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ON THE CONVERGENCE
OF SPECTRAL DEFERRED CORRECTION METHODS

MATHEW F. CAUSLEY AND DAVID C. SEAL

In this work we analyze the convergence properties of the spectral deferred
correction (SDC) method originally proposed by Dutt et al. (BIT 40 (2000),
no. 2, 241–266). The framework for this high-order ordinary differential equation
(ODE) solver is typically described as a low-order approximation (such as forward
or backward Euler) lifted to higher-order accuracy by applying the same low-order
method to an error equation and then adding in the resulting defect to correct the
solution. Our focus is not on solving the error equation to increase the order of
accuracy, but on rewriting the solver as an iterative Picard integral equation solver.
In doing so, our chief finding is that it is not the low-order solver that picks up the
order of accuracy with each correction, but it is the underlying quadrature rule of
the right-hand-side function that is solely responsible for picking up additional
orders of accuracy. Our proofs point to a total of three sources of errors that SDC
methods carry: the error at the current time point, the error from the previous
iterate, and the numerical integration error that comes from the total number
of quadrature nodes used for integration. The second of these two sources of
errors is what separates SDC methods from Picard integral equation methods; our
findings indicate that as long as the difference between the current and previous
iterates always gets multiplied by at least a constant multiple of the time step size,
then high-order accuracy can be found even if the underlying ODE “solver” is
inconsistent. From this vantage, we solidify the prospects of extending spectral
deferred correction methods to a larger class of solvers, of which we present some
examples.

1. Introduction

The spectral deferred correction (SDC) method defines a large class of ordinary
differential equation (ODE) solvers that were originally introduced in 2000 by Dutt,
Greengard, and Rokhlin [12]. These types of methods are typically introduced by
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defining an error equation, and then repeatedly applying the same low-order solver
to the error equation and adding the solution back into the current approximation
in order to pick up an order of accuracy. This idea can be traced back to the work
of Zadunaisky in 1976 [40], who sought out high-order solvers in order to reduce
numerical roundoff errors for astronomical applications. Before introducing the
classical SDC methods defined in [12], we stop here to point out some of the recent
work that has been happening over the past two decades including [30; 28; 6; 26;
7; 4; 22]. We refer the interested reader to [32] for a nice list of references for the
first of these last two decades. Here, we provide a sampling of some of the current
topics of interest to the community.

Many variations of the original SDC method are being studied as part of an effort
to expedite the convergence of the solver. The chief goal here is to reduce the total
number of iterations required to obtain the same high-order accuracy of the original
method. These methods include the option of using Krylov deferred correction
methods [20; 21] as well as the multilevel SDC methods [27; 36]. The multilevel
approach starts with a lower-order interpolant and then successively increases the
degree of the interpolant with each future sweep of the method. This has the
primary advantage of decreasing the overall number of function evaluations that
need to be conducted, but introduces additional complications involving the need
to evaluate interpolating polynomials. In the same vein, higher-order embedded
integrators have been explored within the so-called integral deferred correction
(IDC) framework [6; 7], where a moderate order solver (such as second- or fourth-
order Runge–Kutta method) is embedded inside a very high-order SDC solver.
With this framework, each successive correction increases the order by the same
amount as that of the base solver. In addition, parallel in time solvers [9; 31; 5;
13] are being investigated as a mechanism to address the needs of modern high-
performance computing architectures, and adaptive time stepping options have been
more recently investigated in [10]. This work is based upon the nice property that
SDC methods naturally embed a lower-order solver inside a higher-order solver.

In addition to the above mentioned extensions, various semi-implicit formulations
have been, and are currently being, explored. While the original solver was meant
for classical nonlinear ODEs, semi-implicit formulations have been derived as
early as 2003 [30] and are still an ongoing topic of research [29; 4]. The effect of
the choice of correctors including second-order semi-implicit solvers for the error
equation has been researched in [25], and an investigation into the efficiency of semi-
implicit and multi-implicit spectral deferred correction methods for problems with
varying temporal scales has been conducted in [26]. Related high-order operator
splitting methods have been proposed in [15; 3; 8], where the focus is not on an
implicit-explicit splitting, but rather on splitting the right-hand side of the ODE into
smaller systems that can be more readily inverted with each sweep of the solver.
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Very recent work includes applications of the SDC framework to generate expo-
nential integrators of arbitrary orders [2], exploring interesting LU decompositions
of the implicit Butcher tableau on nonequispaced grids [38], further investigation into
high-order operator splitting [11], a comparison of essentially nonoscillatory (ENO)
versus piecewise parabolic methods (PPM) coupled with SDC time integrators [23],
and additional implicit-explicit (IMEX) splittings for fast-wave slow-wave splitting
constructed from within the SDC framework [35].

It is not our aim to conduct a comprehensive review and comparison of all of
these methods; rather it is our goal to present rigorous analysis of the original
method that can be extended to these more complicated solvers. With that in mind,
we now turn to a brief introduction of the spectral deferred correction framework,
and in the process of doing so, we seek to directly compare this method with that
of the Picard integral formulation of a numerical ODE solver.

1A. Picard iteration and the SDC framework. We begin by giving a brief descrip-
tion of classical SDC methods. In doing so, we explain the differences between
SDC and Picard iteration, which defines the cornerstone of the present work.

Classical SDC solvers are designed to solve initial value problems of the form

y′ =
dy
dt
= f (y), t > 0, y(0)= y0, (1)

where y can be taken to be a vector of unknowns. The solution y(t) can be expressed
as an integral through formal integration:

y(t)= y0+

∫ t

0
f (y(s)) ds, t > 0. (2)

In this work, we assume that f is Lipshitz continuous. That is, we assume

| f (z)− f (w)| ≤ L|z−w|, (3)

for some constant L ≥ 0 and all z, w ∈ R. This is sufficient to guarantee existence
and uniqueness for solutions of IVP (1), and produce rigorous numerical error
bounds for SDC methods.

Consider a set of M quadrature points 0≤ ξ1 < · · ·< ξM ≤ 1 that partition the
unit interval into a total of N disjoint subintervals, defined by

N =


M − 1 if both endpoints are used,
M if only one endpoint is used,
M + 1 if neither endpoint is used.

We make this choice because a given quadrature rule may or may not include the
endpoints of the interval, and this convention allows us to study Gaussian quadrature
rules, uniformly spaced quadrature rules, Radau II quadrature rules, and others
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all within the same context. With that in mind, we define the right endpoints ξ R
n ,

for n = 0, 1, . . . N − 1, of each of the N subintervals as

ξ R
n =

{
ξn+1 if the left endpoint is included,
ξn if the left endpoint not included,

and ξ R
0 = 0 and ξ R

N = 1 for the two boundary edge cases. Next, we define quadrature
weights by

wn,m =

∫ ξ R
n

ξ R
n−1

`m(x) dx, n = 1, 2, . . . N , m = 1, 2, . . .M, (4)

where `m(x) is the Lagrange interpolating polynomial of degree at most M − 1
corresponding to the quadrature point ξm :

`m(x)=
1

cm

M∏
k=1, k 6=m

(x − ξk), cm =

M∏
k=1, k 6=m

(ξm − ξk). (5)

Once these weights are obtained, approximate integral solutions, say ηm ≈ y(ξ R
m h)

for h > 0 and m = 0, 1, . . . , N , can be formed via

(fully implicit collocation) ηn=ηn−1+h
M∑

m=1

wn,m f (ηm), n=1, 2, . . . , N , (6)

whereas the exact solution ym := y(ξ R
m h) satisfies the exact integral

yn = yn−1+

∫ tn

tn−1

f (y(t)) dt, tn = ξ R
n h, n = 1, 2, . . . , N . (7)

By convention, η0 := y0 is known to high order (because it comes from the previous
time step), and ηN ≈ y(h) constitutes one “full” time step. Since each substep uses
information from all substeps to construct the right-hand side, the solution is higher
order, but also requires the solution of a nonlinear system of M unknowns (one
for each quadrature point) at each time step. Although this integrator has some
very nice properties (e.g., it can be made to be symplectic and L-stable for suitably
chosen quadrature points), it is not typically used in practice given the additional
storage requirements and the larger matrices that need to be inverted for each time
step. This is particularly relevant when it is used as the base solver for a partial
differential equation, but even these bounds are being explored as a viable option
for PDE solvers such as the discontinuous Galerkin method [33].

