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In multiphase fluid flow, fluid-structure interaction, and other applications, partial
differential equations (PDEs) often arise with discontinuous coefficients and
singular sources (e.g., Dirac delta functions). These complexities arise due to
changes in material properties at an immersed interface or embedded boundary,
which may have an irregular shape. Consequently, the solution and its gradient
can be discontinuous, and numerical methods can be difficult to design. Here
a new method is presented and analyzed, using a simple formulation of one-
dimensional finite differences on a Cartesian grid, allowing for a relatively easy
setup for one-, two-, or three-dimensional problems. The derivation is relatively
simple and mainly involves centered finite difference formulas, with less reliance
on the Taylor series expansions of typical immersed interface method derivations.
The method preserves a sharp interface with discontinuous solutions, obtained
from a small number of iterations (approximately five) of solving a symmetric
linear system with updates to the right-hand side. Second-order accuracy is
rigorously proven in one spatial dimension and demonstrated through numerical
examples in two and three spatial dimensions. The method is tested here on
the variable-coefficient Poisson equation, and it could be extended for use on
time-dependent problems of heat transfer, fluid dynamics, or other applications.

1. Introduction

In many applications, partial differential equations (PDEs) arise with discontinuous
coefficients and singular sources (e.g., Dirac delta functions). These complexities of-
ten arise due to changes in material properties at an interface or immersed boundary,
which may have an irregular shape; see Figure 1. For example, the immersed bound-
ary may be a rigid or flexible structure, such as a heart valve [10], or the immersed
interface may separate two fluids as in gas bubbles or liquid droplets [34]. Our own
interest was motivated by recently derived equations for atmospheric dynamics, in
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Figure 1. Examples of interfaces separating two regions�− and �+ in (top) 1D, (bottom
left) 2D, and (bottom right) 3D.

the limit of rapid rotation and strong (moist) stratification, including phase changes
of water and phase interfaces between cloudy and noncloudy regions [33].

For PDEs with such complexities, numerical methods can be challenging to
design. Elliptic PDEs are a common test case, and they often form an important
component of time-dependent systems. Many methods have been proposed using
finite element methods [2; 12], finite volume methods [13; 4], and finite difference
methods. Each of these approaches can be valuable in different situations, depending
on priorities of computational efficiency, ease of implementation, etc. A primary
goal of the present paper is simplicity, and finite difference methods, with Cartesian
grids, are perhaps the simplest class of methods. Therefore, for comparison, we
next describe some finite difference methods in more detail.

The immersed boundary method (IBM) was introduced in the pioneering work
of Peskin [29; 30; 31]. The IBM is simple and efficient and has been applied
to a variety of problems with three-dimensional fluid flow [10; 14]. In the IBM
approach, the effect of the immersed boundary is represented as a forcing function
applied to the fluid. Ideally, the forcing should be singular and the solution should
have discontinuities. However, the IBM uses a smoothed version of a Dirac delta
function, which introduces some smearing near the boundary or interface and causes
the solution to be continuous. The method was originally designed with first-order
accuracy, and it has been extended to be “formally” second-order accurate [16; 11;
28; 6; 7], although the “formal” second-order accuracy holds only in the case that
the forcing is sufficiently smooth, not in the case of a nearly singular forcing.

The immersed interface method (IIM) was developed to produce improvements
such as second-order accuracy and a solution with a sharp discontinuity and no
smearing at the interface [19; 20]. The method is derived by allowing an extended
stencil, beyond the standard stencil for the Laplacian operator, to be used at grid
points near the interface; for the extended stencil, the finite-difference weights are
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then found by the method of undetermined coefficients, with constraints on the
coefficients being chosen to achieve the desired local truncation error based on
Taylor series. The extended stencil of the IIM must be chosen with care in order
to avoid instability [8; 21; 5], since the IIM linear operator is not symmetric. One
approach is to carefully construct the IIM operator to satisfy a discrete maximum
principle by using constrained quadratic optimization techniques [21; 5].

While the IIM has been implemented in multidimensional fluid flow problems,
the formulation is complicated by the need for derivations of many spatial and
temporal jump conditions, and also derivatives of jump conditions [22; 18; 38; 37].
Many other versions of the IIM with different derivations have been developed [36;
3; 32; 17], and some are discussed further in Section 5 below. In the present paper,
one distinguishing feature is that the present derivation involves the relatively simple
use of centered finite difference formulas, without the need for derivatives of jump
conditions, and with less reliance on the Taylor series expansions of typical IIM
derivations. Such simplifications to the derivations should contribute to enhanced
ease of use on three-dimensional problems.

The ghost fluid method (GFM) is another method that produces a solution with
a sharp discontinuity and no smearing at the interface [23]. While it is only first-
order accurate, the GFM is simple to formulate and implement, and it is efficient
for problems with three-dimensional multiphase fluid flow [15; 35]. Another
advantageous property is that the GFM finite difference operator is symmetric,
which allows the use of conjugate gradient algorithms and guarantees robustness of
the method.

In the present paper, the goal is to design a method with the advantageous
properties of the GFM — sharp interface, easy to formulate and implement, efficient
for use on three-dimensional problems, and utilization of a symmetric matrix —
while also achieving the possibility of second-order accuracy. The simple formu-
lation here (Section 2) uses elementary finite differences along one-dimensional
coordinates, and the resulting linear system can be written with the same symmetric
matrix as the GFM but with corrections to the right-hand side that yield second-
order accuracy. The right-hand-side corrections are determined iteratively, which
is the main new computational expense beyond the GFM. Note that, while this
interesting algorithmic connection exists with the GFM, the derivations of the GFM
and the present method are quite different; the present method is derived using finite
differences (with explicit estimates of local truncation error from finite difference
formulas), whereas the GFM and its error and convergence are based on a weak
formulation of the problem [24]. Example solutions with the present method are
shown for one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) problems (Section 3). A small, fixed number of iterations (≈ 5) is shown to be
sufficient for achieving a second-order accurate solution (Section 4), which suggests
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the present methods may be efficient enough for use on complex three-dimensional
fluid flow. Conclusions and further comparisons with the formulations of other
methods [36; 3; 32; 17; 26; 27] are discussed in Sections 5 and 6.

