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COMPUTATION OF VOLUME POTENTIALS
ON STRUCTURED GRIDS

WITH THE METHOD OF LOCAL CORRECTIONS

CHRIS KAVOUKLIS AND PHILLIP COLELLA

We present a new version of the method of local corrections (MLC) of Mc-
Corquodale, Colella, Balls, and Baden (2007), a multilevel, low-communication,
noniterative domain decomposition algorithm for the numerical solution of the
free space Poisson’s equation in three dimensions on locally structured grids. In
this method, the field is computed as a linear superposition of local fields induced
by charges on rectangular patches of size O(1) mesh points, with the global
coupling represented by a coarse-grid solution using a right-hand side computed
from the local solutions. In the present method, the local convolutions are further
decomposed into a short-range contribution computed by convolution with the
discrete Green’s function for a Q-th-order accurate finite difference approxima-
tion to the Laplacian with the full right-hand side on the patch, combined with a
longer-range component that is the field induced by the terms up to order P−1 of
the Legendre expansion of the charge over the patch. This leads to a method with a
solution error that has an asymptotic bound of O(h P)+O(hQ)+O(εh2)+O(ε),
where h is the mesh spacing and ε is the max norm of the charge times a rapidly
decaying function of the radius of the support of the local solutions scaled by h.
The bound O(ε) is essentially the error of the global potential computed on the
coarsest grid in the hierarchy. Thus, we have eliminated the low-order accuracy
of the original method (which corresponds to P = 1 in the present method) for
smooth solutions, while keeping the computational cost per patch nearly the same
as that of the original method. Specifically, in addition to the local solves of
the original method we only have to compute and communicate the expansion
coefficients of local expansions (that is, for instance, 20 scalars per patch for
P = 4). Several numerical examples are presented to illustrate the new method
and demonstrate its convergence properties.

MSC2010: 65N06, 65N12, 65N15, 68W10.
Keywords: Poisson solver, method of local corrections, Mehrstellen stencils, domain decomposition,

parallel solvers.
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2 CHRIS KAVOUKLIS AND PHILLIP COLELLA

1. Introduction

We are interested in solving Poisson’s equation with infinite domain boundary
conditions in three dimensions, that is

1φ ≡
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = f in R3,

φ(x)=−
1

4π‖x‖

∫
R3

f ( y) d y+ o
(

1
‖x‖

)
, ‖x‖→∞,

(1)

where f is a function with bounded support and by ‖ · ‖ we denote the Euclidean
norm. It is well known that problem (1) has a solution if f is Hölder continuous and
has compact support � [12]. Furthermore, the solution of (1) is unique by means of
a maximum principle argument for harmonic functions and is given as a convolution
of the data with the three-dimensional infinite domain Green’s function [10]

φ(x)=
∫
�

G(x− y) f ( y) d y ≡ (G ∗ f )(x), G(z)=−
1

4π‖z‖
. (2)

In addition, if �⊂ B(x0, R), where B(x0, R) is the closed ball of radius R centered
at point x0, then φ is harmonic in R3

\ B(x0, R) and hence real analytic. By
differentiating (2), we find that the derivatives of the potential are rapidly decaying
functions of the form

(∇ pφ)(x)= O
((

1
‖x− x0‖

)‖ p‖1+1

R3
‖ f ‖∞

)
. (3)

This suggests a domain decomposition strategy, in which the contribution to the
fields on each local domain is computed independently and the nonlocal coupling
is computed using a reduced number of computational degrees of freedom. This
approach has been exploited for particle methods with the right-hand side in (1) given
by f (x)=

∑
i qiδ(x− xi ). For instance, we mention the Barnes–Hut algorithm [6],

the fast multipole method (FMM) [13; 7; 14], and the method of local corrections
(MLC) [3; 1; 2]. The aforementioned particle algorithms have been modified to
handle gridded data. In [20] the approximate solution of the Poisson problem is
given as a discrete convolution of the discrete Green’s function with the charge [15]
and is computed efficiently by combining the fast Fourier transform (FFT) with
interpolation of the kernel. This strategy is substantially accelerated within an FMM
setting but has not been extended to support multiresolution calculations. A very
attractive kernel-independent method is discussed in [27], for the case of a smooth
charge distribution that is represented on a uniform mesh. The kernel is truncated on
a sphere that encloses the charge so that its Fourier transform is C∞. This allows for
a fast and accurate computation of the potential via the trapezoid rule and the FFT
transform; however, the method is not readily applicable to adaptive mesh refinement
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(AMR) hierarchies. The first kernel-independent, adaptive volume-FMM method
has been presented in [19]. The integral in (2) is computed directly with numerical
quadrature, and local charges are approximated with polynomials. The analogs of
the multipole and local expansions in the original FMM method are convolutions
with equivalent source densities defined on auxiliary surfaces that encompass octree
boxes. The method can handle nonuniform sources, and a Chebyshev grid may be
required to achieve high-order accuracy. A highly optimized parallel implementation
is discussed in [21; 22]. For a comprehensive review that includes benchmark studies
of the FFT, FMM, and multigrid methods, we refer to [11]. The MLC method
[25] relies upon a localization approach that takes advantage of the rapid decay in
truncation error of compact finite difference Laplace operators. Further, it is more
compatible with traditional AMR. As such, it can be coupled with numerical schemes
that require solving Poisson’s equation on nested locally refined grids, for instance
adaptive projection methods for computational fluid dynamics. It should also be
noted that MLC exhibits a good balance between computation and communication,
which is essential for simulations on the emerging exascale platforms.

The present work is based on the extension of the method of local corrections
to structured grid data described in [5; 4; 25]. In this approach, the support of the
right-hand side is discretized with a rectangular grid, which is decomposed into
a set of cubic patches. For two levels the method proceeds in three steps: (i) a
loop over the fine disjoint patches and the computation of local potentials induced
by the charge restricted to those patches on sufficiently large extensions of their
support (downward pass), (ii) a global coarse-grid Poisson solve with a right-hand
side computed by applying the coarse-grid Laplacian to the local potentials of
step (i), and (iii) a correction of the local solutions computed in step (i) on the
boundaries of the fine disjoint patches based on interpolating the global coarse
solution from which the contributions from the local solutions have been subtracted
(upward pass). These boundary conditions are propagated into the interior of the
patches by performing Dirichlet solves on each patch. This can be generalized by
replacing the global coarse solution in (ii) by a recursive call to MLC, or by replacing
uniform grids at each level covering the entire domain by nested block-structured
locally refined grids. The local volume potentials are computed using a high-order
finite difference approximation to the Laplacian, combined with an extension to
three dimensions of the James–Lackner algorithm [17; 18] for representing infinite
domain boundary conditions. Furthermore, in order to make the nested refinement
version of this algorithm practical, we require that R = O(H)= O(h), where R is
the radius (in max norm) of local patches, H the coarse mesh spacing, and h the
fine-mesh spacing (i.e., a fixed number of points per patch and a fixed refinement
ratio). In [25], the local field calculation in (i) was split into two contributions: one
that represented the field induced by the complete charge distribution on a patch,
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and a second corresponding to the monopole component of the charge. By using
such a splitting, it is possible to obtain a convergent method by using a relatively
large region for computing the monopole component only while keeping the overall
computation and communications cost low. However, the convergence properties
of the resulting method were erratic, and exhibited a large O(h) solution error for
smooth charge distributions that were well resolved on the fine grid.

The starting point for the present work is a new error analysis for the MLC
algorithm that suggests a number of generalizations of the method that have better
and more predictable convergence properties. For example, we replace the separate
treatment of the monopole component of the charge on each patch by a similar treat-
ment of a truncated expansion in Legendre polynomials of the charge distribution on
each patch. Our error analysis predicts an O(h P)+O(hQ)+O(εh2)+O(ε) solution
error, where P − 1 is the maximum degree of the polynomials in the Legendre
expansions, and Q is the order of accuracy of the finite difference discretization
used to compute the local potentials. This is consistent with the earlier results in [25]
corresponding to P = 1. The O(ε) term is a localization error, proportional to the
max norm of the charge divided by a localization distance (measured in units of the
number of coarse grid points across the patch) raised to the order of accuracy of the
discretized Laplacian on harmonic functions. We also change the detailed approach
to computing the local potentials, replacing the James–Lackner representation of
the infinite domain boundary conditions in the calculation of the local potentials
in step (i) with local discrete convolutions computed using FFTs via a variation
on Hockney’s domain-doubling method [16]. This leads to a conceptually simpler
algorithm, and provides a compact numerical kernel on which to focus the effort of
optimization.

In this paper, we focus on the design of the algorithm, including an error analysis
of the method and calculations that demonstrate the error properties derived from
that analysis. In a second paper [24], we will present performance and parallel
scaling results on high-performance computing (HPC) platforms.

2. Mehrstellen discretization and finite difference localization

Notation. We denote by Dh, �h, . . . ⊂ Z3 grids with grid spacing h of discrete
points in physical space: {gh : g ∈ Dh

}. Arrays of values defined over such sets
will approximate functions on subsets of R3; i.e., if ψ = ψ(x) is a function on
D ⊂ R3, then ψh

[g] ≈ ψ(gh). We denote operators on arrays over grids of mesh
spacing h by Lh,1h, . . . ; Lh(φh) : Dh

→ R. Such operators are also defined on
functions of x ∈ R3, and on arrays defined on finer grids φh′ , h = Nh′, N ∈N+, by
sampling: Lh(φ) ≡ Lh(Sh(φ)), Sh(φ)[g] ≡ φ(gh), and Lh(φh′) ≡ Lh(Sh(φh′)),
Sh(φh′)[g] ≡ φh′

[N g].
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For a rectangle D = [l, u], defined by its lower-left and upper-right corners
l, u ∈ Z3, we define two operators: a grid extension operator

G(D, r)= [l − (r, r, r), u+ (r, r, r)], r ∈ Z,

and a grid coarsening operator

C(D)=
[⌊

l
Nref

⌋
,

⌈
u

Nref

⌉]
.

Throughout this paper, we will use Nref = 4 for the refinement ratio between
consecutive levels.

We begin our discussion presenting the finite difference discretizations of (1)
that we will be using throughout this work and some of their properties that pertain
to the method of local corrections. Specifically, we are employing Mehrstellen
discretizations [8] (also referred to as compact finite difference discretizations) of
the three-dimensional Laplace operator

(1hφh)g =
∑

s∈[−s,s]3

asφ
h
g+s, as ∈ R. (4)

If φh is defined on Dh , then 1hφh is defined on Dh,s
≡ G(Dh,−s). The associated

truncation error τ h
≡ (1h

−1)(φ) = −1h(φh
− φ) for the Mehrstellen discrete

Laplace operator is of the form

τ h(φ)= C2h21(1φ)+

q/2−1∑
q ′=2

h2q ′L2q ′(1φ)+ hq Lq+2(φ)+ O(hq+2), (5)

where q is even and L2q ′ and Lq+2 are constant-coefficient differential operators
that are homogeneous, i.e., for which all terms are derivatives of orders 2q ′ and q+2,
respectively. For the two operators we will consider here, C2 =

1
12 . In general, the

truncation error is O(h2). However, if φ is harmonic in a neighborhood of x,

τ h(φ)(x)=1h(φ)(x)= hq Lq+2(φ)(x)+ O(hq+2). (6)

In our numerical test cases we make use of the 19-point (Lh
19) and 27-point (Lh

27)
Mehrstellen stencils [26] that are described in Appendix A, for which q = 4 and
q = 6, respectively. In general, it is possible to define operators for which s=bq/4c
for any even q , using higher-order Taylor expansions and repeated applications of
the identity

∂2rφ

∂x2r
d
=
∂2r−2

∂x2r−2
d

(1φ)−
∑
d ′ 6=d

∂2r

x2r−2
d ′ x2

d

(φ).



6 CHRIS KAVOUKLIS AND PHILLIP COLELLA

Since we are primarily concerned with solving the free-space problem, the corre-
sponding discrete problem can be expressed formally as a discrete convolution

(Gh
∗ f h)= (1h)−1( f h), (Gh

∗ f h)[g] ≡
∑
g′∈Z3

h3Gh
[g− g′] f [g′]h, (7)

where the discrete Green’s function Gh
[g] = h−1Gh=1

[g] satisfies

(1h=1Gh=1)[g] =
{

1 if g = 0,
0 otherwise

(8)

and

Gh=1
[g] =

1
4π‖g‖

+ o
(

1
‖g‖

)
, ‖g‖→∞.

We use these conditions to construct approximations to Gh numerically; see
Appendix A. For any n, we have∑

g∈D

h3
|Gh
[g]| ≤ C, C = C(nh), D ⊆ [−n, . . . , n]3,

from which it follows that convolution with Gh is max norm stable on bounded
domains, i.e.,

‖Gh
∗ f h
‖∞ ≤ C ′‖ f h

‖∞,

C ′ independent of f , h , supp( f h)⊆

[
−

⌊
A
h

⌋
, . . . ,

⌈
A
h

⌉]3

, (9)

for any fixed A > 0.
The form of the truncation error (5) allows us to compute q-th-order accurate

solutions to (1) by modifying the right-hand side, i.e.,

1h(φ)= f̃ h
+ O(hq), (10)

f̃ h
= f h

+

(
C2h2(1( f ))h +

q/2−1∑
q ′=2

h2q ′L2q ′( f )h
)
, (11)

and replacing the differential operators on the right-hand side with finite difference
approximations. If only a fourth-order accurate solution is required, it suffices to
use the first term, leading to a correction of a particularly simple form:

φ = Gh
∗ f h
+C2h2 f h

+ O(h4). (12)

In particular, the solution error εh
= Gh

∗ f h
−φ = O(h4) away from the support

of f without any modification of f h .
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Figure 1. Scatter plots of log10(|(1
h=1Sh=1(G))[g]|) versus log10(‖g‖∞), g ∈ Z3, at

points away from the singularity of G for the Lh
19 and Lh

27 discrete Laplacians. The slopes
of the lines depicted are −7 and −9 for the Lh

19 and Lh
27, respectively.

Suppose that supp( f ) ⊂ Pc, where Pc = c+ [−R, R]3 is a cube of radius R
centered at point c, and that the differential operator Lq is a linear combination of
derivatives of order q. By differentiating (2), we have

[(Lq G) ∗ f ](x)= O
((

1
R

)q−2 1

‖x/R− c/R‖q+1
∞

)
‖ f ‖∞. (13)

In particular, away from the support of f , (5) becomes

τ h( f )=1h(G ∗ f )(x)= O
((

h
R

)q 1

‖x/R− c/R‖q+3
∞

)
‖ f ‖∞. (14)

It is precisely this rapid decay of the truncation error, a consequence of the fact that
the local potentials are harmonic away from the supports of the associated charges,
that allows us to use a coarse mesh for the global coupling computation. In Figure 1,
scatter plots of the truncation error for the case of a point charge located at the
origin using the 19-point and 27-point Laplacians are depicted. The rapid decay of
the truncation error in the far field and the faster decay with increasing q are evident.
Using this localization property of the Mehrstellen operators, we can reduce the
cost of computing the potential (2) induced by a localized charged distribution to
the cost of computing the potential near the support of the charge, using the finite
difference localization approach originally introduced in [23]. We assume that the
support of f is contained in cube D of radius R centered at c. First, let φ = G ∗ f
be the exact solution restricted on the extended cube Dβ of radius βR, β > 1. Then
we compute φH

= G H
∗ F H on �H . The coarse right-hand side is defined by

F H
=

{
1H (φ) on DH,s

β = G(C(Dh
β),−s),

0 on �H
\ DH,s

β .
(15)
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Using (14), we have

1H (φH
−G∗ f )=


0 on DH,s

β ,

O((H/R)q(1/(k+β)q+3)‖ f ‖∞)
on {g : ((k+β)+ 1)R ≥ ‖gH‖1 ≥ (k+β)R},

(16)

where g ∈ Z3, k ∈N. One can decompose the annular region {g : ((k+β)+1)R ≥
‖gH‖1 ≥ (k + β)R} into O((k + β)2) rectangles, each of which has radius ≤ R,
leading to an analogous decomposition of the right-hand side of (16) into a sum
of terms, each of which is supported on one such rectangle. Applying convolution
with G H to both sides of (16) represented in terms of such sums leads to a solution
error given by

φH
−G ∗ f =

∞∑
k=0

O
((

H
R

)q 1

(k+β)q+3 ‖ f ‖∞

)

= O
((

H
R

)q 1
βq ‖ f ‖∞

)
. (17)

Thus, the accuracy of the potential away from the support of the charge can be
improved by decreasing the ratio H/R or, for fixed values of that ratio, by adjusting
β or q. In any case, the error is only weakly dependent on f . In this context, we
will refer to β as a localization radius. In addition, (17) is truly independent of
whether the right-hand side is modified using the Mehrstellen correction (11). The
MLC algorithm combines finite difference localization with domain decomposition
into a collection of rectangular patches of size R to obtain a low-communication
method for computing volume potentials. This is done in a way that generalizes
to nested refinement on an arbitrary number of levels, with the domain at each
level decomposed into patches having a fixed number of mesh points, independent
of the level of refinement. This implies that H/R remains constant, which leads
to (17) being an O(1) error relative to the mesh spacing. Ultimately, that error is
controlled by increasing β, combined with choosing a discretization with a larger q .
However, the cost of computing the local convolution G ∗ f on DH,s

β scales like β3.
To reduce that cost, we introduce a second localization radius α, α < β. On DH,s

α ,
we use the full convolution to compute F H . In the remaining annular region, we
use a reduced representation based on the field induced by the first few moments of
the Legendre expansion of f , which is much less expensive to compute.

3. Method of local corrections: semidiscrete case

To clarify ideas, we discuss in this section a theoretical proxy for the fully discrete
algorithm. We construct a function φMLC

:�→R that approximates the potential φ
by a linear superposition of local potentials, combined with data interpolated from
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βR

G ∗P( f i)

αR

R

�R, i, β

�R, i

�R, i, α G ∗ f i

Figure 2. Regions associated with subdomain �R,i . The potential in �R,i,α (white
region) is given by G ∗ f i . In the ring �R,i,β \�R,i,α (shaded region) we use the field
induced by a truncated Legendre expansion on �R,i of the local charge f i to represent

the potential.

a discrete global solution. The computational domain is a cube � that contains the
support of f and is decomposed into a finite union of disjoint cubic subdomains of
equal volume that are translations of [−R, R]3, R > 0:

supp( f )⊂�=
⋃

i

�R,i , �R,i = ci
+ [−R, R]3,

i ∈ Z3, ci
= (2i + (1, 1, 1))R. (18)

Then f =
∑

i f i where f i
= f χ i , where χ i is the characteristic function of �R,i .

As a consequence, the global potential may be written as

φ(x)= (G ∗ f )(x)=
∑

i

(G ∗ f i )(x). (19)

In other words, it is the linear superposition of the potentials induced by the local
charges f i which can be computed independently in parallel. The MLC algorithm
replaces each of the summands in (19) with a solution truncated to zero outside of a
localization radius βR, with the contribution to the solution outside the localization
radius represented by interpolation from a single coarse-grid solution φH obtained
by summing contributions of the form (15) over all the patches. At each point in
space, the coarse-grid values used to interpolate the global contribution are corrected
by subtracting off the contributions of the patches within the localization radius.
Finally, to reduce the cost of computing the localized potentials, while keeping β
large enough to make the O(1) contribution to the error coming from localization
be acceptably small, we introduce an inner radius α < β (see Figure 2). Within
that inner radius, we compute the full convolution G ∗ f i ; in the annular region
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�R,i,β \�R,i,α, the local solution is approximated by G ∗P( f i ), where P( f i ) is
the orthogonal projection onto the Legendre polynomials on �R,i of some degree
P − 1:

P( f i )=
∑

p∈N3:‖ p‖1<P

〈Q p, f i
〉Q p,

Q p(x)= R−3/2
3∏

d=1

Q pd

(
xd − ci

d

R

)
, x ∈�R,i , q ∈ N3,

(20)

where 〈 · , · 〉 is the inner product on �R,i , and Q p
: [−1, 1] → R is the classical

Legendre polynomial of degree p.

3.1. The semidiscrete MLC algorithm. The semidiscrete MLC algorithm consists
of three steps.

Step 1 (local convolutions). We perform local convolutions in regions around each
subdomain �R,i that are used to compute local charges at points on the grid:

F i,H
[g] =


1H (G ∗ f i )[g] if g ∈�H

R,i,α,

1H (G ∗P( f i ))[g] if g ∈�H
R,i,β \�

H
R,i,α,

0 otherwise.

Step 2 (global coarse solve). The global charge at coarse mesh points is constructed
by assembling local contributions

F H
[g] =

∑
i

F i,H
[g],

and we obtain a global approximation φH of the potential, represented on the coarse
mesh, by computing the discrete convolution over �H :

φH
= G H

∗ F H . (21)

Step 3 (local interactions/local corrections). In the final step, we represent the
solution on the boundary of each �R,i as the sum of local convolutions induced by
charges on nearby patches and values interpolated from the grid calculation, from
which the local convolution values have been subtracted:

φB,i (x)= φloc,x(x)+IH (φH
−φloc,x)(x). (22)

Here IH (ψH )(x) is an interpolation operator that takes as input values of ψH
:

N(x) → R, where N(x) ⊂ {gH : g ∈ Z3
}, and returns a qI -th-order accurate

polynomial interpolant. In all of the algorithms described here, x and all of the
points in N(x) are coplanar, so the interpolant is particularly easy to construct.
Furthermore, φloc,x(x) is the sum of all local convolutions the support of whose
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charges is sufficiently close to x so that they contributed to the right-hand side for
the grid solution near that point:

φloc,x(x′)=
∑

i :x∈�R,i,α

(G ∗ f i )(x′)+
∑

i :x∈�R,i,β\�R,i,α

(G ∗P( f i ))(x′). (23)

Equation (22) can be interpreted as the decomposition of the potential at a point x,
into the sum of local contributions to the potential given by φloc,x and corrections
to include the global coupling by interpolating a corrected form of the coarse-
mesh global solution φH . Specifically, the correction term in (22) is computed by
evaluating φloc,x at the points of the interpolation stencil N(x), subtracting these
values from φH , and interpolating the result to x. The MLC solution φMLC is
specified in terms of solutions to Dirichlet problems on each �R,i :

1φMLC
= f i in �R,i , φMLC

= φB,i on ∂�R,i . (24)

3.2. Error analysis. The error of the local corrections step for x∈∂�R,i is given by

(φB,i
−φ)(x)= φloc,x(x)−φ(x)−IH (φloc,x

−φ)(x)+IH (φH
−φ)(x)

= εH
I (φ

loc,x
−φ)(x)+IH (φH

−φ)(x) (25)

where εH
I (ψ)(x) is the error in applying the interpolation operator IH to a smooth

function ψ evaluated on the grid and evaluating it at x. There are two sources of
error for the semidiscrete algorithm: one from the calculation of φH in (21), and the
other due to interpolation at the local corrections step (22). To estimate the former,
i.e., the second term of (25), it suffices to bound the coarse mesh error φH

−φ. To
do so, we estimate the truncation error of the coarse solve (21) at points g:

τ H
C =1

H (φH
−φ)[g]

=−1H
( ∑

i :gH /∈�R,i,β

G∗ f i
)
[g]−1H

( ∑
i :gH∈�R,i,β\�R,i,α

G∗((I−P)( f i ))

)
[g]. (26)

To bound the first term of (26), we use (14) to find that

1H
( ∑

i :gH /∈�R,i,β

G ∗ f i
)
[g]

= O
((

H
R

)q ∞∑
k=0

∑
i :gH∈�R,i,β+k+1\�R,i,β+k

1
(β + k)q+3 ‖ f i

‖∞

)

= O
((

H
R

)q 1
βq ‖ f ‖∞

)
. (27)
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The second term of (26) is bounded in a similar fashion:

1H
( ∑

i :gH∈�R,i,β\�R,i,α

G∗((I−P)( f i ))

)
[g] = O

((
H
R

)q 1
αq max

i
‖(I−P)( f i )‖∞

)

= O
((

H
R

)q 1
αq H P

)
, (28)

where we have used
‖(I−P)( f i )‖∞ = O(R P), (29)

which follows directly from Taylor’s theorem for f i and the fact that π = P(π) for
polynomials π of degree less than P . As a result, the estimate

1H (φH
−φ)= O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q 1
βq ‖ f ‖∞

)
(30)

for the coarse mesh error holds uniformly on coarse mesh points. Since convolution
with G H and the interpolation operator IH are max norm bounded, εH

C ≡ φ
H
−φ

is also bounded by an expression of the form of the right-hand side of (30).
To bound the first term in (25), it follows from the fact that the interpolation

method is qI -th-order accurate that

εH
I (φ

loc,x
−φ)(x)= HqI LqI

I (φ
loc,x
−φ)(ξ)

=−HqI

( ∑
i :x∈�R,i,β\�R,i,α

((LqI
I G)∗(I−P)( f i ))(ξ)+

∑
i :x /∈�R,i,β

((LqI
I G)∗ f i )(ξ)

)
(31)

where ξ is in an O(H) neighborhood of N(x) and LqI
I is a linear differential operator

with terms that are derivatives of order qI . Using (13), a similar argument to that
given in the proof of (30) leads to

εH
I = H P+2O

((
H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
so that (25) is estimated as

εSD
≡ φB,i

−φ = H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
+ O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (32)

4. Method of local corrections: fully discrete case

In this section, we describe the two-level algorithm as it is actually implemented.
�h is a fine-grid discretization of a bounded domain �, the latter containing



COMPUTATION OF VOLUME POTENTIALS ON STRUCTURED GRIDS 13

the support of f . �h is assumed to be a finite union of rectangles of the form
�h

R,i = n i+[0, n]3, R = nh/2. We also define discrete forms of �h
R,i,α and �h

R,i,β :
�h

R,i,α = G(�h
R,i , d(α− 1)n/2e) and �h

R,i,β = G(�h
R,i , d(β − 1)n/2e). The coarse

grid �H is assumed to cover all of the fine patch data required for the algorithm
described below: G(C(�h

R,i,β), b)⊂�H where b is the radius of the stencil for the
interpolation function IH . We also define a discretized form of the characteristic
function of a rectangular patch D ⊂ Z3:

χD(x)=



1
8 if g is a corner of D,
1
4 if g lies on an edge of D,
1
2 if g lies on a face of D,
1 if g lies in the interior of D,
0 elsewhere.

In the fully discrete algorithm, we replace the local convolutions with local discrete
convolutions, e.g., G ∗ f i

→Gh
∗ f i,h and f i,h

= χ�h
R,i

f , and we take H = Nrefh.

4.1. The fully discrete two-level algorithm.

Step 1 (local convolutions). For each �h
R,i , we compute the potential induced by

f i,h
= χ�h

R,i
f h :

φ i,h
= Gh

∗ f i,h on G(�h
R,i,α, Nrefb). (33)

The Legendre expansion coefficients of f i,h required to compute P( f i ) are com-
puted with composite numerical integration. We employ Boole’s rule if f is given
only at points of �h or Gauss integration if f is specified analytically. For each
�h

R,i we also compute the associated local charges

F i,H
[g] =


1Hφh

i [g], g ∈ C(�h
R,i,α),

1H (Gh
∗Ph( f i,h))[g], g ∈ C(�h

R,i,β) \C(�h
R,i,α),

0, g /∈ C(�h
R,i,β).

(34)

The values of 1H (Gh
∗ Q p) can be computed once and stored, reducing the calcu-

lation of 1H (Gh
∗Ph( f i,h)) to computing linear combinations of the appropriate

subset of those precomputed values.

