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SIMPLE SECOND-ORDER FINITE DIFFERENCES
FOR ELLIPTIC PDES

WITH DISCONTINUOUS COEFFICIENTS AND INTERFACES

CHUNG-NAN TZOU AND SAMUEL N. STECHMANN

In multiphase fluid flow, fluid-structure interaction, and other applications, partial
differential equations (PDEs) often arise with discontinuous coefficients and
singular sources (e.g., Dirac delta functions). These complexities arise due to
changes in material properties at an immersed interface or embedded boundary,
which may have an irregular shape. Consequently, the solution and its gradient
can be discontinuous, and numerical methods can be difficult to design. Here
a new method is presented and analyzed, using a simple formulation of one-
dimensional finite differences on a Cartesian grid, allowing for a relatively easy
setup for one-, two-, or three-dimensional problems. The derivation is relatively
simple and mainly involves centered finite difference formulas, with less reliance
on the Taylor series expansions of typical immersed interface method derivations.
The method preserves a sharp interface with discontinuous solutions, obtained
from a small number of iterations (approximately five) of solving a symmetric
linear system with updates to the right-hand side. Second-order accuracy is
rigorously proven in one spatial dimension and demonstrated through numerical
examples in two and three spatial dimensions. The method is tested here on
the variable-coefficient Poisson equation, and it could be extended for use on
time-dependent problems of heat transfer, fluid dynamics, or other applications.

1. Introduction

In many applications, partial differential equations (PDEs) arise with discontinuous
coefficients and singular sources (e.g., Dirac delta functions). These complexities of-
ten arise due to changes in material properties at an interface or immersed boundary,
which may have an irregular shape; see Figure 1. For example, the immersed bound-
ary may be a rigid or flexible structure, such as a heart valve [10], or the immersed
interface may separate two fluids as in gas bubbles or liquid droplets [34]. Our own
interest was motivated by recently derived equations for atmospheric dynamics, in
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122 CHUNG-NAN TZOU AND SAMUEL N. STECHMANN

Figure 1. Examples of interfaces separating two regions �− and �+ in (top) 1D, (bottom
left) 2D, and (bottom right) 3D.

the limit of rapid rotation and strong (moist) stratification, including phase changes
of water and phase interfaces between cloudy and noncloudy regions [33].

For PDEs with such complexities, numerical methods can be challenging to
design. Elliptic PDEs are a common test case, and they often form an important
component of time-dependent systems. Many methods have been proposed using
finite element methods [2; 12], finite volume methods [13; 4], and finite difference
methods. Each of these approaches can be valuable in different situations, depending
on priorities of computational efficiency, ease of implementation, etc. A primary
goal of the present paper is simplicity, and finite difference methods, with Cartesian
grids, are perhaps the simplest class of methods. Therefore, for comparison, we
next describe some finite difference methods in more detail.

The immersed boundary method (IBM) was introduced in the pioneering work
of Peskin [29; 30; 31]. The IBM is simple and efficient and has been applied
to a variety of problems with three-dimensional fluid flow [10; 14]. In the IBM
approach, the effect of the immersed boundary is represented as a forcing function
applied to the fluid. Ideally, the forcing should be singular and the solution should
have discontinuities. However, the IBM uses a smoothed version of a Dirac delta
function, which introduces some smearing near the boundary or interface and causes
the solution to be continuous. The method was originally designed with first-order
accuracy, and it has been extended to be “formally” second-order accurate [16; 11;
28; 6; 7], although the “formal” second-order accuracy holds only in the case that
the forcing is sufficiently smooth, not in the case of a nearly singular forcing.

The immersed interface method (IIM) was developed to produce improvements
such as second-order accuracy and a solution with a sharp discontinuity and no
smearing at the interface [19; 20]. The method is derived by allowing an extended
stencil, beyond the standard stencil for the Laplacian operator, to be used at grid
points near the interface; for the extended stencil, the finite-difference weights are
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then found by the method of undetermined coefficients, with constraints on the
coefficients being chosen to achieve the desired local truncation error based on
Taylor series. The extended stencil of the IIM must be chosen with care in order
to avoid instability [8; 21; 5], since the IIM linear operator is not symmetric. One
approach is to carefully construct the IIM operator to satisfy a discrete maximum
principle by using constrained quadratic optimization techniques [21; 5].

While the IIM has been implemented in multidimensional fluid flow problems,
the formulation is complicated by the need for derivations of many spatial and
temporal jump conditions, and also derivatives of jump conditions [22; 18; 38; 37].
Many other versions of the IIM with different derivations have been developed [36;
3; 32; 17], and some are discussed further in Section 5 below. In the present paper,
one distinguishing feature is that the present derivation involves the relatively simple
use of centered finite difference formulas, without the need for derivatives of jump
conditions, and with less reliance on the Taylor series expansions of typical IIM
derivations. Such simplifications to the derivations should contribute to enhanced
ease of use on three-dimensional problems.

The ghost fluid method (GFM) is another method that produces a solution with
a sharp discontinuity and no smearing at the interface [23]. While it is only first-
order accurate, the GFM is simple to formulate and implement, and it is efficient
for problems with three-dimensional multiphase fluid flow [15; 35]. Another
advantageous property is that the GFM finite difference operator is symmetric,
which allows the use of conjugate gradient algorithms and guarantees robustness of
the method.

In the present paper, the goal is to design a method with the advantageous
properties of the GFM — sharp interface, easy to formulate and implement, efficient
for use on three-dimensional problems, and utilization of a symmetric matrix —
while also achieving the possibility of second-order accuracy. The simple formu-
lation here (Section 2) uses elementary finite differences along one-dimensional
coordinates, and the resulting linear system can be written with the same symmetric
matrix as the GFM but with corrections to the right-hand side that yield second-
order accuracy. The right-hand-side corrections are determined iteratively, which
is the main new computational expense beyond the GFM. Note that, while this
interesting algorithmic connection exists with the GFM, the derivations of the GFM
and the present method are quite different; the present method is derived using finite
differences (with explicit estimates of local truncation error from finite difference
formulas), whereas the GFM and its error and convergence are based on a weak
formulation of the problem [24]. Example solutions with the present method are
shown for one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) problems (Section 3). A small, fixed number of iterations (≈ 5) is shown to be
sufficient for achieving a second-order accurate solution (Section 4), which suggests
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the present methods may be efficient enough for use on complex three-dimensional
fluid flow. Conclusions and further comparisons with the formulations of other
methods [36; 3; 32; 17; 26; 27] are discussed in Sections 5 and 6.

Given that many previous methods have been proposed for this problem over
many years, it is worthwhile to emphasize one of the main distinguishing features
of the present method: a simple derivation and setup. The derivation here is
mainly achieved using centered finite difference formulas, so it is relatively easy to
formulate and set up the method, even in 3D. At the same time, the method does
utilize a small number of iterations, so it may have a greater computational expense
than some other methods (unless one could propose a more sophisticated and faster
iterative procedure, a direction which we have not yet pursued exhaustively). In
summary, in terms of practical use, the simple derivation and formulation should be
useful for applications where one is less concerned with achieving the least possible
expense of the computation itself and more concerned with minimizing the time
and effort needed to initially design and code the method.

2. Numerical methods

In this section, the numerical methods are derived for 1D, 2D, and 3D equations in
Sections 2.1, 2.2, and 2.3, respectively. A rigorous proof of second-order conver-
gence is presented in Section 2.1.2 for the 1D case.

2.1. One dimension. Consider a one (spatial) dimensional domain � divided into
subdomains�+ and�− by an interface 0. The variable coefficient Poisson equation
on each subdomain reads

(βux)x = f (x) for x ∈� \0, (1)

where β = β(x) and f (x) can be discontinuous across interface points x I ∈ 0. The
jump conditions across the interface are given as

[u] = u+− u− = a(x) for x ∈ 0,

[βux ] = β
+u+x −β

−u−x = b(x) for x ∈ 0.
(2)

We focus here on the case of two subdomains and one interface point, as it is
straightforward to extend the methods for cases with more subdomains and interface
points. Here u± = limx→x±I

u(x) and β± = limx→x±I
β(x).

As an alternative formulation of the problem, one could incorporate the jump
conditions (2) into the differential equation itself by adding singular sources to the
right-hand side of the equation. In such a formulation, the differential equation
would take the form (βux)x = f (x)+ bI δ(x − x I )+ aIβδ

′(x − x I ), where β =
(β++β−)/2 and aI = a(x I ) and bI = b(x I ), and where this differential equation is
valid over the entire domain �. On the other hand, the differential equation in (1) is
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Figure 2. Cartesian grid points and an interfacial point in between.

valid only within each of the separate regions �+ and �−, and the jump conditions
in (2) are needed to connect the solutions in �+ and �− and complete the problem
specification. It will be convenient here to use the separate formulation in (1)–(2)
throughout the paper.

2.1.1. Finite differences. A second-order finite-difference method can be derived
on a Cartesian grid, with a symmetric operator, in the following way.

First, if the interface 0 = {x I } does not intersect with the grid edges connecting
the three points xi−1, xi , and xi+1, then we call xi a standard Cartesian point. For
all the standard Cartesian points we follow the standard second-order discretization
for (1):

βi+1/2((ui+1− ui )/1x)−βi−1/2((ui − ui−1)/1x)
1x

= fi + O(1x2). (3)

Next, consider nonstandard Cartesian points, such as xi and xi+1 with an in-
terfacial point x I ∈ 0 in between and with xi ∈ �

− and xi+1 ∈ �
+, as shown in

Figure 2. Since the number of nonstandard points is assumed to be small, it should
be possible to have an overall second-order accurate method that locally uses a
first-order discretization at nonstandard points. Therefore, we use a first-order
discretization of (βux)x ,

(βux)x(xi )=
β(xm−)ux(xm−)−β(xi−1/2)ux(xi−1/2)

xm−− xi−1/2
+ O(1x), (4)

followed by second-order discretizations of the ux terms, which lead to

βm−(u I−− ui )/((1− θ)1x)−βi−1/2(ui − ui−1)/(1x)
((2− θ)/2)1x

= fi + O(1x), (5)

where θ = (xi+1 − x I )/1x . Note that the midpoints xm− = (xi + x I )/2 and
xm+ = (x I + xi+1)/2, illustrated in Figure 2, are useful here to allow second-order
discretizations of ux . Here βm− = β(xm−) and βm+ = β(xm+).

The final step is to replace in (5) the appearance of the interface value u I− with
Cartesian values and adjustments consisting of known quantities. To do this, we
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obtain additional equations by discretizing (1) at x I− and x I+, the left and right
limits of x I , using a method similar to the one above:

βm+(ui+1− u I+)/(θ1x)−βI+ux(x I+)

θ1x/2
= f I++ O(1x) at x I+, (6)

βI−ux(x I−)−βm−(u I−− ui )/((1− θ)1x)
(1− θ)1x/2

= f I−+ O(1x) at x I−, (7)

where βI± = β(x I±). The non-Cartesian unknowns ux(x I±) and u I± above can
now be replaced by Cartesian unknowns by the following two steps. First, the
weighted sum (θ1x/2) · (6)+ ((1− θ)1x/2) · (7) is a combination that produces
the jump [βux ]:

βm+

(
ui+1− u I+

θ1x

)
−βm−

(
u I−− ui

(1− θ)1x

)
− [βux ]

= (θ · f I++ (1− θ) · f I−)
1x
2
+ O(1x2). (8)

Second, by using the jump conditions (2), we see that (8) can be rewritten as our
desired formula for replacing u I− by Cartesian u values:

u I− =
β̂(1− θ)
βm−

ui+1+
β̂θ

βm+
ui

−
β̂θ(1− θ)1x2

βm+βm−

(
βm+aI

θ1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
, (9)

where

β̂ =
βm+βm−

(1− θ) ·βm++ θ ·βm−
. (10)

Lastly, substituting (9) into (5) yields a first-order discretization of the differential
equation at xi , in terms of only Cartesian values of u:

1
1x2 (βi−1/2 · ui−1− (βi−1/2+ β̂)ui + β̂ · ui+1)= fi ·

(
2− θ

2

)
+
β̂θ

βm+

(
βm+

θ

aI

1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
+ O(1x). (11)

For the neighboring nonstandard point at xi+1, one can derive a similar finite
difference formula:

1
1x2 (β̂ · ui − (β̂ +βi+3/2)ui+1+βi+3/2 · ui+2)= fi+1 ·

(
1+ θ

2

)
+
β̂(1− θ)
βm−

(
−

βm−

(1− θ)
aI

1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
+O(1x). (12)
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Comparing (11) and (12), it is clear that the difference operator acting on u is
symmetric. The linear system can be solved using many standard efficient methods.

Note that this method in (11)–(12) looks similar to the GFM, which is first-
order accurate [23; 24], but (11)–(12) include important differences that render this
method second-order accurate. For instance, the right-hand-side terms in (11)–(12)
have coefficients that are different from the GFM and that arise here as part of a
systematic finite-differences derivation. Also, the values of β at the midpoints xm−

and xm+ were needed for the present method, whereas β values at the interface and
Cartesian grid points and Cartesian midpoints are utilized in the GFM [23; 24].

In comparison to the IIM [19], notice that the present method has a symmetric
operator, whereas the IIM operator is nonsymmetric. Also, the derivation of the IIM
requires taking derivatives of jump conditions, whereas the present method is derived
by simply applying finite difference formulas to the differential equation. It would
be interesting to try to make a more firm connection between the present method
and the IIM, which might also help tie together the GFM and IIM; however, we
have not found any simple and clear connection beyond the comparisons described
above.

To summarize, the basic idea in deriving (11)–(12) was to (i) start with midpoint-
based finite differences using both Cartesian points and interface points, and then
(ii) use the jump conditions to eliminate the interface values u I± from the system.

2.1.2. Proof of second-order convergence.

Theorem 1. The numerical solution in Section 2.1.1 converges to the exact solution
in the L2 norm with second-order accuracy: ‖U −Uex‖2 = O(1x2).

Proof. The setup of the proof is as follows. The numerical method in (3), (11),
and (12) can be written in matrix-vector form as AU = F, and the exact solution
satisfies AUex= F+τ , where τ is the local truncation error. The error e=U−Uex

then satisfies Ae=−τ , and solving for e gives e=−A−1τ . The L2 norm of the
error then satisfies

‖e‖2 = ‖A−1τ‖2 ≤ ‖A−1
‖2‖τ‖2, (13)

where the remaining task is to analyze ‖A−1
‖2 and ‖τ‖2 for small 1x .

Consistency was established in Section 2.1.1. Specifically, the local truncation
error can be written as

τ = τs + τns with ‖τs‖2 = O(1x2) and ‖τns‖2 = O(1x2), (14)

where we have split τ so that the elements of τs are nonzero only at standard
points and the elements of τns are nonzero only at nonstandard points. The O(1x2)

scaling in (14) is then true because each element of τs is O(1x2), based on the
finite difference formulas at the standard points; and each element of τns is O(1x),
but the fraction of nonstandard points is O(1x), so ‖τns‖2 = O(1x2).



128 CHUNG-NAN TZOU AND SAMUEL N. STECHMANN

Stability is established by the bound

‖A−1
‖2 ≤

|�|2

βm
, (15)

where |�| is the total length of the domain and βm = minx∈� β(x) is a constant
that is independent of 1x , and it is assumed that β(x) > 0 for all x . The proof of
this bound is well-known [25] and is based on summation by parts and discrete
Poincaré–Friedrichs inequality.

The proof of the theorem is completed by combining the consistency and stability
results in (14) and (15) to show that (13) is O(1x2). �

Note that, in the L∞ norm, the local truncation error can only be bounded as
‖τns‖∞ = O(1x), which would complicate the present proof technique for second-
order convergence if attempted with the L∞ norm instead of the L2 norm. Also,
note that we have no such proof in two- or three-dimensional space, although proofs
for 2D and 3D have been presented for similar methods [1], and numerical examples
below demonstrate second-order convergence, in both the L2 and L∞ norms.

2.2. Two dimensions. Now consider the two-dimensional Poisson equation

(βux)x + (βu y)y = f (x, y) for � \0, (16)

where �=�+∪�−∪0 and 0 is the interface between the sets �+ and �−. With
n= (n1(x, y), n2(x, y)) as the unit normal along 0, the interface jump conditions
are given as

[u] = u+− u− = a(x) for x ∈ 0,

[βun] = β
+u+n −β

−u−n = b(x) for x ∈ 0,
(17)

where un = n · ∇u is the derivative of u in the direction of the normal vector.

2.2.1. Finite differences. The goal of this section is to extend the ideas of the
1D case of Section 2.1 to the 2D case of (16)–(17) and arrive at a second-order
finite-difference method. Similar to the 1D case, we call a Cartesian point (xi , y j )

a standard point if this point and its nearest neighbors all lie within �+ or all lie
within �−. For standard points, (16) is discretized with the standard, second-order,
five-point finite-difference formula. For nonstandard points, on the other hand, the
interface must be taken into account.

For nonstandard points, such as point (xi , y j ) illustrated in Figure 3, we obtain
a first-order discretization by using similar ideas as in the 1D case. Following a
derivation similar to (5)–(11), by essentially just replacing f by f − (βu y)y , we
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Figure 3. Nonstandard grid point at (xi , y j ).

arrive at
1
1x2 (βi−1/2, j · ui−1, j − (βi−1/2, j + β̂)ui, j + β̂ · ui+1, j )

+
1
1y2 (βi, j−1/2 · ui, j−1− (βi, j−1/2+βi, j+1/2)ui, j +βi, j+1/2 · ui, j+1)

= fi, j ·

(
2− θ

2

)
+ (βu y)y(xi , y j ) ·

θ

2
+ F x

cor+ O(1x), (18)

where

β̂ =
β(xm+, y j ) ·β(xm−, y j )

(1− θ) ·β(xm+, y j )+ θ ·β(xm−, y j )
, (19)

and

F x
cor =

β̂θ

β(xm+, y j )

{
β(xm+, y j )a(x I , y j )

θ1x2 +
[βux ]

1x

+
1
2(θ · ( f − (βu y)y)(x I+, y j )+ (1− θ) · ( f − (βu y)y)(x I−, y j ))

}
. (20)

This finite-difference formula has a left-hand side with the desirable property of a
symmetric operator, as in the 1D case. However, the right-hand side of (18) now
depends on the solution u itself, so an iterative method will be described below for
finding a solution.

Also, a more general case would allow for other interface crossings, such as
a crossing at point (xi , yJ ), with y j < yJ < y j+1, which would generate some
slight modifications to the derivation and finite-difference formula. Since the more
general case is only slightly different from (18), it is relegated to Appendix A.

To estimate the derivatives on the right-hand side of (18), simple finite differences
are used. For the term (βu y)y(xi , y j ), standard centered differences can be used
with the points (xi , y j−1), (xi , y j ), and (xi , y j+1). For the term (βu y)y(x I−, y j ) at
the interface, from (20), one can approximate it with the nearby Cartesian value
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(βu y)y(xi , y j ) with an acceptable error of O(1x), and then one can use a standard
centered discretization with the points (xi , y j−1), (xi , y j ), and (xi , y j+1). The term
(βu y)y(x I+, y j ) can be handled similarly by using (βu y)y at the nearby Cartesian
point (xi+1, y j ). Lastly, the jump [βux ] from (20) can be written in terms of normal
and tangential jumps as

[βux ] = [βun]n1
− [βuτ ]n2

= bI n1
− [βuτ ]n2. (21)

The term [βuτ ] can then be estimated using finite differences with u values from
the interface points labeled I−1, I , and I+1 in Figure 3 (or possibly using another
triplet, say I − 2, I , and I + 1, if the two interface points I − 1 and I are located
too close together, such as within O(h2) distance; see Appendix B for details).
Note that a second-order finite-difference formula is needed for [βuτ ] in order for
the term [βux ]/1x to have an error of O(1x). To determine the u values at the
interface points, one can use the formula

u(x I−, y j )=
(1− θ)β̂
β(xm−, y j )

ui+1, j +
θβ̂

β(xm+, y j )
ui, j −

β̂(1− θ)θ1x2

β(xm+, y j )β(xm−, y j )

·

(
β(xm+, y j )aI

θ1x2 +
[βux ]

1x
+
θ

2
· ((βux)x)i+1, j +

(1− θ)
2
· ((βux)x)i, j

)
, (22)

and u(x I+, y j )= u(x I−, y j )+ a(x I , y j ) by the jump condition (17). This formula
arises as part of the derivation of (18) and is similar to the 1D case, and formulas
for u(xi , yJ±) can be obtained similarly if the crossing is in the y-direction. Note
that this formula in 2D does not actually provide the desired result of the interface u
value in terms of the Cartesian u values, since the right-hand side depends on
interface u values via the [βux ] term. Nevertheless, this formula can be used as part
of an iterative procedure to complete the specification of the numerical methods.

2.2.2. Iterative methods. In this section, a simple iterative method is proposed here
for solving the linear system from Section 2.2.1.

Before describing the standard iterative method of the present paper, consider
first a type of Picard iteration:

Au[k+1]
= F[k]. (23)

This is an iterative version of the matrix-vector form of the finite difference method,
one row of which is described in (18): A is the symmetric matrix from the left-hand
side, u[k+1] is the vector of all Cartesian u values (from iteration k+1), and F[k] is the
vector from the right-hand-side terms. The basic idea is to iteratively update F[k] on
the right-hand side as new, more accurate information about u[k] is obtained. As an
initial condition, F[0] is defined as the right-hand side of (18) with all instances of u
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ignored (i.e., with [βuτ ], (βux)x , and (βu y)y all set to zero, essentially equivalent
to setting u[0] = 0 as an initial guess), and the first solution u[1] is found by solving
Au[1] = F[0]. As a result, the solution u[1] at the first iteration is essentially the
same as the GFM solution [23; 24] and is therefore a first-order accurate solution.
It can be used to estimate the interface u values, which we assemble abstractly into
a vector u[k]I and update iteratively as u[k+1]

I = Bu[k]I +Cu[k+1]
+ G, one row of

which is described by (22): the Bu[k]I corresponds to the [βuτ ] term, the Cu[k+1]

corresponds to all terms with Cartesian u values, and the G corresponds to the jump
terms involving aI and bI . An initial interface value of u[0]I = 0 is used, consistent
with the idea of ignoring all instances of u in the initial condition F[0]. The second
iteration then proceeds by defining F[1] based on the right-hand side of (18) and
now using u[1] and u[1]I to provide a more accurate estimate of the true F value.
The solution u[2] at the second iteration is then found from solving the symmetric
system Au[2] = F[1]. This procedure can be repeated to iteratively estimate the
solution of the finite-difference method.

For the stopping criterion for the iterative procedure, the differences u[k]d =

‖u[k+1]
− u[k]‖∞ and F [k]d = ‖F[k+1]

− F[k]‖∞ are monitored. When k is large
enough so that u[k]d <Cuh2, where h=1x =1y, one can presumably stop iterating
since the iterations are producing only small corrections that are within the desired
O(h2) accuracy of the numerical solution. As our standard stopping criterion, in
addition to u[k]d < Cuh2 we also require F [k]d < CF h in order to ensure that the
estimated right-hand-side terms are not significantly changing at any location. The
constants Cu and CF will be set equal to 1 here for simplicity, but in the future it
would be interesting to tailor the choices of Cu and CF to the particular problem
under consideration; for instance, they could be chosen based on the expected
error, which could be estimated based on, e.g., expected local truncation error
and/or smoothness of the solution. Also note that, while this standard stopping
criterion was chosen with solution accuracy as the main consideration, one could
also imagine other stopping criteria that consider computational efficiency or other
factors; some other stopping criteria are explored in Section 4.

As the standard iterative method used here, a modification of Picard iteration is
actually used. While Picard iteration does work well in many cases, we found that
it diverges in some cases. Nevertheless, by making some slight modifications, a
robust method can be designed. Our standard iterative method here uses a simple
relaxation procedure to extend Picard iteration; it is described in Appendix C, and
it is shown below to provide robust results.

2.3. Three dimensions. The three-dimensional Poisson equation is

(βux)x + (βu y)y + (βuz)z = f (x, y, z), for � \0, (24)
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where �=�+ ∪�− ∪0 and 0 is a surface that marks the interface between the
sets �+ and �−. The interface jump conditions are given as in the 2D case in (17).

The 3D discretization is essentially the same as in the 2D case in Section 2.2.
We note one difference that arises: in 3D, the jump [βux ] from (21) takes the form

[βux ] = [βun]c0
+ [βuτ1]c

1
+ [βuτ2]c

2

= bI c0
+ [βuτ1]c

1
+ [βuτ2]c

2, (25)

where x̂ = c0n̂+ c1τ̂1 + c2τ̂2 was used to write the unit coordinate vector x̂ in
terms of the interface normal vector n̂ and two unit vectors τ̂1 and τ̂2 from the
2D tangent plane of the interface. Here, in 3D, note that tangential derivatives are
needed in two independent directions in the 2D tangent plane. The two directions
can be conveniently chosen by using the Cartesian coordinate planes. For example,
if (x I , y j , zk) ∈ 0, where x I is not a Cartesian grid point, then the intersection of
surface 0 and the plane z = zk can be used to define one direction in the 2D tangent
plane, and the intersection of surface 0 and the plane y = y j can be used to define
the other direction. In this way, computation of the tangential derivatives in 3D can
be reduced to essentially the same form as in 2D.

3. Examples

In this section, second-order convergence is demonstrated through numerical exam-
ples. In all examples, the same grid spacing is used in each coordinate direction
(1x =1y =1z), and the number of grid points in each coordinate direction is N ,
so the total number of grid points is N , N 2, or N 3 for the 1D, 2D, or 3D cases,
respectively.

3.1. One dimension.

Example 1D-1. Consider a domain �= [0, 1] separated into subdomains �−=
[0, x I ) and �+ = (x I , 1], where x I = 2−

√
2. The solution to the one-dimensional

equation βuxx = f is u− = exp(−x)− 0.3646x + 0.4 and u+ = exp(−x)/2+
x2/2+ 0.5005x where β = 100 in �− and β = 200 in �+, with f = 100 exp(−x)
in �− and f = 100 exp(−x)+200 in �+. The jump conditions connecting the two
equations at x I are a(x I )= u+− u− = 0 and b(x I )= 100(2u+x − u−x )= 253.72.

The exact solution and error analysis of this example can be found in Figure 4.

3.2. Two dimensions. The following 2D and 3D examples are tested on some
rectangular domain � where � will be divided into �+ and �− by an interface 0.
It will sometimes be convenient to describe the interface 0 in terms of a level-set
function φ(x) as 0 = {x ∈� : φ(x)= 0}, where the two sets �+ and �− can be
described as�+={x ∈� :φ(x)>0} and�−={x ∈� :φ(x)<0}. The coefficients
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Figure 4. Example 1D-1. Left: numerical solution with number of grid points N = 61.
Right: error ‖e‖ as a function of number of grid points N , as a log-log plot including slope
of its linear fit.

β are assumed to be smooth in both �+ and �−, but may have a jump across the
interface φ. The piecewise smooth β in �+ and �− will be denoted by β+ and β−,
respectively. As a consequence, the solution u may be discontinuous across φ, but
is C2 in both �+ and �−, and will similarly be denoted by u+ and u−, respectively.
The examples in this section will provide tests of the numerical method for several
factors that could influence the numerical method’s convergence, such as geometry
of the interface, spatial variations in the coefficients β±(x, y), and contrast β+/β−

due to jumps in the coefficients.

Example 2D-1 (constant coefficient). In this example, we take β be a piecewise
constant function with β− = 2 and β+ = 1, and the interface is a circle described
by the level set function φ(x, y)= (x − 0.5)2+ (y− 0.5)2− 0.252. The solution is
u−= exp(−x2

− y2), u+= 0, with f −= 8(x2
+ y2
−1) exp(−x2

− y2), f −= 0, on
the domain �= [0, 1]× [0, 1]. Second-order convergence can be seen in Figure 5,
right.

Example 2D-2 (variable coefficient). The next example we take β to be a piecewise
smooth function with β−= x2

+ y2
+1, and β+= 1 with the same domain and level

set function as the previous example. The solution is u− = exp(x2
+ y2), and u+ =

exp(−x2
−y2) and source term is f −= 4(β−(x2

+y2
+1)+(x2

+y2)) exp(x2
+y2),

f + = 4(x2
+ y2
− 1) exp(−x2

− y2). Error analysis is presented in Figure 6, right.

Example 2D-3 (variable coefficient). With the same solution u in Example 2D-2,
this example is computed on a domain�=[−1, 1]×[−1, 1], with β−= x2

+y2
+1,

β+ =
√

x2+ y2+ 2, and f − = 4(β−(x2
+ y2

+ 1) + (x2
+ y2)) exp(x2

+ y2),
f += (4β+(x2

+ y2
−1)−2(x2

+ y2)/
√

x2+ y2+ 2) exp(−x2
+ y2). The interface
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Figure 5. Example 2D-1: constant coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

Figure 6. Example 2D-2: variable coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

is parametrized by{
x(t)= 0.02

√
5+ (0.5+ 0.2 sin(5t)) cos t,

y(t)= 0.02
√

5+ (0.5+ 0.2 sin(5t)) sin t,
(26)

with t ∈ [0, 2π ]. Second-order convergence is demonstrated in Figure 7, right.

For the spatial variations of the error, we describe the two cases of Figures 6
and 7. In these cases the error appears to typically take its maximum value near
the interface. In the special case of the outlier of N = 251 from Figure 7, right,
the error furthermore takes its maximum value at a single localized spike near one
point close to the interface. These features are possibly related to the curvature of
the interface or other factors.
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Figure 7. Example 2D-3: variable coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

Figure 8. Error plots for high-contrast case, Example 2D-4. Left: β+/β− = 0.02/1.
Right: β+/β− = 20/1.

Example 2D-4 (high-contrast coefficient cases). A series of tests were conducted
on the large coefficient ratios, either β+/β− � 1 or 1� β+/β−. Here we test
with u− = exp(x2

+ y2), and u+ = exp(−x2
− y2) with a circular interface as in

Example 2D-1, and (β+, β−)= (0.02, 1) and (20, 1). Second-order convergence
can still be obtained (see Figure 8).

3.3. Three dimensions.

Example 3D-1 (variable coefficient with spherical interface). Domain �= [0, 1]×
[0, 1] × [0, 1] is divided into �+ and �− by a sphere centered at (0.5, 0.5, 0.5)
with radius 0.25. The variable coefficients β in (24) are β− = 10+ sin(xy + z)
and β+ = 10+ cos(x + yz), with solution u− = exp(x2

+ y2
+ z2) and u+ = 0
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Figure 9. Example 3D-1: variable coefficient with spherical interface. Left: geometry of
the interface. Right: error ‖e‖ as a function of number of grid points in each coordinate
direction, N , as a log-log plot including slope of its linear fit.

Figure 10. Example 3D-2: variable coefficient with torus interface. Left: numerical
solution. Right: error ‖e‖ as a function of number of grid points in each coordinate
direction, N , as a log-log plot including slope of its linear fit.

and f − = (4β−(x2
+ y2
+ z2
+ 3/2)+ (4xy+ 2z) cos(xy+ z)) exp(x2

+ y2
+ z2),

f + = 0. See Figure 9 for the geometry of the spherical interface and second-order
convergence in L2.

Example 3D-2 (variable coefficient with torus interface). For the same β, u, and f
in the previous example, we test this iterative method on �= [−1, 1]× [−1, 1]×
[−1, 1] with a toroid interface described by the level set function φ(x, y, z) =
(x2
+ y2
+ z2
+ R2

− r2)2− 4R2(x2
+ y2), where R = 0.501+

√
2/10, r = 0.251.

The geometry of the interface and second-order convergence in L∞ and L2 are in
Figure 10.
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4. Greater efficiency via alternative stopping criteria

4.1. Iteration counts for standard stopping criterion. In most of the cases shown
above, the number of iterations required to reach the stopping criterion is small,
which makes this iterative method efficient, as demonstrated in Figure 11. More
specifically, approximately 10–20 iterations are used in 2D cases, and approximately
5–10 iterations in the 3D cases. For high-contrast cases (Example 2D-4), the number
of iterations becomes larger (approximately 50–150, as seen in Figure 12), although
it is smaller (approximately 20–40) for some N , and the bound on the number of
iterations is essentially independent of the number of grid points.

These examples demonstrate that the present method may be practical and
efficient for time-dependent problems where the elliptic solver is needed at every
time step. Also, further reduction of the iteration counts may be possible for time-
dependent problems. For instance, in these first explorations, we are using a simple
yet crude initial guess for the iterative methods; i.e., we are effectively using u[0]= 0
(see Section 2.2.2). For a better initial guess u[0], in a time-dependent problem, the
solution from the previous time step could potentially be used, with the possibility
of substantially reducing the number of iterations required.

Below we discuss other possibilities of further reducing the iterations counts
through alternative stopping criteria — e.g., by using a small, fixed number of
iterations in Section 4.2, and propose some other feasible stopping criteria in
Section 4.3.

4.2. Greater efficiency via a small, fixed number of iterations. In most cases, the
accuracy improves tremendously after only a few iterations; in other words, the
latter iterations make only small modifications to the solution in order to satisfy the
stopping criterion. Therefore, in practice, we may speed up this numerical method
by using a fixed number of iterations without losing too much accuracy. Figure 13

Figure 11. Number of iterations for (left) 2D examples and (right) 3D examples.
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Figure 12. Errors and iterations for the high-contrast cases from Example 2D-4. Top:
number of iterations as a function of the number of grid points in each coordinate direction,
N . Bottom: L2 error as a function of iterations, for N = 161.

shows results of both 2D and 3D examples with only a small number of iterations
(five), which still show second-order accuracy.

4.3. Other stopping criteria. Several other stopping criteria were also tested, be-
yond the standard criterion from Section 2.2.2, by using different combinations
of criteria for the smallness of the differences u[k]d = ‖u

[k+1]
− u[k]‖∞ and/or

F [k]d = ‖F[k+1]
− F[k]‖∞. A promising criterion may be to stop when u[k]d < h2,

without enforcing any smallness criterion on F [k]d ; in some tests, this led to second-
order accuracy with fewer iterations, although we have not yet tested this criterion
on a wide array of cases.

Also, it would be interesting in the future to tailor the stopping criterion to the
particular problem at hand. For instance, the criterion u[k]d < h2 could be slightly
generalized to u[k]d < Cuh2, where Cu is a parameter that could be chosen based on,
e.g., the expected accuracy or smoothness of the solution, given the parameters of
the problem such as β±(x, y, z), f (x, y, z), and the geometry of the interface.
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Figure 13. Error as a function of number of grid points in each coordinate direction, N ,
using a fixed number of iterations (five) for more efficient computations. Left: smooth star
example in Section 3.2. Right: torus example in Section 3.3.

5. Comparisons with formulations of other methods

In this section we compare the present formulation with the formulations of other
methods [36; 3; 32; 17; 26; 27], to add to the comparisons with the GFM [23; 24]
and IIM [19; 20; 8; 21; 5] that were described above in Section 2.1.1. An IIM
viewpoint of the present method is also described in the 1D case at the end of the
section.

In [36], another approach had been taken to obtain a symmetric operator; the
derivation used Taylor series expansions and derivatives of jump conditions, which
can be somewhat complex compared to the simple derivations of the present paper
that mainly involve centered finite difference formulas. Note that the present method
and the method of [36] are, in fact, distinct. As one difference, in the 1D versions of
the two methods, the method of [36] requires not only the symmetric operator but
also some augmentation to account for jumps, whereas the method of the present
paper has an operator in 1D that is symmetric on its own. Also, the method [36]
utilizes a discretization of the standard Laplacian operator, whereas the present
method maintains the symmetry of the elliptic operator that includes β.

In [3], an interesting approach was proposed which, like the present method,
involves a symmetric operator and an iterative method to determine an adjusted
forcing. The derivation is somewhat complex in that it is a version of the IIM and
therefore uses Taylor series and derivatives of jump conditions. The derivation is
presented in 2D, but no 3D results are presented. Also, their iterative procedure
does not produce a first-order accurate solution at the first iteration, and therefore,
it is likely to require a very large number of iterations (as possibly indicated by
their very small relaxation parameter). The number of iterations, however, are not



140 CHUNG-NAN TZOU AND SAMUEL N. STECHMANN

reported, and the iterative methods and stopping criterion are not described in detail.
In contrast, in the present paper, the first iteration is essentially the GFM, and the
simple finite-difference formulation allows for efficient setup and computation even
in 3D.

In [17], following [32], another interesting approach is used to obtain a symmetric
operator with corrections to the right-hand side. The method is implemented in
2D, but no 3D results are presented. Also, the method is presented for the standard
Laplacian operator, not for the case of discontinuous and/or spatially varying
coefficient β(x).

Another interesting method called the correction-function method has been
developed by building on the GFM and computing a corrected forcing function
to achieve higher-order accuracy [26; 27]. In this method, the corrected forcing
function is not derived explicitly; instead, the corrected forcing function is shown to
satisfy a certain new PDE, and the new PDE is solved numerically to determine the
corrected forcing function. The method has been demonstrated to achieve second-
order and even fourth-order accuracy, although it has not yet been implemented for
3D problems and it has only been developed for cases with constant coefficients
and piecewise-constant coefficients. It is similar to the method of the present paper
in that both methods seek to compute corrections to the GFM; the present paper’s
method perhaps offers a simpler formulation (involving only one-dimensional finite
differences) and simpler implementation for 3D problems.

Note that the present method appears to be well-behaved for any values of
subcell location θ , even values of θ that are close to 0 or 1; in contrast, it has been
noted in some applications of the GFM [9] that poor behavior could potentially
result if θ is close to 0 or 1. One might expect poor behavior in these cases, since
the finite difference formulas in, e.g., (6)–(7) have factors of 1/θ and 1/(1− θ);
however, these formulas are part of the derivation only, not part of the present
numerical algorithm. Here, no special treatment of the case θ ≈ 0 or θ ≈ 1 was
used in the numerical results, and in examining the possible influence of θ on the
numerical error, we found no systematic relationship. (For computing tangential
derivatives βuτ , which are not part of the GFM but are used in the present method in
higher dimensions, some values of θ are given special treatment for computing uτ ;
see Section 2.2.1.) A theoretical explanation can be seen from the finite difference
formulas of the method; in particular, notice that (11) and (12) depend on θ in a
smooth, nonsingular way. In fact, a more precise error analysis shows that the error
term O(1x) in (11) is O(θ1x) and in (12) is O((1− θ)1x), which theoretically
suggests that θ ≈ 0 or θ ≈ 1 should lead to smaller truncation error, and also
indicates that the proof of the convergence theorem in Section 2.1.2 is valid for any
value with 0 < θ < 1. Hence, the method should work fine with θ ≈ 0 or θ ≈ 1
except for possible values of precisely θ = 0 or θ = 1.
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6. Conclusions

In this article, a simple numerical scheme is proposed to obtain second-order
accuracy in solving the Poisson equation with sharp interfaces. One important
contribution is a simple derivation that mainly involves centered finite difference
formulas, with less reliance on the Taylor series expansions and derivatives of jump
conditions used in typical immersed interface method derivations. The derivation
here preserves the symmetry of the differential operator, and the method is for-
mulated on a Cartesian grid. The accuracy of the method is proved rigorously in
1D and verified numerically in 2D and 3D. The three-dimensional problems are
relatively easy to set up due to the method’s simple derivation.

An iterative procedure was used for solving 2D or 3D problems, and the desired
second-order accuracy can be obtained with only a small, fixed number of iterations
(typically five), which makes this method efficient, even in 3D. In the future it
would be interesting to investigate other algorithmic choices; for instance, perhaps
an iterative method could be designed that requires an even smaller number (e.g.,
two or three) of iterations, or perhaps the method could be successful if the iterated
correction terms were instead written as part of the left-hand-side linear operator,
in which case the symmetry of the operator is lost but the nonsymmetric system
could possibly be solved without the need for the outer iterations introduced in the
present paper. Also, here we did not make a great effort to optimize the algorithms
for cases with high-contrast coefficients, which require higher iteration counts, but
such an effort would be interesting to pursue in the future.

