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Denoising and filtering of time series signals is a problem emerging in many
areas of computational science. Here we demonstrate how the nonparametric
computational methodology of the finite element method of time series analysis
with H1 regularization can be extended for denoising of very long and noisy
time series signals. The main computational bottleneck is the inner quadratic
programming problem. Analyzing the solvability and utilizing the problem
structure, we suggest an adapted version of the spectral projected gradient method
(SPG-QP) to resolve the problem. This approach increases the granularity of
parallelization, making the proposed methodology highly suitable for graphics
processing unit (GPU) computing. We demonstrate the scalability of our open-
source implementation based on PETSc for the Piz Daint supercomputer of the
Swiss Supercomputing Centre (CSCS) by solving large-scale data denoising
problems and comparing their computational scaling and performance to the
performance of the standard denoising methods.

1. Introduction

Time series signals (i.e., data measured in intervals over a period of time) are typical
for many practical areas such as econometrics (e.g., movement of stock prices
[17]), climatology (e.g., temperature changes [39]), or molecular dynamics (e.g., in
conformational changes of the molecule [19]). The analysis of time series signals
aims to extract meaningful characteristics and understand the process which has
generated those data. Such an analysis is the key ingredient in forecasting the process
beyond the observed and measured time. However, one of the main difficulties in
the analysis of real measurements is the presence of measurement/experimental
noise. Additionally, an almost exponentially growing amount of collected data
in many practical applications requires a development of better and faster data-
driven denoising, modeling, and classification tools suitable for high performance
computing (HPC).
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Suppose we observed time series signal xt ∈ Rn , t = 1, . . . , T , (where n is the
data dimension and T is the length of time series) and those data are appropriately
described by the model function µ(t,2) with parameters 2 ∈ Rm and an additive
noise ε, i.e.,

xt = µ(t,2)+ εt , t = 1, . . . , T, (1)

where {εt } is a family of independent and identically distributed (i.i.d.) random
variables with zero expectation. The explicit model function µ(t,2) is chosen
a priori based on our knowledge of the particular application. In general, the aim of
the modeling process is to determine optimal parameters 2 such that the observed
data xt are described by (1) in the most optimal way, for example using maximum
likelihood estimation (MLE) or minimizing mean-square error. Finally, the denoised
signal can be obtain as an output of (1) with known 2 and without the presence of
the (eliminated) noise term εt .

In the first part of the introduction, we shortly review the general classification
of time series modeling methodologies based on the choice of µ. In the second
part, we investigate methods from the point of computational cost and highlight
the importance of developing the optimization algorithms for effective solution.
The final part of the introduction presents the finite element method of time series
analysis with H1 regularization (FEM-H1) methodology used in the approach
presented in this paper.

1.1. General model classification. In the simple case, the form of the model func-
tion µ is known and, for instance, it can be expressed as some a priori defined
function dependent on time. If the dimension of the underlying parameters 2 is
finite, then this method is called parametric.

For example, in the case of a linear regression

µ(t, θ0, θ1)= θ1t + θ0 (2)

the unknown model parameters θ0, θ1 ∈ R can be found using MLE (or minimizing
least-square error) as a solution of an appropriate optimization problem

[θ0, θ1] = arg min
θ0,θ1

T∑
t=1

‖xt −µ(t, θ0, θ1)‖
2. (3)

The recovered signal is obtained as values of µ(t, θ0, θ1), t = 1, . . . , T . However,
the model used (2) is valid only if the original data was generated by a linear
model — and if no nonlinear effects had a significant impact on the underlying
process.

Another example of parametric methods are hidden Markov models (HMMs).
Here, it is a priori assumed that there exist regimes such that data in each regime is



ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 109

distributed according to some explicit parametric distribution from a known and
fixed family of parametric distributions (e.g., Gaussian, Poisson, etc.). The aim
is then to search for an optimal regime-switching homogeneous Markov process
represented by unknown components of transition matrix and initial states [1].

In general, parametric methods are usually based on rather strong explicit as-
sumptions about the problem structure. These assumptions help create a tractable
finite-dimensional formulation of the problem, which can be solved analytically or
numerically and efficiently. In general, the more model assumptions are imposed,
the less general the model is — and the simpler the numerical optimization problem
to be solved is. On the other hand, imposing an unspecific parametric structure
leads to models that incorrectly describe the problem under consideration.

The way to avoid the (possibly inappropriate) restrictive a priori explicit paramet-
ric assumptions about the dynamics of the model parameters is to use nonparametric
models. In the case of nonparametric models, the dimension of the underlying
parameters 2 is infinite and we assume that optimal parameters are represented
as functions from an a priori restricted class of feasible functions. However, the
larger generality and complexity of the nonparametric models used also imposes a
much higher computational cost on the resulting infinite-dimensional optimization
problem. Therefore, the nonparametric models are much more challenging in
numerical implementation and execution.

An example of a nonparametric method is a generalized additive model (GAM)
[25]. In comparison to linear regression (2)–(3), the model function µ in GAM can
be defined as an arbitrary, nonlinear, and nonparametric smooth function from the
Sobolev space on an interval [t1, tT ] = [1, T ]

W 2([t1, tT ])=

{
µ( · ) ∈ C(2)([t1, tT ]) :

∫ tT

t1
[µ′′(t̂)]2 dt̂ <∞

}
. (4)

The optimal (i.e., sufficiently smooth) modeling function is then given by solving
the optimization problem

µ= arg min
T∑

t=1

(xt −µ(t))+ λ
∫ tT

t1
[µ′′(t̂)]2 dt̂ . (5)

Here λ > 0 represents the regularization parameter which has to be estimated [49].

1.2. Computational cost. Choosing the “most optimal” tools in every particular
application is not a trivial task and is made more difficult by the interplay of many
factors [36], most of all by the following two factors: (i) the amount of bias that
is introduced by the analysis method (for example, coming from the eventually
wrong a priori assumptions about the linearity, Gaussianity, and homogeneity of
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the underlying processes) and (ii) the computational scalability of different data-
driven algorithms — as well as the possibility to deploy these algorithms in an HPC
setting — to be able to process the data en masse.

Experience shows that the analysis algorithms that introduce the highest-potential
bias (e.g., standard linear Fourier filtering methods based on the fast Fourier trans-
form (FFT) or parametric Bayesian methods like HMM with Gaussian or Poisson
outputs and a time-homogenous Markov model assumption [36; 37; 47]) demon-
strate the best HPC scaling performance whereas the nonlinear and non-Gaussian
approaches like convolutional neural networks (CNNs) need more communication
and scale worse — so only the deployment of massively parallel GPU architectures
helped to reach the scale-up that was necessary to apply these methods to large
realistic problems [11; 46].

From the mathematical perspective, essentially all of the data analysis and
classification methods currently available in the standard analysis packages can be
formulated as the numerical algorithms for solutions of large optimization problems.