Step 2 (global coarse solve). φH
= G H

∗ F H on �H , F H
=

∑
i

F i,H .

Step 3 (local interactions/local corrections). We define the local potentials at fine
boundary points g ∈ ∂�h

R,i as combinations of short-range and intermediate-range
components

φloc,g
[g′
] =

∑
i ′:g∈�h

R,i ′,α

φ i ′,h
[g′
] +

∑
i ′:g∈�h

R,i ′,β\�
h
R,i ′,α

(Gh
∗Ph( f i ′,h))[g′

], (35)
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and we correct them by adding the far field effects as in (22):

φB,i,h
[g] = φloc,g

[g] +IH (φH
− (φloc,g))(gh), g ∈ ∂�h

i . (36)

The interpolation operator on coplanar points IH that we are employing is the same
as in [25]. Using these boundary conditions, we solve the following local Dirichlet
problems on �h

i patches:

1hφ̃MLC,i,h
= f i,h on �h

R,i \ ∂�
h
R,i ,

φ̃MLC,i,h
= φB,i,h on ∂�h

R,i .
(37)

Finally, the fourth-order Mehrstellen correction (12) is applied to obtain the values
of φMLC,h

φMLC,h
[g] = φ̃MLC,i,h

[g] +C2h2 f h
[g], g ∈�h

R,i . (38)

If we want to go to higher than fourth-order accuracy in h, the algorithm is more
complicated — the Mehrstellen correction must be applied earlier in the process.
We will not discuss the details in this paper.

4.2. Error analysis. We proceed in this section with estimating the error for the
fully discrete MLC algorithm. We want to get some idea of the impact of replacing
the analytic continuous convolutions by the discretized convolutions. To do this, we
use a modified equation approach, in which we assume that we can approximate the
solution error by the action of the operator on the truncation error. In the present
setting, this amounts to making the substitution

Gh
∗ψh
→ G ∗ (ψ + δτ h(ψ))−C2h2ψ, (39)

δτ h(ψ)=1(Gh
∗ψh)−ψ +C2h21ψ = O(h4). (40)

As in the semidiscrete case, we want to estimate the error in the boundary conditions

φB,i,h
[g] − φ̃(gh)= φloc,g

[g] − φ̃(gh)+IH (φH
−φloc,g)(gh)

= IH (φH
− φ̃)(gh) (41)

+φloc,g
[g]−φ̃(gh)−IH (φloc,g

−φ̃)(gh), g ∈�h
R,i , (42)

where

φ̃ ≡ φ+C2h2 f.
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An estimate of the contribution from (41) is obtained by bounding 1H (φH
− φ̃),

since IH and convolution with G H are both stable in max norm. We have, by (39),

1H (φH
− φ̃)[g] = −

∑
i ′:g /∈�H

R,i ′,β

1H (G ∗ f i ′)[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (G ∗ (I−P)( f i ′))[g] −
∑

i ′:g /∈�H
R,i ′,β

1H (G ∗ (δτ h( f i ′,h)))[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (G ∗ δτ h((I−P)( f i ′)))[g]

−

∑
i ′:g∈�H

R,i ′,β\�
H
R,i ′,α

1H (Gh
∗ ((P( f i ′))h − (Ph( f i ′,h))))[g] + O(h4). (43)

The first two terms are identical to the ones that appear in the semidiscrete case,
while (39) and the estimate ‖(P−Ph)( f i ′)‖∞ = O(h6) (which holds since our
quadrature rules for computing the Legendre coefficients are at least sixth-order
accurate) guarantee that the remaining terms are O(h4) or smaller. Using similar
arguments to those in (43), we have

φloc,g
− φ̃ =−

∑
i ′:g /∈�h

R,i ′,β

G ∗ f i ′
−

∑
i ′:g∈�h

R,i ′,β\�
h
R,i ′,α

G ∗ ((I−P)( f i ′))+ O(h4),

and therefore, following (31), we have

εH
I (φ

loc,g
− φ̃)(gh)

= H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2 1
βqI−2 ‖ f ‖∞

)
+ O(h4),

Thus, we have

φB,i,h
[g] − φ̃(gh)= εSD

+ O(h4).

The stability of the discretized boundary value problem implies ‖φMLC,h
−φ‖∞ =

O(‖φB,h
−φ‖∞)+ O(h4), so we finally have the estimate

φMLC,h
−φ = O(h4)+ εSD

= O(h4)+ H P+2O
((

H
R

)qI−2 1
αqI−2

)
+ H 2O

((
H
R

)qI−2
‖ f ‖∞
βqI−2

)
+ O

((
H
R

)q 1
αq H P

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (44)
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at all fine grid points. This error can be written in the form

φMLC,h
= φ+ O(h4)+ O(h P)+ O

(
h2
‖ f ‖∞

1
βqI−2

)
+ O

(
‖ f ‖∞

1
βq

)
. (45)

Thus, MLC differs from classical finite difference methods in that there is a con-
tribution to the error that does not vanish as h→ 0, i.e., the right-most summand
in (44). We refer to this contribution to the error as the barrier error. Note that,
if we take qI = q + 2, we obtain the form of the error given in the Introduction.
We have specialized this algorithm to the case of fourth-order accuracy, primarily
because it allows us the simplification of applying the Mehrstellen correction (38)
at the end of the calculation. However, this analysis suggests that, even with this
simplification, there might be an advantage to using discretizations of the Laplacian
with larger q, i.e., ones that are higher-order accurate when applied to harmonic
functions, since the barrier error is proportional to β−q . We observe this to be the
case in the results in Section 7.

5. Multilevel method of local corrections

Following [25], we generalize the method in Section 4 to the case of an arbitrary
number of levels l = 0, . . . , lmax, where lmax is the finest level on which the solution
is sought. We denote the discrete Laplacian with mesh size hl by 1hl , with hl =

Nrefhl+1. At each level we discretize the solution on a collection of node-centered
cubic patches �Rl ,i , Rl = Nref Rl+1, and the corresponding discretized grids �hl

Rl ,i ;
the combined level-l grid is given by �l,hl ≡

⋃
i �

hl
Rl ,i . We also define, for each i ,

localization regions�Rl ,i,α and�Rl ,i,β , and their discretizations�hl
Rl ,i,α and�hl

Rl ,i,β ,
1< α < β. At level 0 there is only one patch �0,h0 at which the coarse solve of the
method is performed, just as in the two-level algorithm. We also impose a proper
nesting condition: for l = 1, . . . , lmax,

G(C(�hl
Rl ,i,β), b)⊂�l−1,hl−1 . (46)

The multilevel MLC comprises the following steps.

Step 1 (downward pass: initial local convolutions). Local convolutions are com-
puted at levels l = lmax, . . . , 1:

φ i,hl = Ghl ∗ f̃ i,hl on G(�hl
Rl ,i,α, Nrefb), (47)
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where the local right-hand sides are defined as

f̃ i,hl =

∑
i ′
1hl (φ i ′,hl+1)|

C(�
hl+1
Rl+1,i ′,α

)

+

∑
i ′
1hl (Ghl+1 ∗P( f i ′,hl+1))|

C(�
hl+1
Rl+1,i ′,β

\�
hl+1
Rl+1,i ′,α

)
+ χ̃

�
hl
Rl ,i

f hl ,

χ̃
�

hl
Rl ,i
[g] = χ

�
hl
Rl ,i
[g] −

∑
i ′=Nref i+s
0≤sd≤Nref

χ
�

hl+1
Rl+1,i ′
[Nref g].

Step 2 (global coarse solve). φh0 = Gh0 ∗ f̃ h0 on �0,h0 .

Step 3 (upward pass: local interactions/local corrections for 1, . . . , lmax). Start-
ing from level 1, the following local Dirichlet problems are solved at levels
l = 1, . . . , lmax:

1hl φ̃MLC,i,hl = f̃ i,hl on �hl
Rl ,i \ ∂�

hl
Rl ,i ,

φ̃MLC,i,hl = φB,i,hl on ∂�hl
Rl ,i ,

φ̃MLC,l
= φ̃MLC,i,hl on �hl

Rl ,i .

(48)

The Dirichlet boundary conditions are given by

φB,i,hl [g] = φloc,l,g
[g] +Ihl−1(φ̃MLC,l−1

−φloc,l,g)(ghl). (49)

Here the local potentials φloc,g,l are given by

φloc,l,g
[g′] =

∑
i ′:g∈�hl

Rl ,i ′,α

φ i ′,hl [g′] +
∑

i ′:g∈�hl
Rl ,i ′,β

\�
hl
Rl ,i ′,α

(Ghl ∗P( f i ′))[g′]. (50)

Finally, the Mehrstellen correction at all levels is applied as

φMLC,l
[g] = φ̃MLC,l

[g] +C2h2
l f i,hl [g], g ∈�l,hl (51)

We do not have a complete error analysis for the above algorithm corresponding
to that given in the two-level case. However, we can look at error analysis of the
two-level algorithm, and determine the change in the error introduced there by
replacing the coarse-grid convolution with G H with an MLC calculation. We denote

• GMLC,S(r) the two-level semidiscrete method of local corrections approxima-
tion to G ∗ r , with patch radius S,

• N S
1 (r)(x)≡

∑
i :x /∈�S,i,β

hq Lq+2(G ∗ r i )(x),

• N S
2 (r)(x)≡

∑
i :x∈�S,i,β\�S,i,α

hq Lq+2(G ∗ ((I−P)r i ))(x), and

• N S(r)= N S
1 (r)+ N S

2 (r).



18 CHRIS KAVOUKLIS AND PHILLIP COLELLA

By (25) and (26), G H
∗ (N R( f ))H

= (G ∗ f )H
− φH is the only quantity in the

error in which convolution with G H appears. Given that, it is straightforward to
assess the impact of replacing the convolution with G H in this expression with
applying the MLC algorithm for a patch size Nref R. To estimate this effect, we
use a modified equation approach, in which the difference is approximated by
G ∗ (N R( f ))−GMLC,Nref R(N R( f )). Applying the error estimate (26), we obtain

G ∗ (N R( f ))−GMLC,Nref R(N R( f ))= N Nref R(N R( f ))

= N Nref R
1 (N R

1 ( f ))+ N Nref R
1 (N R

2 ( f ))+ N Nref R
2 (N R

1 ( f ))+ N Nref R
2 (N R

2 ( f )).

For this substitution to have an appropriately small impact, it is sufficient for the
error to be comparable to or less than the error in the two-level algorithm. The
sum of the first three terms meet this criterion — the sum of the first two terms is
bounded by the max norm of the two-level error multiplied by O(β−q), and the
third term is bounded by O(α−q) times the max norm of the barrier error of the
two-level algorithm. The final term, however, is problematic. In particular, the
impact on the error of multiple applications of I−P at increasing mesh spacings is
far from clear. We will see evidence of this in the numerical results in Section 7.2,
and will suggest a remedy that allows the error to be controlled.

6. Computational issues

The analysis and demonstration of the performance of this algorithm will be the
subject of a separate paper [24], so we will just make a few high-level observa-
tions to justify the pursuit of this line of research. The largest contribution to the
floating point operation count in this method comes from the initial local discrete
convolutions (33). To compute these convolutions, we use a generalization of
Hockney’s domain-doubling algorithm [16], which we describe in Appendix B.
The floating point work per unknown for this step is O(α3 log(n)), α > 1, where
n3 is the number of points per patch. The next-largest computation is that of the
final Dirichlet solutions (37), performed using sine transforms, which is O(log(n))
per unknown. The floating point work associated with computing the Legendre
expansions is small, with the convolutions of Legendre polynomials with the discrete
Green’s functions precomputed and stored. The memory overhead for storing these
quantities scales like O(β3n3). However, there is one copy of these per processor,
shared across multiple patches/cores. Furthermore, they are only stored either on a
sampled grid coarsened by Nref, or on planar subsets corresponding to boundaries
of patches, which reduces the memory overhead further.

The parallel implementation of this algorithm is via domain decomposition,
with patches distributed to processors. For the choices of α and β used in the
results described below, this corresponds to a floating point operation count about
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three times that of a corresponding multigrid algorithm for comparable accuracy.
Roughly speaking, the communications cost, in terms of number of messages and
overall volume of data moved, corresponds to that of a single multigrid V-cycle,
plus the negligible costs of communicating a small number of Legendre expansion
coefficients (20 per patch for the case P = 4). This is to be compared to the 8
multigrid V-cycles required to obtain a comparable level of accuracy. Current
trends in the design of HPC processors based on low-power processor technologies
indicate a rapid growth in the number of cores capable of performing floating
point operations on a processor, while the communications bandwidth between
processors, or between the processor and main memory, is growing much more
slowly. In addition, most of the floating point work is performed using FFTs on
small patches on a single node, for which there are multiple opportunities for
performance optimization. Thus, the present algorithm is well positioned to take
advantage of these trends.

7. Numerical test cases

We present in this section several examples that demonstrate the convergence
properties of the MLC method described above. In all cases, we use as a measure
of the solution error the max norm error of the potential, divided by max norm of
the potential

‖φMLC,h
−φ‖∞

‖φ‖∞
. (52)

For all cases, we set n = 32, so that H/R = 1
4 . We refer to the special case β = α

(i.e., if the long-range potentials induced by the truncated Legendre expansions of
local charges are ignored) as the MLC-0 method and to the general case α < β as
the MLC method. It is not difficult to see that for MLC-0, the estimate (44) reduces
to

φMLC,h
−φ = O(h4)+ O

(
h2
(

H
R

)qI−2
‖ f ‖∞
βqI−2

)
+ O

((
H
R

)q
‖ f ‖∞
βq

)
. (53)

Increasing β to reduce the barrier error in (53) substantially increases the per patch
computational cost of the discrete convolution in the downward pass of the method.
This is, in fact, the reason we replaced the local long-range potential values with
the convolutions of the local Legendre expansions in Section 3.1.

7.1. A smooth charge distribution. The first test case we are considering involves
computing the potential induced by a smooth charge. The computational domain is
the unit cube �= [0, 1]3. The charge density is given by

f (x)=
{
(r − r2)4, r < 1,
0, r ≥ 1,

r =
1
Ro
‖x− xo‖,



20 CHRIS KAVOUKLIS AND PHILLIP COLELLA

N β = 1.5 β = 3.0 β = 6.0

256 1.43756× 10−5 6.07186× 10−7 5.80288× 10−8

512 1.29572× 10−5 4.32691× 10−7 2.67372× 10−8

1024 1.27114× 10−5 4.01180× 10−7 2.44521× 10−8

Table 1. 2-level MLC-0: scaled fine-mesh maximum errors (52) using the Lh
19 Mehrstellen Laplacian.

N MLC-0 (β = 1.5) P = 1 P = 4

256 1.43756× 10−5 4.35976× 10−6 1.63706× 10−6

512 1.29572× 10−5 1.43414× 10−6 4.58615× 10−7

1024 1.27114× 10−5 5.77475× 10−7 3.65246× 10−7

Table 2. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
19. For sufficiently

small h and P = 4, nearly the same errors as the second column of Table 1 are obtained.

N MLC-0 (β = 1.5) P = 1 P = 4 P = 5

256 1.43756× 10−5 4.05752× 10−6 1.45072× 10−6 1.68422× 10−6

512 1.29572× 10−5 1.12630× 10−6 1.04191× 10−7 4.49529× 10−8

1024 1.27114× 10−5 2.37651× 10−7 2.55964× 10−8 2.44951× 10−8

Table 3. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
19. Here α = 1.5

and β = 6. For sufficiently small h and high values of P , nearly the same errors as the
third column of Table 1 are obtained.

and the support of the charge is a sphere of radius Ro =
1
4 , centered at the point

xo = (
1
2 ,

1
2 ,

1
2). The exact solution for this problem is given by

φ(x)= R2
o

{ 1
42r6
−

1
14r7
+

1
12r8
−

2
45r9
+

1
110r10

−
1

1260 , r < 1,
−1/(2310r), r ≥ 1,

and reduces to a pure monopole field for r ≥ 1.

7.1.1. Two-level results. In Table 1 we present the fine-mesh errors for the MLC-0
algorithm with two levels for mesh sizes h= 1

256 ,
1

512 ,
1

1024 using the Lh
19 Mehrstellen

Laplacian (q = 4). We set b = 2→ qI = 6 so that dependence of the interpolation
error as a function of α and β matches that of the other error terms. For this problem,
the errors in all three cases are so small that they are the barrier errors; each time
we double β, the error goes down by roughly a factor of 16, as predicted by (53).
In Tables 2 and 3 we present fine-mesh errors for the MLC algorithm, with α = 1.5,
for β = 3 and β = 6, respectively, when refining both h and P . As h→ 0, the error
in this case approaches a barrier error for both the P = 1 and P = 4 cases at a rate
of O(h2)–O(h4), and those barrier errors correspond to the errors for the MLC-0
calculations with same corresponding values of β. For comparison, we also include
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N β = 2.0 β = 3.25

256 1.25208× 10−7 4.11121× 10−8

512 1.14831× 10−7 4.92150× 10−9

1024 1.01073× 10−7 3.11897× 10−9

Table 4. 2-level MLC-0: scaled fine-mesh maximum error (52) using the Lh
27 Mehrstellen

Laplacian. Compare with the second and third columns of Table 1.

N P = 1 P = 4

256 1.45293× 10−6 1.40270× 10−6

512 5.20885× 10−7 1.89409× 10−7

1024 1.77613× 10−7 1.02341× 10−7

Table 5. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.5

and β = 2. The h → 0 errors are the same as the barrier errors in the first column of

Table 4.

N P = 1 P = 4 P = 5

256 1.40367× 10−6 1.47261× 10−6 1.63939× 10−6

512 4.32214× 10−7 8.68274× 10−8 5.91126× 10−8

1024 9.11841× 10−8 1.18905× 10−8 1.17441× 10−8

Table 6. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.5

and β = 3.25. The barrier errors are comparable with those using Lh
19 with β = 6 (Table 3).

the values of the error for the MLC-0 calculations with comparable computational
costs, i.e., for β = 1.5. It is clear that for the negligible cost of adding the Legendre
expansion, we obtain a decrease in the error by 1–3 orders of magnitude.

Next, we present the errors obtained by performing similar runs using the Lh
27

Mehrstellen Laplacian, for which q = 6. We set b= 3→ qI = 8 so that dependence
of the interpolation error as a function of α and β matches that of the other error
terms. In this case, the barrier error is O(β−6); hence, we expect that smaller values
of the β correction radius are required to obtain errors similar to those obtained
with the Lh

19 difference operator. Since 34
≈ 26 and 64

≈ 3.256, we set β = 2, 3.25.
First, in order to estimate the barrier values, we present the fine-mesh errors for
the MLC-0 method in Table 4 with β = 2, 3.25 using the Lh

27 operator. With those
values of β, we expect errors comparable to or smaller than those of the MLC-0
method with β = 3, 6 using the Lh

19 operator. This is the case, as is evident from
a comparison with the error values of Table 1. Furthermore, the barrier error as a
function of β decreases by more than the factor of 18.4= (3.25/2)6 predicted by
the analysis.
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N P = 1 P = 4 P = 6 P = 9

256 1.91470× 10−7 1.96490× 10−7 6.39837× 10−8 4.90745× 10−8

512 5.42412× 10−8 9.16574× 10−9 5.99534× 10−9 6.02843× 10−9

1024 1.40428× 10−8 2.79547× 10−9

Table 7. 2-level MLC: scaled fine-mesh maximum errors (52) using Lh
27. Here α = 1.75

and β = 3.25. Compare with the second column of Table 4. A high polynomial degree is
required to attain it for h = 1

256 .

N β = 2.0 β = 3.25

512 1.30594× 10−7 4.86092× 10−9

1024 1.90632× 10−7 3.92874× 10−9

Table 8. 3-level MLC-0: scaled fine-mesh maximum errors (52) using the Lh
27 Mehrstellen

Laplacian. Compare with Table 4, which contains the two-level results.

In Tables 5 and 6, we present the errors for the MLC algorithm, for the cases
β = 2, 3.25; α = 1.5 for both cases. The β = 2 calculations reach the same barrier
errors as h decreases. That is not the case for the β = 3.25 results in Table 4, but
that is not surprising — the reduction of the barrier error by nearly an order of
magnitude provides more headroom for h-convergence. However, we see that in
Table 7 a slight increase of the inner correction radius to α = 1.75 allows us to
reach the barrier error more rapidly. This is consistent with the error analysis, in
that increasing α reduces the coefficient in front of the O(h P) error from truncating
the Legendre expansion, from which we infer that the error from that source, rather
than the error from the inner local convolution, is the dominant h-dependent error
for this smooth example.

7.1.2. Three-level results. We next present similar results using the multilevel
MLC algorithm of Section 5 with three levels. Since we have demonstrated a clear
advantage to using the 27-point stencil, in the remaining studies we will restrict our
attention to that operator. In Table 8 we show the barrier fine-mesh errors obtained
using the MLC-0 method for β = 2, 3.25. The errors for β = 3.25 are more than
18.4 times smaller than the errors for β = 2 and are nearly the same as the two-level
method errors (Table 4). As predicted by the error analysis in Section 5, the error
of MLC-0 is insensitive to the number of levels.

In Table 9 the errors obtained with the three-level MLC method are shown
using α = 1.75 and β = 3.25. Unlike the two-level results, the P = 4 errors are
significantly poorer than the MLC-0 errors. For example, we recover the barrier
errors only for N = 4096, as opposed to the N = 512 results for MLC-0. We can
improve matters somewhat by increasing P , but even for this very smooth problem,
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N level P = 1 P = 4 P = 6 P = 8

512 l = 0 1.4509× 10−7 1.1379× 10−7 5.8886× 10−8 4.2602× 10−8

l = 1 4.9396× 10−7 1.0594× 10−6 1.0990× 10−6 3.0059× 10−7

l = 2 5.2600× 10−7 1.0782× 10−6 1.1101× 10−6 1.4926× 10−7

1024 l = 0 1.1143× 10−7 1.9032× 10−8 9.5197× 10−9 4.1018× 10−9

l = 1 2.2539× 10−7 1.6461× 10−7 9.9491× 10−8 2.3381× 10−8

l = 2 2.3665× 10−7 1.6596× 10−7 9.9989× 10−8 2.3381× 10−8

2048 l = 0 3.8485× 10−8 5.7487× 10−9 5.0311× 10−9

l = 1 5.9923× 10−8 1.0143× 10−8 5.9864× 10−9

l = 2 6.1989× 10−8 1.0276× 10−8 6.0168× 10−9

4096 l = 0 1.3028× 10−8 5.1364× 10−9

l = 1 1.6487× 10−8 5.2147× 10−9

l = 2 1.6861× 10−8 5.2621× 10−9

Table 9. 3-level MLC: scaled maximum errors (52) at all levels using Lh
27. Here α = 1.75

and β = 3.25. Compare with the second column of Table 8.

we do not get close to the barrier errors until N = 2048. This is consistent with the
analysis in Section 5, and indicates that using higher values of P does not solve the
problem. We will propose a different solution in Section 7.2.

7.2. An oscillatory charge test case. We further consider a case of three oscillatory
charges that has been previously studied in [25]. The computational domain is again
the unit cube �= [0, 1]3. Here we define a local charge density, whose support is
a sphere of radius Ro centered at point xo, by

fxo(x)=
{
(1/R3

o)(r − r2)2 sin2((γ /2)r), r < 1,
0, r ≥ 1,

r =
1
Ro
‖x− xo‖, γ = 4µπ, µ= 7. (54)

The exact solution associated with this charge density is given by

φxo(x)=
1
Ro



−
1

120 −
6
γ 4 , r = 0,

r6

84 −
r5

30 +
r4

40 +
60
γ 6 −

9
γ 4 −

1
120 +

120
γ 6r

+
(
−

120
γ 6r −

9
γ 4 +

300
γ 6 +

36r
γ 4 +

r2

2γ 2 −
30r2

γ 4 −
r3

γ 2 +
r4

2γ 2

)
cos(γ r)

+
( 12
γ 5r −

360
γ 7r −

96
γ 5 +

120r
γ 5 −

3r
γ 3 +

8r2

γ 3 −
5r3

γ 3

)
sin(γ r), r < 1,(

−
1

210 −
12
γ 4 +

360
γ 6

)1
r , r ≥ 1,

and is a pure monopole for r ≥ 1. For our test case we consider three charges of the
form (54), of radius Ro=

5
100 , centered at points c1= (

3
16 ,

7
16 ,

13
16), c2= (

7
16 ,

13
16 ,

3
16),

and c3 = (
13
16 ,

3
16 ,

7
16). The total charge and total potential are given via linear
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N level error

2048 l = 0 9.59918× 10−7

l = 1 1.00600× 10−6

l = 2 1.04402× 10−6

4096 l = 0 5.82005× 10−8

l = 1 6.47409× 10−8

l = 2 6.71067× 10−8

8192 l = 0 8.42867× 10−9

l = 1 8.42867× 10−9

l = 2 8.44657× 10−9

Table 10. 3-level MLC-0: scaled maximum errors (52) using the Lh
27 Mehrstellen Lapla-

cian with β = 3.25.

N level error

2048 l = 0 1.03645× 10−7

l = 1 9.59723× 10−7

l = 2 1.00621× 10−6

l = 3 1.04423× 10−6

4096 l = 0 2.93837× 10−8

l = 1 5.84863× 10−8

l = 2 6.50247× 10−8

l = 3 6.73912× 10−8

8192 l = 0 7.84890× 10−9

l = 1 8.78853× 10−9

l = 2 8.78853× 10−9

l = 3 8.79911× 10−9

Table 11. 4-level MLC-0: scaled maximum errors (52) using Lh
27 with β = 3.25.

superposition by
f (x)= fc1(x)+ fc2(x)+ fc3(x),

φ(x)= φc1(x)+φc2(x)+φc3(x).

We first present the results using three levels (Table 10) and four levels (Table 11)
using MLC-0. The primary features of the convergence properties of the solution
are that the errors are nearly uniform as a function of level, and are the same in
both the three- and four-level cases. There is some indication of slowing down
of the convergence rate on the finest two levels, but the convergence is still faster
than O(h2).
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N level P = 1 P = 4

2048 l = 0 1.09448× 10−7 1.07739× 10−7

l = 1 9.60320× 10−7 9.57456× 10−7

l = 2 1.00544× 10−6 1.00767× 10−6

l = 3 1.04414× 10−6 1.04686× 10−6

4096 l = 0 3.58565× 10−8 3.03039× 10−8

l = 1 5.81436× 10−8 7.22707× 10−8

l = 2 6.55356× 10−8 6.44269× 10−8

l = 3 6.74960× 10−8 6.95632× 10−8

8192 l = 0 2.88555× 10−8 1.92320× 10−8

l = 1 1.61302× 10−7 7.46182× 10−8

l = 2 1.63846× 10−7 7.61412× 10−8

l = 3 1.64401× 10−7 7.61592× 10−8

Table 12. 4-level MLC: scaled maximum errors (52) using Lh
27. Here α = 2.25 and β = 3.25.
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Figure 3. Log-log plot of greatest max norm error at all levels against mesh size using
the Lh

27 Mehrstellen Laplacian. Here fourth-order Legendre polynomials are employed at
level 3. For levels 1 and 2, α = β = 3.25, and α = 2.25 at level 3.

