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A THIRD ORDER FINITE VOLUME WENO SCHEME
FOR MAXWELL’S EQUATIONS ON TETRAHEDRAL MESHES

MARINA KOTOVSHCHIKOVA, DMITRY K. FIRSOV AND SHIU HONG LUI

A third order type II WENO finite volume scheme for tetrahedral unstructured
meshes is applied to the numerical solution of Maxwell’s equations. Stability
and accuracy of the scheme are severely affected by mesh distortions, domain
geometries, and material inhomogeneities. The accuracy of the scheme is en-
hanced by a clever choice of a small parameter in the WENO weights. Also,
hybridization with a polynomial scheme is proposed to eliminate unnecessary
and costly WENO reconstructions in regions where the solution is smooth. The
proposed implementation is applied to several test problems to demonstrate the
accuracy and efficiency, as well as usefulness of the scheme to problems with
singularities.

1. Introduction

Weighted essentially nonoscillatory (WENO) schemes are high order numerical
methods developed to solve hyperbolic partial differential equations (PDEs) with
solutions containing discontinuities. In a finite volume (FV) framework these
schemes can be implemented on unstructured meshes making them an attractive
option for solving problems with singularities due to geometry and/or inhomogeneity
in material properties. For linear nondispersive media the system of Maxwell’s
equations is linear, and for simple geometries it can be solved analytically. In many
practical applications the challenge in solving Maxwell’s equations is due to complex
geometrical features, broadband complex signal types, and/or inhomogeneous
material properties. In these cases, finite volume time-domain (FVTD) algorithms
are often implemented with success. FV schemes were adapted to Maxwell’s
equations from computational fluid dynamics (CFD) in the late 1980s by Shankar
et al. [26] and include both central [25; 23] and upwind formulations [26; 7; 6].

The upwind FVTD formulation based on the method of characteristics and
MUSCL reconstruction has shown good results on a wide range of problems. The
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main drawback of the MUSCL scheme is that it is only second order accurate. More-
over, in the presence of singularities, it employs a slope limiter [5; 12] to suppress
oscillations and maintain monotonicity. This unavoidably decreases the accuracy
to first order at critical points. Higher order finite volume approximation schemes
based on polynomial reconstruction are implemented in [22; 13]. These schemes are
not a good choice for problems with nonsmooth signals or heterogeneous media nor
for simulations on highly distorted meshes, where such schemes can be oscillatory
or unstable. Also flux limiters when used with higher order schemes may produce
results that are even less accurate than those by MUSCL schemes.

Essentially nonoscillatory (ENO) schemes were developed by Harten et al. [16]
to overcome the problem of order degeneracy at critical points. Instead of using
limiters to overcome a possible growth of total variation, ENO schemes use an
adaptive selection of stencils according to the smoothness of the solution. Better
accuracy near discontinuities is achieved by selecting the stencil that doesn’t contain
a singularity. ENO schemes for multidimensional unstructured meshes can be found
in [15; 1; 29], and their implementations to Maxwell’s equations in [9; 32].

WENO schemes were developed in [20] to improve the performance of ENO
schemes. The key idea of WENO schemes is to use a weighted combination of
all ENO stencils for the reconstruction. For unstructured 3D meshes there are two
types of WENO schemes. Type I WENO schemes [10; 11; 31; 24] are easier to
construct because the linear coefficients can be chosen as arbitrary positive numbers
(usually a larger linear weight is given to the central small stencil). The accuracy
of the resulting type I WENO scheme is not higher than that on each small stencil.
In this work we employ the type II WENO scheme proposed by Zhang and Shu
in [33] in which the weighted combination of second order reconstructions is third
order accurate. The scheme is more difficult to construct for unstructured meshes
as there is no freedom in selecting the linear weights. Linear weights depend solely
on the mesh geometry, and in most cases there are negative weights which create
stability issues. To overcome this, the criterion proposed in [21] can be used to
eliminate reconstructions for which linear weights are large negative numbers.

