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We consider the efficient approximation of low Mach number flows by a high-
order scheme, coupling a discontinuous Galerkin (DG) discretization in space
with an implicit/explicit (IMEX) discretization in time. The splitting into linear
implicit and nonlinear explicit parts relies heavily on the incompressible solution.
The method has been originally developed for a singularly perturbed ODE and
applied to the isentropic Euler equations. Here, we improve, extend, and inves-
tigate the so-called RS-IMEX splitting method. The resulting scheme can cope
with a broader range of Mach numbers without running into roundoff errors, it is
extended to realistic physical boundary conditions, and it is shown to be highly
efficient in comparison to more standard solution techniques.

1. Introduction

Computing solutions to singularly perturbed problems can be cumbersome and
expensive due to their multiscale nature. However, they do often occur in physical
reality. A typical example is the transition from the compressible to the incom-
pressible Navier–Stokes equations that constitutes a singularly perturbed limit [29;
41; 49]. Another example is multiphase flows, in which small liquid droplets are
suspended in a gaseous phase. In such problems, the Mach number ε— the local
ratio of flow speed to the speed of sound — can vary by orders of magnitude. In
particular, some parts are very close to the incompressible regime, meaning that the
Mach number is close to zero, while in other parts, ε is of the order of one. Flows
of this nature are sometimes called all-speed flows.

Besides some issues such as the high-order treatment of the ubiquitous shocks
or the treatment of turbulence, the efficient discretization of the ε = O(1) case is by
now rather well understood; see, e.g., [47] and the references therein. In this work,
we therefore focus on the efficient discretization of the ε� 1 case as a milestone
towards all-speed schemes.
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The first idea that comes to mind is to treat the low Mach case as incompressible.
In many situations however, compressible effects matter even in the vicinity of the
incompressible regime. An example is given by the computation of transcritical
droplets in a surrounding (supercritical) gas phase, where a strong coupling of
thermodynamics and hydrodynamics in the droplets occurs. This phase state is also
called the “compressible liquid” state and of current research interest [27; 26; 44].
Other situations occur in meteorological flows, where density gradients have to
be considered but acoustic waves do not have to be resolved [14], and situations
with strong temperature gradients but low velocities, e.g., natural convection [35].
As a consequence, we therefore stick to solution procedures for the compressible
equations. The incompressible equations will nonetheless serve as a building block
in our discretization.

Computing solutions to the low Mach equations (ε � 1) using classical dis-
cretization paradigms which mostly rely on explicit time stepping methods leads
to the unwanted encounter of having to choose an extremely small time step size
(1t . ε1x) to obtain a stable algorithm. Furthermore, due to the excessive amount
of numerical viscosity that is added to the approximate solution, the explicit method
may yield an incorrect solution [38]. One remedy is to use an implicit-explicit
(IMEX) time stepping method [2; 28; 10] that relies on a splitting of the flux
functions into a stiff part, which accounts for the singularity in the problem and is
treated implicitly, and a nonstiff part, which only has a mild dependency on ε, and
not on ε−1. A number of splittings have been developed over the past few years;
see, e.g., [30; 9; 13; 21]. All of those splittings have the disadvantage that it is
very difficult to adapt them to other physical situations at hand, because they are
developed for a specific set of equations.

To circumvent this problem, Kaiser et al. have introduced a general splitting
and have applied it to the isentropic Euler equations in [25] that is based on the
incompressible limit solution (called the reference solution); the splitting was hence
termed RS-IMEX. The RS-IMEX idea is conceptually similar to the one introduced
in [42] where the underlying problem is a singularly perturbed ODE. Related ideas
have already been published earlier in [16; 9; 19]. One of the advantages of the
splitting is that its idea, at least from a conceptual point of view, is independent
from the underlying singularly perturbed problem and thereby not specific to a
fixed system of equations. Furthermore, the implicit part is always linear in the
solution variable, which usually reduces the time-to-solution tremendously, as the
resulting algebraic equations are then also linear. Those linear equations are usually
solved through a Krylov-type iteration method, which means that only matrix-vector
products are needed, where the Jacobian is being frequently approximated via finite
differences. For a nonlinear operator at low ε, this can pose severe problems for
the approximation quality. However, as the implicit part of the RS-IMEX is linear,
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the finite differences are not approximations but exact. In [24], the splitting has
been used within a high-order IMEX discontinuous Galerkin (DG) solver and it
has been shown that the algorithm preserves the asymptotics of the problem, which
means that for ε→ 0, the discrete solution converges towards a discretization of
the incompressible Euler equations. The latter is an important property as it means
that no spurious effects stemming from the discretization and polluting the solution
are introduced for small Mach numbers.

The purpose of this work is to improve, extend, and investigate the method
introduced in [24] towards engineering problems.

• We improve the scheme for very small Mach numbers to suffer less from
roundoff errors [33]. This is achieved through a reformulation of the method in
a perturbed variable, partly following the lines of [43]. Thereby, we alleviate
the dependency of the method on ε−1 to a great extend, which is the core
source of roundoff problems.

• We extend the scheme to cope with more realistic physical settings by adding
appropriate boundary conditions ([24] works with periodic ones) and consider-
ing three dimensions.

• We investigate the scheme with respect to runtime in the framework of a
modern parallel architecture solver and compare it against other methods. For
solving the algebraic system, we take advantage of the linearity of RS-IMEX
in the solution process. We demonstrate the advantages of this novel method
with respect to runtime and accuracy as a function of ε for nontrivial test cases.

The paper is structured as follows. In Section 2 we introduce the underlying
isentropic Euler equations. Section 3 introduces the RS-IMEX splitting for those
equations; subsequently, in Section 4, the discontinuous Galerkin discretization
including the IMEX time discretization is detailed. In Section 5, we validate the
method through a manufactured solution. Furthermore, we explain in detail how
to circumvent a problem with machine accuracy due to low Mach numbers ε. In
Section 6 we present more involved numerical examples and discussions concerning
accuracy and efficiency in the low Mach number case. Finally, in Section 7 we
offer conclusion and outlook.

