ti , the time
step size T , and whether we use explicit or implicit SDC. For sufficiently small
time steps, however, convergence is guaranteed if f is Lipschitz continuous.

Termination of the fixed-point iteration at iterate J can be based on either a
fixed iteration count, resulting in a particular Runge–Kutta time-stepping scheme,
or on an accuracy request of the form ‖yc− y[J ]‖ ≤ TOL. Given the contraction
rate ρ, and assuming that ‖yc− y[0]‖> TOL, the number of exact iterations is then
bounded by

J ≤
⌈

log(TOL/‖yc− y[0]‖)
log ρ

⌉
.

The choice of the initial iterate y[0] can not only have a significant impact on the
number J of iterations needed to achieve the requested accuracy, but also on the
properties of intermediate solutions. In particular for stiff problems, L-stability of
intermediate solutions is obtained only if y[0] is computed by an L-stable basic
scheme, e.g., implicit Euler, or special DIRK sweeps as proposed in [27]. For
simplicity, however, we choose y[0]i ≡ y0 in this paper.

Given the requirement of computing a final iterate y[J ] satisfying the requested
accuracy ‖yc− y[J ]‖ ≤ TOL, the immediate questions that arise are how to select
the local tolerances ε[ j]i , and how many iterations to perform, in order to obtain the
most efficient method. This question will be addressed in the following section.

3. A priori tolerance selection

Following the approach taken by Alfeld [1], an attractive choice of local tolerances
ε
[ j]
i and iteration count J is to minimize the overall computational effort W (ε, J )

while bounding the final error ‖y[J ]− yc‖ ≤8(ε, J ):

min
J∈N, ε∈E⊂RN×J+1

W (ε, J ) subject to 8(ε, J )≤ TOL. (3-1)

Here, ε denotes the N × (J + 1) matrix of local tolerances ε[ j]i , restricted to an ad-
missible set E. We will consider different admissible sets in Sections 3C–3E below.
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For this abstract framework to be useful, a work model W and an error model 8
are needed. These two building blocks will be established in the following two
subsections.

Remark 3.1. Both the error model and the work model will involve quantities
that are not explicitly known in actual computation. For the error model, these
parameters are in particular the SDC contraction factor ρ, Lipschitz constants,
and the initial iteration error ‖y[0]− yc‖. The work models derived below rely on
typical or asymptotic computational effort, which may not very well describe the
actual effort spent on a concrete problem. Therefore, the efficiency predicted by
the solution of the optimization problem (3-1) may not be reached.

Moreover, even if the assumptions are satisfied and the parameters entering
into the error model are known, the estimates are not sharp. The actual error will
typically be smaller than its bound, which means that the local tolerances derived
from the error bound will be smaller than necessary, and the computational effort
in turn higher than need be. Therefore, solving (3-1) provides only theoretically
optimal local tolerances.

Nevertheless, the approximation results developed in the subsequent sections
provide not only theoretical insight, but can also guide algorithmic choices, if
computable estimates for the required parameters are available. For example, the
SDC contraction factor ρ can be assumed not to change quickly over the integration
time, such that the convergence on the previous time step could provide sufficient in-
formation. Lipschitz constants can at least be bounded from below by inspecting the
evaluated right-hand sides. Inserting such estimates into the optimization problem
can yield reasonable heuristics for choosing local tolerances in actual computations.
Of course, such heuristics will need to be complemented by a posteriori error
estimators and heuristics for updating parameter values in case the estimated actual
error is larger than predicted. This, however, is beyond the scope of the present work.

3A. Error model. The error model bounds the final iteration error by 8(ε, J ) in
terms of the local tolerances ε[ j]i and the iteration count J . Focusing on SDC as a
fixed-point iteration, we estimate8 in terms of inexact fixed-point iterations [1; 22].
Below we consider the convergence of

y[ j+1]
= F̂(y[ j]; ε, j), j = 0, . . . , J − 1, (3-2)

to the fixed point yc of F , and derive a bound on ‖y[J ]− yc‖ for given y[0], J , and ε.
First we establish estimates of how the errors bounded by ε[ j]i are transported

through the SDC sweep, and then address the complete iteration, both for explicit
and implicit SDC schemes. For this we need some notation.

Definition 3.2. Let us assume there is a nonnegative function L f : R+→ R+ such
that the right-hand side f satisfies the following Lipschitz-type conditions: for
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explicit SDC

‖δ+ τ( f (y+ δ)− f (y))‖Y ≤ L f (τ )‖δ‖Y for all τ ∈ ]0, T ] and δ, y ∈ Y (3-3)

and for implicit SDC

‖(I − τ f ′(y))−1
‖Y ≤ L f (τ ) for all τ ∈ ]0, T ] and y ∈ Y . (3-4)

Then we define the invertible lower-triangular matrix L ∈ RN×N as

L im :=

{∏i−1
l=m L f (tl+1− tl), m ≤ i,

0, otherwise,

and introduce ‖e‖L :=‖Le‖p for e∈RN and ‖κ‖L :=max‖e‖L=1‖κe‖L=‖LκL−1
‖p

for κ ∈ RN×N .

Note that the nonstandard Lipschitz condition (3-3) follows from the standard
Lipschitz condition on f (because ‖ f (y+δ)− f (y)‖Y ≤ L∗‖δ‖Y implies L f (τ )≤

1+ τ L∗), but is weaker, in particular for slightly stiff systems. For example, for
f (y)=−y we obtain L f (τ )= |1−τ | � 1+τ for τ ≈ 1. Nevertheless, the weaker
condition (3-3) is sufficient for bounding the error transport through explicit SDC
sweeps in the following theorem. Analogously, condition (3-4) describes the error
transport through linearly implicit Euler sweeps in the implicit SDC method.

Explicit SDC. Now we derive error bounds, first for single SDC sweeps and then
for the whole iteration.

Theorem 3.3. Assume that the ODE’s right-hand side satisfies the Lipschitz-like
condition (3-3). Then, for ε ∈ RN×J+1

+ ,

‖F̂(y; ε, j)− F(y)‖ ≤ ‖κ(ε[ j]+ ε[ j+1])+ |S|ε[ j]‖L (3-5)

holds for the explicit SDC iteration with κ ∈RN×N , κmk := δm−1,k(tm−tm−1), where
δm,k denotes the Kronecker delta. |S| ∈ RN×N denotes the entrywise absolute value
of the integration matrix S.

Proof. From (2-5) and (2-6) we obtain for the SDC corrections δ̂i the estimate

‖F̂(y; ε, j)i − F(y)i‖Y = ‖δ̂
[ j]
i − δ

[ j]
i ‖Y

≤ ‖δ̂
[ j]
i−1− δ

[ j]
i−1+ (ti − ti−1)( f (yi−1+ δ̂

[ j]
i−1)− f (yi−1+ δ

[ j]
i−1))‖Y

+ (ti − ti−1)(ε
[ j+1]
i−1 + ε

[ j]
i−1)+

N∑
k=1

|Sik |ε
[ j]
k

≤ L f (ti − ti−1)‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + (κ(ε

[ j]
+ ε[ j+1]))i + (|S|ε[ j])i
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with δ̂[ j]0 − δ
[ j]
0 = 0. By induction we obtain the discrete Gronwall result

‖δ̂
[ j]
i − δ

[ j]
i ‖Y ≤

i∑
m=1

i−1∏
l=m

L f (tl+1− tl)([κ(ε[ j]+ ε[ j+1])]m + (|S|ε[ j])m)

=

i∑
m=1

L im([κ(ε
[ j]
+ ε[ j+1])]m + (|S|ε[ j])m)

= [L(κ(ε[ j]+ ε[ j+1])+ |S|ε[ j])]i .

Taking the norm over i = 1, . . . , N yields the claim (3-5). �

With the error bound (3-5) for a single inexact SDC sweep at hand, we are in
the position to bound the final time error.