Given that many previous methods have been proposed for this problem over
many years, it is worthwhile to emphasize one of the main distinguishing features
of the present method: a simple derivation and setup. The derivation here is
mainly achieved using centered finite difference formulas, so it is relatively easy to
formulate and set up the method, even in 3D. At the same time, the method does
utilize a small number of iterations, so it may have a greater computational expense
than some other methods (unless one could propose a more sophisticated and faster
iterative procedure, a direction which we have not yet pursued exhaustively). In
summary, in terms of practical use, the simple derivation and formulation should be
useful for applications where one is less concerned with achieving the least possible
expense of the computation itself and more concerned with minimizing the time
and effort needed to initially design and code the method.

2. Numerical methods

In this section, the numerical methods are derived for 1D, 2D, and 3D equations in
Sections 2.1, 2.2, and 2.3, respectively. A rigorous proof of second-order conver-
gence is presented in Section 2.1.2 for the 1D case.

2.1. One dimension. Consider a one (spatial) dimensional domain � divided into
subdomains�+ and�− by an interface 0. The variable coefficient Poisson equation
on each subdomain reads

(βux)x = f (x) for x ∈� \0, (1)

where β = β(x) and f (x) can be discontinuous across interface points x I ∈ 0. The
jump conditions across the interface are given as

[u] = u+− u− = a(x) for x ∈ 0,

[βux ] = β
+u+x −β

−u−x = b(x) for x ∈ 0.
(2)

We focus here on the case of two subdomains and one interface point, as it is
straightforward to extend the methods for cases with more subdomains and interface
points. Here u± = limx→x±I

u(x) and β± = limx→x±I
β(x).

As an alternative formulation of the problem, one could incorporate the jump
conditions (2) into the differential equation itself by adding singular sources to the
right-hand side of the equation. In such a formulation, the differential equation
would take the form (βux)x = f (x)+ bI δ(x − x I )+ aIβδ

′(x − x I ), where β =
(β++β−)/2 and aI = a(x I ) and bI = b(x I ), and where this differential equation is
valid over the entire domain �. On the other hand, the differential equation in (1) is
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Figure 2. Cartesian grid points and an interfacial point in between.

valid only within each of the separate regions �+ and �−, and the jump conditions
in (2) are needed to connect the solutions in �+ and �− and complete the problem
specification. It will be convenient here to use the separate formulation in (1)–(2)
throughout the paper.

2.1.1. Finite differences. A second-order finite-difference method can be derived
on a Cartesian grid, with a symmetric operator, in the following way.

First, if the interface 0 = {x I } does not intersect with the grid edges connecting
the three points xi−1, xi , and xi+1, then we call xi a standard Cartesian point. For
all the standard Cartesian points we follow the standard second-order discretization
for (1):

βi+1/2((ui+1− ui )/1x)−βi−1/2((ui − ui−1)/1x)
1x

= fi + O(1x2). (3)

Next, consider nonstandard Cartesian points, such as xi and xi+1 with an in-
terfacial point x I ∈ 0 in between and with xi ∈ �

− and xi+1 ∈ �
+, as shown in

Figure 2. Since the number of nonstandard points is assumed to be small, it should
be possible to have an overall second-order accurate method that locally uses a
first-order discretization at nonstandard points. Therefore, we use a first-order
discretization of (βux)x ,

(βux)x(xi )=
β(xm−)ux(xm−)−β(xi−1/2)ux(xi−1/2)

xm−− xi−1/2
+ O(1x), (4)

followed by second-order discretizations of the ux terms, which lead to

βm−(u I−− ui )/((1− θ)1x)−βi−1/2(ui − ui−1)/(1x)
((2− θ)/2)1x

= fi + O(1x), (5)

where θ = (xi+1 − x I )/1x . Note that the midpoints xm− = (xi + x I )/2 and
xm+ = (x I + xi+1)/2, illustrated in Figure 2, are useful here to allow second-order
discretizations of ux . Here βm− = β(xm−) and βm+ = β(xm+).

The final step is to replace in (5) the appearance of the interface value u I− with
Cartesian values and adjustments consisting of known quantities. To do this, we
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obtain additional equations by discretizing (1) at x I− and x I+, the left and right
limits of x I , using a method similar to the one above:

βm+(ui+1− u I+)/(θ1x)−βI+ux(x I+)

θ1x/2
= f I++ O(1x) at x I+, (6)

βI−ux(x I−)−βm−(u I−− ui )/((1− θ)1x)
(1− θ)1x/2

= f I−+ O(1x) at x I−, (7)

where βI± = β(x I±). The non-Cartesian unknowns ux(x I±) and u I± above can
now be replaced by Cartesian unknowns by the following two steps. First, the
weighted sum (θ1x/2) · (6)+ ((1− θ)1x/2) · (7) is a combination that produces
the jump [βux ]:

βm+

(
ui+1− u I+

θ1x

)
−βm−

(
u I−− ui

(1− θ)1x

)
− [βux ]

= (θ · f I++ (1− θ) · f I−)
1x
2
+ O(1x2). (8)

Second, by using the jump conditions (2), we see that (8) can be rewritten as our
desired formula for replacing u I− by Cartesian u values:

u I− =
β̂(1− θ)
βm−

ui+1+
β̂θ

βm+
ui

−
β̂θ(1− θ)1x2

βm+βm−

(
βm+aI

θ1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
, (9)

where

β̂ =
βm+βm−

(1− θ) ·βm++ θ ·βm−
. (10)

Lastly, substituting (9) into (5) yields a first-order discretization of the differential
equation at xi , in terms of only Cartesian values of u:

1
1x2 (βi−1/2 · ui−1− (βi−1/2+ β̂)ui + β̂ · ui+1)= fi ·

(
2− θ

2

)
+
β̂θ

βm+

(
βm+

θ

aI

1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
+ O(1x). (11)

For the neighboring nonstandard point at xi+1, one can derive a similar finite
difference formula:

1
1x2 (β̂ · ui − (β̂ +βi+3/2)ui+1+βi+3/2 · ui+2)= fi+1 ·

(
1+ θ

2

)
+
β̂(1− θ)
βm−

(
−

βm−

(1− θ)
aI

1x2 +
bI

1x
+

1
2(θ · f I++ (1− θ) · f I−)

)
+O(1x). (12)
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Comparing (11) and (12), it is clear that the difference operator acting on u is
symmetric. The linear system can be solved using many standard efficient methods.