2. Equations

In this work we consider the isentropic Euler equations on a domain � ⊂ Rd .
Nondimensionalized, those equations are given by

∂tw+∇x ·F(w)=0 with w :=

(
ρ

ρu

)
and F(w) :=

(
ρu

ρu⊗ u+ (1/ε2)p(ρ) · Id

)
(1)
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with u and ρ denoting velocity and density, respectively. The subscripts t and x
denote temporal and spatial derivatives, respectively. The reference Mach number,
defined as

ε :=
u∗

√
p(ρ∗)/ρ∗

with u∗ and ρ∗ reference values used in the nondimensionalization process, is a
measure for the compressibility of the system. The pressure p is defined by the
equation of state

p(ρ)= κργ , (2)

with γ ≥ 1 the isentropic coefficient and κ > 0 being a constant.
The eigenvalues of ∂

∂w
F(w) · n are, for �⊂ R3 and with c :=

√
γ p/ρ being the

speed of sound, given by

λ1,2 = u · n, λ3,4 = u · n±
c
ε
. (3)

It is obvious that for ε�1 (the low Mach case) those waves have extremely different
speeds, i.e., wave speeds are in O(1) and O(ε−1). In the limit ε→ 0 two wave
speeds tend to infinity, meaning that the associated hyperbolic equation degenerates.
This means that some information travels infinitely fast, and some at finite speed.
Besides that, one can show that under certain conditions [29], the compressible
equations (1) transform towards the incompressible Euler equations, which are
given by

∂t

(
0

1

)
w(0)+∇x · G(w(0), p(2))= 0 and ρ(0) ≡ const

with w(0) :=

(
ρ(0)

(ρu)(0)

)
and G(w(0), p(2)) :=

(
(ρu)(0)

(ρu)(0)⊗ (ρu)(0)/ρ(0)+ p(2) · Id

)
.

(4)

The relation between the compressible and the incompressible equations can be
understood best if we assume that every quantity of (1) can be represented by an
asymptotic expansion, e.g.,

ρ = ρ(0)+ ερ(1)+ ε
2ρ(2)+O(ε3),

and compute the formal limit ε→ 0. The incompressible equations (4) are then
obtained under the assumption of well prepared initial and boundary conditions;
see, e.g., [21] for a detailed computation and [29] for a more formal proof.

Definition (well prepared initial and boundary conditions). We call initial condi-
tions well prepared if they possess an asymptotic expansion in positive powers of ε,
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and
ρ(t = 0)= const+O(ε2) and ∇x · (ρu)(t = 0)= O(ε).

We call boundary conditions well prepared if they ensure∫
∂�

(ρu)|∂� · n= 0 and ρ|∂� = const+O(ε2).

For well prepared initial conditions the corresponding incompressible state can
be calculated by setting ε= 0. Consequently, incompressible density is the constant
value ρ(0) and the velocity field is u(0). To initialize p(2) we compute

p = p(ρ(0))+ p′(ρ(0))ε2ρ(2)+O(ε4)= p(0)+ ε2 p(2)+O(ε4).

After reformulation one obtains

p(2) = p′(ρ(0))ρ(2) = κγ (ρ(0))γ−1ρ(2) =
1
ε2 κγ (ρ(0))

γ−1(ρ− ρ(0)). (5)

3. RS-IMEX

In this section, we explain the basic ideas of the RS-IMEX splitting of the isentropic
Euler equations for nearly incompressible flows; more details of the final algorithm
are given in Section 4. Previously in Section 2, we have seen that the isentropic
Euler equations (1) in the low Mach regime transform to the incompressible Euler
equations (4) if ε→ 0. A proper numerical method should be designed in such a
way that it can imitate this behavior; i.e., for ε→ 0 the method should formally
transform into a discretization of the incompressible equations. This is the so-called
asymptotic preserving property; see, e.g., [23].

One way to handle this type of equation is to split the flux function F into two
parts and treat one part F̂ with an explicit and the other part F̃ with an implicit
method:

∂tw+∇x · (F̃(w)+ F̂(w))= 0. (6)

This technique results in IMEX time integration schemes; see, e.g., [2; 28] and
Section 4. For stability, efficiency, and accuracy it is important to find a suitable
splitting. One splitting developed in the past years is the so-called RS-IMEX, where
RS stands for reference solution. This splitting fulfills the asymptotic preserving
property in the setting of low- and high-order discretizations for the isentropic Euler
equations [25; 24]. Furthermore, it gave promising results for different types of
equations in the sense of stability [24; 50], efficiency [25], and accuracy [25; 24].

Definition (RS-IMEX splitting). The RS-IMEX splitting is defined by

F̃(w)= F(w(0))+ F′(w(0))(w−w(0)) and F̂ = F(w)− F̃(w)
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for a given reference solution w(0) and F′(w(0)) the Jacobian of the flux:

F′(w(0))=
∂F(w(0))

∂w(0)
.

In general one could choose an arbitrary reference solution, but in the following
we use the limit w(0) = limε→0 w, which corresponds to the solution of the incom-
pressible equation. Applying the splitting to the isentropic Euler equations gives
the implicit and explicit parts

F̃ =

 ρu

−ρu(0)⊗u(0)+ρu⊗u(0)+ρu(0)⊗u+
(p(ρ(0))+ p′(ρ(0))(ρ−ρ(0))

ε2 ·Id

 ,
F̂ =

 0

ρ(u−u(0))⊗(u−u(0))+
p(ρ)− p(ρ(0))− p′(ρ(0))(ρ−ρ(0))

ε2 ·Id

 .
Considering the O(ε−2) terms, one obtains one motivation for the chosen reference
solution. Since ρ− ρ(0) = O(ε) one obtains

p(ρ)− p(ρ(0))− p′(ρ(0))(ρ− ρ(0))= O(ε2).

So upon inserting the exact solution, there are no stiff terms remaining in the explicit
part. Of course this is only a rationale that stands behind the scheme. Computing
the eigenvalues of the nonstiff part explicitly, one obtains

λ̂1,2 = (u− u(0)) · n, λ̂3 = 0, and λ̂4 = 2(u− u(0)) · n,

and indeed, these eigenvalues are O(1). Even more, upon inserting the exact solution,
they would be in O(ε) for this given choice of the reference solution. Fast waves are
solely solved with the implicit method, which is a core requirement for unconditional
stability with respect to ε.