The proposed method may be applied to solving time-dependent problems that
require the solution of an elliptic PDE at each time step — for example, the heat
equation with interfaces or multiphase flow problems [10; 34; 33]. In such applica-
tions, the present method could be used with any characterization of the interface
(level set, Lagrangian markers, etc.), and the interface could have a location and
shape that evolves in time. Also, for the iterative algorithms described here, some
computational savings may be possible for time-dependent problems, since the
solution from the previous time step could provide a good initial guess for the
iterative method at the current time step.

Appendix A. 2D discretization with two interface crossings

In this appendix, it is shown how to formulate the finite difference method in a case
that is more general than in Section 2.2.1.

Suppose the interface crosses the stencil of point (xi , y j ) in two places, as shown
in Figure 14. The crossing between (xi , y j ) and (xi+1, y j ) is as in Section 2.2.1, and
now a new, second crossing is present between (xi , y j ) and (xi , y j+1). Accordingly,
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Figure 14. Nonstandard point (xi , y j ) with interface crossing the stencil in both x and y directions.

define ζ = (y j+1 − yJ )/1y, where (xi , yJ ) ∈ 0, and assume (xi , y j ) ∈ �
− and

(xi , y j+1) ∈�
+.

To obtain a finite difference method with a symmetric operator in this case, start
by writing the 1D formula from (11) as

Sx u = (βux)x · (2− θ)/2+ F x
cor+ O(1x), (27)

where Sx is the symmetric finite difference operator and F x
cor is the correction term.

A similar formula can be derived for a symmetric finite difference operator in the y
direction:

Syu = (βu y)y · (2− ζ )/2+ F y
cor+ O(1y). (28)

Summing up the two leads to

Sx u+Syu= f −(βux)x ·θ/2−(βu y)y ·ζ/2+F x
cor+F y

cor+O(1x)+O(1y), (29)

which is the desired formula. Also note that the derivation in 3D follows the same
simple principles by including the addition of a third component for Szu.

Written out in detail, (29) takes the form

1
(1x)2

(
β(xi−1/2, y j ) · ui−1, j − (β(xi−1/2, y j )+ β̂)ui, j + β̂ · ui+1, j

)
+

1
(1y)2

(
β(xi , y j−1/2) · ui, j−1− (β(xi , y j−1/2)+ β̃)ui, j + β̃ · ui, j+1

)
= fi, j − (βux)x(xi , y j ) ·

θ

2
− (βu y)y(xi , y j ) ·

ζ

2
+ F x

cor+ F y
cor+ O(1x), (30)

where β̂ is the same as (19) and

β̃ =
β(xi , ym+) ·β(xi , ym−)

(1− ζ ) ·β(xi , ym+)+ ζ ·β(xi , ym−)
, (31)
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with midpoints ym+ = (yJ + y j+1)/2 and ym− = (y j + yJ )/2, and

F x
cor =

β̂θ

β(xm+, y j )1x

{
β(xm+, y j )a(x I , y j )

θ1x
+ [βux ]

+
(
θ · ( f − (βu y)y)(x I+, y j )+ (1− θ) · ( f − (βu y)y)(x I−, y j )

)1x
2

}
, (32)

F y
cor =

β̃ζ

β(xi , ym+)1y

{
β(xi , ym+)a(xi , yJ )

ζ1y
+ [βu y]

+
(
ζ · ( f − (βux)x)(xi , yJ+)+ (1− ζ ) · ( f − (βux)x)(xi , yJ−)

)1y
2

}
, (33)

where [βux ] = [βun]n1
− [βuτ ]n2 and [βu y] = [βuτ ]n1

+ [βun]n2.
Several variations could also used. For instance, on the right-hand side of (30),

one may replace (βux)x by f − (βu y)y , or one may replace (βu y)y by f − (βux)x .
Similar replacements could be made in (32) and (33). For our numerical tests, we
used the (βu y)y-based version: Sx u+ Syu = f · (2− θ)/2+ (βu y)y · (θ − ζ )/2+
F x

cor+ F y
cor.

Appendix B. Computing tangential derivatives

Here we compute the tangential derivatives up to second order using the values of u
at the interfacial points and two of the neighboring interfacial points (see Figure 15
for reference). By parametrizing our boundary of domain in either y = y(x) or
x = x(y), whichever is a properly defined function, we first compute dy/dx(x I )

or dx/dy(yI ) and dw/dx or dw/dy correspondingly, where w = u(x, y(x)) or
w = u(x(y), y).

Suppose y = y(x) is a properly defined function as in Figure 15; the unit tangent
vector of the interface τ = (τ1, τ2) at (x I , yI ) can be written as

(τ1, τ2)=

{
(1, dy/dx)/

√
1+ (dy/dx)2 if τ1 > 0,

−(1, dy/dx)/
√

1+ (dy/dx)2 if τ1 < 0.
(34)

Figure 15. Three neighboring interface points are used to compute uτ centered at point I .
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Combining (34) with uτ = uxτ1+ u yτ2,

uτ =
(ux + u y yx)√
1+ (dy/dx)2

· sign τ1 =
wx · sign τ1√
1+ (dy/dx)2

= wx · τ1. (35)

Suppose wy and xy are both accurate to second order; we have

uτ =
(wx + O(h2))√

1+ (dy/dx + O(h2))2
∼

(wx + O(h2))√
1+ (dy/dx)2+ O(h2)

=
(wx + O(h2))√

1+ (dy/dx)2
√

1+ O(h2)
∼

(wx + O(h2))√
1+ (dy/dx)2

(
1− 1

2 O(h2)
)

=
wx√

1+ (dy/dx)2
+ O(h2). (36)

Both the derivatives with parametrization should be accurate up to second order.
Using the interfacial and neighboring two interfacial points, we can compute yx to
second order by

ay(x I+1)+ by(x I )+ cy(x I−1)= yx(x I )+ O(h2), (37)

where

D=1xl1xr (1xr−1xl), a=−1x2
l /D, c=1x2

r /D, b=−(a+c), (38)

and 1xl = x I−1− x I and 1xr = x I+1− x I . Note that the denominator D can be
small when neighboring interface points are very close, which leads to numerical
issues. This issue can be avoided by, for example, using (x I+1, yI+1), (x I , yI ), and
(x I−2, yI−2) instead of (x I+1, yI+1), (x I , yI ), and (x I−1, yI−1) in Figure 15.

Similar set up for either wx or wy follows the above:

aw(x I+1)+ bw(x I )+ cw(x I−1)= wx(x I )+ O(h2), (39)

and the coefficients a, b, and c are exactly the same as above. Second-order buτ
hence follows from the equation buτ =±wx/yx or buτ =±wy/xy , depending on
|yx | < 1 or |xy| < 1, and the sign adjustment comes from the sign of τ1 and τ2,
respectively.

Appendix C. Relaxation

As discussed in Section 2.2.2, Picard iteration works well in many cases, but we
found that it sometimes diverges. For this reason, as our standard iterative scheme,
we instead use a simple relaxation scheme to bypass this difficulty and guarantee
that the iterative scheme stops. The idea behind the relaxation scheme is to update
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the forcing term as

F[k] = αk F[Tk ]+ (1−αk)F[k−1], (40)

which is a mixture between the previous forcing F[k−1] and the temporary forcing
F[Tk ] that would have been used if a Picard update would have been followed. The
parameter αk is chosen to guarantee that u[k+1] is not too far away from u[k].

One cycle of the relaxation scheme goes as follows. Suppose u[k] was com-
puted by solving Au[k] = F[k−1], and we now want to compute the next itera-
tion. With u[k], compute the temporary right-hand-side F[Tk ] by following the
Picard update procedure from Section 2.2.2. A temporary solution u[Tk+1] is then
obtained by solving Au[Tk+1] = F[Tk ]. Now the parameter αk is determined to
guarantee that u[k+1] is not too far away from u[k]; to this end, define the ratio
rk = ‖u[Tk+1]− u[k]‖/‖u[k]− u[k−1]

‖. If this ratio is small (rk < 1), then there is no
need for relaxation and we set αk = 1. If this ratio is large (rk ≥ 1), then we set
αk = ρ/rk , where ρ is a preselected factor between 0 and 1. In practice, we pick
‖ · ‖ = ‖ · ‖∞ and ρ to be between 0.9 and 0.99. With this relaxation scheme for the
forcing F[k], the solution is likewise updated as u[k+1]

= αk u[Tk+1]+(1−αk)u[k], as
a mixture of the previous solution estimate u[k] and the temporary solution estimate
u[Tk+1] that would have been used if a Picard update would have been followed.

The differences u[k]d = ‖u
[k+1]
− u[k]‖∞ and F [k]d = ‖F[k+1]

− F[k]‖∞ are guar-
anteed to be decreasing as k increases if this relaxation procedure is followed.
Specifically, the relaxation procedure leads to either u[k]d = rku[k−1]

d (if rk < 1) or
u[k]d = ρu[k−1]

d (if rk ≥ 1). Therefore, u[k]d is decreasing in k and hence the stopping
criterion will be met in a finite number of iterations. Note that this stopping criterion,
based on ‖u[k+1]

− u[k]‖, does not guarantee that the relaxation procedure’s iterate
u[k+1] is actually close to the exact solution; nevertheless, one would expect that it
should be at least a better estimate than the first iterate u[1], which is the first-order
accurate GFM solution; and in practice we find from the examples in Section 3 that
the iterations terminate at a second-order accurate solution.
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2D FORCE CONSTRAINTS IN THE METHOD
OF REGULARIZED STOKESLETS

ONDREJ MAXIAN AND WANDA STRYCHALSKI

For many biological systems that involve elastic structures immersed in fluid,
small length scales mean that inertial effects are also small, and the fluid obeys
the Stokes equations. One way to solve the model equations representing such
systems is through the Stokeslet, the fundamental solution to the Stokes equations,
and its regularized counterpart, which treats the singularity of the velocity at points
where force is applied. In two dimensions, an additional complication arises from
Stokes’ paradox, whereby the velocity from the Stokeslet is unbounded at infinity
when the net hydrodynamic force within the domain is nonzero, invalidating any
solutions that use the free space Stokeslet. A straightforward computationally
inexpensive method is presented for obtaining valid solutions to the Stokes equa-
tions for net nonzero forcing. The approach is based on modifying the boundary
conditions of the Stokes equations to impose a mean zero velocity condition on
a large curve that surrounds the domain of interest. The corresponding Green’s
function is derived and used as a fundamental solution in the case of net nonzero
forcing. The numerical method is applied to models of cellular motility and
blebbing, both of which involve tether forces that are not required to integrate to
zero.

1. Introduction

Stokes flow refers to the regime of viscous flow where inertial effects are small, and
the Navier–Stokes equations simplify to the Stokes equations. For fluid-structure
interaction problems in cell biology, such as an elastic red blood cell membrane
deforming in capillary flow [28; 29], the small length scales of the cell diameter
(∼ 10µm) lead to a small Reynolds number. Other important phenomena in cell
biology that involve zero Reynolds number flow are cell motility [20; 38] and
microorganism swimming [7; 15; 17].

Because the Stokes equations are linear, boundary integral and boundary element
methods can be used to determine the velocity and pressure fields that come from
a collection of forces [26; 27]. The velocity field generated from a point force is
known as a Stokeslet. One problem that arises when using the Stokeslet in practice
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Keywords: fluid-structure interaction, Stokes flow, Stokes’ paradox, regularized Stokeslets.
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is the singularity at the point where the force arises. For closed interfaces, this
singularity is integrable, but careful numerical quadratures are necessary to correctly
calculate the velocity and pressure [26; 27]. In [9], Cortez introduced the method
of regularized Stokeslets to overcome the singularities in both the pressure and
velocity expressions for forces located at scattered points. Instead of the force being
applied at a point, the force is applied over a small ball of radius ε. The regularized
Stokeslet and pressure expressions are then obtained analytically from the particular
function used to represent the small ball. The method of regularized Stokeslets can
also be used for closed surfaces, bypassing the associated issues with numerical
quadrature [26].

It is convenient to model and simulate fluid-structure interaction problems in
two dimensional domains where model parameter studies can be conducted in
a computationally inexpensive manner. Data visualization is also easier in 2D
than in 3D. The free space Stokes equations in 2D are actually ill-posed because
the velocity obtained from the free space Stokeslet is unbounded at infinity when
there is a nonzero net hydrodynamic force acting within the domain of flow. This
contradicts the assumption in the derivation of the Stokeslet that the velocity is zero
at infinity and renders the problem ill-posed [9; 21; 26]. Numerical simulations of
such systems can therefore lead to unphysical spurious velocities. The phenomenon
of unbounded velocities in systems with nonzero net force, especially as ‖x‖→∞,
is usually referred to as Stokes’ paradox [38]. We emphasize that this is a unique
feature of Stokes flow in 2D. In 3D, the problem is well-posed; the Stokeslet decays
to zero at infinity regardless of the net forcing, so the boundary condition is satisfied
and the solution is valid for any collection of forces with bounded magnitude.

One way to ensure that the 2D velocity is valid is to add conditions to the original
system of equations. The most straightforward way to do this is to impose additional
boundary conditions within the region of interest. The method of regularized
Stokeslets was employed in [9] to simulate the flow due to a cylinder moving at an
imposed velocity. In [1; 4; 12], the method of images was used to add additional
Stokeslets outside of the flow domain that enforce a zero boundary condition near
a plane wall. In these approaches, there is an additional constraint on the velocity
that leads to valid solutions near the immersed objects of interest. However, if
no boundary conditions within the flow domain are specified by the model of the
physical system (e.g., when modeling flexible fibers in Stokes flow [5; 11; 35]), a
different approach must be used.

One such approach is to enforce a constraint on the force rather than the velocity,
in particular that the net hydrodynamic force over the entire domain be zero. Some-
times, this constraint comes naturally, such as in models of flagellar swimming [40]
or fibers immersed in a background flow [5]. However, the only a priori requirement
of fluid-structure interaction in Stokes flow is that the hydrodynamic force at a point
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is exactly balanced by the internal and external forces on the immersed structures
[22]. In fact, there are many systems with zero Reynolds number that contain
force imbalances, including any system that contains tether forces or objects tied to
boundaries. For example, Cortez’s model of a moving cylinder [9] had a nonzero net
hydrodynamic force within the domain of flow. In this case, one potential solution
is to subtract the mean force from the force at each point, which automatically
gives a zero-sum total force. Here we show this approach can result in nonphysical,
displaced equilibrium states.

Teran and Peskin [33] treated the problem of unbalanced forces within the
immersed boundary (IB) method [24; 25] by adding a unique, constant velocity
throughout the periodic domain to ensure that the net force is zero for all time. In
the formulation from [33], an additional constant velocity is permitted because the
equations are simulated on a periodic domain, where the solution is unique up to a
constant. In this case, it is required that the net force be zero [3]. The net zero force
requirement in a periodic IB method presents some challenges. For example, tether
forces must be introduced in the domain in order to simulate body forces (as the
authors did in [33] when modeling peristaltic pumping). In order for the immersed
structures to remain stationary, the tether spring stiffness must be large, which in
turn increases the overall stiffness of the numerical scheme and the cost of the IB
method formulation as a whole.

We present a method to simulate models in 2D Stokes flow with net nonzero
forcing using the method of regularized Stokeslets. We accomplish this by surround-
ing the domain by a large circle and constraining the mean velocity on the circle
to be zero. Given this boundary condition, we derive the corresponding Green’s
function and show that a mean zero velocity at the large circle can be achieved
simply by adding a constant velocity to the free space Stokeslet solution throughout
a large domain of flow. In this way, we avoid having to solve a linear system on
the large circle (as in [38]). This observation results in an algorithm that is very
straightforward to implement. After presenting our method in Sections 2 and 3,
we show in Section 4 how it can be applied to 2D models of cells immersed in
viscous fluid. In the process, we compare our formulation to both the explicit zero
velocity condition on the large circle, e.g., from [38], and the force-free formulation
obtained from subtracting the mean force at each point.

2. Mathematical framework

The steady Stokes equations in two dimensions are

µ1u−∇ p =− f , (1)

∇ · u = 0, (2)
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where µ is the fluid viscosity, p is the pressure, u is the fluid velocity, and f is the
hydrodynamic force, exactly equal to the external applied force that comes from
fibers or other structures immersed in the fluid [22]. We begin by summarizing the
method of regularized Stokeslets [9] for computing u and p from (1) and (2). Then
we present the modification for addressing Stokes’ paradox.

2.1. Method of regularized Stokeslets. In the method of regularized Stokeslets,
a force of strength f0 is distributed primarily (but not entirely) over a small ball
centered on a point x0, so that

f (x)= f0φε(x− x0). (3)

The Stokes equations can be solved with the force in (3) to derive the resulting
velocity and pressure from a given “blob” or “cutoff” function φε . For example, if

φε(x)=
3ε3

2π(‖x‖2+ ε2)5/2
, (4)

then

pε(x, x0)=
1

2π
( f0 · (x− x0))

(
r2

0 + 2ε2
+ ε
√

r2
0 + ε

2

(
√

r2
0 + ε

2
+ ε)(r2

0 + ε
2)3/2

)
(5)

and

uε(x, x0)=−
f0

4πµ

(
ln(
√

r2
0 + ε

2
+ ε)−

ε(
√

r2
0 + ε

2
+ 2ε)

(
√

r2
0 + ε

2
+ ε)
√

r2
0 + ε

2

)
+

1
4πµ

( f0 · (x− x0))(x− x0)

√

r2
0 + ε

2
+ 2ε

(
√

r2
0 + ε

2
+ ε)2

√

r2
0 + ε

2
(6)

are the pressure and velocity that result from the force in (3), where r0 = ‖x− x0‖.
The derivation of these expressions can be found in [9]. Notice that for r0� ε, the
standard Stokeslet expressions [26] are recovered,

p(x, x0)=
f0 · (x− x0)

2πr2
0

, (7)

u(x, x0)=−
f0

4πµ
ln r0+ ( f0 · (x− x0))

(x− x0)

4πµr2
0
. (8)

The pressure and velocity resulting from a collection of forces fk spread around a
collection of points xk is simply a superposition of the results from (5) and (6). It is
easy to see that if

∑
k fk 6= 0, the velocity in (6) or (8) is unbounded as ‖x‖→∞,

and the boundary conditions u→ 0 are not satisfied as ‖x‖→∞.
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Figure 1. � denotes the region bounding immersed interfaces and/or point forces. 01
indicates an immersed interface and f0 denotes a point force at x0 enclosed by �. A circle
of radius R is denoted by 0.

2.2. Modification for nonzero net force. Suppose that all of the forces fk and
immersed interfaces in a model system are located within a domain� (see Figure 1).
We note that � is not necessarily an immersed interface, but rather a sort of
“bounding box” in which all of the forces are contained. If there are no other
boundary conditions within �, such as a specified velocity on a curve 01 contained
within the domain, the problem is ill-posed and the free space solution for the
velocity in (6) is not valid, even near�. To construct a mathematically valid solution
inside some space containing �, we surround � with a large circle, denoted by 0
with radius R (illustrated in Figure 1). One approach from [38] is to enforce a zero
velocity boundary condition at every point on the discretized circle. The resulting
linear system obtained from (6) is well-conditioned when ε is of magnitude less
than or equal to the discrete point spacing on the large circle. The system can be
solved for the forces required to obtain a zero velocity on the large circle. These
forces can then be used in (6) to compute the velocity at locations enclosed by the
smaller domain �. We note that this requires a linear system to be solved at each
time value when simulating a model of a dynamic process.

We take a slightly different approach. Instead of requiring u|0 = 0 at every
point, we solve Stokes equations with a slightly weaker boundary condition, that the
average value of u on 0 be zero: 〈u〉|0 = 0. Notice that as R→∞, the regularized
Stokeslet solution in (6) converges to the free space Stokeslet in (8) and the velocity
on the large circle is approximately constant because of the dominance of the
radially symmetric first term in (8). If the velocity on the large circle is constant,
the two conditions are equivalent. Imposing the mean velocity condition allows us
to add an extra velocity uR throughout the domain so that the average velocity on
the large circle is zero.

We begin by deriving the velocity uR in the case of a single point force followed
by the generalization to multiple forces by superposition. Let f0 be the force at
a point x0 in �. Let x be a point on the large circle 0 (see Figure 1), and let
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r0=‖x− x0‖. Since x is on a large circle with arbitrarily large radius R, r0(x)� ε

for all x ∈0, and we can represent the velocity at the large circle using the standard
Stokeslet. Thus, the velocity at x due to the force f0 applied at x0 is given by (8).

Using s as the arclength parameter and treating r0 = R as constant, the average
value of u(x, x0) is

〈u(x, x0)〉 =
1

2πR

∫
0

(
−

f0

4πµ
ln r0+ ( f0 · (x− x0))

x− x0

4πµr2
0

)
ds

=
1

2πR

(
−

f0

4πµ
ln R

∫
0

ds+
1

4πµR2

∫
0

( f0 · (x− x0))(x− x0) ds
)

=−
f0

4πµ
ln R+

(
1

2πR

)
1

4πµR2

∫
0

( f0 · (x− x0))(x− x0) ds. (9)

The last equality used the fact that
∫
0

ds = 2πR. Computing the second integral,
we begin by changing to an angle parametrization of 0 via s = Rθ ,

1
2πR

∫
0

( f0 · (x− x0))(x− x0) ds =
1

2πR

∫ 2π

0
( f0 · (x− x0))(x− x0)R dθ. (10)

Because the circle is rotationally invariant, we can place the x axis on the same
direction as f0 without loss of generality. Therefore, let f0 = f

( 1
0

)
. Furthermore,

in the limit R→∞, x− x0 = x =
( R cos θ

R sin θ

)
. Then (10) simplifies to

1
2πR

∫ 2π

0
( f0 · (x− x0))(x− x0)R dθ =

1
2π

∫ 2π

0
f R cos θ

(
R cos θ
R sin θ

)
dθ (11)

=
R2 f

2

(
1
0

)
=

R2 f0

2
. (12)

Substituting (12) into (9), we have the average velocity over the large circle given
the force f0 at x0 as

〈u(x, f0)〉 =
f0

4πµ

( 1
2 − ln R

)
. (13)

Our goal is to impose a boundary condition on the large circle. Rather than impose
a boundary condition pointwise, we impose a weaker condition on the mean velocity
on the large circle, namely that the mean velocity is zero. It follows immediately
that this can be done by subtracting the constant velocity in (13) throughout the
domain of flow. The additional velocity due to a point force f0 is therefore

uR( f0)=−
f0

4πµ

( 1
2 − ln R

)
. (14)

In the case of multiple time-dependent forces fk(t) (for example, forces that
come from an interface such as 01 in Figure 1), the constant velocity is simply the
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superposition of velocities from (14):

uR(t)=
N∑

k=1

uR( fk(t))=
N∑

k=1

−
fk(t)
4πµ

( 1
2 − ln R

)
. (15)

This velocity is added throughout the domain of flow to ensure that 〈u(t)〉|0 = 0.
In effect, the solution from (6) and (15) together form the Green’s function for
Stokes equations with a mean zero boundary condition on the circle of radius R.
We note that the Green’s function would change if the domain was surrounded by a
large square with edge length 2R as opposed to a circle of radius R. However, any
geometry, such as a square, can be thought of as bounded by two concentric large
circles (for a square centered at 0 with edge length 2R, the points on the square are
between concentric circles of radius R and R

√
2). Because the velocity dependence

on R is weak for large R (the derivative of uR scales with 1/R), altering the geometry
of the boundary results in small changes in the velocity on the bounding region.

It is no coincidence that (15) expresses the average value of the velocity due to
forces of strength − fk. By adding the constant velocity in (15), we are effectively
adding a force on the large circle that has the effect of adding an equal and opposite
force within the region of interest �. Meanwhile, the addition of a constant velocity
throughout the domain results in a relative velocity profile that is unchanged from
that computed by (6). Our approach contrasts with adding more Stokeslets at
arbitrary locations in the domain �, which could be problematic because the
relative local profile (and subsequent physical conclusions) are dependent on the
locations of the additional Stokeslets. However, our approach of imposing forces
on the large circle does result in the introduction of a much larger length scale in
the problem; the length scale becomes R, the radius of the large circle, instead of
the length scale of the immersed objects.

The addition of this constant velocity has no effect on the pressure profile
calculated from (5). Because a constant velocity is added, no pressure gradient is
generated within the domain. Equivalently, our addition of a constant velocity is a
shortcut around explicitly adding forces on the large circle that enforce the zero
boundary condition exactly (e.g., [38]). Due to the nature of the pressure solution
in (5) (i.e., that it decays as 1/length), the additional forces from the boundary
condition on the large circle have no effect on the local pressure profile for large R.

We also note that the choice of blob in (4) yields the resulting analytical ex-
pressions for the regularized pressure and velocity in (5) and (6), respectively. We
present these expressions derived from φε because we use them in our numerical
simulations. The derivation of uR is independent of the regularized Stokeslet
because it is derived from the true free space Stokeslet. The large circle 0 is
assumed to be far enough from the domain of interest that the two are equivalent.
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The method we present here is therefore compatible with any regularization kernel,
including compactly supported immersed boundary kernels [2]. However, IB kernels
are generally used over a periodic fluid grid, not over free space, and so the method
of [33] is more appropriate in that context.

3. Discretization

In general, we begin with a collection of N points xk with forces fk in some domain
�. At each time step, we compute the velocity of each point xi as

u(xi )= uR
+

N∑
k=1

uε(xi , xk), (16)

where uR is given by (15) and uε(xi , xk) is given by (6). Because uR is constant
throughout the domain, the calculation in (16) is O(2N + (2N )2) operations. The
first O(2N ) operations arise from the computation of the constant additional velocity
in (15). The second O((2N )2) operations come from computing the regularized
velocities in (6) for all of the points.

We compare this operation count to alternative formulations. Suppose that
the large circle was discretized with M points and the forces on the large circle
were solved for explicitly, as in [38]. This calculation is a 2M × 2M linear solve
and requires O((2M)2) operations using GMRES or O((2M)3) operations if done
directly. In addition, the calculation of the added velocities at each point in the
domain from the forces on the large circle requires another O(2N M) flops, and it is
unclear how to choose the number and location of the M points. Alternatively, the
addition of more Stokeslets in a method similar to the method of images [1; 4; 12]
would require O(2SN ) operations to compute the added velocity, where S is the
number of added Stokeslets. Our added velocity is computed in 2N flops, making
it much more efficient than any of these alternatives.

3.1. Choosing the radius. Central to our method is the assumption that the velocity
computed from (8) on the large circle 0 is relatively constant. The validity of this
assumption dictates a lower bound on R. In order to test the variation of the velocity
on the large circle 0, we first impose a force of f0 =

( 1
0

)
at the origin. Next, we

use (8) to compute and measure the velocity from the Stokeslet (i.e., the velocity
without the addition of uR) on the large circle.

Specifically, we discretize the circle 0 with N = 100 points and quantify velocity
variability by defining

σu(R)=max
i

∣∣∣∣ui
x − ux

ux

∣∣∣∣. (17)
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Figure 2. Variation of the velocity on the large circle 0 for different values of R. Dotted
lines indicate 10% and 5% variation, σu(R).

Here the index i runs from 1 to N = 100, ui
x refers to the velocity in the x direction

(the direction of the force) at point i , and ux refers to the arithmetic mean of ux

taken over 0.
Figure 2 shows the values of σu(R) (as a percentage) for different values of R.

We observe a variation in the velocity of less than 10% for R ≥ 103 and a variation
of less than 5% for R ≥ 105.

With this in mind, we specify the lower limit on R, R ≥ 103. We can find an
upper limit on R based on the Reynolds number. Let v and L be the relevant velocity
and length scales. Our systems have values of viscosity µ and density ρ of the
same magnitude as water, so that Re= ρvL/µ= 106vL is the relevant Reynolds
number. Our model systems are from applications in cell biology, so the relevant
velocity scale is in µm/s. Therefore, we take v = 10−6 m/s and Re= L , where L
is the relevant length scale. In order for Stokes flow to be valid, we need (Re� 1),
which we define to be Re ≤ 0.1. Then the relevant length scale cannot exceed
0.1 m= 105 µm. Because we have confined the domain and effectively introduced
forces on the large circle, the radius of the large circle is now the largest relevant
length scale, and we have determined an upper bound on R, R ≤ 105 µm. We note
that this upper bound may change depending on the characteristic time and length
scales used to compute the Reynolds number, but it is straightforward to derive it
as we have here. Thus, we have determined in general that 103

≤ R ≤ 105. For the
examples in Section 4, we choose R = 103 µm to ensure the validity of the Stokes
equations for these systems. This value of R results in a velocity variation from (17)
that is less than 10%. In addition, we did not find any additional stiffness when
using R in this range (for larger R, e.g., R = 1016, the velocities in (15) would
increase, thereby increasing the overall problem stiffness).
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4. Examples

The motivation for this work is tether forces that arise in the modeling of some
biological systems. These are forces that penalize displacement from an initial or
resting configuration; points on an immersed object are physically tethered to other
points in 2D space. We begin by considering a simplified system of tethered particles.
This motivating example establishes the need for the additional velocity in (15). We
then present a model of a cell motility problem where tether forces are useful for
modeling the cell’s external environment. We conclude by analyzing a boundary
integral model of cellular blebbing with nonzero net forcing that has already been
used for modeling bleb initiation and amoeboid cell motility [14; 19; 20]. In all
cases, all of the objects are flexible so that no boundary conditions are provided
from the physics of each model system.

4.1. A motivating example. We are interested in modeling the motion of a cell
through a viscoelastic structure called the extracellular matrix (ECM). For example,
our model of the ECM represents a lattice of collagen fibrils immersed in a viscous
fluid. Elasticity of the ECM can be modeled in 2D by a lattice of points that are
tied to specified reference points by springs. In order to demonstrate why our
methodology is key for modeling this process, we introduce a set of N = 32 points
distributed on a circle of radius r , shown in Figure 3, top. The points (solid blue
dots) are centered at (10, 0) and are tethered to two sets of fixed points (hollow
black diamonds) centered at (80, 0) and (−80, 0). For simplicity, we set

Fi (t)=−kteth(Xi (t)− X R
i + Xi (t)− X L

i ), (18)

where X R
i and X L

i stand for the position of point i on the right and left fixed circles,
respectively. The parameters for the system are µ = 1 Pa s, kteth = 1 pN/µm2,
ε = 2πr/N = the point spacing (although the dynamics are independent of the
parameters µ, kteth, and ε). The initial configuration results in a force imbalance,
with a net force to the left (negative horizontal direction) on the set of moving
points. Physically, we expect the points to move in the negative horizontal direction
and approach their equilibrium position exactly between the two fixed fibers, i.e.,
centered at x = 0. However, this is not always what occurs when using (6) to update
the velocities.

Consider (6). The dominant part of the first term is − ln r =− ln‖x−x0‖, which
results in a velocity that goes in the direction opposite the force. The second term
in (6) is O(1, ε−2) and contributes to the velocity in the same direction as the force.
In order for the dynamics to match our physical intuition, the cumulative contribution
of the second term at each point must be greater than that of the first term, so either
ln r ≈ 1 or ε� 1. Thus, as r becomes large, we expect unphysical behavior. For
an r value as small as r ≈ 20 (determined empirically), no value of ε (larger than
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Figure 3. Motivating example of a system of points tethered in place, initially out of
equilibrium. Top: initial configuration of the system. The solid blue dots show the points,
while the unfilled black diamonds show the corresponding tethering locations. Bottom: x
coordinate of the point with largest y coordinate, xymax (filled green square in top). Without
any corrections, the motion is in the positive horizontal (+x) direction independent of
number of points and ε (blue line). This nonphysical behavior can be corrected by adding
the velocity uR in (15). We show data for the values R = 103 (orange) and R = 105

(purple). Dashed lines give the dynamics for the mean velocity subtraction in (16). Dotted
lines show dynamics when the boundary condition u = 0 is exactly enforced on a large
circle of radius R discretized with N = 100 points.

machine epsilon) yields physical results. Figure 3, bottom, shows the horizontal (x)
position of the point with the largest y coordinate over time (marked with a green
square as (xymax, yymax) in Figure 3, top), where the velocity is computed by (6). We
observe unphysical motion in the positive horizontal direction (blue line), moving
the points to the right and resulting in an increased force imbalance as time increases.
While this behavior dominates for large values of r , it is also present for smaller
r and needs to be corrected to give proper, physically correct simulation results.

Our solution with the additional velocity given in (15) gives the expected behavior.
For the initial configuration in Figure 3, top, the motion of the points computed
with the velocity in (16) shifts the points in the negative horizontal direction (left),
allowing them to approach their steady state positions at x = 0. Specifically, the
horizontal component of the velocity at the origin can be decomposed into uε ≈ 125
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and uR
≈−325 when R=103, where the contribution of uR is necessarily greater to

obtain the correct physical motion. Figure 3, bottom, shows the horizontal position
of the point with the largest y coordinate for values of R that satisfy our derived
bounds, R = 103 (orange lines) and R = 105 (purple lines). Dashed lines show
the solution obtained from (16), and dotted lines show the solution obtained from
discretizing the circle of radius R with N =100 points and explicitly enforcing u=0
at those points by determining the additional forces f on the large circle via solving
a linear system of equations. The linear system of equations in this case has the form
U = M F, where M is a dense 2N ×2N matrix. To get an exact solution, we solve
this directly with LU factorization, although it could also be done with GMRES.

We observe that the mean velocity solution gives faster dynamics than the
discretized large circle solution. As R increases, the velocity on the large circle
approaches a constant value and the solutions approach the same curve (as shown
previously in Figure 2). Further, the maximum difference of 1.0µm in the x-
coordinate between the two curves for R = 103 is only 5.2% of the smallest system
length scale r , and for R = 105 this difference decreases to 1.8%.

The choice for the value of R in (15) affects the velocity and the dynamics of the
system. However, we note that additional forces solved for by enforcing additional
boundary conditions on any geometry C , i.e., u|C = 0, would also affect dynamics
of the system. For the values of R within the range 103

≤ R ≤ 105, the steady-state
behavior of our model and relevant timescales are shown in Figure 3, bottom, to
be nearly identical, with the timescales differing by about a factor of 2. If accurate
transient results are desired, the value of R can be tuned to give dynamics that fit
within the relevant timescales, with the caveat that increasing R leads to a larger
length scale.

We note another feature of this example: the initial force on the configuration
shown in Figure 3, top, is uniform across all of the points. Suppose one wanted to
treat the force imbalance in this example by subtracting the mean force from each
point, so the total force sums to zero. Because each point has the same force on it,
subtracting the mean force gives zero force and zero velocity at every point. We
have therefore shown that subtracting the mean force can create artificial equilibrium
configurations. This phenomenon occurs not just in this simple example, but also
in a more complicated model of cell motility as discussed in Section 4.2. Thus,
while subtracting the mean of the forces maintains the relevant system length scales,
doing so can introduce errors in the resting position of the system. Which avenue
to choose in this trade-off is application dependent.

4.2. Model of cell motility. Cell motility is an essential process for wound healing,
cancer metastasis, and immune responses [30]. In three dimensions, a cell can
utilize multiple mechanisms to migrate through the surrounding extracellular matrix
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(ECM) [36; 37; 42]. The ECM is a dense network of collagen fibers [13, Figure 1].
Previous studies have used 2D agent based/finite element models [36; 37] to study
the effectiveness of bleb-based and protrusion-based mechanisms in different ECM
environments. In [42], the authors simulated a variety of mechanisms on a cell with
a rigid nucleus via force balance equations. Our goal is to extend this model to
a flexible nucleus, where the fluid-structure coupling is treated explicitly via the
method of regularized Stokeslets.

We focus here on the movement of the cell via a finger-like protrusive mechanism
[18; 42]. In this mechanism, the elastic cell cortex generates random actin-based
protrusions. The cortex is the thin layer of the actin cytoskeleton that is attached
to the cell membrane. For the purposes of our model, we consider the cortex to
represent the combined membrane and cortex. Actin protrusions from the cortex are
allowed to bind to ECM fibers. Upon binding, the cortex stiffens, which allows the
cell to “pull” on the ECM by generating traction forces on the tip of the protrusion
[18; 42]. Here we develop a model of this mechanism in 2D to gain insight into
how ECM stiffness affects the ability of the cell to migrate before developing a
computationally expensive 3D model.

We consider a 2D cross-section of a cell migrating through an ECM consisting of
fibers immersed in fluid. The cell and nucleus are modeled as thin 1D elastic bound-
aries. The ECM consists of long thin fibers in 3D, and we model the cross section of
one fiber as a regularized point force in our 2D model. For the cortex and nucleus,
fiber elasticity gives the force density (in pN/µm2) on a given configuration by

Fel
n/c =

∂

∂s
(Tn/cτ ), (19)

where n/c stands for the nucleus or cortex, s is the reference arclength variable,
τ = Xs/‖Xs‖ is the unit tangent vector, and

Tn/c = kn/c(‖Xs‖− 1) (20)

is the fiber tension. Here kn/c (pN/µm) represents the stiffness of the nucleus/cortex.
At the beginning of our simulations, we choose the cortex to be relatively soft with
kc = 1 pN/µm and the nuclear boundary to be much stiffer, kn = 50 pN/µm [16].
We take the diameter of the cortex to be 1µm and the diameter of the “nucleus” to be
0.9µm, with the latter taken to be large to model effective elasticity of the cytoplasm.

We also discretize the cortex with Nc = 80 points and the nuclear boundary
with Nm = 40 points. Using this discretization, one can numerically approximate
derivatives in (19) and (20) via centered differences to obtain a force density at
each point in pN/µm2, then multiply by the reference point spacing to obtain a
force, F̂el

n/c in pN/µm at each point on the nucleus/cortex.
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The ECM can be represented in a cross-sectional sense as an array of points in
space with some characteristic length spacing. In this section, we keep the spacing
constant and fix it to be on average the same as the diameter of the cell, so that
the cell is not sterically hindered from passing through the ECM. Future work will
focus on the effect of ECM density in a more rigorous context; our goal here is
instead to show the effect of matrix stiffness at constant fiber density.

We therefore generate 20 ECM nodes that are approximately spaced by the cell
diameter on a 4× 4 box, shown as blue points in Figure 4a. We triangulate this
set of points, with each edge representing a spring that connects two ECM nodes
(dashed black lines in Figure 4a). Let kteth (pN/µm2) denote the stiffness of these
springs. Then the time-dependent force (in pN/µm) on each ECM node is given by

F̂ j
ECM(t)=−kteth

(
X j (t)− Z j

+

∑
i∈N( j)

(X j (t)− X i (t))
)
. (21)

Here i ∈N( j) denotes a point i which is a neighbor of point j , in the sense that the
nodes are connected by an edge in the Delaunay triangulation (black dotted lines
in Figure 4a). We note also the presence of an anchoring (tether) node, Z j , whose
purpose is to make sure the network stays in place dynamically. Without linking
the nodes to reference nodes Z j , the force function in (21) would be translation-
invariant, and the entire network of nodes would be free to slide away from the cell
without penalty. We can compute Z j for each node by setting the force at t = 0
in (21) to zero and solving for Z j . This is desired physically for the cell to migrate
relative to the ECM. We have therefore determined the forces on the nucleus, cortex,
and ECM that need to be computed at each time point and passed to (16).