Different modifications to the computation of nonlinear weights are suggested
in the literature to improve the quality of the WENO reconstruction. For unstruc-
tured meshes the mapping technique introduced by Henrick et al. in [17] is often
suggested [33; 21]. While theoretically mapping applied to third order classical
WENO weights does not improve convergence, numerically this technique reduces
computational errors. Another approach to improve the accuracy of WENO schemes
is to modify the smoothness indicator [8]. In this work the accuracy of WENO
schemes is controlled by appropriately choosing the small parameter ε in the WENO
weights as a function of linear cell sizes. This choice was originally studied for
WENO schemes on uniform meshes in 1D by Aràndiga et al. in [2].
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This paper is devoted to an efficient application of the type II WENO scheme
to a 3D FVTD approximation of Maxwell’s equations. Based on the analysis for
1D nonuniform meshes, we implement the optimal choice of the small parameter
in WENO weights for maximum achievable spatial accuracy. A threshold for
very negative linear weights has been employed to eliminate possible instability.
Moreover, to improve CPU time we use a criterion to determine when to apply
WENO reconstruction. Basically, the WENO reconstruction is performed only for
elements with large smoothness indicators in the WENO weights. The proposed
implementation was tested on electromagnetic problems with analytic solutions to
confirm that the accuracy and nonoscillatory effect are achieved with the proposed
choices of parameters. The robustness of the type II WENO scheme for inhomoge-
neous media is also demonstrated numerically. Maxwell’s equations are challenging
due to discontinuities in the solution where the advantages of WENO schemes can
be leveraged. The implementation discussed in this paper can be applied to other
hyperbolic systems of PDEs.

The paper is organized as follows. Section 2 describes Maxwell’s equations in
time-domain and their finite volume discretization. Section 3 presents an overview
of the type II finite volume WENO scheme together with improvements necessary
for its efficient implementation. In Section 4, a 1D analysis of a third order WENO
scheme on nonuniform meshes is discussed to support the choices made for accurate
3D applications. Finally, Section 5 presents numerical validations of the proposed
implementation of a WENO scheme on tetrahedral meshes.

2. The finite volume scheme for Maxwell’s equations

Consider the propagation of electromagnetic waves in a 3D heterogeneous linear
isotropic medium with space varying electric permittivity ε = ε(x) and magnetic
permeability µ= µ(x). Given a bounded region �⊂ R3, the electric field E(x, t)
and the magnetic field H(x, t) are governed by the system of Maxwell’s equations

ε ∂E
∂t −∇ ×H= JE in [0, T ]×�,

µ ∂H
∂t +∇ ×E= JH in [0, T ]×�,

an̂×E+ bn̂× (n̂×H)= 0 on [0, T ]× ∂�,
(1)

where JE and JH are the sources consisting of imposed currents and term introduced
by scattered field formulation, and n̂ is the outward unit normal of the boundary ∂�.
Parameters a and b define different boundary conditions:

• perfect electric conductor (PEC), a = 1 and b = 0,

• perfect magnetic conductor (PMC), a = 0 and b = 1, and

• Silver–Müller absorbing boundary condition, a = 1 and b =
√
µ/ε.
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Consider the normalized quantities

x = l−1x, t = c0l−1t, (2)

where l is a reference length, c0 = (µ0ε0)
−1/2 is a dimensional speed of light in

vacuum with ε0 ≈ 8.854 · 10−12 A·s
V·m , and µ0 = 4π · 10−7 V·s

A·m . The fields E and H
can be normalized to a typical electric field intensity E by

E =
E
E
, H =

Z0

E
H, JE =

l Z0

E
JE , JH =

l
E

JH , (3)

where Z0 =
√
µ0/ε0 is the dimensional free-space intrinsic impedance. Then the

system (1) can be written in nondimensional form as
εr
∂E
∂t −∇ × H = JE in [0, c0l−1T ]×�,

µr
∂H
∂t +∇ × E = JH in [0, c0l−1T ]×�,

ar n̂× E+ br n̂× (n̂× H)= 0 on [0, c0l−1T ]× ∂�,

(4)

where εr=ε/ε0,µ=µ/µ0, ar=a, and br=b/Z0. For a finite volume discretization,
the first two equations of (4) are written in conservative form as

α
∂U
∂t
+∇ · F(U)= J,

where

U =
[

E
H

]
, F(U)=

[
F1(U) F2(U) F3(U)

]T
, Fi =

[
−ei × H

ei × E

]
,

and

α =

[
εr 0
0 µr

]
, J =

[
JE

JH

]
.

Consider a partition of the bounded domain � ⊂ R3 into a tetrahedral mesh
�T =

⋃N
i=1 T i . It is assumed that material properties are constant in each cell Ti .