In the MLC convergence results in Table 12, we see substantial deviations from
the MLC-0 convergence results. The error shows no consistent behavior as a function
of resolution, and in fact is worse at the finest resolution (N = 8192) in Table 12
than it is at the N = 4096 resolution in Table 11. We see no analogous problems in
the MLC-0 calculations. Examining the error analysis in Section 5, we identified the
terms in a three-level calculation that might lead to problems. Even in the smooth
example above, it is clear that the increasing P does not have sufficient impact to
solve this problem. A different approach, suggested by the form of the error, is to
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N level αl P = 1 P = 4

1024 l = 0 6.75815× 10−8 6.75467× 10−8

l = 1 3.25 9.06867× 10−6 9.07109× 10−6

l = 2 3.25 1.68260× 10−5 1.68313× 10−5

l = 3 2.25 1.76069× 10−5 1.76196× 10−5

2048 l = 0 1.03740× 10−7 1.03725× 10−7

l = 1 3.25 9.59547× 10−7 9.59794× 10−7

l = 2 3.25 1.00638× 10−6 1.00564× 10−6

l = 3 2.25 1.04443× 10−6 1.04435× 10−6

4096 l = 0 2.96831× 10−8 2.95118× 10−8

l = 1 3.25 5.81150× 10−8 5.83051× 10−8

l = 2 3.25 6.45808× 10−8 6.48388× 10−8

l = 3 2.25 6.86291× 10−8 7.02081× 10−8

8192 l = 0 7.52964× 10−9 7.73906× 10−9

l = 1 3.25 8.60687× 10−9 8.68798× 10−9

l = 2 3.25 8.72734× 10−9 8.68798× 10−9

l = 3 2.25 8.64239× 10−9 8.68813× 10−9

16384 l = 0 5.94183× 10−9 5.97157× 10−9

l = 1 3.25 6.16822× 10−9 6.20416× 10−9

l = 2 3.25 6.20010× 10−9 6.24059× 10−9

l = 3 2.25 6.21301× 10−9 6.24325× 10−9

Table 13. 4-level MLC: scaled maximum errors (52) using Lh
27 with higher values of α at

intermediate levels. Here β = 3.25 and α = β at levels 1 and 2 and α = 2.25 at level 3.
Compare with Table 11.

reduce the difference β −α at coarser levels. In fact, there is likely a mechanism
for defining a systematic strategy for doing this, since (I−P) f i is easily computed.
We defer that to later work. For the moment, we demonstrate this by setting α = β
at coarser levels, holding β fixed (Table 12). We see that we can recover exactly the
errors in the MLC-0 calculation and moreover there is no appreciable difference in
error by increasing P . In addition, the cost of increasing α at coarser levels has a
small impact on the overall cost of a multiresolution calculation, since these are
applied to calculations at the coarser resolutions, which remain a small fraction of
the overall cost of the method, even with the increased values of α. In Figure 3 we
present the error behavior for the case of Table 13 with P = 4. For N = 1024–4096
the error is fourth-order accurate as is expected from the error estimate (45) where
term O(h4) dominates at coarser mesh resolutions. For N ≥ 8192 the error reaches
a plateau imposed by the barrier error term O(‖ f ‖∞/βq). This can be reduced
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further by employing higher-order Mehrstellen discretizations of the Laplacian or
larger values of parameter β.

8. Conclusions

We have presented a domain decomposition method for the numerical solution of
Poisson’s equation with infinite domain boundary conditions in three dimensions
on a nested hierarchy of structured grids. The method is an extension of Anderson’s
method of local corrections for particles [3] to gridded data and generalizes the
scheme of McCorquodale et al. [25]. In the present method, local potentials are
computed as volume potentials of local charges up to an inner localization radius,
combined with volume potentials induced by order-(P − 1) truncated Legendre
expansions of the local charges up to an outer localization radius. The remaining
global coupling is represented using a coarse-grid version of the same representation.
This generalizes the method in [25], which corresponds to the P = 1 special case in
the current method. Also, in [25] the local potentials were computed by means of
the James–Lackner representation [17; 18] of infinite domain boundary conditions.
In the present work, this is replaced by a representation using discrete convolution
operators, which can be computed efficiently using FFTs via Hockney’s algorithm.
This approach eliminates the complicated quadratures that are necessary for the
extension of the James–Lackner algorithm to three dimensions, while the FFT-
based approach leads to compact compute kernels that can be highly optimized.
The resulting algorithm is well suited for high performance on HPC computing
platforms made up of multicore processors; in [24], we will present a systematic
study of the performance and scaling of the algorithm on such systems.

In this paper, we have focused primarily on the analytical foundations of the
MLC method and have provided a detailed error analysis. The errors are of the
form O(h P)+ O(h4)+ O(h2β−q)+ O(β−q), where h is the mesh spacing, β
is the nondimensionalized outer localization radius which is independent of h,
and q is the order of accuracy of the Mehrstellen operator on harmonic functions.
Numerical experiments indicate that the observed convergence behavior of the
method is consistent with the analysis. For computationally practical values of the
localization radius, and using the 27-point Mehrstellen operator (for which q = 6),
the barrier error corresponds to relative solution error norms of 10−8–10−9. While
the β−q term looks like an O(1) error relative to the mesh spacing h, it is better to
think of it as a separate discretization parameter that governs the accuracy of the
representation of the nonlocal coupling. Doubling β decreases the error by a factor
of 2−q , analogous to the impact of halving h.

For the two-level algorithm, the results indicate that, for a given choice of the
Mehrstellen operator, the two localization radii, and P = 4, the method converges at
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a rate in the range O(h4)–O(h2), until the error reaches the barrier, i.e., consistent
with the error analysis. We have also defined and implemented the extension to
more than two levels, following the approach in [25]. A preliminary analysis of
that algorithm indicates the need to control errors at coarser levels coming from
the field induced between the inner and outer localization radii by the truncation
of the Legendre expansion. The analysis suggests that these might be controlled
by increasing the inner localization radius α at coarser levels. The numerical
examples indicate that the problem is real, and that the proposed solution represents
a viable approach. More generally, an important question that needs to be addressed
is turning the error analysis in this work into practical strategies for choosing
discretization parameters. For example, what are the tradeoffs between decreasing
β −α and decreasing h in order to improve the accuracy of a calculation, versus
the cost of doing each? We will address these issues in [24].

There are various possible ways to extend the present work. Perhaps most
straightforward are extensions to finite volume discretizations and the implemen-
tation of other boundary conditions on rectangular domains (including periodic
boundary conditions) using a method-of-images approach. Another possibility
would be to apply even higher-order Mehrstellen discretizations of the Laplacian to
see whether it results in smaller values of the barrier errors than those reported in
this work. As was seen in Section 7, the Lh

27 (q = 6) Mehrstellen Laplacian leads
to comparable barrier errors to those obtained using the Lh

19 (q = 4) stencil, but
using smaller localization radii, in a manner consistent with the O(β−q) scaling of
that error. It is possible to derive Mehrstellen stencils for which q = 10, with the
stencil contained in a 5× 5× 5 block around the evaluation point. This leads to
only a modest increase in the computational cost and complexity: for example, the
per patch computational cost of the most computationally intensive component of
the algorithm — the local discrete convolutions — does not depend on the size of
the stencil. Finally, it would be interesting to investigate extensions of this method
to other elliptic problems in mathematical physics employing different Green’s
functions and high-order discretizations of the associated differential operators. The
error analysis of the method as extended to other kernels should be essentially the
same as what is discussed in the present study. Moreover, Hockney’s algorithm
is kernel-independent and can be readily applied with minor modifications. More
generally, the present work uses some detailed analytic tools for understanding the
discrete potential theory on locally structured grids associated with the combination
of finite difference localization in [23] and the local interactions/local corrections
construction underlying [3]. It would be interesting to go back to the original MLC
method for particles and to other particle-grid methods, such as particle-in-cell and
immersed boundary methods, and apply these tools to better understand the error
properties of these methods.
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Appendix A: Lh
19 and Lh

27 Mehrstellen discretizations of the Laplacian

The stencil coefficients for the Lh
19 and Lh

27 Mehrstellen Laplacians are a j =

(1/h2)b| j |, where | j | is the number of nonzero components of j and bk are defined
as

b0 =−4, b1 =
1
3 , b2 =

1
6 , b3 = 0 (19-point stencil),

b0 =−
64
15 , b1 =

7
15 , b2 =

1
10 , b3 =

1
30 (27-point stencil).

The corresponding expressions for the truncation errors τ h
19 and τ h

27 for Lh
19

and Lh
27, are given by

τ h
19(φ)=

h2

12
(1(1φ))+ h4L(6)(φ)+ O(h6)

and

τ h
27(φ)=

h2

12
(1(1φ))+

h4

360

((
12
+ 2

(
∂4

∂x2∂y2 +
∂4

∂y2∂z2 +
∂4

∂z2∂x2

))
(1φ)

)
+ h6L(8)(φ)+ O(h8)

where L(q) are homogeneous constant-coefficient q-th-order differential operators.
We need to compute an approximation to the discrete Green’s function (8) for the

19-point and 27-point operators, restricted to a domain of the form D = [−n, n]3.
We do this by solving the following inhomogeneous Dirichlet problem on a larger
domain Dζ = [−ζn, ζn]3:

(Lh=1Gh=1)[g] = δ0[g] for g ∈ G(Dζ ,−1),

Gh=1
[g] = G(g) for g ∈ Dζ −G(Dζ ,−1),

where G=G(x) is the Green’s function (2) and Lh is either the 19-point or 27-point
operator. Then our approximation to Gh=1 on D is the solution computed on Dζ ,
restricted to D. To compute this solution, we put the inhomogeneous boundary con-
dition into residual-correction form and solve the resulting homogeneous Dirichlet
problem using the discrete sine transform. The error estimate (12) applied here
implies that the error in replacing the correct discrete boundary conditions with
those of the exact Green’s function scales like O((ζn)−4) in max norm. In the
calculations presented here, we computed Gh=1 using n ≥ 128 and ζ = 2, leading
to at least 10 digits of accuracy for Gh=1.

Appendix B: Hockney’s method for fast evaluation of discrete convolutions

Hockney [16, pp. 180–181] (see also [9]) observed that discrete convolutions with
one of the functions having support on a bounded domain in ZD, and evaluated on
a bounded domain, can be computed exactly in terms of discrete Fourier transforms.
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For completeness, we describe that method. We show this first for the case D = 1,
and state the general result for any number of dimensions. Given 9, f : Z→ R,
supp( f )⊆ [0, b], we want to compute

(9 ∗ f )[i] = ( f ∗9)[i] =
∑
j∈Z

f [i − j]9[ j], i ∈ [0, n]. (55)

First, we observe that the infinite sum can be replaced by a finite sum.∑
j∈Z

f [i − j]9[ j] =
n∑

j=−b′
f [i − j]9[ j], i ∈ [0, n], (56)

for any b′≥ b. Second, we observe that 9 and f can be replaced in (56) by periodic
extensions of those functions restricted to the interval [−b′, n]:

n∑
j=−b′

f [i − j]9[ j] =
n∑

j=−b′
f̃ [i − j]9̃[ j], i ∈ [0, n],

f̃ [l], 9̃[l] ≡ f [lmod], 9[lmod], lmod =mod(l + b′, (n+ b′+ 1))− b′. (57)

Finally, we express the periodic convolution in (57) in terms of discrete Fourier
transforms:

n∑
j=−b′

f̃ [i − j]9̃[ j] = F−1(F(9̃) ·F( f̃ ))[i], (58)

where F and F−1 are the discrete complex Fourier transform and its inverse on the
interval [−b′, n] ⊂ Z.

This generalizes to rectangular domains in any number of dimensions. For
example, for cubic domains, given 9, f : ZD

→ RD, supp( f )⊆ [0, b]D,∑
j∈ZD

9[i − j ] f [ j ] = F−1(F(9̃) ·F( f̃ ))[i], i ∈ [0, n]D, (59)

f̃ [l], 9̃[l] ≡ f [lmod], 9[lmod], (60)

(lmod)d =mod((l)d + b′, (n+ b′+ 1))− b′, d = 0, . . . D− 1, (61)

where b′ ≥ b and F and F−1 are the complex discrete Fourier transform and its
inverse on the cube [−b′, n]D⊂ZD. In practice, this is efficient for a broad range of
(b, n) since we can choose b′ so that the radices of the FFTs are highly composite,
with the size of the problem changing by only a small amount. In the case where
b = n, the length of the domain doubles in each direction; hence, this is often
referred to as Hockney’s domain-doubling algorithm. However, in the present
application, we want to use the more general case, since the size of the support of
the localized charge distributions and the size of the grid on which the local fields
are defined differ by a significant amount.
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ON THE CONVERGENCE
OF SPECTRAL DEFERRED CORRECTION METHODS

MATHEW F. CAUSLEY AND DAVID C. SEAL

In this work we analyze the convergence properties of the spectral deferred
correction (SDC) method originally proposed by Dutt et al. (BIT 40 (2000),
no. 2, 241–266). The framework for this high-order ordinary differential equation
(ODE) solver is typically described as a low-order approximation (such as forward
or backward Euler) lifted to higher-order accuracy by applying the same low-order
method to an error equation and then adding in the resulting defect to correct the
solution. Our focus is not on solving the error equation to increase the order of
accuracy, but on rewriting the solver as an iterative Picard integral equation solver.
In doing so, our chief finding is that it is not the low-order solver that picks up the
order of accuracy with each correction, but it is the underlying quadrature rule of
the right-hand-side function that is solely responsible for picking up additional
orders of accuracy. Our proofs point to a total of three sources of errors that SDC
methods carry: the error at the current time point, the error from the previous
iterate, and the numerical integration error that comes from the total number
of quadrature nodes used for integration. The second of these two sources of
errors is what separates SDC methods from Picard integral equation methods; our
findings indicate that as long as the difference between the current and previous
iterates always gets multiplied by at least a constant multiple of the time step size,
then high-order accuracy can be found even if the underlying ODE “solver” is
inconsistent. From this vantage, we solidify the prospects of extending spectral
deferred correction methods to a larger class of solvers, of which we present some
examples.

1. Introduction

The spectral deferred correction (SDC) method defines a large class of ordinary
differential equation (ODE) solvers that were originally introduced in 2000 by Dutt,
Greengard, and Rokhlin [12]. These types of methods are typically introduced by
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defining an error equation, and then repeatedly applying the same low-order solver
to the error equation and adding the solution back into the current approximation
in order to pick up an order of accuracy. This idea can be traced back to the work
of Zadunaisky in 1976 [40], who sought out high-order solvers in order to reduce
numerical roundoff errors for astronomical applications. Before introducing the
classical SDC methods defined in [12], we stop here to point out some of the recent
work that has been happening over the past two decades including [30; 28; 6; 26;
7; 4; 22]. We refer the interested reader to [32] for a nice list of references for the
first of these last two decades. Here, we provide a sampling of some of the current
topics of interest to the community.

Many variations of the original SDC method are being studied as part of an effort
to expedite the convergence of the solver. The chief goal here is to reduce the total
number of iterations required to obtain the same high-order accuracy of the original
method. These methods include the option of using Krylov deferred correction
methods [20; 21] as well as the multilevel SDC methods [27; 36]. The multilevel
approach starts with a lower-order interpolant and then successively increases the
degree of the interpolant with each future sweep of the method. This has the
primary advantage of decreasing the overall number of function evaluations that
need to be conducted, but introduces additional complications involving the need
to evaluate interpolating polynomials. In the same vein, higher-order embedded
integrators have been explored within the so-called integral deferred correction
(IDC) framework [6; 7], where a moderate order solver (such as second- or fourth-
order Runge–Kutta method) is embedded inside a very high-order SDC solver.
With this framework, each successive correction increases the order by the same
amount as that of the base solver. In addition, parallel in time solvers [9; 31; 5;
13] are being investigated as a mechanism to address the needs of modern high-
performance computing architectures, and adaptive time stepping options have been
more recently investigated in [10]. This work is based upon the nice property that
SDC methods naturally embed a lower-order solver inside a higher-order solver.

In addition to the above mentioned extensions, various semi-implicit formulations
have been, and are currently being, explored. While the original solver was meant
for classical nonlinear ODEs, semi-implicit formulations have been derived as
early as 2003 [30] and are still an ongoing topic of research [29; 4]. The effect of
the choice of correctors including second-order semi-implicit solvers for the error
equation has been researched in [25], and an investigation into the efficiency of semi-
implicit and multi-implicit spectral deferred correction methods for problems with
varying temporal scales has been conducted in [26]. Related high-order operator
splitting methods have been proposed in [15; 3; 8], where the focus is not on an
implicit-explicit splitting, but rather on splitting the right-hand side of the ODE into
smaller systems that can be more readily inverted with each sweep of the solver.
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Very recent work includes applications of the SDC framework to generate expo-
nential integrators of arbitrary orders [2], exploring interesting LU decompositions
of the implicit Butcher tableau on nonequispaced grids [38], further investigation into
high-order operator splitting [11], a comparison of essentially nonoscillatory (ENO)
versus piecewise parabolic methods (PPM) coupled with SDC time integrators [23],
and additional implicit-explicit (IMEX) splittings for fast-wave slow-wave splitting
constructed from within the SDC framework [35].

It is not our aim to conduct a comprehensive review and comparison of all of
these methods; rather it is our goal to present rigorous analysis of the original
method that can be extended to these more complicated solvers. With that in mind,
we now turn to a brief introduction of the spectral deferred correction framework,
and in the process of doing so, we seek to directly compare this method with that
of the Picard integral formulation of a numerical ODE solver.

1A. Picard iteration and the SDC framework. We begin by giving a brief descrip-
tion of classical SDC methods. In doing so, we explain the differences between
SDC and Picard iteration, which defines the cornerstone of the present work.

Classical SDC solvers are designed to solve initial value problems of the form

y′ =
dy
dt
= f (y), t > 0, y(0)= y0, (1)

where y can be taken to be a vector of unknowns. The solution y(t) can be expressed
as an integral through formal integration:

y(t)= y0+

∫ t

0
f (y(s)) ds, t > 0. (2)

In this work, we assume that f is Lipshitz continuous. That is, we assume

| f (z)− f (w)| ≤ L|z−w|, (3)

for some constant L ≥ 0 and all z, w ∈ R. This is sufficient to guarantee existence
and uniqueness for solutions of IVP (1), and produce rigorous numerical error
bounds for SDC methods.

Consider a set of M quadrature points 0≤ ξ1 < · · ·< ξM ≤ 1 that partition the
unit interval into a total of N disjoint subintervals, defined by

N =


M − 1 if both endpoints are used,
M if only one endpoint is used,
M + 1 if neither endpoint is used.

We make this choice because a given quadrature rule may or may not include the
endpoints of the interval, and this convention allows us to study Gaussian quadrature
rules, uniformly spaced quadrature rules, Radau II quadrature rules, and others
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all within the same context. With that in mind, we define the right endpoints ξ R
n ,

for n = 0, 1, . . . N − 1, of each of the N subintervals as

ξ R
n =

{
ξn+1 if the left endpoint is included,
ξn if the left endpoint not included,

and ξ R
0 = 0 and ξ R

N = 1 for the two boundary edge cases. Next, we define quadrature
weights by

wn,m =

∫ ξ R
n

ξ R
n−1

`m(x) dx, n = 1, 2, . . . N , m = 1, 2, . . .M, (4)

where `m(x) is the Lagrange interpolating polynomial of degree at most M − 1
corresponding to the quadrature point ξm :

`m(x)=
1

cm

M∏
k=1, k 6=m

(x − ξk), cm =

M∏
k=1, k 6=m

(ξm − ξk). (5)

Once these weights are obtained, approximate integral solutions, say ηm ≈ y(ξ R
m h)

for h > 0 and m = 0, 1, . . . , N , can be formed via

(fully implicit collocation) ηn=ηn−1+h
M∑

m=1

wn,m f (ηm), n=1, 2, . . . , N , (6)

whereas the exact solution ym := y(ξ R
m h) satisfies the exact integral

yn = yn−1+

∫ tn

tn−1

f (y(t)) dt, tn = ξ R
n h, n = 1, 2, . . . , N . (7)

By convention, η0 := y0 is known to high order (because it comes from the previous
time step), and ηN ≈ y(h) constitutes one “full” time step. Since each substep uses
information from all substeps to construct the right-hand side, the solution is higher
order, but also requires the solution of a nonlinear system of M unknowns (one
for each quadrature point) at each time step. Although this integrator has some
very nice properties (e.g., it can be made to be symplectic and L-stable for suitably
chosen quadrature points), it is not typically used in practice given the additional
storage requirements and the larger matrices that need to be inverted for each time
step. This is particularly relevant when it is used as the base solver for a partial
differential equation, but even these bounds are being explored as a viable option
for PDE solvers such as the discontinuous Galerkin method [33].

In place of the fully implicit collocation method, Picard iteration (with numerical
quadrature) defines a solver by iterating on a current solution η[p]n , p ∈ Z≥0, and
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then creates a better approximation through

(Picard iteration) η[p+1]
n = η

[p+1]
n−1 + h

M∑
m=1

wn,m f
(
η[p]m

)
, n = 1, 2, . . . N . (8)

Note that the current value η[p+1]
0 := η0 ≈ y0 is a known value that is equal to the

exact solution up to high order. While this solver picks up a single order of accuracy
with each correction, it has the unfortunate consequence of having a finite region of
absolute stability.

The explicit spectral deferred correction framework is

(explicit SDC) η[p+1]
n =η

[p+1]
n−1 +hn

[
f
(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)]
+h

M∑
m=1

wn,m f
(
η[p]m

)
, (9)

where hn = (ξ
R
n − ξ

R
n−1)h is the length of the n-th subinterval. This solver also has

a finite region of absolute stability.

Remark. Although traditional SDC methods were originally cast as a method
that corrects a provisional solution by solving an error equation, some modern
descriptions of the same solver identify (9) as the base solver, which has the added
benefit of pointing out a solid link between SDC methods and iterative Picard
integral equation solvers.

In order to construct methods that have more favorable regions of absolute
stability for stiff problems, the implicit SDC framework exacts multiple backward
Euler time steps through each iteration with

(implicit SDC) η[p+1]
n =η

[p+1]
n−1 +hn

[
f
(
η[p+1]

n
)
− f

(
η[p]n

)]
+h

M∑
m=1

wn,m f
(
η[p]m

)
. (10)

Note that this framework allows for implicit and high-order solutions to be con-
structed with greater computational efficiency when compared to the fully implicit
collocation solver defined in (6) because smaller systems need to be inverted in
order to take a single time step.

Remark. It has been noted that the scaling in front of the hn term does not have
impact on the order of accuracy [39]. It is our aim with this work to solidify
that claim with rigorous numerical bounds, which we do for both the explicit and
implicit solvers.

Before doing so, we point out an aside that is in common with all SDC solvers.

Remark. If limp→∞ η
[p]
n = ηn converges, then solutions to (8), (9), and (10) con-

verge to that of the fully implicit collocation method defined in (6).
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While some SDC methods work with a fixed number of iterates in order to
obtain a desired order of accuracy, there are many examples in the literature where
convergence of the SDC iterations to the fully implicit scheme is considered. For
example, the work in [38] is wholly concerned with this convergence, and not
the accuracy of the underlying method for fixed iterations. Moreover, for stiff
problems, it is well understood that using a fixed number of iterations can lead to
order reduction which negates the advantage of using SDC in the first place. In
addition, the multilevel spectral deferred correction (MLSDC) methods also are
typically iterated to a residual tolerance, since one cannot be sure that coarse level
sweeps will provide enough increase in accuracy (or decrease in the residual) [36].

One key advantage of iterating an SDC method to convergence is that when
this is done, the method inherits well known and desirable properties that the fully
implicit collocation method enjoys. For example, Kuntzmann [24] and Butcher [1]
separately point out that if a total of M Gaussian quadrature points are used, then
the fully implicit collocation method will have superconvergence order O(h2M).
(For more details, we refer the interested reader to the excellent tomes of Hairer,
Wanner et al. [16; 17; 18]. For example, see [16, §II.7 ], [17, Theorem 5.2 ], or
[18, Theorem 1.5 ].) In general, the maximum order of accuracy for the underlying
solver with M quadrature points is O(h2M) if they are Gauss–Legendre points,
O(h2M−1) for the RadauIIA points, and O(h2M−2) for Gauss–Lobatto points. (The
local truncation error is one order higher.) Uniform points have O(hM) order of
convergence if M is even, and O(hM+1) if M is odd. The extra pickup in the order
of accuracy is due to symmetry of the quadrature rule. (For example, M = 1 points
reproduces the so-called “midpoint” rule, M = 3 reproduces Simpson’s rule, and
M = 5 yields Boole’s rule, each of which pick up an extra order of accuracy.)

1B. An outline of the present work. Despite the increasing popularity of spectral
deferred correction solvers, very little work has been performed on convergence
results for this large class of methods. The results that are currently in the literature
[15; 6; 7; 19; 37] typically proceed via induction on the current order of the
approximate solution, and they all hinge on solving the error equation, wherein
the same low-order solver is applied and then a defect, or correction, is added back
into the current solution in order to increase its overall order of accuracy. In other
recent work [34], the authors consider SDC methods as fixed-point iterations on a
Neumann series expansion. There, the low-order method is viewed as an efficient
preconditioner (in numerical linear algebra language), and the SDC iterations are
thought of as simplified Newton iterations. Additionally, the work in [38] makes
use of linear algebra techniques in order to optimize coefficients so that the method
converges faster to the collocation solution for stiff problems.

In this work, we do not require the use of the error equation, nor do we work
with any sort of defect such as that defined in [40]; rather we instead focus on the
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Picard integral underpinnings inherent to all SDC methods. Our work solely uses
fundamental numerical analysis tools: error estimates for numerical interpolation
and integration. While these tools do rely on quadrature rules, our proofs are
generic enough to accommodate any set of quadrature points, which are an ongoing
discussion in terms of how to construct base solvers.

In this work, we prove rigorous error bounds for both implicit and explicit
SDC methods, and in doing so, we expect the reader will find that these methods
can be thought of as being built upon classical Picard iteration. Our results are
applicable for general quadrature rules, but unlike the findings found in [37], where
convergence is proven using the error equation, our work relies on the fundamental
mechanics behind why the solver works. That is, we point out that the primary
contributor to the order of accuracy of the solver lies within the integral of the
residual, and not necessarily the application of any base solver to an error equation.

Indeed, our proofs follow in a manner similar to the proof of the Picard–Lindelöf
theorem, but our proofs take into account numerical quadrature errors and do not rely
on exact integration of the right-hand-side function f (y). The primary differences
between our proofs and that of the Picard–Lindelöf theorem are the following:

• Spectral deferred correction methods require the use of numerical quadrature
to approximate the integrals presented in the Picard–Lindelöf theorem. Our
error estimates take into account any errors resulting from quadrature rules.

• Each correction step in the implicit scheme defined in (10) requires a nonlinear
inversion, whereas the Picard–Lindelöf theorem is typically proven using exact
integration.

There are two main results in this work, one for explicit SDC methods and one
for implicit SDC methods. These are both found as corollaries to a single theorem
on semi-implicit SDC. In each case, we produce rigorous error bounds that are
applicable for generic quadrature rules. Furthermore, we find that there are a total of
three sources of error that SDC methods carry: the error from the previous time step,
the error from the previous iterate, and the error from the quadrature rule being used.

The outline of this paper is as follows. In Section 2, we present some necessary
lemmas concerning error estimates for integrals of interpolants as well as some error
estimates for sequences of inequalities that show up in our proofs. In Section 3 we
present a convergence proof for the more general case of a semi-implicit SDC solver,
and then immediately point out two corollaries that prove implicit and explicit SDC
methods converge. In Section 4, we present results for an SDC method that makes
use of a higher-order base solver, the trapezoidal rule. In Section 5 we present some
numerical results, where we compare explicit SDC methods with Picard iterative
methods, we investigate modified implicit SDC methods, and we experiment with
different semi-implicit formulations of SDC methods. Error estimates for all of
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these variants come from direct extensions of the proofs found in this work. Finally,
some conclusions and suggestions for future work are drawn up in Section 6.