We note that the use of points for the ECM fibers necessitates the use of a
regularized method, as the velocity due to a point force is technically infinite at that
point. We set ε = 0.075µm in the regularized equations, so that each point has an
effective radius around it that is much smaller than the radius of the cell. We note
that this value for ε is also the approximate spacing between the discrete nuclear
and cortical points, which is one criterion for choosing ε [9; 10].

The overall simulation algorithm is as follows. Draw from a uniform distribution
a point j on the front edge of the cortex (representing cell polarization) and suppose
that actin polymerizes at that point. We apply a force density of strength f0 =

500 pN/µm2 in the normal direction at point j and a force density of strength f0/2
in the normal direction at points j − 1 and j + 1. Importantly, the cell physically
cannot generate any net force on the fluid, so we spread the equal and opposite force
over the other Nc−3 cortex points. The force distribution on the cortex is shown in
Figure 4b. We note that the only effect of f0 is to set the timescale of migration, and
we are concerned with the relative timescale across different ECM stiffnesses (so
that the choice of f0 is arbitrary). For this reason we also setµ=1 Pa s for simplicity.
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Figure 4. One cycle of a cell migrating via a finger protrusion mechanism through an
ECM matrix of elastic nodes with kteth = 50 pN/µm2. (a) The structure of the ECM,
which has 20 nodes (blue points) that are linked together by springs (dashed black lines).
(b–f) The dynamic process of cell migration. (b) A protrusion forms on the cell surface.
(c) The protrusion binds to a node. (d) The cortical stiffness increases, pulling the node
inward. (e) The dynamic balance between elasticity of the cell and ECM elasticity pulls
the cell towards the ECM node’s resting position. (f) The cell releases the node and is
ready to form another protrusion.
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Figure 5. Final states for one cycle of the cell motility problem with kteth = 50 pN/µm2

and (left) R = 103 and (right) sum of forces being zero via mean subtraction. Subtracting
the mean of the force has created an artificial equilibrium state in the right, where each
of the nodes has been displaced from its original position (black x’s) by some constant
amount. This does not occur in the left.

We then allow the cell protrusion to grow by evolving the system in time until the
protrusion tip comes into contact with a node. By contact, we mean that the discrete
points are a distance 2ε or less from each other, so that their “blob” functions are
in contact. Once the discrete points come within a distance 2ε of each other, the
protrusion tip binds to the node (shown in Figure 4c), and the cortex becomes stiffer
by a factor of 100 to model the increased traction at the protrusion tips seen in [18].
The increased stiffness causes the cortex to rapidly become rounder. Since the cortex
is attached to the node, it then pulls the node inward as shown in Figure 4d. As the
node is pulled in, it generates a force in the opposite direction due to elasticity of the
ECM (the node’s resting configuration is its initial configuration in the ECM lattice).
These forces balance dynamically, so that as the cortex becomes more round, the
cortical force due to elasticity decreases, which in turn allows the force on the ECM
to decrease, thereby pulling the entire cell and node back towards the initial position
of the node. In the final state, Figure 4e, the cell is round and the node returns to
a point close to its initial position. At this time, the node detaches from the cell
by moving a distance 2ε away in the normal direction, as shown in Figure 4f, and
the process can then repeat. We define this entire process as one cycle.

In this application, the anchor ECM nodes Z j create a net force in the domain. As
we observed in Section 4.1, handling this imbalance by subtracting the mean force
at each node can create nonphysical translated equilibrium configurations. Figure 5
shows the final configuration when the system velocity has dropped below ε for
a migrating cell in an ECM with kteth = 50 pN/µm2 for (left) a system simulated
using (16) and (right) a system simulated with zero net forcing via subtracting the



2D FORCE CONSTRAINTS IN THE METHOD OF REGULARIZED STOKESLETS 165

mean force at each node. A shift in the entire domain in the negative horizontal and
vertical directions is shown in Figure 5, right. Physically, we expect the nodes to
return to their initial configuration in Figure 4a (marked with black x’s in Figure 5).

The translation of the ECM structure in the case of subtracting the mean forces
occurs because the pulling inward of the ECM node (shown in Figure 4d) creates a
net force in the positive horizontal and vertical directions. Subtracting the mean
force from each node does result in a net applied force of zero, but also results in
an equilibrium configuration where the nodes have been shifted in the direction
opposite the force imbalance. This situation is analogous to that of Section 4.1,
where there was an artificial equilibrium state in the positive horizontal direction (and
no relaxation to the equilibrium) resulting from a force imbalance in the negative
horizontal direction. Such a shift may not be important for some applications if
the relative position of the objects is desired. For our application, we are interested
in the absolute distance traveled by the cell. For this reason, along with the ECM
returning to its initial resting configuration for subsequent motility cycles, we
conclude that it is better to use (16) to update the velocity rather than subtracting
the mean forces.

We now use the model to simulate the distance traveled by the cell for different
values of ECM stiffness kteth. We calculate the total Euclidean distance traveled
by the nucleus’ center of mass as a function of time for the same 20-node ECM,
but with varying stiffness kteth = 10, 25, 50 pN/µm2. For comparison, we also
simulate a rigid ECM by enforcing a u= 0 boundary condition at each of the ECM
nodes rather than the mean velocity condition on the large circle. We simulate up
to a finite time, which corresponds to the time the cell has finished one cycle of
migration (Figure 4e) in the rigid ECM case (t = 1.36≈ 13601t). The time step is
adaptive; generally it is taken to be 1t = 0.001, but it shrinks to 1t = 2× 10−4

for a small time (0.05 s) beginning when the cortex binds to a node and stiffens to
kc = 100 pN/µm. In Figure 6, we plot the Euclidean displacement in the direction
of the ECM node over time for different values of stiffness kteth. In all cases, the
cell initially moves backwards slightly (as seen in Figure 4c) prior to contacting an
ECM node. Once the ECM node is contacted and the cortex contracts, the distance
traveled increases with time, with larger velocities for stiffer matrices. However, the
data from all simulations appear to be approaching the same steady state value of
displacement. For stiffer matrices, the node resists deformation by the cell (shown
in Figure 4d), and the cell moves toward the node. In the rigid case, the node does
not move, and the cell quickly contracts to form a circular configuration around
the node. The conclusion of this preliminary study is therefore that stiffer matrices
allow for faster cell velocities for finger-like protrusion mechanisms. We plan to
study this problem in more detail by varying the matrix density and nuclear and
cortical stiffness in future work.
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Figure 6. Euclidean distance traveled by the nucleus’ center of mass versus time for
different values of the ECM stiffness. Stiffer ECMs display faster velocities.

4.3. Cellular blebbing. Cellular blebs are spherical membrane protrusions that
have been observed during cell migration [6]. A bleb forms when the cell cortex,
normally attached to the cell membrane by linker proteins, detaches from the
membrane. Cells that bleb are pressurized due to actomyosin contractility within
the cortex. Once a bleb is initiated, a pressure driven flow drives the intracellular
fluid (cytoplasm) that locally expands the membrane.

Bleb initiation has been modeled using different approaches, including solid
mechanics [39], the immersed boundary method [31; 32], and boundary integral
methods [14; 19; 20]. Results from several of these models have shown a bleb
relieves only a small amount of intracellular pressure when the cytoplasm is modeled
as a viscous fluid [31; 34]. Results from other models simulated with boundary
integral methods show large pressure relief after bleb expansion [14; 20]. Our goal
is to identify the source of this contradiction because maintaining high intracellular
pressure is essential for cells to migrate using blebs [23].

Here we present a model of bleb expansion based on [20]. We treat both the
membrane and cortex as one dimensional closed curves. The membrane and cortex
parametrizations are represented by Xm(s) and Xc(s), respectively, where s is the
arclength parameter. The most critical part of the model is the adhesion that connects
the membrane and cortex. We model adhesion by an elastic spring connecting the
membrane to the cortex with stiffness kadh. The force density on the membrane due
to adhesion is given by

Fmem/cor
adh (s)=−kadh(Xm(s)− Xc(s)), (22)
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Figure 7. Components of the bleb model. The cytoplasm is modeled as a viscous fluid. A
bleb is initiated by removing membrane-cortex adhesive links in a small region at the top
of the cell.

with the force density on the cortex, Fcor/mem
adh (s), equal and opposite. Elastic forces

on the membrane and cortex are due to surface tension and stretching and are
computed by (19) with

T = γm + km(‖Xs‖− 1) (23)

with constants γm and km representing membrane surface tension and stiffness,
respectively. The corresponding elastic parameters for the cortex are denoted by γc

and kc. The membrane satisfies a no-slip boundary condition, and its velocity is
computed by (16). The velocity of the cortex is computed via a force balance,
similar to [20],

d Xc

dt
=

1
νc
(Fcor

el + Fcor/mem
adh ), (24)

where νc is the cortical viscosity. A bleb is initiated by removing the adhesive links
in a small region of length approximately 5µm at the top of the cell (see Figure 7).

This particular blebbing model is a physical example where the net force on the
membrane fiber is nonzero. When the links between the top of the membrane and
cortex are broken, there is a net vertical force on the membrane because part of
the adhesive forces acting in the negative vertical direction are no longer present.
Even though the cortex feels the equal and opposite forces, it moves independently
of the fluid according to (24). The net hydrodynamic force is therefore equal to
the net force on the membrane, and is nonzero. Without including the constant
velocity from (15), the membrane would escape from the domain because of a
spurious downward velocity resulting from the force imbalance in the positive
vertical direction. The addition of uR results in a well-posed problem so that we
may solve for the membrane position in the blebbing model using the method of
regularized Stokeslets.

Although previous studies have used the method of regularized Stokeslets to
simulate cellular blebbing and migration in 2D [19; 20], the authors did not specify
how they addressed the force imbalance in their models. We found our approach
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symbol quantity value source

rmem cell radius 10µm [32; 34]
rcortex cortex radius 9.9 or 9.85µm [14]
γm membrane surface tension 40 pN/µm [32]
km membrane stiffness 80 pN/µm
γc cortex surface tension 250 pN/µm [31]
kc cortical stiffness 100 pN/µm [31]
kmem/cortex

adh membrane/cortex adhesion stiffness coefficient 247 pN/µm3

µ cytosolic viscosity 5 Pa s [31]
νc cortical viscosity 10 pN s/µm3 [31]

Table 1. Parameters for the blebbing model.

to give nearly identical results to a model where the net zero force constraint is
enforced by subtracting the mean of the calculated forces at each Stokeslet point.

We simulate the cellular blebbing process with the parameters in Table 1. The
two different values of the cortex radius are used to test our hypothesis that a force
imbalance on the cortex is what drives the pressure relief seen by previous authors
[14; 19; 20]. For kadh = 247 pN/µm3, the forces on the cortex (in the absence of a
bleb) are exactly in balance when rcortex = 9.9µm. When rcortex = 9.85µm, there
is initially a force imbalance on the cortex independent of bleb initiation.

We first equilibrate the model for ten time steps, then initiate a bleb at t = 0 by
breaking the adhesion at the 7 (out of N = 100) points with largest y coordinate.
Figure 8 shows the membrane shape over time for the two different values of the
cortex radius, where time units are reported after bleb initiation. The bleb sizes and
shapes are exactly the same. Despite this, the pressure dynamics of the two models
are quite different. As shown in Figure 9, the pressure drops significantly when
rcortex = 9.85 but remains constant in the case rcortex = 9.90. This is because of the
force imbalance on the cortex in the former case. When the cortex’s initial position
is inwards of its resting position, it expands outward dynamically. This decreases
the force on the membrane (and on the fluid) due to membrane-cortex adhesion (22),
leading to a global pressure decrease inside the cell. Importantly, we observe that
at t ≥ 1 s, the cortex has reached its resting position and the two pressure profiles
are the same (and are unchanged substantially with bleb expansion).

Models that include dynamic breaking of membrane-cortex adhesive links exhibit
drastic changes in intracellular pressure [14; 20]. In such models, the dynamic
breaking of adhesive links over time leads to pressure relief because the membrane
force is updated suddenly without accounting for the corresponding force imbalance
on the cortex. As the cortex slowly responds, it contracts inward in response to the
loss of adhesive force, which promotes more link breakage and pressure changes.
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Figure 8. Membrane position for a blebbing cell with initial cortex radius 9.90µm (blue
line) or 9.85µm (red circles). The position of the cortex is shown as a dashed black line
and is in approximately the same position in both simulations. The positions are shown at
several time values after bleb initiation.

The cortex itself is therefore never truly in equilibrium, and the force imbalance on
it drives pressure changes.

The assumption that forces on the cortex are not equilibrated may be valid during
highly dynamic processes such as during cell migration [41]. However, some
experiments involve isolating a specific event, such as the expansion of a single
bleb in [34]. In this work, experimental data show the cell achieves a quasisteady
state behavior after bleb expansion, and the cortex is unlikely to be dynamically
relieving pressure.
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Figure 9. Pressure profile along the line x = 0 for the blebbing cell with initial cortex
radius 9.90µm (blue line) or 9.85µm (red circles). Profiles are shown at (top left) t = 0 s,
(top right) t = 0.1 s, (bottom left) t = 1.0 s, and (bottom right) t = 10.0 s. Note the large
pressure relief when the forces are initially unbalanced on the cortex (rcortex = 9.85).

5. Conclusion

When developing models for systems from biology, physics, and engineering that
involve fluid-structure interaction, the simplification from 3D to 2D allows for
model prototyping and fast simulations. In our applications, we seek to simulate
cell motility and blebbing under a broad range of parameters, so fast simulations that
are easy to visualize are critical for understanding model behavior. In zero Reynolds
number flow, boundary integral methods are appealing because the velocity (and
position) of immersed structures can be easily computed at the locations of interest
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rather than by interpolation after solving for the velocity on an Eulerian grid as in the
IB method [25]. The condition of net zero force for 2D boundary integral methods
can be a limiting factor during the development and simulation of mathematical
models, especially those that include elastic tether-like forcing.

Here we present a numerical method to treat force constraints in 2D Stokes flow
in an infinite domain. When the regularized or standard Stokeslet is used with a
net nonzero hydrodynamic force in the flow domain, the velocity is unbounded at
infinity (Stokes’ paradox). For problems where no specific boundary conditions are
imposed from the physics of the model system, the standard free space Stokeslet
solution without modification fails because it is a Green’s function for a system
of equations that is not well-posed. The treatment of this problem must therefore
involve solving a new, well-posed system with the appropriate Green’s function.

One option is to require the net force to be zero within the domain by subtracting
the mean force, thereby making the free space problem well-posed. This approach
maintains the system time and length scales, but we show here that it can lead
to falsely translated equilibrium states and unphysical dynamics. Alternatively,
shifting the boundary conditions to create a well-posed system and locally valid
solution is appealing (previously treated via solving a linear system [8; 9; 38]).
We show here that by using a confined geometry and enforcing the condition of a
mean zero velocity on the boundary, we can easily derive a new Green’s function
for a well-posed system of equations that gives the physically correct behavior.
Introducing the new boundary has the effect of introducing a new length scale and
a corresponding change in the Reynolds number, and we use this fact to derive an
upper bound on the size of the boundary. We combine this with a lower bound that
comes from the variation of the velocity on the boundary to obtain a unique choice
of R.

We test this method by applying it to several model systems. In Section 4.1 we
use a simple example of tethered points to illustrate how the ill-posedness of the free
space Stokes equations can lead to nonphysical behavior of the regularized Stokeslet
solution. In both this example and the model of a cell migrating through an ECM
in Section 4.2, we show that subtracting the mean force can create translations in
the structure configurations, which for our applications are problematic because we
seek measurements of the cell displacement. Because of this, we find our solution
of solving the Stokes equations with a zero mean flow on the boundary to give
the most physically relevant results for our applications. Finally, we apply this
technique to show how force imbalances on the permeable cell cortex drive pressure
relief (independent of bleb formation) in blebbing cells.

We emphasize that this technique is not a solution to generally address Stokes’
paradox. The problem remains that no flow is truly 2D, and so representing 3D
flows in two dimensions introduces modeling error. However, there are ways to
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address models with nonzero net forcing so that insight can be gained from 2D
models without having to take on the computational complexity of 3D. Here we
describe a method to address Stokes’ paradox and show that for our applications,
the method gives solutions free of artificial translations. Additionally, the method
is straightforward to implement and does not involve solving linear systems.

Future work involves extending the work of Section 4.2 to use our approach to
investigate different mechanisms of cell migration (rear contraction in addition to
frontal protrusion). We plan to examine the effectiveness of each mechanism for
different values of ECM density, ECM stiffness, and cortical tension.
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POTENTIAL FIELD FORMULATION
BASED ON DECOMPOSITION OF THE ELECTRIC FIELD
FOR A NONLINEAR INDUCTION HARDENING MODEL

TONG KANG, RAN WANG AND HUAI ZHANG

In this paper we investigate a mathematical model of induction heating including
eddy current equations coupled with a nonlinear heat equation. A nonlinear law
between the magnetic field and the magnetic induction field in the workpiece
is assumed. Meanwhile the electric conductivity is temperature dependent. We
present a potential field formulation (the A-φ method) based on decomposition
of the electric field for the electromagnetic part. Using the theory of monotone
operator and Rothe’s method, we prove the existence of a weak solution to the
coupled nonlinear system in the conducting domain. Finally, we solve it by means
of the A-φ finite element method and show some numerical simulation results.

1. Introduction

Electromagnetic induction as a method of heating electrically conducting materials
is frequently used in industrial applications such as metal hardening and preheating
for forging operations. The basic components of an induction heating system
include an induction coil (called inductor), an alternating current power supply,
and the workpiece itself. The inductor, which may take different shapes depending
on the required heating pattern, is connected to the power supply. The flow of
alternating current through the inductor generates an alternating magnetic field
which in turn induces eddy currents in the workpiece that dissipate energy and bring
about Joule heating. The magnitude of the eddy currents decreases with growing
distance from the workpiece surface because of the frequency-dependent skin effect.
Thus, induction heating is a suitable heat source for surface heat treatments if the
current frequency has been chosen to be large enough. After the current has been
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switched off, the workpiece is quenched by spray-water cooling, which leads to the
desired hardening effect.

The investigation of an induction heating system usually relies upon a series of
expensive, long, and complicated experiments. Then the mathematical analysis and
numerical simulation for induction heating play an important role in the designing
process. The mathematical model of induction heating consists of Maxwell’s equa-
tions coupled with a heat equation. Some papers present various numerical schemes
for computation, e.g., [1; 5; 6; 9; 23]. But they omit complicated mathematical or
numerical analyses of their models and numerical schemes. Other papers study the
well-posedness of the problem and give theoretical results, e.g., [10; 19; 12; 13;
27; 28; 26]. All these works deal with Maxwell’s equations with linear constitutive
laws. Up to now there are few works considering both a nonlinear relationship
between the magnetic field and the magnetic induction field, and dependence of
electric conductivity on the temperature. Some authors [22] have studied a nonlinear
magnetic field formulation for induction heating in the conducting domain and
proved its solvability. In [9], the authors present the vector-scalar potential equations
for a nonlinear setting including conducting and nonconducting parts. In this case
the total current density is decomposed into summation of the external source and the
induced part −σ∂t A caused by the magnetic induced field. This decomposition is
also utilized in [12; 13]. The vector and scalar potentials belong to different Hilbert
spaces and are solved numerically by using edge and nodal elements, respectively.
We note that the mathematical analyses in [9] require the divergence-free property of
the vector potential A, but it brings about a contradiction with divergence-free σ∂t A
since the conductivity σ is a temperature-dependent function. Therefore, we suggest
a different potential field decomposition method for this coupled system.

The potential field method (called the A-φ method ) is to transform Maxwell’s
equations to vector-scalar potential formulations by decomposing the electric field
into summation of a vector potential A and the gradient of a scalar potential φ, and to
solve A and φ in the framework of the finite element method [2; 7; 8; 18; 16; 14; 15;
3; 25]. In order to guarantee the vector A is unique, we adopt the penalty function
method by prescribing that A is divergence-free in addition to its curl, which is
usually referred to as the Coulomb gauge. The A-φ method can substantially reduce
the “spurious solutions”. Moreover, since the potential fields belong to H 1(�)3 or
H 1(�), we can use nodal elements to solve the full coupled system. As we know,
the A-φ method has been widely used in electrical engineering. Its benefits have
been demonstrated by practical applications. For example, it has attractive features
including natural coupling to moment and boundary element methods and global
energy conservation. Although introducing vector and scalar potentials increases
the number of unknowns and equations, this seeming complication is justified by a
better way of dealing with possible discontinuities of mediums. It can be applied
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to the case of any simply/multiply connected domain. We only solve the vector
potential A in the nonconducting domain to find the magnetic induction field (or
the magnetic field). Therefore, it is meaningful to introduce the A-φ method to
solve induction hardening problems.

The purpose of this paper is to study an induction hardening model with a
nonlinear constitutional relation for the magnetic induction field by means of the
A-φ method. The paper is organized as follows. In the section below we give a
nonlinear induction hardening model. In Section 3, we present some notations
used in this paper and give the A-φ variational formulation for this nonlinear
coupled problem. In Section 4, we design a nonlinear time-discrete decoupled
scheme and prove existence and uniqueness of its solution. Then we can solve
the model by means of the finite element method. In Section 5, we investigate
the coupled equations in the conducting domain. Some stability estimates for the
approximate solution are derived. We discuss convergence of subsequences of
the approximate solution in appropriate function spaces to a weak solution of the
continuous problem. The last section is devoted to presenting numerical experiments
by using our proposed A-φ method.

2. Induction hardening model with a nonlinear law

We shall study a simplified induction hardening model (see Figure 1). Let � be
a convex and bounded domain with boundary ∂�, which consists of a workpiece
occupied by ferromagnetic materials and an induction coil. There exits a flow
of alternating current through the coil, which generates an alternating magnetic
induction field which in turn induces eddy currents in the workpiece and bring about
Joule heating. Since air is usually regarded as a thermal insulator and the conductor
coil is supposed to have no resistance, we neglect the Joule heat in the coil and
only consider the impact on the workpiece from the alternating magnetic induction.
Denote the workpiece domain by �c. The nonconducting region is presented by

Figure 1. The disc workpiece and the induction coil (inductor).
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�e :=� \�c. We consider the eddy current equations{
∂t B+∇ × E = 0,
∇ × H = σ E+ Js,

(2-1)

where E and H stand for the electric and magnetic fields, respectively, B denotes
the magnetic flux density, Js is the source current density in the coil, and ∇ · Js = 0.
Then there exists a magnetic induction field Bs in R3 such that

Js =∇ ×
1
µ0

Bs .

The field Bs can be calculated directly by the Biot–Savart law

Bs(x, t) :=
µ0

4π

∫
�

Js( y, t)× (x− y)
|x− y|3

dV , (2-2)

where µ0 is permeability of free space.
We present the nonlinear relation with a nonlinear law between H and B in the

form

H := νM(B)=
{
νm(|B|)B for a.e. (x, t) ∈�c× (0, T ),
ν0 B for a.e. (x, t) ∈�e× (0, T ).

(2-3)

Here we introduce an inverse function ν(x) of magnetic permeability µ, which is
strictly positive and bounded (i.e., 0<ν∗≤ ν ≤ ν∗<∞). The function σ represents
the electric conductivity and is defined as

σ :=

{
σ(u(x, t)) for a.e. (x, t) ∈�c× (0, T ),
0 for a.e. (x, t) ∈�e× (0, T ),

(2-4)

where u(x, t) is a function of temperature in the workpiece. We consider σ to be
bounded and strictly positive in �c, i.e., there exist positive constants σ∗ and σ ∗

such that
0< σ∗ ≤ σ(s)≤ σ ∗ <∞, s > 0. (2-5)

Let n stand for the outer normal vector associated with ∂� or ∂�c (regarded as the
boundary of � or �c). The interface conditions between �c and �e are defined as

[H × n] = 0, [B · n] = 0 for a.e. (x, t) ∈ ∂�c× (0, T ), (2-6)

where the jump of any function f across ∂�c is defined as [ f ] := f2|∂�c − f1|∂�c .
The boundary and initial conditions are given by

B · n= 0 for a.e. (x, t) ∈ ∂�× (0, T ) (2-7)

and
B(0)= Bs(x, 0) := Bs(0) for a.e. x ∈�, t = 0 (2-8)

with ∇ · Bs(0)= 0.
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Note that the local Joule heat generated by eddy currents in �c equals

σ(u)E · E = σ(u)|E|2.

Evolution of the temperature function u in �c is given by the solution to the
nonlinear heat equation with the initial and boundary conditions

∂tθ(u)−∇ · (λ∇u)= σ(u)|E|2 for a.e. (x, t) ∈�c× (0, T ),
λ ∂u
∂n = 0 for a.e. (x, t) ∈ ∂�c× (0, T ),

u(0)= u0 for a.e. x ∈�c, t = 0,
(2-9)

where λ(x, t) is a positive and bounded function (0< λ∗ ≤ λ≤ λ∗ <∞). The real
continuous function θ obeys

θ(0)= 0, 0< θ∗ ≤ θ ′(s), |θ(s)| ≤ C(1+ |s|). (2-10)

The source term in the heat equation is unbounded and needs to be treated
carefully for mathematical analyses of this coupled system, so we introduce the
cut-off function [22]

Rr (x) :=


r if x > r ,
x if |x | ≤ r ,
−r if x <−r ,

(2-11)

where r is a positive constant. We truncate the right-hand side of (2-9) so it becomes
∂tθ(u)−∇ · (λ∇u)=Rr (σ (u)|E|2) for a.e. (x, t) ∈�c× (0, T ),
λ ∂u
∂n = 0 for a.e. (x, t) ∈ ∂�c× (0, T ),

u(0)= u0 for a.e. x ∈�c, t = 0.
(2-12)

The coupling between the electromagnetic equations and the heat equation is
provided through the term σ(u) in (2-4) and the Joule heating term in (2-12).

3. A-φ formulation for induction hardening

We start this section with definitions of some notations used throughout this paper.
Let L2(�) be the usual Hilbert space of square integrable functions equipped with
the inner product and norm

(u, v)� :=
∫
�

u(x)v(x) dx and ‖u‖L2(�) := (u, u)1/2� .

Define H m(�) := {v ∈ L2(�) : Dξv ∈ L2(�), |ξ | ≤ m} which is equipped with
the norm

‖u‖Hm(�) :=

(∑
|ξ |≤m

‖Dξu‖2L2(�)

)1/2

,
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where ξ represents a nonnegative triple index. We use boldface notation to represent
vector-valued quantities, for example, L2(�) := (L2(�))3. The definitions for �
are similarly defined for �c.

Define the space Ĥ1
0 (�) := {v ∈ H1(�) : v × n|∂� = 0}. We further denote

V := Ĥ1
0 (�)× H 1(�c)/R equipped with the inner product and norm

((P, ϕ), (Q, ψ))V := (P, Q)�+ (∇ P,∇ Q)�+ (∇ϕ,∇ψ)�c

and
‖(Q, ψ)‖V :=

(
‖Q‖2H1(�)

+‖∇ψ‖2L2(�c)

)1/2
.

Since ∇ · B = 0, we can find a magnetic potential A such that B =∇ × A and
obtain E = −∂t A− ∂t∇φ, where φ is an arbitrary scalar function. The general
physical decomposition of the electric field is E =−∂t A−∇φ. Here we replace
∇φ with ∂t∇φ in order to keep a symmetric form in mathematical formulation.
Meanwhile the penalty function term −∇(ν∇ · A) is added into the dominated A-φ
equation to ensure that A is divergence-free. Thus, the A-φ formulation reads as

σ(u(x, t))∂t A+σ(u(x, t))∂t∇φ

+∇×νM(∇×A−Bs)−∇(ν∇·A)=0 for a.e. (x, t)∈�c×(0, T ),

∇·(σ (u(x, t))∂t A+σ(u(x, t))∂t∇φ)=0 for a.e. (x, t)∈�c×(0, T ),

∇×νM(∇×A−Bs)−∇(ν∇·A)=0 for a.e. (x, t)∈�e×(0, T ),

(3-1)

with the interface conditions
[A] = 0, [ν∇ · A] = 0 for a.e. (x, t) ∈ ∂�c× (0, T ),
[νM(∇ × A− Bs)× n] = 0 for a.e. (x, t) ∈ ∂�c× (0, T ),
(σ∂t A+ σ∂t∇φ) · n= 0 for a.e. (x, t) ∈ ∂�c× (0, T ),

(3-2)

and the boundary conditions

A× n= 0, ν∇ · A= 0 for a.e. (x, t) ∈ ∂�× (0, T ). (3-3)

The initial value A0 is derived from Bs(0) ∈ L2(�) by

∇ × A0 = Bs(0), ∇ · A0 = 0 in � with A0× n= 0 on ∂�,

and φ0 and φ0
′ are defined as zero in �c.

Remark 3.1. Taking the divergence of both sides of the first and the third equations
of (3-1) and taking into account the second equation, we obtain

∇
2(ν∇ · A)= 0 in �.

Considering the boundary condition ν∇ · A= 0, we have

ν∇ · A= 0 a.e. in �.
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It is clear that the magnetic field B and the electric field E derived from the solutions
A and φ satisfy problem (2-1) and conditions (2-6)–(2-8).

Next, let us give the variational formulation of the A-φ coupled system. For
problem (3-1), we multiply the first and the third equation by any test function
Q ∈ Ĥ1

0 (�), integrate over �c and �e, respectively, apply Green’s formula and the
interface conditions, and sum the two equations to have

(σ (u)∂t A+σ(u)∂t∇φ, Q)�c+(νM(∇×A−Bs),∇×Q)�+(ν∇·A,∇·Q)�=0.

We also multiply the second equation of (3-1) by any ψ ∈ H 1(�c)/R, integrate
over �c, and use Green’s formula and the boundary condition on ∂�c to obtain

(σ (u)∂t A+ σ(u)∂t∇φ,∇ψ)�c = 0.

Thus, we can rewrite (3-1)–(3-3) in the variational form

(σ (u)∂t A+ σ(u)∂t∇φ, Q+∇ψ)�c + (νM(∇ × A− Bs),∇ × Q)�
+ (ν∇ · A,∇ · Q)� = 0 (3-4)

and, in a similar way, give the variational formulation of (2-12)

(∂tθ(u), v)�c + (λ∇u,∇v)�c = (Rr (σ (u)|∂t A+ ∂t∇φ|
2), v)�c , (3-5)

for any (Q, ψ) ∈ V and v ∈ H 1(�c).
The vector field M is supposed to be potential, demicontinuous, and strongly

monotone. The following results are borrowed from [22; 24]. The potential of M
is denoted by 8M , i.e., grad8M = M. Throughout this paper we assume that

(M(x)−M( y)) · (x− y)≥ b∗|x− y|2, b∗ > 0, for all x, y ∈ R3,

M(x)−M( y)≤ CM |x− y|, CM > 0, for all x, y ∈ R3,

M(0)= 0.

(3-6)

Following Theorem 5.1 in [24], we see that 8M of the vector field M with (3-6) is
strictly convex. Applying Theorem 8.4 in [24], we get

M(x) · (x− y)≥8M(x)−8M( y) for all x, y ∈ R3. (3-7)

We also bound 8M from below:

8M(x)=
∫ 1

0
M(xt) · x dt =

∫ 1

0
M(xt) · (xt)t−1 dt

≥

∫ 1

0
b∗|xt |2t−1 dt ≥

b∗
2
|x|2, (3-8)

and

8M(x)≤ C
∫ 1

0
(1+ |xt |)|x| dt ≤ C

∫ 1

0
|x|2t dt ≤ C |x|2. (3-9)



182 TONG KANG, RAN WANG AND HUAI ZHANG

By the chain rule we obtain that

d
dt
8M−1(M(x))= M−1(M(x)) ·

d M(x)
dt

= x ·
d M(x)

dt
. (3-10)

4. Time discretization

For (3-4)–(3-5), we present a nonlinear time-discrete approximation scheme based
on the backward Euler scheme. Let n be a positive integer and {ti = iτ : i=0, . . . , n}
be an equidistant partition of [0, T ] with τ = T/n. Set for any function z

zi = z(ti ), δzi =
zi − zi−1

τ
.

Using this notation we can approximate variational formulation (3-4): and (3-5)

(σ (ui−1)δAi + σ(ui−1)δ∇φi , Q+∇ψ)�c + (νM(∇ × Ai − Bs,i ),∇ × Q)�
+ (ν∇ · Ai ,∇ · Q)� = 0, (4-1)

(δθ(ui ), v)�c + (λi∇ui , v)�c = (Rr (σ (ui−1)|δAi + δ∇φi |
2), v)�c , (4-2)

for any i = 1, . . . , n, (Q, ψ) ∈ V , and v ∈ H 1(�c).

Lemma 4.1 (coercivity). If � is a convex and bounded domain or boundary ∂� is
of class C1,1, there exists a positive constant C such that

C
(
‖Q+∇ψ‖2L2(�c)

+‖∇ × Q‖2L2(�)
+‖∇ · Q‖2L2(�)

)
≥ ‖(Q, ψ)‖2V

for any (Q, ψ) ∈ V .

Proof. Let H(curl, �) and H0(curl, �) = {v ∈ H(curl, �) : v × n|∂� = 0} be
standard Hilbert spaces. For any Q ∈ Ĥ1

0 (�) ⊂ H0(curl, �), by the embedding
theorem in [4], there exists a constant C depending only on � such that

‖Q‖2H(curl,�) ≤ C
(
‖∇ × Q‖2L2(�)

+‖∇ · Q‖2L2(�)

)
.

Thus, we obtain

‖Q‖2L2(�)
+‖∇ × Q‖2L2(�)

+‖∇ · Q‖2L2(�)

+‖Q‖2L2(�c)
+‖∇ψ‖2L2(�c)

− 2
∫
�c

|Q| · |∇ψ | dx

≤ C
(
‖∇ × Q‖2L2(�)

+‖∇ · Q‖2L2(�)
+‖Q+∇ψ‖2L2(�c)

)
.

Using inequalities 2ab ≤ δa2
+ b2/δ with δ = 3

2 and∫
�

|∇ Q|2 dx ≤ ‖∇ × Q‖2L2(�)
+‖∇ · Q‖2L2(�)

,
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we have

‖Q‖2L2(�)
+‖∇ Q‖2L2(�)

+‖∇ψ‖2L2(�c)

≤ C
(
‖∇ × Q‖2L2(�)

+‖∇ · Q‖2L2(�)
+‖Q+∇ψ‖2L2(�c)

)
,

which completes the proof. �

With the help of the theory of monotone operators [20; 24] and Lemma 4.1, we
can prove existence of a weak solution on each time step.

Lemma 4.2. Let (2-10) and (3-6) hold true. Moreover, assume that (A0, φ0) ∈ V ,
u0 ∈ L2(�c), and Bs ∈ H 1((0, T ); L2(�)). Then there exist unique (Ai , φi ) ∈ V
and ui ∈ H 1(�c) solving (4-1) and (4-2) for any i = 1, . . . , n.

Proof. Let us define the operators Lσ,i : V → V ∗ and G : H 1(�c)→ H−1(�c)=

(H 1(�c))
∗:

〈Lσ,i (A, φ), (Q, ψ)〉 :=
(
σ

A+∇φ
τ

, Q+∇ψ
)
�c

+
(
νM(∇ × A− Bs,i )− νM(−Bs,i ),∇ × Q

)
�

+ (ν∇ · A,∇ · Q)�,

〈G(u), v〉 :=
(
θ(u)
τ
, v

)
�c

+ (λ∇u,∇v)�c .

Lemma 2 in [9] proves that the operator G is hemicontinuous, strictly monotone,
and coercive. Similarly, the properties of the nonlinear operator Lσ,i are conse-
quences of Lemma 4.1 and the properties of M which are shown in [9]. We omit
the details of the proof here.

To obtain a unique solution (Ai , φi ) at a time step ti , we have to solve the identity

〈Lσ(ui−1),i (Ai , φi ), (Q, ψ)〉

=

(
σ(ui−1)

Ai−1+∇φi−1

τ
, Q+∇ψ

)
�c

− (νM(−Bs,i ),∇ × Q)�.

Since the right-hand side is known and the operator Lσ(ui−1),i is hemicontinuous,
strictly monotone, and coercive, we use Theorem 18.2 in [24] to prove the existence
and uniqueness of the solution. Similarly we use the same theorem to acquire a
unique solution ui ∈ H 1(�c) of the setting

〈G(ui ), v〉 =

(
θ(ui−1)

τ
, v

)
�c

+ (Rr (σ (ui−1)|δAi + δ∇φi |
2), v)�c .

This provides us with the solution triple {Ai , φi , ui } at a time step t = ti for
i = 1, . . . , n. �
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5. Convergence

In this section, we shall discuss convergence of subsequences of the time-discrete
approximate solution in appropriate function spaces to a weak solution of the
nonlinear coupled system. Since the degenerate vector potential equation in �e

lacks a strong estimate of the time derivative, we don’t prove convergence for
problem (4-1)–(4-2) in both conducting and nonconducting domains. We only
investigate the case of the workpiece coupling between nonlinear vector-scalar
potential equations and a heat equation.

Coupled problem in conducting domain and stability estimate. Let us consider
the following problem in the conducting domain:

σ(u(x, t))∂t A+σ(u(x, t))∂t∇φ

+∇×νM(∇×A−Bs)−∇(ν∇·A)=0 for a.e. (x, t)∈�c×(0, T ),

∇·(σ (u(x, t))∂t A+σ(u(x, t))∂t∇φ)=0 for a.e. (x, t)∈�c×(0, T ),

A×n=0, ν∇·A=0 for a.e. (x, t)∈∂�c×(0, T ),

(σ∂t A+σ∂t∇φ)·n=0 for a.e. (x, t)∈∂�c×(0, T ).

(5-1)

In this section, we reassign V := Ĥ1
0 (�c)× H 1(�c)/R equipped with the norm

‖(Q, ψ)‖V :=
(
‖Q‖2H1(�c)

+‖∇ψ‖2L2(�c)

)1/2
.

We rewrite (5-1) in the variational form

(σ (u)∂t A+ σ(u)∂t∇φ, Q+∇ψ)�c + (νM(∇ × A− Bs),∇ × Q)�
+ (ν∇ · A,∇ · Q)� = 0, (5-2)

(∂tθ(u), v)�c + (λ∇u,∇v)�c = (Rr (σ (u)|∂t A+ ∂t∇φ|
2), v)�c , (5-3)

and give the time-discrete formulation of (5-2)–(5-3)

(σ (ui−1)δAi + σ(ui−1)δ∇φi , Q+∇ψ)�c + (νM(∇ × Ai − Bs,i ),∇ × Q)�c

+ (ν∇ · Ai ,∇ · Q)�c = 0, (5-4)

(δθ(ui ), v)�c + (λi∇ui , v)�c = (Rr (σ (ui−1)|δAi + δ∇φi |
2), v)�c , (5-5)

for any i = 1, . . . , n, (Q, ψ) ∈ V , and v ∈ H 1(�c).
Assume that the domain �c is convex or boundary ∂�c is of class C1,1. Then

we apply Lemma 4.1 and further prove that there exist unique (Ai , φi ) ∈ V and
ui ∈ H 1(�c) solving (5-4) and (5-5) for any i = 1, . . . , n. The following lemmas
show some basic stability estimates for {Ai , φi , ui }.

Lemma 5.1. Let (2-10) and (3-6) hold true. Moreover, assume that (A0, φ0) ∈ V ,
u0 ∈ L2(�c), ν ∈ H 1(�c), and Bs ∈ H 1((0, T ); L2(�c)). There exists a positive
constant C such that for 1≤ l ≤ n,
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(i)
l∑

i=1

‖δAi+δ∇φi‖
2
L2(�c)

τ+max
1≤i≤l
‖∇×Ai−Bs,i‖

2
L2(�c)

+max
1≤i≤l
‖∇·Ai‖

2
L2(�c)

≤C ,

(ii) max
1≤i≤l
‖Ai +∇φi‖

2
L2(�c)

≤ C ,

(iii) ∇ · Al = 0 a.e. in �c,

∇×(νM(∇×Al−Bs,l))∈ L2(�c),
l∑

i=1

‖∇×(νM(∇×Ai−Bs,i ))‖
2
L2(�c)

τ ≤C.