Theorem 3.4. Let y[0] ∈ Y N be given, and let y[ j+1] be defined by

y[ j+1]
= F̂(y[ j], ε, j), j = 0, . . . , J − 1,

for some J ∈ N and some local tolerance matrix ε ∈ RN×J+1. Then

‖y[J ]− yc‖ ≤ α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L +ρ

J
‖y[0]− yc‖ =:8(ε, J ) (3-6)

holds with α = ‖κ + |S|‖L + ρ‖κ‖L and κ and |S| as defined in Theorem 3.3.

Proof. First we show the (slightly stronger) result

‖y[J ]− yc‖ ≤

J∑
j=1

ρ J− j
‖κ(ε[ j−1]

+ ε[ j])+ |S|ε[ j−1]
‖L + ρ

J
‖y[0]− yc‖ (3-7)

by induction over J . The claim holds trivially for J = 0. Otherwise, we obtain

‖y[J ]− yc‖ = ‖F̂(y[J−1]
; ε, j)− F(yc)‖

≤ ‖F̂(y[J−1]
; ε, J − 1)− F(y[J−1])‖+‖F(y[J−1])− F(yc)‖

≤ ‖κ(ε[J−1]
+ ε[J ])+ |S|ε[J−1]

‖L + ρ‖y[J−1]
− yc‖

≤ ‖κ(ε[J−1]
+ ε[J ])+ |S|ε[J−1]

‖L

+ ρ

(J−1∑
j=1

ρ J−1− j
‖κ(ε[ j−1]

+ε[ j])+|S|ε[ j−1]
‖L+ρ

J−1
‖y[0]−yc‖

)
,
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which is just (3-7). Applying the triangle inequality and rearranging terms in the
sum yields

‖y[J ]− yc‖ ≤ ρ
J−1
‖(κ + |S|)ε[0]‖L +

J−1∑
j=1

ρ J−1− j (‖(κ + |S|)ε[ j]‖L + ρ‖κε
[ j]
‖L)

+‖κε[J ]‖L + ρ
J
‖y[0]− yc‖

≤

J−1∑
j=0

ρ J−1− j (‖κ + |S|‖L + ρ‖κ‖L)︸ ︷︷ ︸
=α

‖ε j
‖L+‖κε

[J ]
‖L+ρ

J
‖y[0]− yc‖

and thus the claim (3-6). �

Note that ε[J ] enters the error bound 8(ε, J ) given in (3-6) in a different way
than ε[ j]i for j < J . This is due to the fact that all right-hand sides evaluated enter
twice into the computation (see (2-6)) except for the very last sweep evaluations,
which enter only once. This turns out to be quantitatively important in Section 4.

Implicit SDC. Error bounds for inexact implicit SDC follow the same line of
argument as for the explicit method, but are slightly simpler.

Theorem 3.5. Assume that the ODE’s right-hand side satisfies the Lipschitz-like
condition (3-4). Then, for ε ∈ RN×J+1

+ ,

‖F̂(y; ε, j)− F(y)‖ ≤ ‖σε[ j]‖L (3-8)

holds for the implicit SDC iteration with σ ∈ RN×N , σkk = L f (tk − tk−1).

Proof. From (2-7) and (2-8) we obtain for the SDC corrections δ̂i the estimate

‖F̂(y; ε, j)i − F(y)i‖Y ≤ ‖(I + (ti − ti−1))
−1(δ̂

[ j]
i−1− δ

[ j]
i−1+ r [ j]i )‖Y

≤ L f (ti − ti−1)(‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + ε

[ j]
i )

= L f (ti − ti−1)‖δ̂
[ j]
i−1− δ

[ j]
i−1‖Y + (σε

[ j])i

with δ̂[ j]0 − δ
[ j]
0 = 0. As before, induction provides the discrete Gronwall result

‖F̂(y; ε, j)i − F(y)i‖Y ≤ [Lσε[ j]]i

and hence the claim (3-8). �

With the error bound (3-8) for a single implicit inexact SDC sweep at hand, we
are in the position to bound the final time error.

Theorem 3.6. Let y[0] ∈ Y N be given, and let y[ j+1] be defined by

y[ j+1]
= F̂(y[ j]; ε, j), j = 0, . . . , J − 1,
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for some J ∈ N and some local tolerance matrix ε ∈ RN×J+1. Then

‖y[J ]− yc‖ ≤ α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L +ρ

J
‖y[0]− yc‖ =:8(ε, J ) (3-9)

holds with α = ‖σ‖L and κ = 0, where σ is defined in Theorem 3.5.

Proof. First we show the (slightly stronger) result

‖y[J ]− yc‖ ≤

J∑
j=1

ρ J− j
‖σε[ j−1]

‖L + ρ
J
‖y[0]− yc‖ (3-10)

by induction over J . The claim holds trivially for J = 0. Otherwise, we obtain as
in the proof of Theorem 3.4, now using (3-8),

‖y[J ]− yc‖ ≤ ‖F̂(y[J−1]
; ε, J − 1)− F(y[J−1])‖+‖F(y[J−1])− F(yc)‖

≤ ‖σε[J−1]
‖L + ρ‖y[J−1]

− yc‖,

which implies (3-10). An index shift in j is all it takes to obtain the claim (3-9). �

Note that the error bounds 8(ε, J ) as given in (3-6) and (3-9) for explicit and
implicit SDC, respectively, have identical structure, and differ only in the values of
the parameters α and κ . This allows a uniform analytical treatment of both explicit
and implicit schemes in the following sections.

Remark 3.7. The choice of collocation nodes ti affects the error bound (3-6) in
three ways. First, the substep sizes ti+1 − ti enter into Lki and hence into ‖ · ‖L .
Second, the integration matrix S enters into the factor α, and third, the contraction
factor ρ depends on the collocation nodes in a nontrivial and up to now not well
understood way.

The error model 8 as defined in (3-6) is an upper bound of the inexact SDC
iteration for arbitrary errors bounded by the local tolerances ε[ j]i , and hence also an
upper bound for the error ρ J

‖y[0]− yc‖ of the exact SDC iteration. Consequently,
meeting the accuracy requirement8(ε, J )≤TOL implies ρ J

‖y[0]−yc‖≤TOL and

J ≥ Jmin :=
log TOL− log‖y[0]− yc‖

log ρ
.

3B. Work models. Let us assume that the computational effort of evaluating f [ j]i
(in explicit SDC) or of solving for δ̂[ j]i (in implicit SDC) is given in terms of the
work W [ j]i :R+→R+ as W [ j]i (ε

[ j]
i ). The total work to spend for J SDC iterations,

W (ε)=

J∑
j=0

N∑
i=1

W [ j]i (ε
[ j]
i ), (3-11)
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is just the sum of all efforts. Hence, common positive factors can be neglected, as
they will not affect the minimizer of the optimization problem (3-1) at all. Note
that, for optimizing just ε with fixed J , additive terms in the work model can also
be neglected.

First we will discuss a few prototypical work models that cover common sources
of controlled inaccuracy.

Finite element discretization. If the computation of basic steps within the SDC
sweeps involves a PDE solution realized by adaptive finite elements, the discretiza-
tion error can be expected to be proportional to n−1/d , where n is the number of
grid points and d is the spatial dimension. Assuming the work to be proportional to
the number of grid points, we obtain

W [ j]i (ε
[ j]
i ) :=

1
d
(ε
[ j]
i )−d . (3-12)

The arbitrary factor d−1 has been introduced for notational convenience only.
Of course, the asymptotic behavior W [ j]i → 0 for ε[ j]i → ∞ is not realistic,

as there is a fixed amount Wmin of work necessary on the coarse grid. Thus, the
work model is valid only for ε[ j]i ≤ εmax = (dWmin)

−1/d . We will address this in
Section 3F.