2. Preliminaries

We now point out a couple of important tools that we use to show that SDC solvers
converge. Our aim is to focus on a single time step. Without loss of generality, from
here on out we will focus on constructing a solution over the interval [0, h], where h
is the time step size and we will assume that η0 ≈ y0 is a high-order approximation
to the exact solution.

2A. Error estimates for integrals of interpolants. If η= (η1, η2, . . . , ηM) is a set
of discrete values and t ∈ [0, h] is a time interval we are interested in studying, we
define the interpolation operator I to be the projection onto the space of polynomials
of degree at most M − 1 via

I [ f (η)](t) :=
M∑

m=1

f (ηm)lm(t/h), f (η) := ( f (η1), f (η2), . . . , f (ηM)). (11)

Note that this produces the integration identity∫ tn

tn−1

I [ f (η)](t) dt = h
M∑

m=1

wn,m f (ηm) (12)

after integrating (11) over a subinterval [tn−1, tn] := [hξ R
n−1, hξ R

n ], and the weights
are defined as in (4).

Convergence results for both the explicit and the implicit SDC method (as well
as Picard iteration) require the use of the following lemma.

Lemma 2.1. Suppose that f ◦ y ∈ C M([0, h]),
∥∥ d M

dt M ( f ◦ y)
∥∥
∞
≤ F , and f is

Lipschitz continuous with Lipshitz constant L. Then we have the estimate∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− f (y(t)) dt
∣∣∣∣≤ h‖η− y‖Wn L +

F
M !

hM+1, (13)

where the discrete norm is defined by

‖e‖ := max
1≤n≤M

|en|, e= (e1, e2, . . . , eM), (14)

and the constant Wn is defined by

Wn :=

M∑
m=1

∫ ξ R
n

ξ R
n−1

|lm(ξ)| dξ. (15)

For a fixed quadrature rule, this constant is finite and independent of the function.
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Proof. Add and subtract the Lagrange interpolant I [ f ( y)](t) for f ◦ y inside the
left-hand side of (13) and apply the triangle inequality:∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− f (y(t)) dt
∣∣∣∣≤ ∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− I [ f ( y)](t) dt
∣∣∣∣

+

∣∣∣∣∫ tn

tn−1

I [ f ( y)](t)− f (y(t)) dt
∣∣∣∣. (16)

An estimate for the first of these two terms follows by linearity of the interpolation
operator:∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− I [ f ( y)](t) dt
∣∣∣∣= ∣∣∣∣h M∑

m=1

ωn,m( f (ηm)− f (ym))

∣∣∣∣
≤ h

M∑
m=1

|ωn,m || f (ηm)− f (ym)|

≤ hL
M∑

m=1

|ωn,m ||ηm − ym |

≤ hL‖η− y‖
M∑

m=1

|ωn,m |. (17)

The quadrature weights in this estimate are bounded above by

|ωn,m | ≤

∫ ξ R
n

ξ R
n−1

|`m(ξ)| dξ

and then summed over all m to produce the constant Wn .
The second of the two integrals in (16) is a function solely of the smoothness

of f and the choice of the quadrature rule. That is, classical interpolation error
estimates result in a bound on the M-th derivative of f ◦ y through a single point
z(t) ∈ [0, h] that yields

|I [ f ( y)](t)− f (y(t))|=
∣∣∣∣( f ◦ y)(M)(z(t))

M !

M∏
m=1

(t−tm) dt
∣∣∣∣≤ F

M !

M∏
m=1

|t−tm |. (18)

Because |t − tm | ≤ h for each m, the result follows after integration. �

We stop to point out that due to the Runge phenomenon, the coefficient Wn

defined in (15) can become quite large if a large number of quadrature points are
chosen for constructing the polynomial interpolants required for the SDC method.
In Table 1, we demonstrate a few sample values when uniform, Chebyshev, Gauss–
Legendre, Gauss–Radau, and Gauss–Lobatto quadrature nodes are used to construct
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type of quadrature points

M uniform Chebyshev Legendre Gauss–Radau Gauss–Lobatto

2 1.000 1.207 1.366 1.500 1.000
3 1.000 1.244 1.479 1.558 1.000
4 1.056 1.257 1.527 1.578 1.000
5 1.152 1.263 1.551 1.586 1.000
6 1.257 1.266 1.566 1.591 1.000
7 1.362 1.268 1.575 1.594 1.000
8 1.663 1.269 1.581 1.596 1.000
9 2.550 1.270 1.585 1.597 1.000

10 4.028 1.271 1.588 1.598 1.000
11 6.506 1.271 1.590 1.599 1.000
12 10.963 1.271 1.592 1.599 1.000
13 18.340 1.272 1.594 1.600 1.000
14 32.060 1.272 1.595 1.600 1.000
15 54.998 1.272 1.596 1.600 1.000
16 98.531 1.272 1.596 1.600 1.000
17 172.176 1.272 1.597 1.601 1.000
18 313.675 1.272 1.597 1.601 1.000
19 556.491 1.273 1.598 1.601 1.000
20 1026.313 1.273 1.598 1.601 1.000
30 496210.554 1.273 1.600 1.602 1.000
50 208948162475.383 1.273 1.601 1.602 1.000

Table 1. Maximum size of the Lagrange polynomials max1≤n≤M maxξ∈[0,1]|`n(ξ)| for
different quadrature points. The Gauss–Legendre, Gauss–Radau, and Gauss–Lobatto
quadrature rules with M points have degrees of precision 2M + 1, 2M , and 2M − 1,
respectively.

the polynomial interpolants. Uniform quadrature points tend to start performing
quite poorly in the teens; however, even a small amount of points, say five or six,
produces a high-order numerical method compared to other ODE solvers because
in this regime the error constant is reasonable. The selection of quadrature points
that minimizes this portion of the error constant is the Gauss–Lobatto nodes, but
because convergence is found through refinement in h rather than p, any of these
points will produce a method that converges, provided the exact solution has a
suitable degree of regularity.

2B. Error estimates for sequences of inequalities. Finally, we require a second
lemma as well as a simple corollary. Both of these are stated in [14], and their
proofs are elementary.
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Lemma 2.2. If {an}n∈Z≥0 is a sequence that satisfies |an| ≤ A|an−1|+B with A 6= 1,
then

|an| ≤ An
|a0| +

An
− 1

A− 1
B. (19)

Proof. Recursively apply the inequality, and sum the remaining finite geometric
series. �

Corollary 2.3. If A> 1 and {an}n∈Z is a sequence that satisfies |an| ≤ A|an−1|+B,
then

|an| ≤ An
|a0| + n An−1 B (20)

for every n.

Proof. By Lemma 2.2, the sequence satisfies (19). We estimate the (finite) geometric
series by

An
− 1

A− 1
= 1+ A+ · · ·+ An−1

≤ n An−1 (21)

because there are a total of n terms and each Al
≤ An−1 for l = 0, 1, . . . , n− 1. �

With these preliminaries out of the way, we are now ready to state and prove our
main result.

3. Convergence results

In place of separately proving explicit and implicit results for (1), we instead
consider an umbrella class of ODEs, defined through a semi-implicit formulation:

y′ = f (y), f (y)= f I (y)+ fE(y), y(0)= y0, (22)

where f I is to be treated implicitly and fE is to be treated explicitly. We assume
that both f I and fE have Lipshitz constants L I and L E , respectively. In turn, this
implies that f has a Lipshitz constant of L := L I + L E . In the case where f I ≡ 0,
we set L I = 0, and in the case where fE ≡ 0, we set L E = 0.

The classical semi-implicit SDC (SISDC) method for (22) begins with a provi-
sional solution, or initial guess η[0]n ≈ y(ξnh), that is typically defined with

η[0]n = η
[0]
n−1+ hn f I

(
η[0]n

)
+ hn fE

(
η
[0]
n−1

)
, n = 1, 2, . . . , N , (23)

where hn= (ξ
R
n −ξ

R
n−1)h. This yields a first-order implicit-explicit (IMEX) predictor

for the solution based upon a forward-backward Euler method. Our numerical (and
analytical) results indicate the “predictor” step has little bearing on the overall order
of accuracy of the solver. For example, it is possible to hold the solution constant for
the initial iteration and still obtain high-order accuracy, albeit with one additional
iteration.
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The classical SISDC method [30] iterates on the provisional solution through

(SISDC) η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
, (24)

where η[p+1]
0 = η0 is a known quantity. This value is typically taken to be the result

from the previous time step, and we assume that it is known to high-order accuracy.
Our focus is on the local truncation error, to which end we assume that the error at
time zero is nonzero. That is, we assume e0 = η0− y0 6= 0. Once the single step
error is established, a global error can be directly found using textbook techniques.
In the event where f I ≡ 0, we end up with the explicit SDC method defined in (9),
and when fE ≡ 0, we end up the implicit SDC defined in (10).

We repeat that the collocation method defined in (6) requires simultaneously
solving for each ηn and is clearly more expensive than multiple applications of the
backward Euler method found in (24), either on part of or the entire right-hand
side. In the event where f I ≡ 0, then the method should be less expensive to run
for a single time step, but the regions of absolute stability suffer [28; 29]. We
also repeat that, provided η[p] converges as p→∞, then (24) defines a solution
to (6). Proving which initial guesses converge to the fully implicit solver is beyond
the scope of this work. Currently, our aim is to show that each correction step
in the SDC framework picks up at least a single order of accuracy to the order
predetermined by the quadrature rule.

3A. Statement of the main result.
Theorem 3.1. The errors for a single step of the semi-implicit SDC method satisfy∣∣e[p+1]

n

∣∣≤ eNh(2L I+L E )|e0| +C1h
∥∥e[p]

∥∥+C2hM+1, (25)

provided hL I <
1
2 , where N is the number of intervals under consideration, L :=

L I + L E is the Lipschitz constant of f , and

C1 = 2NeNh(2L I+L E )W and C2 = 2NeNh(2L I+L E )
F
M !

are constants that depend only on f , the exact solution y, and the selection of
quadrature points.

In Section 3C we point out two corollaries to this result, one for implicit and one
for explicit SDC, but before proving this theorem, we stop to point out an important
observation that is applicable to any of the aforementioned methods.

Remark. The statement of this theorem highlights that there are a total of three
sources of error that SDC methods admit, which are ordered by appearance in the
right-hand side of (25):
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(1) the error at the current time step e0 = η0− y0,

(2) the error from the previous iterate (or predictor) e[p] = η[p]− y, and

(3) the number of quadrature points M .

The most important takeaway is that because the error from the previous iterate,∥∥e[p]
∥∥, gets multiplied by a factor of h, the error gets improved by one order of

accuracy with each correction. Of course this order reaches a maximum order
based upon the number of the quadrature points chosen, which can be seen in the
third source of error. This can be improved by selecting quadrature points with
superconvergence properties such as the Gaussian or Gauss–Lobatto quadrature
points. Finally, please note that we make no comment about how the “previous”
function values were found. This is intentional because we would like to focus our
attention on the impact of what a single correction does to the solution. Doing so
permits the analysis to apply to parallel implementations of SDC methods where
synchronizations between different correctors (threads) are seldom seen [9; 13].

3B. Proof of the main result.

Proof. We subtract the exact equation (7) from (24) and find that the discrete error
evolution equation is

e[p+1]
n = e[p+1]

n−1 + hn
[

f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+

∫ tn

tn−1

I
[

f
(
η[p]

)]
(t)− f (y(t)) dt. (26)

The last term in this summand can be estimated by appealing to Lemma 2.1 and
observing

|In| :=

∣∣∣∣∫ tn

tn−1

I
[

f
(
η[p]

)]
(t)− f (y(t)) dt

∣∣∣∣≤ h
∥∥e[p]

∥∥Wn L +
F
M !

hM+1. (27)

We estimate the other terms by making use of their respective Lipshitz constants:∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+hn
∣∣ f I
(
η[p+1]

n
)
− f I

(
η[p]n

)∣∣+hn
∣∣ fE

(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)∣∣+|In|

≤
∣∣e[p+1]

n−1

∣∣+hL I
(∣∣e[p+1]

n

∣∣+ ∣∣e[p]n

∣∣)+hL E
(∣∣e[p+1]

n−1

∣∣+ ∣∣e[p]n−1

∣∣)+|In|. (28)

The second line follows from the first by adding and subtracting f I (yn) and fE(yn−1)

to the inside of each of the absolute values containing
∣∣ f
(
η
[p+1]
n

)
− f

(
η
[p]
n
)∣∣ and∣∣ f

(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)∣∣, respectively. Note that we also make use of the fact that
hn ≤ h, although this too can be relaxed.

We continue by subtracting hL I
∣∣e[p+1]

n
∣∣ from both sides, dividing by 1−hL I > 0,

recognizing that hn < h, and collecting the remaining terms involving the “explicit”
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portions:

∣∣e[p+1]
n

∣∣≤ 1
1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL I
∣∣e[p]n

∣∣+ hL E
∣∣e[p]n−1

∣∣+ |In|
]

≤
1

1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL
∥∥e[p]

∥∥+ |In|
]

≤
1

1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL(1+Wn)
∥∥e[p]

∥∥+ F
M !

hM+1
]

≤
1+ hL E

1− hL I

∣∣e[p+1]
n−1

∣∣+ 1
1− hL I

[
hW

∥∥e[p]
∥∥+ F

M !
hM+1

]
, (29)

where we define W :=max1≤n≤N (1+Wn L).
We make use of two separate estimates for 1/(1−hL I ) to estimate the two terms

found in the right-hand side of (29). For the first term, we expand the geometric
series and keep the first two terms:

1
1− hL I

= 1+ (hL I )+ (hL I )
2
+ · · · = 1+ (hL I )+ (hL I )

2 1
1− hL I

. (30)

This is valid because hL I < 1. Additionally, hL I <
1
2 , and therefore,

hL I < 1− hL I =⇒
(hL)2

1− hL I
< hL I . (31)

Together, these estimates imply that the first term can be estimated with

1
1− hL I

≤ 1+ 2hL I ≤ e2hL I . (32)

For the second term, we have 1/(1− hL I )≤ 2 for all hL I ∈
[
0, 1

2

]
. This leads us

to observe that∣∣e[p+1]
n

∣∣≤ e2hL I (1+ hL E)
∣∣e[p+1]

n−1

∣∣+ 2
(

hW
∥∥e[p]

∥∥+ F
M !

hM+1
)
. (33)

Next, we appeal to Corollary 2.3 and make use of A = e2hL I (1+ hL E) > 1 and
B = 2

(
hW

∥∥e[p]
∥∥+ (F/M !)hM+1

)
to conclude that∣∣e[p+1]

n

∣∣≤ e2hnL I (1+ hL E)
n
|e0|

+ ne2h(n−1)L I (1+ hL E)
n−12

(
hW

∥∥e[p]
∥∥+ F

M !
hM+1

)
. (34)

Since 1+ hL E ≤ ehL E and n ≤ N , we have the desired result. �
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3C. Corollaries of main result: implicit and explicit error estimates. With the
general case proven in Theorem 3.1, we find results for both implicit as well as
explicit SDC solvers. An immediate corollary to Theorem 3.1 can be found by
setting fE ≡ 0, in which case L I becomes the Lipshitz constant for f , and the
SISDC solver reduces to classical SDC with backward Euler defined in (10).

Corollary 3.2. The errors for a single step of the implicit SDC method defined
in (10) satisfy ∣∣e[p+1]

n

∣∣≤ e2NhL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1 (35)

provided h < 1/(2L). The constants C1 and C2 depend only on the smoothness
of f , the exact solution y, and the choice of quadrature points.

It is worth noting that the error estimate provided here is an asymptotic error
estimate. That is, one key assumption that we have to make is that h < 1/(2L),
which we do not have to make for the explicit case. Unfortunately, one key benefit
of implicit solvers is that large time steps can be taken, in which case it is certainly
possible that the solver does not obey this assumption. For these cases, a rigorous
error estimate and analysis when h > 1/(2L) would make for an interesting result,
which would be especially important for multiscale problems that contain large
time scale separations. This observation is beyond the scope of the present work.

A related corollary for explicit solvers with tighter error bounds can be found.
The result is the following:

Corollary 3.3. The errors for a single step of the explicit SDC method defined in (9)
satisfy ∣∣e[p+1]

n

∣∣≤ eNhL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1, (36)

where N is the number of intervals under consideration, L is the Lipschitz constant
of f for the ODE y′ = f (y), and C1 and C2 are constants that depend only on f ,
the exact solution y, and the selection of quadrature points.

Proof. Revisit the proof of Theorem 3.1, and replace the error estimate for
1/(1− hL I )≤ 2 with 1 instead of 2. �

4. Convergence proofs for higher-order base solvers

We now consider the spectral deferred correction method with the implicit trape-
zoidal rule as its base solver:

η[p+1]
n = η

[p+1]
n−1 +

hn

2

[
f
(
η[p+1]

n
)
+ f

(
η
[p+1]
n−1

)
− f

(
η[p]n

)
− f

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (37)
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What makes this method interesting is that it picks up a total of two orders of
accuracy with each correction. Note again that, in the absence of the terms that the
factor hn/2 multiplies, this method reduces to explicit Picard iteration, which picks
up a single additional order of accuracy with each correction.

The result we focus on is the impact of each correction step, in which case
any provisional solution may be used. In order to retain large regions of absolute
stability reasonable methods include low-order implicit solvers such as backward
Euler, or the second-order implicit trapezoidal (Crank–Nicholson) rule

(trapezoidal rule) η[0]n =η
[0]
n−1+

hn

2

(
f
(
η
[0]
n−1

)
+ f

(
η[0]n

))
, n=1, 2, . . . , N . (38)

In this section, we examine the interplay between the integral over the entire time
interval, and the addition of extra integral terms that allows this solver to pick up
additional orders of accuracy.

Let us define the exact value of the right-hand-side function as fn = f (y(tn)),
the approximate value of the right-hand-side function as f [p]n = f

(
η
[p]
n
)
, and the

local and global quadrature rules for integration over the subinterval [tn−1, tn] as

Tn =
hn

2
[ fn−1+ fn], T [p]n =

hn

2

[
f [p]n−1+ f [p]n

]
,

Hn = h
M∑

m=1

ωn,m fm, H [p]n = h
M∑

m=1

ωn,m f [p]m .

These definitions allow us to compactly write the SDC method with the trapezoidal
rule defined in (37) to read

η[p+1]
n = η

[p+1]
n−1 +

(
T [p+1]

n − T [p]n
)
+ H [p]n . (39)

Recall that the exact solution satisfies the integral (7), which we repeat:

yn = yn−1+

∫ tn

tn−1

f (y(t)) dt.

Theorem 4.1. When coupled with the implicit trapezoidal rule, the errors for a
single step of the spectral deferred correction method satisfy

∣∣e[p+1]
n

∣∣≤ e2NhL
|e0| + 2Ne2(N−1)hL

(
1
12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥h3
+

F
M !

hM+1
)
, (40)

provided hL < 1, where N is the number of intervals under consideration, M is the
number of points involved, L is the Lipschitz constant of f , F is an upper bound
for the M-th derivative of f , and the function E [p](t) is the polynomial interpolant
for the error in the approximation of the right-hand-side function during the p-th
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iterate defined by

E [p](t) := I
[

f
(
η[p]

)]
(t)− I [ f ( y)](t)=

M∑
m=1

1 f [p]m `m(t/h), (41)

where 1 f [p]m := f [p]m − fm for each m = 1, 2, . . . ,M. The norm defined in (40) is
the maximum absolute value of the second derivative of E [p]:∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥ := max
t∈[0,h]

∣∣(E [p])′′(t)∣∣. (42)

Proof. We subtract the exact solution defined in (7) from the SDC method based
upon the trapezoidal rule defined in (39) to end up with

e[p+1]
n = e[p+1]

n−1 +
(
T [p+1]

n − T [p]n
)
+ H [p]n −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 + T [p+1]

n − Tn + Tn − T [p]n + H [p]n − Hn + Hn −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 +

(
T [p+1]

n − Tn
)︸ ︷︷ ︸

I

+
(
H [p]n − T [p]n + Tn − Hn

)︸ ︷︷ ︸
II

+ In︸︷︷︸
III

, (43)

where In := Hn−
∫ tn

tn−1
f (y(t)) dt is the difference between the high-order (discrete)

integral and the exact integral of the right-hand side.
We now estimate each of the three terms to the right of e[p+1]

n−1 in (43) separately,
starting with the first term:

|I| =
hn

2

∣∣ f [p+1]
n−1 + f [p+1]

n − fn−1− fn
∣∣≤ Lhn

2

(∣∣e[p+1]
n

∣∣+ ∣∣e[p+1]
n−1

∣∣), (44)

which follows from the Lipshitz continuity of f . The third term can be estimated
by first recognizing that

Hn := h
M∑

m=1

ωn,m fm =

∫ tn

tn−1

I [ f ( y)](t) dt,

and then using (18) (which requires assuming that f ◦ y ∈ C M ) in order to yield

|III| =
∣∣∣∣Hn −

∫ tn

tn−1

f (y(t)) dt
∣∣∣∣= |Hn − In| ≤

F
M !

hM+1, (45)

where F is any number that satisfies
∥∥ d M

dt M ( f ◦ y)
∥∥
∞
≤ F .

Finally, we address the second, and most interesting, term on the right-hand side
of (43). The key observation comes from recognizing this term as the difference
between a low-order (local) quadrature, Tn , and a high-order (global) quadrature Hn .
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Note that the exact integral of the polynomial interpolant E [p] over the subinterval
[tn−1, tn] is ∫ tn

tn−1

E [p](t) dt = H [p]n − Hn, (46)

and that

T [p]n − Tn =
hn

2

(
E [p](tn)+ E [p](tn−1)

)
(47)

is a low-order approximation to this integral. By textbook results, we have

II=
(
H [p]n − Hn − T [p]n + Tn

)
=−

h3
n

12
d2 E [p]

dt2 (ξn), (48)

where ξn is some number between tn−1 and tn . Together, this implies

|II| ≤
h3

n

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥. (49)

All together, inserting (44), (49), and (45) into (43), we have∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ |I| + |II| + |III|
≤

(
1+

Lhn

2

)
e[p+1]

n−1 +
Lhn

2
e[p+1]

n +
h3

n

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥+ F
M !

hM+1. (50)

After replacing each hn ≤ h, rearranging, and assuming that hL/2< 1, we have∣∣e[p+1]
n

∣∣≤ 1+ hL/2
1− hL/2︸ ︷︷ ︸
≤e2hL

e[p+1]
n−1 +

1
1− hL/2︸ ︷︷ ︸
≤2

(
h3

12

∥∥∥∥d2 E [p]

dt2 (·)

∥∥∥∥+ F
M !

hM+1
)
. (51)

We now verify the two underscored inequalities involving the 1± hL/2 terms
in (51). Identical to (32), we have

1
1− hL/2

≤ 1+ 2(hL/2)= 1+ hL ,

after expanding the rational expression in terms of a geometric series, and assuming
that hL/2< 1 in order to retain convergence. Because 1+hL/2≤ 1+hL , we have

1+ hL/2
1− hL/2

≤ (1+ hL)2 ≤ e2hL ,

which verifies the first of the two underscored inequalities. For the second one, we
need only assume that hL < 1, which yields 1/(1− hL/2) < 2.

All together, we have∣∣e[p+1]
n

∣∣≤ e2hLe[p+1]
n−1 + 2

(
h3

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥+ F
M !

hM+1
)
, (52)

which yields the desired result after appealing to Corollary 2.3 and using n ≤ N . �
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Remark. The same decomposition for the error can be used for SDC coupled with
forward (or backward) Euler. That is, identical to the decomposition found in (43),
we can decompose the error as

e[p+1]
n = e[p+1]

n−1 + L [p+1]
n − L [p]n + H [p]n −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 + L [p+1]

n − Ln + Ln − L [p]n + H [p]n − Hn + Hn −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 +

(
L [p+1]

n − Ln
)︸ ︷︷ ︸

I

+
(
H [p]n − L [p]n + Ln − Hn

)︸ ︷︷ ︸
II

+ In︸︷︷︸
III

, (53)

where Ln and L [p]n denote a “low-order” integral of the right-hand side, but this
time we use

Ln := hn fn−1, L [p]n := hn f [p]n−1, (54)

for forward Euler, or instead

Ln := hn fn, L [p]n := hn f [p]n (55)

for backward Euler. The third term III is again O(hM+1), and the first term I can be
bounded by a constant times

∣∣e[p]n
∣∣+ ∣∣e[p+1]

n−1

∣∣. The lack of additional order pickup
can be found by observing that the second source of error instead satisfies

II=
(
H [p]n − Hn − L [p]n + Ln

)
=−

h2
n

2
d E [p]

dt
(ξn), (56)

where ξn is some number between tn−1 and tn . In the following examples, we
compare this term to that found from the trapezoidal rule.

4A. Examples. To illustrate the results of the theorem presented in this section,
we consider the linear test case

y′(t)= y(t), t > 0, y(0)= 1, (57)

and examine the errors produced by the SDC method when coupled with a higher-
order base solver. The order pickup for the SDC method can be found by exam-
ining the size of the second source of error, defined in (48) and (56), given by
h3

n/12
(
E [p]

)′′
(ξn) for the trapezoidal rule and h2

n/2
(
E [p]

)′
(ξn) for the forward (or

backward) Euler method. Note that the form and size of this error is identical for
either the forward or backward Euler base solver.

In the following examples, we work out the size of this term for a few different
case studies. Taylor expansions are found by making use of the Maple software
package.
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trapezoidal rule forward Euler

interval error p = 0 error p = 0[
0, h

2

] h
24

(
e[p]1 − 2e[p]2 + e[p]3

)
O(h4) h

24

(
7e[p]1 − 8e[p]2 + e[p]3

)
O(h3)[ h

2 , h
] h

24

(
e[p]1 − 2e[p]2 + e[p]3

)
O(h4) h

24

(
e[p]1 + 4e[p]2 − 5e[p]3

)
O(h3)

Table 2. Correction errors with M = 3 uniformly spaced points.

trapezoidal rule forward Euler

interval error p = 0 error p = 0[
0, h

3

] h
72

(
3e[p]1 −7e[p]2 +5e[p]3 −e[p]4

)
O(h4) h

72

(
15e[p]1 −19e[p]2 +5e[p]3 −e[p]4

)
O(h3)[ h

3 ,
2h
3

] h
72

(
e[p]1 −e[p]2 −e[p]3 +e[p]4

)
O(h4) h

72

(
e[p]1 +11e[p]2 −13e[p]3 +e[p]4

)
O(h3)[ 2h

3 , h
] h

72

(
e[p]1 −5e[p]2 +7e[p]3 −3e[p]4

)
O(h4) h

72

(
e[p]1 −5e[p]2 −5e[p]3 +9e[p]4

)
O(h3)

Table 3. Correction errors with M = 4 uniformly spaced points.

M = 3 uniformly spaced points. We first consider the results of using a total
of M=3 equispaced quadrature points and look at the local error over the subinterval
[tn−1, tn] produced by the second term II defined in (48) and (56). In the second set
of columns in Table 2 look at the size of this term by writing out Taylor expansions
for the first p = 0 SDC iteration of a solver constructed by taking a forward Euler
provisional solution for the first time step. Note that in this case, each point satisfies
e[0]n = O(h2) for each n, because the local truncation error (LTE) for Euler’s method
is second-order accurate. Therefore, the jump from O(h2) to O(h4) indicates that
the trapezoidal correction picks up an additional two orders of accuracy, whereas
the jump from O(h2) to O(h3) picks up a single additional order of accuracy for the
Euler base solver, which is consistent with the theory.