Proof. (i) Setting (Q, ψ) = τ(δAi , δφi ) in (5-4) and summing for i = 1, . . . , l
yields

l∑
i=1

(σ (ui−1)(δAi + δ∇φi ), δAi + δ∇φi )�cτ +

l∑
i=1

(ν∇ · Ai ,∇ · Ai −∇ · Ai−1)�c

+

l∑
i=1

(νM(∇ × Ai − Bs,i ), (∇ × Ai − Bs,i )− (∇ × Ai−1− Bs,i−1))�c

=−

l∑
i=1

(νM(∇ × Ai − Bs,i ), Bs,i − Bs,i−1)�c .

For the first term we have

l∑
i=1

(σ (ui−1)(δAi + δ∇φi ), δAi + δ∇φi )�cτ ≥ σ∗

l∑
i=1

‖δAi + δ∇φi‖
2
L2(�c)

τ.

For the second term we use (3-7)–(3-9) to deduce

l∑
i=1

(νM(∇ × Ai − Bs,i ), (∇ × Ai − Bs,i )− (∇ × Ai−1− Bs,i−1))�c

≥

l∑
i=1

∫
�c

ν(8M(∇ × Ai − Bs,i )−8M(∇ × Ai−1− Bs,i−1)) dx

≥

∫
�c

ν8M(∇ × Al − Bs,l) dx−
∫
�c

ν8M(∇ × A0− Bs,0) dx

≥
b∗ν∗

2
‖∇ × Al − Bs,l‖

2
L2(�c)

≥ C‖∇ × Al − Bs,l‖
2
L2(�c)

.

Using a(a− b)≥ a2/2− b2/2 for any real numbers a, b yields

l∑
i=1

(ν∇ · Ai ,∇ · Ai −∇ · Ai−1)�c ≥
ν∗

2
‖∇ · Al‖

2
L2(�c)

−
ν∗

2
‖∇ · A0‖

2
L2(�c)

.

Applying Cauchy’s and Young’s inequalities and using demicontinuity of the vector
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field M, we get

−

l∑
i=1

(νM(∇ × Ai − Bs,i ), Bs,i − Bs,i−1)�c

≤ C
l∑

i=1

‖∇ × Ai − Bs,i‖
2
L2(�c)

τ +C
∫ T

0

∥∥∥∥∂Bs

∂t

∥∥∥∥2

L2(�c)

dt.

Thus, we collect the above estimates and apply Grönwall’s inequality to conclude
the proof of (i).

(ii) From the result (i) and

Al +∇φl = A0+∇φ0+

l∑
i=1

(δAi + δ∇φi )τ,

we arrive at

‖Al +∇φl‖L2(�c) ≤ C +
l∑

i=1

‖δAi + δ∇φi‖L2(�c)τ

≤ C +C
( l∑

i=1

‖δAi + δ∇φi‖
2
L2(�c)

τ

)1/2

≤ C.

(iii) The equations of the strong solution of (5-4) are
σ(ul−1)δAl + σ(ul−1)δ∇φl

+∇ × (νM(∇ × Al − Bs,l))−∇(ν∇ · Al)= 0 for a.e. (x, t) ∈�c× (0, T ),

∇ · (σ (ul−1)δAl + σ(ul−1)δ∇φl)= 0 for a.e. (x, t) ∈�c× (0, T ).

Taking the divergence of both sides of the first equation and using the second
equation yields

∇
2(ν∇ · Al)= 0 a.e. in �c.

Considering ν∇ · Al = 0 on ∂�, we obtain

ν∇ · Al = 0 a.e. in �c.

Further, we have

∇ × (νM(∇ × Al − Bs,l))=−(σ (ul−1)δAl + σ(ul−1)δ∇φl) a.e. in �c,

which leads to
∇ × (νM(∇ × Al − Bs,l)) ∈ L2(�c)

and
l∑

i=1

‖∇ × (νM(∇ × Ai − Bs,i ))‖
2
L2(�c)

τ ≤ C. �
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Lemma 5.2. Let the assumptions of Lemma 5.1 be fulfilled. Moreover, assume
that u0 ∈ H 1(�c). Then there exists a positive constant Cr , which depends on
parameter r of the cut-off function Rr , such that

(i)
n∑

i=1

‖δui‖
2
L2(�c)

τ + max
1≤ j≤n

‖∇u j‖
2
L2(�c)

+

n∑
i=1

‖∇ui −∇ui−1‖
2
L2(�c)

≤ Cr ,

(ii) max
1≤ j≤n

‖u j‖
2
L2(�c)

≤ Cr ,

(iii) max
1≤ j≤n

‖δθ(u j )‖
2
H−1(�c)

≤ Cr .

The similar results can be found in [22] and are omitted here.

Convergence of approximate solutions. Next, we use Rothe’s method [17] to prove
a weak solution (A, φ, u) to (5-2) and (5-3). In Proposition 5.4 we use monotonicity
of the nonlinear vector field M and the Minty–Browder technique [11] to overcome
the nonlinearity when passing to the limit.

We construct piecewise linear and piecewise constant in time functions

f n(0)= fn(0)= f0,

f n(t)= fi for t ∈ (ti−1, ti ],

fn(t)= fi−1+ (t − ti−1)δ fi for t ∈ (ti−1, ti ].

Therefore, we can rewrite (5-4) and (5-5) in a continuous form for the whole time
interval [0, T ] as

(σ n(t − τ)(∂t An + ∂t∇φn), Q+∇ψ)�c + (νM(∇ × An − Bs,n),∇ × Q)�c

+ (ν∇ · An,∇ · Q)�c = 0, (5-6)

(∂tθn, v)�c + (λn∇un, v)�c = (Rr (σ n(t − τ)|∂t An + ∂t∇φn|
2), v)�c , (5-7)

for any (Q, ψ) ∈ V and v ∈ H 1(�c). Please note that for any t ∈ (ti−1, ti ]

δθ(ui )= ∂t {θ(ui−1)+ (t − ti−1)δθ(ui )} = ∂tθn(t).

Now we give two convergence propositions. The sequences in the following part
are actually subsequences still denoted by the same index n.

Proposition 5.3. Let (2-10) hold true. Assume that u0 ∈ H 1(�c) and γ (s) is a
global Lipschitz continuous function. Then:

(i) un→ u, un→ u in C([0, T ]; L2(�c)),

un(t) ⇀ u(t) in H 1(�c) for all t ∈ [0, T ],

∂t un ⇀∂t u in L2((0, T ); L2(�c)).
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(ii) σ n→ σ(u), σ n(t − τ)→ σ(u) in L2((0, T ); L2(�c)).

(iii) θn − θn→ 0 in C([0, T ]; H−1(�c)).

(iv) θn→ θ(u) in L2((0, T ); L2(�c)).

Using Lemma 1.3.13 in [17] and Lemma 5.2, we can prove Proposition 5.3. The
similar proof can be found in [22] and is omitted here.

Proposition 5.4. Let the assumptions of Proposition 5.3 be fulfilled, and let (3-6) be
satisfied. Moreover, assume (A0, φ0) ∈ V , ν ∈ H 1(�c), Bs ∈ H 1((0, T ); L2(�c)),
and ∂t Bs is Lipschitz continuous in time. Then:

(i) An ⇀ A, ∇φn ⇀ ∇φ in L2((0, T ); L2(�c)).

An +∇φn ⇀ A+∇φ in L2((0, T ); L2(�c)),

∇ × An ⇀ ∇ × A in L2((0, T ); L2(�c)),

∇ · A= 0 a.e. in �c.

(ii) An +∇φn→ A+∇φ in C([0, T ]; L2(�c)),

∂t An + ∂t∇φn ⇀∂t A+ ∂t∇φ in L2((0, T ); L2(�c)).

An +∇φn→ A+∇φ in L2((0, T ); L2(�c)),

(iii) Bs,n→ Bs in L2((0, T ); L2(�c)).

(iv) M(∇ × An − Bs,n) ⇀ M(∇ × A− Bs) in L2((0, T ); L2(�c)).

(v) ∇ × An − Bs,n→∇× A− Bs in L2((0, T ); L2(�c)),

M(∇ × An − Bs,n)→ M(∇ × A− Bs) in L2((0, T ); L2(�c)).

(vi) ∂t An + ∂t∇φn→ ∂t A+ ∂t∇φ in L2((0, T ); L2(�c)).

Proof. (i) Lemmas 4.1 and 5.1 yield∫ T

0

(
‖An‖

2
H1(�c)

+‖∇φn‖
2
L2(�c)

)
dt ≤ C.

Therefore, we conclude that

An ⇀ A in L2((0, T ); H1(�c)),

∇φn ⇀ ∇φ in L2((0, T ); L2(�c)),

An +∇φn ⇀ A+∇φ in L2((0, T ); L2(�c)).

Take any Q ∈ Ĥ1
0 (�c). Then
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lim
n→∞

∫ T

0
(∇ × An, Q)�c dt = lim

n→∞

∫ T

0
(An,∇ × Q)�c dt

=

∫ T

0
(A,∇ × Q)�c dt =

∫ T

0
(∇ × A, Q)�c dt,

which implies that ∇ × An ⇀ ∇ × A in L2((0, T ); L2(�c)). Additionally we take
any q ∈ C∞0 (�c) and obtain

lim
n→∞

∫ T

0
(∇ · An, q)�c dt =− lim

n→∞

∫ T

0
(An,∇q)�c dt

=−

∫ T

0
(A,∇q)�c dt =

∫ T

0
(∇ · A, q)�c dt.

From the density argument C∞0 (�c) = L2(�c), we have that ∇ · An ⇀ ∇ · A in
L2((0, T ); L2(�c)). Thus, ∇ · A=∇ · An = 0 a.e. in �.

(ii) From Lemma 5.1 we get that∫ T

0
‖∂t An + ∂t∇φn‖

2
L2(�c)

dt ≤ C, max
t∈[0,T ]

‖An +∇φn‖L2(�c) ≤ C.

Employing Lemma 1.3.13 in [17] we get for a subsequence that

An +∇φn→ A+∇φ in C([0, T ]; L2(�c)),

An +∇φn ⇀ A+∇φ in L2(�c) for all t,

An +∇φn ⇀ A+∇φ in L2(�c) for all t,

∂t An + ∂t∇φn ⇀∂t A+ ∂t∇φ in C([0, T ]; L2(�c)).

Since∫ T

0
‖(An +∇φn)− (A+∇φ)‖2L2(�c)

dt

≤

∫ T

0
‖(An +∇φn)− (A+∇φ)‖2L2(�c)

dt + τ 2
∫ T

0
‖∂t An + ∂t∇φn‖

2
L2(�c)

dt,

which approaches 0 as n → ∞, we conclude that An + ∇φn → A + ∇φ in
L2((0, T ); L2(�c)).

(iii) Thanks to Bs ∈ H 1((0, T ); L2(�c)), we have∫ T

0
‖Bs,n(t)− Bs(t)‖2L2(�c)

dt ≤ Cτ 2 n→∞
−−−→ 0.

(iv) The sequence M(∇ × An − Bs,n) is bounded in L2((0, T ); L2(�c)). Thus,
there exists p from L2((0, T ); L2(�c)) such that M(∇ × An − Bs,n) ⇀ p in that
space (for a subsequence). Now we invoke the Minty–Browder technique. The
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general idea is based on the monotone character of M. Let us investigate the
inequality∫ T

0
(M(∇ × An − Bs,n)−M(b), ζ ν(∇ × An − Bs,n − b))�c dt ≥ 0. (5-8)

We split this integral into four:

P1 =

∫ T

0
(M(∇ × An − Bs,n), ζ ν(∇ × An − Bs,n))�c dt,

P2 =

∫ T

0
(M(b), ζ ν(∇ × An − Bs,n))�c dt,

P3 =

∫ T

0
(M(∇ × An − Bs,n), ζ νb)�c dt,

P4 =

∫ T

0
(M(b), ζ νb)�c dt.

This inequality holds true for any b ∈ L2((0, T ); L2(�)) and any nonnegative
ζ ∈ C∞0 (�c). We want to pass to the limit for n→∞ in (5-8). We do it for each
term in (5-8) separately. We have

P1 =

∫ T

0
(M(∇ × An − Bs,n), ζ ν∇ × (An +∇φn − A−∇φ))�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν∇ × A)�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν(Bs − Bs,n))�c dt

−

∫ T

0
(M(∇ × An − Bs,n), ζ νBs)�c dt

=

∫ T

0
(∇ × [ζνM(∇ × An − Bs,n)], An +∇φn − A−∇φ)�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν(Bs − Bs,n))�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν(∇ × A− Bs))�c dt

=

∫ T

0
(ζ∇ × [νM(∇ × An − Bs,n)], An +∇φn − A−∇φ)�c dt

+

∫ T

0
(∇ζ ×[νM(∇ × An − Bs,n)], An +∇φn − A−∇φ)�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν(Bs − Bs,n))�c dt

+

∫ T

0
(M(∇ × An − Bs,n), ζ ν(∇ × A− Bs))�c dt.
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Thus, from Lemma 5.1 and (3-6), we see that

lim
n→∞

P1 =

∫ T

0
( p, ζ ν(∇ × A− Bs))�c dt.

Passing to the limit for n→∞ in the remaining terms, we obtain

lim
n→∞

P2 =

∫ T

0
(M(b), ζ ν∇ × A)�c dt,

lim
n→∞

P3 =

∫ T

0
( p, ζ νb)�c dt,

lim
n→∞

P4 =

∫ T

0
(M(b), ζ νb)�c dt.

Returning to (5-8), we see that

lim
n→∞

∫ T

0
(M(∇ × An − Bs,n)−M(b), ζ ν(∇ × An − Bs,n − b))�c dt

=

∫ T

0
( p−M(b), ζ ν(∇ × A− Bs − b))�c dt

≥ 0.

Since b has been chosen arbitrarily, we can set b=∇ × A− Bs + εq, where ε > 0
and q ∈ L2((0, T ); L2(�c)). Then we have

∫ T

0
( p−M(∇ × A− Bs + εq), ζ ν(−εq))�c dt ≥ 0.

Now passing ε to 0 yields

∫ T

0
( p−M(∇ × A− Bs), ζ ν(−q))�c dt ≥ 0.

Similarly, q has been chosen arbitrarily, so we can set it to q = −q. Hence, the
reverse inequality holds true. That implies

∫ T

0
( p−M(∇ × A− Bs), ζ νq)�c dt = 0.

This is true for any q∈ L2((0, T ); L2(�c)) and nonnegative ζ ∈C∞0 (�c). Therefore,
p=M(∇×A−Bs) a.e. in�c×(0, T ), i.e., M(∇×An−Bs,n)⇀ M(∇×A−Bs)

in L2((0, T ); L2(�c)).

(v) We shall show the strong convergence of M(∇×An−Bs,n)→M(∇×A−Bs)

in L2((0, T ); L2(�c)). This can be achieved due to the strong monotonicity of the
vector field M and the compensated compactness argument [21, Lemma 3.1 ].



192 TONG KANG, RAN WANG AND HUAI ZHANG

Let ζ ∈ C∞0 (�c) be nonnegative. We get in a similar way as in (iv)

0= lim
n→∞

∫ T

0

(
M(∇ × An − Bs,n)−M(∇ × A− Bs),

ζ ν(∇ × An − Bs,n −∇ × A+ Bs)
)
�c

dt

≥ lim
n→∞

cM

∫ T

0
(ζν, |(∇ × An − Bs,n)− (∇ × A− Bs)|)�c dt ≥ 0,

which implies that

∇ × An − Bs,n→∇× A− Bs in L2((0, T ); L2(�c)).

Further using (3-6) yields

M(∇ × An − Bs,n)→ M(∇ × A− Bs) in L2((0, T ); L2(�c)).

(vi) Take any η ∈ [0, T ] for which ∇ × An(η)→∇× A(η) in L2(�c). Here the
set of such η is dense in [0, T ]. Let us examine the inequality

0≤ σ∗
∫ η

0

∫
�c

|∂t An + ∂t∇φn − ∂t A− ∂t∇φ|
2 dx dt

≤

∫ η

0

∫
�c

σ n(t − τ)|∂t An + ∂t∇φn − ∂t A− ∂t∇φ|
2 dx dt

=

∫ η

0
(σ n(t − τ)(∂t An + ∂t∇φn), ∂t An + ∂t∇φn)�c dt

+

∫ η

0
(σ n(t − τ)(∂t A+ ∂t∇φ), ∂t A+ ∂t∇φ)�c dt

− 2
∫ η

0
(σ n(t − τ)(∂t An + ∂t∇φn), ∂t A+ ∂t∇φ)�c dt. (5-9)

In virtue of Proposition 5.3(ii) and the Lebesgue dominated theorem, we get

lim
n→∞

∫ η

0
(σ n(t − τ)(∂t A+ ∂t∇φ), ∂t A+ ∂t∇φ)�c dt

=

∫ η

0
(σ (u)(∂t A+ ∂t∇φ), ∂t A+ ∂t∇φ)�c dt. (5-10)

According to Propositions 5.3(ii) and 5.4(ii) and the Lebesgue dominated theorem,
we deduce

lim
n→∞

∫ η

0
(σ n(t − τ)(∂t An + ∂t∇φn), ∂t A+ ∂t∇φ)�c dt

=

∫ η

0
(σ (u)(∂t A+ ∂t∇φ), ∂t A+ ∂t∇φ)�c dt . (5-11)



POTENTIAL FIELD FORMULATION FOR NONLINEAR INDUCTION HARDENING 193

Using (5-6) and (3-7), we obtain, for η ∈ (t j−1, t j ],∫ η

0
(σ n(t−τ)(∂t An+∂t∇φn), ∂t An+∂t∇φn)�c dt

=−

j∑
i=1

(νM(∇×Ai−Bs,i ),∇×Ai−∇×Ai−1)�c

+

∫ η

t j

(νM(∇×An−Bs,n),∇×∂t An)�c dt

=−

j∑
i=1

(νM(∇×Ai−Bs,i ),∇×Ai−Bs,i−∇×Ai−1+Bs,i−1)�c

−

j∑
i=1

(νM(∇×Ai−Bs,i ), Bs,i−Bs,i−1)�c

+

∫ η

t j

(νM(∇×An−Bs,n),∇×∂t An)�c dt

≤

j∑
i=1

∫
�c

{8M(∇×Ai−Bs,i )−8M(∇×Ai−1−Bs,i−1)} dx

−

j∑
i=1

(
νM(∇×Ai−Bs,i )−

ν

τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

+

j∑
i=1

(ν
τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

+

∫ η

t j

(νM(∇×An−Bs,n),∇×∂t An)�c dt

=

∫
�c

ν8M(∇×A j−Bs, j ) dx−
∫
�c

ν8M(∇×A0−Bs,0) dx

−

j∑
i=1

(
νM(∇×Ai−Bs,i )−

ν

τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

+

j∑
i=1

(ν
τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

−

∫ t j

0
(νM(∇×A−Bs), ∂t Bs)�c dt

+

∫ η

0
(νM(∇×A−Bs), ∂t Bs)�c dt−

∫ η

t j

(νM(∇×A−Bs), ∂t Bs)�c dt

+

∫ η

t j

(νM(∇×An−Bs,n),∇×∂t An)�c dt . (5-12)
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Applying (3-6) and (3-7) yields∫
�c

ν8M(∇ × A j − Bs, j )−

∫
�c

ν8M(∇ × A(η)− Bs(η)) dx

≤

∫
�c

νM(∇ × A j − Bs, j )(∇ × A j − Bs, j −∇ × A(η)+ Bs(η)) dx

≤ cMν
∗

∫
�c

|∇ × A j − Bs, j | · |∇ × A j − Bs, j −∇ × A(η)+ Bs(η)| dx

≤ C‖(∇ × A j − Bs, j )− (∇ × A(η)− Bs(η))‖L2(�c)

n→∞
−−−→ 0. (5-13)

Using (v) and Bs ∈ H 1((0, T ); L2(�c)), we arrive at

j∑
i=1

(
νM(∇×Ai−Bs,i )−

ν

τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

≤ cM
ν∗
√
τ

j∑
i=1

∫ ti

ti−1

‖(∇×Ai−Bs,i )−(∇×A−Bs)‖L2(�c) dt ·‖Bs,i−Bs,i−1‖L2(�c)

≤
C
√
τ

( j∑
i=1

τ

∫ ti

ti−1

‖(∇×Ai−Bs,i )−(∇×A−Bs)‖
2
L2(�c)

dt
)1/2

·

( j∑
i=1

‖Bs,i−Bs,i−1‖
2
L2(�c)

)1/2

≤ C
(∫ T

0
‖(∇×An−Bs,n)−(∇×A−Bs)‖

2
L2(�c)

dt
)1/2(

τ

∫ T

0

∥∥∥∥∂Bs

∂t

∥∥∥∥2

L2(�c)

dt
)1/2

n→∞
−−−→ 0. (5-14)

Thanks to the Lipschitz continuity of ∂t Bs , we have ‖∂t Bs(t1)− ∂t Bs(t2)‖L2(�c) ≤

C |t1− t2| for any t1, t2 ∈ [0, T ]. Therefore, we deduce that

j∑
i=1

(
ν

τ

∫ ti

ti−1

M(∇×A−Bs) dt, Bs,i−Bs,i−1

)
�c

−

∫ t j

0
(νM(∇×A−Bs), ∂t Bs)�c dt

=

j∑
i=1

∫
�c

∫ ti

ti−1

νM(∇ × A− Bs)

(
Bs,i − Bs,i−1

τ
− ∂t Bs

)
dt dx

≤ Cν∗
j∑

i=1

(∫ ti

ti−1

‖M(∇ × A− Bs)‖
2
L2(�c)

dt
)1/2

·

(∫ ti

ti−1

∥∥∥∥ Bs,i − Bs,i−1

τ
− ∂t Bs

∥∥∥∥2

L2(�c)

dt
)1/2
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≤ C
(∫ t j

0
‖M(∇ × A− Bs)‖

2
L2(�c)

dt
)1/2

·

( j∑
i=1

∫ ti

ti−1

∥∥∥∥ Bs,i − Bs,i−1

τ
− ∂t Bs

∥∥∥∥2

L2(�c)

dt
)1/2

≤ C
( j∑

i=1

∫ ti

ti−1

∥∥∥∥ Bs,i − Bs,i−1

τ
− ∂t Bs

∥∥∥∥2

L2(�c)

dt
)1/2

≤ C
( j∑

i=1

∫ ti

ti−1

∥∥∥∥1
τ

∫ ti

ti−1

(∂t Bs(ζ )− ∂t Bs(t)) dζ
∥∥∥∥2

L2(�c)

dt
)1/2

≤ Cτ
n→∞
−−−→ 0. (5-15)

Since η→ t j as n→∞, we obtain

∫ η

t j

(νM(∇ × A− Bs), ∂t Bs)�c dt

=

∫ η

t j

(νM(∇ × A− Bs)− νM(∇ × An − Bs,n), ∂t Bs)�c dt

+

∫ η

t j

(νM(∇ × An − Bs,n), ∂t Bs)�c dt

≤ C
∫ T

0
‖M(∇ × A− Bs)−M(∇ × An − Bs,n)‖L2(�c)‖∂t Bs‖L2(�c)

+C‖∇ × A j − Bs, j‖L2(�c)‖Bs(η)− Bs(t j )‖L2(�c)

≤ C‖M(∇ × A− Bs)−M(∇ × An − Bs,n)‖L2((0,T );L2(�c))

+C‖Bs(η)− Bs(t j )‖L2(�c)

n→∞
−−−→ 0, (5-16)

and

∫ η

t j

(νM(∇ × An − Bs,n),∇ × ∂t An)�c dt

= (νM(∇ × An − Bs,n),∇ × An(η)−∇ × An(t j ))�c

≤ C‖M(∇ × A j − Bs, j )‖L2(�c)‖∇ × An(η)−∇ × An(t j )‖L2(�c)

≤ C‖∇ × A j − Bs, j‖L2(�c)‖∇ × An(η)−∇ × An(t j )‖L2(�c)

≤ C‖∇ × An(η)−∇ × An(t j )‖L2(�c)

n→∞
−−−→ 0. (5-17)
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Then, collecting (5-12)–(5-16) yields

lim
n→∞

∫ η

0
(σ n(t − τ)(∂t An + ∂t∇φn), ∂t An + ∂t∇φn)�c dt

≤

∫
�c

ν8M(∇ × A(η)− Bs(η)) dx−
∫
�c

ν8M(∇ × A0− Bs,0) dx

+

∫ η

0
(νM(∇ × A− Bs), ∂t Bs)�c dt

=

∫ η

0

∫
�c

ν
d
dt
8M(M−1(M(∇ × A− Bs))) dx dt

+

∫ η

0
(νM(∇ × A− Bs), ∂t Bs)�c dt

(3-10)
=

∫ η

0

∫
�c

νM(∇ × A− Bs)
d
dt
(∇ × A− Bs) dx dt

+

∫ η

0
(νM(∇ × A− Bs), ∂t Bs)�c dt

≤

∫ η

0
(νM(∇ × A− Bs), ∂t∇ × A)�c dt. (5-18)

Further we use (5-9)–(5-11) and (5-16) to obtain

σ∗ lim
n→∞

∫ η

0

∫
�c

|∂t An + ∂t∇φn − ∂t A− ∂t∇φ|
2 dx dt

≤

∫ η

0
(νM(∇ × A− Bs), ∂t∇ × A)�c dt −

∫ η

0
(ν∇ · A, ∂t∇ · A)�c dt

−

∫ η

0
(σ (u)(∂t A+ ∂t∇φ), ∂t A+ ∂t∇φ)�c dt = 0,

where we use (5-19) given in the proof of the following theorem. Due to the fact that
the set of such η is dense in [0, T ], we conclude that ∂t An+ ∂t∇φn→ ∂t A+ ∂t∇φ

in L2((0, T ); L2(�c)). �

Now we are in a position to give our main result of this paper.

Theorem 5.5. Let the assumptions of Propositions 5.3–5.4 be satisfied. There
exist a solution (A, φ) ∈ L2((0, T ); V ) and a solution u ∈ C([0, T ]; L2(�c)) ∩

L∞((0, T ); H 1(�c)) with ∂t u ∈ L2((0, T ); L2(�c)) such that (A, φ) and u solve
(5-2) and (5-3).

Proof. We first prove that (A, φ) and u solve (5-2). Let us integrate (5-6) in time
to obtain∫ η

0
(σ n(t − τ)(∂t An + ∂t∇φn), Q+∇ψ)�c dt

+

∫ η

0
(νM(∇ × An − Bs,n),∇ × Q)�c dt +

∫ η

0
(ν∇ · An,∇ · Q)�c dt = 0.
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Using Propositions 5.3(ii) and 5.4, we pass to the limit for n→∞ to see∫ η

0
(σ (u)(∂t A+ ∂t∇φ), Q+∇ψ)�c dt +

∫ η

0
(νM(∇ × A− Bs),∇ × Q)�c dt

+

∫ η

0
(ν∇ · A,∇ · Q)�c dt = 0. (5-19)

We differentiate in time to conclude that (A, φ, u) solve (5-2).
To show that (A, φ, u) solve (5-3), we integrate (5-7) in time:

(θn(t), v)�c − (θn(0), v)�c +

∫ t

0
(λn∇un, v)�c ds

=

∫ t

0
(Rr (σ n(s− τ)|∂t An + ∂t∇φn|

2), v)�c ds.

According to Proposition 5.3(iii) we see that

lim
n→∞

(θn(t)− θn(t), v)�c = 0 for every t ∈ [0, T ].

Due to Proposition 5.4(vi) and the fact that the function Rr is continuous and
bounded, we can apply Lebesgue’s dominated convergence theorem to pass to the
limit on the right-hand side and obtain

lim
n→∞

∫ t

0
(Rr (σ n(s− τ)|∂t An + ∂t∇φn|

2), v)�c ds

=

∫ t

0
(Rr (σ (u)|∂t A+ ∂t∇φ|

2), v)�c ds.

Let us combine these results and pass to the limit for n→∞ in the variational
equation above. Thus, we have

(θ(u(t)), v)�c − (θ(u(0)), v)�c +

∫ t

0
(λ∇u, v)�c ds

=

∫ t

0
(Rr (γ (u)|∂t A+ ∂t∇φ|

2), v)�c ds.

Differentiation with respect to the time variable yields (5-3), which also concludes
the proof. �

6. Numerical simulation

In this section we present a fully discrete finite element scheme based on (4-1)–
(4-2) and show some numerical simulation results. Let Th be a standard tetrahedral
triangulation of � with a match grid on ∂�c. We define

Y 0
h := {Q ∈ Ĥ1

0 (�) : Q|K ∈ (Pr )
3 for all K ∈ Th},

Wh := {ψ ∈ H 1(�) : ψ |K ∈ Pr for all K ∈ Th},

where Pr is the space of polynomials with degree ≤ r . Let Vh := Y 0
h ×Wh/R.
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Algorithm. Given the initial value (A0, φ0, u0), we suggest a computing scheme
for obtaining the solution (Ah,i , φh,i , uh,i ) for every time step t = ti :

(1) Let i be given and assume that Ah,i−1, φh,i−1, uh,i−1, λi and Bs,i are known.

(2) Find (Ah,i , φh,i ) ∈ Vh such that

(σ (uh,i−1)δAh,i + σ(uh,i−1)δ∇φh,i , Qh +∇ψh)�c

+(νM(∇×Ah,i−Bs,i ),∇×Qh)�+(ν∇·Ah,i ,∇·Qh)�=0 for all (Qh,ψh) ∈ Vh .

(3) Find uh,i ∈Wh such that

(δθ(uh,i ), vh)�c + (λi∇uh,i ,∇vh)�c = (Rr (σ (uh,i−1)|δAh,i + δ∇φh,i |
2), vh)�c

for all vh ∈Wh .

(4) Set i = i + 1 and repeat the process.

Experiment 6.1. This experiment is to check the change of the error as the time
step decreases under the fixed standard tetrahedral triangulation.

The workpiece and the computational domain are given in Figure 2, left. The
source current density is shown in Figure 2, right. Unknown functions representing
nonlinearities are chosen accordingly to satisfy

M= (1+exp(−|∇×A|))∇×A, σ (u)=4−
(

1+
1

1+ u

)1+u

, θ=u+
√

u.

The electric field is decomposed as E = ∂t A+ ∂t∇φ. The initial values and the
parameters are given as

A0 = 0, φ0 = 0, u0 = 273.15, λ= 0.1, ν = 1.

Figure 2. Induction hardening model. Left: workpiece and computational domain. Right:
source current density.
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Figure 3. Reference solutions in the workpiece at t = 1.0. Top: temperature distribution.
Bottom: electric field.

We choose the source current density

Js = 500 sin(2π t)

−y/(x2
+ y2)

x/(x2
+ y2)

0

 .
We partition the time interval [0, 1] into 1280 equidistant parts and solve the system
at each time step by using linear nodal elements as implemented in the software
package COMSOL. We denote the obtained solutions for the electric field and the
temperature function as reference solutions Eref and uref, respectively, which are
plotted in Figure 3.

To show the convergence of the approximate solutions of our scheme, we compute
other numerical solutions at time steps τ = 1/(2n

× 10), n = 0, 1, . . . , 6, and
compare them with Eref and uref. We consider some specific measurement points
distributed in the conducting domain and analyze these solutions at time steps
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Figure 4. Logarithmically scaled plot of the decreasing time step τ and the relative errors.
Left: relative error of the electric field E with respect to a decreasing time step τ . Right:
relative error of the temperature u with respect to a decreasing time step τ .

ti = 0.1i , i = 0, 1, . . . , 10. Relative errors of a given numerical solution En from
the reference solution Eref and un from uref are then calculated as

|Eref| =
∑
p j∈P

10∑
i=0

|Eref(Pj , ti )|, |uref| =
∑
p j∈P

10∑
i=0

|uref(Pj , ti )|,

|Eref− En| =
∑
p j∈P

10∑
i=0

|Eref(Pj , ti )− En(Pj , ti )|,

|uref− un| =
∑
p j∈P

10∑
i=0

|uref(Pj , ti )− un(Pj , ti )|,

Rel En =
|Eref− En|

|Eref|
, Rel un =

|uref− un|

|uref|
,

where P is the set of measurement points and the index n stands for the number of
the time partition. The evolution of the relative errors with decreasing the time step τ
is illustrated in Figure 4. The regression line in Figure 4, left, is log2(Rel En) =

1.6464 log2 τ+2.9898 and in Figure 4, right, log2(Rel un)= 1.7810 log2 τ−1.1387,
resulting in the convergence of the approximate solutions to the reference solutions.

Experiment 6.2. For the model (see Figure 1), this experiment is to give some
numerical simulations and show the eddy current and temperature distributions
when varying the current frequency ω.

As shown in Figure 5, we set the source current density

Js = 500 sin(ωt)

−y/(x2
+ y2)

x/(x2
+ y2)

0

 .
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Figure 5. Source current density at ω = 2π , t = 0.2. Left: arrow plot. Right: distribution plot.

The time interval is [0, 1] and the time step is τ = 0.2π/ω. To simulate the induction
harden process as closely as possible to the previous theoretical analysis, we set

E = ∂t A+ ∂t∇φ, M(∇ × A)= (1+ e−|∇×A|)∇ × A,

θ(u)= 100
√

u, σ (u)= 4−
(

1+
1

1+ u

)1+u

,

λ= 1, ν = 1, σ0 = 10−12, u0 = 293.

We adopt linear nodal elements by using COMSOL to simulate the induction
harden process. Let ω take the values 2π , 10π , and 50π . The eddy current density
σ E =−σ∂t(A+∇φ) for different coefficients ω at t = 1.0 is computed and shown
in Figures 6 and 7, while the temperature u is shown in Figure 8.

ω = 2π

ω = 10π

Figure 6. Eddy current density at t = 1.0 for ω = 2π (top) and ω = 10π : arrow plot and
distribution plot.
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ω = 50π

Figure 7. Eddy current density at t = 1.0 for ω = 50π : arrow plot and distribution plot.

ω = 2π

ω = 10π

ω = 50π

Figure 8. Temperature distribution at t = 1.0 for ω = 2π , ω = 10π and ω = 50π : side
view (left) and center section (right).

The numerical simulation results show that the induced eddy currents in the
workpiece dissipate energy and bring about Joule heating. The magnitude of the
eddy currents decreases with growing distance from the workpiece surface. As
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the current frequency ω increases, the eddy current distribution concentrates on
the outer side of the workpiece. Moreover, the temperature distribution is also
affected by ω. The overall temperature of the workpiece rises with the frequency ω
increasing, and the temperature difference between the inner and outer sides of the
workpiece gradually grows. It shows that the change in temperature is consistent
with the distribution of eddy currents.

7. Conclusion

In this paper we introduce the A-φ method based on decomposition of the electric
field to study an induction hardening model with a nonlinear relation between the
magnetic field and the magnetic induction field. We have proven the existence of a
weak solution only in the conducting domain. Due to technological reasons, we
cannot analyze convergence for the model in both conducting and nonconducting
domains. Some results of the numerical simulation shown here are reasonable.
Since we do not prove uniqueness of the weak solution, we could not further study
the convergence of the fully discrete scheme rigorously. In the future we would
like to investigate the general case and provide a proof of a unique solution. But we
need to overcome some difficulties in mathematical analysis, which come from the
coupling between the nonlinear A-φ equations and the heat equation in the form of
the temperature-dependent function.
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COMPUTING THE QUASIPOTENTIAL
FOR HIGHLY DISSIPATIVE AND CHAOTIC SDES
AN APPLICATION TO STOCHASTIC LORENZ’63

MARIA CAMERON AND SHUO YANG

The study of noise-driven transitions occurring rarely on the time scale of systems
modeled by SDEs is of crucial importance for understanding such phenomena
as genetic switches in living organisms and magnetization switches of the Earth.
For a gradient SDE, the predictions for transition times and paths between its
metastable states are done using the potential function. For a nongradient SDE,
one needs to decompose its forcing into a gradient of the so-called quasipotential
and a rotational component, which cannot be done analytically in general.

We propose a methodology for computing the quasipotential for highly dis-
sipative and chaotic systems built on the example of Lorenz’63 with an added
stochastic term. It is based on the ordered line integral method, a Dijkstra-like
quasipotential solver, and combines 3D computations in whole regions, a dimen-
sional reduction technique, and 2D computations on radial meshes on manifolds
or their unions. Our collection of source codes is available on M. Cameron’s web
page and on GitHub.

1. Introduction

Suppose a system is evolving according to a stochastic differential equation (SDE)
of the form

dx = b(x) dt +
√
ε dw, x ∈ Rd , (1)

where b(x) is a continuously differentiable vector field, dw is the standard Brownian
motion, and ε is a small parameter. The quasipotential is a key function of the large
deviation theory (LDT) [14] that allows one to find a collection of useful asymptotic
estimates for long-time dynamics of such systems. They include the invariant
probability measure, expected escape times from neighborhoods of attractors of the
corresponding ODE ẋ = b(x) lying within their basins, and maximum likelihood
escape paths from the basins. The quasipotential can be viewed as an analogue to
the potential function V (x), x ∈ Rd , for a gradient SDE with deterministic term

MSC2010: 65N99, 65P99, 58J65.
Keywords: quasipotential, ordered line integral method, Lorenz’63, maximum likelihood transition
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−∇V (x). The quasipotential is defined as the solution to the Freidlin–Wentzell
action functional minimization problem. The quasipotential is Lipschitz-continuous
in any bounded domain but not necessarily continuously differentiable [3]. Unfor-
tunately, it can be found analytically only in special cases, for example, for linear
SDEs [8; 7].

Ordered line integral methods (OLIMs) for computing the quasipotential for SDEs
of the form (1) in whole regions on regular rectangular meshes were introduced
in [11] for 2D and extended to 3D in [35]. They are Dijkstra-like solvers that
advance the solution from mesh points with smaller values to those with larger
values1 without iteration. Their general structure is inherited from the ordered
upwind method (OUM) [27; 28], but there are important differences. First, unlike
the OUM that uses the upwind finite difference scheme, the OLIMs solve a local
functional minimization problem at every step approximating a segment of curve
with a segment of straight line, and the integral along it by an at least second-
order accurate quadrature rule. This renders their observed rate of convergence
superlinear for some cases, and reduces error constants by two to three orders of
magnitude in comparison with the OUM. Second, while the OUM is practical only
for 2D problems due to large CPU times in larger dimensions, the OLIMs have been
successfully extended for 3D. This became possible due to the hierarchical update
strategy [11; 35], the use of the Karush–Kuhn–Tucker optimality conditions to
eliminate unnecessary updates, and a number of implementational rationalizations.

In previous works [11; 10; 35], the OLIMs were developed for computing the
quasipotential for mild-to-moderate ratio 4(x) of the magnitudes of the rotational
and potential components of the vector field b(x) in (1). In all test problems
considered in [11; 10; 35], 4(x) did not exceed 10 within the important region
around the attractor with respect to which the quasipotential was computed. For
all these test problems, the black-box algorithms [11; 10; 35] produced numerical
solutions with small relative errors.