Truncation errors. Let us assume the basic step computation involves the solution
of a linear equation system by a linearly converging iterative solver. This is usually
the case in implicit SDC methods applied to PDE problems. Starting the iterative
solver at zero, the residual after m iterations may be assumed to be bounded by
‖r [ j]i ‖Y ≤ ρ

m
it R[ j], where ρit < 1 is the contraction rate of the linear solver and

R[ j] ∼ ‖δ[ j]i ‖Y the size of the initial residual. The number of iterations necessary
to reach the local tolerance ‖r [ j]i ‖Y ≤ ε

[ j]
i is expected to be

m ≥
log ε[ j]i − log R[ j]

log ρit
.

If the outer SDC iteration converges linearly with unperturbed contraction factor
ρ, an assumption that will be justified in (3-27), the initial residual is roughly
R[ j] ≈ ρ j

‖y[0]− yc‖, which leads to

W [ j]i (ε
[ j]
i ) := − log ε[ j]i + log‖y[0]− yc‖+ j log ρ. (3-13)

Of course, a negative number of iterations cannot be realized, and therefore, this
work model is limited to log ε[ j]i < ε

[ j]
max = ρ

j
‖y[0]− yc‖.

Remark 3.8. Simplifying the work model (3-13) by ignoring the additive contribu-
tion log(cTOL)+( j− J ) log ρ is sufficient for optimizing the local tolerances ε, but
affects optimizing the number J of iterations and renders work ratios W (ε)/W (ε̂)

for comparing different local tolerance choices ε and ε̂ meaningless.
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Stochastic sampling. In case the right-hand side contains a high-dimensional in-
tegral to be evaluated by Monte Carlo sampling, the accuracy can be expected to
be proportional to the inverse square root of the number of samples. The work
proportional to the number of samples is then

W [ j]i (ε
[ j]
i ) := 1

2(ε
[ j]
i )−2,

just a special case of (3-12). Of course, as the error bound of Monte Carlo sampling
is not strict, the error model from the previous section gives no guarantee in this case.

The prototypical work models presented here share a common structure. Mini-
mization of the total work is based on derivatives of the work with respect to the
local tolerances. Here we see that all three models satisfy

(W [ j]i )′(ε
[ j]
i )= (ε

[ j]
i )−(d+1),

with d = 0 for truncation of iterative solvers, d = 2 for Monte Carlo sampling, and
d giving the spatial dimension in adaptive linear finite element computations. This
will allow us to treat all work models uniformly in the work optimization.

Moreover, the work models exhibit some qualitative properties, which we con-
jecture to be general properties of plausible work models.

Definition 3.9. A work model is a family of strictly convex, positive, and monotoni-
cally decreasing functions W [ j]i : ]0, (εmax)

[ j]
i ]→R+ mapping requested tolerances

to the associated computational effort. The functions W [ j]i exhibit the barrier
property W [ j]i (ε)→∞ for ε→ 0.

The properties of W [ j]i are inherited by the total work W of (3-11), which is
strictly convex and monotone.

3C. Fixed local tolerance. To begin with, we consider heuristic choices of the
admissible set E of local tolerances. The simplest possibility is to take the same
value ε[ j]i ≡ εfix for all right-hand side evaluations. This corresponds to a fixed
absolute solver tolerance in inexact implicit SDC.

In this case, the error bound (3-6) reduces to

‖y[J ]− yc‖ ≤ εfix

(
α‖1‖L

1− ρ J

1− ρ
+‖κ1‖L

)
+ ρ J
‖y[0]− yc‖,

where 1 ∈ RN with 1i = 1. Consequently,

εfix =min
(
εmax,

TOL− ρ J
‖y[0]− yc‖

α‖1‖L(1− ρ J )/(1− ρ)+‖κ1‖L

)
(3-14)

provides the largest admissible choice, and hence the one that incurs the least
computational effort, for given J . With εfix(J ) fixed, what remains is to choose the
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number J of SDC sweeps such that the overall work is minimized. To this extent,
we consider the slightly more restrictive but easier to analyze variant

εfix =min
(
εmax,

TOL− ρ J
‖y[0]− yc‖

α‖1‖L/(1− ρ)+‖κ1‖L

)
.

For the general work model (3-12), the total work is just W=N (J+1)εfix(J )−d/d .
Assuming εfix < εmax and eliminating constant factors, we need to minimize
W (J ) ∼ (J + 1)/(TOL− ρ J

‖y[0] − yc‖)
d . A simple analysis reveals that W (J )

is quasiconvex, such that there is exactly one minimizer in ]Jmin,∞[; see the
Appendix. Unfortunately, no closed expression seems to exist, but a numerical
computation is straightforward. Due to the quasiconvexity, the optimal J ∈ N is
one of the neighboring integer values.

The local tolerance is bounded by εfix ≤ cTOL for some generic constant c
independent of J and TOL. Consequently, the total work is at least

W ≥ c(Jmin+ 1)TOL−d
= c

(
log(TOL/‖y[0]− yc‖)

log ρ
+ 1

)
TOL−d . (3-15)

Apparently, a complexity of O(TOL−d) is unavoidable, as this is already required
for a single right-hand side evaluation to the requested accuracy. The logarithmic
factor in (3-15), however, appears to be suboptimal. As this corresponds to the
number J of SDC sweeps, which, depending on the concrete problem, can easily
exceed a factor of ten, the suboptimality may induce a significant inefficiency in
actual computation. We will address this shortcoming in the following Sections 3D
and 3E and investigate it numerically in Section 4.

For completeness we note that in the less interesting case εfix = εmax, J is
determined by minimizing W = N (J + 1)ε−d

max/d subject to

TOL≥ εmax(α‖1‖L/(1−ρ)+‖κ1‖L)+ρ
J
‖y[0]− yc‖≥8(εmax, J )≥‖y[J ]− yc‖,

i.e.,

J ≥ (log ρ)−1 log
TOL− εmax(α‖1‖L/(1− ρ)+‖κ1‖L)

‖y[J ]− yc‖
.

3D. Geometrically decreasing local tolerances. The next step is to exploit the fact
that, due to the linear convergence of the SDC iteration, larger evaluation errors are
acceptable in the early iterations, and to make the heuristic choice

(εgeo)
[ j]
i =min(εmax, βρ

γ j ) for some β, γ > 0. (3-16)

This has been considered in [5] for γ = 1 as an “adaptive strategy” and is closely
related to evaluating implicit Euler steps up to a fixed relative precision in implicit
SDC methods, as suggested in [16] or realized in [24] by a fixed number of multigrid
V-cycles.
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We will assume that γ is given and optimize β as we have done before with
εfix. Ignoring the impact of εmax, (3-6) results in the slightly stronger accuracy
requirement

‖y[J ]− yc‖ ≤ β

(
α‖1‖L

J−1∑
j=0

ρ J−1− j+γ j
+ ργ J

‖κ1‖L

)
+ ρ J
‖y[0]− yc‖

!

≤ TOL.

Note that this implies a convergence rate of ‖y[J ]− yc‖ = O(ρmin(1,γ )J ). For γ 6= 1
(there is a continuous extension to γ = 1, though) we obtain

β ≤
TOL− ρ J

‖y[0]− yc‖

ργ (J−1)(α‖1‖L(1− ρ(1−γ )J )/(1− ρ1−γ )+ ργ ‖κ1‖L)
. (3-17)

The total work W (ε) is monotonically decreasing in β due to (3-16) and Definition
3.9, such that the work-minimization problem (3-1) is solved by equality in (3-17),
and we obtain

(εgeo)
[ j]
i =min

(
εmax,

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)(α‖1‖L(1− ρ(1−γ )J )/(1− ρ1−γ )+ ργ ‖κ1‖L)
ργ j

)
.

(3-18)
Of course, εfix = limγ→0 εgeo is recovered in the limit.

Optimizing the iteration count J for the generic work model (3-12) with d > 0,
we minimize

W = Nβ−d
J∑

j=0

ρ−dγ j/d ∼ β−d 1− ρ−dγ (J+1)

1− ρ−dγ .