M = 4 uniformly spaced points. We next consider the same problem with a total
of M = 4 equispaced quadrature points. Again, we look at the errors for the
trapezoidal method compared to the forward Euler method after first constructing
a provisional solution with the forward Euler method. We again observe that the
trapezoidal rule improves the order of accuracy of the provisional solution by two
factors, whereas forward Euler (or likewise backward Euler) only improves the
order by one. Results for these quadrature points are presented in Table 3.

M = 4 nonequispaced spaced points. Finally, we consider a case with a total
of M = 4 nonequispaced points. As an illustrative example, we consider the
quadrature points ξ1 = 0, ξ2 =

1
3 , ξ3 =

1
2 , and ξ4 = 1. We find that the trapezoidal

error only increases the order of the solver by one degree, which is consistent with
the findings in [6], where the authors show that when the second-order Runge–Kutta



ON THE CONVERGENCE OF SPECTRAL DEFERRED CORRECTION METHODS 53

trapezoidal rule

interval error p = 0[
0, h

3

] h
162

(
8e[p]1 − 27e[p]2 + 20e[p]3 − e[p]4

)
O(h3)[ h

3 ,
h
2

] h
5184

(
14e[p]1 − 27e[p]2 + 8e[p]3 + 5e[p]4

)
O(h3)[ h

2 , h
] h

192

(
10e[p]1 − 81e[p]2 + 88e[p]3 − 17e[p]4

)
O(h3)

forward Euler

interval error p = 0[
0, h

3

] h
162

(
35e[p]1 − 54e[p]2 + 20e[p]3 − e[p]4

)
O(h3)[ h

3 ,
h
2

] h
5184

(
14e[p]1 + 405e[p]2 − 424e[p]3 + 5e[p]4

)
O(h3)[ h

2 , h
] h

192

(
10e[p]1 − 81e[p]2 + 40e[p]3 + 31e[p]4

)
O(h3)

Table 4. Correction errors with M = 4 nonequispaced points. In this case, we find that
both methods only pick up a single additional order of accuracy.

method is used as a corrector, then the solver does not always pick up two orders
of accuracy with each correction loop. Results for this problem are presented in
Table 4.

5. Numerical results

The primary contribution of this work is to construct rigorous error estimates for
classical SDC methods, and therefore, we only include a couple of numerical
results. An abundance of SDC examples applied to ordinary and partial differential
equations can be found in the literature. One of our key goals here is to promulgate
the fact that the primary source of high-order accuracy inherent in all SDC methods
comes from its underlying Picard integral formulation, and not necessarily the “base
solver”, and therefore, we focus our results on nearby variations of classical SDC
methods and demonstrate how classical SDC methods can be extended to produce
related high-order solvers.

First we introduce a comparison of errors (and stability regions) for explicit SDC
versus Picard iteration, second we explore modifications of the constant in front of
an implicit SDC method, and finally we compare semi-implicit SDC and modified
semi-implicit SDC solvers. For the sake of brevity the proposed modifications
to SDC methods are not formally analyzed but straightforward extensions of the
theorems presented in this work can be constructed to present formal error bounds
for these methods. The numerical evidence presented here supports this claim.

5A. A comparison of explicit SDC and Picard iteration. In this numerical exam-
ple, we compare the errors and stability regions by applying the Picard iterative
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Figure 1. Linear test case. Here, we compare explicit SDC (solid lines) with Picard
iteration (dashed lines) of various orders. Each method attains the desired order of accuracy
with the minimum number of corrections. In each case, Picard iteration has slightly smaller
errors when compared to the equivalent explicit SDC method of the same order and same
quadrature rule.

method defined in (8) to that of the explicit SDC defined in (9). In order to present
an equal comparison of these two solvers, we consider identical initial guesses, or
provisional solutions η[0] based upon forward Euler time stepping and we work
with uniform quadrature points for all of our test cases.

Errors for a linear test case. In Figure 1, we compare errors for the linear equation

y′ = λy, y(0)= 1, (58)

at a final time of T = 10 with λ=−2 and λ=−5. Other orders and values of λ show
similar results where we observe slightly smaller error constants when using the
Picard iterative method compared to the equivalent SDC method. This is consistent
with the findings of Corollary 3.3, because the first error estimate∣∣e[p+1]

n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ hn
∣∣ f
(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)∣∣+ |In|

could be tightened up to read∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ |In|,

which produces a smaller (provable) overall error for the Picard method when
compared to the SDC method.

A comparison of regions of absolute stability for explicit methods. Next, we seek
to compare regions of absolute stability for explicit SDC methods and their Picard
iterative cousins. Here we observe that the stability regions are slightly improved
when the “Euler term” in the time stepping is dropped from the SDC method. That
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Figure 2. Stability regions for explicit methods. Here, we compare SDC methods to that
of Picard iterative methods where the explicit “Euler term” is dropped from the iterative
process. In each case save one, we observe that the Picard iterative methods have slightly
larger regions of absolute stability. The second-order SDC and Picard methods that use
two quadrature points are identical because the forward Euler time step vanishes in the
SDC method. The scaling on the axes for the methods of orders 6 through 10 is different
than the scaling for the methods of orders two through five.

is to say, we find that the Picard iterative methods generally have larger regions of
absolute stability when compared to their SDC counterparts.

In order to demonstrate this, in Figure 2, we include a comparison of plots of
the regions of absolute stability, defined by

D := {z ∈ C : |ρ(z)|< 1} (59)

where ρ(z) is the amplification factor for various quadrature rules for both of these
methods, z := λh, and λ is defined as in (58). There, we compare methods of
orders two through ten, all based on equispaced quadrature points, forward Euler
time stepping for the provisional solution, and the minimum number of corrections
required to reach the desired order of accuracy. (For example, the third-order method
uses two corrections and the fifth-order method uses four corrections.) Similar to
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most explicit Runge–Kutta methods, we find that the regions of absolute stability
increase as the order is increased, but there are also more function evaluations per
time step.

5B. Implicit SDC methods with modified backward Euler time steps. Here, we
consider implicit SDC methods with a variable constant in front of the vanishing
term:

η[p+1]
n = η

[p+1]
n−1 + θh

[
f
(
η[p+1]

n
)
− f

(
η[p]n

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
,

n = 1, 2, . . . , N . (60)

This same scaling has already been explored in [39] for SDC methods, but there
the authors only consider the case where 1

2 ≤ θ ≤ 1. With θ = 0, we have (explicit)
Picard iteration (provided the provisional solution is modified), with θ = 1, we
have the classical implicit SDC method, and with negative values of θ we have
backward Euler solves on negative time steps; none of the these changes affect
the overall order of accuracy, only the size of the error constant and the regions of
absolute stability. Following the proof of the main theorem in this work, we find
the following result under a modified estimate for the time step size.

Theorem 5.1. The errors for a single step of the modified implicit SDC method
defined in (60) satisfy∣∣e[p+1]

n

∣∣≤ e2N |θ |hL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1 (61)

provided |θ |h < 1/(2L). The constants

C1 = 2Ne2N |θ |hL
(
|θ | + L max

n
Wn

)
and C2 = 2Ne2N |θ |hL F

M !
again depend only on the smoothness of f , the exact solution y, and the choice of
quadrature points, but this time they also depend on θ .

Note that the value of θ = 0 minimizes the size of these constants, but it also
produces poor regions of absolute stability. With θ � 1 we have a method that is
heavy handed on multiple backward Euler solves, and therefore, it has a very large
region of absolute stability; however, these methods unfortunately introduce larger
error constants. Small values of θ decrease these error constants, but they modify
the regions of absolute stability to the point where they become finite and therefore
undesirable as these are implicit methods.

A verification of high-order accuracy: the nonlinear pendulum problem. As a
verification of the high-order accuracy of the solvers, we consider the equations of
motion for a nonlinear pendulum:

x ′′(t)+ sin x(t)= 0 (62)
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Figure 3. Nonlinear pendulum problem. Here, we compare SDC methods with different
scalings on the backward Euler term as defined in (60). The case with θ = 1 is classical
implicit SDC. We observe the expected result that all methods have high-order accuracy
and that θ > 1 produces larger error constants. The case with θ = −0.1 is not a useful
method because it has a finite region of absolute stability. While all methods here are
fourth-order accurate after three corrections, the methods with large values of θ stand
to gain the most through additional corrections. This can be attributed to the large error
constants found in the backward Euler term that vanish at the number of iterations increase
(provided the iterates converge).

with appropriate initial conditions. If we perform the change of variables y1(t)= x(t)
and y2(t) = x ′(t), we end up with the following first-order nonlinear system of
equations that is equivalent to (62):

(y1, y2)
′
= (y2,− sin y1). (63)

We consider initial conditions defined by (y1(0), y2(0))= (0, 1), and we integrate
this problem to a final time of T = 10. To compute a reference solution, we
use MATLAB’s built-in ode45 with a relative tolerance of 10−12 and an absolute
tolerance of 10−14.

We present convergence results for this problem in Figure 3. These results
indicate that each method is indeed high-order independent of the value of θ . For
the sake of brevity, we only report results for methods with a total of M = 4
equispaced quadrature points, but we also compare results for different number of
corrections. (This underlying quadrature rule is also known as Simpson’s 3

8 rule,
which has a smaller error constant than Simpson’s rule that uses M = 3 equispaced
points, but it comes at the cost of an additional function evaluation.) We not only
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Figure 4. Stability regions for modified implicit methods. Here, we perform a parameter
study to the modified implicit SDC method introduced in (60); the case with θ = 0 is
explicit for each of the correction steps because there is no backward Euler time step to
be solved for; however, the stability region is different than that of the same-order Picard
method because the initial guess (provisional solution) is computed using backward Euler
time steps, whereas the Picard method makes use of forward Euler steps for its initial guess.
Somewhere in the interval θ ∈ [0, 1] there is a transition between finite and infinite regions
of absolute stability. Infinite and large regions are typically desirable when performing
implicit solves. Large values of θ increase the regions of absolute stability but at the cost
of stiff inversions and larger error constants.

find that smaller values of θ produce smaller errors, which the theory supports, but
we also demonstrate that more corrections for the methods with large θ values can
help to decrease the errors.

A parameter study of regions of absolute stability for implicit methods. Given the
results of the previous section, it would be tempting to set θ = 0 in order to reduce
the total error. What is missing from this observation is an understanding of the
regions of absolute stability. We now address this question. We find that small
values of θ produce finite regions of absolute stability, and that large values of θ
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increase the regions of absolute stability (when compared to classical SDC methods)
but they also increase the stiffness of each implicit solve. With that being said,
larger time steps should be able to be taken, but as is pointed out in the previous
section, larger errors are introduced. This reproduces the usual tradeoff between
being able to take large time steps with large errors or being forced to take smaller
time steps but at an increased computational cost.

In Figure 4 we present results for a third-order method with various values of θ .
There we plot contour plots of the modulus of the amplification factor |ρ(z)| in
place of the boundary defined by |ρ(z)| = 1 because if we were to plot the boundary,
then it would not be clear what parts are stable. In this sequence of images, we
present results for various values of θ ∈ [−0.4, 5]. Larger values of θ such as
θ = 100 look very similar to θ = 5. Tests on methods of other orders produce
similar results involving transitions between finite and infinite regions of absolute
stability as θ increases from 0. The tradeoff between the size and shape of the
stability regions for various quadrature rules is left for future work.

Before continuing, we point out that diagonally implicit Runge–Kutta methods
(on nonequispaced points) can be constructed from this very same framework. The
point here is that because the term involving the difference f

(
η
[p+1]
n

)
− f

(
η
[p]
n
)

in (60) does not contribute to the overall order of accuracy, the scaling in front of
this term can be modified so that each implicit solve uses the exact same time step,
which would result in a singly diagonally implicit Runge–Kutta (SDIRK) method.
This could be advantageous for easing the implementation of SDC methods in
large-scale code bases. In such a case the provisional solution would have to be
modified in order to retain constant time steps for each stage in the solver. This
would mean an extra correction or a (low-order) polynomial interpolation step would
be necessary to not lose the starting accuracy found in the provisional solution,
which would again modify the regions of absolute stability for solvers of various
orders.

Similar modifications have recently been explored on nonequispaced points from
a linear algebra perspective. In [38], the author makes use of this vantage and
optimizes their solvers by modifying the coefficients in the fixed-point iteration
matrices. It is pointed out that there are a number of items that could be optimized,
such as the spectral radius of the solver (in order to optimize the convergence rate
of the sweeps), the matrix norm (for the purpose of reducing the error under the
assumption of a small number of sweeps), the error at the final time, the average
reduction factor in each sweep block (for the purpose of adaptively choosing the
number of sweeps, which could include flexible or greedy sweeps), and so on. Even
though SDC methods are a subset of Runge–Kutta methods, and all of these options
can be found by looking at this more general class of methods, one key advantage
SDC methods enjoy is they do not typically sacrifice the difficult order conditions
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that a more generic RK method would have to address. At the same time, SDC
methods still have ample levers to tune for optimization purposes.

5C. Modified semi-implicit SDC methods. Recall the semi-implicit SDC (SISDC)
method begins with a partition of the right-hand side into two functions f I and fE

via

y′ = f (y), f (y)= f I (y)+ fE(y), y(0)= y0, (64)

and then they apply a forward Euler/backward Euler (FE/BE) pair to the right-hand
side defined in (24):

η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (65)

With a straightforward extension the results from the present work point out that
high-order accuracy can be achieved where there are no forward Euler time steps
on the explicit term fE(y). That is, we propose examining the modified SISDC
method

η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (66)

Note that the “base solver” for this method is not even consistent with the underlying
ODE. This serves as another example of how the findings from this work permit
modifications to classical SDC methods in order to produce nearby variations. As an
additional benefit, this reduces the computational coding complexity by asking the
user to only define f and f I as opposed to f , f I , and fE . This type of modification
can be readily found after understanding the source of high-order accuracy inherent
to the SDC framework.

Given that the iterative Picard methods demonstrate smaller errors by dropping
the forward Euler terms in the right-hand side of the iterations from the SDC solver,
one might expect that this method has better accuracy than its SISDC parent. In
the event when f I = 0 (or is small), this would be true because in that case we
would be comparing explicit SDC to Picard iteration, and we have already shown
that those errors are smaller for some problems. However, we will shortly see that
this is not necessarily the case. Even though this modification does not affect the
overall order of the solver, we will show that for the following test case it does not
improve the total overall error of the solver. With that being said, we believe it is
still important to understand the source of the overall order of the SDC solvers,
because only then can new methods be developed from the existing framework.
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mesh SISDC order modified SISDC order

4 2.24× 10−02 6.45× 10−02

8 6.06× 10−04 5.21 2.84× 10−03 4.51
16 4.11× 10−05 3.88 1.91× 10−04 3.89
32 3.44× 10−06 3.58 1.46× 10−05 3.71
64 2.56× 10−07 3.75 1.01× 10−06 3.85

128 1.78× 10−08 3.85 6.68× 10−08 3.92
256 1.17× 10−09 3.93 4.29× 10−09 3.96
512 7.26× 10−11 4.01 2.69× 10−10 3.99

Table 5. Van der Pol oscillator. Here we present numerical results where we compare
the implicit classical method defined in (24) as well as the modified semi-implicit SDC
method defined in (66) against each other. Despite the fact that theory can show that the
errors could be smaller for the modified method that relies solely on backward Euler time
stepping embedded within Picard iteration, in this case the classical SISDC method based
forward/backward Euler time stepping outperforms the other solver with its smaller error
constants.

Van der Pol’s equation. As a prototypical IMEX example, we include results for
Van der Pol’s equation

x ′′(t)=−x(t)+µ(1− x(t))2x ′(t) (67)

with appropriate initial conditions. After the usual transformation of y1(t)= x(t)
and y2(t) = µx ′(t), and rescaling time through t → t/µ, we have the system of
differential equations [30; 25]

y′1 = y2, y′2 =
−y1+ (1− y2

1)y2

ε
, ε =

1
µ2 . (68)

In an IMEX setting, this problem is typically split into fE(y)= (y2, 0) and f I =

(0, (−y1+ (1− y2
1)y2)/ε) as an effort to account for the stiffness as ε→ 0. For

this problem we only seek to verify the high-order accuracy of the classical semi-
implicit SDC method defined in (24), denoted by SISDC, as well as the modified
solver defined in (66), denoted by “modified SISDC”. With this aim in mind, we
set ε = 1 so that the equations remain nonstiff, and we integrate to a long final time
of T = 4. The initial conditions are the same as those found in an example in [25],
which are y1(0) = 2 and y2(0) = −0.666666654321. In Table 5, we compare a
convergence study for the fourth-order versions of these two methods where we use
a total of four equispaced quadrature points, a provisional solution defined by the
split forward/backward Euler method, as well as three corrections in the solver. For
this problem, we find that the classical SISDC method has slightly smaller errors,
despite what theory might otherwise predict we could observe. For problems where
f I is negligible or small, the modified method should outperform the SISDC solver.
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Other values for ε produce similar findings, where the usual order reduction can be
found as ε approaches zero. In other cases, the two solvers have similar behavior,
and both show high-order accuracy for large values of ε. For brevity, these other
results are omitted.

6. Conclusions

In this work we present rigorous error bounds for both explicit and implicit spectral
deferred correction methods. Unlike most presentations that introduce SDC methods
as methods that iteratively correct provisional solutions by solving an error equation,
our work hinges on the fact that the basic solver can be recast as a variation on
Picard iteration. This observation allows new SDC methods to be developed through
modifications of the (forward or backward) Euler part of the iterative procedure. In
addition, we present some analysis for SDC methods constructed with higher-order
base solvers. In the numerical results section we present some sample variations
that serve to indicate that the choice of the base solver need not be consistent
with the underlying ODE in order to obtain a method that converges. That is, our
findings indicate that it is not important to use the same low-order solver for each
correction step because the desired high-order accuracy can be found in the integral
of the residual. However, the choice of the base solver certainly has an impact on
the overall scheme. For example, up to the degree of precision of the underlying
quadrature rule, the choice of the forward or backward Euler method or even an
inconsistent base solver leads to a single pickup on the order of accuracy of the
solver with each correction step, whereas the choice of a trapezoidal rule for a base
solver yields two orders of pickup with each correction step. For stiff problems, an
implicit method constructed with the backward Euler method (or some variation of
it) is certainly preferable due to the larger regions of absolute stability. Future work
involves further analysis of embedded high-order base solvers as well as exploring
further modifications of the solver to modify regions of absolute stability of existing
solvers for explicit, implicit, and semi-implicit SDC methods.
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A THEORETICAL STUDY OF AQUEOUS HUMOR SECRETION
BASED ON A CONTINUUM MODEL

COUPLING ELECTROCHEMICAL AND FLUID-DYNAMICAL
TRANSMEMBRANE MECHANISMS

LORENZO SALA, AURELIO GIANCARLO MAURI, RICCARDO SACCO,
DARIO MESSENIO, GIOVANNA GUIDOBONI AND ALON HARRIS

Intraocular pressure, resulting from the balance of aqueous humor (AH) produc-
tion and drainage, is the only approved treatable risk factor in glaucoma. AH
production is determined by the concurrent function of ion pumps and aquaporins
in the ciliary processes, but their individual contribution is difficult to characterize
experimentally. In this work, we propose a novel unified modeling and compu-
tational framework for the finite element simulation of the role of the main ion
pumps and exchangers involved in AH secretion, namely, the sodium-potassium
pump, the calcium-sodium exchanger, the chloride-bicarbonate exchanger, and
the sodium-proton exchanger. The theoretical model is developed at the cellular
scale and is based on the coupling between electrochemical and fluid-dynamical
transmembrane mechanisms characterized by a novel description of the electric
pressure exerted by the ions on the intrapore fluid that includes electrochemical
and osmotic corrections. Considering a realistic geometry of the ion pumps,
the proposed model is demonstrated to correctly predict their functionality as
a function of (1) the permanent electric charge density over the pore surface,
(2) the osmotic gradient coefficient, and (3) the stoichiometric ratio between
the ion pump currents enforced at the inlet and outlet sections of the pore. In
particular, theoretical predictions of the transepithelial membrane potential for
each simulated pump/exchanger allow us to perform a first significant model
comparison with experimental data for monkeys. This is a significant step for
future multidisciplinary studies on the action of molecules on AH production.

1. Introduction

The flow of aqueous humor (AH) and its regulation play an important role in
ocular physiology by contributing to control the level of intraocular pressure (IOP)
[36; 28]. Elevated IOP is the only approved treatable risk factor in glaucoma, an
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optic neuropathy characterized by a multifactorial aetiology with a progressive
degeneration of retinal ganglion cells that ultimately leads to irreversible vision
loss [18; 59]. Currently, glaucoma affects more than 60 million people worldwide
and is estimated to reach almost 80 million by 2020 [38]. IOP can be lowered via
hypotonizing eye drops and/or surgical treatment, and it can be shown that reducing
IOP by 1 mmHg has the effect of reducing the risk of glaucoma progression and
subsequent vision loss by 10% [19].

Several classes of IOP-lowering medications are available for use in patients with
glaucoma, including prostaglandin analogues, beta-blockers, carbonic anhydrase
inhibitors, and alpha-2-adrenergic agonists, in fixed and variable associations, while
newer classes are still in clinical trials, such as the rho kinase inhibitors [17; 21; 39].
All currently available IOP-lowering agents function by altering AH production
or drainage. However, differences in drug efficacy have been observed among
patients that cannot be completely explained without a clear understanding of the
mechanisms regulating AH flow. Motivated by this need, in this work we focus on
AH production and we propose a mathematical approach to model and simulate the
contribution of ion pumps and exchanger to determine AH flow.

The production of AH takes places in the ciliary processes within the ciliary
body, where clear liquid flows across the ciliary epithelium, a two-layered structure
composed of an inner nonpigmented layer, representing the continuation of reti-
nal pigmented epithelium, and an external nonpigmented layer, representing the
continuation of the retina [16], as illustrated in Figure 1.

Three main mechanisms are involved in the production of AH: (i) convective
delivery of fluid and metabolic components via the ciliary circulation, (ii) ultrafil-
tration and diffusion of fluid and metabolic components across the epithelial cells
driven by gradients in hydrostatic pressure, oncotic pressure, and metabolite concen-
trations, and (iii) active secretion into the posterior chamber driven by increased ion
concentrations within the basolateral space between nonpigmented epithelial cells.

In this work we focus on the third mechanism, henceforth referred to as AH
secretion, which is responsible for approximately 80–90% of the whole AH pro-
duction process [15; 32]. More precisely, we aim to model the selective movement
of anions and cations across the membrane of the nonpigmented epithelial cells,
the resulting gradient of ion and solute concentrations across the membrane, and
the induced fluid egression into the posterior chamber.

The proposed simulation of AH secretion presents many challenges from the
modeling viewpoint. Existing references concerning AH secretion are primarily
based on lumped parameter models that provide a systemic view of AH flow [7; 29;
52], but do not reproduce the detailed phenomena occurring at the level of single ion
pumps and exchangers. Detailed models based on the velocity-extended Poisson–
Nernst–Planck (VE-PNP) system have been utilized to simulate electrokinetic flows
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Figure 1. Left top: anatomy of the eye and of the structures involved in aqueous humor
production and regulation [5]. Left bottom: MAC: major arterial circle; ACA: anterior ciliary
arteries; LPCA: long posterior ciliary artery; LCM: longitudinal (fibers) ciliary muscle; CCM:
circular (fibers) ciliary muscle; CE: ciliary epithelium (figure reproduced from [49]). Right
bottom: a ciliary process is composed of capillaries, stroma, and two layers of epithelium
(inner, pigmented and outer, nonpigmented) (figure reproduced from [49]). Right top: the
two-layer structure of the ciliary epithelium (figured reproduced from [56]).

[26; 3; 4], but different models for the volumetric force coupling electrochemical and
fluid-dynamical mechanisms have been proposed [51; 41; 42; 13], thereby raising
the question of which one, if any, is the most appropriate for the application at hand.
In addition, some of the most important parameters in the VE-PNP model, such as
the concentration of ions within the pore, the fixed charge on the pore lateral surface,
and the osmotic diffusive parameter, cannot be easily accessed experimentally and
so are not readily available in the literature. In the pilot investigation conducted
in [35], we explored the feasibility of utilizing a VE-PNP model to simulate the
sodium-potassium pump (Na+-K+) within the nonpigmented epithelial cells of the
eye. However, several other ion pumps and exchangers are involved in AH secretion
[28], and have not yet been modeled in the context of AH flow.

The present work aims at extending the modeling and simulation treatment
of [35] through the development of a unified framework capable of simulating
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AH secretion by including the four main ion pumps and exchangers involved in
the process, namely, the calcium-sodium exchanger (Ca++-Na+), the chloride-
bicarbonate exchanger (Cl−-HCO−3 ), and sodium-proton exchanger (Na+-H+). The
computational structure used in the numerical simulations is based on the adoption
of (1) a temporal semidiscretization with the backward Euler method, (2) a Picard
iteration to successively solve the equation system at each discrete time level, and
(3) a spatial discretization of each differential subproblem obtained from system
decoupling using the Galerkin finite element method.

Remark. The present work focuses on the study of the system when steady-state
conditions are reached.

Numerical simulations are utilized to (i) compare how and to what extent different
modeling choices for the volumetric coupling force affect the resulting transmem-
brane potential, stoichiometric ratio, and intrapore fluid velocity and (ii) characterize
the correct boundary conditions and the value of the permanent electric charge
density on the pore lateral surface that allow us to predict a biophysically reasonable
behavior of ion pumps and exchangers in realistic geometries. Overall, this work
provides the first systematic investigation of VE-PNP models in the context of AH
secretion and paves the way to future studies on biochemical, pharmacological, and
therapeutic aspects of AH flow regulation.

The paper is organized as follows. Section 2 provides a brief functional de-
scription of the main features pertaining to the Na+-K+ pump and the Ca++-Na+,
Cl−-HCO−3 , and Na+-H+ exchangers. The VE-PNP system is described in Section 3,
and the mathematical model for the volume force density in the right-hand side
of the linear momentum balance equation for the intrapore fluid is described in
Section 4. The numerical discretization of the VE-PNP model equations is discussed
in Section 5, whereas simulation results of the effect of volumetric forces and
permanent electric charge density are presented in Sections 6 and 7, respectively.
Model limitations, conclusions, and future perspectives are outlined in Section 8.

2. Ion pumps and exchangers in AH secretion

In this section we provide a short description of the main ion pumps and exchangers
that are involved in the process of AH secretion. A schematic representation of
these ion pumps and exchangers is illustrated in Figure 2. We refer to [20] for an
overview of ion pumps and exchangers in cellular biology and to [27] for their
mathematical treatment.

The sodium-potassium pump. This pump plays a fundamental role in cellular
biology as it is present in the membrane of every cell in the human body. The
enzyme ATPase, located either in pigmented or nonpigmented ciliary epithelium,
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Figure 2. Schematic diagram of ion pumps and exchangers located on the lipid membrane
in the nonpigmented epithelial cells of the ciliary body of the eye. Aqueous humor is
produced by the active secretion of fluid through the ion pumps and exchangers during
their activity. This figure is inspired by Figure 9 of [48].

intracellular
space

extracellular
space

membrane

K+Na+

Figure 3. Schematic representation of the Na+-K+ pump. The stoichiometric ratio is
3 : 2, since there is an outflux of three Na+ ions and an influx of two K+ ions.

causes the hydrolysis of one molecule of ATP and produces the necessary energy
to expel three Na+ ions, while allowing two K+ ions to enter. This process is not
electrically neutral as it entails an outflux of three positive charged particles of
sodium and an influx of only two positive charged particles of potassium. The ion
outflux and influx are schematically represented in Figure 3.