To give some examples, the standard Fourier, wavelet, and kernel filtering algo-
rithms for denoising the signals xt ∈ Rn — as well as the parameter identification
methods for support vector machine (SVM) classification, linear discriminant anal-
ysis, and linear autoregressive models (AR) — can be formulated and implemented
as solution algorithms for the same type of unconstrained quadratic minimization
problem (QP)

y = arg min
y
‖x −8y‖2,

where ‖ · ‖2 denotes the Euclidean norm, y∈Rr (r is typically much less then n), and
8 ∈ Rn×r is a known filtering matrix. Variational methods (like regularized kernel
filtering, compressed sensing, and regularized model inference) [8; 50; 48] can be
obtained by adding the regularizing inequality constraints to this convex problem:
for example, a very popular compressed sensing algorithm in a dual formulation
can be obtained by adding the linear inequality constraint ‖y‖1 ≤ ε (where ‖ · ‖1
denotes the L1 norm and ε is some a priori fixed “sparsity” parameter) to the
above unconstrained QP. Neural networks can be straightforwardly approached as
parametric nonconvex optimization problems of the type

y = arg min
y
‖x −8(y)‖2,

where 8 is some a priori fixed nonlinear operator characterizing the network
topology and y are unknown network parameters.

Finally, the nonstationary and nonparametric denoising and modeling methods
based on regularized nonconvex clustering algorithms (like the FEM-H1 methodol-
ogy developed in [20]) can be implemented as the solution of a minimization problem
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of a regularized clustering functional with equality and inequality constraints. In
following we briefly review this approach.

1.3. Nonparametric nonstationary FEM-H1 methodology. We will consider ob-
served data as time series xt ∈Rn , t = 1, . . . , T . Our aim is to find coefficients2(t)
of some model function µ(t,2) such that this function in some sense fits the data
in the best way. This fitting condition (i.e., the distance between observed data and
values of the model function) is measured by a metric g, which can be for example
defined by means of the function

g(xt ,2(t))= (xt , E[µ(t,2(t))])2. (6)

Therefore, the most appropriate parameters 2(t) can be obtained by solving the
variational problem

2= arg min
2( · )∈�2

L(2), L(2)=
T∑

t=1

g(xt ,2(t)), (7)

where L refers to a model distance function and �2 represents the space of all
feasible parameters of parameter functions2( · ) for the considered model. However,
this problem is ill posed if only one sequence of data {x1, . . . , xT } is available (this
is a typical situation for many practical applications, e.g., computational finance
or climatology, where only one historical sequence of data is available for each
particular time series). One option of regularizing this problem and making it well
posed is based on the clustering of 2(t); i.e., one can assume that there exist K
different stationary parameters 2= [21, . . . ,2K ] such that the fitness function (6)
can be expressed as a convex combination

g(xt ,2(t))=
K∑

i=1

γi (t)g(xt ,2i ),

where γk(t) ∈ {1, . . . , T } → [0, 1], k = 1, . . . , K , are so-called model indicator
functions [38; 29]. These functions define the activeness of an appropriate i-th
cluster at a given time t ; if γi (t)= 1, then the data are modeled by the i-th model
in time t . These properties can be written in the form of constraints

K∑
i=1

γi (t)= 1 for all t, 0≤ γi (t)≤ 1 for all t, i . (8)

Hence, model indicator functions could be considered switching functions between
individual models on clusters. Additionally, one can incorporate additional infor-
mation about observed processes, for example by assuming that switching between
clusters is in some sense slower than the changes of the signal caused by the presence



112 LUKÁŠ POSPÍŠIL, PATRICK GAGLIARDINI, WILLIAM SAWYER AND ILLIA HORENKO

Set feasible initial approximation 00
∈�0

while ‖Lε(2k, 0k)− Lε(2k−1, 0k−1)‖ ≥ ε

Solve 2k
= arg min2∈�2 Lε(2, 0k−1) (with fixed 0k−1)

Solve 0k
= arg min0∈�0 Lε(2k, 0) (with fixed 2k)

k = k+ 1
end while

Return approximation of model parameters 2k and approximation of model indicator
functions 0k

Algorithm 1. Outer optimization algorithm.

of the modeling error or the noise in data. In our notation, this approach means
that model indicator functions γi are smooth in some appropriately chosen function
space. For example, one can enforce the smoothness in H1 space by introducing
the Tikhonov-based penalization term

[2,0] = arg min
2∈�2
0∈�0

Lε(2, 0),

Lε(2, 0)=
T∑

t=1

K∑
i=1

γi (t)g(xt ,2i )+ ε
2

K∑
i=1

T∑
t=2

(γi (t − 1)− γi (t))2,
(9)

where�0 is a feasible set defined by conditions (8) and ε2 denotes the regularization
parameter.

This methodology was called FEM-H1, and it was introduced and developed in
[27; 28; 31; 29; 30; 32; 33]. For the unified and simplified derivation of the method,
as well as its relation to classical methods of unsupervised learning, please see [38].
Moreover, the method was extended for spatial regularization using the network
information in the graph-based form of the regularization matrix [20]. In this case,
the only difference appears in the formulation of the smoothing term.

From a numerical point of view, the problem (9) can be solved as a sequence of
split optimization problems; see Algorithm 1.

Please notice that the first optimization problem in Algorithm 1 is strongly
connected to the type of modeling problem and model used. However, if we are able
to solve the stationary variant of the problem, then this clustered problem includes
only one modification represented by the multiplication by constant coefficients γi (t).
Beyond that, this problem can be reduced into K completely independent problems;
for each cluster we are solving the stationary problem. And also the size of this
problem is typically small since we suppose that the number of clusters is reasonably
small.

One of the main challenges in applying this framework to the analysis of real time
series data (e.g., in computational finance, climatology, or neuroscience) is the high
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computational cost of the second optimization subproblem in this algorithm. Due
to this limitation, published applications of these methods are confined to relatively
small data sets [27; 28; 31; 29; 30; 32; 33]. This second optimization subproblem
is completely independent of the type application, i.e., independent of the choice
of fitness function (6). Nevertheless, the size of this problem is given by K T and
cannot be separated because of the conditions (8) and the form of regularization
term in (9). In optimization theory, the problem of this form (quadratic cost function
with a feasible set formed by linear equality and inequality constraints) is called
a quadratic programming problem (QP) [42; 14]. Therefore, if we develop the
efficient solver to deal with this main computational bottleneck of the FEM-H1
data analysis framework, then we will be able to apply the framework to very
large realistic data sets from different application areas (finance, image processing,
bioinformatics, etc.). A central goal of this paper is to provide an algorithmic
solution to this fundamental problem of the FEM-H1 framework.