Integrating (4) over each tetrahedron Ti and defining the cell averaged values of a
given function u as ui = (1/|Ti |)

∫
Ti

u dV , the semidiscrete finite volume scheme
for Maxwell’s equations is derived:

αi
∂U i

∂t
+

1
|Ti |

∫
∂Ti

n̂ · F d S = αi
∂U i

∂t
+

1
|Ti |

4∑
j=1

|Si j |n̂ · F|Si j = Ji , (5)

where n̂ is the outward unit normal of the tetrahedron boundary ∂Ti consisting
of four triangular surfaces Si j , j = 1, . . . , 4. Fluxes in (6) are computed using
physical properties on elements Ti and T j . Physical properties are the same inside
homogenous media and different on boundaries between dielectrics. To approximate
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the flux on each triangular surface Si j , an upwind scheme based on the Steger–
Warming flux vector splitting [30] is used. The splitting is based on the method of
characteristics and separates the flux on a face into outgoing and incoming parts
according to the sign of the eigenvalues of a 6× 6 flux matrix [7]. An application
of the flux splitting on each face Si j of a tetrahedron Ti gives the upwind finite
volume scheme

n̂ · F|Si j =

[
−n̂i j ×[n̂i j × (Ei j − E j i )+ (Zi Hi j + Z j H j i )]/(Zi + Z j )

n̂i j ×[−n̂i j × (Hi j − H j i )+ (Yi Ei j + Y j E j i )]/(Yi + Y j )

]
, (6)

where Zi =
√
µi/εi denotes the intrinsic impedance, Yi = Z−1

i , and n̂i j denotes
the outward unit normal of Si j . The surface averaged electromagnetic fields con-
sisting of outgoing (Ei j , Hi j ) and incoming (E j i , H j i ) plane wave contributions
are approximated with the desired accuracy from cell averaged values on Ti and
its neighbors. Third order approximations of the field components can be obtained
with the four-point Gaussian quadrature rule [18; 33]

Ui j =

4∑
k=1

gkU(x( j)
k ), (7)

where gk and x( j)
k are the Gaussian quadrature weights and points, respectively.

At each Gaussian quadrature point x( j)
k , a third order WENO reconstruction is

implemented to approximate the components of U(x( j)
k ) using the fields averages.

3. Third order WENO reconstruction on tetrahedra

In this work we employ the type II third order WENO scheme developed by
Zhang and Shu [33]. Its key idea is to construct a nonlinear combination of
second order reconstructions on small stencils {Sl}

s
l=1 that gives a third order

accurate approximation of a smooth solution on the big stencil S =
⋃s

l=1 Sl for
each quadrature point x( j)

k . Therefore, the main advantage over the type I WENO
scheme is that much more compact stencils are used to achieve third order accurate
nonoscillatory numerical solutions.

The big stencil S = {Vm}
r
m=0 is formed by the cell V0 = Ti and two layers of

its neighbors, and consists of r ≤ 17 elements. A third order approximation of u
at each quadrature point x( j)

k is obtained from a quadratic polynomial p2(x) for
which

u0 =
1
|V0|

∫
V0

p2(x) dV . (8)

In local variables

ξ = (ξ1, ξ2, ξ3)= ξ(x)=
x− x0

h
, h = |V0|

1/3, (9)
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where x0 is the barycenter of V0, the quadratic polynomial p2(x) can be written as

p2(x)=
∑

0≤i1+i2+i3≤2

ai1i2i3ξ
i1
1 ξ

i2
2 ξ

i3
3 . (10)

Coefficients ai1i2i3 are computed by matching the cell averages of p2(x) on every
element of S \ {V0} to the cell averages of u in a least square sense [4]. To avoid
computation of integrals [ξ i1

1 ξ
i2
2 ξ

i3
3 ]m over each element Vm , we use the approach

from [22]. At the k-th quadrature point on the j-th face x( j)
k , the third order

reconstruction polynomial is given by

p2(x
( j)
k )=

r∑
m=0

cmum . (11)

The coefficients cm , m=1, . . . , r , depend on the geometry only and are precomputed
for each quadrature point x( j)

k at initialization.
Each small stencil consists of four elements from the big stencil, and includes

the target element V0. Typically there are up to s = 16 candidates for small stencils⋃s
l=1 Sl = S [33]. For each small stencil Sl = V0 ∪ {V

(l)
m }

3
m=1, a linear polynomial

p(l)1 (x)= a(l)0 +
∑3

i=1 a(l)i ξi is constructed using a similar procedure as for p2(x
( j)
k ).

Just as with the big stencil, the coefficients c(l)m in

p(l)1 (x
( j)
k )=

3∑
m=0

c(l)m u(l)m (12)

depend on the local geometry only and are precomputed at initialization.
A third order type II WENO reconstruction is built as a nonlinear combination

of linear polynomials p(l)1 . The nonlinear weights of the WENO scheme are defined
using the weights of the third order linear reconstruction. For each quadrature point
x( j)

k of the face S j , the linear weights {γl}
s
l=1 are such that the linear combination

of polynomials p(l)1 x( j)
k is closest to p2x( j)

k . The weights for each Gaussian point
are found from the system of linear equations constructed from two parts. The first
part is formed by taking u = 1, ξ 2

1 , ξ
2
2 , ξ

2
3 , ξ1ξ2, ξ1ξ3, ξ2ξ3 in

u(x( j)
k )=

s∑
l=1

γl p(l)1 (x
( j)
k ). (13)

The second part is constructed using the requirement that

p2(x
( j)
k )

1
=

s∑
l=1

γl p(l)1 (x
( j)
k ) (14)

holds for an arbitrary u, where 1
= represents the equality in the least square sense.