The calcium-sodium exchanger. This exchanger is activated when calcium accu-
mulates inside the cell above a certain threshold that is usually around 1 mM. It
entails the influx of three Na+ ions and an outflux of one Ca++ ion. As in the
previous case, this process is not electrically neutral as three positive sodium ions
enter the cell whereas only one positive calcium ion exits the cell. The ion outflux
and influx are schematically represented in Figure 4.



70 L. SALA, A. G. MAURI, R. SACCO, D. MESSENIO, G. GUIDOBONI AND A. HARRIS

intracellular
space

extracellular
space

membrane

Na+Ca++

Figure 4. Schematic representation of the Ca++-Na+ pump. The stoichiometric ratio is
3 : 1, since there is an influx of three Na+ ions and an outflux of one Ca++ ion.
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Figure 5. Schematic representation of the chloride-bicarbonate (top) and the sodium-
proton exchangers (bottom). The stoichiometric ratio of the chloride-bicarbonate exchanger
is 1 : 1, since there is an influx of one Cl− ion and an outflux of one HCO−3 ion. The
stoichiometric ratio of the sodium-proton exchanger is also 1:1, since there is an influx of
one Na+ ion and an outflux of one H+ ion.

The chloride-bicarbonate exchanger. This exchanger involves the movement of
negative ions. Carbonic anhydrase is an enzyme that mediates the transport of
bicarbonate across the ciliary epithelium to maintain the homeostatic balance of
carbonate across the cell membrane. More precisely, carbonic anhydrase favors the
splitting of one molecule of H2CO3 into a positive H+ ion and a negative HCO−3
ion. Then, the HCO−3 ion exits the cell through the pore with an exchange of a
chlorine ion Cl− that enters the cell. The balance of this exchanger is electrically
neutral because for every negative charged HCO−3 leaving the cell there is a negative
charged Cl− ion entering the cell [58]. The ion outflux and influx are schematically
represented in the top panel of Figure 5.

The sodium-proton exchanger. This exchanger is strictly correlated with the activ-
ity of the chloride-bicarbonate exchanger previously described. A positive H+ ion
resulting from the splitting reaction of one molecule of H2CO3 exits the cell with
an exchange of one Na+ ion entering the cell. Thus, this exchanger is electrically
neutral. The ion outflux and influx are schematically represented in the bottom
panel of Figure 5.
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3. The mathematical model

In this section we illustrate the system of partial differential equations (PDEs)
constituting the mathematical model at the cellular scale level of ion pumps and
exchangers that activate the AH secretion. We refer to [45] for a detailed discussion
of the analytical properties of the model equations and of the numerical methods
used for their discretization, and to [35] for preliminary results on the adoption
of the model in the study of the role of bicarbonate ion to correctly determine
the electrostatic potential drop across the cellular membrane at the level of eye
transepithelium.

The geometrical setting that we consider henceforth is the computational domain
� illustrated in Figure 6 representing a cross-section of a simplified pore geometry.

Remark. The pore geometry for real ion pumps is much more complex than the
simple cylinder depicted in Figure 6. It has also been observed that the pore geometry
might vary during the activity of the pump [60]. Even though a more complicated
geometry is considered in Section 7, the present work has to be considered as a first
step towards more realistic geometric settings.

Such representation includes any of the ion pumps and exchangers described in
Section 2, which are located on the lipid bilayer constituting the membrane of the
nonpigmented epithelial cells of the ciliary body of the eye schematically depicted
in Figure 1 (right top). We indicate by ∂� the boundary of �, by n the outward
unit normal vector on ∂�, and by sideA, sideB, and 0LAT the intracellular surface,
the extracellular surface, and the lateral boundary, respectively, in such a way that
∂�= sideA∪ sideB∪0LAT. For a given starting time t0 and a given observational
time window Tobs, we set IT := (t0, t0 + Tobs) and we denote by QT := �× IT

the space-time cylinder in which we study the spatial and temporal evolution of
the process of AH secretion at the cellular scale level. To clarify the physical
foundation of the cellular scale model object of the present article, we assume that
the following strongly coupled mechanisms concur to determine AH secretion:

electric field formation. This mechanism is determined by the mutual interaction
among ions in the intrapore fluid and their interaction with the permanent
electric charge density distributed on the surface of the pore structure. Mathe-
matically, the mechanism is described by the Poisson equation, supplied by
appropriate boundary conditions at the inlet and outlet sections of the pore and
on its external surface.

ion motion. This mechanism is determined by the superposition of a diffusion
process driven by ion concentration gradients along the pore and of a drift
process driven by the force exerted by the electric field on each ion charged
particle. Mathematically, the mechanism is described by the Nernst–Planck
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equations, supplied by appropriate initial conditions inside the pore and by
appropriate boundary conditions at the inlet and outlet sections of the pore and
on its external surface.

fluid motion. This mechanism is determined by the volume force density that is
exerted by the charged ion particles because of their motion inside the pore.
Mathematically, the mechanism is described by the time-dependent Stokes
equations, supplied by appropriate initial conditions inside the pore and by
appropriate boundary conditions at the inlet and outlet sections of the pore and
on its external surface.

We refer to the resulting mathematical model as velocity-extended Poisson–Nernst–
Planck system (VE-PNP) [44; 24; 47; 25]. The VE-PNP system can be derived by
the application of the following physical laws [45]: (i) mass balance for each of
the M chemical species included in the system (1a), (ii) linear momentum balance
for each chemical species (1b), (iii) electric charge conservation (1c), (iv) mass
balance for intrapore fluid (1e), and (v) linear momentum balance for the mixture of
intrapore fluid and ion species (1f). Ultimately, the system consists of the following
set of PDEs to be solved in QT :

∂ni

∂t
+ div f i = 0 for all i = 1, . . . ,M, (1a)

f i =
zi

|zi |
µi ni E − Di∇ni + ni u for all i = 1, . . . ,M, (1b)

div(−ε f∇ϕ)= q
M∑

i=1

zi ni + qρfixed, (1c)

E =−∇ϕ, (1d)

div u = 0, (1e)

ρ f
∂u
∂t
= div σ(u, p)+ F ion , (1f)

σ(u, p)= 2µ f S(u)− p δ, (1g)

S(u)=∇su = 1
2(∇u+ (∇u)T ). (1h)

The equation set (1) comprises two main blocks. Equations (1a)–(1d) constitute
the Poisson–Nernst–Planck (PNP) block whereas (1e)–(1h) constitute the Stokes
block. As far as the PNP block is concerned, M is the number of ion species,
f i denotes the ion particle flux [cm−2 s−1

], ni is the ion concentration [cm−3
],

and µi and Di are the ion electric mobility [cm2 V s−1
] and diffusivity [cm2 s−1

],
respectively. The mobility µi is proportional to the diffusivity Di through the
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Figure 6. Cross-section of a simplified pore geometry. The lipid membrane bilayer is
represented in brown color. The pore is represented in cyan color. The portions of the
boundary ∂� are labeled as sideA (intracellular side), sideB (extracellular side), and 0LAT
(lateral surface).

Einstein relation

Di =
K B T
q|zi |

µi , i = 1, . . . ,M, (2)

where q is the electron charge [C], K B is the Boltzmann constant [cm2 g s−2 K−1
],

and T is the absolute temperature [K]. In (1c) and (1d), E is the electric field
[V cm−1

], ϕ is the electric potential [V], and ε f is the electrolyte fluid dielectric
permittivity [F cm−1

]. The quantity zi is the valence of the i-th ion (zi > 0 for
cations, zi < 0 for anions) whereas ρfixed is the permanent electric charge density
[C cm−3

]. We define the ion current density J i [A cm−2
] of each ion species as

J i = qzi f i , i = 1, . . . ,M. (3)

As far as the Stokes block is concerned, u is the mixture velocity [cm s−1
] and

mixture incompressibility is expressed by (1e). Equations (1g) and (1h) are the con-
stitutive laws for the stress tensor [dyne cm−2

] and the strain rate [s−1
], respectively,

where p denotes the mixture pressure [dyne cm−2
], µ f is the mixture viscosity

[g cm−1 s−1
], ρ f is the mixture mass density [g cm−3

], and δ the second-order
identity tensor of dimension 3. Since the focus of the article is the investigation of
the role of electrochemical forces on the secretion of AH across the nonpigmented
epithelial cells in the ciliary body of the eye, we assume that the temperature T of
the intrapore mixture is constant and equal to the value T0 = 293.75 K and we will
refer to the mixture of water and ion species as AH fluid. The boxed terms in (1b)
and (1f) are the contributions that introduce the coupling between the PNP block of
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system (1) and the Stokes block of system (1). In particular,

F ion =

M∑
i=1

F i (4)

expresses the volume force density [dyne cm−3
] exerted by the ion charges on the

intrapore AH fluid, the quantities F i representing the contribution to the volume
force density given by each ion species, i = 1, . . . ,M .

The equation system (1) is equipped with the initial conditions

ni (x, 0)= n0
i (x), i = 1, . . . ,M, x ∈�, (5a)

u(x, 0)= u0(x), x ∈�, (5b)

where n0
i are given positive functions and u0 is a given function. The initial condition

ϕ0
= ϕ0(x), x ∈�, is the solution of the equation set (1c)–(1d), under appropriate

boundary conditions on ∂�, having set ni = n0
i , i = 1, . . . ,M .

The boundary conditions associated with system (1) that are considered in the
present article are of mixed Dirichlet–Neumann type. Their characterization for
each equation in the system is specified in each simulation illustrated in Sections 6
and 7.

4. Model for the volume force density

Many approaches have been adopted in the literature to model volume force den-
sity dictated by different needs in various contexts. One of the most used force
models is the Stratton model [51] for both its simplicity and efficacy. However,
more sophisticated modeling approaches are needed to account for microscopic
phenomena such as drift and diffusion effects in semiconductor devices [37] or the
effect of particle size exclusion that is well described by the hard sphere theory [43;
40]. Our idea is to unify the various volume force models proposed in the literature,
compare their different impact in our problem, and select the more appropriate one.

In this section, therefore, we discuss a general approach to the modeling of the
volume force density F i on the right-hand side in the linear momentum balance
equation (1f). F i expresses the contribution from the i-th ion species, i = 1, . . . ,M ,
to the total volume force density exerted by the ion charged particles on the intrapore
fluid and is assumed henceforth to be characterized by the relation

F i = qzi ni Eechs
i − kosm∇ni , i = 1, . . . ,M. (6)

The first term on the right-hand side of (6) represents the volume force density due
to a generalized electrochemical field Eechs

i whereas the second term represents
the volume force density due to an osmotic concentration gradient according to
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the parameter kosm [N m] [23]. The generalized electrochemical field is the result
of the superposed effect of passive drift due to the electric field (e), the diffusion
mechanism associated with a chemical concentration gradient (c), and the particle
size exclusion effect associated with the hard sphere (hs) theory [43; 40]. Relation (6)
is referred to henceforth as an electrochemical model including osmotic and size
exclusion mechanisms (echsk).

Assuming that Eechs
i is a gradient field, we have

Eechs
i =−∇ϕechs

i , i = 1, . . . ,M, (7a)

ϕechs
i = ϕec

i +µ
ex
i , i = 1, . . . ,M, (7b)

where ϕec
i is the generalized electrochemical potential of the i-th species

ϕec
i = ϕ+

Vth

zi
ln
(

ni

nref

)
, i = 1, . . . ,M, (7c)

and µex
i is the exclusion effect potential of the i-th species [6]

µex
i =−Vth

[
ln
(

1−
4π
3

M∑
k=1

nk R3
k

)

+ 4π
Ri
(∑M

k=1 nk R2
k

)
+ R2

i

(∑M
k=1 nk Rk

)
+

1
3 R3

i

(∑M
k=1 nk

)
1− (4π/3)

∑M
k=1 nk R3

k

+
16π2

3
R3

i

(∑M
k=1 nk Rk

)(∑M
k=1 nk R2

k

)
+

3
2 R2

i

(∑M
k=1 nk R2

k

)2(
1− (4π/3)

∑M
k=1 nk R3

k

)2

+
64π3

9
R3

i

(∑M
k=1 nk R2

k

)3(
1− (4π/3)

∑M
k=1 nk R3

k

)3

]
, i = 1, . . . ,M, (7d)

nref and Ri being positive constants [cm−3
] representing reference concentration

and radius of the i-th ion species, respectively. Relation (6) is indeed a general
view of the volume force density from which simpler expressions of F i can be
derived. These models constitute a hierarchy characterized by an increasing number
of approximations and a consequent decreasing level of physical complexity.

echs (electrochemical model including hard sphere theory). This model is derived
from (6) by neglecting the contribution of the osmotic gradient. This includes
the Coulomb electric force associated with a charge density, the chemical
gradient, and size exclusion mechanisms. It is mathematically expressed by

F i = qzi ni Eechs
i , i = 1, . . . ,M. (8)
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ec (electrochemical model). This is derived from (8) neglecting the size exclusion
phenomena. This includes the Coulomb electric force associated with a charge
density and the chemical gradient mechanism. It is mathematically expressed
by

F i = qzi ni Eec
i , i = 1, . . . ,M, (9a)

Eec
i =−∇ϕ

ec
i , i = 1, . . . ,M. (9b)

Stratton (Stratton model). This model is derived from (9a) by neglecting the
contribution induced by the chemical gradient. This was originally proposed
in [51], and it is widely adopted in the modeling description of electrokinetic
phenomena [26]. It is mathematically expressed by

F i = qzi ni E, i = 1, . . . ,M. (10)

eck (electrochemical model including osmotic force). This model is derived from
(6) by neglecting the contribution of the size exclusion phenomena. This model
includes the Coulomb electric force associated with a charge density and the
chemical and osmotic gradient mechanisms. It is mathematically expressed by

F i = qzi ni Eec
i − kosm∇ni , i = 1, . . . ,M. (11)

The effect on intrapore AH fluid motion induced by the above force models is
analyzed, in the context of the Na+-K− pump, in Section 6 where the predicted
electrolyte fluid velocity is compared with the volumetric force density F i exerted
by the ions on it.

5. Time advancing, functional iteration, and numerical discretization

In this section we provide a short description of the algorithm that is used to
numerically solve system (1). We refer to [45] for more details on the stability and
convergence analysis of the adopted methods as well as their implementation in the
general-purpose C++ modular numerical code MP-FEMOS (Multi-Physics Finite
Element Modeling Oriented Simulator) that has been developed by some of the
authors [34; 33; 1].

The VE-PNP model mathematically represents a nonlinearly coupled system of
PDEs of incomplete parabolic type because of the fact that at each time level the
electrostatic potential ϕ and the electric field E must be updated as a function of the
ion concentrations and of the fixed permanent charge by solving the elliptic Poisson
equation (1c). In turn, the electric field E contributes to determine ion motion
through the Nernst–Planck relation (1b) and fluid motion through the relation (6)
for the volume force density.
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Figure 7. Flowchart of the computational algorithm to solve the VE-PNP system. The
nonnegative integer k is the temporal discretization counter. The nonnegative integer j is
the Picard iteration counter.

To disentangle the various coupling levels that are present in the VE-PNP system,
we proceed as follows:

(1) We perform a temporal semidiscretization of the problem by resorting to the
backward Euler (BE) method.

(2) We introduce a Picard iteration to successively solve the equation system at
each discrete time level.

(3) We perform a spatial discretization of each differential subproblem obtained
from system decoupling using the Galerkin finite element method (GFEM).

The use of the BE method has the twofold advantage that (a) it is unconditionally
absolute stable, (b) it is monotone.

Property (a) allows us to take relatively large time steps, thus reducing the
computational effort to reach steady-state conditions. Property (b) combined with an
analogous one for the spatial discretization scheme of the Nernst–Planck equations
ensures that the computed ion concentrations are positive for all discrete time levels.

The use of a Picard iteration has the twofold advantage that (c) it is a decoupled
algorithm and (d) a maximum principle is satisfied by the solutions of two of the
boundary value problems (BVPs) obtained from decoupling. Property (c) amounts
to transforming the nonlinearly coupled system (1) into the successive solution
of three sets of linear BVPs of reduced size. Property (d) implies the existence
of an invariant region for the electric potential depending only on the boundary



78 L. SALA, A. G. MAURI, R. SACCO, D. MESSENIO, G. GUIDOBONI AND A. HARRIS

data and on the fixed permanent charge and the positivity of the computed ion
concentrations.

The use of the GFEM has the twofold advantage that (e) it can easily handle
complex geometries and (f) provides an accurate and stable numerical approximation
of the solution of each BVP obtained from system decoupling. Property (e) is
implemented through the partition of the domain of biophysical interest into the
union of tetrahedral elements of variable size. Property (f) is implemented through
the use of piecewise linear finite elements for the Poisson equation, piecewise linear
finite elements with exponential fitting stabilization along of mesh edges for the
Nernst–Planck equations, and the inf-sup stable Taylor–Hood finite element pair
for the Stokes equations.

Figure 7 illustrates the flowchart of the temporal semidiscretization for time
advancing with the BE method and the Picard iteration used to successively solve
the three linear equation subsystems.

6. Comparison of volumetric force models
on an idealized sodium-potassium pump

The aim of this section is to compare the different descriptions introduced in
Section 4 of the volume force density F ion exerted on the intrapore fluid in the
linear momentum balance equation (1f). In particular we investigate the biophysical
reliability of the various models to describe the functionality of an idealized version
of the Na+-K+ pump illustrated in Section 2 in which the simultaneous presence of
Na+, K+, Cl−, and HCO−3 ion species is considered. The analysis criteria are based
on the comparison of simulation results with (i) the electrostatic potential drop
measured across the transepithelial membrane, (ii) the theoretical stoichiometric
ratio 3 : 2, and (iii) the direction of the AH flow from the cell into the basolateral
space. The ideality of the Na+-K+ pump is represented by the geometry adopted
for numerical simulation, consisting of the cylinder with axial length Lch = 5 nm
and radius Rch = 0.4 nm shown in Figure 8 together with its partition into 37075
tetrahedral finite elements. We point out that the above geometrical setting, de-
spite being a simplified approximation of the real structure, has been successfully
employed for biological investigations in [1; 45; 35].

Boundary and initial conditions. Because of the complexity of the boundary con-
ditions (BCs) and initial conditions (ICs) involved in the simulation of the pump, it
is useful to accurately describe them for each equation in (1).

Poisson equation. For all t ∈ IT , the BCs for the Poisson equation (1c)–(1d) are

ϕ = 0 on sideA, (12a)

D · n = 0 on sideB∪0LAT. (12b)
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Figure 8. Computational domain for the simulation of the Na+-K+ pump. The finite
element triangulation consists of 37075 tetrahedra.

Condition (12a) has the scope of introducing a reference value for the calculation
of the electrostatic potential drop across the cellular membrane. Condition (12b)
expresses the biological fact that the aforementioned potential drop is caused solely
by the ion charge distribution within the pore because no external bias is applied.

Nernst–Planck equations. The Nernst–Planck equation system allows us to de-
termine the spatial concentration of the various ion species inside the pore. The
connection between the pore region and the intra- and extracellular sides is made
possible by enforcing nonhomogeneous Neumann boundary conditions that preserve
the correct input/output biophysical pump functionality. The boundary and initial
conditions for each simulated ion species read as follows:

K+: f K+ · n = gK+ on sideA, (13a)

nK+ = K+out on sideB, (13b)

f K+ · n = 0 on 0LAT, (13c)

nK+(x, 0)= K+0 for all x ∈�, (13d)

Na+: nNa+ = Na+in on sideA, (13e)

f Na+ · n = gNa+ on sideB, (13f)

f Na+ · n = 0 on 0LAT, (13g)

nNa+(x, 0)= Na+0 for all x ∈�, (13h)

Cl−: nCl− = Cl−in on sideA, (13i)

nCl− = Cl−out on sideB, (13j)

f Cl− · n = 0 on 0LAT, (13k)

nCl−(x, 0)= Cl−0 for all x ∈�, (13l)

HCO−3 : nHCO−3
= HCO−3,in on sideA, (13m)

nHCO−3
= HCO−3,out on sideB, (13n)

f HCO−3
· n = 0 on 0LAT, (13o)

nHCO−3
(x, 0)= HCO−3,0 for all x ∈�. (13p)
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The values of the boundary data for the cations are specified in Table 12 whereas the
values of the boundary data for the anions are specified in Table 13. The boundary
values for the ions agree with the experimental values of the ion concentrations
measured in the intracellular and extracellular sides of the nonpigmented epithelial
cells [53].

Stokes system. The calculation of AH fluid velocity is made possible by solving
the Stokes system (1e)–(1f). To prescribe a correct biophysical condition of the
intrapore AH fluid we need to mathematically express that (1) the fluid is adherent
to the pore wall, (2) no external pressure drop is applied across the pore, and (3) the
AH fluid is at the rest when the pump is not active. To this purpose, the appropriate
BCs and ICs read

u = 0 on 0LAT, (14a)

σn = 0 on sideA∪ sideB, (14b)

u(x, 0)= 0 for all x ∈�. (14c)

Remark. In this work, we are not explicitly describing the active role of pumps in
exchanging ions across the cell membrane. This would require, for example, includ-
ing in the model the contribution of chemical processes such as ATP consumption.
This contribution is implicitly taken into account in our model by means of the ion
flux densities f that mathematically translate in the boundary conditions the result
of these processes.

Simulation results. To ease the interpretation of the reported results, we point out
that the Z axis coincides with the axial direction of the pore and it is positively
oriented towards the extracellular region. Reported data for the vector-valued
variables (such as electric field, current densities, and velocity) are the Z components
of the vectors because the other two computed components were comparably
negligible. We set ρfixed = 0 [C m−3

], t0 = 0 [s], and Tobs = 50 [ns], a sufficiently
large value to ensure that the simulated system has reached steady-state conditions
at t = Tobs.

Remark. In this test case we set to zero the surface charge density in order to
single out the influence of each force on model predictions.

The values of the dielectric permittivity of the intrapore water fluid ε f , of the
AH fluid shear viscosity µ f , of the AH fluid mass density ρ f , and of the diffusion
coefficients Di of each i-th ion species involved in the computational tests are
reported in Table 1. All the figures in the remainder of the section illustrate
computed results at t = Tobs.
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model parameter value units

ε f 708.32 · 10−10
[F cm−1

]

µ f 10−2
[g cm−1 s−1

]

ρ f 1 [g cm−3
]

DK+ 1.957 · 10−5
[cm2 s−1

]

DNa+ 1.334 · 10−5
[cm2 s−1

]

DCl− 2.033 · 10−5
[cm2 s−1

]

DHCO−3
1.185 · 10−5

[cm2 s−1
]

DCa++ 7.92 · 10−6
[cm2 s−1

]

DH+ 9.315 · 10−5
[cm2 s−1

]

Table 1. Values of model parameters.

Figure 9. Electric variables along the axis of the pore. Left: electrostatic potential. Right:
electric field.

Electric variables. Figure 9 shows the spatial distributions of the electric potential
and of the electric field inside the pore. Since no permanent charge is included in
the present simulation, the electric potential (and therefore also the electric field)
is determined only by the Coulomb interaction among the ions in the pore. This
is the reason why electric field and electric potential distributions are scarcely
affected by the different models of Section 4. Figure 9, right, also shows that the
electric field profile is monotonic inside the pore. This means, on the one hand, that
ions are transported with a constant direction depending on their sign (from the
intracellular to the extracellular sides in the case of cations, from the extracellular to
the intracellular sides in the case of anions) and, on the other hand, that ions cannot
be trapped inside the pore; rather they are helped travel throughout the pore. The
electrostatic potential shown in Figure 9, left, allows us to perform a first significant
model comparison with experimental data reported in Table 2 where the measured
value of the transepithelial membrane potential Vm := ϕ(0)− ϕ(Lch) is reported
for various animals. Results indicate that for all model choices of Section 4, the
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Vm [mV] animal reference

3.80± 0.26 ox [11]
5.53± 0.41 ox [12]
3.83± 0.16 rabbit [12]
−3.7± 0.3 toad [57]
−1.2± 0.1 rabbit [31]
−1.35± 0.08 dog [22]
−2.5± 0.2 monkey [10]

Table 2. Experimental measurements for the transepithelial membrane potential. The
boxed value is the measured data for monkeys and is considered as the reference for
comparison with our model simulations.

simulated potential difference is in very good agreement with the data for monkeys
[10] which can be considered as the animal species most similar to humans.

Remark. Simulations have been conducted using model parameters taken from
human subjects [53]. However, no data are available for transepithelial membrane
potential measured in humans, so results were compared to measurements for
monkeys because of their physiological and structural similarity to humans.

Remark. The significant variability in the experimental measurements of Vm

reported in Table 2 is the result of several factors, possibly depending on the
different biophysical structure of the ciliary epithelium in the various animal species
(for example, the difference in size and/or ion concentrations in the intra- and
extracellular sites), and leads to a different electric equilibrium at steady-state.
However, the order of magnitude of all the measured data is in the range of mV,
which demonstrates the existence of a common mechanistic framework regulating
the formation of the transepithelial membrane potential.

Chemical variables. Figure 10, top, shows the spatial distributions of cations inside
the pore whereas Figure 10, bottom, shows the spatial distributions of anions inside
the pore. Consistently with the simulated electric field and potential distributions,
results indicate that the different models of the volume force density scarcely affect
the ion concentrations indicating that the differences in AH fluid velocity, shown
in the next section, are not strong enough to modify the ion profiles. As a second
comment, we see that the spatial distribution of each ion concentration is not linear
inside the pore because of the presence of the electric field that is responsible for
the drift contribution in the ion flux constitutive relation (1b). The data reported in
Table 3 allow us to perform a second significant model comparison with experimental
data. The data include the computed value of the axial component of the potassium
current density at the extracellular side of the pore Z = Lch and the computed value
of the axial component of the sodium current density at the intracellular side of
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Figure 10. Ion concentration spatial distribution. Top left: K+. Top right: Na+. Bottom
left: Cl−. Bottom right: HCO−3 .

the pore Z = 0 for the various choices for the model of the volume force density
F ion illustrated in Section 4. To allow a quantitative verification of the biophysical
correctness of the predicted exchange of potassium and sodium ions across the pore,
we introduce the parameter

r :=
gK+

gNa+
, (15)

where gK+ denotes the boundary value of the flux density of potassium ions that
enter into the cell and gNa+ denotes the boundary value of the flux density of
sodium ions that flow out of the cell. According to the data of Table 12, we
have r = 2 : 3. The above parameter expresses the biophysical consistency of the
boundary data adopted in the numerical simulation because it coincides with the
theoretically expected stoichiometric ratio of the K+ and Na+ ions exchanged (2 : 3)
by the sodium-potassium pump as represented in the schematic picture of Figure 3.
Because of the continuum approach employed in our model, we are going to check
the correct functionality of the simulated pump by computing the parameter

R :=

∣∣∣∣ JZ ,K+

JZ ,Na+

∣∣∣∣, (16)

where JZ ,K+ is the potassium ion current density at the extracellular side of the pore
and JZ ,Na+ is the sodium ion current density at the intracellular side of the pore.
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model for F ion JZ ,K+ [Acm−2
] JZ ,Na+ [Acm−2

] R

Stratton −0.064 0.098 0.653
ec −0.054 0.44 0.123
echs −0.046 0.74 0.062
eck −0.064 0.085 0.753
echsk −0.056 0.38 0.147

Table 3. Computed values of the axial component of the current density for sodium
and potassium. The value JZ ,K+ is computed at Z = Lch whereas the value JZ ,Na+ is
computed at Z = 0. We set R := |JZ ,K+/JZ ,Na+ |. The boxed values indicate the best
model predictions to be compared with the theoretical expected ratio 2:3.