Remark. A similar technique has been used for the stiff collision operator of kinetic
equations in [16] and for the pressure gradient of shallow-water equations in [9; 20].

4. Discretization

4.1. High-order discontinuous Galerkin IMEX framework. Discontinuous Galer-
kin (DG) schemes have recently gained considerable interest as baseline schemes
for multiscale problems; see, e.g., [5; 3; 11; 47] and the references therein. They
can be interpreted as a hybrid finite element–finite volume formulation, where an
elementwise Galerkin variational formulation is coupled weakly to its neighbors
through a numerical flux term. Each inner-element solution is approximated by
a polynomial function of given order N. Penalization of discontinuities and the



EFFICIENT COMPUTATIONS OF LOW MACH NUMBER FLOWS 249

locality of the basis make DG suitable for hyperbolic problems. In addition, the
compact operator with small memory and communication footprint leads to ex-
cellent parallel scaling properties and the element-based approximation enables
unstructured meshing of complex domains.

To obtain a DG discretization, we assume that the domain is separated into a
finite number of independent cells. Then we seek a piecewise smooth function wh;
i.e., it is a polynomial of maximal degree N on every cell, which fulfills the weak
discontinuous Galerkin formulation, given by

∂

∂t

∫
E

whφ(x) dx+
∮
∂E

F∗nφ(x) ds−
∫

E
F(wh) ·∇xφ(x) dx = 0, (7)

on every cell E for every polynomial test function φ(x) of maximal degree N.
Note that F∗n denotes the surface normal numerical flux function, given by F∗n :=
F∗n(wh

+,wh
−) and superscripts ± denote the values at the grid cell interface from

the neighbor and the local grid cell E , respectively.
The current investigations are based on a particularly efficient variant of the

general DG formulation (7), namely the discontinuous Galerkin spectral element
method (DGSEM) proposed by [32]. In this formulation, the solution w is approxi-
mated as a tensor product of one-dimensional Lagrange interpolating polynomials
of degree N. The N+ 1 Legendre–Gauss quadrature points {ξi }

N
i=0 are chosen

as interpolation nodes. This collocation of interpolation and integration nodes
significantly reduces the number of operations per degree of freedom. In particular,
the tensor product structure of the solution ansatz transfers to the operator itself,
avoiding element–global volume operations. Instead, the multidimensional operator
is constructed of consecutive one-dimensional operations. One disadvantage is that
this reduces the flexibility of DG with respect to meshing, as only quadrilateral
meshes can be used in order not to destroy the tensor product structure.

Details on the implementation and efficiency of the solver are given by Hinden-
lang et al. [22]. Extension of the framework to include multiphase flow based on
a sharp interface approach, large eddy simulation methods, and shock capturing
strategies are given by [15; 17; 7; 45]. The full FLEXI framework, including pre-
and postprocessing tools, is available as open source software.1

For the extension of this solver to an implicit-explicit time discretization, we
consider again a splitting as in (6). (Note that, with F̃(w)= F(w) and F̂(w)= 0,
also a fully implicit scheme falls into this framework.) IMEX schemes are defined
by their Butcher tableaux featuring the coefficients Ã, Â, c̃, and ĉ. In semidiscrete
form the implicit-explicit Runge–Kutta time discretization for the i-th stage and

1https://www.flexi-project.org, GNU General Public License v3.0.

https://www.flexi-project.org
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the n-th time step can be written as

wn,i
−wn

+1t
( i∑

j=1

Ãi, j∇x · F̃(wn, j , tn
+ c̃ j1t)

+

i−1∑
j=1

Âi, j∇x · F̂(wn, j , tn
+ ĉ j1t)

)
= 0. (8)

A reformulation of (8) yields

wn,i
+1t Ãi,i∇x · F̃(wn,i , tn

+ c̃i1t)

= wn
−1t

i−1∑
j=1

[
Ãi, j∇x · F̃(wn, j , tn

+ c̃ j1t)+ Âi, j∇x · F̂(wn, j , tn
+ ĉ j1t)

]
,

where the right-hand side is either known from previous stages or can be computed
explicitly. In the following, this equation is abbreviated by

(Id−1t Ãi,i R̃)wn,i
= b,

with R̃ denoting the spatial operator with the implicitly treated fluxes. To solve
this potentially nonlinear (for a fully implicit scheme it is; for the RS-IMEX it is
linear!) system, a standard root finding algorithm such as Newton’s method can be
applied. Therefore, the IMEX-Runge–Kutta scheme for the k-th Newton’s iteration
reads

w(k+1)
= w(k)

+1w,

1w−1t Ãi,i
∂ R̃(w(k))

∂w
1w =−w(k)

+1t Ãi,i R̃(w(k))+ b.
(9)

For ease of presentation, we have omitted the superscript n, i .
Equation (9) is a linear system for every Newton iteration k, which can be

solved with a standard linear solving algorithm. To minimize computational costs
for calculating and storing the Jacobian, the matrix-free GMRES linear solving
algorithm by Saad and Schultz [40] is applied. In [18] it has been shown that a
matrix-free approach can be superior to a matrix-based approach for a high-order
three-dimensional DG scheme. The matrix-vector product including the Jacobian
in (9) is approximated via a finite difference

∂ R̃(w(k))

∂w
1w ≈

R̃(w(k)
+1FD1w)− R̃(w(k))

1FD
(10)

for a small 1FD which can be calculated according to Qin et al. [37] and Knoll and
Keynes [31] as

1FD =

√
eps

‖1w‖2
,
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with eps being the machine accuracy or the maximum achievable accuracy. As
the implicit flux of the RS-IMEX splitting is linear, this finite difference can be
simplified, but special care has to be taken of Dirichlet-type boundary conditions.
Hence, for the RS-IMEX splitting, the matrix-vector product can be simplified to

∂ R̃(w(k))

∂w
1w = R̃(1w)− R̃(0). (11)

In our implementation, we use a standard block-Jacobian preconditioner due to
the small building and storing costs of the preconditioner. This turned out to
be beneficial for a DG setup with a very large number of processors [8]. In [8]
it is shown that more sophisticated preconditioners like full SGS and multilevel
preconditioners are not superior to the standard block-Jacobian preconditioner
regarding computational time for a parallel DG setup.