Note that this method in (11)–(12) looks similar to the GFM, which is first-
order accurate [23; 24], but (11)–(12) include important differences that render this
method second-order accurate. For instance, the right-hand-side terms in (11)–(12)
have coefficients that are different from the GFM and that arise here as part of a
systematic finite-differences derivation. Also, the values of β at the midpoints xm−

and xm+ were needed for the present method, whereas β values at the interface and
Cartesian grid points and Cartesian midpoints are utilized in the GFM [23; 24].

In comparison to the IIM [19], notice that the present method has a symmetric
operator, whereas the IIM operator is nonsymmetric. Also, the derivation of the IIM
requires taking derivatives of jump conditions, whereas the present method is derived
by simply applying finite difference formulas to the differential equation. It would
be interesting to try to make a more firm connection between the present method
and the IIM, which might also help tie together the GFM and IIM; however, we
have not found any simple and clear connection beyond the comparisons described
above.

To summarize, the basic idea in deriving (11)–(12) was to (i) start with midpoint-
based finite differences using both Cartesian points and interface points, and then
(ii) use the jump conditions to eliminate the interface values u I± from the system.

2.1.2. Proof of second-order convergence.

Theorem 1. The numerical solution in Section 2.1.1 converges to the exact solution
in the L2 norm with second-order accuracy: ‖U −Uex‖2 = O(1x2).

Proof. The setup of the proof is as follows. The numerical method in (3), (11),
and (12) can be written in matrix-vector form as AU = F, and the exact solution
satisfies AUex= F+τ , where τ is the local truncation error. The error e=U−Uex

then satisfies Ae=−τ , and solving for e gives e=−A−1τ . The L2 norm of the
error then satisfies

‖e‖2 = ‖A−1τ‖2 ≤ ‖A−1
‖2‖τ‖2, (13)

where the remaining task is to analyze ‖A−1
‖2 and ‖τ‖2 for small 1x .

Consistency was established in Section 2.1.1. Specifically, the local truncation
error can be written as

τ = τs + τns with ‖τs‖2 = O(1x2) and ‖τns‖2 = O(1x2), (14)

where we have split τ so that the elements of τs are nonzero only at standard
points and the elements of τns are nonzero only at nonstandard points. The O(1x2)

scaling in (14) is then true because each element of τs is O(1x2), based on the
finite difference formulas at the standard points; and each element of τns is O(1x),
but the fraction of nonstandard points is O(1x), so ‖τns‖2 = O(1x2).
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Stability is established by the bound

‖A−1
‖2 ≤

|�|2

βm
, (15)

where |�| is the total length of the domain and βm = minx∈� β(x) is a constant
that is independent of 1x , and it is assumed that β(x) > 0 for all x . The proof of
this bound is well-known [25] and is based on summation by parts and discrete
Poincaré–Friedrichs inequality.

The proof of the theorem is completed by combining the consistency and stability
results in (14) and (15) to show that (13) is O(1x2). �

Note that, in the L∞ norm, the local truncation error can only be bounded as
‖τns‖∞ = O(1x), which would complicate the present proof technique for second-
order convergence if attempted with the L∞ norm instead of the L2 norm. Also,
note that we have no such proof in two- or three-dimensional space, although proofs
for 2D and 3D have been presented for similar methods [1], and numerical examples
below demonstrate second-order convergence, in both the L2 and L∞ norms.

2.2. Two dimensions. Now consider the two-dimensional Poisson equation

(βux)x + (βu y)y = f (x, y) for � \0, (16)

where �=�+∪�−∪0 and 0 is the interface between the sets �+ and �−. With
n= (n1(x, y), n2(x, y)) as the unit normal along 0, the interface jump conditions
are given as

[u] = u+− u− = a(x) for x ∈ 0,

[βun] = β
+u+n −β

−u−n = b(x) for x ∈ 0,
(17)

where un = n · ∇u is the derivative of u in the direction of the normal vector.

2.2.1. Finite differences. The goal of this section is to extend the ideas of the
1D case of Section 2.1 to the 2D case of (16)–(17) and arrive at a second-order
finite-difference method. Similar to the 1D case, we call a Cartesian point (xi , y j )

a standard point if this point and its nearest neighbors all lie within �+ or all lie
within �−. For standard points, (16) is discretized with the standard, second-order,
five-point finite-difference formula. For nonstandard points, on the other hand, the
interface must be taken into account.

For nonstandard points, such as point (xi , y j ) illustrated in Figure 3, we obtain
a first-order discretization by using similar ideas as in the 1D case. Following a
derivation similar to (5)–(11), by essentially just replacing f by f − (βu y)y , we
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Figure 3. Nonstandard grid point at (xi , y j ).

arrive at
1
1x2 (βi−1/2, j · ui−1, j − (βi−1/2, j + β̂)ui, j + β̂ · ui+1, j )

+
1
1y2 (βi, j−1/2 · ui, j−1− (βi, j−1/2+βi, j+1/2)ui, j +βi, j+1/2 · ui, j+1)

= fi, j ·

(
2− θ

2

)
+ (βu y)y(xi , y j ) ·

θ

2
+ F x

cor+ O(1x), (18)

where

β̂ =
β(xm+, y j ) ·β(xm−, y j )

(1− θ) ·β(xm+, y j )+ θ ·β(xm−, y j )
, (19)

and

F x
cor =

β̂θ

β(xm+, y j )

{
β(xm+, y j )a(x I , y j )

θ1x2 +
[βux ]

1x

+
1
2(θ · ( f − (βu y)y)(x I+, y j )+ (1− θ) · ( f − (βu y)y)(x I−, y j ))

}
. (20)

This finite-difference formula has a left-hand side with the desirable property of a
symmetric operator, as in the 1D case. However, the right-hand side of (18) now
depends on the solution u itself, so an iterative method will be described below for
finding a solution.

Also, a more general case would allow for other interface crossings, such as
a crossing at point (xi , yJ ), with y j < yJ < y j+1, which would generate some
slight modifications to the derivation and finite-difference formula. Since the more
general case is only slightly different from (18), it is relegated to Appendix A.