Solution of two systems together gives the optimal linear weights for the type II
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third order linear reconstruction of u at the quadrature point x( j)
k :

uLin(x( j)
k )=

s∑
l=1

γl p(l)1 (x
( j)
k ). (15)

While the reconstruction based on linear weights works well for smooth solutions
and relatively good unstructured meshes, our goal is to adapt it to the case where
the solution is not smooth and the mesh quality is arbitrary. We still take a linear
combination of the reconstructions using small stencils, but now so-called nonlinear
weights {ωl}

s
l=1 are employed. Those are designed so that ωl ≈ γl in cells where

the solution is smooth (so third order accuracy is maintained) and ωl ≈ 0 otherwise
to suppress oscillations. The classic WENO weights are defined as

ωl =
ω̃l∑s

m=1 ω̃m
, ω̃l =

γl

(ε+SIl)2
, (16)

where ε is a small number traditionally chosen to be between 10−2 and 10−40 to
avoid division by zero, and SIl is the smoothness indicator on the l-th small stencil:

SIl =

3∑
i=1

∫
T0

|T0|
−1/3

(
∂p(l)1 (x)
∂xi

)2

dV . (17)

As was pointed out in [2; 17], the choice of ε has a crucial effect on the accuracy of
classic 1D WENO reconstructions. It was shown that SIl ∼ h2 for smooth solutions
and SIl ∼ h4 near critical points, suggesting ε ∼ h2 as an optimal choice to preserve
the accuracy near critical points. Assuming that this dependence is even more
important for reconstructions on 3D unstructured meshes with high ratios between
linear cell sizes, we implemented the choices

εi = hk
i , k = 1, 2, 4, (18)

in numerical experiments. These choices are based on the accuracy analysis for
the 1D WENO3 scheme which will be presented in the next section. As suggested
in [33] we also employ the mapped weights technique [17].

Now to form the type II WENO reconstruction at the point x( j)
k , we replace the

linear weights γl in (15) by the nonlinear ωl defined in (16)

uWENO(x( j)
k )=

s∑
l=1

ωl p(l)1 (x
( j)
k ). (19)

Since the type II WENO scheme uses smaller stencils than type I WENO, linear
weights are completely dependent on the geometry. In 3D problems with complex
geometry, the mesh quality is hard to control. The least square solution for linear
weights always gives some negative weights. For mildly negative weights, the
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splitting technique from [27] is implemented. But on unstructured meshes there is
always a small percentage of large negative linear weights which compromise the
stability of the computation. To overcome this Liu and Zhang in [21] proposed to
replace approximations for which

max
l
(|γl |) > ζ, 1≤ ζ ≤ 10, (20)

by a more expensive type I WENO reconstruction. To have the same compact stencil
in all reconstructions, we replace a type II WENO reconstruction at quadrature
points where (20) holds with a third order polynomial reconstruction (11). In
numerical experiments we did not encounter any problem with such substitution
even for discontinuous solutions. This can be explained by the fact that very negative
linear weights appear only for some quadrature points of a given face. As a result the
surface integral (7) is a combination of both WENO and polynomial reconstructions.
Therefore, the WENO scheme partially compensates for the oscillatory effect of
the polynomial scheme. While using ζ values of up to 10 gives good results on 2D
triangular meshes [21], we used the upper limit of ζ = 1 on 3D tetrahedral meshes
for stability.

The CPU time for computations using a WENO scheme is significantly larger
than that for third order polynomial schemes. Therefore, from a practical point of
view, WENO schemes should only be used when their nonoscillatory properties
benefit the solution. One way to reduce computational cost is to switch between
polynomial and WENO reconstructions depending on the values of smoothness
indicators. A naive criterion, such as

max
l

SIl >
ε

2
, (21)

for WENO reconstruction can significantly reduce the computational time without
compromising either the smooth or discontinuous numerical solutions. This is
referred to as accelerated WENO (WENOA) in the numerical experiments.

4. Accuracy of third order WENO scheme on nonuniform grid in 1D

Since the numerical solution of 3D Maxwell’s equations using a WENO scheme
with a fixed small value of ε in (16) has unpredictable accuracy, we turned to a 1D
theory for selecting a proper value of ε. It was shown by Aràndiga et al. in [2] that
the accuracy of WENO schemes in 1D can be controlled by defining ε based on
the mesh size h. The focus of this section is on an analysis of a third order WENO
scheme for 1D nonuniform meshes. We use it as a guideline to choose ε in 3D
simulations.