4.2. Incompressible solver. The RS-IMEX splitting, defined on page 247, requires
the corresponding incompressible state. Therefore, an incompressible solver in the
discontinuous Galerkin framework is needed. We start with the incompressible
Euler equations as given in (4) in three dimensions and reformulate them as

∂t

(
0

1

)
U +∇x · G̃(U)= 0,

for the state vector U = (p(2), u(0),1, u(0),2, u(0),3)T and with the flux

G̃(U) :=
(

u(0)
u(0)⊗ u(0)+ (p(2)/ρ(0)) · Id

)
.

Note as a reminder that p(2) denotes the hydrodynamic pressure, ρ(0) is a constant
positive value, and u(0) = (u(0),1, u(0),2, u(0),3)T denotes the three-dimensional
velocity vector. As the divergence-free condition for the velocity field is not a
time evolution equation for the hydrodynamic pressure, a numerical flux function
is required to couple the velocity and pressure field. A flux which satisfies this
condition for solving incompressible flows with a discontinuous Galerkin scheme
has been proposed by Bassi et al. [4]. In order to obtain a flux at the interfaces,
artificial compressibility is added for the solution of the Riemann problem. An
iterative Godunov-type Riemann solver is used in [4] to obtain the interface fluxes.
Following [6] this artificial compressibility approach allows an equal-order dis-
cretization for the pressure and velocity. Moreover it is shown to be a consistent
discretization of the incompressible Euler equations as the added compressibility is
zero for vanishing jumps at the cell interfaces. A further advantage of this approach
is that it offers the possibility to use the same high-order numerical methods for
space and time discretization as for the compressible method. As the accuracy of
the incompressible reference solution for the RS-IMEX splitting is not crucial, we
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use a cheaper Lax–Friedrichs-type Riemann solver motivated by the asymptotic
analysis, which reads

G̃∗ =
1
2

(
G̃(U+)+ G̃(U−)+Diag

(
ρ

1−γ
(0)

κγ
, 1, 1, 1

)
(U+−U−)

)
,

with κ and γ from the equation of state (2).

5. Validation and reformulation

In this section, we validate the code and give first impressions of its performance.
Furthermore, we indicate how to avoid problems with machine accuracy when ε is
very small. As an underlying example, we use the two-dimensional smooth traveling
vortex presented in [24]. For both compressible and incompressible isentropic Euler
equations, the solution is a mere transport of an initial vortex in the x1 direction
with speed 0.5. The compressible solution reads

ρ(x, t)= ρ
((

x1− 0.5t
x2

)
, 0
)
, u(x, t)= u

((
x1− 0.5t

x2

)
, 0
)
,

for the initial conditions

ρ(x, t = 0)= 2+ (500ε)2 ·
{

0.5e2/1r1r −Ei(2/1r) for r < 0.5,
0 otherwise,

u(x, t = 0)=
(

0.5
0

)
+ 500

(
−x2+ 0.5

x1− 0.5

)
·

{
e1/1r for r < 0.5,
0 otherwise

(12)

with r :=
√
(x1− 0.5)2+ (x2− 0.5)2, 1r := r2

− 0.25, and the equation of state
p(ρ)= κργ with κ = 0.5 and γ = 2. Ei denotes the exponential integral function

Ei(x) :=
∫ x

−∞

et

t
dt.

In our implementation we use the algorithm by Press et al. [36] for the exponential
integral function. Boundary conditions of the domain �= [0, 1]2 are chosen to be
periodic. The initialization of the incompressible pressure is obtained via (5).

5.1. Validation. Here, we present numerical results validating the solver. As time
integrators, we use the IMEX Runge–Kutta schemes IMEX-ARS-222 and IMEX-
ARS-443 by [2] as second- and third-order schemes and IMEX-ARK-4A2 from
[34] as a fourth-order scheme. All schemes are given with their Butcher tableaux
in the Appendix; see Tables 2, 3, and 4. In the numerical results, an appropriate
polynomial degree is chosen so that the overall order is the order of the time
integration scheme.



EFFICIENT COMPUTATIONS OF LOW MACH NUMBER FLOWS 253

10−4

10−3

10−2

10−1

100

2

L
2-

E
rr

or
(s

um
)

Second order

3

Third order

4

Fourth order

ε = 100

ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

incompressible

10−1 10−0.510−14

10−10

10−6

10−2 2

h

L
2-

E
rr

or
(ρ
)

10−1 10−0.5

3

h
10−1 10−0.5

4

h

ε = 100

ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

Figure 1. h-convergence of second-, third-, and fourth-order incompressible and RS-
IMEX schemes for traveling vortex in overall L2-error (top) and L2-error in density
(bottom) for different Mach numbers.

Figure 1 shows the convergence of the overall L2-error including the errors
in momentum and density (top) for the incompressible solver and the RS-IMEX
splitting. Overall, the L2 error is computed by

‖wh−w‖2L2(�)
:=

∫
�

‖wh(x)−w(x)‖22 dx

where wh is the computed numerical approximation and w the exact solution at the
final time instance. Note that for the incompressible equation the error is computed
in p(2) and u(0) and for the compressible equation the error is computed in ρ and
ρu. Both the incompressible solver itself and the RS-IMEX splitting which uses the
incompressible solver show the correct order of convergence. Only the third-order
case shows an order that is slightly too low, but this is inherent to the test case and
has already been observed in [24] for under-resolved explicit calculations. Note
that the overall L2-errors for Mach numbers ranging from ε = 10−1 to ε = 10−5

nearly coincide. Additionally, Figure 1 shows the convergence in density for the
RS-IMEX splitting (bottom). Here, the correct order is obtained from second to
fourth order and in contrary to the overall L2-error, the L2-error in density scales
with ε2. This is due to the structure of the test case and the asymptotic preserving
property of the method: the density can be expressed as ρ = const+O(ε2), which
is a disturbance in ε2 added to a constant — this can be reproduced exactly by the
DG scheme due to the AP property. Momentum can be expressed as ρu = O(1),
and therefore, the error does not scale with ε.
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5.2. Efficiency. In this subsection, we evaluate the efficiency of the RS-IMEX
splitting in the low Mach number limit. A desirable method has the following
properties.