In place of the fully implicit collocation method, Picard iteration (with numerical
quadrature) defines a solver by iterating on a current solution η[p]n , p ∈ Z≥0, and
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then creates a better approximation through

(Picard iteration) η[p+1]
n = η

[p+1]
n−1 + h

M∑
m=1

wn,m f
(
η[p]m

)
, n = 1, 2, . . . N . (8)

Note that the current value η[p+1]
0 := η0 ≈ y0 is a known value that is equal to the

exact solution up to high order. While this solver picks up a single order of accuracy
with each correction, it has the unfortunate consequence of having a finite region of
absolute stability.

The explicit spectral deferred correction framework is

(explicit SDC) η[p+1]
n =η

[p+1]
n−1 +hn

[
f
(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)]
+h

M∑
m=1

wn,m f
(
η[p]m

)
, (9)

where hn = (ξ
R
n − ξ

R
n−1)h is the length of the n-th subinterval. This solver also has

a finite region of absolute stability.

Remark. Although traditional SDC methods were originally cast as a method
that corrects a provisional solution by solving an error equation, some modern
descriptions of the same solver identify (9) as the base solver, which has the added
benefit of pointing out a solid link between SDC methods and iterative Picard
integral equation solvers.

In order to construct methods that have more favorable regions of absolute
stability for stiff problems, the implicit SDC framework exacts multiple backward
Euler time steps through each iteration with

(implicit SDC) η[p+1]
n =η

[p+1]
n−1 +hn

[
f
(
η[p+1]

n
)
− f

(
η[p]n

)]
+h

M∑
m=1

wn,m f
(
η[p]m

)
. (10)

Note that this framework allows for implicit and high-order solutions to be con-
structed with greater computational efficiency when compared to the fully implicit
collocation solver defined in (6) because smaller systems need to be inverted in
order to take a single time step.

Remark. It has been noted that the scaling in front of the hn term does not have
impact on the order of accuracy [39]. It is our aim with this work to solidify
that claim with rigorous numerical bounds, which we do for both the explicit and
implicit solvers.

Before doing so, we point out an aside that is in common with all SDC solvers.

Remark. If limp→∞ η
[p]
n = ηn converges, then solutions to (8), (9), and (10) con-

verge to that of the fully implicit collocation method defined in (6).
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While some SDC methods work with a fixed number of iterates in order to
obtain a desired order of accuracy, there are many examples in the literature where
convergence of the SDC iterations to the fully implicit scheme is considered. For
example, the work in [38] is wholly concerned with this convergence, and not
the accuracy of the underlying method for fixed iterations. Moreover, for stiff
problems, it is well understood that using a fixed number of iterations can lead to
order reduction which negates the advantage of using SDC in the first place. In
addition, the multilevel spectral deferred correction (MLSDC) methods also are
typically iterated to a residual tolerance, since one cannot be sure that coarse level
sweeps will provide enough increase in accuracy (or decrease in the residual) [36].

One key advantage of iterating an SDC method to convergence is that when
this is done, the method inherits well known and desirable properties that the fully
implicit collocation method enjoys. For example, Kuntzmann [24] and Butcher [1]
separately point out that if a total of M Gaussian quadrature points are used, then
the fully implicit collocation method will have superconvergence order O(h2M).
(For more details, we refer the interested reader to the excellent tomes of Hairer,
Wanner et al. [16; 17; 18]. For example, see [16, §II.7 ], [17, Theorem 5.2 ], or
[18, Theorem 1.5 ].) In general, the maximum order of accuracy for the underlying
solver with M quadrature points is O(h2M) if they are Gauss–Legendre points,
O(h2M−1) for the RadauIIA points, and O(h2M−2) for Gauss–Lobatto points. (The
local truncation error is one order higher.) Uniform points have O(hM) order of
convergence if M is even, and O(hM+1) if M is odd. The extra pickup in the order
of accuracy is due to symmetry of the quadrature rule. (For example, M = 1 points
reproduces the so-called “midpoint” rule, M = 3 reproduces Simpson’s rule, and
M = 5 yields Boole’s rule, each of which pick up an extra order of accuracy.)

1B. An outline of the present work. Despite the increasing popularity of spectral
deferred correction solvers, very little work has been performed on convergence
results for this large class of methods. The results that are currently in the literature
[15; 6; 7; 19; 37] typically proceed via induction on the current order of the
approximate solution, and they all hinge on solving the error equation, wherein
the same low-order solver is applied and then a defect, or correction, is added back
into the current solution in order to increase its overall order of accuracy. In other
recent work [34], the authors consider SDC methods as fixed-point iterations on a
Neumann series expansion. There, the low-order method is viewed as an efficient
preconditioner (in numerical linear algebra language), and the SDC iterations are
thought of as simplified Newton iterations. Additionally, the work in [38] makes
use of linear algebra techniques in order to optimize coefficients so that the method
converges faster to the collocation solution for stiff problems.

In this work, we do not require the use of the error equation, nor do we work
with any sort of defect such as that defined in [40]; rather we instead focus on the
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Picard integral underpinnings inherent to all SDC methods. Our work solely uses
fundamental numerical analysis tools: error estimates for numerical interpolation
and integration. While these tools do rely on quadrature rules, our proofs are
generic enough to accommodate any set of quadrature points, which are an ongoing
discussion in terms of how to construct base solvers.

In this work, we prove rigorous error bounds for both implicit and explicit
SDC methods, and in doing so, we expect the reader will find that these methods
can be thought of as being built upon classical Picard iteration. Our results are
applicable for general quadrature rules, but unlike the findings found in [37], where
convergence is proven using the error equation, our work relies on the fundamental
mechanics behind why the solver works. That is, we point out that the primary
contributor to the order of accuracy of the solver lies within the integral of the
residual, and not necessarily the application of any base solver to an error equation.

Indeed, our proofs follow in a manner similar to the proof of the Picard–Lindelöf
theorem, but our proofs take into account numerical quadrature errors and do not rely
on exact integration of the right-hand-side function f (y). The primary differences
between our proofs and that of the Picard–Lindelöf theorem are the following:

• Spectral deferred correction methods require the use of numerical quadrature
to approximate the integrals presented in the Picard–Lindelöf theorem. Our
error estimates take into account any errors resulting from quadrature rules.

• Each correction step in the implicit scheme defined in (10) requires a nonlinear
inversion, whereas the Picard–Lindelöf theorem is typically proven using exact
integration.

There are two main results in this work, one for explicit SDC methods and one
for implicit SDC methods. These are both found as corollaries to a single theorem
on semi-implicit SDC. In each case, we produce rigorous error bounds that are
applicable for generic quadrature rules. Furthermore, we find that there are a total of
three sources of error that SDC methods carry: the error from the previous time step,
the error from the previous iterate, and the error from the quadrature rule being used.

The outline of this paper is as follows. In Section 2, we present some necessary
lemmas concerning error estimates for integrals of interpolants as well as some error
estimates for sequences of inequalities that show up in our proofs. In Section 3 we
present a convergence proof for the more general case of a semi-implicit SDC solver,
and then immediately point out two corollaries that prove implicit and explicit SDC
methods converge. In Section 4, we present results for an SDC method that makes
use of a higher-order base solver, the trapezoidal rule. In Section 5 we present some
numerical results, where we compare explicit SDC methods with Picard iterative
methods, we investigate modified implicit SDC methods, and we experiment with
different semi-implicit formulations of SDC methods. Error estimates for all of
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these variants come from direct extensions of the proofs found in this work. Finally,
some conclusions and suggestions for future work are drawn up in Section 6.