Therefore, we will subsequently concentrate on the HPC solution of the problem
of unknown model indicator functions 0. For practical reasons, we define a column
vector with all (unknown) model indicator functions by

γ := [γ1, . . . , γK ] ∈ RK T

and problem (9) for constant 2 can be written in the form of block-structured QP
problem

γ := arg min
γ∈�0

Lε(γ ),

γ := [γ1, . . . , γK ] ∈ RK T ,

γi := [γi (1), . . . , γi (T )] ∈ RT ,

Lε(γ ) :=
1
T

bᵀ2γ +
ε2

T
γ ᵀHγ,

�0 :=

{
γ ∈ RK T

: γ ≥ 0∧
K∑

k=1

γk(t)= 1 for all t = 1, . . . , T
}
,

(10)

where H ∈ RK T×K T is a block-diagonal matrix, whose blocks Hi ∈ RT×T are
formed by Laplace matrices, and

b2 := [g(xt ,21), . . . , g(xt ,2K )] ∈ RK T

denotes the column block-structured vector of modeling errors [29]. Notice that
we scaled the cost function by positive coefficient 1/T to control the scale of the
function values for the cases with large T .
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The paper is organized as follows. In Section 2, we examine the solvability
and properties of the QP problem (10). Afterwards in Section 3, we present the
modification of the spectral projected gradient method for QP problems suitable for
an HPC implementation and discuss its advantages in comparison to other standard
algorithms. In our project, we are interested in the HPC implementation of the
FEM-H1 methodology to be able to deal with very long time series. From the
beginning, we consider a situation when even the input data cannot be stored and
operated on on one computational node; therefore, the distributed layout of the
vectors and matrices has to be introduced and considered during the whole solution
process. In Section 4 we briefly introduce our parallel implementation approach.
Section 5 presents the performance of our algorithm on a data denoising problem,
which is constructed to mimic the main features (like the very high noise-to-signal
ratios and non-Gaussianity of the noise) that are typical for time series from practical
applications. In contrast to the analysis of the “real life” practical data (where the
underlying “true signal” is hidden in the noise and is not known a priori), analysis
of this test data that we propose allows for a direct comparison of the introduced
method to different standard denoising algorithms. It also allows the assessment of
the denoising performance of the methods for various ratios of signal-to-noise —
an assessment that cannot be achieved for the “real life” data. We also present
the scalability results of our implementation on the Piz Daint supercomputer. In
this section, we show the efficiency of FEM-H1 methodology in comparison with
other standard denoising approaches. We show that our method outperforms other
standard denoising methods in terms of the denoising quality in the situations when
the signal-to-noise ratio of the data becomes small.

Finally, Section 6 concludes the paper and presents some ideas for our future
research.

2. Solvability of inner QP

For the simplicity of our analysis, we rewrite the problem (10) using the convenient
notation

min
x∈�

f (x), f (x) := 1
2 xᵀAx − bᵀx, (11)

where A := (ε2/T )H ∈RK T×K T is a symmetric positive semidefinite (SPS) Hessian
matrix of a quadratic cost function f :RK T

→R and b :=−(1/T )bᵀ2 is the so-called
right-hand side vector. This name came from the necessary optimality condition
for the unconstrained problem �= RK T , which is given by [42; 7; 14]

∇ f (x)= Ax − b = 0 ⇐⇒ Ax = b. (12)
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Since Hessian matrix A of the quadratic function f is SPS, this cost function is
continuous and (not strictly) convex. Moreover, the null space (kernel) is given by

Ker A= span{[1ᵀ,0, . . . ,0]ᵀ, [0,1ᵀ,0, . . . ,0]ᵀ, . . . , [0, . . . ,0,1ᵀ]ᵀ} ⊂RK T , (13)

where we denote 1 := [1, . . . , 1]ᵀ ∈ RT and 0 := [0, . . . , 0]ᵀ ∈ RT .
The feasible set �⊂RK T is a (nonempty) bounded closed convex set, and it can

be equivalently defined by

�= {γ ∈ RK T
: γ ≥ 0∧ Bγ = c},

where B := [I, . . . I ] ∈ RT×K T , c := 1, and I ∈ RT×T denotes the identity matrix.
Using this notation, we can easily conclude that the optimization problem (11) is a
QP problem with the SPS Hessian matrix, linear equality constraints, and bound
constraints

min 1
2 xᵀAx − bᵀx subject to Bx = c, x ≥ 0. (14)

The existence of a solution of (14) is implied by the Weierstrass extreme value
theorem: the real-valued cost function is continuous, and the nonempty feasible set
is bounded.

However, the uniqueness of this solution is not so straightforward. It is given by
the relationship between the null space (kernel) of Hessian matrix A, linear term b,
and the feasible set �, since the differences between solutions lies in this vector
space. For instance, if A is symmetric positive definite (SPD), then the cost function
is strictly convex and the solution is unique on any nonempty closed convex feasible
set [14]. Unfortunately, in our case the Hessian matrix is only SPS and the solution
is not unique for an arbitrary feasible set. For example in the unconstrained case,
if � := Rn , then the problem could possibly be nonsolvable; if b /∈ Im A, then the
linear system (12) has no solution. If b ∈ Im A, then the system of all solutions
of the unconstrained problem is given by x = A+b + d, where A+ denotes the
Moore–Penrose pseudoinverse of the singular matrix A and the vector d represents
an arbitrary vector from (in this case nontrivial) Ker A. Therefore, all solutions of
the problem differ by the vector from Ker A.

At first, we present the generalization of previous observations from the uncon-
strained case to solutions of a problem (14).

Lemma 1. Let x1, x2 be two solutions of problem (14). Then

x1− x2 ∈ Ker A∩Ker B.

Proof. Let us denote d := x2− x1. Then using the definition of a quadratic cost
function f and simple manipulations, we obtain

f (x2)= f (x1+ d)= f (x1)+ dᵀ∇ f (x1)+
1
2 dᵀAd. (15)



116 LUKÁŠ POSPÍŠIL, PATRICK GAGLIARDINI, WILLIAM SAWYER AND ILLIA HORENKO

We suppose that both x1 and x2 are minimizers (both f (x1) and f (x2) are minimal
values of f on the feasible set); therefore, f (x1)= f (x2). Using this and comparing
sides of equality (15), we can write

1
2 dᵀAd =−dᵀ∇ f (x1). (16)

The left side of this equation is always nonnegative because A is SPS. Moreover,
the right side is nonpositive because x1 is a solution of the convex optimization
problem with differentiable f and the necessary optimality condition is given by [7]

∇ f (x1)
ᵀ(y− x1)≥ 0 for all y ∈�.

Combining these two inequalities, we obtain

dᵀAd = 0 ∧ dᵀ∇ f (x1)= 0. (17)

The first equality implies d ∈ Ker A.
We suppose that both of the solutions belong to the feasible set; therefore, they

satisfy constraint conditions. From equality conditions for x2 and using Bx1 = c,
we get

c = Bx2 = B(x1+ d)= Bx1+ Bd = c+ Bd;

therefore, Bd = 0 or equivalently d ∈ Ker B. �

In the proof of the previous lemma, we did not yet use one important property,
which appears in (17). Using d ∈ Ker A from the first equality of (17), we get
equivalent condition

dᵀ∇ f (x1)= dᵀ(Ax1− b)=−dᵀb = 0

or equivalently (using d ∈ Ker A∩Ker B; see Lemma 1)

b ⊥ Ker A∩Ker B.

This condition forms the sufficient condition for the possible existence of two
different solutions of the general QP problem (14).