We distinguish between γ < 1 and γ > 1. In the first case, we obtain

1− ρ(1−γ )J

1− ρ1−γ ≤ (1− ρ
1−γ )−1 and thus β ≥

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)c

for some c > 0 independent of J . Neglecting constant factors independent of J
yields the upper bound

W .
(

TOL− ρ J
‖y[0]− yc‖

ργ (J−1)

)−d

ρ−dγ (J+1)

decreasing monotonically with J towards limJ→∞W . TOL−d . Compared to
(3-15), the complexity to reach the requested tolerance is improved, independently
of γ , from O(TOL−d

|log TOL|) to O(TOL−d). In the next section we will see that
this complexity is indeed optimal, but the constants can be improved further by
considering a larger admissible set E.
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In the second case γ > 1, we obtain the upper bound

W .
(

TOL− ρ J
‖y[0]− yc‖

cρ J + ργ (J−1)

)−d

ρ−dγ (J+1)
∼

(
cρ(1−γ )J + b

TOL− ρ J‖y[0]− yc‖

)d

for some generic constants b and c independent of J and TOL. Inserting J ≥
log(TOL/‖y[0] − yc‖)/ log ρ reveals a complexity of O(TOL−γ d), indeed worse
than the fixed choice ε[ j]i ≡ εfix before. As a certain number of SDC iterations have
to be performed with sufficient accuracy, increasing the accuracy too quickly is a
waste of resources. Fortunately, a fixed relative accuracy will always lead to γ ≤ 1.

3E. Variable local tolerances. Finally, let us consider the most general admissible
set E = {ε ∈ RN×J+1

+ | ε
[ j]
i ≤ εmax} in greater detail than we have treated the

heuristic choices. Again, we will proceed in two steps, first assuming J to be given,
optimizing only the local tolerances ε, and considering the integer variable J of the
mixed integer program later on.

We obtain the nonlinear program

min
ε∈RN×J+1

+

W (ε) subject to 8(ε, J )≤ TOL, ε ≤ εmax. (3-19)

From the properties of W and 8, we immediately obtain the following result.

Theorem 3.10. If ρ J
‖y[0] − yc‖ < TOL, i.e., the exact SDC iteration converges

to the given tolerance, the optimization problem (3-19) has a unique solution
ε(y[0], J ). In the generic case ε[ j]i < (εmax)

[ j]
i for some i and j , i.e., if not all of

the local tolerance constraints are active, the accuracy constraint is active, i.e.,
8(ε(y[0], J ), J )= TOL.

Proof. From (3-6) it is apparent that sufficiently small values ε[ j]i > 0 lead to

α

J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L ≤ TOL− ρ J

‖y[0]− yc‖,

such that the admissible set is nonempty. Strict convexity of W and convexity of 8
imply uniqueness of a solution. Strict convexity and monotonicity of W imply
its strict monotonicity, and hence, the constraint must be active unless all local
tolerances are actively bound by ε ≤ εmax. �

The activity of the accuracy constraint in the generic case means that, as expected,
no effort is wasted on reducing the error below the requested tolerance.

We may reasonably expect the local tolerances to decrease monotonically. This
is indeed true in general, as the following result shows.
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Theorem 3.11. Assume that ρ ∈ (0, 1), J ∈N, and TOL ∈ R+ are given constants.
Let the local tolerance matrix ε be the minimizer of (3-19). Then ‖ε[ j]‖L≤‖ε

[ j−1]
‖L

holds for all j = 1, . . . , J − 1.
For the norm exponent p = 1 in (2-9), componentwise monotonicity holds as

well, i.e., ε[ j]i ≤ ε
[ j−1]
i holds for all i and j < J .

Proof. Let ε̃ be an admissible point for (3-19) with ‖ε̃[k1]‖L < ‖ε̃
[k2]‖L for some

1 ≤ k1 < k2 < J . Then we consider ε with ε[ j] = ε̃[ j] except for ε[k2] = ε̃[k1] and
ε[k1] = ε̃[k2]. Obviously, W (ε)=W (ε̃).

The error bound (3-6), however, is reduced:

8(ε̃, J )−8(ε, J )

= α(ρ J−1−k1(‖ε̃[k1]‖L −‖ε
[k1]‖L)+ ρ

J−1−k2(‖ε̃[k2]‖L −‖ε
[k2]‖L))

= α(ρ J−1−k1(‖ε̃[k1]‖L −‖ε̃
[k2]‖L)+ ρ

J−1−k2(‖ε̃[k2]‖L −‖ε̃
[k1]‖L))

= α(ρ J−1−k1 − ρ J−1−k2)(‖ε̃[k1]‖L −‖ε̃
[k2]‖L) > 0,

as α > 0 and the other two factors on the last line are negative. Since 8(ε, J ) <
8(ε̃, J ) ≤ TOL, ε is feasible. The constraint, however, is inactive, such that ε
cannot be the minimizer ε(y[0], J ). We conclude that

W (ε(y[0], J )) < W (ε)=W (ε̃),

such that ε̃ 6= ε(y[0], J ). The same line of argument holds for p= 1 and component-
wise monotonicity, where however ε is constructed such that only ε[k1]

i and ε[k2]
i

are swapped. �

Below the necessary and, due to convexity, also sufficient conditions for the
solution of the constrained optimization problem are derived for p <∞.

Theorem 3.12. Let the norm exponent p be finite. Assume ρ J
‖y[0]− yc‖ < TOL

and W [ j]i ∈ C1(0,∞). Then ε ∈ RN×J+1
+ solves (3-19), if and only if there exist

multipliers µ ∈ R and η ∈ RN×J+1 such that

(W [ j]i )′(ε
[ j]
i )+µαρ J−1− j

‖ε[ j]‖
1−p
L

N∑
k=1

(Lε[ j])p−1
k Lki + η

[ j]
i = 0,

j = 0, 1, . . . , J − 1,

(W [J ]i )′(ε
[J ]
i )+µ‖κε[J ]‖

1−p
L

N∑
k=1

(Lκε[J ])p−1(Lκ)ki + η
[J ]
i = 0,

(TOL−8(ε, J ))µ= 0, µ≥ 0,

(εmax− ε) : η = 0, η ≥ 0.

(3-20)

Here, ε : η denotes contraction or Frobenius product, and we use the convention
00
:= 0 (for κ = 0 and p = 1 this expression can formally arise).
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Proof. The necessary and also sufficient condition for optimality of ε is the station-
arity of the Lagrangian

L(ε, µ, η)=W (ε, J )+µ(8(ε, J )−TOL)+ η : (εmax− ε)

for some multiplier µ ∈ R and η ∈ RN×J+1; see, e.g., [21]. According to the
(structurally identical) error bounds (3-6) and (3-9), and the total work (3-11), its
partial derivatives are just the expressions in (3-20). �

At this point, the unique minimizer ε(y[0], J ) of the convex program (3-19) can
in principle be computed numerically. For an exponent p= 1 in the norm definition
(2-9), however, explicit analytical expressions can easily be derived due to (3-6)
reducing to

8(ε, J )= α
J−1∑
j=0

ρ J−1− j
N∑

k=1

N∑
i=1

Lkiε
[ j]
i +

N∑
k=1

N∑
i=1

(Lκ)kiε
[J ]
i + ρ

J
‖y[0]− yc‖

= q : ε+ ρ J
‖y[0]− yc‖ (3-21)

with

q [ j]i =

{
αρ J−1− j ∑N

k=1 Lki , j < J,∑N
k=1(Lκ)ki , j = J.

(3-22)

Then, the first-order necessary conditions (3-20) assume the particularly simple
form

(W [ j]i )′(ε
[ j]
i )+µq [ j]i + η

[ j]
i = 0. (3-23)

Below we will derive the analytical structure of solutions for p = 1 and different
work models, which also sheds some more light on the structure of the solution
as well as on the achieved efficiency. The following theorem applies to all work
models from Section 3B, with d = 0 for iterative solvers and d = 2 for stochastic
sampling.