2. Preliminaries

We now point out a couple of important tools that we use to show that SDC solvers
converge. Our aim is to focus on a single time step. Without loss of generality, from
here on out we will focus on constructing a solution over the interval [0, h], where h
is the time step size and we will assume that η0 ≈ y0 is a high-order approximation
to the exact solution.

2A. Error estimates for integrals of interpolants. If η= (η1, η2, . . . , ηM) is a set
of discrete values and t ∈ [0, h] is a time interval we are interested in studying, we
define the interpolation operator I to be the projection onto the space of polynomials
of degree at most M − 1 via

I [ f (η)](t) :=
M∑

m=1

f (ηm)lm(t/h), f (η) := ( f (η1), f (η2), . . . , f (ηM)). (11)

Note that this produces the integration identity∫ tn

tn−1

I [ f (η)](t) dt = h
M∑

m=1

wn,m f (ηm) (12)

after integrating (11) over a subinterval [tn−1, tn] := [hξ R
n−1, hξ R

n ], and the weights
are defined as in (4).

Convergence results for both the explicit and the implicit SDC method (as well
as Picard iteration) require the use of the following lemma.

Lemma 2.1. Suppose that f ◦ y ∈ C M([0, h]),
∥∥ d M

dt M ( f ◦ y)
∥∥
∞
≤ F , and f is

Lipschitz continuous with Lipshitz constant L. Then we have the estimate∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− f (y(t)) dt
∣∣∣∣≤ h‖η− y‖Wn L +

F
M !

hM+1, (13)

where the discrete norm is defined by

‖e‖ := max
1≤n≤M

|en|, e= (e1, e2, . . . , eM), (14)

and the constant Wn is defined by

Wn :=

M∑
m=1

∫ ξ R
n

ξ R
n−1

|lm(ξ)| dξ. (15)

For a fixed quadrature rule, this constant is finite and independent of the function.
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Proof. Add and subtract the Lagrange interpolant I [ f ( y)](t) for f ◦ y inside the
left-hand side of (13) and apply the triangle inequality:∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− f (y(t)) dt
∣∣∣∣≤ ∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− I [ f ( y)](t) dt
∣∣∣∣

+

∣∣∣∣∫ tn

tn−1

I [ f ( y)](t)− f (y(t)) dt
∣∣∣∣. (16)

An estimate for the first of these two terms follows by linearity of the interpolation
operator:∣∣∣∣∫ tn

tn−1

I [ f (η)](t)− I [ f ( y)](t) dt
∣∣∣∣= ∣∣∣∣h M∑

m=1

ωn,m( f (ηm)− f (ym))

∣∣∣∣
≤ h

M∑
m=1

|ωn,m || f (ηm)− f (ym)|

≤ hL
M∑

m=1

|ωn,m ||ηm − ym |

≤ hL‖η− y‖
M∑

m=1

|ωn,m |. (17)

The quadrature weights in this estimate are bounded above by

|ωn,m | ≤

∫ ξ R
n

ξ R
n−1

|`m(ξ)| dξ

and then summed over all m to produce the constant Wn .
The second of the two integrals in (16) is a function solely of the smoothness

of f and the choice of the quadrature rule. That is, classical interpolation error
estimates result in a bound on the M-th derivative of f ◦ y through a single point
z(t) ∈ [0, h] that yields

|I [ f ( y)](t)− f (y(t))|=
∣∣∣∣( f ◦ y)(M)(z(t))

M !

M∏
m=1

(t−tm) dt
∣∣∣∣≤ F

M !

M∏
m=1

|t−tm |. (18)

Because |t − tm | ≤ h for each m, the result follows after integration. �

We stop to point out that due to the Runge phenomenon, the coefficient Wn

defined in (15) can become quite large if a large number of quadrature points are
chosen for constructing the polynomial interpolants required for the SDC method.
In Table 1, we demonstrate a few sample values when uniform, Chebyshev, Gauss–
Legendre, Gauss–Radau, and Gauss–Lobatto quadrature nodes are used to construct
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type of quadrature points

M uniform Chebyshev Legendre Gauss–Radau Gauss–Lobatto

2 1.000 1.207 1.366 1.500 1.000
3 1.000 1.244 1.479 1.558 1.000
4 1.056 1.257 1.527 1.578 1.000
5 1.152 1.263 1.551 1.586 1.000
6 1.257 1.266 1.566 1.591 1.000
7 1.362 1.268 1.575 1.594 1.000
8 1.663 1.269 1.581 1.596 1.000
9 2.550 1.270 1.585 1.597 1.000

10 4.028 1.271 1.588 1.598 1.000
11 6.506 1.271 1.590 1.599 1.000
12 10.963 1.271 1.592 1.599 1.000
13 18.340 1.272 1.594 1.600 1.000
14 32.060 1.272 1.595 1.600 1.000
15 54.998 1.272 1.596 1.600 1.000
16 98.531 1.272 1.596 1.600 1.000
17 172.176 1.272 1.597 1.601 1.000
18 313.675 1.272 1.597 1.601 1.000
19 556.491 1.273 1.598 1.601 1.000
20 1026.313 1.273 1.598 1.601 1.000
30 496210.554 1.273 1.600 1.602 1.000
50 208948162475.383 1.273 1.601 1.602 1.000

Table 1. Maximum size of the Lagrange polynomials max1≤n≤M maxξ∈[0,1]|`n(ξ)| for
different quadrature points. The Gauss–Legendre, Gauss–Radau, and Gauss–Lobatto
quadrature rules with M points have degrees of precision 2M + 1, 2M , and 2M − 1,
respectively.

the polynomial interpolants. Uniform quadrature points tend to start performing
quite poorly in the teens; however, even a small amount of points, say five or six,
produces a high-order numerical method compared to other ODE solvers because
in this regime the error constant is reasonable. The selection of quadrature points
that minimizes this portion of the error constant is the Gauss–Lobatto nodes, but
because convergence is found through refinement in h rather than p, any of these
points will produce a method that converges, provided the exact solution has a
suitable degree of regularity.

2B. Error estimates for sequences of inequalities. Finally, we require a second
lemma as well as a simple corollary. Both of these are stated in [14], and their
proofs are elementary.



ON THE CONVERGENCE OF SPECTRAL DEFERRED CORRECTION METHODS 43

Lemma 2.2. If {an}n∈Z≥0 is a sequence that satisfies |an| ≤ A|an−1|+B with A 6= 1,
then

|an| ≤ An
|a0| +

An
− 1

A− 1
B. (19)

Proof. Recursively apply the inequality, and sum the remaining finite geometric
series. �

Corollary 2.3. If A> 1 and {an}n∈Z is a sequence that satisfies |an| ≤ A|an−1|+B,
then

|an| ≤ An
|a0| + n An−1 B (20)

for every n.

Proof. By Lemma 2.2, the sequence satisfies (19). We estimate the (finite) geometric
series by

An
− 1

A− 1
= 1+ A+ · · ·+ An−1

≤ n An−1 (21)

because there are a total of n terms and each Al
≤ An−1 for l = 0, 1, . . . , n− 1. �

With these preliminaries out of the way, we are now ready to state and prove our
main result.

3. Convergence results

In place of separately proving explicit and implicit results for (1), we instead
consider an umbrella class of ODEs, defined through a semi-implicit formulation:

y′ = f (y), f (y)= f I (y)+ fE(y), y(0)= y0, (22)

where f I is to be treated implicitly and fE is to be treated explicitly. We assume
that both f I and fE have Lipshitz constants L I and L E , respectively. In turn, this
implies that f has a Lipshitz constant of L := L I + L E . In the case where f I ≡ 0,
we set L I = 0, and in the case where fE ≡ 0, we set L E = 0.