To estimate the derivatives on the right-hand side of (18), simple finite differences
are used. For the term (βu y)y(xi , y j ), standard centered differences can be used
with the points (xi , y j−1), (xi , y j ), and (xi , y j+1). For the term (βu y)y(x I−, y j ) at
the interface, from (20), one can approximate it with the nearby Cartesian value
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(βu y)y(xi , y j ) with an acceptable error of O(1x), and then one can use a standard
centered discretization with the points (xi , y j−1), (xi , y j ), and (xi , y j+1). The term
(βu y)y(x I+, y j ) can be handled similarly by using (βu y)y at the nearby Cartesian
point (xi+1, y j ). Lastly, the jump [βux ] from (20) can be written in terms of normal
and tangential jumps as

[βux ] = [βun]n1
− [βuτ ]n2

= bI n1
− [βuτ ]n2. (21)

The term [βuτ ] can then be estimated using finite differences with u values from
the interface points labeled I−1, I , and I+1 in Figure 3 (or possibly using another
triplet, say I − 2, I , and I + 1, if the two interface points I − 1 and I are located
too close together, such as within O(h2) distance; see Appendix B for details).
Note that a second-order finite-difference formula is needed for [βuτ ] in order for
the term [βux ]/1x to have an error of O(1x). To determine the u values at the
interface points, one can use the formula

u(x I−, y j )=
(1− θ)β̂
β(xm−, y j )

ui+1, j +
θβ̂

β(xm+, y j )
ui, j −

β̂(1− θ)θ1x2

β(xm+, y j )β(xm−, y j )

·

(
β(xm+, y j )aI

θ1x2 +
[βux ]

1x
+
θ

2
· ((βux)x)i+1, j +

(1− θ)
2
· ((βux)x)i, j

)
, (22)

and u(x I+, y j )= u(x I−, y j )+ a(x I , y j ) by the jump condition (17). This formula
arises as part of the derivation of (18) and is similar to the 1D case, and formulas
for u(xi , yJ±) can be obtained similarly if the crossing is in the y-direction. Note
that this formula in 2D does not actually provide the desired result of the interface u
value in terms of the Cartesian u values, since the right-hand side depends on
interface u values via the [βux ] term. Nevertheless, this formula can be used as part
of an iterative procedure to complete the specification of the numerical methods.

2.2.2. Iterative methods. In this section, a simple iterative method is proposed here
for solving the linear system from Section 2.2.1.

Before describing the standard iterative method of the present paper, consider
first a type of Picard iteration:

Au[k+1]
= F[k]. (23)

This is an iterative version of the matrix-vector form of the finite difference method,
one row of which is described in (18): A is the symmetric matrix from the left-hand
side, u[k+1] is the vector of all Cartesian u values (from iteration k+1), and F[k] is the
vector from the right-hand-side terms. The basic idea is to iteratively update F[k] on
the right-hand side as new, more accurate information about u[k] is obtained. As an
initial condition, F[0] is defined as the right-hand side of (18) with all instances of u
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ignored (i.e., with [βuτ ], (βux)x , and (βu y)y all set to zero, essentially equivalent
to setting u[0] = 0 as an initial guess), and the first solution u[1] is found by solving
Au[1] = F[0]. As a result, the solution u[1] at the first iteration is essentially the
same as the GFM solution [23; 24] and is therefore a first-order accurate solution.
It can be used to estimate the interface u values, which we assemble abstractly into
a vector u[k]I and update iteratively as u[k+1]

I = Bu[k]I +Cu[k+1]
+ G, one row of

which is described by (22): the Bu[k]I corresponds to the [βuτ ] term, the Cu[k+1]

corresponds to all terms with Cartesian u values, and the G corresponds to the jump
terms involving aI and bI . An initial interface value of u[0]I = 0 is used, consistent
with the idea of ignoring all instances of u in the initial condition F[0]. The second
iteration then proceeds by defining F[1] based on the right-hand side of (18) and
now using u[1] and u[1]I to provide a more accurate estimate of the true F value.
The solution u[2] at the second iteration is then found from solving the symmetric
system Au[2] = F[1]. This procedure can be repeated to iteratively estimate the
solution of the finite-difference method.

For the stopping criterion for the iterative procedure, the differences u[k]d =

‖u[k+1]
− u[k]‖∞ and F [k]d = ‖F[k+1]

− F[k]‖∞ are monitored. When k is large
enough so that u[k]d <Cuh2, where h=1x =1y, one can presumably stop iterating
since the iterations are producing only small corrections that are within the desired
O(h2) accuracy of the numerical solution. As our standard stopping criterion, in
addition to u[k]d < Cuh2 we also require F [k]d < CF h in order to ensure that the
estimated right-hand-side terms are not significantly changing at any location. The
constants Cu and CF will be set equal to 1 here for simplicity, but in the future it
would be interesting to tailor the choices of Cu and CF to the particular problem
under consideration; for instance, they could be chosen based on the expected
error, which could be estimated based on, e.g., expected local truncation error
and/or smoothness of the solution. Also note that, while this standard stopping
criterion was chosen with solution accuracy as the main consideration, one could
also imagine other stopping criteria that consider computational efficiency or other
factors; some other stopping criteria are explored in Section 4.

As the standard iterative method used here, a modification of Picard iteration is
actually used. While Picard iteration does work well in many cases, we found that
it diverges in some cases. Nevertheless, by making some slight modifications, a
robust method can be designed. Our standard iterative method here uses a simple
relaxation procedure to extend Picard iteration; it is described in Appendix C, and
it is shown below to provide robust results.

2.3. Three dimensions. The three-dimensional Poisson equation is

(βux)x + (βu y)y + (βuz)z = f (x, y, z), for � \0, (24)
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where �=�+ ∪�− ∪0 and 0 is a surface that marks the interface between the
sets �+ and �−. The interface jump conditions are given as in the 2D case in (17).

The 3D discretization is essentially the same as in the 2D case in Section 2.2.
We note one difference that arises: in 3D, the jump [βux ] from (21) takes the form

[βux ] = [βun]c0
+ [βuτ1]c

1
+ [βuτ2]c

2

= bI c0
+ [βuτ1]c

1
+ [βuτ2]c

2, (25)

where x̂ = c0n̂+ c1τ̂1 + c2τ̂2 was used to write the unit coordinate vector x̂ in
terms of the interface normal vector n̂ and two unit vectors τ̂1 and τ̂2 from the
2D tangent plane of the interface. Here, in 3D, note that tangential derivatives are
needed in two independent directions in the 2D tangent plane. The two directions
can be conveniently chosen by using the Cartesian coordinate planes. For example,
if (x I , y j , zk) ∈ 0, where x I is not a Cartesian grid point, then the intersection of
surface 0 and the plane z = zk can be used to define one direction in the 2D tangent
plane, and the intersection of surface 0 and the plane y = y j can be used to define
the other direction. In this way, computation of the tangential derivatives in 3D can
be reduced to essentially the same form as in 2D.