Theorem 3.13. Let p = 1 and (W [ j]i )′(ε
[ j]
i )=−(ε

[ j]
i )−(d+1). Then there is µ > 0

such that the solution ε = ε(y[0], J ) of (3-19) is given by

ε
[ j]
i =

{
(εmax)

[ j]
i , q [ j]i = 0,

min((εmax)
[ j]
i , (µq [ j]i )−1/(d+1)), otherwise,

(3-24)

with q [ j]i given in (3-22). Locally unconstrained tolerances ε[ j]i < (εmax)
[ j]
i decrease

linearly up to j = J − 1:
ε
[ j]
i ∼ ρ

j/(d+1). (3-25)

Proof. From the necessary condition (3-23) we obtain a multiplier µ̂≥ 0. If µ̂= 0,
then η[ j]i > 0 for all i and j due to (W [ j]i )′ < 0, which implies ε = εmax via com-
plementarity in (3-20). Choosing µ > 0 sufficiently small verifies the claim (3-24).
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Otherwise we choose µ= µ̂ > 0 and obtain

ε
[ j]
i = (µq [ j]i + η

[ j]
i )−1/(d+1) (3-26)

from (3-23). In case ε[ j]i <(εmax)
[ j]
i , η[ j]i =0 holds due to complementarity in (3-20),

such that the claim (3-24) is satisfied. For j < J , the definition (3-22) of q [ j]i implies

ε
[ j]
i = (µαρ

J−1− j
N∑

k=1

Lki )
−1/(d+1)

∼ ρ j/(d+1)

and hence the geometric decrease (3-25).
In case ε[ j]i = (εmax)

[ j]
i and q [ j]i 6= 0, (3-26) implies

(µq [ j]i )−1
= (((εmax)

[ j]
i )−(d+1)

− η)−1
≥ ((εmax)

[ j]
i )d+1

and hence the claim (3-24). �

The result (3-25) reveals that the heuristic of geometrically decreasing local
tolerances is indeed of optimal complexity, at least for γ < 1, and now theoretically
justified. Beyond that, an optimal value of γ = (d + 1)−1 and different accuracies
for the collocation points are provided. We will see in Section 4 that the last issue
can have a nonnegligible impact on the computational effort. Moreover, the result
(3-25) shows that the contraction rate of optimal inexact SDC iterations depends on
the work model: ρ for the truncation of linearly convergent iterations and ρ1/(d+1)

for linear finite element solutions. The latter convergence is actually slower than
the exact SDC iteration. This is a consequence of the different work required to
reduce the error: while a reduction of the SDC iteration error is relatively cheap, re-
ducing finite element discretization errors is rather expensive. An optimal tolerance
selection therefore assigns a larger portion of the total error to the discretization
and has to ensure that the SDC iteration error is by a certain factor smaller than the
discretization error.

As expected, the geometric decrease (3-25) translates directly into linear conver-
gence of the inexact SDC iteration:

Corollary 3.14. If ε < εmax holds, there is some c independent of j (though it
depends on J ) such that

‖y[ j]− yc‖ ≤ cρ j/(d+1). (3-27)
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Proof. The result (3-25) yields

‖y[ j]− yc‖ ≤ α

j−1∑
k=0

ρ j−1−k
‖ε[k]‖L +‖κε

[ j]
‖L + ρ

j
‖y[0]− yc‖

≤ c
( j−1∑

k=0

ρ j−1−kρk/(d+1)
+ ρ j/(d+1)

)
+ ρ j
‖y[0]− yc‖

≤ cρ j/(d+1) (3-28)

and hence the claim. �

For d = 0, this linear convergence justifies the contraction rate assumed in
defining the work model (3-13) for iterative solvers.

Let us state two more observations. First, it pays off to treat the final local
tolerances ε[J ]i separately in Theorem 3.4: now ε

[J ]
i > ε

[J−1]
i holds instead of

ε
[J ]
i = ρε

[J−1]
i . Thus, the effort for the otherwise greatest expense, due to having

the most accurate right-hand side evaluations, is reduced, as illustrated in Figure 1.
Similarly, for implicit SDC schemes with κ = 0 defined in Theorem 3.6, q [J ]i = 0
holds, which implies ε[J ]i = (εmax)

[J ]
i .

Second, (3-24) is monotone in µ, such that the actual value of µ and in turn ε is
easily computed numerically by solving8(ε, J )=TOL. In case εmax is sufficiently
large such that ε < εmax holds, combining (3-24), (3-22), and (3-21) yields an
explicit expression

ε
[ j]
i =

TOL− ρ J
‖y[0]− yc‖∑J

j=0
∑N

i=0(q
[ j]
i )d/(d+1)

(q [ j]i )−1/(d+1). (3-29)

3F. Iteration count optimization. As in the case of uniform local tolerances, the
number J of inexact SDC iterations has to be selected in order to minimize the
total work. For the generic work model (3-12), and stripping it of common factors
and additive terms, we obtain with Theorem 3.13

W (J )=
J∑

j=0

N∑
i=1

(ε
[ j]
i )−d

=

J∑
j=0

N∑
i=1

(µq [ j]i )d/(d+1)

as long as ε[ j]i < (εmax)
[ j]
i for all i and j . Inserting the definition (3-22) of q [ j]i and

neglecting constant factors independent of J and N yields

W ≤
J∑

j=0

N∑
i=1

(
µαρ J−1− j

N∑
k=1

Lki

)d/(d+1)

∼ Nµd/(d+1)
J∑

j=0

ρ(d/(d+1))(J−1− j)

∼ Nµd/(d+1) 1− ρ
d(J+1)/(d+1)

1− ρd/(d+1) (3-30)

as long as maxi (ti − ti−1)≤ c/N for some constant c.
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The multiplier µ is obtained from 8(ε, J )= TOL with ε[ j]i = (µq [ j]i )−1/(d+1).
We obtain

TOL= α
J−1∑
j=0

ρ J−1− j
‖ε[ j]‖L +‖κε

[J ]
‖L + ρ

J
‖y0
− yc‖

= µ−1/(d+1)
(
α

J−1∑
j=0

ρ J−1− j
‖(q [ j])−1/(d+1)

‖L+‖κ(q [J ])−1/(d+1)
‖L

)
+ρ J
‖y0
−yc‖

= µ−1/(d+1)
(

a
J−1∑
j=0

ρ(d/(d+1))(J−1− j)
+ b

)
+ ρ J
‖y0
− yc‖

= µ−1/(d+1)
(

a
1− ρd J/(d+1)

1− ρd/(d+1) + b
)
+ ρ J
‖y0
− yc‖

with constants a = α‖(α
∑N

k=1 Lki )
−1/(d+1)

‖L and b = ‖κ(q [J ])−1/(d+1)
‖L inde-

pendent of J . Consequently,

µd/(d+1)
=

(
a(1− ρd J/(d+1))/(1− ρd/(d+1))+ b

TOL− ρ J‖y0− yc‖

)d

holds. Entering this into the work bound (3-30) yields

W . N
(

a(1− ρd J/(d+1))/(1− ρd/(d+1))+ b
TOL− ρ J‖y0− yc‖

)d 1− ρd(J+1)/(d+1)

1− ρd/(d+1) .

Replacing 1− ρd J/(d+1) by 1 and neglecting constant factors independent of J
and TOL provides the upper bound

W . N (TOL− ρ J
‖y0
− yc‖)

−d . (3-31)

The upper bound (3-31) is monotonically decreasing and suggests choosing J as
large as possible. In the limit J →∞, the total work is bounded by

W . NTOL−d . (3-32)

Compared to the work bound (3-15) for uniform local tolerances, the logarithmic
factor log TOL is missing, which yields the optimal complexity of evaluating N
steps of the basic Euler scheme up to the requested tolerance.