Remark. The parameter R is the counterpart of the quantity r defined in (15) and
is quite sensitive to the choice of the volumetric force. The aim of our investigation
is to quantify the impact of this choice (if any) on the ion current behavior, as we
would like to capture the physiological function of the pumps/exchangers. The
correct predicted ratio, moreover, does not only ensure the expected physiological
effect, but also confirms the self-consistency of the model, which is not guaranteed
a priori for every volume force density model.

As a first comment, the results of Table 3 show that for each considered model
of F ion the computed potassium current density is negative whereas the computed
sodium current density is positive. This is consistent with the physiological function
of the sodium-potassium pump because sodium ions flow out of the cell and
potassium ions flow into the cell. As a second comment, the computed values
of R indicate that agreement with the theoretical expected ratio 2 : 3 is achieved
only in the case of the Stratton model and of the eck model, whereas the values of
R computed with the other models are not in a feasible range. This allows us to
conclude that the VE-PNP model predicts a correct direction of ion flow for the
sodium-potassium pump in a good quantitative agreement with the stoichiometric
ratio of the pump only if the Stratton or the eck model is adopted to mathematically
represent the volume force density in the linear momentum balance equation for
the aqueous intracellular fluid.

Remark. This outcome is physically significant considering the fact that imposing
on two different boundaries the ratio of the ion currents is no guarantee that such
a ratio will be respected in the interior of the three-dimensional channel domain,
whereas the value R is reached only at steady-state.

AH fluid variables. Figure 11 shows the spatial distributions of the component
of the AH fluid velocity and of the volumetric force density along the Z axis.
Predicted velocities are all negative except in the case of the eck model; similarly,
the computed volumetric force densities are all positive except in the case of the
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Figure 11. AH fluid variables along the axis of the pore. Left: aqueous humor fluid
velocity. Right: volumetric force density.

model for F ion v̄Z [µm s−1
]

Stratton −2.34
ec −529.5
echs −992
eck 16.54
echsk −445.6

Table 4. Computed mean values of the axial component of the intrapore AH fluid velocity.
The boxed value indicates the sole model results that are in agreement with an outflux of
aqueous humor from the cell into the extracellular side.

eck model (in Figure 11, right, we have reported the absolute value of the force
density). Moreover, it is easy to check that the variation of the velocity is one-to-
one correlated with the variation of the volumetric force density because of the
homogeneous initial and boundary conditions that are applied to the Stokes system.

Table 4 reports the values of the AH fluid velocity computed at the center of
the pore for each model considered in Section 4. Results allow us to perform a
third significant model comparison with experimental data: only by describing the
volume force density through the eck model is the VE-PNP formulation able to
predict a positive AH fluid velocity which corresponds to the production of AH
from the cell into the basolateral space. More specifically, if we assume a value
of 2.5 [µl s−1

] for a normal AH flow through the eye pupil [36] and an equivalent
radius of 1 [mm] for the eye pupil of an adult, we see that a physiological value
of vZ is of about 14 [µm s−1

], which agrees well with the value of 16.54 [µm s−1
]

predicted by the eck model. The other results from Table 4 (negative velocities)
indicate that the magnitude of the predicted AH flow is nonphysically large, except
in the case of the Stratton model, thus justifying its wide adoption in the literature.

Conclusions. The study of the interaction between the ion component (Na+-K+

pump) and AH production through a mathematical continuum approach based on
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the VE-PNP model, under the condition of adopting the eck formulation of the
volume force density that constitutes the source term in the fluid momentum balance
equation, shows that simulation results are in agreement with

(1) the experimentally measured value of transepithelial membrane potential,

(2) the physiological stoichiometric rate of 2 : 3 that characterizes the sodium-
potassium pump,

(3) the direction of current densities of sodium (flowing out of the cell) and
potassium (flowing into the cell),

(4) the direction of AH flow (outward the cell), and

(5) the magnitude of AH fluid velocity.

The aforementioned results support the mathematical and biophysical motivation
to adopt the eck model in the remainder of the article where we introduce a more
realistic geometrical description of the ion pore and we include the main ion pumps
and exchangers to describe the electric pressure exerted by the ions on the intrapore
AH fluid.

7. Cellular scale simulation of ion pumps and exchangers in AH production

In this section we use the VE-PNP model to carry out an extensive quantitative
investigation on the active role of the ion exchanges that are identified in [30;
29] as important determinants in AH secretion. To this purpose, we adopt the
VE-PNP formulation in which the volumetric force exerted from ions onto the fluid
is described by the eck model illustrated in Section 4. In addition, we employ in
the numerical simulations a more realistic ion pore geometry than that shown in
Figure 8, obtained by including in the computational domain a small amount of
cell membrane as well as the presence of the antichambers.

Remark. We emphasize that only the Poisson equation (1c) is solved in the large
rectilinear domain (represented in gray color in Figure 12). The dimensions of
this domain are set in such a way that boundary effects have no influence on the
solution computed in the pore domain.

The unified modeling and computational framework is here applied to study the
function of each ion pump and exchanger illustrated in Section 2 with the goal of
examining the output results, such as electrostatic potential, stoichiometric ratios,
and AH velocity, as functions of the input parameters, such as the osmotic coeffi-
cient, the value of the permanent electric charge density, and the nonhomogeneous
Neumann boundary conditions for ion flux densities.

Figure 12 shows the geometrical structure constituting the computational domain.
The parallelepiped containing the cylinder represents the regions in which the
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Figure 12. Computational domain for the simulation of the ion pumps and exchangers
involved in AH production. The two external cylinders represent the pore antichambers
whereas the central cylinder is the pore region. The partition of the pore domain into
about 110391 tetrahedral elements is illustrated, whereas the mesh partition of the region
surrounding the pore is not shown for visual clarity.
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Figure 13. Two-dimensional cross-section of the pore geometry and boundary labels for
the simulation of AH production.

transmembrane pore is divided, namely two external cylinders representing the pore
antichambers and a central cylinder representing the ion pore. The parallelepiped
is composed by the union of two cubes of side equal to 2.5 [nm] and by a central
parallelepiped of length equal to 5 [nm] in such a way that the total length is equal
to 10 [nm]. The portion of the cylindrical structure inside the two external cubes has
a radius of 0.6 [nm]whereas the portion inside the central parallelepiped has a radius
of 0.4 [nm]. The adopted geometrical representation is based on the biophysical
setting analyzed in [9; 8] and aims at reproducing the morphology of a realistic
protein membrane pore, where the two external cylinders play the role of pore
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antichambers and the cylinder at the center plays the role of the pore region in
which the main electrochemical and fluid processes take place. The full domain has
been partitioned in tetrahedra as reported in Figure 12 where the discretization of
the parallelepiped surrounding the cylinder is not shown for sake of visual clarity.
Referring to the notation of Figure 13, in the remainder of the section, the VE-
PNP equations (1a)–(1b) and the Stokes system (1e)–(1h) are solved only inside
the cylinder �INT whereas the Poisson equation (1c)–(1d) is solved in the whole
domain �.

Boundary and initial conditions. In Section 6 we have highlighted the fundamental
role played by the BCs in the simulation of the sodium-potassium pump. Because
here we are treating a wider variety of ion exchangers and we have a more complex
computational domain as well as the presence of a larger number of ion species,
to help the clarity of the discussion we report in Figure 13 a two-dimensional
cross-section of the pore geometry and identify the various regions of the domain
with the corresponding labels for further reference.

Poisson equation. Because of the presence of the interface between the internal
cylinder and the surrounding parallelepiped, we need to treat the jump of the
electric displacement across that interface as well as the possible presence of
electric charge on this interface. Let γ := 0LATsideA

INT
∪0LATsideB

INT
∪0LATINT denote the

two-dimensional surface separating the pore region from the surrounding membrane
region as depicted in Figure 13. For a given vector-valued function τ :�→ R3 we
define the jump of τ across the surface γ as

[[τ ]]γ := (τ |�\�INT |γ − τ |�INT |γ ) · n,

whereas for a given scalar-valued function φ : �→ R we define the jump of φ
across the surface γ as

[[φ]]γ := φ|�\�INT |γ n−φ|�INT |γ n.

We notice that the jump of a vector-valued function is a scalar function whereas the
jump of a scalar-valued function is a vector function. For all t ∈ IT , the BCs for
the Poisson equation (1c)–(1d) are

ϕ = 0 on sideAint, (17a)

D · n = 0 on 0LAT ∪ sideB∪ sideA∪ sideBint, (17b)

[[D]]γ = hγ on γ , (17c)

[[ϕ]]γ = 0 on γ , (17d)

where

hγ =
{
σfixed on 0LATINT,

0 on 0LATsideA
INT
∪0LATsideB

INT
,



A THEORETICAL STUDY OF AQUEOUS HUMOR SECRETION 89

pump/exchanger σfixed [C cm−2
]

sodium-potassium pump −1 · 1010

calcium-sodium exchanger −1.2 · 1012

chloride-bicarbonate exchanger +3.9 · 1011

sodium-proton exchanger −2.65 · 1012

Table 5. Values of the fixed charge density σfixed.

Na+ = Na+in f K+ · n = gK+ on sideAint

K+ = K+out f Na+ · n = gNa+ on sideBint

f Na+ · n = 0 f K+ · n = 0 on γ

K+
0
(x)= K+0 Na+

0
(x)= Na+0 in �INT

Cl− = Cl−in HCO−3 = HCO−3in
on sideAint

Cl− = Cl−out HCO−3 = HCO−3out
on sideBint

f Cl− · n = 0 f HCO−3
· n = 0 on γ

Cl−
0
(x)= Cl−0 HCO−

0

3 (x)= HCO−30
in �INT

Table 6. BCs and ICs for the sodium-potassium pump.

σfixed [C m−2
] being a given distribution of superficial permanent charge density that

mathematically represents the electric charge contained in the amino-acid structure
of the protein surrounding the ion pore. We notice that the interface condition
(17d) expresses the physical fact that the electric potential is a continuous function
across γ , whereas the interface condition (17c) expresses the physical fact that the
normal component of the displacement vector is discontinuous across the surface
separating the pore region and the lipid membrane bilayer because of the presence
of amino-acid fixed charge density σfixed. The value of σfixed needs be determined
in order to reproduce the correct functionality of the several ion pumps/exchangers.
To this purpose, a simulation campaign has to be performed to heuristically tune-up
the values of σfixed (see [45] for the sodium-potassium pump). The results of this
procedure in the present context are reported in Table 5.

Nernst–Planck equations. The several ion pumps/exchangers involved in AH pro-
duction are simulated by considering the contribution of different ions in order
to produce the correct electrostatic potential drop across the cell membrane. The
list of these ions is reported below. In complete analogy with what was done
in Section 6 for the BCs and ICs of the Nernst–Planck equations (1a)–(1b), we
report in Tables 6–9 the BCs and ICs adopted to reproduce the correct biophysical
functionality of each ion pump/exchanger:
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K+ = K+in Na+ = Na+in f Ca++ · n = gCa++ on sideAint

K+ = K+out Ca++ = Ca++out f Na+ · n = gNa+ on sideBint

f Ca++ · n = 0 f Na+ · n = 0 f K+ · n = 0 on γ

K+
0
(x)= K+0 Na+

0
(x)= Na+0 Ca++

0
(x)= Ca++0 in �INT

Cl− = Cl−in HCO−3 = HCO−3in
on sideAint

Cl− = Cl−out HCO−3 = HCO−3out
on sideBint

f Cl− · n = 0 f HCO−3
· n = 0 on γ

Cl−
0
(x)= Cl−0 HCO−

0

3 (x)= HCO−30
in �INT

Table 7. BCs and ICs for the calcium-sodium exchanger.

K+ = K+in Na+ = Na+in on sideAint

K+ = K+out Na+ = Na+out on sideBint

f Na+ · n = 0 f K+ · n = 0 on γ

K+
0
(x)= K+0 Na+

0
(x)= Na+0 in �INT

f Cl− · n = gCl− f HCO−3
· n = gHCO−3

on sideAint

Cl− = Cl−out HCO−3 = HCO−3out
on sideBint

f Cl− · n = 0 f HCO−3
· n = 0 on γ

Cl−
0
(x)= Cl−0 HCO−

0

3 (x)= HCO−30
in �INT

Table 8. BCs and ICs for the chloride-bicarbonate exchanger.

Na+-K+ pump. Na+, K+, Cl−, and HCO−3 are included.

Ca++-Na+ exchanger. Na+, K+, Cl−, HCO−3 , and Ca++ are included.

Cl−-HCO−3 exchanger. Na+, K+, Cl−, and HCO−3 are included.

Na+-H+ exchanger. Na+, K+, Cl−, HCO−3 , and H+ are included.

The values of the boundary data for the ion pumps and exchangers are specified
in Tables 14–17.

Stokes system. We adopt the same BCs and ICs as in Section 6:

u = 0 on γ , (18a)

σn = 0 on sideAint ∪ sideBint, (18b)

u(x, 0)= 0 for all x ∈�INT. (18c)

As already pointed out, to describe the volumetric force on the right-hand side
of the linear momentum balance equation in the Stokes system, we use the eck
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K+ = K+in Na+ = Na+in f H+ · n = gH+ on sideAint

K+ = K+out H+ = H+out f Na+ · n = gNa+ on sideBint

f H+ · n = 0 f Na+ · n = 0 f K+ · n = 0 on γ

K+
0
(x)= K+0 Na+

0
(x)= Na+0 H+

0
(x)= H+0 in �INT

Cl− = Cl−in HCO−3 = HCO−3in
on sideAint

Cl− = Cl−out HCO−3 = HCO−3out
on sideBint

f Cl− · n = 0 f HCO−3
· n = 0 on γ

Cl−
0
(x)= Cl−0 HCO−

0

3 (x)= HCO−30
in �INT

Table 9. BCs and ICs for the sodium-proton exchanger.

Pump/exchanger k [N m]

sodium-potassium pump 4.1 · 10−19

calcium-sodium exchanger 24 · 10−19

chloride-bicarbonate exchanger 4.1 · 10−19

sodium-proton exchanger 4 · 10−19

Table 10. Values of the electrochemical osmotic parameter k for each pump/exchanger
involved in the process of AH production.

model. The value of k is considered a characteristic property of the single pump
and exchanger, and it is reported in Table 10.

Simulation results. Reported data for the vector-valued variables (such as electric
field, current densities, and AH fluid velocity) are the Z component of the vectors
because the other two computed components were comparably negligible. We set
t0 = 0 [s] and Tobs = 50 [ns], a sufficiently large value to ensure that the simulated
system has reached steady-state conditions at t=Tobs: all the figures in the remainder
of the section illustrate computed results at this time. The values of the dielectric
permittivity of the intrapore fluid ε f , of the AH fluid shear viscosity µ f , of the AH
fluid mass density ρ f , and of the diffusion coefficients Di of each i-th ion species
involved in the computational tests are reported in Table 1.

Electric variables. Figure 14, left, shows the transepithelial electrostatic potential
as calculated by the simulations. We note how the electric potential is strongly
influenced by the presence of the fixed surface charge density σfixed in the central
region of the domain (see Table 5), with particular emphasis on the case of the
sodium-proton exchanger. It is remarkable to notice that, as in the case of the
simulation of the sodium-potassium pump illustrated in Section 6, also in this
more complex biophysical setting, for each simulated exchanger, the computed
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Figure 14. Electric variables along the axis of the pore. Left: electrostatic potential. Right:
electric field.

value of the transepithelial membrane potential is in very good agreement with the
experimental data for monkeys reported in Table 2.

Figure 14, right, shows the computed spatial behavior of the axial component EZ

of the electric field for each considered pump/exchanger. Consistently with electro-
static potential, we see that in all simulations EZ is a monotonic function of position
in the central region of the pore. Then, coming closer to the outlet section at Z = Lch,
all the simulated profiles become flat in accordance with the homogeneous Neumann
boundary condition (17b). Specifically, in the case of cation pump/exchanger, the
electric field is decreasing along the central part of the pore whereas in the case of the
chloride-bicarbonate exchanger the electric field is increasing. These two opposite
behaviors are related to the presence of surface charge on 0LATINT of opposite
sign (negative for cation pumps/exchangers, positive for the anion exchanger). In
the case of the sodium-proton exchanger, the electric field profile experiences a
large increase in magnitude moving along the pore axis from the intracellular side
towards the extracellular side because of the elevated negative fixed charge density
distributed on the lateral surface on the pore region (see Table 5).

Chemical variables. The computed profiles of the ion concentrations for each
simulated ion pump and exchanger are reported in Figure 15. Results show the
onset of a concentration gradient for each simulated ion species which appears
not to be spatially constant for all ion species because of the action of the electric
drift force which displaces the ion profile from the linear equilibrium distribution
corresponding to a null electric field. Particularly worth noticing is the occurrence
of significant variations for the concentration of the sodium ion in the simulation of
the sodium-proton exchanger shown in Figure 15, bottom right. These variations
are the result of the attractive electrostatic force exerted on the sodium ions by the
elevated negative fixed charge density distributed on the lateral surface on the pore
region (see Table 5).
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Figure 15. Computed ion concentration along the Z axis. Top left: sodium-potassium
pump. Top right: calcium-sodium exchanger. Bottom left: chloride-bicarbonate exchanger.
Bottom right: sodium-proton exchanger.

Figure 16 shows the spatial distributions of the computed axial component of the
ion current density for each pump and exchanger. For sake of clarity, in these figures
we report only the current density related to the pump/exchanger functionality. We
notice that for each ion, the value of the current density along the Z axis is not
constant because the cross-section varies along the pore axis.

First, the sign of the computed current density for each simulated pump/exchanger
agrees with the theoretically expected direction. As a second comment, the predicted
value of the stoichiometric ratio R reasonably agrees with the corresponding
theoretical value r . Specifically, in the case of the sodium-potassium pump shown
in Figure 16, top left, R= 0.83 whereas r = 2 : 3= 0.67, in the case of the calcium-
sodium exchanger shown in Figure 16, top right, R= 0.43 whereas r = 1 : 3= 0.33,
in the case of the chloride-bicarbonate exchanger shown in Figure 16, bottom left,
we have R=1.23 to be compared with r =1 :1, and in the case of the sodium-proton
exchanger shown in Figure 16, bottom right, the value R= 0.92 agrees fairly well
with the theoretical value r = 1 : 1.

AH fluid variables. Figure 17 shows the spatial distribution of the axial component
of the intrapore AH fluid velocity predicted by the simulation with the VE-PNP
model of each ion pump and exchanger involved in the process of AH production.
Results exhibit a significant difference among the various pumps/exchangers mainly
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Figure 16. Computed ion current density along the Z axis. Top left: sodium-potassium
pump. Top right: calcium-sodium exchanger. Bottom left: chloride-bicarbonate exchanger.
Bottom right: sodium-proton exchanger.

Figure 17. Computed spatial distribution of the axial component of AH fluid velocity for
each pump/exchanger involved in AH production.

due to the presence of the fixed surface charge density σfixed in the central region of
the domain that needed to be included to reproduce the correct pump functionalities.
Specifically, in the case of the cation-based ion pumps/exchangers, model simulation
predicts a positive value of the AH velocity in the whole computational domain
whereas in the case of the chloride-bicarbonate exchanger the computed AH fluid
velocity is strictly positive only in the central region of the domain. In the case of
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Figure 18. Computed three-dimensional spatial distribution of AH fluid velocity in the
case of the calcium-sodium exchanger.

the sodium-proton exchanger, the elevated fixed surface charge density on 0LATINT

gives rise to a change of sign of the axial component of the electric field at about
the center of the domain. This, in turn, gives rise to a change of sign in the volume
force density F ion in the momentum balance equation of the AH fluid, causing an
inversion of the intrapore AH fluid flow at Z = 7.5 [nm] where the direction of
the axial velocity changes sign, from positive to negative. These results seem to
suggest that the main ion pumps/exchangers contributing to AH secretion are those
that actively involve Na+.

Figure 18 shows an example of three-dimensional computed spatial distribution
of the AH fluid velocity in the case of the calcium-sodium exchanger. Results
clearly show that AH flows from the intracellular space towards the extracellular
space.

Further remarks on pump/exchanger functionality. In this section we briefly address
a series of further considerations on the analysis of the simulation of the various
ion pumps and exchangers involved in the process of AH production, in particular,
those related to pump/exchanger functionality. The first consideration concerns
the temporal evolution of calcium in the Ca++-Na+ exchanger. To this purpose,
Figure 19, top left, illustrates the spatial calcium concentration at t = 0 (dashed line)
and that at t = Tobs (solid line). Results show a decrease of the level of calcium in
the intracellular side of the domain.

Remark. This result is interesting from a physiological viewpoint due to the fact
that the intracellular initial concentration of Ca++ is imposed at 3.011 ·1018 cm−3

=

5 mM, which corresponds to a pathological condition of calcium excess within
the cell [2; 14]. Such a decrease is slow because of the relatively low value
DCa++ = 7.92 · 10−6

[cm2 s−1
] of the diffusion coefficient adopted in the numerical

simulation, but nonetheless, it is compatible with a theoretical expectation of a
value of 10−4 mM for healthy intracellular calcium level [2; 14].

The second consideration concerns the time behavior of carbonate (HCO−3 ) in
the chloride-bicarbonate exchanger. To this purpose, Figure 19, top right, illustrates
the spatial bicarbonate concentration at t = 0 (dashed line) and that at t = Tobs
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Figure 19. Computed ion current density along the Z axis at various times. Dashed
line: distribution at t = 0. Solid line: distribution at t = Tobs. Top left: [Ca++] in the
calcium-sodium exchanger. Top right: [HCO−3 ] for the chloride-bicarbonate exchanger.
Bottom: [H+] for the sodium-proton exchanger.

(solid line). Results show a significant decrease of the level of bicarbonate in the
intracellular region. This behavior agrees with the fact that the simulated electric
field profile for the chloride-bicarbonate exchanger is positive in the intracellular
region of the domain (see Figure 14, right) and therefore bicarbonate ions are swept
away from left to right. For further analysis of the importance of the bicarbonate
ion in AH production, we refer to [35].

The third consideration concerns the spatial distribution of the proton (H+) in
the simulation of the sodium-proton exchanger. To this purpose, Figure 19, bottom,
illustrates the spatial proton profile at t = 0 (dashed line) and that at t = Tobs

(solid line). Similarly to the previous case of carbonate, results show a significant
reduction with simulation time of proton concentration in all the domain. However,
unlike the previous case, concentration reduction equally occurs in both intracellular
and extracellular sides whereas proton accumulation occurs in the pore region. This
behavior is due to the direction of the electric field (see Figure 14, right) which
pushes H+ from left to right in the intracellular side (where EZ > 0) and from right
to left in the extracellular side (where EZ < 0).

Summary of the simulation results. In Table 11 we report the main outcomes
of the simulation of ion pumps and exchangers carried out in the context of AH
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Pump/exchanger k [N cm] σfixed [C cm−2
] ϕm [mV] R vZ [µm s−1

]

K+-Na+ 4.1 · 10−19
−1.0 · 1010

−2.67 0.83 (0.67) [4, 5.56]
Cl−-HCO−3 24 · 10−19

+3.9 · 1011
−2.46 1.23 (1) [−100,+6.56]

Na+-H+ 4.0 · 10−19
−2.65 · 1012

−2.49 0.92 (1) [−150, 300]
Ca++-Na+ 3.95 · 10−19

−6 · 1011
−2.39 0.43 (0.33) [2, 28]

Table 11. A summary of the simulation results for ion pumps and exchangers involved in
AH production. Aside the predicted value of R we report in parentheses the theoretically
expected value. The column vZ reports for each row the predicted range of the AH fluid

velocity.

secretion induced at the cellular scale level by the effect of ion pressure exerted
on transmembrane fluid. To summarize, a unified modeling and computational
framework allowed us to successfully simulate the functionality of several ion
pump/exchangers while preserving at the same time the features of each single
pump/exchanger, by a proper selection of the ion flux density BCs, of the osmotic
gradient coefficient, and of the amount of amino-acid charge in the pore protein
folder. These conclusions are significant outcomes of our computational model
because osmotic gradient coefficient and permanent electric surface charge do not
yet have a quantitative comparison with experimental data, though they have been
shown to be essential parts of the biophysical description of the pore and to play a
relevant role in determining AH flow direction.

8. Conclusions, model limitations, and future objectives

A unified modeling and computational framework with electrochemical osmotic
correction and with a realistic geometry to represent the computational domain has
been proposed to investigate the main functional principles of the sodium-potassium
pump and the calcium-sodium, chloride-bicarbonate, and sodium-proton exchangers
that are involved in the production of aqueous humor in the ciliary body of the eye.

The theoretical model has been demonstrated to correctly reproduce, for each
simulated ion pump and exchanger, existing experimental data of transepithelial
membrane potential in animal models. The model has also allowed, for the first
time to the best of our knowledge in the study of AH production, the quantitative
analysis of novel biophysical mechanisms such as the physiological stoichiometric
rate, the direction of AH flow, and the magnitude of AH fluid velocity. Thus, the
present study motivates the further development of this modeling approach to (i)
simulate the simultaneous presence and action of the several ion pump/exchangers
considered in this work, with the aim of quantitatively estimating their reciprocal
influence, (ii) include the presence of other molecules actively transported through
the cell membrane, including ascorbic acid, which is secreted by a transporter
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(sodium-dependent vitamin C transporter 2 (SVCT2)) [55], and (iii) the simulation
of the effect of administration of a drug in the regulation of AH secretion.

It is expected that such theoretical advancement of the frontier of knowledge in
this branch of human sciences may significantly help design new molecules for drug
synthesis and, as a consequence, considerably reduce time and costs for clinical
availability of new pharmacological therapies.

It is important to emphasize, though, that a number of biophysical limitations still
affect the proposed mathematical model of aqueous humor dynamics. Among them,
we mention that our model does not account for (i) autonomic system pathways,
specifically the sympathetic and parasympathetic pathways [54], (ii) variations
due to the circadian rhythm [50], which would require a higher-order temporal
discretization in order to account for the temporal transients, or (iii) the role of
aquaporins in the exchange of fluid across the cell membrane [46]. A research
effort to address these limitations is currently in progress.
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Data tables

K+0 gK+ K+out

2.41 · 1018
[cm−3

] +4 · 1017
[cm−2s−1

] 2.41 · 1018
[cm−3

]

Na+0 Na+in gNa+

8.19 · 1019
[cm−3

] 7.82 · 1019
[cm−3

] +6 · 1017
[cm−2s−1

]

Table 12. Boundary and initial data for the cations in Section 6.

Cl−0 Cl−in Cl−out

7.17 · 1019
[cm−3

] 6.44 · 1019
[cm−3

] 7.89 · 1019
[cm−3

]

HCO−3,0 HCO−3,in HCO−3,out
1.51 · 1019

[cm−3
] 1.81 · 1019

[cm−3
] 1.2 · 1019

[cm−3
]

Table 13. Boundary and initial data for the anions in Section 6.
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K+0 [cm−3
] gK+ [cm−2s−1

] K+out [cm−3
]

2.41 · 1018
+4 · 1019 2.41 · 1018

Na+0 [cm−3
] Na+in [cm−3

] gNa+ [cm−2s−1
]

8.19 · 1019 7.82 · 1019
+6 · 1019

Cl−0 [cm−3
] Cl−in [cm−3

] Cl−out [cm−3
]

7.17 · 1019 6.44 · 1019 7.89 · 1019

HCO−3 0 [cm−3
] HCO−3 in [cm−3

] HCO−3 out [cm−3
]

1.51 · 1019 1.81 · 1019 1.20 · 1019

Table 14. Data for the sodium-potassium pump in Section 7.