Unfortunately, if one applies the black-box olim3D quasipotential solver from
[35] to a highly dissipative and chaotic system such as Lorenz’63 with an added
small white noise, the relative error of the numerical solution might be large leading
to completely wrong estimates for escape rates. For the parameter values σ = 10,
β = 8

3 , and ρ & 15, the quasipotential computed with respect to one of the point
attractors will become progressively inaccurate as ρ increases. We show in this work
that, as ρ approaches ρ2 ≈ 24.74 (where a subcritical Hopf bifurcation happens),
the upper bound for the ratio 4(x) blows up at any point of the computational
domain of interest. Even if one uses a very good desktop computer,2 this problem

1This is only approximately true. See [28] for details.
2We use a 2017 iMac with a 4.2 GHz Intel Core i7 processor and 64 GB of 2400 MHz DDR4

memory.
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cannot be cured by mesh refinement due to the computer’s limited memory: the
size of a 3D mesh cannot exceed 10003 by much.

In this work, we propose an approach for computing the quasipotential, finding
maximum likelihood transition paths, and estimating escape times from basins of
attractors for highly dissipative and possibly chaotic systems perturbed by small
white noise. This approach is suitable for systems where the 3D dynamics, after
some short transition time, takes place in a small neighborhood of a 2D manifold or
a union of 2D manifolds consisting of certain characteristics of the corresponding
ODE (see Assumption 4.2 in Section 4B below). Whether or not this phenomenon
takes place can be identified from the plots of the 3D level sets of the computed
quasipotential. We develop a technique for extracting these manifolds and generating
so-called radial meshes on them. We adjust and test the OLIM for 2D radial meshes
and compute the quasipotential on the constructed 2D manifolds or their unions.

The proposed techniques have been developed on the stochastic Lorenz’63:

dx =

 σ(x2− x1)

x1(ρ− x3)− x2

x1x2−βx3

 dt +
√
ε dw, where x ≡

x1

x2

x3

, (2)

with σ = 10, β = 8
3 , and 0.5≤ ρ < ρ2 ≈ 24.74. To the best of our knowledge, this

is the first time when the quasipotential is computed for a chaotic 3D system in
the whole region and 3D computations are refined by 2D computations on certain
manifolds. We study transitions between the stable equilibria at ρ = 12, 15, and 20,
and between the stable equilibria and the strange attractor at ρ = 24.4, and find
a collection of quasipotential barriers for them. Our transition paths obtained by
a direct integration using the computed quasipotential can be compared to those
found in [37] using the minimum action method, a path-based method consisting of
a direct minimization of the Freidlin–Wentzell action in the path space. At ρ= 24.4,
we compare two plausible transition mechanisms from the strange attractor to the
equilibria. We offer a number of plots of 3D level sets of the quasipotential at various
values of ρ varying from 0.5 to 24.4 and supplement them with links to YouTube
videos for a better 3D visualization. For ρ ≥ 15, when 2D approximation becomes
accurate enough, we perform refined 2D computations of the quasipotential.

Aiming at making our results readily reproducible, we made most of the codes
developed for this project publicly available at M. Cameron’s web page [5] — see
the package Qpot4lorenz63.zip — and on GitHub [4]. All codes mentioned
throughout this paper are included in this package. A user guide for the codes is
also provided there.

The techniques developed in this work can be used for analysis of other stochastic
systems. For example, the computation of the quasipotential for the 3D genetic
switch model from [23] would benefit from performing a refined 2D computation
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on a radial mesh on a 2D manifold as suggested by Figure 9 in [35]. Gissinger’s
3D model [15] relevant for the reversals of the magnetic field of the Earth can be
analyzed using the tools developed in this work.

The rest of the paper is organized as follows. In Section 2, some necessary
background on the quasipotential is given. A brief overview of the dynamics of
Lorenz’63 at σ = 10, β = 8

3 , and 0<ρ <∞ is offered in Section 3 and Appendix B.
Numerical techniques for computing the quasipotential are described in Section 4.
The application to stochastic Lorenz’63 is presented in Section 5. We summarize
our findings in Section 6. Some technical details are explained in Appendices A–G.

2. Definition and significance of the quasipotential

To explain what the quasipotential is [14], we first assume that the vector field b(x)
in SDE (1) admits the smooth orthogonal decomposition

b(x)=− 1
2∇u(x)+ l(x), ∇u(x) · l(x)= 0. (3)

If l(x)≡ 0, i.e., if the field b(x) were gradient, the Gibbs measure

µ(x)= Z−1e−u(x)/ε (4)

would be the invariant probability density for SDE (1). Suppose l(x) is not iden-
tically zero. Plugging the Gibbs measure (4) into the stationary Fokker–Planck
equation for SDE (1)

1
21µ(x)−∇ · (µ(x)b(x))= 0, (5)

we find that it is invariant if and only if l(x) is divergence-free, i.e., ∇ · l(x)≡ 0.
In this case, the function u(x) would play the role of a potential.

Unfortunately, the orthogonal decomposition (3) where l(x) is divergence-free
does not typically exist. However, a function U (x) called the quasipotential that
gives asymptotic estimates for the invariant probability measure near attractors of
ẋ = b(x) in the limit ε→ 0 can be designed [14].

Suppose that the vector field b(x) is continuously differentiable. In addition, we
assume that the ODE

ẋ = b(x) (6)

has a finite number of attractors, and every trajectory of (6) remains in a bounded
region as t→∞. Let A be an attractor of (6). The quasipotential with respect to A
is defined as the solution of the minimization problem

U (x)= inf
φ,T0,T1

{ST0,T1(φ) | φ(T0) ∈ A, φ(T1)= x}, (7)
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where the infimum of the Freidlin–Wentzell action

ST0,T1(φ)=
1
2

∫ T1

T0

‖φ̇− b(φ)‖2 dt (8)

is taken over the set of absolutely continuous paths φ with endpoints at A and x,
and all times T0, T1 ∈ R. The infimum with respect to T0 and T1 can be taken
analytically [14; 19; 18] resulting in the geometric action (see Appendix A)

S(ψ)=
∫ L

0
(‖ψ ′‖‖b(ψ)‖−ψ ′ · b(ψ)) ds, (9)

where the path ψ is parametrized by its arclength, and L is the length of ψ . As a
result, the definition of the quasipotential can be rewritten in terms of the geometric
action:

U (x)= inf
ψ
{S(ψ) | ψ(0) ∈ A, ψ(L)= x}. (10)

We have been using definition (10) to develop quasipotential solvers.
Using Bellman’s principle of optimality [1], one can show [3] that the quasi-

potential U (x) satisfies the Hamilton–Jacobi equation (see Appendix A)

1
2‖∇U (x)‖2+ b(x) · ∇U (x)= 0, U (A)= 0. (11)

Equation (11) implies that

b(x)=−1
2∇U (x)+l(x), where l(x):=b(x)+ 1

2∇U (x) is orthogonal to ∇U (x).
(12)

We will refer to − 1
2∇U (x) and l(x) as the potential and rotational components,

respectively.
We remark that the boundary value problem (BVP) (11) is ill-posed. It always

has the trivial solution identically equal to zero and may or may not have a smooth
nontrivial solution. The quasipotential defined by (7) or (10) is a viscosity solution3

to (11) [9]. The other complication is that even a nontrivial solution to this BVP,
classical or viscosity, may not be unique due to the fact that the boundary condition
is imposed on an attractor [20]. For example, if b(x) = Bx where B is a matrix
with all eigenvalues having negative real parts, the number of solutions of (11) with
the BC u(0)= 0 is equal to the number of invariant subspaces for B.

Nonetheless, (11) is instrumental in deriving the equation for minimum action
paths (MAPs) also known as maximum likelihood paths or instantons that minimize

3A viscosity solution to a first-order nonlinear PDE f (x, u,∇u)= 0 is a continuous but possibly
nondifferentiable function obtained as the limit of a sequence of smooth solutions to f (x, u,∇u)=
ε1u as ε→∞.
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the geometric action (9) [14; 3] (see Appendix A):

ψ ′(s)=
b(ψ(s))+∇U (ψ(s))
‖b(ψ(s))+∇U (ψ(s))‖

. (13)

Once the quasipotential is computed, one can shoot a MAP from a given point x
back to the attractor A by integrating (13) backward in s. Alternatively, MAPs
can be found by path-based methods [13; 38; 19; 18] that directly minimize the
Freidlin–Wentzell action or the geometric action.

The mentioned asymptotic estimate for the invariant probability density within a
level set of the quasipotential completely lying in the basin B(A) of A is [14]

µ(x)� e−U (x)/ε, i.e., lim
ε→0

(−ε logµ(x))=U (x). (14)

The symbol � denotes the logarithmic equivalence clarified in (14). The expected
escape time from B(A) can also be estimated up to exponential order [14]:

E[τB(A)] � eU (x∗)/ε, where U (x∗)= min
x∈∂B(A)

U (x). (15)

In some common special cases, a sharp estimate for the expected escape time can
be obtained [2].

The term transition state is often encountered in chemical physics literature.
Mostly it refers to a saddle lying on the manifold separating two basins of attraction.
The dynamics of the Lorenz system are complicated, and basins of its attractors are
tightly interlaced for ρ & 20. To accommodate such situations, we will define the
term escape state.

Definition 2.1. Consider a system evolving according to SDE (1). Let A be an
attractor of the corresponding ODE (6). The escape state from A is the set of points
minimizing the quasipotential with respect to A over the boundary of the basin of A.

The quasipotential at the escape state of A defines the expected escape time from
the basin of A up to exponential order according to (15).

3. A brief overview of Lorenz’63

The Lorenz’63 system
ẋ1 = σ(x2− x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2−βx3

(16)

is one of the most fascinating and transformative ODE models proposed in the
twentieth century. E. Lorenz [22] derived it from Saltzman’s 2D cellular convection
model [26] using a Fourier expansion and truncating the trigonometric series to
include a total of three terms. He proved that the resulting system exhibits a new
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type of long-term behavior. All trajectories of (16) stay in a bounded region. For
σ = 10, β = 8

3 , and ρ= 28, their ω-limit sets form an “infinite complex of surfaces”,
i.e., a fractal, whose Hausdorff dimension is 2.06 [33], later named the Lorenz
attractor. The Lorenz map [22], a 1D map zn+1 = f (zn), where zn is the n-th
maximum of the z-component of a trajectory, and f is the function estimated
numerically, explained the divergence of arbitrarily close characteristics. It has
become instrumental for analysis of chaotic dynamical systems.

The study of the Lorenz’63 system burst in the mid-1970s, perhaps due to
the progress in the computer industry. A number of remarkable properties and
quantitative characteristics have been discovered. The topological structure of the
Lorenz attractor was studied in [16; 25; 34]. The phenomenon called preturbulence
was described in [21]. The value ρ1 ≈ 24.06 at which the Lorenz attractor is born
for σ = 10 and β = 8

3 was found in [36] using a functional fit to the Lorenz map.
Homoclinic explosions, period-doubling cascades, and periodicity windows were
investigated in [30]. A beautiful overview of the Lorenz system is given in [32,
Chapters 9–12]. Nowadays, the Lorenz system is a popular test model for new
methods in such fields as machine learning and forecasting (e.g., [12; 29; 17]).

It is easy to check that (16) is invariant under the symmetry transformation
(x1, x2, x3) 7→ (−x1,−x2, x3). We fix the parameters σ = 10 and β = 8

3 and
consider the dynamics of (16) as ρ grows from zero to infinity. The notation and
bifurcations important for the rest of the paper are summarized in Table 1. A more
detailed description of the dynamics of (16) for 0< ρ <∞ is given in Appendix B.

In this work, we consider the Lorenz system perturbed by small white noise (2).
The noise term regularizes the chaotic deterministic dynamics of (16) in the sense
that one can predict the future probability density function given the current one
by solving the Fokker–Planck equation. On the other hand, the presence of the
noise term enables escapes from any neighborhood of an attractor of (16). If ρ
is such that there are multiple attractors, noise-induced transitions between their
neighborhoods become possible.

4. Numerical methods

In this section, we describe numerical techniques developed for computing the
quasipotential for highly dissipative and chaotic systems where the ratio of the
magnitudes of the rotational and potential components is of the order of 103.

4A. A brief overview of ordered line integral methods (OLIMs). We start with a
brief overview the OLIMs. A comprehensive description of the implementation of
the OLIM in 3D is provided in [35]. It involves many technical details that are impor-
tant for making the solver fast. A C source code olim3D4Lorenz63.c set up to com-
pute the quasipotential for (2) and instructions on how to run it are available in [5; 4].
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range of ρ comments and notation

0< ρ < 1 The origin is the unique globally attracting equilibrium.
ρ = 1 Supercritical pitchfork bifurcation.

1< ρ < ρ0 ≈ 13.926 The origin is a Morse index-one saddle for 1< ρ <∞.
Equilibria C± are located at

C± = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

C± are asymptotically stable for 1< ρ < ρ2.
ρ = ρ0 ≈ 13.926 Homoclinic orbits starting and ending at the origin exist.

ρ0 < ρ < ρ1 ≈ 24.06 C± are surrounded by saddle cycles γ±, respectively.
Chaotic dynamics (“preturbulence”) is developing as ρ grows.
We introduce cones ϒ± with vertices at C± and passing
through γ±, respectively:

ϒ+ := {C++ t (x−C+) | t ≥ 0, x ∈ γ+}.
ρ = ρ1 ≈ 24.06 The birth of the Lorenz attractor AL (a strange attractor).

ρ1 < ρ < ρ2 ≈ 24.74 AL coexists with asymptotically stable equilibria C±.
ρ = ρ2 ≈ 24.74 A subcritical Hopf bifurcation: γ± shrink to C±, respectively.

Table 1. A summary of bifurcations and notation for Lorenz’63 (16) for σ = 10, β = 8
3 ,

and 0< ρ ≤ ρ2 ≈ 24.74.

The OLIMs belong to the family of label-setting algorithms [6] and inherit
their set of labels from the OUM [27; 28]. Labels of mesh points indicate their
statuses. A mesh point is Accepted if the value of the computed function (the
quasipotential in our case) is finalized at it and all its nearest neighbors also have
finalized values. Accepted points are not used for updating values at other mesh
points. A mesh point is Accepted Front if the value at it is finalized but it has at
least one nearest neighbor with an unfinalized value. Considered mesh points are
those with unfinalized tentative values that have at least one Accepted Front nearest
neighbor. Unknown mesh points have no Accepted Front nearest neighbors and the
values at them have not been proposed yet.

The OLIMs use several kinds of neighborhoods of mesh points. The neigh-
borhoods are defined via distances between indices of the mesh points. Let
p := (i, j, k) ∈ Z3 and p0 := (i0, j0, k0) ∈ Z3 be the lattice points corresponding to
the mesh points x and x0, respectively. In other words, p and p0 are the indices of
the mesh points x and x0, respectively. Recall that the lq , q = 1, 2, and l∞ distances
between p and p0 are defined as

‖ p− p0‖q := [|i − i0|
q
+ | j − j0|q + |k− k0|

q
]
1/q ,

‖ p− p0‖∞ :=max{|i − i0|, | j − j0|, |k− k0|},

respectively. Let I be the set of indices of all mesh points.
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• The near neighborhood typically containing 26 points

Nnear( p0) := { p ∈ I | ‖ p− p0‖1 ≤ 3 and ‖ p− p0‖∞ = 1}

is used for recruiting Unknown points to Considered and changing the status of
Accepted Front points to Accepted. Correspondingly, the near neighborhood
of the mesh point x0 is defined as

Nnear(x0) := {x | p ∈ Nnear( p0)}.

• The far neighborhood NK
far( p0), where K is the update factor (a positive integer

chosen by the user), consists approximately4 of all lattice points p∈I such that
p 6= p0 and the l2 distance ‖ p− p0‖2 ≤ K . It is used for updating Considered
points. Correspondingly, the far neighborhood of the mesh point x0 is defined as

NK
far(x0) := {x | p ∈ NK

far( p0)}.

If the mesh steps in xi , i = 1, 2, 3, are all equal to h, then the far neighborhood
of x0 is approximately the ball centered at x0 of radius K h.

At the start, all mesh points are Unknown. Initialization consists of computing
tentative values at the mesh points lying near the attractor, switching their status to
Considered, and adding them to the binary tree. The binary tree maintains the heap
sort of the values at Considered points so that the smallest Considered value is always
at the root of the tree. At each step of the main body of the OLIM, a Considered
mesh point xnew with the smallest tentative value becomes Accepted Front. Then
the hierarchical update procedure proposed in [11] and further developed in [35]
is implemented. It consists of two substeps. First, for all Considered points in
NK

far(xnew) proposed update values involving xnew are computed. Second, each
Unknown point x in Nnear(xnew) becomes Considered and a tentative value at x is
computed using the Accepted Front points in NK

far(x). This algorithm is summarized
in the pseudocode below. The details of each step are elaborated in [35].

Now we outline the hierarchical update strategy. All details of it are worked out
in [35]. There are three types of updates done in the order

one-point updates→ triangle updates→ simplex updates.

Let x be a Considered point to be updated, and y ∈ NK
far(x) be Accepted Front.

4More precisely, p ∈ NK
far( p0) if and only if p 6= p0, p ∈ I, and |i − i0| ≤ K , | j − j0| ≤

ceil(
√

K 2− |i − i0|2), and |k− k0| ≤ ceil(
√

K 2−min{|i − i0|2+ | j − j0|2, K 2}). Defined so, p ∈
NK

far( p0) is slightly larger than { p ∈ I | p 6= p0, ‖ p− p0‖2 ≤ K }.
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Initialization. Start with all mesh points being Unknown. Set values of U at them to∞.
Let x∗ be an asymptotically stable equilibrium located at a mesh point. Compute tentative
values of U at the points x ∈ Nnear(x∗) and change their status to Considered.

The main body.
while the boundary of the mesh has not been reached and the set of Considered points is
not empty do

1. Change the status of the Considered point xnew with the smallest tentative value of U
to Accepted Front.

2. Change the status of all Accepted Front points in Nnear(xnew) that no longer have
Considered points in their Nnear-neighborhoods to Accepted.

3. Update all Considered points x ∈ NK
far(xnew). The updates must involve xnew.

4. Change the status of each Unknown point x ∈ Nnear(xnew) to Considered and update
them using the Accepted Front points in NK

far(x).

Algorithm 1. A coarse-grained pseudocode of the OLIM.

One-point update. We connect x and y with a line segment and approximate the
geometric action (9) along it using the midpoint quadrature rule QM( y, x). Then
the proposed value of the quasipotential at x is

Q1( y, x)=U ( y)+QM( y, x). (17)

If Q1( y, x) is less than the current tentative value U (x), we replace U (x) with it.
Otherwise, we leave U (x) unchanged. Furthermore, we compare Q1( y, x) with the
current minimizer of the one-point update at x and update it if Q1( y, x) is smaller.
In step 3 of Algorithm 1, the only one-point update computed is Q1(xnew, x). In
step 4, one-point updates are computed for all Accepted Front points y ∈ NK

far(x).

Triangle update. Triangle updates always involve the minimizer of the one-point
update x0. The base of an admissible triangle is a line segment connecting x0 and an
Accepted Front point x1 satisfying ‖ p1− p0‖1≤2 and ‖ p1− p0‖∞=1 where p0 and
p1 are the indices of x0 and x1, respectively. The points on the line segment [x0, x1]

are parametrized by λ ∈ [0, 1]: xλ := x0+λ(x1− x0). The values of U on [x0, x1]

are found by linear interpolation: U (xλ)≡Uλ :=U (x0)+λ(U (x1)−U (x0)). Then
the triangle update is done by solving the constrained minimization problem

Q2(x0, x1, x)= min
λ∈[0,1]

{Uλ+QM(xλ, x)} (18)

and replacing the current tentative value U (x)with the proposed value Q2(x0, x1, x)
if and only if the latter is less than the former. This replacement may take place
only if an interior point solution is found. Hence, we are interested in the solution
to (18) only if the minimizer λ∗ ∈ (0, 1). Therefore, we take the derivative of the
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function being minimized in the right-hand side of (18), compare its signs at the
endpoints, and proceed with solving the nonlinear equation only if the signs are
different.

Simplex update. One of the vertices of the triangle at the base of an admissible
simplex must be the minimizer of the one-point update x0, and one of its sides
adjacent to x0, let’s call it [x0, x1], must be such that the constrained minimization
problem (18) has given an inner-point solution λ∗ ∈ (0, 1). The third vertex of the
base of an admissible simplex must be an Accepted Front point x2 such that l∞
distances between the indices of x0, x1, and x2 are all 1, and at most one of the l1

distances between their indices is 2, while the other ones are 1. The proposed value
produced by the simplex update is the solution of the constrained minimization
problem

Q3(x0, x1, x2, x)= min
λ∈[0,1]

{Uλ+QM(xλ, x)}, (19)

where xλ = x0+ λ1(x1− x0)+ λ2(x2− x0),

Uλ =U (x0)+ λ1(U (x1)−U (x0))+ λ2(U (x2)−U (x0)),

subject to λ1 ≥ 0, λ2 ≥ 0, λ1+ λ2 ≤ 1. (20)

The warm start for solving (19) is the vector λ := [λ∗, 0] where λ∗ is the minimizer
of (18). As we do it for the triangle update, we wish to quickly reject the simplex
update if its minimizer is certainly lying on the boundary of the triangle (20). We
use the Karush–Kuhn–Tucker (KKT) optimality conditions [24, Chapter 12] to do
so. They boil down (see Appendix C) to checking whether

∂

∂λ2
(Uλ+QM(xλ, x))≥ 0. (21)

If (21) holds, then [λ∗, 0] is a local solution to (19), and hence, we reject the simplex
update. Otherwise we proceed with numerical minimization using Newton’s method.
If an interior point solution is found, we replace the current tentative value U (x)
with Q3(x0, x1, x2, x) provided that Q3(x0, x1, x2, x) < U (x). Otherwise, U (x)
remains unchanged.

We remark that the computation of the quasipotential terminates as soon as a
boundary mesh point becomes Accepted Front. This is important because the
MAP that leaves the computational domain via this point might return to it, and it
is crucial for an accurate computation of the quasipotential that the computation
follows the MAPs.

4B. Challenges of computing the quasipotential for stochastic Lorenz’63. An
important characteristic of the vector field in SDE (1) in a neighborhood of an
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The true MAP segment connecting x with
the Accepted Front

Level sets of the quasipotential

y
A

z x K h

Figure 1. An illustration for the difficulty of computing the quasipotential in the case
where the ratio 4(x) given by (22) is large. The blue closed curves represent some level
sets of the quasipotential, and x is a Considered point that is up for an update. The
green segment [z, x] is the best linear approximation to the MAP connecting x with the
Accepted Front within the given update radius K h.

attractor A is the ratio of the magnitude of the rotational component to that of the
potential one [35]:

4(x) :=
‖l(x)‖∥∥1

2∇U (x)
∥∥ . (22)

If 4(x) is not too large (does not exceed 10) in the basin of A, except, perhaps
in some small neighborhoods of the attractor or the escape state, the OLIMs give
accurate results on uniform rectangular meshes of reasonable sizes [11; 10; 35].
However, if 4(x) is large (much larger than 10) in a significant part of the basin
of A, the accuracy of the numerical solution by the OLIM on a regular rectangular
mesh deteriorates [11, §4]. The problem is illustrated in Figure 1. Suppose the
computation has reached the level set of the quasipotential depicted with the largest
closed blue curve. All mesh points inside it are either Accepted if they have no
Unknown or Considered nearest neighbors, or Accepted Front, if they do. Let x
be a Considered point up for an update. If 4(x) is large, the segment of the MAP
arriving at x from the span of Accepted Front mesh points is long. A rough estimate
for its length is 4(x)h where h is the mesh step. Let y be the point where this
MAP segment starts at the span of the Accepted Front. Even if the update factor K
were chosen large enough so that y lies in the ball centered at x of radius K h, the
straight line segment (the magenta line segment from x to y in Figure 1) and the
midpoint quadrature rule would give poor approximations for the MAP segment
and the geometric action along it, respectively, resulting in an inaccurate update
value at x. It is shown in [11; 35] that too large an update factor may deteriorate
the accuracy. A safer but still too rough approximate solution would be obtained if
the update radius is reasonably small, i.e., chosen according to the proposed rules
of thumb in [11; 35]. Then the segment of MAP would be approximated with the
green line segment [z, x] in Figure 1.
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Figure 2. The graph of the maximal ratio 4 of the magnitudes of the rotational and
potential components of the linear SDE d y = J y dt +

√
ε dw where J is the Jacobian

matrix of the right-hand side of the Lorenz system (16) evaluated at the equilibrium C+
for the range 1< ρ < ρ2 ≈ 24.74 where C+ is asymptotically stable.

Now imagine the case where 4(x)∼ 103 as it is for stochastic Lorenz’63 with
ρ1 < ρ < ρ2 where the stable equilibria and the strange attractor coexist. 3D
computations on regular rectangular meshes will give a qualitative idea about the
geometry of the level sets of the quasipotential, but the found quasipotential barriers
will be completely off.

The ratio 4(x) for the Lorenz system at 1< ρ < ρ2 ≈ 24.74 can be estimated
from that for the linearized system at C+ (see Appendix D). The graph of 4 for
the linearized system is displayed in Figure 2. It shows that the maximum of 4(x)
blows up as ρ→ ρ2. At ρ = 24.4, the largest ρ at which we present the results of
our computations, the maximal value of 4(x) for the linearized system is 973.4.

Challenged by this problem, we have developed an approach that allows us
to obtain reasonably accurate values of the quasipotential barriers. It consists of
finding approximate 2D manifolds (or unions of 2D manifolds) where the MAPs
emanating from the attractor are located, building so-called radial meshes on them,
and adjusting the OLIM for performing computations on radial meshes. This
approach is suitable for any 3D SDE where the level sets of the quasipotential are
thin, i.e., close to some 2D manifolds (see Assumption 4.2 below), which can be
determined by visual inspection of the computed 3D level sets. Note that this is a safe
diagnosis as the 3D OLIM tends to make the level sets thicker than the true ones if
4(x) is large. In this case, the MAP going from the attractor to the escape state will
be very close to any 2D manifold (or union of manifolds) approximating the level set
containing the escape state. We find such a manifold using the characteristics of the
corresponding ODE. The following lemma is instrumental for this approximation.

Lemma 4.1. Let A be an attractor of ẋ = b(x), where b ∈ C1(R3). Let

Va := {x ∈ R3
|U (x)≤ a}
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be a sublevel set of the quasipotential completely lying in the basin of A, and γ be
a curve lying on the boundary of Va; i.e., for any x ∈ γ , U (x)= a. Let M′ and M

be the manifolds consisting, respectively, of the MAPs going from A to γ , and the
characteristics starting at γ and running to A. Then M′ ⊂ Va and M⊂ Va .

A proof of Lemma 4.1 can be found in Appendix E.
Let γ be an unstable limit cycle serving as the escape state from the basin of an

attractor A. Let the quasipotential at γ be Uγ . We can consider a sublevel set Va for
a<Uγ and arbitrarily close to Uγ . By Lipschitz continuity of the quasipotential [3],
a can be chosen so that the distance between γ and Va is smaller than any given
positive number. Correspondingly, we can pick a curve γ ′ lying on the boundary of
Va located arbitrarily close to the limit cycle γ . By Lemma 4.1, the manifolds M′

and M consisting of MAPs/characteristics running to/from γ ′ will lie in Va .

Assumption 4.2. Suppose that the level set Va is close to both manifolds M and M′,
i.e., the Hausdorff distances5 between Va and M and between Va and M′ are less
than some small δ > 0:

dH (Va,M) < δ and dH (Va,M′) < δ.

Under Assumption 4.2, the triangle inequality implies that the Hausdorff distance
between M and M′ is bounded by 2δ:

dH (M,M′)≤ dH (M,Va)+ dH (M
′,Va) < 2δ. (23)

We will employ Assumption 4.2 for 15 ≤ ρ ≤ 24.4. Figures 7 and 9 below
illustrate it: compare the MAPs (the dark red curves) and the characteristics (the
dark blue curves) in these figures and observe that they lie on close manifolds
located inside visibly thin level sets.

Note that the manifold M can be readily sampled by shooting characteristics
from γ ′ to A. In the next section, we describe how to build radial meshes on M,
adjust the OLIM for them, and test its performance.

4C. Radial meshes on manifolds. We call a mesh radial if it is set up as follows.
Let γ0 be a point or a closed curve, and let γ be another closed curve. We pick a
finite set of simple closed curves that do not intersect pairwise and index them γi ,
i = 1, . . . , Nr − 2. We add γ0 and γNr−1 ≡ γ to this set. These curves will be
referred to as parallels. We also pick a finite set of curves, meridians, going from
γ0 to γ and crossing each γi exactly once in the order of increase of their indices.
We index the meridians from 0 to Na−1 and identify meridian 0 with meridian Na .
The resulting mesh has size Nr × Na . Examples of radial meshes for the Lorenz
system defined on manifolds consisting of all characteristics going from saddle

5dH (X,Y)=max{supx∈X inf y∈Y‖x− y‖, sup y∈Y infx∈X‖x− y‖}.
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cycles to asymptotically stable equilibria at ρ = 15 and ρ = 24.4 are shown in
Figures 8, top, and 13, left, respectively. A radial mesh defined between two closed
curves, the saddle cycle γ− and a closed curve approximating an “eye” of the
strange attractor at ρ = 24.4, is displayed in Figure 14, top left. Our technique for
building radial meshes is described in Appendix F and implemented in the Matlab
code make2Dmesh.m.

To adjust the OLIM for radial meshes, we redefine the neighborhood Nfar((ir , ia))

from which a mesh point indexed (ir , ia) can be updated using two update factors,
radial Kr and angular Ka , as follows: Nfar((ir , ia)) consists of all mesh points
( jr , ja) satisfying

max{0, ir − Kr } ≤ jr ≤min{ir + Kr , Nr − 1},

|( ja − ia) mod Na| ≤ Ka.

Let us check whether the OLIM applied to a system with large ratio 4 produces
small enough errors on 2D radial meshes of reasonable sizes and these errors
properly decay with mesh refinement. We set up an ad hoc 2D example with an
asymptotically stable spiral point at the origin and an unstable limit cycle ‖x‖ = 1:[

dx1

dx2

]
=

[
‖x‖2− 1 a
−a ‖x‖2− 1

] [
x1

x2

]
dt +
√
ε dw. (24)

We pick a = 103; then 4≥ 103. The exact quasipotential for (24) with respect to
the origin is given by

U (x)=
{
‖x‖2(1− 0.5‖x‖2), ‖x‖ ≤ 1,
0.5, ‖x‖> 1.

(25)

We have conducted two experiments with computing the quasipotential for (24).
The goal of the first experiment is to establish the dependence of the numerical error
on the relationship between Nr , Na , Kr , and Ka . We set Nr = 1024 and run the
solver for Na = 2q Nr , q = 0, 1, 2, 3, and Kr varying from 1 to round(Nr/40)= 25
and Ka = 2q Kr , respectively. The computational domain is the unit circle. The
dependence of the normalized maximal absolute error

E :=
maxir ,ia |U (ir , ia)−Uexact(ir , ia)|

maxir ,ia Uexact(ir , ia)
(26)

on Kr is shown in Figure 3, left. The normalized maximal absolute error (the red
curve) for the 1024× 1024 rectangular mesh defined on the square [−1, 1]2 is also
provided for comparison. These results eloquently demonstrate the superiority of
the radial meshes for computing the quasipotential in the case where the ratio 4 is
large. Also, the choice Kr = round(Nr/40) and Ka = round(Na/40) is reasonable
and can be used as a default setting for radial meshes.
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Figure 3. Measurements of numerical errors for radial meshes Nr × Na in computing the
quasipotential for SDE (24). Left: the dependence of the normalized maximal absolute
error (26) on the update parameter Kr . The parameter Ka was chosen so that Na/Nr =
Ka/Kr . Right: the dependence of the normalized maximal absolute error (26) (the blue
plot) on Nr with Na = 2Nr , Kr = round(Nr/40), and Ka = 2Kr . The least squares fit
(27) is included for comparison.

The goal of the second experiment is to verify error decay with mesh refinement.
We have run computations with Nr = 2p, p = 8, 9, 10, 11, 12, Na = 2Nr , Kr =

round(Nr/40), and Ka = 2Kr . The plot of the normalized maximal absolute error
in Figure 3, right, shows the desired convergence. The least squares fit gives a
superquadratic convergence:

E = 3.3 · 104
· N−2.2

r . (27)

The superiority of radial meshes over rectangular ones for the computation
of the quasipotential in the basins of spiral point attractors of vector fields with
large rotational components is due to the fact that the radial meshes have update
regions better adjusted to the geometry of the MAPs than the rectangular ones. This
phenomenon is illustrated in Figure 4. The update regions of radial meshes are small
near the equilibrium where the MAP has high curvature and grow away from it
where the MAP’s curvature decreases. In contrast, the update regions of rectangular
meshes remain uniform. As a result, they are too large near the equilibrium and not
large enough away from it.

In summary, our experiments with SDE (24) with a stable spiral point, an
unstable limit cycle, and 4≥ 103 have demonstrated that the computation of the
quasipotential on radial meshes of moderate sizes gives accurate and reliable results.

Remark 4.3. We emphasize that we still use line segments in the OLIM on radial
meshes to approximate MAP segments. We have explored a variant of OLIM where
the minimizer for each local constraint minimization problem is sought on the set
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Figure 4. An illustration explaining the advantage of radial meshes over rectangular ones
for the computation of the quasipotential on the example of SDE (24) with a = 40. Two
computations were performed. The first one was done on the radial mesh with Nr = 128,
Na=256, Kr =3, and Ka=6. The maximal absolute and RMS errors for this computations
are 1.00 ·10−2 and 2.44 ·10−3, respectively. The second computation was performed on the
rectangular mesh with N = 256 and K = 6 and gave the maximal absolute and RMS errors
of 1.39 · 10−1 and 6.43 · 10−2, respectively, which are more than an order of magnitude
larger than those for the radial mesh. The CPU times for the radial and rectangular meshes
are approximately the same: 0.24 and 0.22 seconds, respectively, Top: the thick red curve
is the exact MAP going from the equilibrium at the origin to the unstable limit cycle r = 1.
The thin black mesh is the radial mesh. The thick black curves bound some samples of
its update regions. The thin magenta mesh is the rectangular mesh, and the thick magenta
circles are samples of its update regions. Bottom: a zoom-in of the top.

of curves of the form

{(r(t), θ(t)) | t ∈ [0, 1], r(t)= r1+ t (r2− r1), θ(t)= θ1+ t (θ2− θ1)}

where (ri , θi ), i = 1, 2, are the polar coordinates of the endpoints of the curve.
We have found that the use of line segments as in the original OLIM gives more
accurate results, so we stick with line segments.

5. Results

In this section, we present a collection of plots of the level sets of the computed
quasipotential in 3D for the Lorenz system at ρ = 0.5, 12, 15, 20, and 24.4. Where
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Figure 5. Two views of the level sets of the quasipotential at ρ = 0.5 corresponding to
U = 20 (the blue surface) and U = 40 (the red surface). The thin blue and red closed
curves lying on the corresponding level sets are shown to aid 3D visualization. The dark
blue curves depict a collection of the characteristics starting at the set of points marked by
large orange dots and approaching the origin. The dark red curves represent a collection of
the MAPs emanating from the origin and arriving at the same set of points. A movie with
this figure rotating around the x3-axis is available at https://youtu.be/YscXN18lgyU.

appropriate, we perform 2D computations on radial meshes on manifolds and refine
the estimates for the quasipotential barriers between different basins or regions of
the phase space. Our collection of MAPs computed by integrating (13) backwards
in s (code ShootMAPs.c [5]) can be compared with that obtained in [37] for a
somewhat different set of values of ρ using the minimum action method (MAM).
Note that, while the MAM is easier to program than the OLIM and is suitable for
any phase-space dimension, its output is biased by the initial guess for the path
and hence might converge to a local minimizer in the path space instead of the
global one. Furthermore, MAM does not allow one to visualize the level sets of the
quasipotential. Estimates for quasipotential barriers are not provided in [37] while
we do it here.

5A. 0<ρ < 1. For 0<ρ < 1, the origin is globally attracting. Two level sets of the
quasipotential for ρ=0.5 are shown in Figure 5. The computation was performed on
a 513×513×513 mesh with the update factor K =14. This choice of K for N =513
was suggested in [35]. The level sets are heart-shaped and oriented approximately
along the plane x1 = x2. Let X be a level set, and let γX be the intersection of X
with the vertical plane x1 = x2. The curve γX runs approximately along the edge
of the heart-shaped level set X . We pick X to be a level set corresponding to one
of the largest computed values of the quasipotential and find a collection of points
marked with large orange dots lying on the corresponding curve γX and forming
angles from 0 to 2π with step π/72. The characteristics of (16) (the dark blue

https://youtu.be/YscXN18lgyU
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curves) and the MAPs of (2) (the dark red curves) starting and arriving at this set of
points, respectively, are notably different. The set of characteristics starting at γX

and the set of MAPs arriving at γX form visibly distinct 2D manifolds.
Let us find the directions along which typical characteristics and typical MAPs

approach the origin and emanate from it, respectively. It is hard to see in Figure 5
whether they coincide or not. Let J be the Jacobian matrix of the right-hand side
of (16) evaluated at the origin:

J =

−σ σ 0
ρ −1 0
0 0 −β

 . (28)

For the linear SDE
dx = J x dt +

√
ε dw, (29)

the quasipotential decomposition is given by J x =−Qx+ Lx (see Appendix D),
where Q and L are matrices. The quasipotential is the quadratic form U (x)= x>Qx
where Q can be found analytically [3]:

Q =
[

Q1

β

]
, (30)

where Q1 =
σ + 1

d

[
σ(σ + 1)+ ρ(ρ− σ) −ρ− σ 2

−ρ− σ 2 (σ + 1)− σ(ρ− σ)

]
,

d = (σ + 1)2+ (ρ+ σ)2. (31)

The rotational matrix L = J + Q is

L =
[

L1

0

]
, (32)

where L1 =
ρ− σ

d

[
ρ+ σ 2

−(σ + 1)+ σ(ρ− σ)
σ(σ + 1)+ ρ(ρ− σ) −ρ− σ 2

]
.

For the linear SDE (29), MAPs are the characteristics of ẋ = (Q+ L)x. Obtaining
spectral decompositions of J =−Q+ L and J̃ = Q+ L for ρ = 0.5, we find that
typical characteristics of (16) approach the origin tangent to the line span v, while
typical MAPs emanate from the origin tangent to the line span ṽ, where

v ≈

0.7241
0.6897

0

 , ṽ ≈

0.6924
0.7215

0

 . (33)

5B. 1 < ρ < ρ0 ≈ 13.926. In this interval, the equilibria C± switch from stable
nodes to stable spiral points at ρ ≈ 2.1546. Figure 6 displays the level sets of the
quasipotential for ρ = 12 with respect to each stable equilibrium. It was computed
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Figure 6. Two views of the level sets of the quasipotential at ρ = 12 corresponding to
U = 10 (the blue surface) and U = 19.42 (the red surface). The dark blue curves are the
characteristics emanating from the origin along its unstable directions ±ξ (42) and arriving
at C±, respectively. The dark red curves are the MAPs going from C± to the origin. The
MAP from C± to C∓ is obtained by the concatenation of the MAP from C± to the origin
(a dark red curve) and the characteristic from the origin to C∓ (a dark blue curve). A movie
with this figure rotating around the x3-axis is available at https://youtu.be/-ABbuD8oDjI.

on a 513× 513× 513 mesh with K = 14. The found value of the quasipotential
at the origin that serves as the transition state between C± is 19.47. Therefore, at
ρ = 12, the expected escape time from the basin of C+ scales as

E[τC+] � e19.47/ε . (34)

The MAP from C+ to C− is obtained by the concatenation of the computed MAP
from C+ to the origin (the dark red curve starting at C+) and the characteristic
from the origin to C− (the dark blue curve ending at C−). Figure 6, left, shows
that the MAPs and the characteristics connecting C± and the origin lie on close 2D
manifolds.

