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AN ADAPTIVE LOCAL DISCRETE CONVOLUTION METHOD
FOR THE NUMERICAL SOLUTION

OF MAXWELL’S EQUATIONS

BORIS LO AND PHILLIP COLELLA

We present a numerical method for solving the free-space Maxwell’s equations
in three dimensions using compact convolution kernels on a rectangular grid. We
first rewrite Maxwell’s equations as a system of wave equations with auxiliary
variables and discretize its solution from the method of spherical means. The
algorithm has been extended to be used on a locally refined nested hierarchy of
rectangular grids.

1. Introduction

We want to solve the free-space three-dimensional Maxwell’s equations

∂E
∂t
= c∇ × B− 4π J, (1)

∂B
∂t
=−c∇ × E, (2)

∇ · E = 4πρ, (3)

∇ · B = 0. (4)

In our previous work [7], we considered Maxwell’s equations in Fourier space,
derived a real-space propagator for the system, and discretized the exact solution
from Duhamel’s formula. This propagator includes Helmholtz decomposition
operators. The Helmholtz decomposition operators require global Poisson solves at
every time step, which offsets the computational advantages of the local convolution
kernel parts of the propagator.

In the present work, we get around this difficulty by applying a similar technique
to an auxiliary system of equations instead of directly to Maxwell’s equations.
This auxiliary system is a system of wave equations for E, B combined with
constraints which, if satisfied initially, are satisfied for all time, such that the
solutions of the auxiliary system are solutions to Maxwell’s equations. We then
apply Kirchhoff’s formula to this system and discretize the resulting convolution
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equations. The convolution kernels from this propagator are the same as the local
kernels for the transverse Maxwell’s equations’ propagator in [7], and thus, the same
discretization techniques and domain decomposition can be applied. The locality of
the convolution kernels allows us to naturally incorporate adaptive mesh refinement
(AMR), where the domain is divided up into a nested hierarchy of rectangular grids
at each refinement level.

In Section 2 we introduce the auxiliary system and show the analytic solution for
Maxwell’s equations in terms of a propagator with specified charges and currents.
In Section 3, we describe the discretization process briefly, and discuss in detail
the local discrete convolution method (LDCM) Maxwell solver for a single level
and its extension to multiple levels. In Section 4 we present a number of numerical
tests that show an implementation of our algorithm. Finally, in Section 5 we make
some concluding remarks.

2. Problem statement and derivation of propagators

2.1. Maxwell’s equations. Introducing 8 ≡ ∇ × B and 9 ≡ ∇ × E, we rewrite
Maxwell’s equations, with ρ, J specified, as the auxiliary system of wave equations

∂E
∂t
= c8− 4π J, (5)

∂8

∂t
= c∇2 E− 4πc∇ρ, (6)

∂B
∂t
=−c9, (7)

∂9

∂t
=−c∇2 B− 4π∇ × J . (8)

If the initial conditions satisfy

9 =∇ × E, (9)

8=∇ × B, (10)

∇ · E = 4πρ, (11)

∇ · B = 0, (12)

then the auxiliary system is equivalent to the original Maxwell system. To show
this, consider the four error quantities associated with the initial value constraints
at t = 0:

KB =8−∇ × B, (13)

KE =9 −∇ × E, (14)

DB =∇ · B, (15)

DE =∇ · E− 4πρ. (16)
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Using the auxiliary system (5)–(8), the four evolution equations associated with
these quantities are given by

∂KB

∂t
= c∇ × KE + c∇DE , (17)

∂KE

∂t
=−c∇ × KB − c∇DB, (18)

∂DB

∂t
=−c∇ · KE , (19)

∂DE

∂t
= c∇ · KB . (20)

It is clear that if KB, KE , DB, DE vanish at t = 0, then they remain zero for all
time after. In particular, the symbol of the linear operator associated with these
eight evolution equations has the eigenvalues ±ic|k| each with a multiplicity of
four. Since errors propagate away with the same wave speed, any error will not
accumulate at a fixed location and be a potential source of numerical instability.
The initial value problem (5)–(8) is well posed even if the initial-value constraints
(13)–(16) are not satisfied. The constraints are required only so that the solution
is equivalent to the solution to Maxwell’s equations. Since the two systems are
equivalent, the solutions for E, B obtained from the auxiliary system will also be
the solution to the original Maxwell system.