K+0 [cm−3
] K+in [cm−3

] K+out [cm−3
]

2.41 · 1018 1.90 · 1018 2.41 · 1018

Na+0 [cm−3
] Na+in [cm−3

] gNa+ [cm−2s−1
]

8.19 · 1019 7.82 · 1019
−6 · 1019

Ca++0 [cm−3
] gCa++ [cm−2s−1

] Ca++out [cm−3
]

3.011 · 1018
−2 · 1019 6.022 · 1017

Cl−0 [cm−3
] Cl−in [cm−3

] Cl−out [cm−3
]

7.17 · 1019 6.44 · 1019 7.89 · 1019

HCO−3 0 [cm−3
] HCO−3 in [cm−3

] HCO−3 out [cm−3
]

1.51 · 1019 1.81 · 1019 1.2 · 1019

Table 15. Data for the calcium-sodium exchanger in Section 7.

K+0 [cm−3
] K+in [cm−3

] K+out [cm−3
]

2.41 · 1018 1.90 · 1018 2.41 · 1018

Na+0 [cm−3
] Na+in [cm−3

] Na+out [cm−3
]

8.19 · 1019 7.82 · 1019 8.55 · 1019

Cl−0 [cm−3
] gCl− [cm−2s−1

] Cl−out [cm−3
]

7.17 · 1019
+8 · 1019 7.89 · 1019

HCO−3 0 [cm−3
] gHCO−3

[cm−2s−1
] HCO−3 out [cm−3

]

1.81 · 1019
−8 · 1019 1.20 · 1019

Table 16. Data for the chloride-bicarbonate exchanger in Section 7.
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K+0 [cm−3
] K+in [cm−3

] K+out [cm−3
]

2.41 · 1018 1.90 · 1018 2.41 · 1018

Na+0 [cm−3
] Na+in [cm−3

] gNa+ [cm−2s−1
]

8.19 · 1019 7.82 · 1019
−1.0 · 1020

H+0 [cm−3
] gH+ [cm−2s−1

] H+out [cm−3
]

1.81 · 1019
−1.0 · 1020 1.20 · 1019

Cl−0 [cm−3
] Cl−in [cm−3

] Cl−out [cm−3
]

7.17 · 1019 6.44 · 1019 7.89 · 1019

HCO−3 0 [cm−3
] HCO−3 in [cm−3

] HCO−3 out [cm−3
]

1.81 · 1019 1.81 · 1019 1.20 · 1019

Table 17. Data for the sodium-proton exchanger in Section 7.
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AN ADAPTIVE LOCAL DISCRETE CONVOLUTION METHOD
FOR THE NUMERICAL SOLUTION

OF MAXWELL’S EQUATIONS

BORIS LO AND PHILLIP COLELLA

We present a numerical method for solving the free-space Maxwell’s equations
in three dimensions using compact convolution kernels on a rectangular grid. We
first rewrite Maxwell’s equations as a system of wave equations with auxiliary
variables and discretize its solution from the method of spherical means. The
algorithm has been extended to be used on a locally refined nested hierarchy of
rectangular grids.

1. Introduction

We want to solve the free-space three-dimensional Maxwell’s equations

∂E
∂t
= c∇ × B− 4π J, (1)

∂B
∂t
=−c∇ × E, (2)

∇ · E = 4πρ, (3)

∇ · B = 0. (4)

In our previous work [7], we considered Maxwell’s equations in Fourier space,
derived a real-space propagator for the system, and discretized the exact solution
from Duhamel’s formula. This propagator includes Helmholtz decomposition
operators. The Helmholtz decomposition operators require global Poisson solves at
every time step, which offsets the computational advantages of the local convolution
kernel parts of the propagator.

In the present work, we get around this difficulty by applying a similar technique
to an auxiliary system of equations instead of directly to Maxwell’s equations.
This auxiliary system is a system of wave equations for E, B combined with
constraints which, if satisfied initially, are satisfied for all time, such that the
solutions of the auxiliary system are solutions to Maxwell’s equations. We then
apply Kirchhoff’s formula to this system and discretize the resulting convolution
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equations. The convolution kernels from this propagator are the same as the local
kernels for the transverse Maxwell’s equations’ propagator in [7], and thus, the same
discretization techniques and domain decomposition can be applied. The locality of
the convolution kernels allows us to naturally incorporate adaptive mesh refinement
(AMR), where the domain is divided up into a nested hierarchy of rectangular grids
at each refinement level.

In Section 2 we introduce the auxiliary system and show the analytic solution for
Maxwell’s equations in terms of a propagator with specified charges and currents.
In Section 3, we describe the discretization process briefly, and discuss in detail
the local discrete convolution method (LDCM) Maxwell solver for a single level
and its extension to multiple levels. In Section 4 we present a number of numerical
tests that show an implementation of our algorithm. Finally, in Section 5 we make
some concluding remarks.

2. Problem statement and derivation of propagators

2.1. Maxwell’s equations. Introducing 8 ≡ ∇ × B and 9 ≡ ∇ × E, we rewrite
Maxwell’s equations, with ρ, J specified, as the auxiliary system of wave equations

∂E
∂t
= c8− 4π J, (5)

∂8

∂t
= c∇2 E− 4πc∇ρ, (6)

∂B
∂t
=−c9, (7)

∂9

∂t
=−c∇2 B− 4π∇ × J . (8)

If the initial conditions satisfy

9 =∇ × E, (9)

8=∇ × B, (10)

∇ · E = 4πρ, (11)

∇ · B = 0, (12)

then the auxiliary system is equivalent to the original Maxwell system. To show
this, consider the four error quantities associated with the initial value constraints
at t = 0:

KB =8−∇ × B, (13)

KE =9 −∇ × E, (14)

DB =∇ · B, (15)

DE =∇ · E− 4πρ. (16)
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Using the auxiliary system (5)–(8), the four evolution equations associated with
these quantities are given by

∂KB

∂t
= c∇ × KE + c∇DE , (17)

∂KE

∂t
=−c∇ × KB − c∇DB, (18)

∂DB

∂t
=−c∇ · KE , (19)

∂DE

∂t
= c∇ · KB . (20)

It is clear that if KB, KE , DB, DE vanish at t = 0, then they remain zero for all
time after. In particular, the symbol of the linear operator associated with these
eight evolution equations has the eigenvalues ±ic|k| each with a multiplicity of
four. Since errors propagate away with the same wave speed, any error will not
accumulate at a fixed location and be a potential source of numerical instability.
The initial value problem (5)–(8) is well posed even if the initial-value constraints
(13)–(16) are not satisfied. The constraints are required only so that the solution
is equivalent to the solution to Maxwell’s equations. Since the two systems are
equivalent, the solutions for E, B obtained from the auxiliary system will also be
the solution to the original Maxwell system.

The solutions to (5)–(8) are given by Kirchhoff’s formula using the method of
spherical means [13, p. 231]. Defining the kernels G1t and H1t as

G1t(z)≡
δ(|z| − c1t)

4πc1t
, (21)

H1t(z)≡
1
c
∂

∂s

(
δ(|z| − cs)

4πcs

)∣∣∣∣
s=1t

, (22)

G1t is a spherical delta distribution with radius c1t . The action of the propagator
on an arbitrary state vector h(x)≡ [ f (x), g(x)]T with f , g ∈ R3 is given by

P1t
[h] =

[
H1t
∗ f +G1t

∗ g
G1t
∗∇

2 f + H1t
∗ g

]
, (23)

where the scalar convolution kernel with vector quantity is defined as convolution
with each component and convolutions are defined spatially as

(K ∗ f )(x)≡
∫

R3
K ( y) f (x− y) d y. (24)

In particular, the solution to (5)–(6) is then given by(
E(x, t+1t)
8(x, t+1t)

)
= P1t

[(
E(x, t)
8(x, t)

)]
−4π

∫ t+1t

t
Pt+1t−s

[(
J(x, s)

c∇ρ(x, s)

)]
ds. (25)
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The propagator for (7)–(8) is the same as that for (5)–(6), with the substitution
1t→−1t . Thus, the solution is given by(

B(x, t +1t)
9(x, t +1t)

)
= P−1t

[(
B(x, t)
9(x, t)

)]
− 4π

∫ t+1t

t
P−(t+1t−s)

[(
0

∇ × J(x, s)

)]
ds. (26)

It can be seen from the Fourier transforms of the convolution kernels that

G−1t
∗ f =−G1t

∗ f, (27)

H−1t
∗ f = H1t

∗ f. (28)
In addition

H1t
∗ f =

1
ct

G1t
∗ f −

3∑
i=1

G1t
i ∗

∂ f
∂zi

, (29)

G1t
i (z)=

ziδ(|z| − c1t)
4πc1t

. (30)

With these, we have fully specified the solutions, (25) and (26), in terms of con-
volution with weighted spherical delta distributions. We note that it can be shown
directly that 9(x, t+1t)=∇×E(x, t+1t) and 8(x, t+1t)=∇×B(x, t+1t)
given the constraints are satisfied at t . When ρ, J are not specified but functions of
field variables, instead of using Kirchhoff’s formula and a quadrature scheme one
can use Lawson’s method [6] for time integration.

3. Discretization approach

3.1. Single-level algorithm. We consider a rectangular domain discretized with a
Cartesian grid with grid spacing h with open boundary conditions. The convolutions
in (25)–(26) are approximated with discrete convolutions on the grid. This requires a
discretized representation of the convolution kernels, G1t,h

≈ G1t(z) and H1t,h
≈

H1t(z), on the grid. H1t,h is obtained by (29), so that the problem reduces to only
creating discrete representations of (weighted) spherical delta distributions. We
refer the reader to [7] for a detailed treatment of the discretization of the convolution
kernels. The resulting discrete convolution kernels have compact support just like
their continuous counterparts. Thus, the discrete convolutions can be computed
exactly using Hockney’s method [5].

The overall time-stepping algorithm is given in Algorithm 1. This defines the
discrete evolution for E, B, since 8,9 are computed at the beginning of every
time step. The source term integrals are discretized using a closed Newton–Cotes
quadrature scheme with step size 1s = 1t/(M − 1) where M is the number of
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Initialize Newton–Cotes quadrature weights {wm}
M
m=0

/* Create the convolution kernels with quadrature step size 1s and
spacing h */

Compute G1s,h , and H1s,h

/* Begin time-stepping loop */
for n = 1, 2, . . . do

/* Initialize the fields for this time step */
/* Let U (n),h

≈U (n1t, x) */
E(n),h

← E(n−1),h , B(n),h
← B(n−1),h , 8(n),h

←∇× E(n),h , 9(n),h
←∇× B(n),h

/* Begin quadrature loop */
for m = 1, 2, . . . ,M do

/* Add in source terms evaluated at t = (n− 1)1t + (m− 1)1s */
E(n),h

← E(n),h
−wm4π Jh

8(n),h
←8(n),h

−wm4πc∇ρh

9(n),h
←9(n),h

−wm4π∇ × Jh

/* Apply propagator to the fields except final quadrature
point */

if m < M then[
E(n),h

8(n),h

]
←

[
H1s,h

∗ E(n),h
+G1s,h

∗8(n),h

(G1s,h
∗∇

2) ∗ E(n),h
+ H1s,h

∗8(n),h

]
[

B(n),h

9(n),h

]
←

[
H1s,h

∗ B(n),h
−G1s,h

∗9(n),h

−(G1s,h
∗∇

2) ∗ B(n),h
+ H1s,h

∗9(n),h

]
end if

end for
/* Enforcing constraints */
E(n),h

← E(n),h
+ η(LE(n),h

− 4π∇ρh)

B(n),h
← B(n),h

+ ηLB(n),h

end for

Algorithm 1. Single-level LDCM for Maxwell’s equations.

quadrature points. We choose a fixed step size quadrature because Pt1[Pt2[U]] =
Pt1+t2[U], and therefore, we only need to create one propagator with step size 1s
during initial setup.

Even though the divergence constraints are preserved by the continuous time
evolution, deviations from (11)–(12) may be generated by discretization error. To
help remedy this, we apply local filters [8] of the form

E := E+ η(LE− 4π∇ρ), (31)

B := B+ ηLB, (32)

Li j = ∂xi ∂x j , (33)
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Figure 1. log10(|∇ ·E−4πρ|/maxx 4πρ) at z= 0.5 for the stopped translating spherical
charge distribution problem at t = 200

2048 for N = 129 showing that there are no reflected
waves at the refinement boundaries.

where η ∼ O(h2) is a constant and L is a matrix-valued operator with the diagonal
terms discretized with centered-difference approximations to the second derivative
while the off-diagonal terms are products of centered-difference approximations to
the first derivatives. This filtering step corresponds to applying an explicit diffusion
step to the error in the longitudinal fields. Note that we do not have to do this for
the curl constraints (9)–(10), since 8,9 are reinitialized at the beginning of each
time step.

3.2. Domain decomposition. Since the discretized version of the propagator in-
volves only local operators, we can use standard domain decomposition to parallelize
this algorithm. Consider a single-level domain, �h , partitioned into rectangular
patches. For each patch,

(1) at the beginning of each quadrature step, copy field values in ghost region
from neighboring processors, and

(2) apply propagator to update local field values, invalidating values in ghost
region.

The minimum width of the ghost region is determined by the size of the quadrature,
1s, and the order of the method because the size of the support of the spherical
delta distributions is dependent on how far in time the fields are to be advanced.

For a point, xk , near the boundary, when applying the discrete convolutions we
replace the field values outside the computational domain with the current field value
at xk . This approximation leads to waves reflecting back into the computational
domain. We could employ standard techniques for simulating infinite domain
such as perfectly matched layer (PML) [2]. However, we wanted to focus on the
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�1 ∪�1,g

�0

Figure 2. Example schematic of a two-level nested domain with factor of 2 refinement.
The unshaded region is �1 and the shaded region is the ghost region �1,g .

propagator method and not the boundary conditions. Therefore, in this work, we
mitigate this reflection error with mesh refinement, by placing the boundary of the
computational domain far away from the sources. This is possible because our
method does not generate significant internal reflection at refinement boundaries as
shown in Figure 1. The amplitude of the waves reaching the domain boundary will
thus be weaker and the reflected error waves will also be smaller.

3.3. Multilevel algorithm. Consider now a hierarchy of nested rectangular grids,
� j , j = 0, . . . , J − 1, where the grid spacing for � j is h/r j for some refinement
factor, r ∈ Z+, with � j ∪� j+1 =� j+1, j = 0, . . . , J − 2. We introduce sampling
and interpolation operators, S and I, respectively, to communicate field values with
the next immediate lower and upper levels. Similar to the ghost regions for each
patch in parallelizing the single-level algorithm, we define a ghost region for each
level, � j,g, where the width of the ghost region is determined by how far in time
the fields are to be advanced. At the beginning of each quadrature step, except on
the first level, for all nodes in � j,g we interpolate E, B from level j − 1. After
interpolating, except on the finest level, we replace E, B at level j with field values
from level j + 1 on the nodes that are in � j ∩� j+1. A sample schematic of two
levels with r = 2 is shown in Figure 2. After interpolating and sampling, each level
is evolved independently with the propagator.

Let f (n)j denote discretized f on level j and at time tn = n1t ; the multilevel
algorithm is outlined in Algorithm 2. Since (5)–(8) is a system of linear differential
equations, we can use linear superposition to generate the overall solution to the
problem in this multilevel setup; the solution is given by a composite where it takes
the finest level values for any subdomain. For example, in the two-level case, let
U = (E, B,9,8)T ; then the solution is given by

U (n)
=

{
U (n)

1 on �1,

U (n)
0 on �0 \�1.

(34)
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Initialize Newton–Cotes quadrature weights {wm}
M
m=0

for all levels � j , j = 0, . . . , J − 1 do
Initialize U (0)

j
Compute G1s,h/r j

, and H1s,h/r j

end for
/* Begin time-stepping loop */
for all n = 1, 2, . . . do

for all levels � j , j = 0, . . . , J − 1 do
/* Initialize the fields for this time step */
U (n)

j ← U (n−1)
j

for quadrature step s do
/* Apply sampling operator except for level 0 */
U (n)

j−1← S[U (n)
j ] on � j

/* Apply interpolation operator except for level J − 1 */
U (n)

j+1← I[U (n)
j ] on � j+1,g

Apply single-level operations (add in source term and apply propagator)
end for

end for
Sample and interpolate E, B so that L can be applied on the refinement levels
Enforce the constraints independently for each level

end for

Algorithm 2. Multilevel LDCM for Maxwell’s equations.

Since we interpolate once every quadrature step, the width of �i,g for level i has
the same width as the ghost region required for domain decomposition.

Interpolation. We use high-order B-splines (see the Appendix) to interpolate the
fields between levels similar to the ones used to regularize the delta distributions
in the propagator. However, the choice of interpolant is more restrictive than
the one used to regularize the delta distribution. The convergence of spherical
quadrature when regularizing the delta distribution depends on the smoothness of
the integrand [1]. However, we are interested in the regularized delta distribution
as a discrete convolution kernel with some discretized function f . Numerically, the
spherical quadrature and discrete convolution commute, and therefore, we relied on
the smoothness of f for the convergence of the spherical quadrature. This allows
us to use a C0 high-order B-spline as a regularizer with the advantage that it has
minimal support.

In this method, f is a field component or a component of the source terms. Since
the field components must be sufficiently smooth for the spherical quadrature and the
accuracy of the high-order finite difference operators applied to the field components
also depends on smoothness, these translate into a smoothness requirement for the
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for levels � j , j = 1, . . . , J − 1 do
if regrid do

/* Sample down starting from topmost level */
for k = J − 1, . . . , j do

U (n)
k−1← S[U (n)

k ] on �k ∩� j,discard

/* Discard part of domain that has been sampled from */
�k←�k \ (�k ∩� j,discard)

end for
� j ←� j ∪� j,new

/* Interpolate from level j − 1 */
U (n)

j ← I[U (n)
j−1] on � j,new

Enforce the constraints
end if

end for

Algorithm 3. Regridding algorithm.

interpolants. For a q-th-order method, we would need the error from the spherical
quadrature to be at least O(hq), which requires f ∈ Cq . Therefore, the interpolant
must also be at least q-th-order accurate and Cq .

Regridding. For an adaptive version of this method, instead of a fixed hierarchy of
rectangular grids, we regrid at the beginning of any time step as needed. Suppose
we wish to regrid level j , j > 0; let � j = � j,discard ∪� j,keep before regridding
and � j =� j,keep ∪� j,new after regridding. First sample down on � j,discard; then
interpolate on � j,new using the same sampling and interpolating operators. The
regridding algorithm is outlined in Algorithm 3.

4. Numerical results

We implemented a fourth-order version of our Maxwell solver with c = 1; the
one-step error for the solver is O(hq), but after some number of time steps the total
error will be O(hq−1) for a method that has a one-step error of O(hq) and1t =O(h).
We used sixth-order centered differences for the spatial derivatives, the fifth-order
3
8 Simpson’s rule for the source integration, W6,0 for the discrete delta distribution,
and W6,6 for the interpolation operator. The discrete convolutions are performed
via Hockney’s method extending the domain equal to the support of the discrete
convolution kernels and using the FFTW library [4]. The domain at the coarsest
level is a unit cube and each level is divided into 333 node patches with factor of 4
refinement; every level has the same number of nodes, N . The filter parameter at
level j is η j =

45
544 h2

j . For each test, 1t is the same across refinement levels.
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4.1. Translating spherical charge distribution. For the first numerical test, we
used a C6 spherical-support charge distribution with a spatially constant v(t).

ρ(x, t)=
{

a(r(t)− r(t)2)6, r < 1,
0, r ≥ 1,

r =
1
R0
‖x− x0‖, (35)

J(x, t)= v(t)ρ(x, t), (36)

v(t)= νdπ 35
16 sin7(2πνt)v̂. (37)

The electrostatic solution is given by

E(x)= 4πR0ar̂
{1

9r7
−

3
5r8
+

15
11r9
−

5
3r10
+

15
13r11
−

3
7r12
+

1
15r13, r < 1

1
45045r−2, r ≥ 1,

(38)

B(x)= 0. (39)

Here r̂ is with respect to x0, and we use this as the initial condition for this
test problem. We perform this test on fixed grids with two refinement levels,
�1 =

[3
8 ,

5
8

]3 and �2 =
[15

32 ,
17
32

]3, with parameters a = 104, d = 1
256 , ν = 1024

80 ,
R0 =

1
72 , x0 =

( 127
256 ,

127
256 ,

127
256

)
, v̂ =

(
cos

√
3

3 cos
√

2
3 , sin

√
3

3 cos
√

2
3 , sin

√
2

3

)
, and

N = (65, 129, 257) with 1t =
( 1

1024 ,
1

2048 ,
1

4096

)
, respectively; this corresponds to

CFL= 1 at the finest level, out to tfinal =
200
1024 . Figure 3 shows the Ex Richardson

convergence rate estimate and the associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇ · E − 4πρ on the three grids
in �2 as a function of time step, and as expected our solution shows fourth-order
convergence.

Electrostatic test. We performed another test with same discretization and parame-
ters but stopped the charge distribution after t = 40

1024 and then ran out to tfinal=
100

1024

Figure 3. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
translating spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0694795), and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates.
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Figure 4. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
stopped spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0694795) and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates. The vertical line
indicates the time at which the charge distribution stops moving.

to show that the solver recovers the electrostatic solution. Figure 4 shows the Ex

Richardson convergence rate estimate and associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇·E−4πρ on the three grids in�2 as
a function of time step, and as expected our solution shows fourth-order convergence.

Regridding test. We tested our regridding algorithm with the translating charge
distribution with v = νdπ sin(2νt)x̂, a = 1

160 , d = 1
64 , x0 =

(31
64 ,

1
2 ,

1
2

)
, ν = 1024

80 ,
tfinal =

800
1024 , and other parameters being the same. We kept �1 the same and fixed,

but regridded �2 starts with �2,a and changes between �2,a and �2,b whenever
the x coordinate of the center of the charge distribution crosses 63

128 , where �2,a is
the rectangular prism defined by the corner points

( 29
64 ,

17
32 ,

17
32

)
and

( 33
64 ,

17
32 ,

17
32

)
, and

�2,b =
[ 15

32 ,
17
32

]3; effectively �2 oscillates in the x direction with amplitude 1
64 in

the direction of the charge motion. Figure 5 shows Ex and the regridding domains
for N = 129. Figure 6 shows the Ex Richardson convergence rate estimate and
the associated `∞ error as well as the absolute convergence rate and associated `∞
errors for ∇ · E− 4πρ on the three grids in �2 as a function of time step and our
solution shows fifth-order convergence.

4.2. Divergence-free current source. We’ve also tested with a divergence-free
current source of the form

Jx(x, y, z, t)=−100 y−y0
r

sin πr
2a

cos10 πr
2a

cos11 π(z−z0)

d
sin(2πνt), (40)

Jy(x, y, z, t)= 100 x−x0
r

sin πr
2a

cos10 πr
2a

cos11 π(z−z0)

d
sin(2πνt), (41)

Jz(x, y, z, t)= 0, (42)



116 BORIS LO AND PHILLIP COLELLA

Figure 5. Ex minus the instantaneous electrostatic solution, at z = 1
2 , for the spherical

charge distribution problem with regridding for N = 129. Top left: t = 256
2048 , charge

distribution moving to the right, has almost reached its rightmost position, �2 = �2,b.
Top right: t = 480

2048 , charge distribution is at its leftmost position, �2 =�2,a . Bottom left:
t = 864

2048 , charge distribution moving to the left, �2 =�2,b. Bottom right: t = 1600
2048 , final

time step, �2 =�2,a .

where r =
√
(x − x0)2+ (y− y0)2 with parameters a = 3

160 , d = 13
320 , x0 = y0 =

z0 = 0.5, and ν = 20, and using the same refinement levels, discretization, and tfinal

as the fixed-grids translating-charge problem. Figure 7 shows the Ex Richardson
convergence rate estimate and the associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇ · E on the three grids in �2 as a
function of time step, and as expected our solution shows fourth-order convergence.
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Figure 6. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
regridding spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0312658), and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates. The vertical lines
are the times at which regridding occurs.

Figure 7. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
divergence-free current problem as a function of time in �2. On the left are the normalized
`∞ errors for Ex and ∇ · E− 4πρ. The errors for Ex are obtained from the difference of
sampled field values from N = 257 with N = 129 and also from sampled N = 129 with
N = 65 test case. The Ex error is normalized by |(4π/ν)maxr,z Jx |≈ |10.2341 sin(2πνt)|
and ∇ · E is normalized by |(4π/νa)maxr,z Jx | ≈ |545.8187 sin(2πνt)|. On the right are
the associated convergence rates.

5. Conclusion

We have presented a new version of our Green’s function numerical method for
Maxwell’s equations. This new formulation results in a completely local propagator
that does not require Helmholtz decomposition. In principle, the method can choose
any CFL but at the cost of larger ghost regions. We have demonstrated a high-order
adaptive version of the solver in some test examples. In the future, we are interested
in incorporating this method in EM PIC using Lawson’s method where the fields and
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particles are evolved together with a Runge–Kutta scheme with an extra propagator
step for the fields.

Appendix: High-order B-splines

For completeness, we give the B-splines used in our implementation for the delta
approximants and interpolants. Detailed discussions on creating high-order B-
splines are given in [7; 3; 12; 11; 10; 9]. Wq,p denotes a q-th-order accurate, C p

B-spline:

W6,0(x)=


−

1
12 |x |

5
+

1
4 |x |

4
+

5
12 |x |

3
−

5
4 |x |

2
−

1
3 |x |+1, |x | ∈ [0, 1],

1
24 |x |

5
−

3
8 |x |

4
+

25
24 |x |

3
−

5
8 |x |

2
−

13
12 |x |+1, |x | ∈ [1, 2],

−
1

120 |x |
5
+

1
8 |x |

4
−

17
24 |x |

3
+

15
8 |x |

2
−

137
60 |x |+1, |x | ∈ [2, 3],

0, |x |> 3,

(43)

W6,6(x)=



−
665

12048 |x |
9
+

665
3012 |x |

8
−

2419
12048 |x |

7
−

2437
12048 |x |

6

+
2723
3012 |x |

4
−

4543
3012 |x |

2
+

19177
21084 , |x | ∈ [0, 1],

133
4016 |x |

9
−

399
1004 |x |

8
+

39659
20080 |x |

7
−

104409
20080 |x |

6
+

23443
3012 |x |

5

−
14175
2008 |x |

4
+

7553
1506 |x |

3
−

32207
10040 |x |

2
+

2933
15060 |x |+

13081
14056 , |x | ∈ [1, 2],

−
133

12048 |x |
9
+

665
3012 |x |

8
−

114139
60240 |x |

7
+

109283
12048 |x |

6
−

79303
3012 |x |

5

+
283423
6024 |x |

4
−

75215
1506 |x |

3
+

170023
6024 |x |

2
−

90923
15060 |x |−

17653
42168 , |x | ∈ [2, 3],

19
12048 |x |

9
−

133
3012 |x |

8
+

225859
421680 |x |

7
−

221003
60240 |x |

6
+

23299
1506 |x |

5

−
30793
753 |x |

4
+

49184
753 |x |

3
−

208208
3765 |x |

2 53632
3765 |x |+

32512
5271 , |x | ∈ [3, 4],

0, |x |> 4.

(44)
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