We did a consistency check by finding the quasipotential barrier by integrating
the geometric action (9)–(10) along the found MAP and got the value 19.89, which
is in reasonable agreement with 19.47 found by our 3D computation.

5C. 13.926 ≈ ρ0 < ρ < ρ1 ≈ 24.06. In this range, the escape states from C+ and
C− are the saddle limit cycles γ+ and γ−, respectively. We have computed the
quasipotential for two values of ρ: ρ = 15 and ρ = 20.

5C1. ρ = 15. The computed quasipotential for ρ = 15 with respect to C+ is
visualized in Figure 7. First, we picked a large computational domain to embrace
the level set of the quasipotential enclosing both of the stable equilibria C± and used
a 613× 613× 613 mesh and K = 15. Second, we chose a smaller domain just to
enclose γ+. It was a cube with side length 13 centered at C+, and the mesh in it was
1001× 1001× 1001. K was set to 20. The found quasipotential is nearly constant
on γ+: it varies between 17.42 and 17.45. The saddle cycles γ± are depicted with
thick bright red curves. A maximum likelihood transition path from C+ to C− can

https://youtu.be/-ABbuD8oDjI
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Figure 7. Two views of the level sets of the quasipotential at ρ = 15 corresponding to
U = 8 (the green surface), U = 17.37 (the blue surface), and U = 20 (the red surface). The
thick bright red curves are the saddle cycles γ±. The dark blue curves are characteristics
running from γ+ and approaching C±. The dark red curve is a MAP starting at C+
and approaching γ+. A movie with this figure rotating around the x3-axis is available at
https://youtu.be/mzdUD-ngqYs.

be obtained by the concatenation of a MAP from C+ to γ+, the saddle cycle γ+, and
a characteristic going from γ+ to C−. One such MAP and one such characteristic
are the dark red and dark blue curves in Figure 7, respectively.

Willing to refine our relatively rough 3D computation and find a more accurate
value of the quasipotential on γ+ with respect to C+, we perform 2D computations
on the manifold M+ consisting of all characteristics going from γ+ to C+ using the
code olim2DEquilibLimitCycle.c. Figure 7 suggests that M+ is close to the
2D manifold consisting of all MAPs from C+ to γ+. So we neglect the discrepancy
between them. We generate 2D radial meshes on M+ (see Appendix F) whose
coarsened version is shown in Figure 8, left. The computed quasipotential on M+ is
shown in Figure 8, right. We first ran the OLIM on a radial mesh of size 2001×7200
and then repeated the computation on a refined mesh of size 4001× 14400. The
radial update factors Kr were 50 and 100, respectively, and the angular update
factors Ka were 180 and 360, respectively. For the coarser mesh, the resulting values
of the quasipotential on γ+ varied from 18.19488 to 18.19501, averaging 18.19495.
For the finer mesh, these numbers were, respectively, 18.19536, 18.19541, and
18.19536. These results suggest the following estimate for expected escape time
from C+ at ρ = 15:

E[τC+] � e18.2/ε . (35)

For comparison and a consistency check, we have also found the quasipotential
barrier by integrating the geometric action along the MAP going from C+ to γ+.

https://youtu.be/mzdUD-ngqYs
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Figure 8. Left: radial meshes on the manifold M± consisting of all characteristics going
from the saddle cycles γ+ (the thick purple curve) and γ− (the thick red curve) to the
equilibria C± (the large red dots), respectively. Right: the quasipotential computed on M+.

Note that the length of this MAP is infinite. However, the contribution to the
geometric action from the integration along its infinite piece lying within a δ-tube
around γ+ tends to zero as δ→ 0 as the quasipotential is Lipschitz-continuous [3].
Therefore, it suffices to take a finite piece of the MAP starting at C+ and ending
near γ+. We took a piece of MAP of length 308.7 and obtained the value of the
quasipotential barrier 19.3, which is closer to 18.2 as found by the 2D computation
rather than to 17.4 as found by the 3D one. The result 19.3 is affected by numerical
errors in the MAP and by the quadrature error amplified by the large length of
the MAP. As ρ increases to ρ2 ≈ 24.74, the MAP spirals denser and denser, and
integration of the geometric action along it becomes less and less accurate. So we
abandon this consistency check for values of ρ larger than 15.

5C2. ρ = 20. For ρ = 20, we performed a computation in the cube with side
length 26 centered at C+ on a 1001× 1001× 1001 mesh with K = 20. This cube
encloses γ+. The values of the computed quasipotential on γ+ range from 6.59
to 6.62 and average 6.61. The level sets corresponding to U = 3.3 and U = 6.58
are shown in Figure 9. A 2D computation on the manifold M+ similar to the
one described in Section 5C1 gave U (γ+) ∈ [6.1172, 6.1175] with the average
at 6.1172. The MAP going from C+ to γ+ as well as the characteristics going
from γ+ to C+ spiral notably denser than their counterparts at ρ = 15, and the
level sets of the quasipotential are thinner. The saddle cycles are the escape states
from the basins of C± to a chaotic region [21] where it is hard to predict for a
characteristic which attractor, C+ or C−, it will eventually approach. We traced
1000 trajectories starting on the cone ϒ+ (see Table 1) at the points of the form
yi := xi + 0.002(xi −C+) where xi ∈ γ+, i = 1, . . . , 1000, are equispaced, and
recorded whether they converged to C+ or C− as t→∞: 508 and 492 trajectories
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Figure 9. Two views of the level sets of the quasipotential at ρ = 20 corresponding to
U = 3.3 (the blue surface), and U = 6.58 (the red surface). The thick bright red curves are
the saddle cycles γ±. The dark blue curves are characteristics going from γ+ to C+ and
C−. The dark red curve is a MAP starting at C+ and approaching γ+. A movie with this
figure rotating around the x3-axis is available at https://youtu.be/JhBU0-dnos8.

converged to C+ and C−, respectively. Then we subdivided γ+ into 100 intervals of
equal length and used the recorded data to estimate the probability for a trajectory
starting at each yi corresponding to xi in each interval to converge to C+. The result
is shown in Figure 10, left. The probabilities for γ− are obtained by symmetry.
Note that a similar calculation for ρ = 15 gave the probability distribution depicted
in Figure 10, right: 975 out of 1000 trajectories starting at the analogous points of
the cone ϒ+ eventually approached C−, while 25 returned to C+. The uncertainty
for where the trajectory of (2) that escapes all level sets of the quasipotential not
containing the saddle cycle will eventually go, to C+ or to C−, appears where the
saddle cycles γ± come close to each other.

Summarizing our findings for ρ = 20, we predict that the expected escape time
from C± to the chaotic region scales as

E[τC+] � e6.1/ε . (36)

5D. 24.06 ≈ ρ1 < ρ < ρ2 ≈ 24.74. It was recognized by Lorenz [22] that the
strange attractor is an “infinite complex of surfaces”, i.e., a fractal, which is a very
complicated geometric object. The addition of small white noise to the Lorenz
system regularizes and simplifies its dynamics in the sense that it renders the
fine structure of the Lorenz attractor irrelevant and allows for a description of the
dynamics in terms of probability measures. Taking this into account, we approximate
the strange attractor AL with a union of four manifolds as shown in Figure 11.

https://youtu.be/JhBU0-dnos8
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Figure 10. The probability for a trajectory starting on the cones ϒ± at the point of the
form x + 0.002(x −C±) where x ∈ γ±, respectively, to converge to C+. Left: ρ = 20.
Right: ρ = 15.

Figure 11. The strange attractor AL at ρ = 24.4 is approximated by a union of four
manifolds: red, magenta, blue, and green. The color of the large dots on the manifolds
indicate the thickness of the fractal (the Lorenz attractor) at the corresponding locations.
The colorbar corresponds to − log10 w(x) where w(x) is the thickness of the fractal near
the location x. Hence, dark blue dots indicate thickness ∼ 10−1, light blue ones ∼ 10−2,
yellow ones ∼ 10−3, orange ones ∼ 10−4, and red ones ∼ 10−5.

These manifolds were obtained using the code StrangeAttractorMesh.m in a way
similar to the one described in Appendix F. The key component of this construction
is finding a trajectory going into the saddle at the origin. We will refer to the inner
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Figure 12. ρ = 24.4. Two views of the level sets of the quasipotential computed with
respect to C+. The green surface corresponds to the quasipotential value slightly less than
the one at γ+. The blue and red ones correspond to U = 2 and U = 20, respectively. The
strange attractor is depicted with a mesh visible inside the blue and red surfaces. A movie
with this figure rotating around the x3-axis is available at https://youtu.be/ELqkeb8M1fg.

boundaries of the red and blue manifolds plotted with brown and cyan, respectively,
as the eyes Y+ and Y−. The union of the red and green boundaries will be called wing
W+. Similarly, the union of the blue and magenta boundaries forms the wing W−.
In order to understand what the minimal reasonable value of the parameter ε in
(2) that makes such an approximation sensible is, we have estimated the thickness
of the strange attractor at 398 randomly picked points. Details are provided in
Appendix G. The thickness map in Figure 11 indicates that the thickness of AL does
not exceed 10−2 wherever it is approximated by a single manifold. Larger values of
thickness are found in places where we approximate AL with two close manifolds.
Hence, they are just an artifact of our thickness measurement method. The thickness
map suggests that

√
ε in SDE (2) should be at least 10−2, i.e., ε & 10−4.

We performed a 3D computation of the quasipotential with respect to C+ aiming
at obtaining the overall picture. The computational domain was a box centered
at C+ and embracing the strange attractor. Note that this computation is too rough
to give accurate numbers; nevertheless, it captures the geometry of the level sets.
The level sets of the computed quasipotential shown in Figure 12 agree with our
expectations: the quasipotential grows until it reaches the strange attractor, remains
nearly constant on it, and then grows fast away from it, mainly along the union of
manifolds that extends the strange attractor. Again, we performed a 2D computation
on the manifold M+ on a radial 6001× 7200 mesh with Kr = 150 and Ka = 500
and found the quasipotential at γ+ to be equal to 0.03466 (see Figure 13). For
comparison, the 3D computation performed in a cube with size 6 centered at C+ on
a 1001×1001×1001 mesh with K = 20 gave the quasipotential on γ+ around 0.25,
which is more than 7 times larger due to the issues illustrated in Figure 1. This shows

https://youtu.be/ELqkeb8M1fg
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Figure 13. Left: a coarsened radial mesh on the manifold M+ at ρ = 24.4. The coordinate
system is associated with the directions of eigenvectors of the quasipotential matrix for the
Jacobian evaluated at C+. Right: the quasipotential computed on this mesh.

that our reduction to 2D is very important for obtaining accurate quasipotential
barriers.

Figure 11 shows that the quasipotential level sets primarily grow along the edge
of the strange attractor while remaining quite thin. This observation suggests two
possible transition mechanisms from the strange attractor to C+. The first one
would start near the eye Y+, climb up to γ+, and then switch to spiraling toward C+.
The second one would involve sliding toward γ+ from the neighborhood of the
wing W− to a region lying between the eye and γ+ and starting spiraling toward γ+
and then toward C+. Note that a MAP for the second mechanism at ρ = 24.08
was found in [37]. Coarsened versions of meshes generated for computing the
quasipotential barriers for each of these transition mechanisms are displayed in
Figure 14, top left and center, respectively. The “eye” mesh in Figure 14, top left,
is lying on the unstable loop-shaped manifold of γ+ between the γ+ and Y+. Its
size is 1501× 6000. The found quasipotential on γ+ is 0.01543 (see Figure 14,
top right). The “wing + eye” mesh in Figure 14, center, is defined on the union of
the following two manifolds. The wing manifold is defined by trajectories starting
near the negative x3-semiaxis and bounded by W+ and a trajectory approaching γ+.
The second one is the loop-shaped unstable manifold of γ+ located between γ+
and Y+. The total mesh size is 1501× 26001, of which a 1501× 6000 piece covers
the loop. The quasipotential computed on it is shown in Figure 14, bottom. Its part
corresponding to the loop, naturally, involves significantly smaller values than the
one corresponding to the strip around the wing. The quasipotential value on γ+ for
this mesh is 0.01479, which is smaller than the one for the eye mesh.
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Figure 14. ρ = 24.4. Top left: a coarsened version of the“eye” mesh. The coordinate
axes vi , i = 1, 2, 3, are chosen along the eigenvectors of the quasipotential matrix Q
of the linearized near C+ vector field. Top right: the quasipotential computed on the
“eye” mesh. Center: a coarsened version of the “wing + eye” mesh. Bottom: the
quasipotential computed on the “wing + eye” mesh. The arclength values less and
greater than approximately 125 correspond to the “wing” and “eye” meshes, respectively.
The discontinuity along the line where these meshes are glued is caused by the behavior of
MAPs. The lightest yellow region of the plot corresponds to values of the quasipotential
exceeding the maximal value 0.016 on the colorbar.
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ρ attractor escape state barrier

12 C+ the origin 19.5
15 C+ γ+ 18.2
20 C+ γ+ 6.1
24.4 C+ γ+ 0.0247
24.4 AL γ+ 0.0154 (“eye”)
24.4 AL γ+ 0.0148 (“wing + eye”)

Table 2. Quasipotential barriers for stochastic Lorenz’63 (2) at σ = 10, β = 8
3 , and a set

of values of ρ.

As we have mentioned above, the strange attractor has a finite width varying
roughly from 0 to 10−2. This means that, in order to treat it as a union of four
manifolds as shown in Figure 11 while considering the dynamics according to
SDE (2), the parameter ε should be chosen at least as large as 10−4. The discussed
transition mechanisms from AL to C± are associated with close quasipotential barri-
ers: the difference between them is about 5 · 10−4. Therefore, in order to determine
which transition mechanism is dominant for ε ∼ 10−4, one needs to compute the
preexponential factors of the corresponding transition rates. Estimation of these
prefactors is beyond the scope of the present work. We leave the development of
numerical methods for their evaluation for the future.

We summarize the found quasipotential barriers in Table 2.

5E. Perspectives and challenges for large ρ. Our numerical experiments show
that the level sets of the quasipotential thin out and the diameter of the strange
attractor increases as ρ grows (Figure 15). On one hand, this creates an underres-
olution problem for 3D computations as mesh planes cannot be aligned with the
level sets of the quasipotential because they are not flat. Handling this issue by
means of mesh refinement is limited by the computer’s memory. For example, for
ρ = 100.75 where two attracting limit cycles exist, the minimal level set of the
quasipotential computed with respect to one of these cycles and enclosing the other
one is thinner than the mesh step at some places.

On the other hand, thinning out of the level sets allows us to use 2D computations
provided that we have an insight about possible transition mechanisms as we have
had for ρ = 24.4. This insight for larger values of ρ can be gained from a 3D
computation conducted not in a box but on a specially designed mesh.

6. Conclusions

We have developed a methodology for computing the quasipotential and finding
quasipotential barriers for highly dissipative and possibly chaotic 3D dynamical
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systems perturbed by small white noise. The proposed approach combines 3D
computations on regular rectangular meshes with, if relevant, dimensional reduction
techniques and 2D computations on radial meshes. This methodology has been
developed on and applied to stochastic Lorenz’63 with σ = 10, β = 8

3 , and a number
of values of ρ ranging from 0.5 to 24.4.

We have shown that, as ρ increases, the level sets of the quasipotential thin
out and the ratio of magnitudes of the rotational and potential components grows
dramatically. On one hand, these facts render the numbers produced by 3D com-
putations progressively less accurate. On the other hand, the manifolds consisting
of characteristics going from escape states to attractors and those consisting of
MAPs running the other way around become very close to each other. This obser-
vation motivated us to approximate the manifolds formed by the MAPs with those
consisting of the characteristics.

We have developed a technique for generating radial meshes on manifolds
consisting of such characteristics and tested our 2D OLIM quasipotential solver on
an ad hoc system where the magnitude of the rotational component exceeds that
of the potential one by a factor at least as large as 103, approximately as it is for
ρ = 24.4 in (2). The least squares fit for this example has given a superquadratic
convergence and small normalized maximal absolute errors on practical mesh sizes.

Using a combination of 3D and 2D computations, we found quasipotential barriers
for the escapes from the basins of C± at ρ = 12, 15, 20, and 24.4. Furthermore, we
estimated quasipotential barriers for the escape from the basin of the Lorenz attractor
at ρ = 24.4 via two escape mechanisms. These barriers for 24.4 are close to each
other: the difference between them is of the same order of magnitude as the minimal
value of ε that makes traversing between different sheets of the Lorenz attractor
easy. Therefore, estimates for the preexponential factors for these escape rates are
necessary in order to determine which transition mechanism is dominant. We have
left the development of techniques for computing these prefactors for the future.

An important advantage of computing the quasipotential in 3D is that it allows
us to visualize the stochastic dynamics. Plots of quasipotential level sets reveal the
hierarchy of regions of the phase space reachable by the system perturbed by small
white noise on different timescales. In particular, the visualization of the level sets
of the quasipotential at ρ = 24.4 suggested we consider and compare two possible
transition mechanisms between the strange attractor and the stable equilibria.

Our C and Matlab programs developed for the application to Lorenz’63 are
posted on M. Cameron’s web site [5] (see the package Qpot4Lorenz63.zip) and
on GitHub [4].

The numerical techniques developed in this work can be used for the quasipoten-
tial analysis of certain classes of other 2D and 3D SDEs. The dimensional reduction
to 2D can be beneficial for any 3D SDEs where the quasipotential with respect to
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an attractor grows primarily along some 2D manifold. The use of radial meshes
can dramatically improve the accuracy of found quasipotential thresholds in the
case if the attractor is a stable spiral point and, perhaps, the transition state is an
unstable limit cycle.

The application to the Lorenz’63 model allows us to see the limitations of the
3D quasipotential solver: the growth of required computational domains together
with thinning out of the level sets results in underresolving the latter even with
the use of 10013 mesh sizes. This motivates the directions of the future research
associated with (i) combining the 3D OLIMs with techniques for generating a 3D
mesh adapted for the geometry of the problem and (ii) advancing the techniques for
learning 2D manifolds near which the stochastic dynamics are effectively focused.

Appendix A: Derivation of some equations in Section 2

The geometric action (9). Let φ : [T0, T1] → Rd be a path with the endpoints
φ(T0) ∈ A and φ(T1) = x. Expanding the squared norm in (8) and using the
inequality

‖φ̇‖2+‖b(φ)‖2 ≥ 2‖φ̇‖‖b(φ)‖,
we obtain

ST0,T1(φ)≥

∫ T1

T0

(‖b(φ)‖‖φ̇‖− b(φ) · φ̇) dt. (37)

The equality holds if and only if ‖b(φ)‖ = ‖φ̇‖. Since we are taking the infimum
of ST0,T1(φ) in particular with respect to T0 and T1, we choose the parametrization
of φ so that ‖b(φ)‖ = ‖φ̇‖ and change T0 and T1 accordingly. Note that T0 and T1

are allowed to be −∞ and +∞, respectively. Next, we observe that the integral in
the right-hand side of (37) is invariant under reparametrization of the path φ. We
denote the path φ reparametrized by its arclength by ψ and obtain (9).

The Hamilton–Jacobi equation (11) for the quasipotential and (13) for the MAP.
Let the path ψ parametrized according to its arclength (i.e., ‖ψ ′‖ = 1) be the
minimizer of the geometric action (9) among all absolutely continuous paths with
one endpoint at x and the other one at A. Let us pick a small number δ > 0. Using
Bellman’s optimality principle [1] and Taylor expansion of U , we obtain

U (x)= inf
‖ψ ′‖=1

{∫ δ

0
(‖b(ψ)‖− b(ψ) ·ψ ′) ds+U

(
x−

∫ δ

0
ψ ′ ds

)}
= inf
‖ψ ′‖=1

{δ(‖b(ψ)‖− b(ψ) ·ψ ′−∇U (x) ·ψ ′)+U (x)+ O(δ2)}.

Canceling U (x) on both sides and dividing by δ we get

0= inf
‖ψ ′‖=1

{‖b(ψ)‖− b(ψ) ·ψ ′−∇U (x) ·ψ ′+ O(δ)}.
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Taking the limit as δ→ 0, we obtain

inf
‖ψ ′‖=1

{‖b(x)‖− (b(x)+∇U (x)) ·ψ ′} = 0. (38)

The infimum is attained when the term (b(x)+∇U (x)) ·ψ ′ is maximal, i.e., when

ψ ′ =
b(x)+∇U (x)
‖b(x)+∇U (x)‖

. (39)

Observing that x is the point of the path ψ at which ψ ′ is evaluated, we see that
(39) coincides with (13). Plugging (39) into (38), we get

‖b(x)‖ = ‖b(x)+∇U (x)‖. (40)

Taking squares of both sides of (38), canceling ‖b(x)‖2, and dividing by 2, we
obtain the desired Hamilton–Jacobi equation (11):

1
2‖∇U (x)‖2+ b(x) · ∇U (x)= 0.

Appendix B: The dynamics of the Lorenz system (16)

Let us fix the parameters σ = 10 and β = 8
3 . As ρ grows from zero to infinity, the

dynamics of (16) go through a number of bifurcations [21; 30; 31; 32].

• For all 0< ρ <∞, the origin is a fixed point of (16). It is the only equilibrium
for 0 < ρ < 1, and it is globally attracting. At ρ = 1, a supercritical pitchfork
bifurcation occurs transforming the origin into a Morse index-one saddle and giving
birth to two equilibria

C± =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
. (41)

They remain asymptotically stable for 1< ρ < ρ2 ≈ 24.74. The unstable manifold
of (16) linearized near the saddle at the origin for 1 < ρ <∞ is the span of the
vector

ξ =

 σ

(σ − 1)/2+
√
((σ + 1)/2)2+ σ(ρ− 1)

0

 . (42)

To delineate the evolution of the dynamics of (16) as ρ grows from 1 to infinity,
we have plotted the bifurcation diagram displayed in Figure 15. For each ρ from
1.05 to 349.95 with step 0.1, we traced the trajectory starting at 10−2ξ for time
0≤ t ≤ 200 and recorded its points of intersection with the plane

α = {x | x3 = ρ− 1}

passing through the equilibria C±. The x1-components of these intersects are shown
with pink dots in the (ρ, x1)-plane. The time interval 0≤ t ≤ 200 is large enough for
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Figure 15. Top: consider the characteristics of (16) emanating from the origin along the
directions ξ and −ξ and traced for the time interval 0≤ t ≤ 200. The x1-components of
their intersections with the horizontal plane passing through the equilibria C± are plotted
for 1≤ ρ ≤ 350 with pink and gray dots, respectively. Then each characteristic continues
to be traced for 200 ≤ t ≤ 400. The resulted x1-components of their intersections with
the same plane are marked with red and black, respectively. Bottom: a zoom-in of the
top. The dashed green vertical lines correspond to the critical values of ρ: ρ0 ≈ 13.926,
ρ1 ≈ 24.06, and ρ2 ≈ 24.74.
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this trajectory to approach an attractor. Then, in order to depict x1-components of
the intersection of the attractor with the plane α, we continued tracing the trajectory
for 200≤ t ≤ 400 and plotted the x1-components of its intersects with α with red
dots. The corresponding sets of points for the trajectory starting at −10−2ξ are
obtained using the aforementioned symmetry of (16). They are plotted with gray
and black dots, respectively. This procedure is implemented in the Matlab code
lorenz_diagram.m.

• For 1 < ρ < ρ0 ≈ 13.926, the characteristics emanating from the saddle at the
origin along the directions ξ and −ξ approach, respectively, C+ and C− without
crossing the plane x1 = 0 (see Figure 15).

• The interval 13.926 ≈ ρ0 < ρ < ρ2 ≈ 24.74 is marked by the existence of the
saddle limit cycles γ+ and γ− surrounding C+ and C−, respectively. The equilibria
C± remain the only attractors for ρ0 < ρ < ρ1 ≈ 24.06. At ρ = ρ0, there exist
homoclinic orbits emanating from the origin and approaching it as t→∞. For all
ρ0 < ρ < ρ1, the characteristics emanating from the origin along the directions ξ
and −ξ go approximately half-way around the limit cycles, cross the plane x1 = 0,
and approach C− and C+, respectively (see Figure 15). As ρ grows within this
interval, there develops a phenomenon called preturbulence [21], characterized by
chaotic behavior and divergence of close characteristics in a region surrounding γ±.
Let ϒ+ be a cone consisting of all rays starting at C+ and crossing γ+, i.e.,

ϒ+ := {C++ t (x−C+) | t ≥ 0, x ∈ γ+}. (43)

Characteristics starting on ϒ+ near and outside γ+ perform more and more revolu-
tions around C+ and C− prior to settling to spiraling near one of the stable equilibria.
Moreover, as ρ tends to ρ1, it is getting progressively harder and finally impossible
to predict using double-precision arithmetic which equilibrium such a characteristic
will eventually approach. An example of two characteristics for ρ = 20 starting
at two close points near γ+ on the cone ϒ+ and eventually approaching different
equilibria is shown in Figure 16. At ρ = ρ1, the characteristics emanating from the
origin along the directions ξ and −ξ approach γ− and γ+, respectively. This gives
birth to a strange attractor also known as the Lorenz attractor. We will denote it
by AL .

• For 24.06≈ ρ1 < ρ < ρ2 ≈ 24.74, there are three attractors: the strange attrac-
tor AL , and the asymptotically stable equilibria C±. The characteristics emanating
from the origin along ±ξ miss the saddle cycles γ∓, respectively, and start spiraling
away from them. The γ± lie on the boundaries of the basins of C±, respectively,
and as we show in Section 5D play roles of the escape states. At ρ = ρ2, the saddle
cycles γ± shrink to the corresponding equilibria C±, rendering them unstable; i.e.,
a subcritical Hopf bifurcation takes place.
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Figure 16. An example of two characteristics at ρ = 20 starting at two close points lying
near γ+ on the cone with vertex at C+ and consisting of all rays passing through γ+ and
eventually diverging and approaching different equilibria.

• For 24.74 ≈ ρ2 < ρ < ∞, the dynamics are complicated as can be inferred
from Figure 15, top. AL is the only attractor for some open interval of ρ starting
at ρ2 (Figure 15, bottom). It exists for a union of intervals of ρ stretching up to
approximately ρ = 215.364 [30]. The interval ρ2 < ρ . 215.364 is cut through
by a number of windows of periodicity where there exist attracting limit cycles.
The largest of them is 145 . ρ . 166. Other windows are seen around ρ = 93,
ρ = 100, ρ = 133, and ρ = 181.5. Zooming in, we can spot more windows of
periodicity (see Figure 15, bottom) and reveal cascades of period doublings marking
the Feigenbaum scenarios of transition to chaos. The final doubling period interval
215.364 . ρ . 313 [30] is clearly visible in Figure 15, top. Near ρ = 313, two
symmetric attracting limit cycles merge into one resulting in the final limit cycle
that remains the only attractor for all larger values of ρ.

Appendix C: The KKT conditions for the simplex update

The Lagrange function for the constrained minimization problem (19)–(20) is

L(λ, µ)=Uλ+QM(xλ, x)−µ1λ1−µ2λ2−µ3(1− λ1− λ2), (44)

where λ= [λ1, λ2] and µ= [µ1, µ2, µ3]. For brevity, we denote the function to be
minimized by f :

f (λ) :=Uλ+QM(xλ, x).
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The KKT optimality conditions applied to (44) are

∇λL(λ, µ)=∇ f (λ)−µ1

[
1
0

]
−µ2

[
0
1

]
−µ3

[
−1
−1

]
=

[
0
0

]
, (45)

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, (46)

λ1 ≥ 0, λ2 ≥ 0, 1− λ1− λ2 ≥ 0, (47)

λ1µ1 = 0, λ2µ2 = 0, (1− λ1− λ2)µ3 = 0. (48)

Let us check whether the initial guess λ= [λ∗, 0] where λ∗ is the minimizer of f
on [λ1, 0], 0<λ1 < 1, corresponding to the line segment [x0, x1], satisfies the KKT
conditions (45)–(48). Condition (48) with λ1 = λ

∗
∈ (0, 1) and λ2 = 0 implies that

µ1 = µ3 = 0. Therefore, the first component in (45) is zero as

∂

∂λ1
f (λ∗, 0)= 0. (49)

The second component of (45) must be also zero; hence,

∂

∂λ2
f (λ∗, 0)−µ2 = 0. (50)

Condition (46) demands that µ2 ≥ 0. Hence, λ = [λ∗, 0] is a solution of the
constrained minimization problem (19)–(20) if

µ2 =
∂

∂λ2
f (λ∗, 0)≥ 0, (51)

i.e., if (21) holds. In this case, we reject the simplex update. Otherwise, we proceed
with solving the minimization problem (19)–(20).

Appendix D: Quasipotential decomposition for linear SDEs

In this appendix, we explain how one can find the quasipotential for linear SDEs
for which the origin is an asymptotically stable equilibrium. This is useful for
initializing the OLIMs near asymptotically stable equilibria and for estimating the
ratio of the magnitudes of the rotational and potential components of the vector
field.

Let J be a d × d matrix with all eigenvalues having negative real parts. In this
work, J is the Jacobian matrix of the vector field b evaluated at an asymptotically
stable equilibrium x∗ of ẋ = b(x). We consider the linear SDE for the variable
y := x− x∗:

d y = J y dt +
√
ε dw. (52)

The problem of finding the quasipotential decomposition for the vector field J y
reduces to the problem of finding a symmetric positive definite matrix Q such
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that [8; 7]

y>Q(J + Q) y = 0 for all y ∈ Rd . (53)

The matrices Q and L := J + Q are called the quasipotential matrix and the
rotational matrix, respectively. Condition (53) is equivalent to the requirement that
the matrix Q(J + Q) is antisymmetric, i.e., Q(J + Q)+ (J + Q)>Q = 0. The
last equation for Q is reducible to a Sylvester equation for Q−1 and has a unique
positive definite solution that can be found using the Bartels–Stewart algorithm
implemented in Matlab in the command sylvester (see [35] for details).

To make our quasipotential solver for the Lorenz system self-contained and
facilitate experiments with various values of ρ, we have developed a C code
LinLorenz.c for finding the quasipotential decomposition for the Lorenz system
linearized near its asymptotically stable equilibria. The quasipotential decom-
position is found by an algorithm similar to Bartels–Stewart but simplified and
customized for Lorenz’63. A description of it is linked to the provided software
package [5].

Once the quasipotential decomposition for a linearized system is available, one
can obtain an estimate for the ratio 4(x) of the magnitudes of the rotational and
potential components near asymptotically stable equilibria:

4. max
‖ y‖=1

‖L y‖
‖Q y‖

. (54)

The graph of the right-hand side of (54) with J been the Jacobian matrix evaluated
at C+ of (16) is plotted in Figure 2 for the range 1< ρ < ρ2 ≈ 24.74.

Appendix E: Proof of Lemma 4.1

Proof. First we prove that the manifold M′ consisting of MAPs going from the
attractor A to the curve γ lies in the sublevel set Va . Let ψ be a MAP going from A
to γ . Since Va completely lies in the basin of A, the quasipotential strictly increases
along the MAP. Therefore, for any y lying on the path ψ , U ( y)≤ a, which means
that ψ ⊂ Va . Since this is true for all such MAPs, M′ ⊂ Va .

Now let us prove that the manifold M consisting of all characteristics starting at γ
and running to A lies in Va . We proceed from the converse. Suppose a characteristic
starting at γ and going to A leaves Va at a point x0 and reenters Va at a point x1

after that. Let y be a point of this characteristic located between x0 and x1. Since
the motion of the characteristic contributes nothing to the Freidlin–Wentzell action
(8), U ( y) = U (x0) = a. This contradicts the assumption that y /∈ Va . Therefore,
the characteristic must completely lie in Va . Since this argument applies to all
characteristics constituting M, we conclude that M⊂ Va . �
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Appendix F: Building radial meshes

Suppose we would like to build a radial mesh on a 2D manifold formed by character-
istics of ẋ = b(x) going from an unstable limit cycle γ to an asymptotically stable
spiral point x∗. First, we pick a set of points xk , k = 0, 1, . . . , Na − 1, equispaced
along γ . For each point xk , we define a plane αk passing through x∗ and xk whose
normal ak lies in the plane spanned by b(xk) and xk

− x∗.
Then, we trace a trajectory y(t) starting near γ and ending upon reaching a δ-ball

centered at x∗ where δ is a small number. Let y1, . . . , yn be the set of intersects
of y(t) with the plane α0 at which the sign of ( y(t)− x0)>a0 changes from “−”
to “+”. Adding x0 and x∗ to this set and interpolating, we get a curve lying in α0

and connecting γ and x∗. We define a set of points {z0
i }

Nr−1
i=0 uniformly distributed

along this curve such that z0
0 ≡ x∗ and z0

Nr−1 ≡ x0.
Next, for k = 0, 1, 2, . . . , Na − 2, we trace the trajectories starting at zk

i , i =
1, . . . , Nr − 2, and terminate them as soon as they reach the plane αk+1. As above,
we add xk+1 and x∗ to these terminal points, interpolate them, and pick a set of
points zk+1

i , i = 0, . . . , Nr −1, uniformly distributed along the interpolant and such
that zk+1

0 ≡ x∗ and zk+1
Nr−1 ≡ xk+1. As a result, we obtain the radial mesh

{zk
i | 0≤ i ≤ Nr − 1, 0≤ k ≤ Na − 1}.

This procedure is implemented in the Matlab code make2Dmesh.m in the package
Qpot4Lorenz63.zip [5].

Similar methodologies have been used to construct radial meshes between two
simple closed curves and between two given segments of two distinct characteristics.

Appendix G: Estimating the width of the Lorenz attractor

Let x be a point lying on the Lorenz attractor AL , and let α be the plane passing
through x and normal to b(x) where b is the Lorenz vector field; i.e.,

α := {z ∈ R3
| (z− x)>b(x)= 0}.

We trace a trajectory y(t) starting at x for time 104 and record the points yi ,
1≤ i ≤ N , at which the sign of ( y(t)− x)>b(x) switches from “−” to “+”. We set
up a Cartesian coordinate system (η1, η2) in the plane α with the origin at y1 ≡ x
and find the coordinates of the recorded points yi : yi ≡ (η

i
1, η

i
2). We pick a square

S := [−0.25≤ η1 ≤ 0.25]× [−0.25≤ η2 ≤ 0.25] in this plane and select the subset
I ⊂ {1, . . . , N } such that the points yi , i ∈ I , lie in S. Visualizing the set yi , i ∈ I ,
and zooming in if necessary, we see that they are arranged near two almost parallel
lines (see Figure 17). The least squares fit to this set of points with a linear function
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Figure 17. Estimating the thickness of the Lorenz attractor using linear least squares fits
in a Poincaré section.

η2 = aη1+ b gives a line dividing it into two subsets:

I1 = {i ∈ I | ηi
2 < aηi

1+ b},

I2 = {i ∈ I | ηi
2 > aηi

1+ b}.

Next, we find linear least squares fits η2 = a1η1+ b1 and η2 = a2η1+ b2 for the
subsets of yi corresponding to I1 and I2, respectively. One of these linear functions
must pass very close to the origin because x lies near one of these lines; hence,
either b1 or b2 is very close to zero in comparison with the other one. Assume
that |b2| � |b1|. If this is the other way around, we swap the notations. Also,
these lines are almost parallel; hence, a1 and a2 are very close. Finally, we find a
line orthogonal to η2 = a1η1 + b1 and passing through the origin: η2 = −a−1

1 η1.
Then the thickness of AL near x is approximately equal to the distance between
the origin and the intersect of η2 =−a−1

1 η1 and η2 = a1η1+ b1. This technique is
implemented in the Matlab program thickness.m [5; 4].

Acknowledgements

We thank Doctor E. S. Kurkina for inspiring discussions on the Lorenz’63 system
and sharing numerical techniques for plotting bifurcational diagrams and finding
unstable limit cycles. We are also grateful to Professor James Yorke and Professor
Kevin Lin for valuable advice regarding preparation of this manuscript. This work
is partially supported by NSF grant DMS1554907.



STOCHASTIC LORENZ’63 245

References

[1] R. Bellman, Dynamic programming, Princeton University, 1957. MR Zbl

[2] F. Bouchet and J. Reygner, Generalisation of the Eyring–Kramers transition rate formula to
irreversible diffusion processes, Ann. Henri Poincaré 17 (2016), no. 12, 3499–3532. MR Zbl

[3] M. K. Cameron, Finding the quasipotential for nongradient SDEs, Phys. D 241 (2012), no. 18,
1532–1550. MR Zbl

[4] , OLIM-for-Lorenz63, 2019, C and Matlab code, version 1.1, also available on GitHub.

[5] , OLIM: ordered line integral methods for computing the quasi-potential, 2019, C and
Matlab code.

[6] A. Chacon and A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM J. Sci.
Comput. 34 (2012), no. 2, A547–A578. MR Zbl

[7] Z. Chen, Asymptotic problems related to Smoluchowski–Kramers approximation, Ph.D. thesis,
University of Maryland, 2006.

[8] Z. Chen and M. Freidlin, Smoluchowski–Kramers approximation and exit problems, Stoch. Dyn.
5 (2005), no. 4, 569–585. MR Zbl

[9] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer.
Math. Soc. 277 (1983), no. 1, 1–42. MR Zbl

[10] D. Dahiya and M. Cameron, An ordered line integral method for computing the quasi-potential
in the case of variable anisotropic diffusion, Phys. D 382/383 (2018), 33–45. MR Zbl

[11] , Ordered line integral methods for computing the quasi-potential, J. Sci. Comput. 75
(2018), no. 3, 1351–1384. Zbl

[12] S. V. Dudul, Prediction of a Lorenz chaotic attractor using two-layer perceptron neural network,
Appl. Soft Comput. 5 (2005), no. 4, 333–355.

[13] W. E, W. Ren, and E. Vanden-Eijnden, Minimum action method for the study of rare events,
Comm. Pure Appl. Math. 57 (2004), no. 5, 637–656. MR Zbl

[14] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 3rd ed.,
Grundlehren der Mathematischen Wissenschaften, no. 260, Springer, 2012. MR Zbl

[15] C. Gissinger, A new deterministic model for chaotic reversals, Eur. Phys. J. B 85 (2012), no. 4,
137–148.

[16] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études
Sci. Publ. Math. (1979), no. 50, 59–72. MR Zbl

[17] F. Hamilton, T. Berry, and T. Sauer, Predicting chaotic time series with a partial model, Phys.
Rev. E 92 (2015), no. 1, art. id. 010902(R).

[18] M. Heymann and E. Vanden-Eijnden, The geometric minimum action method: a least action
principle on the space of curves, Comm. Pure Appl. Math. 61 (2008), no. 8, 1052–1117. MR
Zbl

[19] , Pathways of maximum likelihood for rare events in nonequilibrium systems: application
to nucleation in the presence of shear, Phys. Rev. Lett. 100 (2008), no. 14, art. id. 140601.