Consider a nonuniform 1D mesh a = x1/2 < · · · < xi−1/2 < xi+1/2 < xi+3/2 <

· · ·< xN+1/2= b with sizes hi = xi+1/2−xi−1/2 on an interval Ii = [xi−1/2, xi+1/2].
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The linear polynomials p(l)1,i (x) defined on small stencils S(l)i = {Ii+l−2, Ii+l−1},
l = 1, 2, can be obtained as

p(l)1,i (x)= ui +
2hi

hi+l−2+ hi+l−1
[ui+l−1− ui+l−2]ξ, l = 1, 2. (22)

The classic WENO3 weights in 1D are defined by [20; 19]

ωl,i =
ω̃l,i

ω̃1,i + ω̃2,i
with ω̃l,i =

γl

(ε+SIl,i )p , l = 1, 2, (23)

where the linear weights are given by γ1 =
1
3 and γ2 =

2
3 , and the smoothness

indicators SIl,i , l = 1, 2, can obtained as

SIl,i=hi

∫
Ii

(p(l)1,i (x))
2
x dx=

4h2
i

(hi+l−2+hi+l−1)2
[ui+l−1−ui+l−2]

2, l=1, 2. (24)

If u(x) is a smooth function on the big stencil Si =
⋃2

l=1 S(l)i , then the finite volume
WENO3 reconstruction with weights given by (23) has the accuracy property [19]

uWENO
i+1/2 = u(xi+1/2)+ O(h2+k), (25)

provided that

ωl,i = γl + O(hk), k ∈ {0, 1}, l = 1, 2. (26)

Theorem 1. Let u(x)∈C3 on the big stencil Si . Then the smoothness indicators (24)
have the following properties.

(1) If u′(x) 6= 0 for all x ∈ Si , then

SIl,i = αi (xi )h2
i + O(h3

i ), l ∈ {1, 2}, (27)

SI2,i −SI1,i = βi (xi )h3
i + O(h4

i ) (28)

for some locally Lipschitz continuous αi (x) and βi (x).

(2) If u(x) has a point x∗ ∈ Si \ {xi } such that u′(x∗)= 0, then

SIl,i = αl,i (xi )h4
i + O(h5

i ), l ∈ {1, 2}, (29)

SI2,i −SI1,i = βi (xi )h4
i + O(h5

i ) (30)

for some locally Lipschitz continuous αl,i (x) and βi (x).
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Proof. Using the Taylor series of the primitive function U (x) =
∫ x
−∞

u(ξ) dξ
about xi , we get

SI1,i =
4h2

i

(hi−1+ hi )2
[ui − ui−1]

2

=
4h2

i

(hi−1+hi )2

(
U (xi+

1
2 hi )−U (xi−

1
2 hi )

hi
−

U (xi−
1
2 hi )−U (xi−

1
2 hi − hi−1)

hi−1

)2

=
(
u′(xi )hi −

1
3 u′′(xi )(

1
2 hi + hi−1)hi + O(h3

i )
)2
.

Similarly one can get

SI2,i =
(
u′(xi )hi +

1
3 u′′(xi )(

1
2 hi + hi+1)hi + O(h3

i )
)2
.

Let κl = hi/hi−2l−3; then

SIl,i =
(
u′(xi )hi + (

2
3 l − 1)(1

2 + κl)u′′(xi )h2
i + O(h3

i )
)2
. (31)

Therefore, we deduce (27) and (28) with

αi (xi )= [u′(xi )]
2, βi (xi )=

1+ κ1+ κ2

3
u′(xi )u′′(xi ).

Now consider the case when u′(x∗)= 0 for some x∗ ∈ Si \{xi }. Let xi−x∗= κhi

with 0< |κ|< 3
2 . Then using the Taylor series of u′(x) about xi at x∗, we get

u′(xi )= u′′(xi )κhi + O(h2
i ),

which is then substituted into (31) to derive

SIl,i = (δlu′′(xi )h2
i + O(h3

i ))
2,

where δl = κ + (
2
3 l − 1)( 1

2 + κl). Therefore, we obtain the estimates (29) and (30)
with αl,i (xi )= [δlu′′(xi )]

2 and βi (xi )= (δ
2
2− δ

2
1)[u

′′(xi )]
2. �

Theorem 2. Let u(x) ∈ C3 on the big stencil Si , and ε = Mhm in (23), for some
M > 0 and m ≥ 0. Then the following hold.