• It is computationally cheaper than a fully implicit scheme. We have hope that
this will be the case due to the linearity of the implicit flux F̃ .

• The scheme should — for small Mach numbers — be more efficient than a fully
explicit scheme. This can also be expected, because the RS-IMEX scheme
should be stable under a time step restriction that depends solely on 1x , and
not on ε. An explicit scheme will always have a time step restriction of form
1t . ε1x due to the CFL condition.

For relatively large Mach numbers, we expect the RS-IMEX splitting scheme to
be computationally more expensive as additional equations have to be solved. The
task of this section is to identify the “sweet spot” between an explicit scheme and
the RS-IMEX scheme.

We do not use the standard Lax–Friedrichs Riemann solver for the explicit and
fully implicit solver as it is known to give wrong results in the low Mach number
limit. The standard Lax–Friedrichs Riemann solver is defined as

F∗LF =
1
2(F(w

+)+ F(w−)+ λmax(w
+
−w−)),

with

λmax =max(|u+ · n|, |u− · n|)+
max(c+, c−)

ε
.

Inspired by the low Mach number fix for the Roe Riemann solver by Rieper [39],
we utilize the low Mach Lax–Friedrichs Riemann solver

F∗LF LMFix =
1
2(F(w

+)+ F(w−)+ λmax Diag(1, ε, ε, ε)(w+−w−)). (13)

Note that the idea of a different scaling of density and momentum jump with respect
to the Mach number has also been applied for the numerical flux of the implicit
part of the RS-IMEX splitting. We show later in Section 6 that a modification
multiplying the whole jump in the Riemann solver with ε is not sufficient.

We compare the computational effort for a fully implicit, a fully explicit, and
the RS-IMEX scheme in Figure 2. The results have been obtained on sixteen cores
with a temporal and spatial order of four. As the time integration scheme we used
the IMEX-ARK-4A2 [34] for RS-IMEX, the implicit part of the same scheme for
the implicit method, and a five-stage Runge–Kutta scheme [12] (see Table 6) for the
explicit part. For all computations we start with the same grid and perform several
refinements.

CFL numbers were chosen as CFL = 0.9 for the explicit scheme, CFL = 150
for the implicit scheme, and CFL = 0.5 for the RS-IMEX scheme. For the fully
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Figure 2. Comparison of computational time for two-dimensional traveling vortex (fourth
order in space and time) with respect to overall L2 error.

implicit and explicit scheme, the CFL condition is calculated using the eigenvalues
of the unsplit system (3), whereas the RS-IMEX splitting only uses the convective
eigenvalue (λ1,2 in (3)). Our computations showed that for the implicit scheme
CFL=150 is a good compromise between required time steps and required iterations
per time step. (Note that the performance of a linear solver depends heavily on 1t ,
1x , and ε.)

First of all, we can conclude from Figure 2 that RS-IMEX computes a smaller
error on the same grid compared to the other methods (the i-th dot of each graph
corresponds to the same grid).

It can be seen from Figure 2 that the computational time of the explicit and the
implicit scheme scales somehow inversely to the Mach number. Since the equation
system gets more and more stiff for ε� 1, the computational cost of the implicit
method grows faster than the explicit ones. For the RS-IMEX only a slight increase
in computational time is noticeable for a decreasing Mach number.

If the efficiency is defined as the quotient of error and computational effort,
the efficiency of the explicit and implicit scheme decreases stronger than for the
RS-IMEX splitting with decreasing ε due to the aforementioned scaling.

The implicit method shows an extreme growth in computational cost and therefore
for ε < 10−2 the efficiency of the implicit method becomes worse than the efficiency
of the RS-IMEX method. The explicit method reaches this sweet spot for a much
smaller value of ε, i.e., for ε ≤ 10−4, since the computational cost of the explicit
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Figure 3. Comparison of computational time for 2d traveling vortex (4th order in space
and time) with respect to L2 error in density.

method is much smaller. Note that fully implicit calculations with ε = 10−4 are
very expensive as machine accuracy issues caused by the finite difference (10) lead
to an extremely strong increase in computational time due to slow convergence.

We computed the same tests for a lower spatial order (second order in space and
fourth order in time) and a higher spatial order (eighth order in space and fourth
order in time) and obtained similar results with an earlier (low-order case) and
later (higher-order case) break-even point. This behavior can be explained by the
worsening of an implicit high-order scheme due to increasing storage requirements.

More improvements concerning efficiency are obtained if the error in density is
considered, displayed in Figure 3. Again, the i-th symbol of each line corresponds
to the same mesh. Therefore, it is visible that for low Mach numbers one obtains
significantly lower errors with the RS-IMEX scheme than with the fully explicit
scheme with the same mesh. The graph shows that the RS-IMEX splitting is more
efficient than the explicit scheme for Mach numbers ε < 10−3. The steepening of
the ε = 10−4 RS-IMEX line is due to round-off errors, which occur due to machine
precision. We take a closer look on this problem in the next subsection.

5.3. Solving in the perturbation. It has to be noted that for very small Mach
numbers, the equation becomes extremely stiff and therefore limited machine
accuracy can be a problem. Indeed, in [24] the authors observed problems with the
accuracy for the RS-IMEX discretization for small values of ε which cannot be
explained by order reduction [10]. Similar problems have been seen in Figure 3.
This observation serves as a motivation to rewrite the method similarly to the
proceeding in [43]. The key trick is to rewrite the solution w as

w = w(0)︸︷︷︸
reference solution

+ ε (w(1)+ εw(2)+O(ε2))︸ ︷︷ ︸
perturbation

=: w(0)+ εδw
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and to observe that w(0) is already part of the algorithm and therefore known, so
one only has to solve in the perturbation δw which fulfills the equation

∂tw(0)+ ε∂tδw+∇x · (F̃(w(0)+ εδw)+ F̂(w(0)+ εδw))= 0.