The solutions to (5)–(8) are given by Kirchhoff’s formula using the method of
spherical means [13, p. 231]. Defining the kernels G1t and H1t as

G1t(z)≡
δ(|z| − c1t)

4πc1t
, (21)

H1t(z)≡
1
c
∂

∂s

(
δ(|z| − cs)

4πcs

)∣∣∣∣
s=1t

, (22)

G1t is a spherical delta distribution with radius c1t . The action of the propagator
on an arbitrary state vector h(x)≡ [ f (x), g(x)]T with f , g ∈ R3 is given by

P1t
[h] =

[
H1t
∗ f +G1t

∗ g
G1t
∗∇

2 f + H1t
∗ g

]
, (23)

where the scalar convolution kernel with vector quantity is defined as convolution
with each component and convolutions are defined spatially as

(K ∗ f )(x)≡
∫

R3
K ( y) f (x− y) d y. (24)

In particular, the solution to (5)–(6) is then given by(
E(x, t+1t)
8(x, t+1t)

)
= P1t

[(
E(x, t)
8(x, t)

)]
−4π

∫ t+1t

t
Pt+1t−s

[(
J(x, s)

c∇ρ(x, s)

)]
ds. (25)
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The propagator for (7)–(8) is the same as that for (5)–(6), with the substitution
1t→−1t . Thus, the solution is given by(

B(x, t +1t)
9(x, t +1t)

)
= P−1t

[(
B(x, t)
9(x, t)

)]
− 4π

∫ t+1t

t
P−(t+1t−s)

[(
0

∇ × J(x, s)

)]
ds. (26)

It can be seen from the Fourier transforms of the convolution kernels that

G−1t
∗ f =−G1t

∗ f, (27)

H−1t
∗ f = H1t

∗ f. (28)
In addition

H1t
∗ f =

1
ct

G1t
∗ f −

3∑
i=1

G1t
i ∗

∂ f
∂zi

, (29)

G1t
i (z)=

ziδ(|z| − c1t)
4πc1t

. (30)

With these, we have fully specified the solutions, (25) and (26), in terms of con-
volution with weighted spherical delta distributions. We note that it can be shown
directly that 9(x, t+1t)=∇×E(x, t+1t) and 8(x, t+1t)=∇×B(x, t+1t)
given the constraints are satisfied at t . When ρ, J are not specified but functions of
field variables, instead of using Kirchhoff’s formula and a quadrature scheme one
can use Lawson’s method [6] for time integration.

3. Discretization approach

3.1. Single-level algorithm. We consider a rectangular domain discretized with a
Cartesian grid with grid spacing h with open boundary conditions. The convolutions
in (25)–(26) are approximated with discrete convolutions on the grid. This requires a
discretized representation of the convolution kernels, G1t,h

≈ G1t(z) and H1t,h
≈

H1t(z), on the grid. H1t,h is obtained by (29), so that the problem reduces to only
creating discrete representations of (weighted) spherical delta distributions. We
refer the reader to [7] for a detailed treatment of the discretization of the convolution
kernels. The resulting discrete convolution kernels have compact support just like
their continuous counterparts. Thus, the discrete convolutions can be computed
exactly using Hockney’s method [5].

The overall time-stepping algorithm is given in Algorithm 1. This defines the
discrete evolution for E, B, since 8,9 are computed at the beginning of every
time step. The source term integrals are discretized using a closed Newton–Cotes
quadrature scheme with step size 1s = 1t/(M − 1) where M is the number of
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Initialize Newton–Cotes quadrature weights {wm}
M
m=0

/* Create the convolution kernels with quadrature step size 1s and
spacing h */

Compute G1s,h , and H1s,h

/* Begin time-stepping loop */
for n = 1, 2, . . . do

/* Initialize the fields for this time step */
/* Let U (n),h

≈U (n1t, x) */
E(n),h

← E(n−1),h , B(n),h
← B(n−1),h , 8(n),h

←∇× E(n),h , 9(n),h
←∇× B(n),h

/* Begin quadrature loop */
for m = 1, 2, . . . ,M do

/* Add in source terms evaluated at t = (n− 1)1t + (m− 1)1s */
E(n),h

← E(n),h
−wm4π Jh

8(n),h
←8(n),h

−wm4πc∇ρh

9(n),h
←9(n),h

−wm4π∇ × Jh

/* Apply propagator to the fields except final quadrature
point */

if m < M then[
E(n),h

8(n),h

]
←

[
H1s,h

∗ E(n),h
+G1s,h

∗8(n),h

(G1s,h
∗∇

2) ∗ E(n),h
+ H1s,h

∗8(n),h

]
[

B(n),h

9(n),h

]
←

[
H1s,h

∗ B(n),h
−G1s,h

∗9(n),h

−(G1s,h
∗∇

2) ∗ B(n),h
+ H1s,h

∗9(n),h

]
end if

end for
/* Enforcing constraints */
E(n),h

← E(n),h
+ η(LE(n),h

− 4π∇ρh)