However, these solutions could be constrained by additional inequality constraints
and the full system of necessary conditions is more complicated. Let us introduce a
Lagrange function [42; 14] corresponding to the problem (14):

L(x, λE , λI ) :=
1
2 xᵀAx − bᵀx + λᵀE(Bx − c)− λᵀI x, (18)

where λI and λE are Lagrange multipliers corresponding to the equality and in-
equality constraints. So-called Karush–Kuhn–Tucker (KKT) optimality conditions
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are given by

Ax − b+ BᵀλE − λI = 0,

Bx − c = 0,

x, λI ≥ 0,

[x] j [λI ] j = 0 for all j = 1, . . . , K T ,

(19)

where we use the notation [v] j to denote the j-th component of vector v.
Additionally, we can utilize the block-diagonal structure of our specific problem

(10) given by the decomposition into clusters. Let us denote the block of matrix A
by Â ∈ RT×T and corresponding blocks of vectors xk, bk, λI k ∈ RT , k = 1, . . . , K .
Then we can write the first KKT system in a form

Âxk − bk + λE + λI k = 0, k = 1, . . . , K .

Now we can sum all these equations to get

Â
( K∑

k=1

xk

)
−

K∑
k=1

(bk + λI k)+ KλE = 0,

and since from the equality constraint we have
∑K

k=1 xk=1 and 1∈Ker Â (see (13)),
we can write

λE =
1
K

K∑
k=1

(bk + λI k) (20)

and substitute back into first KKT condition (19). Using the definition of a matrix B,
we obtain

Ax − Qb− QλI = 0, Q := I −
1
K

BᵀB. (21)

Here the orthogonal matrix Q ∈ RK T×K T represents the projector onto Ker B.
Using KKT optimality conditions and the block structure of the problem, we are

able to prove the following lemma, which gives the relationship between Lagrange
multipliers corresponding to different solutions.

Lemma 2. Let x1, x2 be two different solutions of the problem (11) and let λ1I ,

λ1E , λ2I , λ2E be corresponding Lagrange multipliers in KKT system (19). Then

λ1I = λ2I and λ1E = λ2E .

Proof. We have already shown that the Lagrange multipliers corresponding to
equality constraints are uniquely given by the values of the Lagrange multipliers
corresponding to the inequality constraints (20). Therefore, in the proof we will
focus on a relationship between λ1I and λ2I .
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Let us consider two different solutions x1 and x2. These solutions satisfy all
KKT conditions (19) and (21):

Ax1− Qb− Qλ1I = 0, Ax2− Qb− Qλ2I = 0,

x1, λ1I ≥ 0, x2, λ2I ≥ 0,

[x1] j [λ1I ] j = 0, [x2] j [λ2I ] j = 0.
Let us denote

x2− x1 =: d, λ2I − λ1I =: p (22)

and substitute this into the first KKT condition for (x2, λ2I ):

A(x1+ d)− Qb− Q(λ1I + p)= 0. (23)

Since d ∈Ker A (see Lemma 1) and using the first KKT condition for (x1, λ1I ), we
can write (23) in the form

Qp = 0 =⇒ p ∈ Im Bᵀ.

Now we focus on the inequality conditions. We use our notation (22) and substitute
into KKT conditions (for all j = 1, . . . , K T ):

[x2] j − [d] j ≥ 0, [x1] j + [d] j ≥ 0,

[λ2I ] j − [p] j ≥ 0, [λ1I ] j + [p] j ≥ 0.

We multiply these inequalities by nonnegative numbers [λ2I ] j , [λ1I ] j , [x2] j , [x1] j

and use complementarity KKT conditions. We get

[d] j [λ2I ] j ≤ 0, [d] j [λ1I ] j ≥ 0,

[p] j [x2] j ≤ 0, [p] j [x1] j ≥ 0.

Adding complementarity conditions with substitution (22) and using original com-
plementarity conditions

−[d] j [λ2I ] j − [p] j [x2] j + [d] j [p] j = 0,

[d] j [λ1I ] j + [p] j [x1] j + [d] j [p] j = 0,
we end up with

[d] j [p] j = 0 for all j = 1, . . . , K T . (24)

Let us remark that this condition is much stronger than dᵀ p = 0, which could be
obtained directly from

d ∈ Ker A∩Ker B,

p ∈ Im Bᵀ,

using Ker B ⊥ Im BT [35].
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Now we are ready to prove that p = 0. Since p ∈ Im Bᵀ, there exists α ∈ RT

such that

pk = α for all k = 1, . . . , K .

Suppose by contradiction that there exists an index i ∈ {1, . . . , T } such that [α]i 6= 0.
Due to (24) corresponding components of d have to be zero, i.e.,

[d]i = [d]i+T = · · · = [d]i+(K−1)T = 0. (25)

However, if we suppose that d 6= 0 (solutions x1 and x2 are different), then the
vector d with property (25) is not from Ker A (see (13)), which is a contradiction.
Therefore, p = 0. �

In the general case, we still cannot prove the uniqueness conditions. The following
presents the situation when our problem (11) has an infinite number of solutions:

Lemma 3. Let us consider the problem (11) with

b ∈ Im Bᵀ

and K ≥ 2. Then this problem has an infinite number of solutions. Moreover, one
of these solutions is given by

x =
1
K

1. (26)

Proof. At first, we prove that (26) is a solution. This point is not on the boundary
of a feasible set; therefore, we can ignore the inequality constraints — all of them
are satisfied and correspondingly λI = 0. The first KKT condition (21) is given by

Ax = Qb.

Since Q is an orthogonal projector onto Ker B and we suppose b ⊥ Ker B, the
right-hand side of this equation is equal to 0. Notice that x ∈ Ker A; therefore, the
left-hand side is also equal to zero and the first KKT condition is satisfied. Moreover,
the equality constraint could be also easily checked; therefore, x is solution.

Now it remains to show that there exists at least one additional solution, i.e., that
there exists a nonzero vector d ∈ Ker A∩Ker B such that

x + d ∈�.

Since we suppose K ≥ 2, the vector space Ker A ∩Ker B is nontrivial and it is
possible to choose a nonzero vector from this space. Additionally, x does not belong
to the boundary of �; therefore, there exists a nonzero vector in any direction. �
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3. Spectral projected gradient method for QP problems

There exist several types of algorithms for solving a general QP problem (14). Since
the manipulation with both constraint types is usually difficult, these algorithms
are based on elimination of one type of constraint in the outer loop, and then they
solve the sequence of inner problems with the remaining type of constraint.

To be more specific, one can use popular interior-point (IP) methods [42; 51].
These methods enforce the inequality constraints using a barrier function:

min
Bx=c, x≥0

f (x)≈ min
Bx=c

f (x)+µ
T∑

i=1

log xi .

Here µ > 0 represents the barrier parameter. Using this approach, the algorithm
transforms the original KKT system with inequalities (19) to the system of nonlinear
equations with so-called duality gap µ. The new problem is not equivalent to the
original, but as the duality gap approaches zero, it becomes a better and better
approximation. The barrier function increases all function values near the boundary
of the feasible set to create an impenetrable barrier for a step-based algorithm which
solves the inner problem with the remaining equality constraints. Usually µ is
not implemented as a constant but is a sequence µk → 0, and the solution of a
previous inner problem is used as an initial approximation of the inner algorithm
for a new µk+1. Since the nonquadratic term (logarithm) is added to the original
quadratic function f , the corresponding KKT system of this inner problem is
nonlinear. To solve this system, one can use Newton-type methods with step size
control to be sure that the new step will not jump through the barrier. Newton-type
methods for solving nonlinear systems introduce the sequence of linear equations
which have to be solved. For more details, see [42; 51].