Remark 3.15. The result (3-32) suggests that inexact explicit SDC methods might
be able to reach or even surpass the efficiency of standard explicit Runge–Kutta
methods.

However, the practical bound ε ≤ εmax induces a lower bound W j
i ≥ Wmin on

the work per iteration, and hence, the total work W (J ) grows linearly with J
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for J →∞. This contradicts the asymptotic work bound (3-32), which means
that the assumption ε < εmax used to derive (3-32) can only hold up to some finite
iteration count. As closed expressions for a global minimizer of W (J ) when taking
the local tolerance constraint ε ≤ εmax into account are hard to get, a heuristic
selection of J appears to be most promising in practice. The convexity of (3-31)
and linear growth of W for large J suggest that we may select J as

J =min{ j ∈ N |W ( j + 1) > W ( j)}.

4. Numerical examples

Here we will illustrate and compare the effectiveness of the inexact SDC strategies
worked out above. First, the properties of the strategies will be explored using
a simple academic test problem. Then, inexactness due to iterative solvers and
Monte Carlo sampling are considered with the heat equation and a molecular
dynamics example, respectively.

4A. An illustrative example.

Problem setup. As a particularly simple example that allows a detailed investigation
of the theoretical predictions, we consider the harmonic oscillator

u̇ = v,

v̇ =−u,

with initial values u0 = 0 and v0 = 1, on the time interval [0, π] subdivided into n
equidistant time steps. The Lipschitz constant of the right-hand side is L∗ = 1, and
we estimate L f (τ )= 1+τ using the triangle inequality. We use N Gauss–Legendre
collocation points in each of the n time steps. The collocation error ec at final
time π can easily be obtained by comparing the result with the exact solution
u(t) = sin(t), v(t) = cos(t). The contraction rate ρ of the exact SDC iteration is
estimated numerically, and is virtually independent of the actual time t .

Exact right-hand side evaluation is of course straightforward, such that artificial
inexactness and associated computational work are quite arbitrary. Here we use
normally distributed random additive errors and the generic work model (3-12) with
parameter d unless otherwise stated.

Aiming at a final time error comparable to the collocation error, we choose a
tolerance TOL= ec/

√
n for each time step, based on the assumption that the random

errors of each time step simply add up, and yield a standard deviation of the final
result of

√
nTOL. With this setting, the quantities entering into the computation

of the local tolerances ε are the same for all time steps. Unless otherwise stated
N = 3 is used throughout, such that the collocation scheme is of order 6.
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Figure 1. Left: exemplary local tolerances versus iteration number j for the different
admissible design sets: fixed (εfix, stars), geometrically decreasing (εgeo, squares, γ = 0.5),
and variable (εopt, circles). Here n = 2 steps have been used to define the problem data
ρ = 0.35, TOL = 0.05. Right: relative work Wgeo/Wopt for geometrically decreasing
local tolerances versus the exponent γ . For larger γ , the work grows exponentially. The
horizontal line denotes the relative work Wfix/Wopt for fixed local tolerances.

Theoretical predictions. Let us first investigate the structure of local tolerances and
the predicted efficiency gain in different situations.

To begin, we fix the iteration count J and time step T and compare local
tolerances εfix, εgeo, and εopt as given by the three considered strategies in (3-14),
(3-18), and (3-24), respectively. Exemplary values for TOL = 0.05, J = 11,
εmax =∞, n = 2, and estimated ‖y[0] − yc‖ ≈ 2.4 are shown in Figure 1, left,
versus the iteration number j . For the geometrically decreasing local tolerances,
an exponent γ = 1

2 has been chosen arbitrarily, but less than one due to the worse
computational complexity for γ >1; see Section 3D. For optimal variable tolerances,
εopt has been obtained via (3-29). Clearly visible is the slow geometric decrease of
the optimal variable local tolerances ε[ j]opt with an order ρ j/3, even slower than the
explicitly chosen geometrical decrease ργ j with γ = 1

2 . The relative predicted work
is Wfix/Wopt = 2.06 and Wgeo/Wopt = 2.67. Somewhat surprisingly, exploiting the
linear convergence of the SDC iteration does not necessarily pay off compared
to a fixed accuracy, depending on the chosen parameter γ . The variable local
tolerances approach achieves its low work by (i) choosing the appropriate decrease
rate γ = 1/(d + 1), (ii) allowing for larger errors in later collocation points with
less global impact, and (iii) imposing less restrictive requirements on the final
sweep according to the definition (3-22) of q [ j]i . The latter two aspects make up
a reduction of work by a factor of 1.67 compared to the geometrically decreasing
local tolerances with γ = 1/(d + 1). The relative work for different values of γ is
shown in Figure 1, right, where the predicted total work induced by geometrically
decreasing tolerances is plotted over the exponent γ . The optimum with a relative
work of 1.48 is attained around γ = 0.21, even less than 1/(d + 1). This can be
attributed to avoiding high costs in the very last sweep, where high accuracy is
actually not necessary, while ensuring sufficient accuracy in the next to last sweep.
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Figure 2. Left: local tolerances ε for the inexact SDC iterations versus number n of time
steps. For optimal variable local tolerances (εopt, squares), the range between minimal and
maximal local tolerance is shown. The requested tolerance TOL is shown with stars, the
fixed local tolerance εfix with circles. Right: optimal number J of inexact SDC iterations
versus number n of time steps for optimal variable (Jopt, squares) and fixed (Jfix, circles)
local tolerances.

Next we look into the dependence of local tolerances and optimal iteration counts
on the time step size T . Let us consider tolerances TOL = ec/

√
n depending on

the time step size π/n. As shown in Figure 2, left, they decrease as n−2N−1/2

according to the sixth-order collocation error and the error accumulation of order 1
2 .

As expected, the fixed local tolerance εfix and the minimal variable local tolerance
mini, j ε

[ j]
i stay very close to each other and also close to TOL, but decrease roughly

one order slower. This is due to α, κ = O(tN )= O(n−1), and leads to the surprising
fact that for small time steps the allowed evaluation error can be larger than the
requested tolerance. Obviously, the heuristic choice εfix = cTOL for some fixed
c < 1 is suboptimal for small time steps.

As intended, the maximal local tolerance, encountered in the very first inexact
SDC sweep, is much larger than the minimal one, which is the basis for the
envisioned performance gain. It also decreases much slower than the step tolerance
TOL due to the fact that ρ→ 0 for tN → 0.

The optimal number of sweeps shown in Figure 2, right, is rather different for
fixed and variable local tolerances, with a factor of two in between. This is due to
the intended slower contraction rate in (3-24) compared to (3-14). As each sweep
increases the order of the SDC integrator by one, and the tolerance TOL is of
order n−6.5, we expect at least seven sweeps to be necessary. This is nicely reflected
by the fixed local tolerance scheme resorting to an optimal value of eight sweeps
over a range of step sizes. For larger step sizes, the growth in the contraction rate ρ
destroys this asymptotic property.

Finally, we take a look at the predicted efficiency gain over the simple fixed
local tolerance strategy in dependence on time step size and overall tolerance. The
total work per step induced by the choices of local tolerances is shown in Figure 3.
The ratio of more than 1015 of computational effort between n = 2 and n = 64
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Figure 3. Left: total work per time step for fixed (Wfix, circles) and variable (Wopt,
squares) local tolerances versus the number of time steps. Right: ratio of total work of
fixed and variable local tolerances versus the requested tolerance TOL, for work model
parameter d = 2 (solid lines) and d = 3 (dotted lines), number of collocation points
N ∈ {1, 2, 3, 4} (circles, stars, crosses, triangles), and different number n of time steps.

is due to the high accuracy of the Gauss collocation and the slow convergence of
linear finite elements assumed with d = 2. According to (3-12), the work is of
order O(ε−d)= O(nd(2N−1/2)), which amounts here to a growth of n11. Obviously,
the high accuracies reached in the model problem are unrealistic in practical finite
element computation. The ratio between the work for fixed and local tolerances
shown in detail in Figure 3, right, adheres to the theoretical order − log TOL, with
minor differences due to different collocation order N . A small but consistent
impact of spatial dimension d can be observed, with slightly larger efficiency gain
for higher dimension.