In the setting of the isentropic Euler equations, ∂tw(0) can be identified by the
corresponding incompressible equations. Therefore, we can replace it by the flux
function G(w(0), p(2)) given in (4). This results in

∂tδw+
1
ε
∇x · (F̃(w(0)+ εδw)− G(w(0), p(2))+ F̂(w(0)+ εδw))= 0,

where G is added to the stiff part of the equation, i.e., handled with an implicit
method, but does not change the implicit matrix, since the values are given. Com-
puting the eigenvalues of the explicit part and using δ(ρu)= ρ(0)δu+uδρ+εδρδu
yields

λ̂1,2 = ε(δu · n), λ̂3 = 0, and λ̂4 = 2ε(δu · n).

Consequently, the explicit part has eigenvalues in O(ε) and the resulting method is
supposed to show similar stability properties with an improved accuracy because
many of the O(ε−1) terms drop out.

However, not all the terms cancel directly. One remaining term in the explicit
flux is

1
ε2 (p(ρ(0)+ εδρ)− p(ρ(0))− p′(ρ(0))εδρ).

Using a Taylor expansion for p gives

p(ρ(0)+ εδρ)= p(ρ(0))+ εp′(ρ(0))δρ+ ε2 p′′(ρ(0))δρ2
+O(ε3δρ3),

and therefore, the terms read

1
ε2 (p(ρ(0)+εδρ)− p(ρ(0))− p′(ρ(0))εδρ)= p′′(ρ(0))δρ2

+O(εδρ3)≈ p′′(ρ(0))δρ2.

We can therefore substitute the expression on the left-hand side by the one on
the right-hand side; we call this proceeding approximate pressure. Note that — in
general — this introduces an additional error in O(εδρ3) to the equation, but in our
setting δρ = O(ε) and therefore the error would be in O(ε4). For the low Mach case,
this can safely be assumed to be negligibly small. Note furthermore that for γ = 2
this does not introduce an additional error.

In Figure 4 results are presented for a very small ε. Spatial and temporal accuracy
is set to fourth order, i.e., we are using N = 3 and the IMEX-ARK-4A2 scheme.
We show errors for the “straightforward” RS-IMEX discretization, for solving in
the perturbation only and for solving in the perturbation with an approximated
pressure. Note that for the high-order vortex example the approximated pressure is
an exact reformulation since γ = 2. Figure 4 shows that due to the reformulation the
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Figure 4. Convergence behavior for a fourth-order RS-IMEX discretization for the travel-
ing vortex example for a very low Mach number of ε = 10−6.

problems caused by machine accuracy are tremendously reduced. All computations
have been done with an exact reference solution to neglect influences due to an
inaccurate incompressible solver.

6. Numerical results

In this section, we present numerical results for test cases which are more physically
motivated than the one considered in the previous subsection. We start with a
two-dimensional flow over a cylinder, and subsequently, we investigate the three-
dimensional inviscid Taylor–Green vortex.

6.1. Flow over a cylinder. This test case demonstrates the ability to use different
boundary conditions in our implementation and illustrates the importance of the
asymptotic preserving property. We compute the two-dimensional, inviscid flow
over a cylinder at low Mach numbers. We apply Euler wall boundary conditions
on the surface of the cylinder and Dirichlet-type boundary conditions at all other
boundaries of the domain. For Euler wall boundaries we can directly prescribe the
flux in normal direction at the boundaries as the normal velocity is zero:

F̃n =
(p(ρ(0))+ p′(ρ(0))(ρ− ρ(0))

ε2

 0
n1

n2

 ,
F̂n =

p(ρ)− p(ρ(0))− p′(ρ(0))(ρ− ρ(0))
ε2

 0
n1

n2

 ,
Gn = p(2)

 0
n1

n2

 ,
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whereas pressure and density are prescribed from the inner side. Dirichlet-type
boundary conditions are imposed weakly, meaning that a state is prescribed on
the boundaries and is used as one state required for the Riemann solver. We use
a uniform two-dimensional state w∞ = (ρ∞, u1,∞, u2,∞)

T
= (1.0, 1.0, 0)T (in

nondimensional quantities) as initialization and for the Dirichlet boundaries. For the
incompressible solver the state w∞ is transformed to u∞,incomp = (u1,∞, u2,∞)

T
=

(1.0, 0)T , p(2),∞ = 0, and ρ(0),∞ = ρ∞. Again, the equation of state p(ρ)= κργ

with κ = 0.5 and γ = 2 has been utilized. In the low Mach number limit, the exact
solution is given by a potential flow field [1]. One measure of solution quality is
the pressure coefficient C p. It can be computed in two ways: once via the equation
of state

CEOS
p =

1
ε2

p− p∞
1
2ρ∞‖u∞‖

2
2

=
1
ε2

κ(ργ − ρ
γ
∞)

1
2ρ∞‖u∞‖

2
2

, (14)

and once via Bernoulli’s hypothesis for an incompressible, inviscid flow [1]

CBernoulli
p =

1
ε2

p− p∞
1
2ρ∞‖u∞‖

2
2

= 1−
ρ‖u‖22

ρ∞‖u∞‖22
. (15)

For an incompressible, inviscid flow the result of (14) should coincide with the
results of (15), and therefore should satisfy

CEOS
p = CBernoulli

p = 1− 4 sin2(θ),

with θ being the angular coordinate of the cylinder’s polar coordinates ranging
from 0 to 2π [1]. Hence, the maximum of the pressure coefficient is C p = 1 at
the stagnation points and the minimum C p =−3 is reached at the positions with
maximum velocity on the top and bottom.

Rieper [38] showed that an explicit scheme with a standard HLL-type Riemann
solver reproduces the wrong pressure distribution in the low Mach number limit,
as it adds too much numerical viscosity. Therefore, the explicit scheme converges
to creeping flow where the dynamic pressure is several orders of magnitudes too
high. In contrast, an asymptotic preserving scheme would reproduce the potential
flow correctly. This is given since we can show for a method which is asymptotic
preserving that also on the discrete level

ρh = ρ(0)+O(ε2)

holds. Note that in this case ρ(0) = ρ∞. Therefore, using a Taylor expansion in (14)
we obtain

CEOS
p =

1
ε2

κO(ε2)
1
2ρ∞‖u∞‖

2
2

= O(1).
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Figure 5. Isolines and colors of pressure coefficient C p calculated via Bernoulli’s hy-
pothesis (upper) and via the equation of state (lower) for third-order explicit standard
Lax–Friedrichs scheme (left) and RS-IMEX splitting (right) at ε = 10−5.