The classical semi-implicit SDC (SISDC) method for (22) begins with a provi-
sional solution, or initial guess η[0]n ≈ y(ξnh), that is typically defined with

η[0]n = η
[0]
n−1+ hn f I

(
η[0]n

)
+ hn fE

(
η
[0]
n−1

)
, n = 1, 2, . . . , N , (23)

where hn= (ξ
R
n −ξ

R
n−1)h. This yields a first-order implicit-explicit (IMEX) predictor

for the solution based upon a forward-backward Euler method. Our numerical (and
analytical) results indicate the “predictor” step has little bearing on the overall order
of accuracy of the solver. For example, it is possible to hold the solution constant for
the initial iteration and still obtain high-order accuracy, albeit with one additional
iteration.
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The classical SISDC method [30] iterates on the provisional solution through

(SISDC) η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
, (24)

where η[p+1]
0 = η0 is a known quantity. This value is typically taken to be the result

from the previous time step, and we assume that it is known to high-order accuracy.
Our focus is on the local truncation error, to which end we assume that the error at
time zero is nonzero. That is, we assume e0 = η0− y0 6= 0. Once the single step
error is established, a global error can be directly found using textbook techniques.
In the event where f I ≡ 0, we end up with the explicit SDC method defined in (9),
and when fE ≡ 0, we end up the implicit SDC defined in (10).

We repeat that the collocation method defined in (6) requires simultaneously
solving for each ηn and is clearly more expensive than multiple applications of the
backward Euler method found in (24), either on part of or the entire right-hand
side. In the event where f I ≡ 0, then the method should be less expensive to run
for a single time step, but the regions of absolute stability suffer [28; 29]. We
also repeat that, provided η[p] converges as p→∞, then (24) defines a solution
to (6). Proving which initial guesses converge to the fully implicit solver is beyond
the scope of this work. Currently, our aim is to show that each correction step
in the SDC framework picks up at least a single order of accuracy to the order
predetermined by the quadrature rule.

3A. Statement of the main result.
Theorem 3.1. The errors for a single step of the semi-implicit SDC method satisfy∣∣e[p+1]

n

∣∣≤ eNh(2L I+L E )|e0| +C1h
∥∥e[p]

∥∥+C2hM+1, (25)

provided hL I <
1
2 , where N is the number of intervals under consideration, L :=

L I + L E is the Lipschitz constant of f , and

C1 = 2NeNh(2L I+L E )W and C2 = 2NeNh(2L I+L E )
F
M !

are constants that depend only on f , the exact solution y, and the selection of
quadrature points.

In Section 3C we point out two corollaries to this result, one for implicit and one
for explicit SDC, but before proving this theorem, we stop to point out an important
observation that is applicable to any of the aforementioned methods.

Remark. The statement of this theorem highlights that there are a total of three
sources of error that SDC methods admit, which are ordered by appearance in the
right-hand side of (25):
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(1) the error at the current time step e0 = η0− y0,

(2) the error from the previous iterate (or predictor) e[p] = η[p]− y, and

(3) the number of quadrature points M .

The most important takeaway is that because the error from the previous iterate,∥∥e[p]
∥∥, gets multiplied by a factor of h, the error gets improved by one order of

accuracy with each correction. Of course this order reaches a maximum order
based upon the number of the quadrature points chosen, which can be seen in the
third source of error. This can be improved by selecting quadrature points with
superconvergence properties such as the Gaussian or Gauss–Lobatto quadrature
points. Finally, please note that we make no comment about how the “previous”
function values were found. This is intentional because we would like to focus our
attention on the impact of what a single correction does to the solution. Doing so
permits the analysis to apply to parallel implementations of SDC methods where
synchronizations between different correctors (threads) are seldom seen [9; 13].

3B. Proof of the main result.

Proof. We subtract the exact equation (7) from (24) and find that the discrete error
evolution equation is

e[p+1]
n = e[p+1]

n−1 + hn
[

f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+

∫ tn

tn−1

I
[

f
(
η[p]

)]
(t)− f (y(t)) dt. (26)

The last term in this summand can be estimated by appealing to Lemma 2.1 and
observing

|In| :=

∣∣∣∣∫ tn

tn−1

I
[

f
(
η[p]

)]
(t)− f (y(t)) dt

∣∣∣∣≤ h
∥∥e[p]

∥∥Wn L +
F
M !

hM+1. (27)

We estimate the other terms by making use of their respective Lipshitz constants:∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+hn
∣∣ f I
(
η[p+1]

n
)
− f I

(
η[p]n

)∣∣+hn
∣∣ fE

(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)∣∣+|In|

≤
∣∣e[p+1]

n−1

∣∣+hL I
(∣∣e[p+1]

n

∣∣+ ∣∣e[p]n

∣∣)+hL E
(∣∣e[p+1]

n−1

∣∣+ ∣∣e[p]n−1

∣∣)+|In|. (28)

The second line follows from the first by adding and subtracting f I (yn) and fE(yn−1)

to the inside of each of the absolute values containing
∣∣ f
(
η
[p+1]
n

)
− f

(
η
[p]
n
)∣∣ and∣∣ f

(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)∣∣, respectively. Note that we also make use of the fact that
hn ≤ h, although this too can be relaxed.

We continue by subtracting hL I
∣∣e[p+1]

n
∣∣ from both sides, dividing by 1−hL I > 0,

recognizing that hn < h, and collecting the remaining terms involving the “explicit”
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portions:

∣∣e[p+1]
n

∣∣≤ 1
1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL I
∣∣e[p]n

∣∣+ hL E
∣∣e[p]n−1

∣∣+ |In|
]

≤
1

1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL
∥∥e[p]

∥∥+ |In|
]

≤
1

1− hL I

[
(1+ hL E)

∣∣e[p+1]
n−1

∣∣+ hL(1+Wn)
∥∥e[p]

∥∥+ F
M !

hM+1
]

≤
1+ hL E

1− hL I

∣∣e[p+1]
n−1

∣∣+ 1
1− hL I

[
hW

∥∥e[p]
∥∥+ F

M !
hM+1

]
, (29)

where we define W :=max1≤n≤N (1+Wn L).
We make use of two separate estimates for 1/(1−hL I ) to estimate the two terms

found in the right-hand side of (29). For the first term, we expand the geometric
series and keep the first two terms:

1
1− hL I

= 1+ (hL I )+ (hL I )
2
+ · · · = 1+ (hL I )+ (hL I )

2 1
1− hL I

. (30)

This is valid because hL I < 1. Additionally, hL I <
1
2 , and therefore,

hL I < 1− hL I =⇒
(hL)2

1− hL I
< hL I . (31)

Together, these estimates imply that the first term can be estimated with

1
1− hL I

≤ 1+ 2hL I ≤ e2hL I . (32)

For the second term, we have 1/(1− hL I )≤ 2 for all hL I ∈
[
0, 1

2

]
. This leads us

to observe that∣∣e[p+1]
n

∣∣≤ e2hL I (1+ hL E)
∣∣e[p+1]

n−1

∣∣+ 2
(

hW
∥∥e[p]

∥∥+ F
M !

hM+1
)
. (33)

Next, we appeal to Corollary 2.3 and make use of A = e2hL I (1+ hL E) > 1 and
B = 2

(
hW

∥∥e[p]
∥∥+ (F/M !)hM+1

)
to conclude that∣∣e[p+1]

n

∣∣≤ e2hnL I (1+ hL E)
n
|e0|

+ ne2h(n−1)L I (1+ hL E)
n−12

(
hW

∥∥e[p]
∥∥+ F

M !
hM+1

)
. (34)

Since 1+ hL E ≤ ehL E and n ≤ N , we have the desired result. �
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3C. Corollaries of main result: implicit and explicit error estimates. With the
general case proven in Theorem 3.1, we find results for both implicit as well as
explicit SDC solvers. An immediate corollary to Theorem 3.1 can be found by
setting fE ≡ 0, in which case L I becomes the Lipshitz constant for f , and the
SISDC solver reduces to classical SDC with backward Euler defined in (10).

Corollary 3.2. The errors for a single step of the implicit SDC method defined
in (10) satisfy ∣∣e[p+1]

n

∣∣≤ e2NhL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1 (35)

provided h < 1/(2L). The constants C1 and C2 depend only on the smoothness
of f , the exact solution y, and the choice of quadrature points.