3. Examples

In this section, second-order convergence is demonstrated through numerical exam-
ples. In all examples, the same grid spacing is used in each coordinate direction
(1x =1y =1z), and the number of grid points in each coordinate direction is N ,
so the total number of grid points is N , N 2, or N 3 for the 1D, 2D, or 3D cases,
respectively.

3.1. One dimension.

Example 1D-1. Consider a domain �= [0, 1] separated into subdomains �−=
[0, x I ) and �+ = (x I , 1], where x I = 2−

√
2. The solution to the one-dimensional

equation βuxx = f is u− = exp(−x)− 0.3646x + 0.4 and u+ = exp(−x)/2+
x2/2+ 0.5005x where β = 100 in �− and β = 200 in �+, with f = 100 exp(−x)
in �− and f = 100 exp(−x)+200 in �+. The jump conditions connecting the two
equations at x I are a(x I )= u+− u− = 0 and b(x I )= 100(2u+x − u−x )= 253.72.

The exact solution and error analysis of this example can be found in Figure 4.

3.2. Two dimensions. The following 2D and 3D examples are tested on some
rectangular domain � where � will be divided into �+ and �− by an interface 0.
It will sometimes be convenient to describe the interface 0 in terms of a level-set
function φ(x) as 0 = {x ∈� : φ(x)= 0}, where the two sets �+ and �− can be
described as�+={x ∈� :φ(x)>0} and�−={x ∈� :φ(x)<0}. The coefficients
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Figure 4. Example 1D-1. Left: numerical solution with number of grid points N = 61.
Right: error ‖e‖ as a function of number of grid points N , as a log-log plot including slope
of its linear fit.

β are assumed to be smooth in both �+ and �−, but may have a jump across the
interface φ. The piecewise smooth β in �+ and �− will be denoted by β+ and β−,
respectively. As a consequence, the solution u may be discontinuous across φ, but
is C2 in both �+ and �−, and will similarly be denoted by u+ and u−, respectively.
The examples in this section will provide tests of the numerical method for several
factors that could influence the numerical method’s convergence, such as geometry
of the interface, spatial variations in the coefficients β±(x, y), and contrast β+/β−

due to jumps in the coefficients.

Example 2D-1 (constant coefficient). In this example, we take β be a piecewise
constant function with β− = 2 and β+ = 1, and the interface is a circle described
by the level set function φ(x, y)= (x − 0.5)2+ (y− 0.5)2− 0.252. The solution is
u−= exp(−x2

− y2), u+= 0, with f −= 8(x2
+ y2
−1) exp(−x2

− y2), f −= 0, on
the domain �= [0, 1]× [0, 1]. Second-order convergence can be seen in Figure 5,
right.

Example 2D-2 (variable coefficient). The next example we take β to be a piecewise
smooth function with β−= x2

+ y2
+1, and β+= 1 with the same domain and level

set function as the previous example. The solution is u− = exp(x2
+ y2), and u+ =

exp(−x2
−y2) and source term is f −= 4(β−(x2

+y2
+1)+(x2

+y2)) exp(x2
+y2),

f + = 4(x2
+ y2
− 1) exp(−x2

− y2). Error analysis is presented in Figure 6, right.

Example 2D-3 (variable coefficient). With the same solution u in Example 2D-2,
this example is computed on a domain�=[−1, 1]×[−1, 1], with β−= x2

+y2
+1,

β+ =
√

x2+ y2+ 2, and f − = 4(β−(x2
+ y2

+ 1) + (x2
+ y2)) exp(x2

+ y2),
f += (4β+(x2

+ y2
−1)−2(x2

+ y2)/
√

x2+ y2+ 2) exp(−x2
+ y2). The interface
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Figure 5. Example 2D-1: constant coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

Figure 6. Example 2D-2: variable coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

is parametrized by{
x(t)= 0.02

√
5+ (0.5+ 0.2 sin(5t)) cos t,

y(t)= 0.02
√

5+ (0.5+ 0.2 sin(5t)) sin t,
(26)

with t ∈ [0, 2π ]. Second-order convergence is demonstrated in Figure 7, right.

For the spatial variations of the error, we describe the two cases of Figures 6
and 7. In these cases the error appears to typically take its maximum value near
the interface. In the special case of the outlier of N = 251 from Figure 7, right,
the error furthermore takes its maximum value at a single localized spike near one
point close to the interface. These features are possibly related to the curvature of
the interface or other factors.
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Figure 7. Example 2D-3: variable coefficient. Left: numerical solution, N = 81. Right:
error ‖e‖ as a function of number of grid points in each coordinate direction, N , as a
log-log plot including slope of its linear fit.

Figure 8. Error plots for high-contrast case, Example 2D-4. Left: β+/β− = 0.02/1.
Right: β+/β− = 20/1.

Example 2D-4 (high-contrast coefficient cases). A series of tests were conducted
on the large coefficient ratios, either β+/β− � 1 or 1� β+/β−. Here we test
with u− = exp(x2

+ y2), and u+ = exp(−x2
− y2) with a circular interface as in

Example 2D-1, and (β+, β−)= (0.02, 1) and (20, 1). Second-order convergence
can still be obtained (see Figure 8).

3.3. Three dimensions.

Example 3D-1 (variable coefficient with spherical interface). Domain �= [0, 1]×
[0, 1] × [0, 1] is divided into �+ and �− by a sphere centered at (0.5, 0.5, 0.5)
with radius 0.25. The variable coefficients β in (24) are β− = 10+ sin(xy + z)
and β+ = 10+ cos(x + yz), with solution u− = exp(x2

+ y2
+ z2) and u+ = 0
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Figure 9. Example 3D-1: variable coefficient with spherical interface. Left: geometry of
the interface. Right: error ‖e‖ as a function of number of grid points in each coordinate
direction, N , as a log-log plot including slope of its linear fit.