[20] H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of
eikonal type, Proc. Amer. Math. Soc. 100 (1987), no. 2, 247–251. MR Zbl

[21] J. L. Kaplan and J. A. Yorke, Preturbulence: a regime observed in a fluid flow model of Lorenz,
Comm. Math. Phys. 67 (1979), no. 2, 93–108. MR Zbl

[22] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), no. 2, 130–141. Zbl

http://msp.org/idx/mr/0090477
http://msp.org/idx/zbl/0077.13605
http://dx.doi.org/10.1007/s00023-016-0507-4
http://dx.doi.org/10.1007/s00023-016-0507-4
http://msp.org/idx/mr/3568024
http://msp.org/idx/zbl/1375.82081
http://dx.doi.org/10.1016/j.physd.2012.06.005
http://msp.org/idx/mr/2957825
http://msp.org/idx/zbl/1253.35229
http://dx.doi.org/10.5281/zenodo.3246550
https://github.com/mar1akc/OLIM-for-Lorenz63/tree/1.1
https://www.math.umd.edu/~mariakc/olim.html
http://dx.doi.org/10.1137/10080909X
http://msp.org/idx/mr/2914295
http://msp.org/idx/zbl/1244.49047
https://search.proquest.com/docview/305300792
http://dx.doi.org/10.1142/S0219493705001560
http://msp.org/idx/mr/2185506
http://msp.org/idx/zbl/1083.60018
http://dx.doi.org/10.2307/1999343
http://msp.org/idx/mr/690039
http://msp.org/idx/zbl/0599.35024
http://dx.doi.org/10.1016/j.physd.2018.07.002
http://dx.doi.org/10.1016/j.physd.2018.07.002
http://msp.org/idx/mr/3861794
http://msp.org/idx/zbl/07075023
http://dx.doi.org/10.1007/s10915-017-0590-9
http://msp.org/idx/zbl/1395.65150
http://dx.doi.org/10.1016/j.asoc.2004.07.005
http://dx.doi.org/10.1002/cpa.20005
http://msp.org/idx/mr/2032916
http://msp.org/idx/zbl/1050.60068
http://dx.doi.org/10.1007/978-3-642-25847-3
http://msp.org/idx/mr/2953753
http://msp.org/idx/zbl/1267.60004
http://dx.doi.org/10.1140/epjb/e2012-20799-5
http://www.numdam.org/item?id=PMIHES_1979__50__59_0
http://msp.org/idx/mr/556582
http://msp.org/idx/zbl/0436.58018
http://dx.doi.org/10.1103/PhysRevE.92.010902
http://dx.doi.org/10.1002/cpa.20238
http://dx.doi.org/10.1002/cpa.20238
http://msp.org/idx/mr/2417888
http://msp.org/idx/zbl/1146.60046
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.2307/2045953
http://dx.doi.org/10.2307/2045953
http://msp.org/idx/mr/884461
http://msp.org/idx/zbl/0644.35017
http://dx.doi.org/10.1007/BF01221359
http://msp.org/idx/mr/539545
http://msp.org/idx/zbl/0443.76059
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://msp.org/idx/zbl/06851676


246 MARIA CAMERON AND SHUO YANG

[23] C. Lv, X. Li, F. Li, and T. Li, Constructing the energy landscape for genetic switching system
driven by intrinsic noise, PLOS One 9 (2014), no. 2, art. id. e88167.

[24] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed., Springer, 2006. MR Zbl

[25] D. Rand, The topological classification of Lorenz attractors, Math. Proc. Cambridge Philos. Soc.
83 (1978), no. 3, 451–460. MR Zbl

[26] B. Saltzman, Finite amplitude free convection as an initial value problem, I, J. Atmos. Sci. 19
(1962), no. 4, 329–341.

[27] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equations,
Proc. Natl. Acad. Sci. USA 98 (2001), no. 20, 11069–11074. MR Zbl

[28] , Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms,
SIAM J. Numer. Anal. 41 (2003), no. 1, 325–363. MR Zbl

[29] F. Sorrentino and E. Ott, Using synchronization of chaos to identify the dynamics of unknown
systems, Chaos 19 (2009), no. 3, art. id. 033108. Zbl

[30] C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, Applied Mathe-
matical Sciences, no. 41, Springer, 1982. MR Zbl

[31] , An introduction to the Lorenz equations, IEEE Trans. Circuits and Systems 30 (1983),
no. 8, 533–542. MR

[32] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering, 2nd ed., Westview, Boulder, CO, 2015. MR Zbl

[33] D. Viswanath, The fractal property of the Lorenz attractor, Phys. D 190 (2004), no. 1-2, 115–128.
MR Zbl

[34] R. F. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. (1979),
no. 50, 73–99. MR Zbl

[35] S. Yang, S. F. Potter, and M. K. Cameron, Computing the quasipotential for nongradient SDEs
in 3D, J. Comput. Phys. 379 (2019), 325–350. MR

[36] J. A. Yorke and E. D. Yorke, Metastable chaos: the transition to sustained chaotic behavior in
the Lorenz model, J. Statist. Phys. 21 (1979), no. 3, 263–277. MR

[37] X. Zhou and W. E, Study of noise-induced transitions in the Lorenz system using the minimum
action method, Commun. Math. Sci. 8 (2010), no. 2, 341–355. MR Zbl

[38] X. Zhou, W. Ren, and W. E, Adaptive minimum action method for the study of rare events, J.
Chem. Phys. 128 (2008), no. 10, art. id. 104111.

Received November 22, 2018. Revised June 15, 2019.

MARIA CAMERON: cameron@math.umd.edu
Department of Mathematics, University of Maryland, College Park, College Park, MD, United States

SHUO YANG: shuoyang@math.umd.edu
Department of Mathematics, University of Maryland, College Park, College Park, MD, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1371/journal.pone.0088167
http://dx.doi.org/10.1371/journal.pone.0088167
http://dx.doi.org/10.1007/978-0-387-40065-5
http://msp.org/idx/mr/2244940
http://msp.org/idx/zbl/1104.65059
http://dx.doi.org/10.1017/S0305004100054736
http://msp.org/idx/mr/481632
http://msp.org/idx/zbl/0375.58015
http://dx.doi.org/10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
http://dx.doi.org/10.1073/pnas.201222998
http://msp.org/idx/mr/1854545
http://msp.org/idx/zbl/1002.65112
http://dx.doi.org/10.1137/S0036142901392742
http://msp.org/idx/mr/1974505
http://msp.org/idx/zbl/1040.65088
http://dx.doi.org/10.1063/1.3186458
http://dx.doi.org/10.1063/1.3186458
http://msp.org/idx/zbl/1317.34124
http://dx.doi.org/10.1007/978-1-4612-5767-7
http://msp.org/idx/mr/681294
http://msp.org/idx/zbl/0504.58001
http://dx.doi.org/10.1109/TCS.1983.1085400
http://msp.org/idx/mr/715508
http://msp.org/idx/mr/3837141
http://msp.org/idx/zbl/1343.37001
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://msp.org/idx/mr/2043795
http://msp.org/idx/zbl/1041.37013
http://www.numdam.org/item?id=PMIHES_1979__50__73_0
http://msp.org/idx/mr/556583
http://msp.org/idx/zbl/0484.58021
http://dx.doi.org/10.1016/j.jcp.2018.12.005
http://dx.doi.org/10.1016/j.jcp.2018.12.005
http://msp.org/idx/mr/3892894
http://dx.doi.org/10.1007/BF01011469
http://dx.doi.org/10.1007/BF01011469
http://msp.org/idx/mr/542050
http://dx.doi.org/10.4310/CMS.2010.v8.n2.a3
http://dx.doi.org/10.4310/CMS.2010.v8.n2.a3
http://msp.org/idx/mr/2664454
http://msp.org/idx/zbl/1202.34104
http://dx.doi.org/10.1063/1.2830717
mailto:cameron@math.umd.edu
mailto:shuoyang@math.umd.edu
http://msp.org


COMM. APP. MATH. AND COMP. SCI.
Vol. 14, No. 2, 2019

dx.doi.org/10.2140/camcos.2019.14.247 msp

EFFICIENT MULTIGRID SOLUTION
OF ELLIPTIC INTERFACE PROBLEMS

USING VISCOSITY-UPWINDED
LOCAL DISCONTINUOUS GALERKIN METHODS

ROBERT I. SAYE

With an emphasis on achieving ideal multigrid solver performance, this paper ex-
plores the design of local discontinuous Galerkin schemes for multiphase elliptic
interface problems. In particular, for cases exhibiting coefficient discontinuities
several orders in magnitude, the role of viscosity-weighted numerical fluxes on
interfacial mesh faces is examined: findings support a known strategy of harmonic
weighting, but also show that further improvements can be made via a stronger
kind of biasing, denoted herein as viscosity-upwinded weighting. Applying
this strategy, multigrid performance is assessed for a variety of elliptic interface
problems in 1D, 2D, and 3D, across 16 orders of viscosity ratio. These include
constant- and variable-coefficient problems, multiphase checkerboard patterns,
implicitly defined interfaces, and 3D problems with intricate geometry. With the
exception of a challenging case involving a lattice of vanishingly small droplets,
in all demonstrated examples the condition number of the multigrid V-cycle
preconditioned system has unit order magnitude, independent of the mesh size h.

1. Introduction

In this work, we consider the design of local discontinuous Galerkin schemes
for multiphase elliptic interface problems containing large discontinuities in the
ellipticity coefficient. In particular, we explore the possibility of altering certain
aspects of the discretization to benefit both multigrid solver performance as well
as solution accuracy. The prototype problem considered here consists of solving
for a function u :�→ R such that

−∇ · (µi∇u)= fi in �i ,

[[u]] = gi j on 0i j ,

[[(µ∇u) · n]] = hi j on 0i j ,

u = g∂ on 0D,

(µ∇u) · n= h∂ on 0N ,

(1)
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where � is a domain in Rd divided into two or more subdomains �i (denoted
“phases”), 0i j := ∂�i∩∂� j is the interface between phases i and j , and 0D and 0N

denote the components of ∂� on which Dirichlet and Neumann boundary conditions
are imposed. Here, [[ · ]] denotes the jump in a quantity across an interface and n is
to be understood from context — on ∂�, n denotes the outward unit normal to the
domain boundary, whereas for an interface 0i j , n denotes the unit normal to 0i j ,
oriented consistently with the definition of the jump operator [[ · ]]. In the general
elliptic interface problem (1), µi is a phase-dependent ellipticity/viscosity coeffi-
cient; throughout this work, µi is taken to be a (continuous) positive-valued scalar
function1 µi :�i→R+. Finally, f , g, and h provide the data to the elliptic interface
problem, and are given functions defined on �, its boundary, and internal interfaces.

Our motivation in this work is to develop local discontinuous Galerkin (LDG)
[22] methods capable of handling interfacial jumps in viscosity of several orders
in magnitude. To design an LDG scheme for (1), one must choose appropriate
numerical fluxes for the primary unknown u and its associated auxiliary flux variable
q = µ∇u. On a typical mesh face, the numerical fluxes u? and q? are chosen as
some convex combination of the trace values of their associated polynomials on
either side of the face. The focus of this study is to develop a suitable weighting
strategy on interfacial faces. On these faces it is often beneficial to bias the numerical
flux towards one phase or the other, depending on the local values of the viscosity
coefficient µi or µ j , which could differ by several orders of magnitude. Doing so
may not only improve solution accuracy, but can also markedly improve conditioning
and multigrid performance — in the next section we provide a physical motivation
for why this may be. Following the motivational example, previous work in this
area is reviewed.

1.1. Weighted numerical fluxes. To physically motivate the possible merits of
viscosity-weighted fluxes, we consider here a simple two-phase elliptic interface
problem and examine the case of a vanishingly small viscosity ratio. In particular,
suppose the domain is divided into two phases,�1 and�ε , with viscosity coefficients
1 and 0< ε� 1, respectively. Rewriting (1) for this case, we have

−∇
2u1 = f1 in �1,

−ε∇2uε = fε in �ε,
u1− uε = g on 0,

n · ∇u1− εn · ∇uε = h on 0,

where 0=∂�1∩∂�ε , subject to boundary conditions on ∂� (which are unimportant
in this motivational setting). We assume the data f , g, and h are such that the

1Comments concerning the more general case that µi may be matrix-valued are provided in the
concluding remarks.
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solution u and its gradient near the interface is O(1) as ε is made vanishingly small.
In this limit, the second term in the flux jump condition vanishes, resulting in
phase �1 (approximately) having the Neumann boundary condition n · ∇u1 ≈ h
on 0. Thus, the solution u1 can (almost) be determined in isolation and essentially
decouples from the other phase. Once u1 is found, the elliptic problem in phase �ε
essentially reduces to a Dirichlet boundary condition on 0, i.e., uε |0 = u1|0 − g.
Therefore, for ε�1, the two-phase elliptic interface problem (nearly) decouples into
two separate single-phase elliptic problems; the phase with unit viscosity coefficient
“sees” a Neumann boundary condition on 0 whose data is (nearly) independent
of the solution in the other phase, and the phase with vanishingly small viscosity
coefficient “sees” a Dirichlet boundary condition on 0 whose data depends on the
solution on the other side of the interface.

This simple example is predicated on the assumption that, near the interface, the
solution u and its gradient have magnitude independent of ε�1. Naturally, this may
not hold in practice owing to potential boundary layers in the exact solution; however,
the above observation, that the two phases might nearly decouple and see different
types of interfacial boundary conditions, illustrates that an apt choice of numerical
flux could improve accuracy and conditioning of a numerical discretization. In
particular, for an LDG scheme, the numerical flux for u? on an interfacial face
should bias towards the phase �1 — doing so effectively recasts the numerical
flux for phase �1 as it would appear for a Neumann boundary, and for �ε as it
would appear for a Dirichlet boundary (wherein the interfacial jump data g is also
incorporated). In addition, the numerical flux for q? should bias towards phase�ε —
doing so is consistent with specifying Dirichlet boundary conditions for the problem
in �ε , and also effectively sets boundary conditions q · n≈ h for phase �1.

The same example can be used to provide an indication of an appropriate penalty
parameter choice for interfacial faces. Penalty stabilization is often used in DG
methods to weakly enforce solution continuity, to weakly impose Dirichlet boundary
conditions, and to ensure overall well-posedness of the discrete problem. Generally
speaking, penalty parameters should scale with the local ellipticity coefficient —
a simple argument for this is that a (single-phase) Poisson problem −µ∇2u = f
results in a linear system−µ1hu+τ E = f , where1h is the discrete Laplacian and
E is a penalty operator with its dependence on the penalty parameter τ made explicit;
since scaling both sides by µ−1 should result in exactly the same discrete solution, τ
should therefore scale proportionally with µ. Returning to the above two-phase ellip-
tic interface problem, from the perspective of the Dirichlet problem in phase �ε , we
observe that the difference between uε and its effective Dirichlet data of u1−g should
be penalized with a parameter that is proportional to ε, its effective local viscosity.

In summary, and to generalize this intuition to the case of an interface 0i j between
two phases of arbitrary (positive) viscosity, (i) the numerical flux for u? should bias
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towards the phase with (locally) largest viscosity, (ii) q? should bias towards the
phase with (locally) smallest viscosity, and (iii) DG penalty stabilization parameters
should scale proportionally with the smaller of the two viscosity values. Note that,
along the extent of an interface, the biasing direction could switch between phases
whenever the viscosity ratio changes from less than unity to greater than unity. In
the context of LDG methods, the goal of this paper is to determine an ideal strategy
for the specific amount of biasing/weighting, as a function of the viscosity ratio.

1.2. Previous work. The purpose of the above motivation was to make plausible
the possible merits of viscosity-weighted fluxes — this idea is not new and viscosity-
weighted discretization schemes have been used in a variety of different settings.
The most common technique also refers to the particular strategy used to choose
the weights, i.e., harmonic weighting.2 Among the first to apply this technique,
Dryja [24] used harmonic averaging in a DG-based multilevel additive Schwarz
method to derive optimal error bounds for an elliptic interface problem, while
Burman and Zunino [17] considered domain decomposition methods for advection-
diffusion-reaction problems in a Nitsche finite element setting. Later, Zunino [56]
derived a weighted interior penalty DG scheme using harmonic weights; this work
was then extended in [28; 18] to general viscosity tensors. The particular choice
of harmonic weighting, as well as biasing of penalty parameters, has often been
suggested by theoretical error analyses, e.g., for discontinuous Galerkin methods
[19; 15], nonconforming finite element methods [27], and unfitted Nitsche methods
[35; 16]. Application areas of harmonic weighting include multimaterial Stokes
problems [52], Helmholtz problems in which the weighting depends on sound speed
[55], as well as incompressible two-phase flow and fluid structure interaction [47].
In cut cell finite element methods, the weighting strategy is sometimes adapted to
account not only for differing viscosity coefficients, but also for the measure of the
cut element (and in the case of penalty parameters, also the measure of the cut face),
as carefully analyzed by Annavarapu et al. [6] (see also [10; 50]); applications of
this idea include Stokes problems [33] and two-phase incompressible flow [30], the
latter work also suggesting that the weights could take into account the viscosity-
to-density ratio of the two fluids. Methods which weight based on viscosity as well
as cut element size have recently been adapted to handle extreme cases of these
combinations by Gürkan and Massing [32]. Besides the aforementioned works,
which mainly consider finite element methods, harmonic weighting has also found
applications in finite difference and finite volume methods to treat discontinuous or
nonsmooth diffusion coefficients; see, e.g., [13; 37; 3; 23].

In addition, considerable work on high-contrast/large-jump elliptic interface prob-
lems has focused on designing efficient solvers, including domain decomposition,

2The precise definition of harmonic-weighted numerical fluxes is given later in Section 4.2.
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multilevel, and multigrid methods. Generally, the numerical discretization method
is fixed ahead of time and the task concerns the design of a solver or preconditioner
with the best possible performance. One possibility is to take advantage of the weak
decoupling suggested in the above motivational example to solve the elliptic problem
in each subdomain, and then assemble into a global solution; see, e.g., [41; 36].
Generally, better performance can be obtained with multilevel or multigrid methods.
For example, Dryja et al. [26] considered multilevel Schwarz preconditioners for
conforming finite element methods having interpolation operators that bias towards
more viscous subdomains. Two- or multilevel domain decomposition and additive
Schwarz methods have been developed with convergence rates independent or nearly
independent of the viscosity ratio; see, e.g., [24; 54; 53; 31; 25; 7]. A wide array of
geometric multigrid methods have also been devised for elliptic interface problems,
some of which take into account interface geometry when building the hierarchy [20;
23; 44; 29; 51], including those operating on DG and cut finite element methods
schemes derived with harmonic weighting [39; 12], and methods which apply
direction-dependent coarsening of the diffusion coefficient using a combination
of arithmetic and harmonic averaging; see, e.g., [4; 5; 48]. As an alternative to
geometric multigrid methods, algebraic multigrid methods can automate some of
the process; these operate through identification of ellipticity-dependent connec-
tions in the matrix so as to inform the choice of aggregation procedure; see, e.g.,
[2; 3; 14; 11]. Other kinds of solvers have been devised according to the particular
physics application at hand. For example, “bubbly” geometry problems involve a
domain with many small, dispersed subdomains of markedly different ellipticity
coefficient (one may think of tiny gas bubbles rising in a liquid); for these problems,
it can be beneficial to isolate problematic subdomains and remove them from a
Krylov-based solver, e.g., by using deflated conjugate gradient methods [40; 49].

In comparison, this work considers viscosity-weighted fluxes in a LDG frame-
work, with a particular focus on altering the discretization to obtain ideal multigrid
performance. Prior work on weighting in DG methods has suggested connections to
LDG specifically, e.g., the weighted symmetric interior penalty method [56; 28] and
Nitsche methods [35]; however, these works did not explore weighted fluxes in a
purely LDG framework. As far as the author is aware, no prior work has considered
weighted fluxes in the context of tuning associated geometric multigrid solvers. In
particular, the presented results suggests that the best accuracy and conditioning can
be obtained by using weighted fluxes that bias even more strongly than harmonic
weighting.

1.3. Outline. The remainder of the paper is organized as follows. In Section 2,
a local discontinuous Galerkin framework is outlined for the multiphase elliptic
interface problems under consideration. Section 3 describes the construction of
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the associated multigrid methods and the specific choice of V-cycle preconditioned
conjugate gradient algorithms. A one-dimensional investigation is then presented
in Section 4 showing the effect of weighted fluxes on solution accuracy, multigrid
behavior, and condition numbers of the preconditioned systems. Section 5 follows
with a variety of test problems in two and three dimensions, ranging from simple
two-phase problems to multiphase variable-coefficient problems, and challenging
cases with bubbly geometry. In particular, the presented tests examine ellipticity
coefficients ranging across 16 orders of magnitude. Concluding remarks are then
given in Section 6.

2. Local discontinuous Galerkin methods

To derive a discontinuous Galerkin method for (1), a standard approach is to
introduce an auxiliary variable q = µ∇u and rewrite the system as{ q = µi∇u in �i , [[u]] = gi j on 0i j , u = g∂ on 0D,

−∇ ·q = fi in �i , [[q ·n]] = hi j on 0i j , q ·n= h∂ on 0N .
(2)

In this work, we consider discretizations wherein the corresponding meshes arise
from Cartesian grids as well as quadtree/octree-based implicitly defined meshes
of more complex curved domains. In this setting, it is natural to adopt a tensor-
product piecewise polynomial space. Let E =

⋃
i Ei denote the set of elements

of the mesh; we assume in particular the mesh is interface-conforming, i.e., the
multiphase interface does not cut through any element. Let p ≥ 1 be an integer
and define Qp(E) to be the space of tensor-product polynomials of degree p on the
element E . For example, Q2 is the space of biquadratic (in 2D) or triquadratic (in
3D) polynomials having dimension 9 or 27, respectively. Define the corresponding
spaces of discontinuous piecewise polynomials and vector fields on the mesh as

Vh(E)= {v :�→ R | v|E ∈ Qp(E) for every E ∈ E},

V d
h (E)= {ω :�→ Rd

| ω|E ∈ [Qp(E)]d for every E ∈ E}.

Our focus in this work is on a local discontinuous Galerkin (LDG) [22] discretiza-
tion of (2). The particulars of the discretization are relatively standard except for
two aspects: (a) interfacial faces have a multivalued numerical flux, and (b) the weak
form for qh and uh is defined carefully to account for the possibility of quadrature
schemes which may not exactly preserve the identity of integration-by-parts for
polynomial integrands. This consideration is important in the case of implicitly
defined meshes which have curved element geometry specified by one or more
level set functions — in this setting, high-order accurate quadrature schemes are
used to implement the weak form, but integration-by-parts may only hold up to a
high-order truncation error. For extended details, the reader is referred to [44; 45];
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these references, however, only consider constant-coefficient elliptic problems,
whereas in the present work the possibility of variable µ is considered. A brief
description of the extension of these LDG methods to variable µ is provided here.

To establish some notation, regarding the faces of the mesh, we denote intraphase
faces as those shared by two elements of the same phase, interphase faces as those
shared by two elements of differing phases (and thus are situated on 0i j for some
i, j), and boundary faces as those situated on ∂�. Each face has a corresponding
unit normal vector n; in this work, intraphase faces are always flat and lie in a
particular coordinate plane so that n is defined to point from “left-to-right”, e.g., for
vertical faces in 2D, n= x̂ and, for horizontal faces, n= ŷ. Interphase faces adopt
the same normal vector as the interface 0i j on which they coincide, defined to point
from the phase i with smallest phase index into the phase with largest index j > i .
Boundary faces adopt the natural outwards-pointing normal to the domain boundary.
The notation [[ · ]] denotes the jump of a quantity across an interface or face and
is defined consistent with its orientation; in particular, [[u]] := u− − u+ where
u±(x)= limε→0+ u(x± εn) denotes the left u− and right u+ trace values. Last, for
an element E ∈E, define χ(E) to be the phase of that element, such that E ⊆�χ(E).

In the first of four steps in formulating the LDG method, we define a discrete
approximation of ∇u via a “strong-weak form”; given u ∈ Vh , η ∈ V d

h is defined
such that ∫

E
η ·ω =

∫
E
∇u ·ω+

∫
∂E
(u?χ(E)− u)ω · n (3)

holds for every element E ∈ E and every test function ω ∈ V d
h . Here, u?χ is a

numerical flux function which could carry a variety of forms; in this work, we use
one-sided fluxes for all intraphase faces and a multivalued interphase flux which
takes into account the jump data gi j on 0i j in (2):

u?χ :=



u− on any intraphase face,
λu−+ (1− λ)(u++ gχ i ) on 0χ i if χ < i,
λ(u−− giχ )+ (1− λ)u+ on 0iχ if χ > i,
u− on 0N ,

g∂ on 0D.

(4)

(See Figure 1 for a schematic illustration.) Note that the flux is multivalued on
interphase faces — on these faces, the interfacial jump condition [[u]] = gi j on 0i j

is taken into account as follows: when an element “reaches across” the interface
to evaluate the trace of u on the other side, the trace value is compensated by the
jump data to correctly account for the intended discontinuity in the solution. Note
also that interfacial fluxes are weighted through a convex combination parameter
λ ∈ [0, 1], which can vary from face to face. If λ = 0, then the numerical flux is
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Intraphase face Interphase face on 0i j , i< j Neumann boundary face Dirichlet boundary face

− + − + − −

n n

n n

0N

χ = i χ = j

0D

u? = u−

q? = q+
u?i = λu−+ (1− λ)(u++ gi j )

q?i = (1− λ)q
−
+ λ(q++ hi j n)

u?j = λ(u
−
− gi j )+ (1− λ)u

+

q?j = (1− λ)(q
−
− hi j n)+ λq+

u? = u−
q? = h∂n

u? = g∂
q? = q−

Figure 1. Schematic of the numerical flux functions u? and q? defined by (4) and (6).
Except for interphase faces, the flux is single-valued; on interphase faces, the flux is
multivalued so as to incorporate the interfacial jump conditions [[u]]= gi j and [[q ·n]]= hi j
on 0i j , i < j . A plus or minus sign denotes the elemental value on the right or left of the
face, respectively; e.g., for a point x on the face, u±(x)= limε→0+ u(x ± εn).

sourced solely from the right element’s trace u+; if λ= 1, it is sourced solely from
the left element’s trace u−. Choosing the correct value of λ is the essential subject
of this work, and we will return to this topic shortly. Note also that the numerical
flux u? equals g∂ on all Dirichlet boundary faces, and equals the boundary trace on
all Neumann boundary faces.

Second, we define a discrete approximation to q ∈ V d
h , which is essentially η

multiplied by the local ellipticity coefficient µ. To do so, we define q as the L2

projection of the function µη, i.e., q ∈ V d
h is the unique piecewise polynomial

function such that ∫
E

q ·ω =
∫

E
µη ·ω (5)

holds for every element E ∈ E and every test function ω ∈ V d
h . In the case that µ is

piecewise constant, calculating this L2 projection is a particularly simple matter
of multiplying η by a scalar. When µ is variable, one possible simplification is
to avoid the L2 projection and replace it with a symmetry-preserving interpolant
operator approximating µη; this approach, however, may fail to attain optimal
high-order accuracy, especially when µ is not particularly smooth. In this work, q
is always computed through an L2 projection using sufficiently high-order accurate
quadrature schemes to evaluate the product of the three functions on the right-hand
side of (5).

In the third step, we consider the weak formulation for computing the divergence
of q. This proceeds similarly to defining the discrete gradient of u, except numerical
fluxes act in the opposite direction. (For simplicity of presentation, the following
numerical flux for q is vector-valued; however, only the normal component of the
flux is used.) Given q ∈ V d

h , define w ∈ Vh as the discrete divergence of q such that∫
E
wv =−

∫
E

q · ∇v+
∫
∂E
vq?χ(E) · n
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holds for every test function v ∈ Vh and every element E ∈ E with phase χ(E).
Here, the numerical flux is defined by (see also Figure 1)

q?χ :=


q+ on any intraphase face,
(1− λ)q−+ λ(q++ hχ i n) on 0χ i if χ < i,
(1− λ)(q−− hiχn)+ λq+ on 0iχ if χ > i,
h∂n on 0N ,

q− on 0D.

(6)

As in the numerical flux for u?, the interfacial jump condition [[q · n]] = hi j on 0i j

is taken into account via the multivalued interfacial flux, such that whenever an
element reaches across the interface, the neighboring element’s trace is compensated
by hi j to correctly put it in the context of the source element.

Finally, it is often necessary to add penalty stabilization terms to ensure the
well-posedness of the discrete problem [9; 34]. These terms weakly impose con-
tinuity between neighboring element polynomials and weakly impose Dirichlet
boundary conditions. We classify them according to three types: boundary (τD),
intraphase (τi ), and interphase (τi j ) penalization parameters. Let Eg : Vh→ Vh be
the operator such that, for each u ∈ Vh ,∫
�

Eg(u)v=
∑

i

∫
0i

τi [[u]][[v]]+
∑
i< j

∫
0i j

τi j ([[u]]−gi j )[[v]]+

∫
0D

τD(u−−g∂)v− (7)

holds for every test function v ∈ Vh ; here, 0i denotes the set of intraphase faces in
phase i . The penalization operator Eg is added to the discrete Laplacian to define
the final linear system discretizing (1). In general, the values of τi , τi j , and τD

could vary from face to face. Generally speaking:

• Strictly positive parameters are sufficient to ensure well-posedness of the final
linear system (i.e., it has trivial kernel, or a one-dimensional kernel in the case
0D is empty). However, this is not a necessary condition. For example, on a
regular Cartesian grid, with purely one-sided intraphase numerical fluxes for u?

and q? (as used here), one can set the intraphase penalty to zero, τi = 0 [21].
On the other hand, a penalty parameter which is too large in value can impact
discretization accuracy as well as conditioning and multigrid performance.

• If 0D is nonempty, then τD should be positive to ensure well-posedness.

• Although LDG schemes do not require any particular lower bound on τ , for
consistent discretization behavior, a variety of different methods can be used
to show that a nonzero penalty parameter should scale inversely proportional
to the mesh size h, i.e., τ = O(h−1) as h→ 0. Such a scaling is consistent with
other forms of DG methods for elliptic problems, such as symmetric interior
penalty methods which require τ ≥ C/h for well-posedness. For anisotropic
meshes, one can be more precise and say the value of τ on a particular mesh
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face should scale proportionally to the measure of the face divided by the
measure of the elements on either side.

• To ensure correct scaling with ellipticity coefficient, penalty parameters should
also scale with the local value of viscosity. For example, τD ∼µ

− and τi ∼µi .
For interphase penalty parameters, τi j should scale linearly with an appropriate
function of µ− or µ+, i.e., the trace values of µi or µ j on either side of the
interface.

• One can also choose to scale τ with the polynomial degree (see, e.g., [11]),
which can be important for studying DG methods with very high-degree poly-
nomials; however in this work, we consider only moderate-order polynomials
and neglect this effect.

Further details on the precise values of the penalty parameters are deferred to the
presented results in Section 4.

To summarize the steps of the LDG construction, one (i) computes the discrete
gradient of u ∈ Vh to find η, (ii) finds the L2 projection of µη to define q, (iii)
computes the discrete divergence of q, (iv) adds penalty stabilization terms, and
finally (v) sets the result equal to the L2 projection of the right-hand side, f . We
refer the reader to [44] for an in-depth derivation3 and instead state the final result
wherein the auxiliary variable q is eliminated: u solves the linear problem( d∑

i=1

GT
i MµGi

)
u+M E0u = MPVh ( f )+ Jh(hi j , h∂)+ Jg(gi j , g∂) (8)

where:

• G = (G1, . . . ,Gd) : Vh→ V d
h is the discrete gradient operator that implements

the construction of η in (3) and (4) assuming homogeneous source data.

• M is the symmetric positive definite block-diagonal mass matrix and Mµ is
its µ-weighted counterpart such that

uT Mµv =
∑

i

∫
�i

uµiv

holds for all functions u, v ∈ Vh . (Here, we are slightly abusing notation by
consider u and v as both functions in Vh and as coefficient vectors in the
chosen basis.4) In particular, we note that the L2 projection of µu for u ∈ Vh

is given by M−1 Mµu.

3The cited work mainly considers the case of piecewise constant µ, but its results can be straight-
forwardly generalized to applications using the L2 projection of µη.

4A tensor-product Gauss–Lobatto nodal basis is employed in this work, suitable for low-to-
moderate degree DG methods. The analysis presented in this paper holds for any chosen basis,
provided it is understood that every basis-dependent matrix (e.g., the mass matrix M or its µ-weighted
counterpart Mµ) are defined consistently relative to the chosen basis.
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• E0 is the matrix implementing the penalty stabilization terms in (7), assuming
homogeneous Dirichlet boundary and jump data.

• PVh ( f ) is the L2 projection of f onto Vh , which in many applications could
simply be approximated by a nodal interpolant of f .

• The terms Jh and Jg collect the entire influence of the jump data gi j , hi j and
boundary data g, h, including that which is incorporated in penalization in (7)
and the numerical fluxes (4) and (6).

One can show the linear system (8) is symmetric positive semidefinite (positive
definite if 0D is nonempty and τD > 0) and is amenable to conjugate gradient
methods preconditioned by multigrid algorithms. The subject of this paper is to
determine how to choose the value of λ on interfacial faces so as to optimize
multigrid performance for the cases of large jumps in ellipticity coefficient.

3. Multigrid methods

The multigrid algorithms used in this work follow the operator-coarsening schemes
presented by Fortunato et al. [29], except with two important modifications: (i) the
methods are generalized to handle variable viscosity, and (ii) penalty parameters
are halved in strength each level down the mesh hierarchy. (Further details on these
modifications are provided shortly.) These multigrid methods are based on the idea
of separately coarsening the discrete gradient operator G and discrete divergence
operator D=− adj(G) across each level of the multigrid hierarchy; these coarsened
operators are then multiplied together to find the discrete Laplacian operator on each
level. Through this approach, one obtains a multigrid scheme which is equivalent
in function to a purely geometric multigrid method — i.e., one in which the mesh is
explicitly built, and the LDG discretization is explicitly formulated, on every level
of the hierarchy. In particular, the approach automatically constructs coarsened
operators which are consistent with the chosen numerical fluxes on the finest mesh;
for example, if weighted numerical fluxes are used on the finest mesh, the same
weighting is automatically inherited by the coarse-mesh operators.

3.1. Operator-coarsening multigrid. Here, a brief description of the multigrid
algorithms is given; for further details and motivation, the reader is referred to [29].
The essential components of the multigrid methods are as follows:

• Mesh hierarchy. In this work, quadtrees and octrees are used to define the
finest mesh or the background grid in the case of implicitly defined meshes
(see Section 5). The tree structure naturally defines a hierarchical procedure
for agglomerating elements to create a hierarchy of nested meshes for use in
h-multigrid; generally, the mesh is spatially coarsened by a factor of two in
each dimension on each level. Importantly, element agglomeration is only
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permitted between elements of the same phase — as such, the interface of an
elliptic interface problem is sharply preserved throughout the entire multigrid
hierarchy. (An example is shown in Figure 4.8 of [29].)

• Interpolation operator. The interpolation operator I h
2h transfers a piecewise

polynomial function on a coarse mesh to a piecewise polynomial function
on the fine mesh. In the present setting, I h

2h is naturally defined by injec-
tion: (I h

2hu)|E f = u|Ec , where E f is a fine mesh element and Ec ⊇ E f is its
corresponding coarse mesh element.

• Restriction operator. The restriction operator R2h
h is defined to be the adjoint of

the interpolation operator. Equivalently, for a piecewise polynomial function u
on a fine mesh, R2h

h u is defined as the L2 projection of u onto the coarse mesh.
It is related to the interpolation operator via R2h

h = M−1
2h (I

h
2h)

T Mh where Mh

and M2h are the mass matrices on the fine and coarse meshes, respectively,
and (I h

2h)
T is the transpose of the interpolation operator matrix.

• Coarsening of a general operator. Given an operator A : Vh→ Vh defined on
a fine mesh, its coarsened counterpart on a coarse mesh is defined variationally,
such that C(A) : V2h→ V2h satisfies

(C(A)u, v)V2h = (AI h
2hu, I h

2hv)Vh

for all u, v ∈ V2h; here ( · , · )Vh denotes the standard inner product on Vh .
Equivalently, as a matrix acting on coefficient vectors in the chosen basis,
C(A)= R2h

h AI h
2h .

In [29], operator-coarsening multigrid methods are derived for single-phase Poisson
problems −∇2u = f as follows. On the finest mesh, the LDG discretization results
in the linear system (−DG + τ E)u = PVh f , where G is the discrete gradient
operator, D = − adj(G) = −M−1GT M is the discrete divergence operator, and
E is a penalty stabilization operator. The coarse-mesh operator, e.g., as would be
used in a multigrid V-cycle, is then defined as −C(D)C(G)+ τC(E). In particular,
it is shown that this coarse-mesh operator is identical to the one which would be
obtained if an LDG discretization with the same numerical fluxes was directly
applied to the coarse mesh problem. However, one advantage to constructing the
coarse-mesh operator via the C functional is that doing so does not require the
coarse mesh problem to be explicitly discretized; i.e., the coarse mesh does not need
to be explicitly found (instead, it is implicitly formed via the interpolation/element
agglomeration hierarchy), quadrature schemes for coarse mesh elements do not
need to be computed, coarse lifting and penalty operators and L2 projections do not
need to be constructed, and so forth. Two modifications to the operator-coarsening
approach are made in the present work:
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(1) In addition to coarsening the discrete gradient and penalty operators, the
viscosity-weighted L2 projection operator is also coarsened. Let2µ : Vh→ Vh

be defined such that2µu is the L2 projection of µu onto Vh , i.e., (2µu, v)Vh =

(µu, v)Vh holds for all v ∈ Vh . Then, the fine mesh discrete elliptic interface
problem derived in (8) essentially reads as

(−D2µG+ Eτ )u = PVh f + J (h)+ J (g).

Here, Eτ is the penalty operator with penalty parameters for intraphase, in-
terphase, and boundary faces, baked inside its definition. The coarse-mesh
operator is defined as

−C(D)C(2µ)C(G)+ 1
2 C(Eτ ). (9)

Using similar methods as was shown in [29], one can show that this coarse-
mesh operator is equivalent to that which would be obtained if the coarse-mesh
problem was explicitly discretized with LDG. In particular, the coarsened µ-
weighted identity operator C(2µ) effectively coarsens the influence of µ on the
fine mesh to larger and larger elements throughout the hierarchy, consistently
with performing an L2 projection of µ multiplied by piecewise polynomial
functions on the coarse meshes.

(2) The second modification concerns the choice of penalty parameters on coarse-
level meshes. In [29], penalty parameters were chosen for the finest-level mesh
and these were left unaltered throughout the entire hierarchy. However, in the
present work it was found that this is a suboptimal strategy and can lead to
worsening V-cycle performance as the fine mesh problem is refined. Instead,
a simple fix is to appropriately adjust the value of the penalty parameters τ
on each level to reflect the observation that the effective h value entering the
guideline penalty parameter scaling of τ ∼ µ/h is doubling every time the
mesh is coarsened. This modification is implemented via the factor5 of 1

2 in (9).

Algorithm 1 summarizes the essential construction of the coarse-mesh operators, to
be applied recursively down the mesh hierarchy; here Mh is the mass matrix on a
fine mesh, Mµ,h is its µ-weighted counterpart, Gh is the discrete gradient operator,
Ẽh := Mh Eh is the penalty operator premultiplied by the mass matrix, and A2h

defines the final overall operator for the elliptic interface problem on the coarse
mesh (corresponding to the discretization of the operator −∇ · (µ∇) on the coarse
mesh, left-multiplied by the coarse-mesh’s mass matrix).

3.2. Multigrid preconditioned conjugate gradient. The V-cycle preconditioned
conjugate gradient method employed in this work is outlined in Algorithm 2. In
particular:

5In more sophisticated settings using adaptive mesh refinement, the factor of 1
2 would take into

account the possibility elements may change size by differing factors.
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M2h := (I h
2h)

T Mh I h
2h

Mµ,2h := (I h
2h)

T Mµ,h I h
2h

G2h := M−1
2h (I

h
2h)

T MhGh I h
2h

Ẽ2h :=
1
2 (I

h
2h)

T Ẽh I h
2h

A2h := GT
2h Mµ,2hG2h + Ẽ2h

Algorithm 1. Construction of coarse-mesh operators, given fine-mesh operators Mh ,
Mµ,h , Gh , and Ẽh .

if Eh is the bottom level then
Solve Ah xh = bh with bottom solver

else
Apply smoother ν times
r2h := (I h

2h)
T (bh − Ah xh)

x2h := V (E2h, 0, r2h)

xh← xh + I h
2h x2h

Apply smoother (in reverse ordering) ν times
return xh

Algorithm 2. Multigrid V-cycle V (Eh , xh , bh) on a mesh Eh with ν pre- and postsmooth-
ing steps.