(1) If u′(x) 6= 0 for all x ∈ Si , then

uWENO
i+1/2 − u(xi+1/2)= O(h3). (32)

(2) If there is a point x∗ ∈ Si \ {xi } such that u′(x∗)= 0, then

uWENO
i+1/2 − u(xi+1/2)=

{
O(h3), m ≤ 3,
O(h2), m ≥ 4.

(33)

Proof. As in [2] we start by writing

1
(ε+SI1,i )p =

1
(ε+SI2,i )p

(
1+

SI2,i −SI1,i

ε+SI1,i

)p

. (34)
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(1) Consider the case when u′(x) 6= 0 for all x ∈ Si . Then using (27) and (28),

SI2,i −SI1,i

ε+SI1,i
=

pβi (xi )

η1 M + η2αi (xi )
hr
+ O(hr+1), (35)

where

r =max(1, 3−m)≥ 1, η1 =

{
1, m ≤ 2,
0, m > 2,

η2 =

{
0, m < 2,
1, m ≥ 2.

Using (35) in (34) and substituting into (23), we get

ω̃1,i + ω̃2,i =
1

(ε+SI2,i )p (1+ γ1ν1,i (xi )hr
+ O(hr+1)),

where ν1,i = pβi (xi )/(η1 M + η2αi (xi )) is a locally Lipschitz continuous function.
Then

ω2,i =
γ2

1+ γ1ν1,i (xi )hr + O(hr+1)
= γ2+ O(hr ).

Following the same steps, one can derive the same estimate for ω1,i . From (26)
and (25) we deduce that (32) holds on Si regardless of the value of ε.

(2) Now assume that at some point x∗ ∈ Si \ {xi }, we have u′(x∗)= 0. Then

SI2,i −SI1,i

ε+SI1,i
=

βi (xi )hr

η1 M + η2α1,i (xi )
+ O(hr+1), (36)

where

r =max(0, 4−m)≥ 0, η1 =

{
1, m ≤ 4,
0, m > 4,

η2 =

{
0, m < 4,
1, m ≥ 4.

Following the same steps as before for m ≤ 3, we get the third order estimate in (33).
For m ≥ 4 using (36) in (34) we get that

1
(ε+SI1,i )p =

1
(ε+SI2,i )p [1+ ν1,i (xi )+ O(h)],

where ν1,i (xi )= (1+βi (xi )/(η1 M+α1,i (xi )))
p
−1 is a locally Lipschitz continuous

function. Therefore,

ω2,i =
γ2

(1+ γ1ν1,i (xi )+ O(h))
=

γ2

(1+ γ1ν1,i (xi ))
+O(h)+γ2−γ2 = γ2+O(1).

The same result can be obtained for ω1,i . As follows from (25)–(26) for m ≥ 4,
WENO3 gives only second order reconstruction near the critical point x∗. �

Theorem 3. Let u(x) be a piecewise smooth function with a jump discontinuity
[u∗] = [u(x∗)] in Si \ S(l)i , l ∈ {1, 2}, at the point x∗. If ε = Mhm , where m ≥ 1,
in (23), then the WENO3 reconstruction with weights defined by (16) gives

uWENO
i+1/2 = u(xi+1/2)+ O(h2). (37)
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Proof. Assume that x∗ ∈ Si \ S(1)i ; then we have

u(1)i+1/2 = u(xi+1/2)+ O(h2), u(2)i+1/2 = u(xi+1/2)+ O([u∗]). (38)

Since SI1,i = O(hr ), r ∈ {2, 4}, and SI2,i = O([u∗]2) for ε = O(hm), we get

ω1,i = O(h2 min(m,r)
[u∗]−4), ω2,i = O(1). (39)

Therefore,

uWENO
i+1/2 =ω1,i u

(1)
i+1/2+ω2,i u

(2)
i+1/2=u(xi+1/2)+O(h2 min(m,r)

[u∗]−3)+O(h2), (40)

which, for m ≥ 1, gives (37). �

Numerical experiments support the validity of the above theory in 1D. Since
it would be much more difficult to analyze the general 3D case with unstructured
meshes, we use the analysis above to choose ε in (16) for our 3D experiments.

5. Numerical examples

In this section a set of 3D electromagnetic (EM) test problems that include plane
wave propagation in a parallel plate waveguide, the scattering of a plane wave
from a perfectly conducting (PEC) sphere, and plane wave reflection/transmission
through a dielectric prism are discussed. Numerical experiments were carried out
on an Intel i7-4790k 4.4 GHz quad core CPU with 32 GB of RAM. C++ OpenMP
is used to utilize multicore architecture. For the temporal discretization we employ
the third order strong stability-preserving (SSP) Runge–Kutta scheme [28].