Figure 10. Example 3D-2: variable coefficient with torus interface. Left: numerical
solution. Right: error ‖e‖ as a function of number of grid points in each coordinate
direction, N , as a log-log plot including slope of its linear fit.

and f − = (4β−(x2
+ y2
+ z2
+ 3/2)+ (4xy+ 2z) cos(xy+ z)) exp(x2

+ y2
+ z2),

f + = 0. See Figure 9 for the geometry of the spherical interface and second-order
convergence in L2.

Example 3D-2 (variable coefficient with torus interface). For the same β, u, and f
in the previous example, we test this iterative method on �= [−1, 1]× [−1, 1]×
[−1, 1] with a toroid interface described by the level set function φ(x, y, z) =
(x2
+ y2
+ z2
+ R2

− r2)2− 4R2(x2
+ y2), where R = 0.501+

√
2/10, r = 0.251.

The geometry of the interface and second-order convergence in L∞ and L2 are in
Figure 10.
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4. Greater efficiency via alternative stopping criteria

4.1. Iteration counts for standard stopping criterion. In most of the cases shown
above, the number of iterations required to reach the stopping criterion is small,
which makes this iterative method efficient, as demonstrated in Figure 11. More
specifically, approximately 10–20 iterations are used in 2D cases, and approximately
5–10 iterations in the 3D cases. For high-contrast cases (Example 2D-4), the number
of iterations becomes larger (approximately 50–150, as seen in Figure 12), although
it is smaller (approximately 20–40) for some N , and the bound on the number of
iterations is essentially independent of the number of grid points.

These examples demonstrate that the present method may be practical and
efficient for time-dependent problems where the elliptic solver is needed at every
time step. Also, further reduction of the iteration counts may be possible for time-
dependent problems. For instance, in these first explorations, we are using a simple
yet crude initial guess for the iterative methods; i.e., we are effectively using u[0]= 0
(see Section 2.2.2). For a better initial guess u[0], in a time-dependent problem, the
solution from the previous time step could potentially be used, with the possibility
of substantially reducing the number of iterations required.

Below we discuss other possibilities of further reducing the iterations counts
through alternative stopping criteria — e.g., by using a small, fixed number of
iterations in Section 4.2, and propose some other feasible stopping criteria in
Section 4.3.

4.2. Greater efficiency via a small, fixed number of iterations. In most cases, the
accuracy improves tremendously after only a few iterations; in other words, the
latter iterations make only small modifications to the solution in order to satisfy the
stopping criterion. Therefore, in practice, we may speed up this numerical method
by using a fixed number of iterations without losing too much accuracy. Figure 13

Figure 11. Number of iterations for (left) 2D examples and (right) 3D examples.
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Figure 12. Errors and iterations for the high-contrast cases from Example 2D-4. Top:
number of iterations as a function of the number of grid points in each coordinate direction,
N . Bottom: L2 error as a function of iterations, for N = 161.

shows results of both 2D and 3D examples with only a small number of iterations
(five), which still show second-order accuracy.

4.3. Other stopping criteria. Several other stopping criteria were also tested, be-
yond the standard criterion from Section 2.2.2, by using different combinations
of criteria for the smallness of the differences u[k]d = ‖u

[k+1]
− u[k]‖∞ and/or

F [k]d = ‖F[k+1]
− F[k]‖∞. A promising criterion may be to stop when u[k]d < h2,

without enforcing any smallness criterion on F [k]d ; in some tests, this led to second-
order accuracy with fewer iterations, although we have not yet tested this criterion
on a wide array of cases.

Also, it would be interesting in the future to tailor the stopping criterion to the
particular problem at hand. For instance, the criterion u[k]d < h2 could be slightly
generalized to u[k]d < Cuh2, where Cu is a parameter that could be chosen based on,
e.g., the expected accuracy or smoothness of the solution, given the parameters of
the problem such as β±(x, y, z), f (x, y, z), and the geometry of the interface.
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Figure 13. Error as a function of number of grid points in each coordinate direction, N ,
using a fixed number of iterations (five) for more efficient computations. Left: smooth star
example in Section 3.2. Right: torus example in Section 3.3.

5. Comparisons with formulations of other methods

In this section we compare the present formulation with the formulations of other
methods [36; 3; 32; 17; 26; 27], to add to the comparisons with the GFM [23; 24]
and IIM [19; 20; 8; 21; 5] that were described above in Section 2.1.1. An IIM
viewpoint of the present method is also described in the 1D case at the end of the
section.

In [36], another approach had been taken to obtain a symmetric operator; the
derivation used Taylor series expansions and derivatives of jump conditions, which
can be somewhat complex compared to the simple derivations of the present paper
that mainly involve centered finite difference formulas. Note that the present method
and the method of [36] are, in fact, distinct. As one difference, in the 1D versions of
the two methods, the method of [36] requires not only the symmetric operator but
also some augmentation to account for jumps, whereas the method of the present
paper has an operator in 1D that is symmetric on its own. Also, the method [36]
utilizes a discretization of the standard Laplacian operator, whereas the present
method maintains the symmetry of the elliptic operator that includes β.

In [3], an interesting approach was proposed which, like the present method,
involves a symmetric operator and an iterative method to determine an adjusted
forcing. The derivation is somewhat complex in that it is a version of the IIM and
therefore uses Taylor series and derivatives of jump conditions. The derivation is
presented in 2D, but no 3D results are presented. Also, their iterative procedure
does not produce a first-order accurate solution at the first iteration, and therefore,
it is likely to require a very large number of iterations (as possibly indicated by
their very small relaxation parameter). The number of iterations, however, are not
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reported, and the iterative methods and stopping criterion are not described in detail.
In contrast, in the present paper, the first iteration is essentially the GFM, and the
simple finite-difference formulation allows for efficient setup and computation even
in 3D.

In [17], following [32], another interesting approach is used to obtain a symmetric
operator with corrections to the right-hand side. The method is implemented in
2D, but no 3D results are presented. Also, the method is presented for the standard
Laplacian operator, not for the case of discontinuous and/or spatially varying
coefficient β(x).