Numerical computations. Up to here, the results were just predictions, theoretical
values obtained from the work and error models derived in Section 3. Of particular
interest is whether these model predictions coincide with actual computation.

In Figure 4, contraction rate and final time error of inexact SDC computations
are shown. Inexact evaluation of the right-hand side is imitated by adding a random
perturbation of size ε[ j]i and uniformly distributed direction. On the left, estimated
contraction rates are shown, obtained by regression over the complete SDC iteration.
As expected, the exact SDC contraction factor ρ decreases roughly linearly with the
time step size. The fixed local tolerance iteration converges with a very similar rate,
since the rather small allowed errors can only affect the last sweeps. The optimal
rate for variable local tolerances is larger: from (3-24) we expect a rate of ρ1/(d+1),
which is indeed achieved. The slightly faster convergence can be attributed to the
errors in actual computation not realizing the theoretical worst case.

In Figure 4, right, the final time deviation of the inexact SDC iterations from the
limit point, the collocation solution, is shown, relative to the error of the collocation
solution itself. The sample mean of twenty realizations is plotted together with the
standard deviation, since, in contrast to all other figures, the actual errors depend
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Figure 4. Left: observed contraction factors ρ for exact SDC (ρexact, crosses), fixed
local tolerances (ρfix, circles), and optimal variable local tolerances (ρopt, squares) versus
number n of time steps. The theoretical contraction rate of ρ1/(d+1) for variable local
tolerances is plotted for reference. Right: final time difference between inexact SDC
methods and collocation solution, relative to the collocation error. Solid lines are sample
means, and dotted lines show the standard deviation.

significantly on the random inexactness of the realizations. We observe that the error
model used in defining local tolerances works reasonably well, with comparable
final time errors for fixed and optimal variable local tolerances. Again, numerical
computations are more accurate than predicted by the worst case estimates. The
slow but steady increase with the number n of time steps suggests that the normally
distributed local errors do not simply add up, as has been assumed when choosing
the tolerance TOL∼ n−1/2.

4B. Iterative solver example: heat equation. Diffusion processes like heat con-
duction are usually solved by implicit time-stepping schemes, where solving the
arising sparse large-scale linear systems may dominate the computational effort.
Here we consider as a prototypical example the linear heat equation

ẏ =1y, in �,

y = 0, on ∂�,

y = y0, for t = 0,

on the domain�=]0, 2π [ and the initial value y0=χ]0,π ]. For spatial discretization,
we employ second-order equidistant finite differences on n = 128 intervals. We
consider a single SDC time step of length T = 1 using N = 4 Radau-IIa collocation
nodes and implicit Euler as the basic method. The exact SDC contraction factor
can thus be assumed to be ρ ≈ 0.62 [27].

The arising linear systems (2-7) assume the form (I−(ti−ti−1)A)δ
[ j]
i = R[ j]i with

stiffness matrix A. Even though these tridiagonal systems can be solved efficiently
with a direct solver, we use iterative solvers in order to evaluate the impact of
truncation on inexact SDC performance. As extreme cases we consider simple
Jacobi iterations with asymptotic contraction rate ρJac ≈ 1− 50/n2 and multigrid



THEORETICALLY OPTIMAL INEXACT SDC METHODS 79

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0
0

5

10

15

20

TOL

W (εopt)

W (εfix)

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0
0

200

400

600

800

1000

1200

1400

TOL

Jacobi

Jacobi

MG

MG

iterfix

iteropt

Figure 5. Computational effort of computing an inexact SDC step for the heat equation
versus the desired accuracy TOL ∈ [10−9, 10−1

]‖y[0] − yc‖. Left: predicted computa-
tional effort W (ε) in arbitrary work units for fixed absolute tolerance and optimized local
tolerances. Right: total number of linear solver iterations for fixed and optimized local
tolerances, for both Jacobi and multigrid linear solvers. The numbers of Jacobi iterations
have been scaled down by a common factor such that they have the same mean as the
multigrid iteration numbers, in order to allow a comparison of relative effort between fixed
and optimized tolerance choices.

V-cycles with two damped Jacobi presmoothing steps resulting in a contraction rate
ρMG ≈ 0.25. The truncation work model (3-13) and consequently also the optimal
local tolerances are, however, independent of the iterative solver’s contraction rate.

Let us focus on the computational effort incurred by the different local tolerance
choices, both predicted and realized. The predicted work W (ε) for fixed and
optimized local tolerances is plotted versus the requested SDC iteration accuracy
TOL in Figure 5, left, and shows a significant expected benefit of local tolerance
optimization. The choice of geometrically decreasing local tolerances ε[ j]i = βρ

γ j

as considered in Section 3D with optimal value γ = 1 leads to results almost indistin-
guishable from the optimized tolerances, and is therefore not considered separately.

The actually required work, in terms of number of linear solver iterations, is
shown in Figure 5, right, for both Jacobi and multigrid solvers. Note that the
iteration numbers of the Jacobi solver have been scaled down by a common factor,
such that the relative work between fixed and optimized local tolerances can be
observed. While the actual work reduction is less than the predicted one, a factor
of five rather than ten for high accuracy, the qualitative behavior is captured very
well by the theoretical work model. Moreover, despite the huge difference in
convergence speed between Jacobi and multigrid solvers, the relative effort between
fixed and optimized local tolerances, and between different required SDC tolerances,
is essentially unaffected by the choice of solver, which agrees rather well with the
truncation work model derivation in Section 3B.

As before, the accuracy actually achieved is better than the requested tolerance.
The ratio ‖y[J ] − yc‖/TOL of actual error and tolerance is (almost) always less
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Figure 6. Left: relative deviation of achieved accuracy ‖y[J ]− yc‖ from the requested
tolerance TOL for different choices of local tolerances and linear solvers. Right: total num-
ber of linear solver iterations versus the achieved SDC accuracy ‖y[J ]− yc‖ for different
strategies of solving linear systems. Shown are fixed and optimized local tolerances with
multigrid solver, as well as simple heuristics of performing exactly one or two multigrid

V-cycles.

than one, as predicted by the error bound (3-9). The inefficiency incurred by the
error bound not being sharp is, however, moderate, since the achieved accuracy is
less than TOL by a factor between two and ten. It depends on the choice of local
tolerances, but not much on the linear solver; see Figure 6, left. Consequently, the
computational effort required to achieve a certain accuracy, shown in Figure 6, right,
resembles very much the work versus requested tolerance shown in Figure 5.

Using a fixed number of linear solver iterations is a simple heuristic for inexact
implicit SDC methods [20; 24]. With this choice, linearly convergent solvers can
lead to a convergent scheme with expected contraction factor max(ρ, ρit), and
resembles the geometrically decreasing local tolerances with γ ≤ 1. The efficiency
on the heat equation example is comparable to optimized local tolerances for just
one V-cycle, and slightly worse for two V-cycles. The best number of iterations
will, of course, depend on the problem. A reasonable value can be assumed to be
dlog ρ/ log ρite.