Example 1: parallel plate waveguide. Consider the problem of a plane wave prop-
agation in a parallel plate wave guide. In this example the computational domain is
represented by a cube with linear size l = 2 m. We impose PEC boundary conditions
on cube faces parallel to the x-y plane, and PMC boundary condition on two faces
parallel to the z-x plane. A plane wave excited at x = −1 and propagating in x
direction is given by the boundary conditions

E in
z = f (t), H in

y =− f (t)ε1/2
0 µ

−1/2
0 , E in

x = E in
y = H in

x = H in
z = 0. (41)

The geometry of the problem is shown in Figure 1.
First consider an incoming plane wave (41) given by the Gaussian pulse

f (t)= e−b−2(t−t0)2, (42)

where b = 1.2× 10−9 s and t0 = 0.5lc−1
0 . Experiments are performed on meshes

with relatively uniform linear size of tetrahedrons equal to 0.2, 0.1, and 0.05. To
validate WENO schemes with ε = h, h2, h4 in (16) (WENO-h, h2, h4) the discrete
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Figure 1. Propagation in a parallel plate waveguide: geometry of the problem.

# of cells L2 error order L2 error order L2 error order

MUSCL Polynomial
8040 2.747358 · 10−2 1.580182 · 10−2

64076 1.263663 · 10−2 1.12 2.045965 · 10−3 2.95
554668 6.040267 · 10−3 1.06 2.235041 · 10−4 3.19

4028196 3.140725 · 10−3 0.94

WENO-h WENO-h2 WENO-h4

8040 1.338234 · 10−2 1.409145 · 10−2 1.959543 · 10−2

64076 1.942162 · 10−3 2.78 2.106160 · 10−3 2.74 5.156885 · 10−3 1.93
554668 2.133779 · 10−4 3.19 2.554968 · 10−4 3.04 1.268922 · 10−3 2.02

Table 1. Propagation in a parallel plate waveguide: L2 errors at T = lc−1
0 (l = 2 m) for

MUSCL, third order polynomial, and WENO-h, h2, h4 schemes.

L2 errors at time T = lc−1
0 are computed by

l2(U(T ))=

[∑N
i=1|Ti |

∑3
j=1

1
2(εrε0(E

j
i )

2
+µrµ0(H

j
i )

2)
]1/2[

ε0
∑N

i=1|Ti |
]1/2 . (43)

In Table 1 discrete L2 errors for WENO-h, h2, h4 schemes are compared to the
ones by MUSCL [7] and third order polynomial schemes. Comparison of time-
domain solutions at the observation point P = (0.5, 0, 0) (see Figure 1) is shown in
Figure 2. The best resolution of peaks is obtained with WENO-h, while WENO-h4

significantly distorts the solution near critical points. These results suggest that the
1D theory on the choice of ε is applicable to 3D simulations.

Table 2 shows storage requirements as well as the CPU times for MUSCL,
WENO, accelerated WENO (WENOA), and polynomial schemes. The speedup
achieved by WENOA scheme compared to WENO is due to the application of
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Figure 2. Propagation in a parallel plate waveguide: time-domain solution for the propa-
gation of Gaussian pulse at the observation point (0.5, 0, 0).

Storage (GB) CPUT (s), T = lc−1
0

# of cells MUSCL Polyn. WENO MUSCL Polyn. WENO-h2 WENOA-h2

64076 0.04 0.2 1.2 118 197 6601 851
554668 0.3 1.5 11.8 2193 3490 136194 16128

4028196 2.2 31580

Table 2. Propagation in a parallel plate waveguide: storage and CPU time for MUSCL,
third order polynomial, and WENO schemes.

the criterion maxl SIl > ε/2 for WENO reconstructions. In this case less than 5%
of all flux computations use the expensive WENO approximation. At the same
time computation of SIl itself is computationally expensive, which degrades the
performance of WENOA compared to the polynomial scheme. Therefore, a more
efficient criterion could further improve the performance of WENOA schemes.

Next consider a discontinuous signal given by

f (t)= H(t − ts)H(te− t),

where H(t) is the Heaviside step function and ts = 1
8 lc−1

0 and te = 7
8 lc−1

0 . Figure 3
shows time-domain solutions of the Ez field at the observation point P = (0.5, 0, 0)
using polynomial and WENO-h, h2, h4 schemes. The results illustrate that the 1D
analysis of the WENO3 scheme for discontinuous solutions regarding the choice
of ε is also valid for 3D numerical simulations.