B(n),h
← B(n),h

+ ηLB(n),h

end for

Algorithm 1. Single-level LDCM for Maxwell’s equations.

quadrature points. We choose a fixed step size quadrature because Pt1[Pt2[U]] =
Pt1+t2[U], and therefore, we only need to create one propagator with step size 1s
during initial setup.

Even though the divergence constraints are preserved by the continuous time
evolution, deviations from (11)–(12) may be generated by discretization error. To
help remedy this, we apply local filters [8] of the form

E := E+ η(LE− 4π∇ρ), (31)

B := B+ ηLB, (32)

Li j = ∂xi ∂x j , (33)



110 BORIS LO AND PHILLIP COLELLA

Figure 1. log10(|∇ ·E−4πρ|/maxx 4πρ) at z= 0.5 for the stopped translating spherical
charge distribution problem at t = 200

2048 for N = 129 showing that there are no reflected
waves at the refinement boundaries.

where η ∼ O(h2) is a constant and L is a matrix-valued operator with the diagonal
terms discretized with centered-difference approximations to the second derivative
while the off-diagonal terms are products of centered-difference approximations to
the first derivatives. This filtering step corresponds to applying an explicit diffusion
step to the error in the longitudinal fields. Note that we do not have to do this for
the curl constraints (9)–(10), since 8,9 are reinitialized at the beginning of each
time step.

3.2. Domain decomposition. Since the discretized version of the propagator in-
volves only local operators, we can use standard domain decomposition to parallelize
this algorithm. Consider a single-level domain, �h , partitioned into rectangular
patches. For each patch,

(1) at the beginning of each quadrature step, copy field values in ghost region
from neighboring processors, and

(2) apply propagator to update local field values, invalidating values in ghost
region.

The minimum width of the ghost region is determined by the size of the quadrature,
1s, and the order of the method because the size of the support of the spherical
delta distributions is dependent on how far in time the fields are to be advanced.

For a point, xk , near the boundary, when applying the discrete convolutions we
replace the field values outside the computational domain with the current field value
at xk . This approximation leads to waves reflecting back into the computational
domain. We could employ standard techniques for simulating infinite domain
such as perfectly matched layer (PML) [2]. However, we wanted to focus on the
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�1 ∪�1,g

�0

Figure 2. Example schematic of a two-level nested domain with factor of 2 refinement.
The unshaded region is �1 and the shaded region is the ghost region �1,g .

propagator method and not the boundary conditions. Therefore, in this work, we
mitigate this reflection error with mesh refinement, by placing the boundary of the
computational domain far away from the sources. This is possible because our
method does not generate significant internal reflection at refinement boundaries as
shown in Figure 1. The amplitude of the waves reaching the domain boundary will
thus be weaker and the reflected error waves will also be smaller.

3.3. Multilevel algorithm. Consider now a hierarchy of nested rectangular grids,
� j , j = 0, . . . , J − 1, where the grid spacing for � j is h/r j for some refinement
factor, r ∈ Z+, with � j ∪� j+1 =� j+1, j = 0, . . . , J − 2. We introduce sampling
and interpolation operators, S and I, respectively, to communicate field values with
the next immediate lower and upper levels. Similar to the ghost regions for each
patch in parallelizing the single-level algorithm, we define a ghost region for each
level, � j,g, where the width of the ghost region is determined by how far in time
the fields are to be advanced. At the beginning of each quadrature step, except on
the first level, for all nodes in � j,g we interpolate E, B from level j − 1. After
interpolating, except on the finest level, we replace E, B at level j with field values
from level j + 1 on the nodes that are in � j ∩� j+1. A sample schematic of two
levels with r = 2 is shown in Figure 2. After interpolating and sampling, each level
is evolved independently with the propagator.