• A multicolored block Gauss–Seidel iteration is used as the relaxation/smoothing
method. In a setup phase, a graph-coloring algorithm is applied to the element
connectivity graph defined by the blockwise sparsity of the operator A on each
level of the hierarchy. The algorithm approximately finds the minimum number
of colors needed using a DSATUR algorithm [38]; on a standard Cartesian grid,
with one-sided intraphase fluxes, this approach recovers the optimal red-black
ordering associated with a standard 5-point (2D) or 7-point (3D) Laplacian
stencil. The primary reason for coloring the Gauss–Seidel method is to achieve
parallel speedup in a multithreaded environment, wherein all elements of the
same color can be processed in parallel.

• In the case of large, three-dimensional studies, in addition to multithreading, a
standard domain decomposition approach using MPI is used. In this case, each
subdomain applies Gauss–Seidel with a ghost layer of elemental values which
are frozen at the beginning of each iteration — as such, the relaxation method is
a processor-block Gauss–Seidel method [1], which in the limit of one element
per processor decays to a block-Jacobi iteration. Since block-Jacobi relaxation
is not convergent for DG methods, a small amount of damping is applied. In
brief, for the presented three-dimensional studies, the relaxation method is
a processor-block, damped, elementwise-block Gauss–Seidel iteration with
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damping parameter ω = 0.875, chosen through experiment so as to ensure
reliable convergence using approximately the smallest damping possible.

• Three pre- and postsmoothing steps are applied in the V-cycle. By reversing the
ordering of the Gauss–Seidel sweep in the postsmoothing phase, the associated
V-cycle linear operator is symmetric.

The application of one V-cycle to approximately solve the system Ax = b with
initial guess zero results in a linear operator acting on b; the corresponding matrix
is denoted in the following by V . To solve the linear systems arising from the
multiphase elliptic interface problems considered in this work, a single V-cycle is
used as a preconditioner in the conjugate gradient method. According to standard
convergence theory, the two-norm condition number of V A can be used to bound
the number of iterations required to reduce the residual by a given tolerance. Con-
sequently, the primary metric used in this work to assess the efficacy of multigrid
performance is κ(V A); for an optimally performing multigrid method, κ(V A)
should be reasonably close to unity and bounded as h→ 0.

4. One-dimensional analysis

In this section, we examine the role of weighted interfacial fluxes on multigrid
performance for a one-dimensional, two-phase, constant-coefficient elliptic interface
problem. Although only in one spatial dimension, the observed behavior in accuracy,
conditioning, and convergence rates is reflective of what also occurs in two- and
higher-dimensional problems with more complex interface geometry.

Throughout this section, let �= (0, 1) be the unit interval divided into a middle
interior phase �1 =

( 1
4 ,

3
4

)
and an exterior phase �2 =

(
0, 1

4

)
∪
(3

4 , 1
)
, and let

0 =
{1

4 ,
3
4

}
denote the interface between �1 and �2. We consider the elliptic

interface problem with Dirichlet boundary conditions
−µi∇

2u = fi in �i ,

[[u]] = g on 0,
[[µ∇u · n]] = h on 0,

u = g∂ on ∂�,

(10)

where µ1 shall in the following have small (� 1), unit, and large (� 1) values,
while µ2 is always held fixed at µ2 = 1. The discretization employs the LDG
schemes of Section 2 with the following characteristics:
• a mesh consisting of n = 1/h equal-sized elements, with n divisible by four

so as to ensure the interface is situated between elements,

• polynomial degree6 p = 3,

6For simplicity of presentation, results in one dimension are shown solely for p = 3; similar
behavior is observed for other tested values of p between 1 and 10.
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• boundary faces on ∂� carry a penalty parameter τD = µ2(p+ 1)h−1,

• following the motivation in Section 1.1, interfacial faces on 0 carry a penalty
parameter τ12 =min(µ1, µ2)(p+ 1)h−1, and

• all other faces have zero penalty parameter.

4.1. General behavior and smoothing performance. In the following set of tests
we fix the number of elements n = 16 and consider a smooth test problem in which
the source data f , g, h, and g∂ in (10) are generated by the exact solution

u(x)=
{

sin 4π(x − 0.1) in �1,

cos 4π(x − 0.1) in �2.
(11)

In the following two test cases, the interior phase’s viscosity coefficient is set equal
to µ1 = 10−5.

First, we consider a case in which the weighting on interfacial numerical fluxes is
chosen suboptimally. Specifically, for the two interfacial faces located at 0=

{1
4 ,

3
4

}
,

the convex combinations in (4) and (6) use equal weighting with λ= 0.5, reflecting
a central flux. This choice results in an extremely inaccurate discrete solution, poor
multigrid performance, and poor conditioning of the V-cycle preconditioned linear
system, as examined in Figure 2. In particular, Figure 2, top row, illustrates the
piecewise-cubic discrete solution and its error, showing a pronounced numerical
boundary layer.7 The condition number of the preconditioned system V A is approx-
imately 5200; inspection of the spectrum of V A, consisting of n(p+1)= 64 eigen-
values (see Figure 2, center left) shows that the smallest eigenvalue λmin≈8.5×10−4

is the main contributor to the poor condition number; the corresponding piecewise-
cubic eigenfunction is essentially identical (up to normalization) to the error profile
shown in Figure 2, top right. Thus, in this particular example, the mode which
contributes to poor accuracy happens to be the same mode which multigrid most
ineffectively handles.

To examine multigrid performance, one possible approach is to assess whether
the associated relaxation method exhibits ideal smoothing properties. Let S denote
the action of three iterations of the block Gauss–Seidel relaxation method, such
that Su approximately solves Ax = b with initial guess u and right-hand side equal
to zero. S should have at least three desirable properties: (i) all of its eigenvalues
should have absolute value not greater than one, (ii) modes which are spatially high-
frequency should be damped quickly (i.e., eigenvalue close to zero), and (iii) modes
which are damped slowly (i.e., eigenvalues with magnitude close to 1) should be
spatially low-frequency so that they can be effectively handled by coarser grids. For

7The boundary layer is more pronounced on one of the interfaces owing to the asymmetry
introduced by the one-sided intraphase face fluxes; if these are switched in direction, the boundary
layer moves to the right interface.
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Figure 2. Solution accuracy and characteristics of multigrid performance for a two-phase,
constant-coefficient elliptic interface problem in one dimension, wherein �1 =

( 1
4 ,

3
4
)

has
viscosity coefficient µ1 = 10−5 and �2 =

(
0, 1

4
)
∪
( 3

4 , 1
)

has coefficient µ2 = 1, using
the suboptimal choice of central flux weighting on interphase faces. In the plots of the top
row and center right, the piecewise-cubic polynomial functions are graphed in addition to
dashed/solid vertical lines indicating the boundaries between the n = 16 elements; solid
lines indicate the interface.

the present test problem, the largest8 n eigenvalues of S are displayed in Figure 2,
bottom left, and show that all eigenvalues are real and lie in the unit interval. To
examine whether an eigenfunction is spatially low-frequency, a simple method is to
test how similar the function is to its projection onto a coarse mesh. This can be
accomplished by examining the relative error in u ∈ Vh versus R2h

h u ∈ V2h where

8In one dimension, experiments indicate that at most n eigenvalues of S are nonzero, while the
remaining np eigenvalues are exactly zero. This is in part attributed to the elementwise block action
of the smoother.
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R2h
h is the restriction operator used by multigrid. Ideally, the eigenfunctions of S

with large eigenvalue should have very small relative errors in their coarse-mesh
projections; however, the results in Figure 2, bottom right, show that the fourth,
eighth, and especially first mode are outliers in this regard. In fact, the eigenfunction
of S with largest eigenvalue is the same one encountered before, identical in profile
to Figure 2, top right. This function is clearly not smooth. As another example,
mode 4, i.e., the eigenfunction of S with fourth-largest eigenvalue, is shown in
Figure 2, center right. Once more we see a high-frequency mode, which is not
effectively damped by the smoother.

In summary, we see that an unwise choice of weighting in the numerical flux
results in discrete solutions of unacceptable accuracy as well as poor multigrid
performance. In this case, the poor multigrid performance can be attributed to an inef-
fective smoother wherein particular high-frequency modes are damped very slowly.

Next, we examine precisely the same problem, except now the weighting on in-
terfacial numerical fluxes is chosen to bias as motivated in Section 1.1. In particular,
we set the convex combination in (4) and (6) to be such that λ= 0. Figure 3 presents
a similar analysis as was shown in Figure 2, and demonstrates significantly improved
behavior. The discrete solution is now four orders of magnitude more accurate,
and the condition number of the V-cycle preconditioned system is approximately
1.4 (compared to the value of 5200 in the previous case). Comparison of Figure 3,
bottom right, with Figure 2, bottom right, shows that the smoother performance
has also markedly improved. Indeed, the first four modes of the smoother (those
with largest eigenvalues) are illustrated in Figure 3, center left, all of which are
relatively smooth modes for this problem having a mesh of n = 16 elements.

4.2. Optimal choice of weighting. To investigate the role of weighted interfacial
fluxes across a range of ellipticity coefficient jump ratios, we examine two metrics
as a function of λ: (i) the maximum-norm error in the discrete solution, and (ii) the
condition number of the V-cycle preconditioned system. Using the same two-phase,
constant-coefficient elliptic interface problem of the previous section, and the same
exact solution given in (11), Figure 4 shows results for five different values of µ1,
specifically 10−8, 10−4, 1, 104, and 108. In the graphs, the convex combination
is varied from one-sided in one direction, λ= 0, to central, λ= 0.5, to one-sided
in the other direction, λ = 1. Specifically, λ takes on values 10−k and 1− 10−k

for k =∞, 10.5, 10, 9.5, 9, . . . , 1.5, 1 along with the central value λ= 0.5; in the
plots, these are shown on a quasilogarithmic scale. A number of conclusions can
be drawn from Figure 4:

• Optimal errors and conditioning can be attained provided the weighted fluxes
are sufficiently biased in the appropriate direction. If the viscosity ratio is
less than one, λ should be chosen closer to zero, which corresponds to the
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Figure 3. Solution accuracy and characteristics of multigrid performance for a two-phase,
constant-coefficient elliptic interface problem in one dimension, wherein �1 =

( 1
4 ,

3
4
)

has viscosity coefficient µ1 = 10−5 and �2 =
(
0, 1

4
)
∪
( 3

4 , 1
)

has coefficient µ2 = 1,
using an ideal choice of weighting for interfacial numerical fluxes. In the plots of the top
row and center right, the piecewise-cubic polynomial functions are graphed in addition to
dashed/solid vertical lines indicating the boundaries between the n = 16 elements; solid
lines indicate the interface.

numerical flux for u? biasing towards phase �2 and q? biasing toward �1 (see
(4) and (6)). If the viscosity ratio is greater than one, λ should be chosen closer
to unity, thereby biasing in the opposite direction. In both cases, the direction
of weighting is consistent with the motivation given in Section 1.1, i.e., the
numerical flux for u? should bias towards the more viscous phase, and that for
q? should bias towards the less viscous phase.

• The condition number of the V-cycled preconditioned operator is minimized
when λ/

√
µ1/µ2 if µ1/µ2 < 1, or λ' 1−

√
µ2/µ1 if µ1/µ2 > 1.
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Figure 4. Solution accuracy and multigrid performance as a function of interfacial flux
weighting for a two-phase, constant-coefficient elliptic interface problem in one dimension,
wherein�1 =

( 1
4 ,

3
4
)

has viscosity coefficient µ1 and�2 =
(
0, 1

4
)
∪
( 3

4 , 1
)

has coefficient
µ2, with the viscosity ratio as indicated. Here, the λ parameter is varied corresponding to
a one-sided flux (λ= 0), to a central flux (λ= 0.5), and to a one-sided flux in the opposite
direction (λ= 1); note the quasilogarithmic scale of λ values on the horizontal axis.

• The maximum norm error in the discrete solution is minimized when λ /
µ1/µ2 if µ1/µ2 < 1, or λ' 1−µ2/µ1 if µ1/µ2 > 1. In fact, the results for
µ1 ∈ {104, 108

} show that one can do slightly better by biasing slightly more
by requiring λ' 1−Cµ2/µ1 where C ≈ 0.1.

• In all cases, a purely one-sided weighting strategy matches the best possible
solution error and condition number, i.e., if µ1/µ2 < 1, then set λ= 0, and if
µ1/µ2 > 1, then set λ= 1.

These observations closely match the strategy of harmonic weighting used in a
variety of prior work, as surveyed in Section 1.2. In particular, harmonic weighting
chooses λ in (4) and (6) such that

λ=
µ−

µ−+µ+
, (12)

where µ± denotes the trace values on either side of an interphase mesh face.
Other possibilities suggested in prior work include the weaker biasing choice of
λ≈

√
µ−/

(√
µ−+

√
µ+
)

[19]; however, as shown above, and although this attains
near-optimal preconditioned condition numbers, markedly better solution errors
can be obtained with stronger biasing. According to our results (and also those
observed in Figure 7 below), one can attain marginally better results by biasing
the weights stronger than a harmonic weighting. To this end, one could choose a



EFFICIENT MULTIGRID SOLUTION OF ELLIPTIC INTERFACE PROBLEMS 267

▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲

▼ ▼ ▼ ▼ ▼

▼ ▼
▼ ▼




      

◆

◆
◆ ◆ ◆

◆
◆ ◆ ◆

◼

◼
◼ ◼ ◼

◼
◼ ◼ ◼

16 32 64 128 256 512 1024 2048 4096

1.40

1.45

1.50

1.55
▲

▼



◆

◼

Figure 5. Multigrid performance under the action of mesh refinement for a two-phase,
constant-coefficient elliptic interface problem in one dimension, wherein �1 =

( 1
4 ,
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)

has
viscosity coefficient µ1 and �2 =

(
0, 1

4
)
∪
( 3

4 , 1
)

has coefficient µ2, with the viscosity
ratio as indicated. Here, n denotes the number of equal-sized elements that mesh the unit
interval domain. In these experiments, the viscosity-upwinded weighting strategy is chosen.

strategy of

λ=
(µ−)α

(µ−)α + (µ+)α
(13)

where α > 1 is a user-chosen parameter controlling the biasing strength. The limit
α→∞ corresponds to pure one-sided biasing, denoted in this work as viscosity-
upwinded weighting,

λ=


0 if µ− < µ+,
0.5 if µ− = µ+,
1 if µ− > µ+.

(14)

In applications involving variable ellipticity coefficient, wherein the ratio may
change between less-than-unity to greater-than-unity along an interface, it may
be beneficial to smoothly vary λ from less than half to greater than half. If so, a
finite value of α could be more appropriate, e.g., α = 2. This possibility is not
investigated here; instead, for the results presented in this work, the viscosity-
upwinded weighting has been uniformly effective, and so the strategy in (14) is
hereon adopted throughout, unless otherwise stated.

4.3. Multigrid performance under mesh refinement. In the last set of results for
the one-dimensional test problem, we examine multigrid performance under the
action of mesh refinement. Figure 5 shows the condition number of the V-cycled pre-
conditioned system (using the viscosity-upwinded weighting strategy) for different
values of the viscosity ratio, specifically 10−8, 10−4, 1, 104, and 108, as a function
of the grid size, ranging from n = 16 to 4096 elements. Note that, in all cases,
the condition number remains in the interval κ ∈ (1.35, 1.60), which for practical
purposes can essentially be considered a well-conditioned system, independent
of h. Thus, as used in a multigrid preconditioned conjugate gradient method, for



268 ROBERT I. SAYE

example, we expect a bounded number of iterations for a fixed reduction in residual
norm, and this is indeed observed in experiments.

5. Two- and three-dimensional results

In this section, we assess the efficacy of viscosity-upwinded weighted fluxes for a
variety of elliptic interface problems in two and three dimensions, ranging from
two-phase constant-coefficient problems, to multiphase problems with variable
viscosity coefficients, to a set of challenging “bubbly” geometry problems.

5.1. Rectangular interface. First, we consider 2D and 3D analogues of the two-
phase, constant-coefficient problem given in the previous section. Let �= (0, 1)d

be divided into an interior phase �1 =
( 1

4 ,
3
4

)d and exterior phase �2 = � \�1.
The elliptic interface problem given in (10) is considered, with source data f , g, h,
and g∂ generated by the exact solution

u(x)=
{∏d

i=1 sin 4π(xi − 0.1) in �1,∏d
i=1 cos 4π(xi − 0.1) in �2,

where x1 = x , x2 = y, and x3 = z. A uniform Cartesian grid mesh with n ele-
ments in each direction is employed, with polynomial degree p = 3 in 2D (i.e., a
piecewise-bicubic polynomial space), and p= 2 in 3D (i.e., piecewise-triquadratic);
boundary faces carry a penalty parameter τD = µ2(p + 1)h−1, interfacial faces
τ12 =min(µ1, µ2)(p+ 1)h−1, and all other faces zero penalty parameter.

Fixing µ2 = 1 and µ1 = 10−5, Figure 6 illustrates the differences between a
suboptimal choice of central interfacial flux along with a more optimal, viscosity-
upwinded strategy. In the case of an interfacial central flux, the condition number
of the V-cycle preconditioned system is approximately 508 and the discrete solution
error shown in Figure 6, top center, exhibits significant numerical boundary layers.
Inspection of the spectrum of the Gauss–Seidel relaxation operator S reveals that,
although all eigenvalues lie in the unit interval, the eigenfunction with largest
eigenvalue (approximately 0.991) is identical in profile to the function shown
in Figure 6, top center, which is clearly not spatially smooth. Another example
is shown in Figure 6, top right, which displays the eigenfunction of S having
ninth-largest eigenvalue (approximately 0.965), which is also nonsmooth. As in
Section 4.1, we see that the multigrid relaxation method exhibits slowly damped
modes that are spatially high-frequency in profile, thereby preventing ideal multi-
grid behavior. However, with a viscosity-upwinded interfacial flux strategy, the
preconditioned system has condition number approximately 1.55; Figure 6, bottom
center, shows a significant improvement in the accuracy of the discrete solution;
and the corresponding eigenfunction of S (now with eigenvalue 0.944) is vividly
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Figure 6. Solution accuracy and example eigenfunctions of the multigrid relaxation
operator for a two-phase, constant-coefficient elliptic interface problem in two dimensions,
wherein�1 =

( 1
4 ,

3
4
)2 has viscosity coefficient 10−5 and the exterior phase�2 = (0, 1)2 \

�1 has coefficient 1. Top row: using a suboptimal central-flux weighting strategy. Bottom
row: using the more optimal, viscosity-upwinded weighting strategy.

smoother. Similar conclusions hold for the two flux weighting strategies when the
viscosity ratio is reversed.

To confirm that a viscosity-upwinded weighting strategy is ideal across a range
of viscosity ratios, the experiments of Section 4.2 are repeated here for the 2D and
3D cases, corresponding to fixed 16× 16 and 16× 16× 16 meshes, respectively.
In particular, for five different values of µ1 ∈ {10−8, 10−4, 1, 104, 108

}, the convex
combination for the numerical flux of interfacial faces is varied from one-sided
in one direction (λ = 0) to one-sided in the opposite direction (λ = 1). Figure 7
illustrates the behavior of the maximum norm error in the discrete solution and the
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Figure 7. Solution accuracy and multigrid performance as a function of interfacial flux
weighting for a two-phase, constant-coefficient elliptic interface problem in 2D and 3D,
wherein �1 =

( 1
4 ,

3
4
)d has viscosity coefficient µ1 and �2 = (0, 1)d \�1 has coefficient

µ2, with the viscosity ratio as indicated. Here, the λ parameter is varied corresponding
to a one-sided flux (λ= 0), to a central flux (λ= 0.5), to a one-sided flux in the opposite
direction (λ= 1); note the quasilogarithmic scale of λ values on the horizontal axis.

condition number9 of the V-cycle preconditioned system as a function of λ. Similar

9In higher dimensions, it can be computationally expensive to calculate an exact two-norm
condition number of the preconditioned operator V A, especially for highly resolved meshes. In this
paper, the condition number for 2D and 3D problems is approximated via eigenvalue estimation
methods derived from the Lanczos iteration of the preconditioned conjugate gradient (PCG) algorithm
[42]; in essence, these techniques compute the spectrum of the linear system’s projection onto
the underlying Krylov subspace. To apply these estimators, a randomly generated right-hand side
vector is given to PCG which, with high probability, samples both large and small eigenmodes.
Experiments indicate the condition number estimate is highly accurate (at least two digits) for
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Figure 8. Multigrid performance under the action of mesh refinement for a two-phase,
constant-coefficient elliptic interface problem in two and three dimensions, wherein �1 =( 1

4 ,
3
4
)d has viscosity coefficient µ1 and �2 = (0, 1)d \�1 has coefficient µ2, with the

viscosity ratio as indicated. Here, n denotes the number of elements in the corresponding
uniform Cartesian n× n(× n) mesh.

to the conclusions found in the one-dimensional case, we see that the solution
error is minimized when λ/ 0.1(µ1/µ2) if µ1/µ2 < 1, or λ' 1− 0.1(µ2/µ1) if
µ1/µ2 > 1; meanwhile, the condition number is minimized when λ/

√
µ1/µ2 if

µ1/µ2 < 1, or λ' 1−
√
µ2/µ1 if µ1/µ2 > 1.

In the remainder of this article, we cease examination of the influence of λ on
accuracy and conditioning. Instead, the viscosity-upwinded interfacial flux strategy
is automatically applied, and attention is focused solely on multigrid performance
under the action of mesh refinement. Figure 8 shows the condition number of the V-
cycled preconditioned system for the elliptic interface problem with the rectangular
interface geometry currently under consideration. In two dimensions, the mesh is
refined from 8× 8 to 512× 512, while in three dimensions, the mesh is refined
from 8×8×8 to 256×256×256 (representing a maximum of almost half a billion
degrees of freedom in the solution u). In 2D, the condition number remains in the
interval (1.35, 1.60), while in 3D it remains in the interval (1.8, 2.2), independent
of h, for all viscosity ratios.

5.2. Multiphase checkerboard. In the next example, we consider a multiphase
elliptic interface problem exhibiting a checkerboard pattern of different viscosity
coefficients, as shown in Figure 9, left. The largest jump in viscosity ratio across
any one interface is 108, and the largest ratio across all phases is 1012. Boundary
faces in phase i carry the penalty parameter τD = µi (p+ 1)h−1 and interphase
faces on 0i j carry a penalty parameter τi j = 2 min(µi , µ j )(p+ 1)h−1. Figure 9,
right, shows the condition number of the multigrid preconditioned system in 2D and

reasonably conditioned systems, and becomes inaccurate only for badly conditioned systems with
κ � 104. However in these ill-conditioned cases the precise value of κ is not of concern. Regarding
the results in this work, if PCG fails to converge within 1000 iterations, the last estimate of the
condition number is taken; if the system is so severely ill-conditioned that PCG reports the matrix is
not symmetric positive definite, the condition estimate is set to∞ and does not appear in the graphs.
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Figure 9. Left: a multiphase domain divided into a 4 × 4 array of subdomains with
viscosity coefficient µi as indicated. Right: multigrid performance under the action of
mesh refinement for the corresponding multiphase, constant-coefficient elliptic interface
problem in two dimensions and a 3D analogue. Here, n denotes the number of elements in
the uniform Cartesian n× n(× n) mesh.

an analogous 3D case of the checkerboard problem. Bounded condition numbers
as h→ 0 are observed in all cases.

5.3. Variable ellipticity coefficient. In the results presented so far, only constant-
coefficient elliptic interface problems have been investigated. In the following
problem, we consider a variable-coefficient problem wherein the jump in µ across
the interface varies in space over several orders of magnitude. Specifically, in
two dimensions, the domain is the unit square divided into an interior channel
�2= (0, 1)×

( 1
4 ,

3
4

)
and an exterior phase �1= (0, 1)2 \�2, such that µ=µ(x, y)

is given by

µ=

{
10−4+8 sinπx/2 in �1,

104−8 sinπx/2 in �2.
(15)

Figure 10, left, illustrates the domain and µ on a base-10 logarithmic scale; note
that the maximum viscosity jump is eight orders in magnitude. In 3D, an analogous
configuration is chosen consisting of the unit cube divided into an interior channel
�2= (0, 1)×(0, 1)×

( 1
4 ,

3
4

)
and exterior phase�1= (0, 1)3\�2, withµ=µ(x, y, z)

given by

µ=

{
10−4+8 sinπx/2 sinπy/2 in �1,

104−8 sinπx/2 sinπy/2 in �2.

In these examples, the viscosity-upwinded weighting strategy switches between
the two phases �1 and �2 depending on the location on the interface. In addition,
interphase faces carry a penalty parameter τ12 = 2 min(µ1, µ2)(p+ 1)h−1, which
also varies from face to face. Figure 10, right, shows the condition number of the
multigrid-preconditioned system in 2D and 3D. We see that optimal behavior is
obtained, i.e., κ remains bounded as h→ 0.
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Figure 10. Left: a two-phase domain with variable ellipticity coefficient given by (15);
the interface separating the two phases is 0 =

{
(x, y) : y = 1

4 or y = 3
4
}
. Right: multigrid

performance under the action of mesh refinement for the corresponding two-phase, variable-
coefficient elliptic interface problem and its associated 3D analogue. Here, n denotes the
number of elements in the uniform Cartesian n× n(× n) mesh.

5.4. Spherical geometry. In the remaining set of examples, we consider curved
interface geometry and make use of a recently developed discontinuous Galerkin
framework for computing high-order accurate multiphase multiphysics using implic-
itly defined meshes [44; 45]. Briefly, an implicitly defined mesh uses one or more
level set functions, describing the domain geometry and interface, to cut through
the cells of a background quadtree or octree; tiny cut cells are then merged with
neighboring cells to create a mesh in which the shapes of interfacial or boundary
elements are defined implicitly by the level set functions. In particular, the mesh is
interface-conforming and sharply represents its implicitly defined geometry. For the
elements and faces of the mesh whose geometry is implicitly defined, high-order
accurate quadrature rules are computed using the schemes detailed in [43; 46];
these quadrature schemes are then used in the LDG methods for computing mass
matrices, discrete gradient operators, L2 projections, and so forth. For details on
the implicit mesh DG framework, see [44; 45]; for illustrations of the associated
multiphase interface-preserving h-multigrid hierarchy, see [29].

In the first example of curved geometry, we consider a circle and sphere of radius
0.3, i.e., �1 = {x : ‖x‖< 0.3} and �2 = (0, 1)d \�1. An example of the implicitly
defined mesh for a background Cartesian 16× 16 grid is shown in Figure 11, left;
note that away from the interface, the mesh consists of standard rectangular elements,
whereas near the interface, the cell merging procedure results in a nonconforming
mesh, with some mesh faces shared between more than two neighboring elements.
Because of the increased complexity of the mesh topology, as compared to a standard
Cartesian grid, with a larger variety of mesh face sizes, multigrid performance using
implicitly defined meshes benefits from a slightly increased penalty stabilization in
the LDG schemes. As such, in the remainder of these examples, penalty parameters
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Figure 11. Left: an implicitly defined mesh corresponding to the two-phase circular
interface test problem of Section 5.4 generated with a background 16× 16 grid. Right:
multigrid performance under the action of mesh refinement for the associated two-phase,
constant-coefficient elliptic interface problem. Here, n denotes the number of cells in the
uniform Cartesian n× n(× n) grid underlying the employed implicitly defined meshes.

for interfacial faces are set to τ12 = 2d min(µ1, µ2)(p+1)h−1 in d dimensions and
penalty parameters for boundary faces remain equal to µ−(p+ 1)h−1 (where µ−1

is the coefficient of the element attached to the boundary face), while all remaining
faces carry a penalty parameter of τ = µF (p+ 1)h−1 (where µF represents the
coefficient value local to the face in question), where h is the cell size of the back-
ground Cartesian grid.10 These penalty parameters were chosen experimentally so
as to approximately optimize for both solution accuracy and multigrid performance.

Using the spherical interface geometry, Figure 11 displays results for a variety
of coefficient ratios (in this example, each phase has constant ellipticity coefficient).
As compared to the simpler meshes used in previous test problems, the condition
number of the V-cycle preconditioned system is slightly larger. This is attributed to
both the increased mesh complexity, as well as the influence of the chosen nodal
polynomial basis on curved, implicitly defined elements (see [44] for details). We
also observe a minor trend upwards in condition number as the mesh is refined from

10Nonuniform quadtree and octrees can also be used with implicitly defined meshes, and corre-
sponding multigrid algorithms have been devised [44; 29]; however, adaptive mesh refinement is not
considered in the present work.
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Figure 12. Left: a two-phase domain divided into the indicated shaded phase �1, con-
sisting of a thin sheet, a long thin filament, and three droplets; the secondary phase �2
fills the exterior region. Right: multigrid performance under the action of mesh refinement
for the geometry depicted in the left. Here, n denotes the number of cells in the uniform
Cartesian n× n× n grid underlying the employed implicitly defined meshes.

the coarsest level; this trend starts to plateau for the finest meshes and is expected
to plateau for ultrarefined meshes. For the presented results, the condition numbers
of the preconditioned system remain in the interval (1.4, 2.4) in 2D and (1.8, 3.0)
in 3D, across 16 orders of ellipticity coefficient ratio.

5.5. Thin sheets, filaments, and droplets. To examine multigrid performance in
the case of more challenging interface geometry, in the next test problem we consider
a 3D example exhibiting a thin sheet, a thin filament, and three small, dispersed
phase components, as illustrated in Figure 12, left. Here, the shaded phase (�1) is
composed using multiple level set functions describing a spherical shell, a cylinder,
and three spheres, and �2 denotes the exterior phase. Figure 12, right, shows the
condition number of the multigrid preconditioned system for a variety of viscosity
ratios. For this test geometry, the condition number is in some cases about two
times bigger than witnessed in previous three-dimensional problems; the increased
conditioning is attributed to the more challenging geometry; however, bounded
condition numbers are still attained as h→ 0.

5.6. Bubbly geometry. In the last set of examples, we consider two kinds of prob-
lems involving “bubbly” interface geometry. These are representative of the kind
of challenging multimaterial problems in which small interfacial features are in
some sense never resolved by the mesh, e.g., dispersed gas bubbles in a liquid with
diameter only a few mesh elements. The first problem considers a lattice of 4× 4
droplets (in 2D) or 4× 4× 4 droplets (in 3D), each of radius 0.8h, where h is the
cell size of the background Cartesian grid. The second problem considers a lattice
of k× k(× k) droplets of the same size, where k = 1/(4h)= n/4; in particular, the
number of droplets increases as the mesh is refined. Figure 13, top and bottom,
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h = 1/16 h = 1/32 h = 1/64 1/h = 128

Figure 13. Illustration of the “bubbly” geometry of the elliptic interface problems consid-
ered in Section 5.6 where h= 1/n is the cell size of the background uniform Cartesian grid
used to define the corresponding implicitly defined meshes. Top: fixed lattice of vanishing
droplets. Bottom: growing lattice of vanishing droplets.

illustrates the two-dimensional case for these two problems. To emphasize, the
droplet curvature length scale is tied to the element size of the mesh in such a
way that the resulting elliptic interface problem contains ever-decreasing small
geometric features — as such, we do not necessarily expect a multigrid method to
attain optimal efficiency, i.e., bounded κ(V A) as h→ 0, as the relaxation operator
may not exhibit the usual scale-separated smoothing behavior across the full grid
hierarchy.

Figure 14 shows the multigrid preconditioned condition numbers κ(V A) for
both bubbly problems in 2D and 3D. A number of observations can be made:

• For viscosity ratio less than one, i.e., when the droplets are less viscous than
the surrounding medium, well-behaved multigrid performance is obtained in
all tested cases, with condition numbers bounded as h→ 0 and close to unity.

• For unit viscosity ratio, we see a small upwards trend in the condition number
in all cases.

• For viscosity ratio greater than one, a stronger upwards trend in condition num-
ber is seen. In particular, the problem with an ever-increasing lattice of vanish-
ingly small droplets exhibits larger condition numbers than the case of a fixed-
size lattice; the former case generally has better conditioning in 3D than in 2D.

• In 2D, on the finest and second-finest meshes, some of the test cases with
viscosity ratio 104 or 108 failed to converge by 1000 PCG iterations. Exper-
iments indicate the condition number of A for these cases exceeds 1015; it is
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Figure 14. Multigrid performance under the action of mesh refinement for the two-phase
elliptic interface problems with “bubbly” geometry shown in Figure 13, consisting of a
k× k(× k) lattice of droplets of vanishing size. In the top row, the lattice size is fixed at
k = 4; in the bottom row, the number of droplets increases as the mesh is refined, with
k ∝ n = 1/h. The droplets have viscosity coefficient µ1 whereas the surrounding medium
has viscosity µ2. Here, n denotes the number of cells in the uniform Cartesian n× n(× n)
grid underlying the employed implicitly defined meshes.

not surprising therefore that multigrid fails to precondition stably when κ(A)
exceeds limits of double-precision arithmetic (as used in this work).

A possible explanation for the above observed behavior is as follows. When the vis-
cosity ratio is less one, the droplets are less viscous than the surrounding medium —
one may think of gas bubbles in water. As intuited in the motivation of Section 1.1,
this case reduces to a Dirichlet problem for the gas bubbles and a Neumann problem
for the surrounding medium; as seen in the results, the condition number remains
bounded as h→ 0. In effect, the liquid medium solves a Neumann problem for the
bulk domain, and transmits Dirichlet boundary conditions to individual droplets. On
the other hand, when the viscosity ratio is much greater than one, the droplets are
more viscous than the surrounding medium — one may think of liquid droplets sur-
rounded by gas. In this circumstance, the individual liquid droplets (nearly) solve a
Poisson problem with a (nearly) pure Neumann boundary condition, whose solution
is therefore (almost) defined up to an arbitrary constant. Thus, each droplet solves a
Poisson problem that is nearly decoupled from all others. In actuality, each droplet’s
constant is uniquely defined by the solution across the entire domain. Thus, in effect,
the liquid droplets are very weakly coupled to each other via the surrounding gas



278 ROBERT I. SAYE

phase medium. In an incompressible fluid flow problem, this could be interpreted
through the physical intuition that each droplet’s viscous stress is essentially unaf-
fected by distant droplets, owing to the fact the gas phase has weak viscous forces.

A different perspective comes from the multigrid mesh hierarchy. Owing to the
property that elements are never agglomerated across interfaces, as the hierarchy
coarsens, larger and larger elements for the surrounding medium �2 are created,
having relatively smaller and smaller punctured discs. If the viscosity ratio is much
less than one, the surrounding medium (nearly) solves a Neumann Poisson problem
that is largely decoupled from the Poisson problem on each droplet; according
to the presented results, in this circumstance, multigrid performance through the
coarsening mesh hierarchy is unaffected by tiny punctures in the mesh. If the
viscosity ratio is much greater than one, the surrounding medium (nearly) solves a
Dirichlet Poisson problem, whose Dirichlet boundary conditions are determined
by the (nearly) Neumann problem on each individual puncture. On coarse grids,
neighboring droplets are agglomerated into a single element having many connected
components (see, e.g., Figure 4.8 in [29]). Here it is apparent the multigrid method
does not get a chance to effectively solve the Poisson problem on each individual
droplet; the geometry is simply too complex for a fixed-degree piecewise polynomial
solution to accurately solve.

As seen, elliptic interface problems with vanishingly small geometry can pose
difficulties for efficient multigrid performance, depending on the configuration
of ellipticity coefficients. A variety of techniques could be used to tackle these
problems — one possibility may be to prevent neighboring droplets from being
agglomerated together (which comes at the cost of increased degrees of freedom),
or to design solvers that identify specific geometric components and exclude them
from normal treatment, e.g., by using a deflated conjugate gradient algorithm; see,
e.g., [40; 49]. These possibilities in combination with viscosity-upwinded LDG
operator-coarsening multigrid schemes could be pursued in future work.

6. Concluding remarks

In this paper, we discussed the design of local discontinuous Galerkin methods
for multiphase elliptic interface problems, with a central focus on obtaining good
multigrid solver performance through an apt choice of weighting in the numerical
fluxes for interfacial mesh faces. In particular, across interfaces exhibiting jumps in
viscosity of several orders in magnitude, a simple physical argument showed that
the more viscous phase sees a predominantly Neumann-like boundary condition
on the interface, whereas the less viscous phase sees a predominantly Dirichlet-like
boundary condition. As such, one may expect better discretization characteris-
tics or multigrid relaxation/smoothing behavior if the numerical fluxes are biased
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appropriately. This was indeed observed here — findings support the commonly
used strategy of harmonic weighting, but also show that results can be improved
further by using a viscosity-upwinded strategy, wherein the numerical fluxes for the
unknown u and its flux q =µ∇u are biased entirely so as to obtain one-sided fluxes.

The test problems presented in this study examined simple constant-coefficient
elliptic interface problems as well as problems with variable viscosity, multiphase
checkerboarding, and intricate curved geometry. In particular, viscosity coefficient
ratios ranged across 16 orders in magnitude. The primary metric used to test
multigrid efficacy consisted of the two-norm condition number of the associated
multigrid V-cycle preconditioned system, κ(V A); with the exception of a challeng-
ing elliptic interface problem involving bubbly geometry, the results showed that,
using viscosity-upwinded numerical fluxes, κ(V A) is unit order in magnitude and
bounded as h→ 0. The exception to the result concerns the very challenging case
of a lattice of vanishingly small droplets; see the discussion in Section 5.6. We
note that this metric examining κ(V A) is relatively stringent — for example, in
establishing convergence results for the conjugate gradient method, κ leads to an
upper bound on the number of iterations needed to reduce the residual by a given
factor; the number of iterations which (preconditioned) conjugate gradient may
actually take could be fewer and depends on the clustering of the spectrum of V A.
Our results predominantly examined the case of p= 3 in two dimensions and p= 2
in three dimensions. Experiments show that optimal multigrid behavior as h→ 0 is
seen with other polynomial degrees as well, with tested values ranging from p = 1
up to p = 9. In all cases, the derived LDG schemes for elliptic interface problems
are optimal order accurate, showing p+1 convergence rates in the maximum norm.

A variety of aspects could be studied in future work. Extension of viscosity-
upwinded LDG schemes to matrix-valued diffusion coefficients is one possibility;
here, the work of Ern et al. [28] suggests that in this case, one could upwind based
on the normal component of the viscosity tensor, e.g., apply (12), (13), or (14) to
n ·µ± · n, where n is the normal to the interface. Meanwhile, although the focus
was not on minimizing κ(V A) as best as possible, a few remarks can be made in
this regard. In this work a one-sided intraphase flux is used, which leads to a more
compact stencil for the final discrete Laplacian operator; according to some tests, a
central intraphase flux can lead to 10–20% better condition numbers, but at the cost
of increased stencil size. In addition, for the presented three-dimensional results, a
domain decomposition MPI implementation with a processor-block damped Gauss–
Seidel relaxation method was used; owing to the damping used, the resulting condi-
tion number is about 25% larger than what could be obtained if no damping was used.
One could also investigate different damping strategies or relaxation methods; for ex-
ample, polynomial relaxation algorithms or additive Schwarz smoothers, which have
been shown effective for other DG schemes involving agglomeration procedures [8].
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