Another approach is to deal with equality constraints first. This can be performed
using augmented Lagrangian methods [42; 14]. The algorithm enforces the equality
constraints using a penalty term:

min
Bx=c, x≥0

f (x)≈min
x≥0

f (x)+ ρ‖Bx − c‖2.

Again, the new problem is not equivalent to the original one, although if ρ→∞,
then ‖Bx − c‖→ 0. Therefore, the penalty parameter ρ is usually implemented as
the increasing sequence. The main advantage of this approach is the structure of
the inner problem with inequalities — this new problem is again a QP. However,
the Hessian matrix of the new problem is given by

∇
2( f (x)+ ρ‖Bx − c‖2)= A+ ρBᵀB;



ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 121

therefore, since the condition number depends on the value ρ and while ρ→∞, the
problem becomes harder and harder to solve. Similar to the interior-point methods,
there exists extensive theory about the connection between the stopping criterion
for solving ill-conditioned inner problems and the value of a penalty parameter; see
the semimonotonic augmented Lagrangian algorithm of [14] or [16]. The inner QP
problem can be solved using the interior-point method, active-set algorithms, or
projected gradient methods. In the case of bound constraints, the projection onto a
feasible set is trivial. Therefore, in the case of the active-set algorithm and projected
gradient methods, the inequality constraints are satisfied accurately, which is not
the case for the interior-point methods. The barrier function makes it impossible to
find the solution on the boundary of a feasible set, because in that case the value of
a barrier term is equal to infinity.

This property brings us to the main disadvantage of both approaches. In the
case of interior-point methods, it is impossible to satisfy inequality constraints
accurately. In the case of the penalization technique, it is impossible to satisfy
equality constraints exactly.

Fortunately, our QP problem (10) is not a general QP (14). To be more specific,
the feasible set in our case is a separable set composed of T simplexes of size K .
There exists an efficient algorithm for computing the projection of a general point
onto simplex

P�t (y) := arg min
x∈�t
‖y− x‖,

�t :=

{
γt ∈ RK

: γt ≥ 0∧
K∑

k=1

[γt ]k = 1
}
, t = 1, . . . T,

γt := [γ1(t), . . . , γK (t)]ᵀ.

The algorithm was presented in [10], and it computes the projection onto the simplex
of dimension K in at most K steps; see Algorithm 2.

If we use these projections in our algorithm, all constraint conditions will be
satisfied accurately. Moreover, computation of the projection can be performed as T
independent processes, and since T is the largest parameter of problem dimension,
this approach increases the granularity of the overall solution process — making
it suitable for GPU computation. We can also use the value of the original cost
function to stop our algorithm with respect to sufficient decrease given by demands
from Algorithm 1.

Therefore, we are mainly interested in the projected gradient descent methods,
i.e., in the algorithms which use x0

∈ � as an initial approximation and suitable
step lengths αk > 0 to generate the approximations of the solution by

xk+1
= P�(xk

−αk∇ f (xk)), k = 0, 1, . . . . (27)
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Given arbitrary y ∈ RK

if K = 1 then set P(y) := 1 and stop
Sort y in ascending order and set k := K − 1
while k > 0

α :=
(∑K

j=k+1[y] j − 1
)
/(K − k)

if α > [y]k then α̂ := α and k := −1
else k := k− 1

end while
if k = 0 then α̂ :=

(∑K
j=1[y] j − 1

)
/K

Set [P(y)]k :=max{[y]k − α̂, 0} for all k = 1, . . . , K
Return P(y)

Algorithm 2. Projection onto simplex [10].

In this case, the feasibility of generated approximations is enforced by using the
projections, and the descent of the object function is induced by using −∇ f (x),
which is generally the best local decrease direction. One of the most efficient
projection gradient methods is a spectral projected gradient method (SPG) [5].
The first part of one SPG iteration is based on generating the point using (27)
with step size defined by the Barzilai–Borwein algorithm (BB) [3]. However, the
projected variant of BB is not convergent in general and the original proof of
convergence cannot be applied [12] and an additional line-search technique has to
be implemented.

In this section, we shortly review both components of SPG, i.e., the projected BB
method and additional generalized Armijo condition. The method was developed to
solve general optimization problems, and in this paper, we add our own modification
for solving QP problems using the properties of the quadratic objective function.

Let us follow [45]. BB is the nonmonotone gradient descent method for solv-
ing unconstrained convex optimization problems. These methods are based on a
construction of a sequence of solution approximations using the recursive formula

xk+1
= xk
−αk gk, k = 0, 1, . . . , (28)

with a step size αk ∈ R+ and a vector of steepest descent −gk
:= −∇ f (xk). The

most popular gradient descent method is the steepest descent method (SD, first
presented by Cauchy [9]). This method uses the step length, which minimizes the
function f (xk+1) using locally optimal step size

αk = arg min
α∈R

f (xk
−α∇ f (xk))=

〈gk, gk
〉

〈Agk, gk〉
, (29)

which leads to the monotone descent of the objective function.
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However, the step size of BB is based on a different idea. To briefly review the
relation of BB for the solution of unconstrained problems to Newton’s method for
solving a scalar nonlinear equation

g(x)= 0, g : R→ R,

let us replace the derivative g′(xk) in Newton’s method by its secant approximation
to get

xk+1
= xk
−

1
g′(xk)

g(xk)≈ xk
−

xk
− xk−1

g(xk)− g(xk−1)
g(xk). (30)

Denoting gk
= g(xk)= f ′(xk)=∇ f (xk) and

αk =
xk
− xk−1

gk − gk−1 , (31)

we can see that the secant method (30) can be considered as a gradient descent
method (28). If g(x) : Rn

→ Rn , then we cannot evaluate αk by (31), but we can
assemble the secant equation

1
αk
(xk
− xk−1)= gk

− gk−1. (32)

After denoting
sk
= xk
− xk−1, gk

− gk−1
= Ask

and solving (32) in the least-square sense

αk = 1/ arg min
β∈R

(〈sk, sk
〉β2
− 2〈Ask, sk

〉β +〈Ask, Ask
〉)

and some simplifications, we get

αk =
〈sk, sk

〉

〈Ask, sk〉
. (33)

This is the step size of BB. The proof of convergence with estimates for solving the
unconstrained QP problem (i.e., (14) with �= Rn) was presented in [13].

However, the projected variant of BB (i.e., (27) with (33)) is not convergent in
general and the original proof of convergence cannot be applied [12]. One option
how to enforce the convergence of the method is to use an additional line-search.
Let us denote the difference

gP
αk
(xk)= P�(xk

−αk∇ f (xk))− xk (34)

as a projected gradient at point xk
∈� with the step length αk > 0. To enforce the

convergence, the SPG algorithm uses an additional line-search step

xk+1
= xk
+βkdk (35)
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Figure 1. Projected gradient descent method with the additional line-search in two steps.
Left: computation of projected gradient. Right: an additional line-search.

with dk := gP
αk
(xk) and an appropriate choice of the step size βk ∈ (0, 1]. The

method with these two steps (computation of the projected gradient and an additional
line-search) is demonstrated in Figure 1.