Another interesting method called the correction-function method has been
developed by building on the GFM and computing a corrected forcing function
to achieve higher-order accuracy [26; 27]. In this method, the corrected forcing
function is not derived explicitly; instead, the corrected forcing function is shown to
satisfy a certain new PDE, and the new PDE is solved numerically to determine the
corrected forcing function. The method has been demonstrated to achieve second-
order and even fourth-order accuracy, although it has not yet been implemented for
3D problems and it has only been developed for cases with constant coefficients
and piecewise-constant coefficients. It is similar to the method of the present paper
in that both methods seek to compute corrections to the GFM; the present paper’s
method perhaps offers a simpler formulation (involving only one-dimensional finite
differences) and simpler implementation for 3D problems.

Note that the present method appears to be well-behaved for any values of
subcell location θ , even values of θ that are close to 0 or 1; in contrast, it has been
noted in some applications of the GFM [9] that poor behavior could potentially
result if θ is close to 0 or 1. One might expect poor behavior in these cases, since
the finite difference formulas in, e.g., (6)–(7) have factors of 1/θ and 1/(1− θ);
however, these formulas are part of the derivation only, not part of the present
numerical algorithm. Here, no special treatment of the case θ ≈ 0 or θ ≈ 1 was
used in the numerical results, and in examining the possible influence of θ on the
numerical error, we found no systematic relationship. (For computing tangential
derivatives βuτ , which are not part of the GFM but are used in the present method in
higher dimensions, some values of θ are given special treatment for computing uτ ;
see Section 2.2.1.) A theoretical explanation can be seen from the finite difference
formulas of the method; in particular, notice that (11) and (12) depend on θ in a
smooth, nonsingular way. In fact, a more precise error analysis shows that the error
term O(1x) in (11) is O(θ1x) and in (12) is O((1− θ)1x), which theoretically
suggests that θ ≈ 0 or θ ≈ 1 should lead to smaller truncation error, and also
indicates that the proof of the convergence theorem in Section 2.1.2 is valid for any
value with 0 < θ < 1. Hence, the method should work fine with θ ≈ 0 or θ ≈ 1
except for possible values of precisely θ = 0 or θ = 1.



SIMPLE SECOND-ORDER FINITE DIFFERENCES FOR PDES WITH INTERFACES 141

6. Conclusions

In this article, a simple numerical scheme is proposed to obtain second-order
accuracy in solving the Poisson equation with sharp interfaces. One important
contribution is a simple derivation that mainly involves centered finite difference
formulas, with less reliance on the Taylor series expansions and derivatives of jump
conditions used in typical immersed interface method derivations. The derivation
here preserves the symmetry of the differential operator, and the method is for-
mulated on a Cartesian grid. The accuracy of the method is proved rigorously in
1D and verified numerically in 2D and 3D. The three-dimensional problems are
relatively easy to set up due to the method’s simple derivation.

An iterative procedure was used for solving 2D or 3D problems, and the desired
second-order accuracy can be obtained with only a small, fixed number of iterations
(typically five), which makes this method efficient, even in 3D. In the future it
would be interesting to investigate other algorithmic choices; for instance, perhaps
an iterative method could be designed that requires an even smaller number (e.g.,
two or three) of iterations, or perhaps the method could be successful if the iterated
correction terms were instead written as part of the left-hand-side linear operator,
in which case the symmetry of the operator is lost but the nonsymmetric system
could possibly be solved without the need for the outer iterations introduced in the
present paper. Also, here we did not make a great effort to optimize the algorithms
for cases with high-contrast coefficients, which require higher iteration counts, but
such an effort would be interesting to pursue in the future.

The proposed method may be applied to solving time-dependent problems that
require the solution of an elliptic PDE at each time step — for example, the heat
equation with interfaces or multiphase flow problems [10; 34; 33]. In such applica-
tions, the present method could be used with any characterization of the interface
(level set, Lagrangian markers, etc.), and the interface could have a location and
shape that evolves in time. Also, for the iterative algorithms described here, some
computational savings may be possible for time-dependent problems, since the
solution from the previous time step could provide a good initial guess for the
iterative method at the current time step.

Appendix A. 2D discretization with two interface crossings

In this appendix, it is shown how to formulate the finite difference method in a case
that is more general than in Section 2.2.1.

Suppose the interface crosses the stencil of point (xi , y j ) in two places, as shown
in Figure 14. The crossing between (xi , y j ) and (xi+1, y j ) is as in Section 2.2.1, and
now a new, second crossing is present between (xi , y j ) and (xi , y j+1). Accordingly,
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Figure 14. Nonstandard point (xi , y j ) with interface crossing the stencil in both x and y directions.

define ζ = (y j+1 − yJ )/1y, where (xi , yJ ) ∈ 0, and assume (xi , y j ) ∈ �
− and

(xi , y j+1) ∈�
+.

To obtain a finite difference method with a symmetric operator in this case, start
by writing the 1D formula from (11) as

Sx u = (βux)x · (2− θ)/2+ F x
cor+ O(1x), (27)

where Sx is the symmetric finite difference operator and F x
cor is the correction term.

A similar formula can be derived for a symmetric finite difference operator in the y
direction:

Syu = (βu y)y · (2− ζ )/2+ F y
cor+ O(1y). (28)

Summing up the two leads to

Sx u+Syu= f −(βux)x ·θ/2−(βu y)y ·ζ/2+F x
cor+F y

cor+O(1x)+O(1y), (29)

which is the desired formula. Also note that the derivation in 3D follows the same
simple principles by including the addition of a third component for Szu.