If the method is not asymptotic preserving, the difference in the pressure might
be in O(ε) or worse, and therefore, the pressure coefficient CEOS

p becomes O(ε−1)

or worse. This only affects the pressure coefficient computed via the equation of
state, which is therefore an important measure of asymptotic quality of the method.
Figure 5 shows the results of a calculation with 1646 elements and a polynomial
degree of N= 2 using the standard explicit Lax–Friedrichs Riemann solver on the
left and the RS-IMEX splitting on the right. The Mach number is set to ε = 10−5.
If the pressure coefficient is evaluated via (15), meaning it is mainly influenced by
the velocity distribution (upper row in Figure 5), both schemes are able to predict
potential flow. A different behavior is observed if the dynamic pressure is evaluated
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Figure 6. Isolines and colors of pressure coefficient C p calculated via the equation of
state for explicit third-order schemes with insufficient modification of the Lax–Friedrichs
scheme (left) and with low Mach Lax–Friedrichs scheme (right) at ε = 10−5.

via the equation of state (lower row). Whereas the explicit scheme with a standard
Lax–Friedrichs solver does not show the correct flow pattern and has a pressure
coefficient several orders or magnitude too high, the RS-IMEX scheme is able to
reproduce the potential flow. This illustrates the asymptotic preserving property
of the scheme. We use the low Mach fix proposed in (13) to show its similar
asymptotic behavior compared to the asymptotic preserving RS-IMEX scheme.
Figure 6 illustrates that the simple multiplication of the jump with ε is not sufficient
(left) as it shows the flow pattern of a creeping flow. However, the explicit scheme
with the low Mach Lax–Friedrichs Riemann solver (right) is able to predict potential
flow. A further validation of the RS-IMEX splitting can be seen in Figure 7 where the
C p distribution on the upper surface of the cylinder evaluated with the equation of
state and with Bernoulli’s hypothesis is compared with the solution for potential flow.

6.2. Taylor–Green vortex. The Taylor–Green vortex introduced in [46] is origi-
nally a three-dimensional, incompressible viscous test case to study the transition
to turbulence and its decay. For nonviscous equation systems such as the isentropic
Euler equations it can be used to investigate the amount of dissipation added by a
numerical scheme. The standard incompressible initial conditions are given by

ρ(0) = 1,

u(0)(x, t = 0)= V0

 cos(x1) cos(x2) cos(x3)

− cos(x1) sin(x2) cos(x3)

0

 ,
p(2)(x, t = 0)=

ρ(0)V 2
0

16
(cos(2x1)+ cos(2x2))(cos(2x3)+ 2),
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where V0 denotes a constant initial velocity which is chosen to be V0 = 1; x1, x2,
and x3 denote the spatial coordinates of the periodic box �= [0, 2π ]3. We adapt
the initialization for the compressible isentropic Euler equations according to (5) to
obtain a consistent initial dataset for the incompressible initialization

ρ(x, t = 0)= ρ(0)+ ε2
V 2

0 ρ
2−γ
(0)

16γ κ
(cos(2x1)+ cos(2x2))(cos(2x3)+ 2),

u(x, t = 0)= V0

 cos(x1) cos(x2) cos(x3)

− cos(x1) sin(x2) cos(x3)

0

 ,
with p= κργ , κ = 0.5, and γ = 2. All calculations were conducted on a regular grid
with 163 elements and a polynomial degree of N=3. For the temporal discretization,
the third-order IMEX-ARS-443 scheme by Ascher et al. [2] is used. Again, a fully
implicit method is obtained if only the implicit Butcher tableau is considered. The
explicit calculations were made with a standard three-stage third-order Runge–
Kutta scheme [48] (see Table 5). We consider the isosurfaces of the velocity field
to compare the results of the RS-IMEX splitting with the explicit scheme in a
qualitative manner. Figure 8 exemplarily shows the velocity field at a Mach number
of ε = 10−4 for two different times t . In the top row, the solutions of both the
explicit and the RS-IMEX scheme are identical. For consistent schemes, this is
to be expected, since at this early (pretransition) state, the chosen discretization is
sufficient to completely resolve the occurring scales. This notion is also supported
in Figure 9, where the kinetic energy, defined as

Ekin,comp =
ε2

2

∫
�

ρ‖u‖22 d�,
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Figure 8. Isosurfaces of velocity magnitude at a physical time of t = 3 (top) and t = 7
(bottom) for explicit (left) and RS-IMEX scheme (right) at ε = 10−4.

is preserved at t=3 for both schemes. The kinetic energy can be used as a benchmark
of numerical dissipation properties of a scheme for inviscid flows. In the bottom row
of Figure 8, the solutions for t = 7 are shown. Here, clear qualitative differences
exist and the kinetic energy is no longer conserved, which can be attributed to the
different numerical dissipation mechanisms at work in both schemes. Calculations
with other Mach numbers showed analogous results and can be seen as a further
validation of the RS-IMEX scheme.

Comparisons of the dissipation rate with the compressible kinetic energy as a
measure of quality, displayed in Figure 9, confirm that the explicit scheme with
low-Mach Riemann solver and the RS-IMEX method behave similarly in this
setting. Differences are due to the slightly different numerical dissipation added
by the Riemann solvers. It is visible that a non-asymptotic preserving scheme as
the explicit scheme with standard Lax–Friedrichs Riemann solver shows a Mach
number dependent behavior which is not desirable. Concluding, we see that the
RS-IMEX splitting is able to reproduce a complex three-dimensional physical
behavior such as the Taylor–Green vortex.
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1tinit explicit implicit RS-IMEX

ε = 10−1 1.47 · 10−3 2.68 · 10−1 3.87 · 10−2

ε = 10−2 1.53 · 10−4 2.79 · 10−2 3.87 · 10−2

ε = 10−3 1.53 · 10−5 2.80 · 10−3 3.87 · 10−2

ε = 10−4 1.53 · 10−6 3.87 · 10−2

Table 1. Initial time steps of calculations with explicit, implicit, and RS-IMEX scheme
for the TGV at different Mach numbers and 1x = π/8.
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Figure 10. Comparison of computational time with 528 cores of RS-IMEX splitting and
explicit and implicit schemes for TGV with 163 spatial elements and fourth-order in space.