Let f (n)j denote discretized f on level j and at time tn = n1t ; the multilevel
algorithm is outlined in Algorithm 2. Since (5)–(8) is a system of linear differential
equations, we can use linear superposition to generate the overall solution to the
problem in this multilevel setup; the solution is given by a composite where it takes
the finest level values for any subdomain. For example, in the two-level case, let
U = (E, B,9,8)T ; then the solution is given by

U (n)
=

{
U (n)

1 on �1,

U (n)
0 on �0 \�1.

(34)
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Initialize Newton–Cotes quadrature weights {wm}
M
m=0

for all levels � j , j = 0, . . . , J − 1 do
Initialize U (0)

j
Compute G1s,h/r j

, and H1s,h/r j

end for
/* Begin time-stepping loop */
for all n = 1, 2, . . . do

for all levels � j , j = 0, . . . , J − 1 do
/* Initialize the fields for this time step */
U (n)

j ← U (n−1)
j

for quadrature step s do
/* Apply sampling operator except for level 0 */
U (n)

j−1← S[U (n)
j ] on � j

/* Apply interpolation operator except for level J − 1 */
U (n)

j+1← I[U (n)
j ] on � j+1,g

Apply single-level operations (add in source term and apply propagator)
end for

end for
Sample and interpolate E, B so that L can be applied on the refinement levels
Enforce the constraints independently for each level

end for

Algorithm 2. Multilevel LDCM for Maxwell’s equations.

Since we interpolate once every quadrature step, the width of �i,g for level i has
the same width as the ghost region required for domain decomposition.

Interpolation. We use high-order B-splines (see the Appendix) to interpolate the
fields between levels similar to the ones used to regularize the delta distributions
in the propagator. However, the choice of interpolant is more restrictive than
the one used to regularize the delta distribution. The convergence of spherical
quadrature when regularizing the delta distribution depends on the smoothness of
the integrand [1]. However, we are interested in the regularized delta distribution
as a discrete convolution kernel with some discretized function f . Numerically, the
spherical quadrature and discrete convolution commute, and therefore, we relied on
the smoothness of f for the convergence of the spherical quadrature. This allows
us to use a C0 high-order B-spline as a regularizer with the advantage that it has
minimal support.

In this method, f is a field component or a component of the source terms. Since
the field components must be sufficiently smooth for the spherical quadrature and the
accuracy of the high-order finite difference operators applied to the field components
also depends on smoothness, these translate into a smoothness requirement for the
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for levels � j , j = 1, . . . , J − 1 do
if regrid do

/* Sample down starting from topmost level */
for k = J − 1, . . . , j do

U (n)
k−1← S[U (n)

k ] on �k ∩� j,discard

/* Discard part of domain that has been sampled from */
�k←�k \ (�k ∩� j,discard)

end for
� j ←� j ∪� j,new

/* Interpolate from level j − 1 */
U (n)

j ← I[U (n)
j−1] on � j,new

Enforce the constraints
end if

end for

Algorithm 3. Regridding algorithm.

interpolants. For a q-th-order method, we would need the error from the spherical
quadrature to be at least O(hq), which requires f ∈ Cq . Therefore, the interpolant
must also be at least q-th-order accurate and Cq .

Regridding. For an adaptive version of this method, instead of a fixed hierarchy of
rectangular grids, we regrid at the beginning of any time step as needed. Suppose
we wish to regrid level j , j > 0; let � j = � j,discard ∪� j,keep before regridding
and � j =� j,keep ∪� j,new after regridding. First sample down on � j,discard; then
interpolate on � j,new using the same sampling and interpolating operators. The
regridding algorithm is outlined in Algorithm 3.

4. Numerical results

We implemented a fourth-order version of our Maxwell solver with c = 1; the
one-step error for the solver is O(hq), but after some number of time steps the total
error will be O(hq−1) for a method that has a one-step error of O(hq) and1t =O(h).
We used sixth-order centered differences for the spatial derivatives, the fifth-order
3
8 Simpson’s rule for the source integration, W6,0 for the discrete delta distribution,
and W6,6 for the interpolation operator. The discrete convolutions are performed
via Hockney’s method extending the domain equal to the support of the discrete
convolution kernels and using the FFTW library [4]. The domain at the coarsest
level is a unit cube and each level is divided into 333 node patches with factor of 4
refinement; every level has the same number of nodes, N . The filter parameter at
level j is η j =

45
544 h2

j . For each test, 1t is the same across refinement levels.
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4.1. Translating spherical charge distribution. For the first numerical test, we
used a C6 spherical-support charge distribution with a spatially constant v(t).