The next lemma demonstrates the reason for using the projected gradient as a
search direction in (35): it is a descent direction.

Lemma 4. Let x ∈�, α > 0, and gP
α (x)= P�(x −α∇ f (x))− x 6= 0. Then

〈gP
α (x),∇ f (x)〉< 0. (36)

Proof. We suppose �⊂ Rn is a closed convex set; therefore [4],

〈P�(y)− P�(z), y− z〉 ≥ ‖P�(y)− P�(z)‖2 for all y, z ∈ Rn.

If we choose y = x −α∇ f (x) and z = x = P�(x), then we can estimate

−α〈gP
α (x),∇ f (x)〉 = 〈gP

α (x), (x −α∇ f (x))− x〉

≥ ‖gP
α (x)‖

2 > 0. �

The SPG algorithm uses the Grippo–Lampariello–Lucidi method (GLL) [21]
to find appropriate step size βk . This algorithm is based on a bisection method to
satisfy the so-called generalized Armijo condition

f (xk
+βkdk) < fmax+ τβk〈∇ f (xk), dk

〉. (37)

Here τ ∈ (0, 1) represents a safeguarding parameter and

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}.

The main difference between this generalized version and the original Armijo
conditions [42] is in the utilization of function values in m previous approximations
instead of using only the previous f (xk−1). This approach supplies the nonmono-
tonic behavior of BB and at the same time controls the descent. The proof of
convergence of SPG is based on satisfying the generalized Armijo condition in
every step [5]. We present SPG by Algorithm 3 and GLL by Algorithm 4.
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Given cost function f : Rn
→ R, initial approximation x0

∈�, projection onto feasible set
P�(x), safeguarding parameters 0< αmin� αmax, precision ε > 0, and initial step size
α0 > 0

k := 0
while ‖P�(xk

−∇ f (xk))− xk
‖> ε

dk
:= P�(xk

−αk∇ f (xk))− xk

Compute step size βk using GLL
xk+1
:= xk

+βkdk

sk
:= xk+1

− xk

yk
:= ∇ f (xk+1)−∇ f (xk)

if 〈sk, yk
〉 ≤ 0 then

αk+1 := αmax

else
αk+1 :=min{αmax,max{αmin, 〈sk, sk

〉/〈sk, yk
〉}}

end if
k := k+ 1

end while
Return approximation of solution xk+1

Algorithm 3. The original SPG method [6].

The main bottleneck of GLL is the computational complexity, which cannot be
estimated in general. To be more specific, it is hard to say when the bisection will
be finished.

The SPG was developed to solve more general optimization problems on convex
sets. In our problems, the cost function is a quadratic function. We can use its
particular form and its properties to simplify the GLL algorithm, obtaining an
algorithm with fewer cost function evaluations, i.e., with a smaller number of the
most time-consuming operations — multiplications by the Hessian matrix A. The
motivation came from the other well known algorithms for solving QP, like the
steepest descent method and the conjugate gradient method [26].

This modification was initially presented in [43], and it reduces the bisection in
GLL to a simple formula.

First, let us present the basic equality in QP [14]: (for all x, d ∈ Rn and b ∈ R)

f (x +βd)= f (x)+β〈Ax − b, d〉+ 1
2β

2
〈Ad, d〉. (38)

We start the simplification of SPG for solving QP problems with the most obvious
simplifications. Notice that in the Algorithm 3 we can write

yk
=∇ f (xk+1)−∇ f (xk)= (Axk+1

− b)− (Axk
− b)

= A(xk+1
− xk)= Ask .
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Given cost function f : Rn
→ R, parameter m ∈ N, approximation and direction

xk, dk
∈ Rn , parameter τ ∈ (0, 1), safeguarding parameters 0< σ1 < σ2 < 1 for σ1, σ2 ∈ R

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}
xtemp := xk

+ dk

δ := 〈∇ f (xk), dk
〉

β := 1
while f (xtemp) > fmax+ δβδ

βtemp := −
1
2β

2δ/( f (xtemp)− f (xk)−βδ)

if βtemp ∈ 〈σ1, σ2β〉 then
β := βtemp

else
β := β/2

end if
xtemp := xk

+βdk

end while
Return step size β

Algorithm 4. GLL line-search [21].

Since matrix A is SPS, we can write for any sk
∈ Rn
\Ker A

〈sk, yk
〉 = 〈sk, Ask

〉> 0,

and the condition in SPG (Algorithm 3) is always satisfied.
Moreover, the BB step length (33) is the inverse Rayleigh quotient (with sk /∈

Ker A) and it can be bounded by

1
λmax
≤ αk+1 ≤

1

λ̂min
,

where λ̂min is the smallest nonzero eigenvalue and λmax is the largest eigenvalue of
the matrix A (in our case, the Hessian matrix is SPS; see (9) and (13)). Therefore,
we can omit the safeguarding parameters αmin and αmax in Algorithm 3.

Let us take a better look into GLL line-search (Algorithm 4). The computation
of βtemp can be simplified using (38). We obtain

βtemp := −
β2δ

2( f (xk +βdk)− f (xk)−βδ)

=−
β2δ

2βδ+β2〈Adk, dk〉− 2βδ
=−
〈∇ f (xk), dk

〉

〈Adk, dk〉
=: β.

This is a simple Cauchy step size (29). Since the vector dk is the descent direction
(36) and A is SPS, our optimal β is positive. Obviously, the computation of a new
βtemp is independent of the previous value and the original GLL method solely



ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 127

Figure 2. Possible situations in a GLL condition for QP.

performs the bisection method, i.e., tries to halve the coefficient β and verify the
generalized Armijo condition. Furthermore, the value of a step size β has to be
from the interval [σ1, σ2] ⊆ [0, 1], because a smaller or larger value may cause a
departure from the feasible set.

The division of step size β by 2 now modifies only the generalized Armijo
condition. This condition can be also simplified as

0> f (xk
+βdk)− fmax− τβδ

= f (xk)+β〈∇ f (xk), dk
〉+

1
2β

2
〈Adk, dk

〉 fmax− τβ〈∇ f (xk), dk
〉

=
1
2β

2
〈Adk, dk

〉+ (1− τ)β〈∇ f (xk), dk
〉+ f (xk)− fmax,

0> 1
2β

2
+ (1− τ)β

〈∇ f (xk), dk
〉

〈Adk, dk〉
+

1
〈Adk, dk〉

( f (xk)− fmax).

Afterwards, we denote the function on the right-hand side and the constant term by

8(β) := 1
2β

2
− (1− τ)ββ − ξ, ξ :=

1
〈Adk, dk〉

( fmax− f (xk)).

We are interested in β such that the generalized Armijo condition in a form

8(β) < 0 (39)

is satisfied. The positive root of 8(β) is given by

β̂ := (1− τ)β +
√
(1− τ)2β2

+ 2ξ .