Example 2: scattering from a PEC sphere. Consider the classical scattering prob-
lem of a plane wave at a PEC sphere for which the analytic series solution is known
[14; 3]. The computational domain is represented by a sphere of radius 3 m with
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Figure 3. Propagation in a parallel plate waveguide: time-domain solution in time for the
propagation of a discontinuous pulse at the observation point (0.5, 0, 0).

a sphere (PEC) of radius 0.5 m cut out at the origin (see Figure 4). The mesh
consists of smaller tetrahedrons with average edge length 0.0625 in the region
near a PEC surface and larger tetrahedrons with linear size 0.125 at the outer free
space boundary. The generated mesh contains 539332 tetrahedra with 2026 of them
containing a PEC face. The x component of the electric field of the incident plane
wave E I

x is given by the derivative of the Gaussian pulse

E inc
x =−2

t − t0
b2 Ae−(t−t0)2/b2

, (44)

where A = 1.7489× 10−9 V·s
m , b = 1.5× 10−9 s, and t0 = 6× 10−9 s.

The solution of the scattered FVTD formulation using WENO-hi , h2
i , h4

i schemes
as well as the polynomial scheme are compared to the analytic solution at the ob-
servation point shown in Figure 4. The results for the Ex field presented in Figure 5
demonstrate that WENO-h4

i generates much larger errors than those of WENO-hi

or WENO-h2
i . This again agrees with the theory for WENO3 in the 1D case.
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Figure 4. Scattering from PEC sphere: problem geometry and mesh.
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Figure 5. Scattering from PEC sphere: time-domain solution at observation points using
third order linear and WENO schemes.

Example 3: glass prism in a waveguide. The last example demonstrates how a
WENO scheme handles a problem with inhomogeneous media. This is also the test
case where a third order polynomial scheme may not be stable for a reasonable
time step. Like in the first example, consider a free space cube domain enclosed
between two parallel PEC and two PMC plates. A plane wave signal propagating
in the x direction is given by the Gaussian pulse (41)–(42). Inside the cube a
glass rhombus prism with dielectric properties εr = 2 and µr = 1 is placed. The
dimensions of the prism are shown in Figure 6. Numerical simulation using a third



WENO3 FOR MAXWELL’S EQUATIONS 103

Figure 6. Glass prim in a waveguide: problem geometry and mesh. Observation points
shown have coordinates P1 = (−0.2, 0, 0) and P2 = (0, 0, 0), and rhombus diagonals are
d1 = 0.28 and d2 = 1.0.
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Figure 7. Glass prism in a waveguide: time-domain solution at observation points P1 =
(−0.2, 0, 0) (top row) and P2 = (0, 0, 0) (bottom row) using MUSCL and WENO-h, h2

schemes on a mesh with h = 0.05 compared to the reference solution by the MUSCL
scheme on a mesh with h = 0.0125.
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order polynomial scheme is unstable for this configuration. Therefore, we only
compare numerical results obtained by WENO-h, h2 schemes on a mesh of average
linear cell size 0.05 to the result by the MUSCL scheme [7] on the same mesh.
Numerical solution by the MUSCL scheme on a finer mesh with linear cell size
0.0125 is used as a reference solution. Figure 7 shows the time-domain solution for
the Ez field as well as a pointwise error with reference solution at two observation
points (before and inside the glass prism) shown in Figure 6. We find that while the
polynomial scheme diverges for this problem, WENO schemes still converge with
better accuracy than the MUSCL scheme. We notice higher level oscillations in the
results by the WENO-h scheme compared to WENO-h2. This suggests WENO-h2

as a better choice for problems with dielectric contrasts.

6. Summary

In this paper we have successfully implemented a third order type II WENO scheme
developed in [33] to solve the linear Maxwell’s equations on tetrahedral meshes. An
efficient implementation of the scheme is challenging due to its strong dependence
on mesh geometry, mesh scale, and high computational cost. Because of the
unstructured mesh, the least square solution of the system for finding linear weights
almost always contains negative components which create unstable and inaccurate
results. To solve this problem we used a hybridization with a third order polynomial
scheme at quadrature points with very negative linear weights. Also due to irregular
geometries a small number of small stencil matrices are singular. These stencils
are removed at the initialization step to avoid polluting the linear scheme. We
also implemented specific choices of ε dependent on cell sizes in the definition of
nonlinear weights which allowed us to control both the accuracy and dissipation in
the numerical solution. In our study we used a 1D accuracy analysis as a guideline
for the 3D scheme and our numerical experiments confirmed its validity. As in earlier
work for uniform meshes in 1D [2], we found that e= h2

i for each cell is optimal for
solutions containing both smooth and singular parts. To reduce computational cost
associated with WENO reconstruction, we implemented a criterion that determines
which stencils could use cheaper polynomial reconstruction instead. The resulting
WENOA-h2 scheme is more efficient than lower order FV schemes such as MUSCL,
and is nonoscillatory and more stable than linear schemes for EM problems with
varying material properties and complex geometries.
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