ρ(x, t)=
{

a(r(t)− r(t)2)6, r < 1,
0, r ≥ 1,

r =
1
R0
‖x− x0‖, (35)

J(x, t)= v(t)ρ(x, t), (36)

v(t)= νdπ 35
16 sin7(2πνt)v̂. (37)

The electrostatic solution is given by

E(x)= 4πR0ar̂
{1

9r7
−

3
5r8
+

15
11r9
−

5
3r10
+

15
13r11
−

3
7r12
+

1
15r13, r < 1

1
45045r−2, r ≥ 1,

(38)

B(x)= 0. (39)

Here r̂ is with respect to x0, and we use this as the initial condition for this
test problem. We perform this test on fixed grids with two refinement levels,
�1 =

[ 3
8 ,

5
8

]3 and �2 =
[ 15

32 ,
17
32

]3, with parameters a = 104, d = 1
256 , ν = 1024

80 ,
R0 =

1
72 , x0 =

( 127
256 ,

127
256 ,

127
256

)
, v̂ =

(
cos

√
3

3 cos
√

2
3 , sin

√
3

3 cos
√

2
3 , sin

√
2

3

)
, and

N = (65, 129, 257) with 1t =
( 1

1024 ,
1

2048 ,
1

4096

)
, respectively; this corresponds to

CFL= 1 at the finest level, out to tfinal =
200
1024 . Figure 3 shows the Ex Richardson

convergence rate estimate and the associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇ · E − 4πρ on the three grids
in �2 as a function of time step, and as expected our solution shows fourth-order
convergence.

Electrostatic test. We performed another test with same discretization and parame-
ters but stopped the charge distribution after t = 40

1024 and then ran out to tfinal=
100
1024

Figure 3. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
translating spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0694795), and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates.



ADAPTIVE LDCM FOR THE NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS 115

Figure 4. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
stopped spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0694795) and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates. The vertical line
indicates the time at which the charge distribution stops moving.

to show that the solver recovers the electrostatic solution. Figure 4 shows the Ex

Richardson convergence rate estimate and associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇·E−4πρ on the three grids in�2 as
a function of time step, and as expected our solution shows fourth-order convergence.

Regridding test. We tested our regridding algorithm with the translating charge
distribution with v = νdπ sin(2νt)x̂, a = 1

160 , d = 1
64 , x0 =

( 31
64 ,

1
2 ,

1
2

)
, ν = 1024

80 ,
tfinal =

800
1024 , and other parameters being the same. We kept �1 the same and fixed,

but regridded �2 starts with �2,a and changes between �2,a and �2,b whenever
the x coordinate of the center of the charge distribution crosses 63

128 , where �2,a is
the rectangular prism defined by the corner points

( 29
64 ,

17
32 ,

17
32

)
and

( 33
64 ,

17
32 ,

17
32

)
, and

�2,b =
[15

32 ,
17
32

]3; effectively �2 oscillates in the x direction with amplitude 1
64 in

the direction of the charge motion. Figure 5 shows Ex and the regridding domains
for N = 129. Figure 6 shows the Ex Richardson convergence rate estimate and
the associated `∞ error as well as the absolute convergence rate and associated `∞
errors for ∇ · E− 4πρ on the three grids in �2 as a function of time step and our
solution shows fifth-order convergence.

4.2. Divergence-free current source. We’ve also tested with a divergence-free
current source of the form

Jx(x, y, z, t)=−100 y−y0
r

sin πr
2a

cos10 πr
2a

cos11 π(z−z0)

d
sin(2πνt), (40)

Jy(x, y, z, t)= 100 x−x0
r

sin πr
2a

cos10 πr
2a

cos11 π(z−z0)

d
sin(2πνt), (41)

Jz(x, y, z, t)= 0, (42)
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Figure 5. Ex minus the instantaneous electrostatic solution, at z = 1
2 , for the spherical

charge distribution problem with regridding for N = 129. Top left: t = 256
2048 , charge

distribution moving to the right, has almost reached its rightmost position, �2 = �2,b.
Top right: t = 480

2048 , charge distribution is at its leftmost position, �2 =�2,a . Bottom left:
t = 864

2048 , charge distribution moving to the left, �2 =�2,b. Bottom right: t = 1600
2048 , final

time step, �2 =�2,a .