Focusing on the question of efficiency, the required time for calculations with
different discretization methods for several Mach numbers is displayed in Figure 10.
The corresponding time steps summarized in Table 1 are given by a constant CFL
number for each scheme. Computational effort increases with decreasing Mach
number for the explicit scheme as the time step decreases accordingly. A strong
increase of computational effort for the fully implicit scheme is noticeable as the
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stiffness of the equation system increases. For “high” Mach numbers, more compu-
tational time is needed for the RS-IMEX scheme as an additional partial differential
equation has to be approximated. But only a slight increase in computational effort
for decreasing Mach number is observed as the stiffness is hidden in the linear
system instead of the nonlinear system as for a fully implicit discretization. This
constitutes obviously a huge advantage of the RS-IMEX splitting compared to a
fully implicit scheme. Whereas the stiffness of the fully implicit scheme is increased
in the nonlinear system, the Jacobian-vector product in (9) has to be approximated
via the finite difference (10). The approximation of the Jacobian-vector product with
the finite difference gets worse for an increasing stiffness of the equation system,
and therefore, computational time strongly increases for the fully implicit scheme.
Using the RS-IMEX splitting the Jacobian-vector product can be calculated exactly
with (11). Hence, an increasing stiffness only slightly increases the computational
effort. Consequently, large savings concerning computational costs can be obtained
by using the RS-IMEX splitting for very low Mach numbers ε < 10−3 compared to
the explicit scheme and ε < 10−2 compared to the implicit scheme.

7. Conclusion and outlook

The efficient and accurate numerical solution of physical phenomena that belong to
the class of singularly perturbed problems is still an area of active research. These
problems can be seen as a special case of multiscale problems, in which large
differences in scale with regards to the average state occur in a spatially confined
region of the solution. This becomes especially challenging when high accuracy in
the limit is sought, i.e., the discretization should obey the underlying asymptotic
properties of the equation.

In this work, we have taken steps towards the development of an efficient high-
order DG scheme for all-speed flows at an engineering scale. Starting from the novel
operator splitting technique RS-IMEX for the isentropic Euler equations proposed
in [25], we have reformulated the discrete equations to significantly extend the
Mach number range of the scheme without the occurrence of machine accuracy
problems and demonstrated its capability to prevent a stall in convergence.

The RS-IMEX splitting has been implemented in an existing high-order DGSEM
framework. The incompressible reference solution is solved by an artificial compress-
ibility–type scheme, which couples the velocity and pressure field through a nu-
merical flux function and thereby introduces a hyperbolic equation for the pressure.
Numerical results have shown the efficiency of the method also in the context of
realistic three-dimensional applications.

Since the RS-IMEX is conceptually independent from the underlying equations,
its naive application to other systems is straightforward. However, it is not a priori
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0 0 0 0 0 0 0 0
γ 0 γ 0 γ γ 0 0
1 0 1− γ γ 1 δ 1− δ 0

0 1− γ γ δ 1− δ 0

Table 2. Second-order scheme IMEX-ARS-222 [2] with γ = (2−
√

2)/2 ≈ 0.293 and
δ = 1− 1/(2γ )≈−0.707.

0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 1/2 1/2 0 0 0 0
2/3 0 1/6 1/2 0 0 2/3 11/18 1/18 0 0 0
1/2 0 −1/2 1/2 1/2 0 1/2 5/6 −5/6 1/2 0 0

1 0 3/2 −3/2 1/2 1/2 1 1/4 7/4 3/4 −7/4 0

0 3/2 −3/2 1/2 1/2 1/4 7/4 3/4 −7/4 0

Table 3. Third-order scheme IMEX-ARS-443 [2].

clear whether this splitting guarantees hyperbolicity of the explicit part. Current
research efforts are underway to answer this question and to explore the possibilities
of extending the splitting to the full Euler equations. Furthermore, the application
of the splitting to multiphase flows is of current interest.
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Appendix

For the purpose of completeness, we list the Runge–Kutta schemes we have used
throughout this paper; see Tables 2, 3, 4, 5, and 6. The left tableaux of the IMEX-
Runge–Kutta schemes denote the Butcher tableaux of the part treated implicitly
(̃ · ); the right Butcher tableaux correspond to the explicit part (̂ · ).
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/3 −1/6 1/2 0 0 0 0 0 1/3 1/3 0 0 0 0 0 0
1/3 1/6 −1/3 1/2 0 0 0 0 1/3 1/6 1/6 0 0 0 0 0
1/2 3/8 −3/8 0 1/2 0 0 0 1/2 1/8 0 3/8 0 0 0 0
1/2 1/8 0 3/8 −1/2 1/2 0 0 1/2 1/8 0 3/8 0 0 0 0

1 −1/2 0 3 −3 1 1/2 0 1 1/2 0 −3/2 0 2 0 0
1 1/6 0 0 0 2/3 −1/2 2/3 1 1/6 0 0 0 2/3 1/6 0

1/6 0 0 0 2/3 −1/2 2/3 1/6 0 0 0 2/3 1/6 0

Table 4. Fourth-order scheme IMEX-ARK-4A2 [34].

i Ai Bi ci

1 0 1/3 0
2 −5/9 15/16 1/3
3 −153/128 8/15 3/4

Table 5. Third-order low-storage explicit Runge–Kutta scheme [48].

i Ai Bi ci

1 0
1432997174477
9575080441755

0

2 −
567301805773

1357537059087
5161836677717

13612068292357
1432997174477
9575080441755

3 −
2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 −
3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −
1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Table 6. Fourth-order low-storage explicit Runge–Kutta scheme [12]

The explicit schemes are given in the 2N -storage form [12] for the coefficients
Ai , Bi , and ci .
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