4C. Monte Carlo example: smoothed molecular dynamics. Classical molecular
dynamics [2] is generally described by Newtonian mechanics of the positions x ∈Rnd

of n atoms in Rd with mass M influenced by a potential V :

Mẍ =−∇V (x). (4-1)

One interesting quantity is the time it takes to exit a given potential well or to move
between two wells. The computation of these times is expensive as the transitions
are rare events, and long trajectories need to be computed before such an event
is observed. Statistic reweighting techniques [23] allow one to compute the exit
times of interest from exit times induced by a modified potential V with shorter
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Figure 7. Potential and considered trajectory. Left: original potential V from (4-2). Right:
the smoothed potential V for λ= 0.316. The equipotential lines are at the same levels in
both pictures.

exit times. One of the modifications in use is potential smoothing by diffusion, i.e.,
V := V (λ) with ∂V/∂λ=1V . As the number n of involved atoms is usually large,
computing V by finite element or finite difference methods is out of the question.
Instead, pointwise evaluation by convolution with the Green’s function is performed
[14] using importance sampling:

∇V (x)= (λ
√

2π)−nd
∫

Rnd
∇V (x + s) exp(−s2/(2λ2)) ds

= (λ
√

2π)−nd
∫

Rnd
(∇V (x + s)− Hs) exp(−s2/(2λ2)) ds

≈
1
m

m∑
i=1

(∇V (ξi )− H(ξi − x))=: ∇ V̂m(x),

where the random variable ξ is normally distributed with mean x and covariance λI ,
and H ∈ Rnd is arbitrary. The expected error is proportional to m−1/2 and can be
estimated in terms of the sample covariance

σ 2
m =

1
m− 1

m∑
i=1

si sT
i , si =∇V (ξi )− H(ξi − x)−∇ V̂ (x),

as

E[‖∇V (x)−∇ V̂m(x)‖] ≈
‖σm‖
√

m
.

Obviously, si and consequently σm are particularly small if H is the Hessian of V .
When evaluating V̂ with a requested local tolerance ε, the number of sampling

points is doubled until ‖σm‖ ≤
√

mε. This defines a realization of V̂ε(x). Note that
this does not give an actual error bound, such that the error analysis and tolerance
selection from Section 3 only hold in a probabilistic sense.
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Figure 8. Numerical result averaged over fifteen realizations. Left: estimated error after
the first time step of length T (circles) and at final time tend (crosses) versus the requested
tolerance TOL. Right: maximal, average, and minimal observed contraction factors ρopt
of the inexact SDC method in all time steps versus the requested step tolerance.

As a simple test problem of this type we consider n = 1 and d = 2 with M = I ,

V (x)= 3 exp(−‖x − e2‖
2)− 3 exp(−‖x − 5e2‖

2)− 5 exp(−‖x − e1‖
2)

− 5 exp(−‖x + e1‖
2)+ (x4

1 + (x2− 1/3)4)/5, where (ei ) j = δi j , (4-2)

initial value x(0)= [−1, 0.4]T , ẋ(0)= [2.1, 0]T in the vicinity of one of the three
local energy minimizers, final time tend = 6, and variance λ = 0.316. Despite its
simplicity, the potential (4-2) as shown in Figure 7 is an interesting test case, as the
direct path between the two deep wells crosses a higher potential barrier than the
indirect path via the third, shallow well.

Figure 7 shows the original potential V as defined in (4-2) and the considered
trajectory on the left, and the smoothed potential V for λ= 0.1 on the right. The
shallow well on the top has almost vanished, and the potential barrier between the
two dominant wells is much lower. Consequently, the trajectory crosses the barrier
easily now and alternates between the two wells.

The ODE (4-1) is transformed into a first-order system to fit into the setting (2-1).
For the tests, N = 4 collocation points have been used and n = 15 equidistant time
steps. The numerically observed exact SDC contraction factor varies roughly in a
range [0.15, 0.24]. For simplicity, a fixed value of 0.2 has been used for computing
local tolerances. For the Lipschitz condition (3-3), we notice that f ′ has values with
purely imaginary spectrum, and estimate L f (τ )=maxy∈B‖I+τ f ′(y)‖ numerically
by evaluating f ′(y0) in each step using Monte Carlo integration of V ′′. In each
time step, the initial iteration error ‖y[0]− yc‖ is estimated by substituting a single
explicit Euler step for yc, which here yields a reasonable estimation error of usually
less than 50% with a minor impact on local tolerances.

The results shown in Figure 8 indicate that the inexact SDC method works
essentially as expected, even though the obtained errors ‖y(T )− yc(T )‖ are smaller
than the target value TOL by one to two orders of magnitude. This is probably
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due to the error propagation result (3-5) reflecting the worst case rather than the
average case. Replacing the generously used triangle inequality by sharper bounds,
however, would require not only prescribing the magnitude of the evaluation error
but also restricting its direction. If possible and practicable at all, this would require
the error analysis to be very much specific for particular problems or right-hand
side evaluation schemes.

The interpretation that the observed, better than desired accuracies are due to
average versus worst case is supported by the observed inexact SDC contraction
rates shown in Figure 8, right. With an exact SDC contraction rate ρ ≈ 0.2, the
targeted inexact contraction rate is ρ1/(d+1)

≈ 0.58, very close to the worst cases
observed in actual computation. There is, however, a significant gap between the
best and the worst encountered contraction rates, suggesting that the worst-case
behavior is captured well by the theoretical derivations.

Conclusion

The theoretically optimal choice of iteration counts and local tolerances when
evaluating basic steps in SDC methods as derived here allows significant savings in
computational effort compared to naive strategies. Effort reduction factors between
two and six have been observed in examples. Thus, exploiting the inexactness that
is possible in SDC methods appears to be attractive for expensive simulations.

The local tolerances are defined in terms of problem-dependent quantities, in
particular Lipschitz constants L f , initial iteration error ‖y[0]− yc‖, and contraction
factor ρ of exact SDC iterations, which are usually not directly available a priori. For
a practical implementation of the optimal choice, adaptive methods based on cheap
a posteriori estimates of these quantities are needed. We have considered a particular
weak model of error type: independent errors for each evaluation, which are likely
to line up to the worst case. Correspondingly, worst-case error bounds have been
derived and optimized. In concrete computational problems, often more of the error
structure is known, and slightly different approaches would be more appropriate. In
sampling problems such as the smoothed molecular dynamics example, the random
errors tend to cancel out to some extent. Looking at the average behavior instead of
the worst case allows us to use larger local tolerances. On the other hand, the errors
are highly correlated in several finite element computations. Consequently, the error
differences are small, which leads to different error propagation through the SDC
iteration. Extending the approach to these settings is the subject of further research.
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Appendix: Uniqueness of work minimizer

Here we prove that for fixed local tolerance εfix, the continuous relaxation of the
work model with respect to the iteration count J is quasiconvex and thus has a
unique minimizer.

Theorem. Let

W (J )=
J + 1

(TOL− ρ J δ)d

with δ > TOL> 0, d > 0, and 0< ρ < 1. Then W has exactly one local minimizer
on ]Jmin,∞[, where Jmin = log(TOL/δ)/ log ρ.

Proof. The derivative of W is

W ′(J )=
(TOL− ρ J δ)d − (J + 1)d(TOL− ρ J δ)d−1(−δ)ρ J log ρ

(TOL− ρ J δ)2d .

We are just interested in the zeros and the sign of the derivative, and multiply with
δ−1(TOL−ρ J δ)d+1> 0 for simplification, which gives sgn W ′(J )= sgn q(J ) with

q(J ) :=
TOL
δ
− ρ J

+ (J + 1)dρ J log ρ.

We obtain q(Jmin)= (Jmin+1)dρ Jmin log ρ < 0 and q(J )→TOL/δ > 0 for J→∞.
Since q is continuous, it has an odd number of zeros in ]Jmin,∞[.

Next we consider

q ′(J )= ρ J log ρ((J + 1)d log ρ− 1)+ ρ J d log ρ

= ρ J log ρ((J + 1)d log ρ+ d − 1).

Any zeros of q ′ have to satisfy (J +1)d log ρ+d−1= 0, such that there is at most
one zero of q ′ and correspondingly at most one extremum of q . If q had more than
one zero, i.e., at least three zeros, it would have at least two extrema, which is not
the case. Thus, q has exactly one zero and consequently W exactly one extremum.
The sign of W ′ changes from negative to positive there, such that W has exactly
one local minimizer. �
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