It is worth noting that the error estimate provided here is an asymptotic error
estimate. That is, one key assumption that we have to make is that h < 1/(2L),
which we do not have to make for the explicit case. Unfortunately, one key benefit
of implicit solvers is that large time steps can be taken, in which case it is certainly
possible that the solver does not obey this assumption. For these cases, a rigorous
error estimate and analysis when h > 1/(2L) would make for an interesting result,
which would be especially important for multiscale problems that contain large
time scale separations. This observation is beyond the scope of the present work.

A related corollary for explicit solvers with tighter error bounds can be found.
The result is the following:

Corollary 3.3. The errors for a single step of the explicit SDC method defined in (9)
satisfy ∣∣e[p+1]

n

∣∣≤ eNhL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1, (36)

where N is the number of intervals under consideration, L is the Lipschitz constant
of f for the ODE y′ = f (y), and C1 and C2 are constants that depend only on f ,
the exact solution y, and the selection of quadrature points.

Proof. Revisit the proof of Theorem 3.1, and replace the error estimate for
1/(1− hL I )≤ 2 with 1 instead of 2. �

4. Convergence proofs for higher-order base solvers

We now consider the spectral deferred correction method with the implicit trape-
zoidal rule as its base solver:

η[p+1]
n = η

[p+1]
n−1 +

hn

2

[
f
(
η[p+1]

n
)
+ f

(
η
[p+1]
n−1

)
− f

(
η[p]n

)
− f

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (37)
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What makes this method interesting is that it picks up a total of two orders of
accuracy with each correction. Note again that, in the absence of the terms that the
factor hn/2 multiplies, this method reduces to explicit Picard iteration, which picks
up a single additional order of accuracy with each correction.

The result we focus on is the impact of each correction step, in which case
any provisional solution may be used. In order to retain large regions of absolute
stability reasonable methods include low-order implicit solvers such as backward
Euler, or the second-order implicit trapezoidal (Crank–Nicholson) rule

(trapezoidal rule) η[0]n =η
[0]
n−1+

hn

2

(
f
(
η
[0]
n−1

)
+ f

(
η[0]n

))
, n=1, 2, . . . , N . (38)

In this section, we examine the interplay between the integral over the entire time
interval, and the addition of extra integral terms that allows this solver to pick up
additional orders of accuracy.

Let us define the exact value of the right-hand-side function as fn = f (y(tn)),
the approximate value of the right-hand-side function as f [p]n = f

(
η
[p]
n
)
, and the

local and global quadrature rules for integration over the subinterval [tn−1, tn] as

Tn =
hn

2
[ fn−1+ fn], T [p]n =

hn

2

[
f [p]n−1+ f [p]n

]
,

Hn = h
M∑

m=1

ωn,m fm, H [p]n = h
M∑

m=1

ωn,m f [p]m .

These definitions allow us to compactly write the SDC method with the trapezoidal
rule defined in (37) to read

η[p+1]
n = η

[p+1]
n−1 +

(
T [p+1]

n − T [p]n
)
+ H [p]n . (39)

Recall that the exact solution satisfies the integral (7), which we repeat:

yn = yn−1+

∫ tn

tn−1

f (y(t)) dt.

Theorem 4.1. When coupled with the implicit trapezoidal rule, the errors for a
single step of the spectral deferred correction method satisfy

∣∣e[p+1]
n

∣∣≤ e2NhL
|e0| + 2Ne2(N−1)hL

(
1
12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥h3
+

F
M !

hM+1
)
, (40)

provided hL < 1, where N is the number of intervals under consideration, M is the
number of points involved, L is the Lipschitz constant of f , F is an upper bound
for the M-th derivative of f , and the function E [p](t) is the polynomial interpolant
for the error in the approximation of the right-hand-side function during the p-th



ON THE CONVERGENCE OF SPECTRAL DEFERRED CORRECTION METHODS 49

iterate defined by

E [p](t) := I
[

f
(
η[p]

)]
(t)− I [ f ( y)](t)=

M∑
m=1

1 f [p]m `m(t/h), (41)

where 1 f [p]m := f [p]m − fm for each m = 1, 2, . . . ,M. The norm defined in (40) is
the maximum absolute value of the second derivative of E [p]:∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥ := max
t∈[0,h]

∣∣(E [p])′′(t)∣∣. (42)

Proof. We subtract the exact solution defined in (7) from the SDC method based
upon the trapezoidal rule defined in (39) to end up with

e[p+1]
n = e[p+1]

n−1 +
(
T [p+1]

n − T [p]n
)
+ H [p]n −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 + T [p+1]

n − Tn + Tn − T [p]n + H [p]n − Hn + Hn −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 +

(
T [p+1]

n − Tn
)︸ ︷︷ ︸

I

+
(
H [p]n − T [p]n + Tn − Hn

)︸ ︷︷ ︸
II

+ In︸︷︷︸
III

, (43)

where In := Hn−
∫ tn

tn−1
f (y(t)) dt is the difference between the high-order (discrete)

integral and the exact integral of the right-hand side.
We now estimate each of the three terms to the right of e[p+1]

n−1 in (43) separately,
starting with the first term:

|I| =
hn

2

∣∣ f [p+1]
n−1 + f [p+1]

n − fn−1− fn
∣∣≤ Lhn

2

(∣∣e[p+1]
n

∣∣+ ∣∣e[p+1]
n−1

∣∣), (44)

which follows from the Lipshitz continuity of f . The third term can be estimated
by first recognizing that

Hn := h
M∑

m=1

ωn,m fm =

∫ tn

tn−1

I [ f ( y)](t) dt,

and then using (18) (which requires assuming that f ◦ y ∈ C M ) in order to yield

|III| =
∣∣∣∣Hn −

∫ tn

tn−1

f (y(t)) dt
∣∣∣∣= |Hn − In| ≤

F
M !

hM+1, (45)

where F is any number that satisfies
∥∥ d M

dt M ( f ◦ y)
∥∥
∞
≤ F .

Finally, we address the second, and most interesting, term on the right-hand side
of (43). The key observation comes from recognizing this term as the difference
between a low-order (local) quadrature, Tn , and a high-order (global) quadrature Hn .
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Note that the exact integral of the polynomial interpolant E [p] over the subinterval
[tn−1, tn] is ∫ tn

tn−1

E [p](t) dt = H [p]n − Hn, (46)

and that

T [p]n − Tn =
hn

2

(
E [p](tn)+ E [p](tn−1)

)
(47)

is a low-order approximation to this integral. By textbook results, we have

II=
(
H [p]n − Hn − T [p]n + Tn

)
=−

h3
n

12
d2 E [p]

dt2 (ξn), (48)

where ξn is some number between tn−1 and tn . Together, this implies

|II| ≤
h3

n

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥. (49)

All together, inserting (44), (49), and (45) into (43), we have∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ |I| + |II| + |III|
≤

(
1+

Lhn

2

)
e[p+1]

n−1 +
Lhn

2
e[p+1]

n +
h3

n

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥+ F
M !

hM+1. (50)

After replacing each hn ≤ h, rearranging, and assuming that hL/2< 1, we have∣∣e[p+1]
n

∣∣≤ 1+ hL/2
1− hL/2︸ ︷︷ ︸
≤e2hL

e[p+1]
n−1 +

1
1− hL/2︸ ︷︷ ︸
≤2

(
h3

12

∥∥∥∥d2 E [p]

dt2 (·)

∥∥∥∥+ F
M !

hM+1
)
. (51)

We now verify the two underscored inequalities involving the 1± hL/2 terms
in (51). Identical to (32), we have

1
1− hL/2

≤ 1+ 2(hL/2)= 1+ hL ,

after expanding the rational expression in terms of a geometric series, and assuming
that hL/2< 1 in order to retain convergence. Because 1+hL/2≤ 1+hL , we have

1+ hL/2
1− hL/2

≤ (1+ hL)2 ≤ e2hL ,

which verifies the first of the two underscored inequalities. For the second one, we
need only assume that hL < 1, which yields 1/(1− hL/2) < 2.