There exist only two possible situations; see Figure 2. Therefore, we can conclude
that the feasible step size in the second step of SPG could be defined as

βk ∈ [σ1,min{σ2, β̂}].

This simple interval can replace GLL; i.e., any βk from this interval satisfies the
generalized Armijo condition.

The computation of the function values can be also simplified using (38):

f (xk+1)= f (xk)+βk〈gk, dk
〉+

1
2β

2
k 〈Adk, dk

〉.
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Given cost function f : Rn
→ R, initial approximation x0

∈�, projection onto feasible set
P�(x), parameters m ∈ N, τ ∈ (0, 1), safeguarding parameters 0< σ1 < σ2 < 1 for
σ1, σ2 ∈ R, precision ε > 0, and initial step size α0 > 0

k := 0
g0
:= Ax0

− b
f 0
:=

1
2 〈g

0
− b, x0

〉

for k = 0, 1, . . .
dk
:= P�(xk

−αk gk)− xk

Compute matrix-vector multiplication Adk

Compute multiple dot-product 〈dk, {dk, Adk, gk
}〉

if
√
〈dk, dk〉 ≤ ε then stop

fmax :=max{ f (xk− j ) : 0≤ j ≤min{k,m− 1}}
ξ := ( fmax− f k)/〈dk, Adk

〉

β := −〈gk, dk
〉/〈dk, Adk

〉

β̂ := τβ +
√
τ 2β2+ 2ξ

Choose βk ∈ 〈σ1,min{σ2, β̂}〉

xk+1
:= xk

+βkdk

gk+1
:= gk

+βk Adk

f k+1
:= f k

+βk〈dk, gk
〉+

1
2β

2
k 〈d

k, Adk
〉

αk+1 := 〈dk, dk
〉/〈dk, Adk

〉

k := k+ 1
end for

Return approximation of solution xk

Algorithm 5. SPG for QP problems (SPG-QP).

Finally, we can simplify the computation of the BB step length using (35) to

αk+1 =
〈sk, sk

〉

〈sk, yk〉
=
〈sk, sk

〉

〈sk, Ask〉
=
〈βkdk, βkdk

〉

〈βkdk, βk Adk〉
=
〈dk, dk

〉

〈dk, Adk〉

and using the recursive formula for the computation of a new gradient:

gk+1
:= Axk+1

− b = A(xk
+βkdk)− b = gk

+βk Adk .

We use all these simplifications to form Algorithm 5. For the sake of simplicity, we
relabel the coefficient τ := 1− τ ∈ (0, 1).

Notice that the most time-consuming operation — multiplication by Hessian
matrix A — is performed only once per iteration. Moreover, all scalar products in
every iteration can be performed as a single operation. This feature decreases the
amount of global communication during the solution process.



ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 129

node node node

γ

x

γ

x

γ

x

θ

t

T

n

K

θ θ

Figure 3. Large global vector of time series data X is distributed into nodes in a natural
time-splitting way. Moreover, each node owns the part of global vector γ which corre-
sponds to the time part of local data. Since the number of model parameters 2 is small,
each node owns its own local copy.

4. HPC implementation

We are developing and maintaining a new HPC library [44] for nonstationary time
series analysis in C++ using PETSc [2]. This library supports the manipulation of
vectors distributed on multiple nodes. These data can be used during computation
on CPUs or GPUs. Therefore, the user of our library can decide which architecture
will be used for computation.

The solution of our problem consists of two different types of parallelization.
The first type is straightforward: the problem (9) has to be solved for several values
of regularization parameters ε2 and various numbers of clusters K . Moreover,
the solution obtained by the iterative process depends on an initial approximation.
Each combination of these parameters can be used to run a completely independent
instance of Algorithm 1. The parallelization in this case is embarrassingly parallel.

A more complicated parallelization scheme has to be used in a case where one
instance of Algorithm 1 cannot be run on a single node, because of the size of the
input data and/or the size of the unknowns, especially the size of vector γ . To deal
with this problem, we naturally distribute the given long time series data X ∈ RT×n

into nodes as successive disjoint time subintervals with approximately the same
size; see Figure 3.

Decomposition in time plays a key role in the effective computation of projections
used in SPG-QP; see Algorithm 5. Using our approach, all data of one simplex are
stored in one particular node; therefore, the projection is computed on each node
fully independently. However, this decomposition in time brings new difficulties
like disruption of diagonal-block structure of A defined in analysis in form (10);
therefore, we had to implement an additional local-to-global index recomputation.
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Figure 4. The beginning part of the benchmark signal of total length T = 107. Here the
black box represents a part of the signal which is further enlarged to present the difference
between the original signal (red) and the solution, namely the denoised signal (green). This
denoised signal was obtained using optimal penalty parameter ε2

= 3000 (obtained with
the standard L-curve method [22]) with norm of absolute error 0.04.

5. Numerical experiments

To demonstrate the scalability of our QP solver, we consider a time series K -means
clustering problem. This problem is characterized by the most basic modeling
functions: the piecewise-constant functions. We are trying to model the given
data using the constant mean value in every cluster in least-square sense with the
FEM-H1 regularization penalty in time:

for all t ∈ Tk, xt = θk + εt ,

Lε(θ1, . . . , θK , 0)=

T∑
t=0

K∑
k=1

γk(t)(xt − θk)
2
+ ε2

K∑
k=1

T−1∑
t=0

(γk,t+1− γk,t)
2.

As a benchmark, we take a short signal of length 104 and repeat this short signal
to obtain long time series Xexact(t). This long signal is considered to be an exact
benchmark solution of our denoising algorithm. As an input of our problem we
consider the signal with a variable noise ε:

X (t)= Xexact+ ε, ε ∼ N(0, 10). (40)

Figure 4 presents a beginning part of the considered long signal of length T = 107.
We provide the exact parameter solution K = 2, θ1 = 1, θ2 = 2 and solve the

pure QP problem that represents the computational bottleneck of this time series
denoising procedure. In SPG-QP, we choose τ = 0.9 and m = 20 with respect to
original SPG recommendations [5]. As a stopping criterion we choose the Euclidean
norm of a projected gradient:

‖gP(x)‖ := ‖P(x −α∇ f (x))− x‖< 10−6.
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Figure 5. The mean value of L1 norm of absolute error for several values of penalty
parameter (top). The left part of the graph represents the error which arises due to
insufficient regularization, and the right part is caused by too much regularization, for
the beginning part of benchmark signal of total length T = 107. The L-curve (bottom)
presents the relation between values of the linear term (modeling error) and quadratic term
(regularization) which depends on the choice of regularization parameter.

We implement Algorithms 1 and 5 in the PETSc framework and solve this
problem for several values of penalty parameter ε; see Figure 5. Standard methods
like L-curve [22] are then used to identify the optimal values for ε. Based on these
results, we choose value ε = 3000 for the following scalability tests.