where r =
√
(x − x0)2+ (y− y0)2 with parameters a = 3

160 , d = 13
320 , x0 = y0 =

z0 = 0.5, and ν = 20, and using the same refinement levels, discretization, and tfinal

as the fixed-grids translating-charge problem. Figure 7 shows the Ex Richardson
convergence rate estimate and the associated `∞ error as well as the absolute
convergence rate and associated `∞ errors for ∇ · E on the three grids in �2 as a
function of time step, and as expected our solution shows fourth-order convergence.
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Figure 6. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
regridding spherical charge distribution problem as a function of time in �2. On the left
are the normalized `∞ errors for Ex and ∇ · E − 4πρ. The errors for Ex are obtained
from the difference of sampled field values from N = 257 with N = 129 and also from
sampled N = 129 with N = 65 test case. The Ex error is normalized by the max norm
of the electrostatic solution (≈ 0.0312658), and ∇ · E − 4πρ error is normalized by
maxx 4πρ ≈ 30.6796. On the right are the associated convergence rates. The vertical lines
are the times at which regridding occurs.

Figure 7. `∞ error values and convergence results for Ex and ∇ · E − 4πρ for the
divergence-free current problem as a function of time in �2. On the left are the normalized
`∞ errors for Ex and ∇ · E− 4πρ. The errors for Ex are obtained from the difference of
sampled field values from N = 257 with N = 129 and also from sampled N = 129 with
N = 65 test case. The Ex error is normalized by |(4π/ν)maxr,z Jx |≈ |10.2341 sin(2πνt)|
and ∇ · E is normalized by |(4π/νa)maxr,z Jx | ≈ |545.8187 sin(2πνt)|. On the right are
the associated convergence rates.

5. Conclusion

We have presented a new version of our Green’s function numerical method for
Maxwell’s equations. This new formulation results in a completely local propagator
that does not require Helmholtz decomposition. In principle, the method can choose
any CFL but at the cost of larger ghost regions. We have demonstrated a high-order
adaptive version of the solver in some test examples. In the future, we are interested
in incorporating this method in EM PIC using Lawson’s method where the fields and
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particles are evolved together with a Runge–Kutta scheme with an extra propagator
step for the fields.

Appendix: High-order B-splines

For completeness, we give the B-splines used in our implementation for the delta
approximants and interpolants. Detailed discussions on creating high-order B-
splines are given in [7; 3; 12; 11; 10; 9]. Wq,p denotes a q-th-order accurate, C p

B-spline:

W6,0(x)=


−

1
12 |x |

5
+

1
4 |x |

4
+

5
12 |x |

3
−

5
4 |x |

2
−

1
3 |x |+1, |x | ∈ [0, 1],

1
24 |x |

5
−

3
8 |x |

4
+

25
24 |x |

3
−

5
8 |x |

2
−

13
12 |x |+1, |x | ∈ [1, 2],

−
1

120 |x |
5
+

1
8 |x |

4
−

17
24 |x |

3
+

15
8 |x |

2
−

137
60 |x |+1, |x | ∈ [2, 3],

0, |x |> 3,

(43)

W6,6(x)=



−
665

12048 |x |
9
+

665
3012 |x |

8
−

2419
12048 |x |

7
−

2437
12048 |x |

6

+
2723
3012 |x |

4
−

4543
3012 |x |

2
+

19177
21084 , |x | ∈ [0, 1],

133
4016 |x |

9
−

399
1004 |x |

8
+

39659
20080 |x |

7
−

104409
20080 |x |

6
+

23443
3012 |x |

5

−
14175
2008 |x |

4
+

7553
1506 |x |

3
−

32207
10040 |x |

2
+

2933
15060 |x |+

13081
14056 , |x | ∈ [1, 2],

−
133

12048 |x |
9
+

665
3012 |x |

8
−

114139
60240 |x |

7
+

109283
12048 |x |

6
−

79303
3012 |x |

5

+
283423

6024 |x |
4
−

75215
1506 |x |

3
+

170023
6024 |x |

2
−

90923
15060 |x |−

17653
42168 , |x | ∈ [2, 3],

19
12048 |x |

9
−

133
3012 |x |

8
+

225859
421680 |x |

7
−

221003
60240 |x |

6
+

23299
1506 |x |

5

−
30793

753 |x |
4
+

49184
753 |x |

3
−

208208
3765 |x |

2 53632
3765 |x |+

32512
5271 , |x | ∈ [3, 4],

0, |x |> 4.

(44)
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