All together, we have∣∣e[p+1]
n

∣∣≤ e2hLe[p+1]
n−1 + 2

(
h3

12

∥∥∥∥d2 E [p]

dt2 ( · )

∥∥∥∥+ F
M !

hM+1
)
, (52)

which yields the desired result after appealing to Corollary 2.3 and using n ≤ N . �
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Remark. The same decomposition for the error can be used for SDC coupled with
forward (or backward) Euler. That is, identical to the decomposition found in (43),
we can decompose the error as

e[p+1]
n = e[p+1]

n−1 + L [p+1]
n − L [p]n + H [p]n −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 + L [p+1]

n − Ln + Ln − L [p]n + H [p]n − Hn + Hn −

∫ tn

tn−1

f (y(t)) dt

= e[p+1]
n−1 +

(
L [p+1]

n − Ln
)︸ ︷︷ ︸

I

+
(
H [p]n − L [p]n + Ln − Hn

)︸ ︷︷ ︸
II

+ In︸︷︷︸
III

, (53)

where Ln and L [p]n denote a “low-order” integral of the right-hand side, but this
time we use

Ln := hn fn−1, L [p]n := hn f [p]n−1, (54)

for forward Euler, or instead

Ln := hn fn, L [p]n := hn f [p]n (55)

for backward Euler. The third term III is again O(hM+1), and the first term I can be
bounded by a constant times

∣∣e[p]n
∣∣+ ∣∣e[p+1]

n−1

∣∣. The lack of additional order pickup
can be found by observing that the second source of error instead satisfies

II=
(
H [p]n − Hn − L [p]n + Ln

)
=−

h2
n

2
d E [p]

dt
(ξn), (56)

where ξn is some number between tn−1 and tn . In the following examples, we
compare this term to that found from the trapezoidal rule.

4A. Examples. To illustrate the results of the theorem presented in this section,
we consider the linear test case

y′(t)= y(t), t > 0, y(0)= 1, (57)

and examine the errors produced by the SDC method when coupled with a higher-
order base solver. The order pickup for the SDC method can be found by exam-
ining the size of the second source of error, defined in (48) and (56), given by
h3

n/12
(
E [p]

)′′
(ξn) for the trapezoidal rule and h2

n/2
(
E [p]

)′
(ξn) for the forward (or

backward) Euler method. Note that the form and size of this error is identical for
either the forward or backward Euler base solver.

In the following examples, we work out the size of this term for a few different
case studies. Taylor expansions are found by making use of the Maple software
package.
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trapezoidal rule forward Euler

interval error p = 0 error p = 0[
0, h

2

] h
24

(
e[p]1 − 2e[p]2 + e[p]3

)
O(h4) h

24

(
7e[p]1 − 8e[p]2 + e[p]3

)
O(h3)[ h

2 , h
] h

24

(
e[p]1 − 2e[p]2 + e[p]3

)
O(h4) h

24

(
e[p]1 + 4e[p]2 − 5e[p]3

)
O(h3)

Table 2. Correction errors with M = 3 uniformly spaced points.

trapezoidal rule forward Euler

interval error p = 0 error p = 0[
0, h

3

] h
72

(
3e[p]1 −7e[p]2 +5e[p]3 −e[p]4

)
O(h4) h

72

(
15e[p]1 −19e[p]2 +5e[p]3 −e[p]4

)
O(h3)[ h

3 ,
2h
3

] h
72

(
e[p]1 −e[p]2 −e[p]3 +e[p]4

)
O(h4) h

72

(
e[p]1 +11e[p]2 −13e[p]3 +e[p]4

)
O(h3)[ 2h

3 , h
] h

72

(
e[p]1 −5e[p]2 +7e[p]3 −3e[p]4

)
O(h4) h

72

(
e[p]1 −5e[p]2 −5e[p]3 +9e[p]4

)
O(h3)

Table 3. Correction errors with M = 4 uniformly spaced points.

M = 3 uniformly spaced points. We first consider the results of using a total
of M=3 equispaced quadrature points and look at the local error over the subinterval
[tn−1, tn] produced by the second term II defined in (48) and (56). In the second set
of columns in Table 2 look at the size of this term by writing out Taylor expansions
for the first p = 0 SDC iteration of a solver constructed by taking a forward Euler
provisional solution for the first time step. Note that in this case, each point satisfies
e[0]n = O(h2) for each n, because the local truncation error (LTE) for Euler’s method
is second-order accurate. Therefore, the jump from O(h2) to O(h4) indicates that
the trapezoidal correction picks up an additional two orders of accuracy, whereas
the jump from O(h2) to O(h3) picks up a single additional order of accuracy for the
Euler base solver, which is consistent with the theory.

M = 4 uniformly spaced points. We next consider the same problem with a total
of M = 4 equispaced quadrature points. Again, we look at the errors for the
trapezoidal method compared to the forward Euler method after first constructing
a provisional solution with the forward Euler method. We again observe that the
trapezoidal rule improves the order of accuracy of the provisional solution by two
factors, whereas forward Euler (or likewise backward Euler) only improves the
order by one. Results for these quadrature points are presented in Table 3.

M = 4 nonequispaced spaced points. Finally, we consider a case with a total
of M = 4 nonequispaced points. As an illustrative example, we consider the
quadrature points ξ1 = 0, ξ2 =

1
3 , ξ3 =

1
2 , and ξ4 = 1. We find that the trapezoidal

error only increases the order of the solver by one degree, which is consistent with
the findings in [6], where the authors show that when the second-order Runge–Kutta
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trapezoidal rule

interval error p = 0[
0, h

3

] h
162

(
8e[p]1 − 27e[p]2 + 20e[p]3 − e[p]4

)
O(h3)[ h

3 ,
h
2

] h
5184

(
14e[p]1 − 27e[p]2 + 8e[p]3 + 5e[p]4

)
O(h3)[ h

2 , h
] h

192

(
10e[p]1 − 81e[p]2 + 88e[p]3 − 17e[p]4

)
O(h3)

forward Euler

interval error p = 0[
0, h

3

] h
162

(
35e[p]1 − 54e[p]2 + 20e[p]3 − e[p]4

)
O(h3)[ h

3 ,
h
2

] h
5184

(
14e[p]1 + 405e[p]2 − 424e[p]3 + 5e[p]4

)
O(h3)[ h

2 , h
] h

192

(
10e[p]1 − 81e[p]2 + 40e[p]3 + 31e[p]4

)
O(h3)

Table 4. Correction errors with M = 4 nonequispaced points. In this case, we find that
both methods only pick up a single additional order of accuracy.

method is used as a corrector, then the solver does not always pick up two orders
of accuracy with each correction loop. Results for this problem are presented in
Table 4.

5. Numerical results

The primary contribution of this work is to construct rigorous error estimates for
classical SDC methods, and therefore, we only include a couple of numerical
results. An abundance of SDC examples applied to ordinary and partial differential
equations can be found in the literature. One of our key goals here is to promulgate
the fact that the primary source of high-order accuracy inherent in all SDC methods
comes from its underlying Picard integral formulation, and not necessarily the “base
solver”, and therefore, we focus our results on nearby variations of classical SDC
methods and demonstrate how classical SDC methods can be extended to produce
related high-order solvers.

First we introduce a comparison of errors (and stability regions) for explicit SDC
versus Picard iteration, second we explore modifications of the constant in front of
an implicit SDC method, and finally we compare semi-implicit SDC and modified
semi-implicit SDC solvers. For the sake of brevity the proposed modifications
to SDC methods are not formally analyzed but straightforward extensions of the
theorems presented in this work can be constructed to present formal error bounds
for these methods. The numerical evidence presented here supports this claim.

5A. A comparison of explicit SDC and Picard iteration. In this numerical exam-
ple, we compare the errors and stability regions by applying the Picard iterative
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Figure 1. Linear test case. Here, we compare explicit SDC (solid lines) with Picard
iteration (dashed lines) of various orders. Each method attains the desired order of accuracy
with the minimum number of corrections. In each case, Picard iteration has slightly smaller
errors when compared to the equivalent explicit SDC method of the same order and same
quadrature rule.

method defined in (8) to that of the explicit SDC defined in (9). In order to present
an equal comparison of these two solvers, we consider identical initial guesses, or
provisional solutions η[0] based upon forward Euler time stepping and we work
with uniform quadrature points for all of our test cases.