To demonstrate the scalability of our implementation, we solve the abovemen-
tioned problem of parameters T = 107, K = 2, ε2

= 3000 with θ1 = 1 and
θ2 = 2 on CSCS Piz Daint using N ∈ {1, 2, 4, 8, 16, 32, 64} nodes. For complete
specifications of this machine, see http://www.cscs.ch/computers/piz_daint/. For
GPU computation, we run one MPI process per hybrid node (Intel Xeon E5-2690
v3 with NVIDIA Tesla P100), which uses the GPU for computation. In the case of
CPU, we use pure CPU-nodes (2×Intel Xeon E5-2695, each with 18 cores) and run
36 MPI processes per node. PETSc deliberately chose not to support a multithreaded
model, but rather only a multitask model (i.e., multiple MPI processes). Since we

http://www.cscs.ch/computers/piz_daint/
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Figure 6. The strong scalability results: solution of QP problem of size 2 · 107 on Piz
Daint using different architectures — the computation time of one iteration (upper right),
relative speed-up of computation time of one iteration (upper left), the number of iterations
per second (lower left), and computation times on CPU and GPU (lower right).

are using PETSc, we are left with no choice and we do not use any CPU-thread
parallelization (e.g., OpenMP) in our implementation.

We generated a time series signal of the length 107 and denoise it on different
numbers of nodes. For statistical reasons, we decided to focus on the average
numbers of QP iterations — where averaging was performed over different numbers
of involved nodes. Please see the computation time of one iteration and number of
iterations per second provided in Figure 6. Here we can observe good scalability of
CPU for a small number of nodes. However, the problem is too small for larger
number of CPUs or GPUs; therefore, the speedup is rapidly decreasing due to MPI
communication. In all cases, the GPU computation is faster, but in this case, we
should also consider the energy consumption; see Figure 7. These values were
computed using the technique presented in [18].

Next, we would like to compare the introduced SPG-QP method for solving
the inner QP problem with other existing HPC open-source implementations. The
most straightforward choice is to use methods already implemented in PETSc,
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Figure 7. The energy consumption for one iteration of SPG-QP (left) and the power
consumption (right).

for instance the Toolkit for Advance Optimization (TAO) [40]. However, for the
combination of linear equalities and bound constraints (8), one can only use the
interior-point method. Unfortunately, the actual manual pages say that the state-of-
the-art implementation of the interior-point method in TAO is more of a placeholder
for future constrained optimization algorithms and should not yet be used for
large problems or production code. The most promising implementation of QP
solvers in PETSc is PERMON (http://permon.it4i.cz/). The results for solving QP
problems arising in linear elasticity contact problems [24] suggest good scalability
performance and efficiency in the case of massively parallel CPU computation.
However, our problem (10) has particular properties, especially the null spaces of
the Hessian matrix and the matrix of linear equality constraints being not disjoint;
see Lemma 1. Therefore, in our case the QP problem could have more then one
solution. Besides that, we have tried to solve our problem with PERMON, but the
algorithm is not able to solve problems with larger dimensions T > 104. Also the
parameters of the algorithm have to be more precisely investigated and their tuning
is nontrivial. Luckily, authors are working on generalization of the inner solver for
solving the problems with singular Hessian matrices [15] and this approach should
be implemented soon. Moreover, the GPU implementation is also future work.
Summarizing these experiences, we were not able to find any QP solver that would
be applicable to the particularly structured problem (10) of time series analysis —
when the time series data is big (i.e., when T � 104). For a complete survey of
existing HPC QP libraries, see [23].

Next, we also compare the introduced FEM-H1 with implementations of standard
denoising methods. We were not able to find any HPC open-source library which
includes the HPC implementation of the denoising methods for time series on
hybrid architectures. In our implementation, we decided to use PETSc for basic vec-
tor/matrix operations; therefore, we are directly able to switch between CPU/GPU

http://permon.it4i.cz/
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Figure 8. Dependence of the mean filtering error from the original signal-to-noise ra-
tio (SNR). Results were obtained for the signal with Gaussian noise by averaging 100
independent realizations of the noisy signal data for each of the methods.

computations. Existing denoising libraries (e.g., Dlib C++ [34]) usually implement
these operations from scratch using their own code, including basic vector/matrix
operations, or (in the best case) use only sequential external BLAS libraries and
cannot run on distributed memory architectures. Therefore, we decided to compare
the denoising efficiency only for relatively short signals using the uniform sequential
implementations in MATLAB [41]. To be more specific, we compare the following
denoising algorithms.

• Fourier uses the MATLAB implementation of fft/ifft and has one parameter s,
which defines the size of the window.

• Fourier L2 is Fourier filtering with an additional L2 regularization term. There
are two parameters: s as a size of the window and λ as a regularization
parameter.

• Fourier Sobolev is Fourier filtering with an additional Sobolev prior penalty.
This algorithm uses two parameters: size of the window s and regularization
parameter λ.

• Fourier TVR is Fourier transformation with total variation regularization. The
method leads to the system of nonlinear equations, which is typically solved
using gradient method with constant step size and monotone descent of the
solution error. The method uses three parameters: size of the window s and
regularization parameters λ, ε.

• Bayesian HMM is the Bayesian hidden Markov model method [41]. This
machine-learning algorithm uses random initial guesses; therefore, we run it
10 times and take the best solution with respect to the absolute error.
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We have generated a large set of abovementioned testing signals of length
T = 1000. For every standard deviation

σ ∈ 0.1 · {2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288},

we generated 100 signals with random noise using formula (40) and then denoised
the signal using the proposed algorithms. We set various algorithm parameters
s ∈ {5, 20, 30, 40, 60, 80}, λ ∈ {0.1, 1, 10, 50, 100}, ε ∈ {0.001, 0.01, 0.1} and
consider only the best solution with respect to the absolute norm computed as a
difference between the denoised signal and the exact signal Xexact. Similarly for
FEM-H1, we solved the problem for various values of penalty parameter.

At the end of the solution process, we computed the average absolute error
value through all random noises. The results are presented in Figure 8. Here, the
signal-to-noise ratio (SNR) was computed as the ratio of the maximum variation of
the true signal to the maximum variation of the noisy signal.

As can be seen from Figure 8, FEM-H1 methodology outperforms the standard
methods when the signal-to-noise ratio becomes smaller (i.e., when the noise is
becoming larger as compared to the true underlying signal).

6. Conclusion

In this paper, we introduced an extension of the nonparametric FEM-H1 framework
allowing it to be applied to denoising of very large time series data sets. We
investigated basic properties of the inner large-scale QP subproblem — being the
most expensive part of the FEM-H1 nonstationary time series analysis methodology.
To solve this problem with HPC, we presented a modification of the spectral
projected gradient method for QP problems. This method is based on projections,
enjoys high granularity of parallelization, and is suitable to run on GPU clusters,
such as Piz Daint at the Swiss Supercomputing Centre (CSCS). We presented
numerical results for solving a large-scale time series denoising problem.

In future work, we will compare SPG-QP with state-of-the-art parallel imple-
mentations of popular optimization methods for solving not only benchmarks, but
also solving problems in practical applications, such as the inference of causality
networks from multiscale economical data. Additionally, our code will be extended
by spatial regularization to increase the number of data analysis applications which
could be practically solved by our emerging open-source HPC library.
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