Errors for a linear test case. In Figure 1, we compare errors for the linear equation

y′ = λy, y(0)= 1, (58)

at a final time of T = 10 with λ=−2 and λ=−5. Other orders and values of λ show
similar results where we observe slightly smaller error constants when using the
Picard iterative method compared to the equivalent SDC method. This is consistent
with the findings of Corollary 3.3, because the first error estimate∣∣e[p+1]

n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ hn
∣∣ f
(
η
[p+1]
n−1

)
− f

(
η
[p]
n−1

)∣∣+ |In|

could be tightened up to read∣∣e[p+1]
n

∣∣≤ ∣∣e[p+1]
n−1

∣∣+ |In|,

which produces a smaller (provable) overall error for the Picard method when
compared to the SDC method.

A comparison of regions of absolute stability for explicit methods. Next, we seek
to compare regions of absolute stability for explicit SDC methods and their Picard
iterative cousins. Here we observe that the stability regions are slightly improved
when the “Euler term” in the time stepping is dropped from the SDC method. That
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Figure 2. Stability regions for explicit methods. Here, we compare SDC methods to that
of Picard iterative methods where the explicit “Euler term” is dropped from the iterative
process. In each case save one, we observe that the Picard iterative methods have slightly
larger regions of absolute stability. The second-order SDC and Picard methods that use
two quadrature points are identical because the forward Euler time step vanishes in the
SDC method. The scaling on the axes for the methods of orders 6 through 10 is different
than the scaling for the methods of orders two through five.

is to say, we find that the Picard iterative methods generally have larger regions of
absolute stability when compared to their SDC counterparts.

In order to demonstrate this, in Figure 2, we include a comparison of plots of
the regions of absolute stability, defined by

D := {z ∈ C : |ρ(z)|< 1} (59)

where ρ(z) is the amplification factor for various quadrature rules for both of these
methods, z := λh, and λ is defined as in (58). There, we compare methods of
orders two through ten, all based on equispaced quadrature points, forward Euler
time stepping for the provisional solution, and the minimum number of corrections
required to reach the desired order of accuracy. (For example, the third-order method
uses two corrections and the fifth-order method uses four corrections.) Similar to
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most explicit Runge–Kutta methods, we find that the regions of absolute stability
increase as the order is increased, but there are also more function evaluations per
time step.

5B. Implicit SDC methods with modified backward Euler time steps. Here, we
consider implicit SDC methods with a variable constant in front of the vanishing
term:

η[p+1]
n = η

[p+1]
n−1 + θh

[
f
(
η[p+1]

n
)
− f

(
η[p]n

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
,

n = 1, 2, . . . , N . (60)

This same scaling has already been explored in [39] for SDC methods, but there
the authors only consider the case where 1

2 ≤ θ ≤ 1. With θ = 0, we have (explicit)
Picard iteration (provided the provisional solution is modified), with θ = 1, we
have the classical implicit SDC method, and with negative values of θ we have
backward Euler solves on negative time steps; none of the these changes affect
the overall order of accuracy, only the size of the error constant and the regions of
absolute stability. Following the proof of the main theorem in this work, we find
the following result under a modified estimate for the time step size.

Theorem 5.1. The errors for a single step of the modified implicit SDC method
defined in (60) satisfy∣∣e[p+1]

n

∣∣≤ e2N |θ |hL
|e0| +C1h

∥∥e[p]
∥∥+C2hM+1 (61)

provided |θ |h < 1/(2L). The constants

C1 = 2Ne2N |θ |hL
(
|θ | + L max

n
Wn

)
and C2 = 2Ne2N |θ |hL F

M !
again depend only on the smoothness of f , the exact solution y, and the choice of
quadrature points, but this time they also depend on θ .

Note that the value of θ = 0 minimizes the size of these constants, but it also
produces poor regions of absolute stability. With θ � 1 we have a method that is
heavy handed on multiple backward Euler solves, and therefore, it has a very large
region of absolute stability; however, these methods unfortunately introduce larger
error constants. Small values of θ decrease these error constants, but they modify
the regions of absolute stability to the point where they become finite and therefore
undesirable as these are implicit methods.

A verification of high-order accuracy: the nonlinear pendulum problem. As a
verification of the high-order accuracy of the solvers, we consider the equations of
motion for a nonlinear pendulum:

x ′′(t)+ sin x(t)= 0 (62)
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Figure 3. Nonlinear pendulum problem. Here, we compare SDC methods with different
scalings on the backward Euler term as defined in (60). The case with θ = 1 is classical
implicit SDC. We observe the expected result that all methods have high-order accuracy
and that θ > 1 produces larger error constants. The case with θ = −0.1 is not a useful
method because it has a finite region of absolute stability. While all methods here are
fourth-order accurate after three corrections, the methods with large values of θ stand
to gain the most through additional corrections. This can be attributed to the large error
constants found in the backward Euler term that vanish at the number of iterations increase
(provided the iterates converge).

with appropriate initial conditions. If we perform the change of variables y1(t)= x(t)
and y2(t) = x ′(t), we end up with the following first-order nonlinear system of
equations that is equivalent to (62):

(y1, y2)
′
= (y2,− sin y1). (63)

We consider initial conditions defined by (y1(0), y2(0))= (0, 1), and we integrate
this problem to a final time of T = 10. To compute a reference solution, we
use MATLAB’s built-in ode45 with a relative tolerance of 10−12 and an absolute
tolerance of 10−14.

We present convergence results for this problem in Figure 3. These results
indicate that each method is indeed high-order independent of the value of θ . For
the sake of brevity, we only report results for methods with a total of M = 4
equispaced quadrature points, but we also compare results for different number of
corrections. (This underlying quadrature rule is also known as Simpson’s 3

8 rule,
which has a smaller error constant than Simpson’s rule that uses M = 3 equispaced
points, but it comes at the cost of an additional function evaluation.) We not only
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Figure 4. Stability regions for modified implicit methods. Here, we perform a parameter
study to the modified implicit SDC method introduced in (60); the case with θ = 0 is
explicit for each of the correction steps because there is no backward Euler time step to
be solved for; however, the stability region is different than that of the same-order Picard
method because the initial guess (provisional solution) is computed using backward Euler
time steps, whereas the Picard method makes use of forward Euler steps for its initial guess.
Somewhere in the interval θ ∈ [0, 1] there is a transition between finite and infinite regions
of absolute stability. Infinite and large regions are typically desirable when performing
implicit solves. Large values of θ increase the regions of absolute stability but at the cost
of stiff inversions and larger error constants.

find that smaller values of θ produce smaller errors, which the theory supports, but
we also demonstrate that more corrections for the methods with large θ values can
help to decrease the errors.

A parameter study of regions of absolute stability for implicit methods. Given the
results of the previous section, it would be tempting to set θ = 0 in order to reduce
the total error. What is missing from this observation is an understanding of the
regions of absolute stability. We now address this question. We find that small
values of θ produce finite regions of absolute stability, and that large values of θ
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increase the regions of absolute stability (when compared to classical SDC methods)
but they also increase the stiffness of each implicit solve. With that being said,
larger time steps should be able to be taken, but as is pointed out in the previous
section, larger errors are introduced. This reproduces the usual tradeoff between
being able to take large time steps with large errors or being forced to take smaller
time steps but at an increased computational cost.

In Figure 4 we present results for a third-order method with various values of θ .
There we plot contour plots of the modulus of the amplification factor |ρ(z)| in
place of the boundary defined by |ρ(z)| = 1 because if we were to plot the boundary,
then it would not be clear what parts are stable. In this sequence of images, we
present results for various values of θ ∈ [−0.4, 5]. Larger values of θ such as
θ = 100 look very similar to θ = 5. Tests on methods of other orders produce
similar results involving transitions between finite and infinite regions of absolute
stability as θ increases from 0. The tradeoff between the size and shape of the
stability regions for various quadrature rules is left for future work.

Before continuing, we point out that diagonally implicit Runge–Kutta methods
(on nonequispaced points) can be constructed from this very same framework. The
point here is that because the term involving the difference f

(
η
[p+1]
n

)
− f

(
η
[p]
n
)

in (60) does not contribute to the overall order of accuracy, the scaling in front of
this term can be modified so that each implicit solve uses the exact same time step,
which would result in a singly diagonally implicit Runge–Kutta (SDIRK) method.
This could be advantageous for easing the implementation of SDC methods in
large-scale code bases. In such a case the provisional solution would have to be
modified in order to retain constant time steps for each stage in the solver. This
would mean an extra correction or a (low-order) polynomial interpolation step would
be necessary to not lose the starting accuracy found in the provisional solution,
which would again modify the regions of absolute stability for solvers of various
orders.

Similar modifications have recently been explored on nonequispaced points from
a linear algebra perspective. In [38], the author makes use of this vantage and
optimizes their solvers by modifying the coefficients in the fixed-point iteration
matrices. It is pointed out that there are a number of items that could be optimized,
such as the spectral radius of the solver (in order to optimize the convergence rate
of the sweeps), the matrix norm (for the purpose of reducing the error under the
assumption of a small number of sweeps), the error at the final time, the average
reduction factor in each sweep block (for the purpose of adaptively choosing the
number of sweeps, which could include flexible or greedy sweeps), and so on. Even
though SDC methods are a subset of Runge–Kutta methods, and all of these options
can be found by looking at this more general class of methods, one key advantage
SDC methods enjoy is they do not typically sacrifice the difficult order conditions
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that a more generic RK method would have to address. At the same time, SDC
methods still have ample levers to tune for optimization purposes.

5C. Modified semi-implicit SDC methods. Recall the semi-implicit SDC (SISDC)
method begins with a partition of the right-hand side into two functions f I and fE

via

y′ = f (y), f (y)= f I (y)+ fE(y), y(0)= y0, (64)

and then they apply a forward Euler/backward Euler (FE/BE) pair to the right-hand
side defined in (24):

η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ hn

[
fE
(
η
[p+1]
n−1

)
− fE

(
η
[p]
n−1

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (65)

With a straightforward extension the results from the present work point out that
high-order accuracy can be achieved where there are no forward Euler time steps
on the explicit term fE(y). That is, we propose examining the modified SISDC
method

η[p+1]
n = η

[p+1]
n−1 + hn

[
f I
(
η[p+1]

n
)
− f I

(
η[p]n

)]
+ h

M∑
m=1

wn,m f
(
η[p]m

)
. (66)

Note that the “base solver” for this method is not even consistent with the underlying
ODE. This serves as another example of how the findings from this work permit
modifications to classical SDC methods in order to produce nearby variations. As an
additional benefit, this reduces the computational coding complexity by asking the
user to only define f and f I as opposed to f , f I , and fE . This type of modification
can be readily found after understanding the source of high-order accuracy inherent
to the SDC framework.

Given that the iterative Picard methods demonstrate smaller errors by dropping
the forward Euler terms in the right-hand side of the iterations from the SDC solver,
one might expect that this method has better accuracy than its SISDC parent. In
the event when f I = 0 (or is small), this would be true because in that case we
would be comparing explicit SDC to Picard iteration, and we have already shown
that those errors are smaller for some problems. However, we will shortly see that
this is not necessarily the case. Even though this modification does not affect the
overall order of the solver, we will show that for the following test case it does not
improve the total overall error of the solver. With that being said, we believe it is
still important to understand the source of the overall order of the SDC solvers,
because only then can new methods be developed from the existing framework.
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mesh SISDC order modified SISDC order

4 2.24× 10−02 6.45× 10−02

8 6.06× 10−04 5.21 2.84× 10−03 4.51
16 4.11× 10−05 3.88 1.91× 10−04 3.89
32 3.44× 10−06 3.58 1.46× 10−05 3.71
64 2.56× 10−07 3.75 1.01× 10−06 3.85

128 1.78× 10−08 3.85 6.68× 10−08 3.92
256 1.17× 10−09 3.93 4.29× 10−09 3.96
512 7.26× 10−11 4.01 2.69× 10−10 3.99

Table 5. Van der Pol oscillator. Here we present numerical results where we compare
the implicit classical method defined in (24) as well as the modified semi-implicit SDC
method defined in (66) against each other. Despite the fact that theory can show that the
errors could be smaller for the modified method that relies solely on backward Euler time
stepping embedded within Picard iteration, in this case the classical SISDC method based
forward/backward Euler time stepping outperforms the other solver with its smaller error
constants.

Van der Pol’s equation. As a prototypical IMEX example, we include results for
Van der Pol’s equation

x ′′(t)=−x(t)+µ(1− x(t))2x ′(t) (67)

with appropriate initial conditions. After the usual transformation of y1(t)= x(t)
and y2(t) = µx ′(t), and rescaling time through t → t/µ, we have the system of
differential equations [30; 25]

y′1 = y2, y′2 =
−y1+ (1− y2

1)y2

ε
, ε =

1
µ2 . (68)

In an IMEX setting, this problem is typically split into fE(y)= (y2, 0) and f I =

(0, (−y1+ (1− y2
1)y2)/ε) as an effort to account for the stiffness as ε→ 0. For

this problem we only seek to verify the high-order accuracy of the classical semi-
implicit SDC method defined in (24), denoted by SISDC, as well as the modified
solver defined in (66), denoted by “modified SISDC”. With this aim in mind, we
set ε = 1 so that the equations remain nonstiff, and we integrate to a long final time
of T = 4. The initial conditions are the same as those found in an example in [25],
which are y1(0) = 2 and y2(0) = −0.666666654321. In Table 5, we compare a
convergence study for the fourth-order versions of these two methods where we use
a total of four equispaced quadrature points, a provisional solution defined by the
split forward/backward Euler method, as well as three corrections in the solver. For
this problem, we find that the classical SISDC method has slightly smaller errors,
despite what theory might otherwise predict we could observe. For problems where
f I is negligible or small, the modified method should outperform the SISDC solver.



62 MATHEW F. CAUSLEY AND DAVID C. SEAL

Other values for ε produce similar findings, where the usual order reduction can be
found as ε approaches zero. In other cases, the two solvers have similar behavior,
and both show high-order accuracy for large values of ε. For brevity, these other
results are omitted.

6. Conclusions

In this work we present rigorous error bounds for both explicit and implicit spectral
deferred correction methods. Unlike most presentations that introduce SDC methods
as methods that iteratively correct provisional solutions by solving an error equation,
our work hinges on the fact that the basic solver can be recast as a variation on
Picard iteration. This observation allows new SDC methods to be developed through
modifications of the (forward or backward) Euler part of the iterative procedure. In
addition, we present some analysis for SDC methods constructed with higher-order
base solvers. In the numerical results section we present some sample variations
that serve to indicate that the choice of the base solver need not be consistent
with the underlying ODE in order to obtain a method that converges. That is, our
findings indicate that it is not important to use the same low-order solver for each
correction step because the desired high-order accuracy can be found in the integral
of the residual. However, the choice of the base solver certainly has an impact on
the overall scheme. For example, up to the degree of precision of the underlying
quadrature rule, the choice of the forward or backward Euler method or even an
inconsistent base solver leads to a single pickup on the order of accuracy of the
solver with each correction step, whereas the choice of a trapezoidal rule for a base
solver yields two orders of pickup with each correction step. For stiff problems, an
implicit method constructed with the backward Euler method (or some variation of
it) is certainly preferable due to the larger regions of absolute stability. Future work
involves further analysis of embedded high-order base solvers as well as exploring
further modifications of the solver to modify regions of absolute stability of existing
solvers for explicit, implicit, and semi-implicit SDC methods.
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