Written out in detail, (29) takes the form

1
(1x)2

(
β(xi−1/2, y j ) · ui−1, j − (β(xi−1/2, y j )+ β̂)ui, j + β̂ · ui+1, j

)
+

1
(1y)2

(
β(xi , y j−1/2) · ui, j−1− (β(xi , y j−1/2)+ β̃)ui, j + β̃ · ui, j+1

)
= fi, j − (βux)x(xi , y j ) ·

θ

2
− (βu y)y(xi , y j ) ·

ζ

2
+ F x

cor+ F y
cor+ O(1x), (30)

where β̂ is the same as (19) and

β̃ =
β(xi , ym+) ·β(xi , ym−)

(1− ζ ) ·β(xi , ym+)+ ζ ·β(xi , ym−)
, (31)
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with midpoints ym+ = (yJ + y j+1)/2 and ym− = (y j + yJ )/2, and

F x
cor =

β̂θ

β(xm+, y j )1x

{
β(xm+, y j )a(x I , y j )

θ1x
+ [βux ]

+
(
θ · ( f − (βu y)y)(x I+, y j )+ (1− θ) · ( f − (βu y)y)(x I−, y j )

)1x
2

}
, (32)

F y
cor =

β̃ζ

β(xi , ym+)1y

{
β(xi , ym+)a(xi , yJ )

ζ1y
+ [βu y]

+
(
ζ · ( f − (βux)x)(xi , yJ+)+ (1− ζ ) · ( f − (βux)x)(xi , yJ−)

)1y
2

}
, (33)

where [βux ] = [βun]n1
− [βuτ ]n2 and [βu y] = [βuτ ]n1

+ [βun]n2.
Several variations could also used. For instance, on the right-hand side of (30),

one may replace (βux)x by f − (βu y)y , or one may replace (βu y)y by f − (βux)x .
Similar replacements could be made in (32) and (33). For our numerical tests, we
used the (βu y)y-based version: Sx u+ Syu = f · (2− θ)/2+ (βu y)y · (θ − ζ )/2+
F x

cor+ F y
cor.

Appendix B. Computing tangential derivatives

Here we compute the tangential derivatives up to second order using the values of u
at the interfacial points and two of the neighboring interfacial points (see Figure 15
for reference). By parametrizing our boundary of domain in either y = y(x) or
x = x(y), whichever is a properly defined function, we first compute dy/dx(x I )

or dx/dy(yI ) and dw/dx or dw/dy correspondingly, where w = u(x, y(x)) or
w = u(x(y), y).

Suppose y = y(x) is a properly defined function as in Figure 15; the unit tangent
vector of the interface τ = (τ1, τ2) at (x I , yI ) can be written as

(τ1, τ2)=

{
(1, dy/dx)/

√
1+ (dy/dx)2 if τ1 > 0,

−(1, dy/dx)/
√

1+ (dy/dx)2 if τ1 < 0.
(34)

Figure 15. Three neighboring interface points are used to compute uτ centered at point I .
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Combining (34) with uτ = uxτ1+ u yτ2,

uτ =
(ux + u y yx)√
1+ (dy/dx)2

· sign τ1 =
wx · sign τ1√
1+ (dy/dx)2

= wx · τ1. (35)

Suppose wy and xy are both accurate to second order; we have

uτ =
(wx + O(h2))√

1+ (dy/dx + O(h2))2
∼

(wx + O(h2))√
1+ (dy/dx)2+ O(h2)

=
(wx + O(h2))√

1+ (dy/dx)2
√

1+ O(h2)
∼

(wx + O(h2))√
1+ (dy/dx)2

(
1− 1

2 O(h2)
)

=
wx√

1+ (dy/dx)2
+ O(h2). (36)

Both the derivatives with parametrization should be accurate up to second order.
Using the interfacial and neighboring two interfacial points, we can compute yx to
second order by

ay(x I+1)+ by(x I )+ cy(x I−1)= yx(x I )+ O(h2), (37)

where

D=1xl1xr (1xr−1xl), a=−1x2
l /D, c=1x2

r /D, b=−(a+c), (38)

and 1xl = x I−1− x I and 1xr = x I+1− x I . Note that the denominator D can be
small when neighboring interface points are very close, which leads to numerical
issues. This issue can be avoided by, for example, using (x I+1, yI+1), (x I , yI ), and
(x I−2, yI−2) instead of (x I+1, yI+1), (x I , yI ), and (x I−1, yI−1) in Figure 15.

Similar set up for either wx or wy follows the above:

aw(x I+1)+ bw(x I )+ cw(x I−1)= wx(x I )+ O(h2), (39)

and the coefficients a, b, and c are exactly the same as above. Second-order buτ
hence follows from the equation buτ =±wx/yx or buτ =±wy/xy , depending on
|yx | < 1 or |xy| < 1, and the sign adjustment comes from the sign of τ1 and τ2,
respectively.

Appendix C. Relaxation

As discussed in Section 2.2.2, Picard iteration works well in many cases, but we
found that it sometimes diverges. For this reason, as our standard iterative scheme,
we instead use a simple relaxation scheme to bypass this difficulty and guarantee
that the iterative scheme stops. The idea behind the relaxation scheme is to update
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the forcing term as

F[k] = αk F[Tk ]+ (1−αk)F[k−1], (40)

which is a mixture between the previous forcing F[k−1] and the temporary forcing
F[Tk ] that would have been used if a Picard update would have been followed. The
parameter αk is chosen to guarantee that u[k+1] is not too far away from u[k].

One cycle of the relaxation scheme goes as follows. Suppose u[k] was com-
puted by solving Au[k] = F[k−1], and we now want to compute the next itera-
tion. With u[k], compute the temporary right-hand-side F[Tk ] by following the
Picard update procedure from Section 2.2.2. A temporary solution u[Tk+1] is then
obtained by solving Au[Tk+1] = F[Tk ]. Now the parameter αk is determined to
guarantee that u[k+1] is not too far away from u[k]; to this end, define the ratio
rk = ‖u[Tk+1]− u[k]‖/‖u[k]− u[k−1]

‖. If this ratio is small (rk < 1), then there is no
need for relaxation and we set αk = 1. If this ratio is large (rk ≥ 1), then we set
αk = ρ/rk , where ρ is a preselected factor between 0 and 1. In practice, we pick
‖ · ‖ = ‖ · ‖∞ and ρ to be between 0.9 and 0.99. With this relaxation scheme for the
forcing F[k], the solution is likewise updated as u[k+1]

= αk u[Tk+1]+(1−αk)u[k], as
a mixture of the previous solution estimate u[k] and the temporary solution estimate
u[Tk+1] that would have been used if a Picard update would have been followed.

The differences u[k]d = ‖u
[k+1]
− u[k]‖∞ and F [k]d = ‖F[k+1]

− F[k]‖∞ are guar-
anteed to be decreasing as k increases if this relaxation procedure is followed.
Specifically, the relaxation procedure leads to either u[k]d = rku[k−1]

d (if rk < 1) or
u[k]d = ρu[k−1]

d (if rk ≥ 1). Therefore, u[k]d is decreasing in k and hence the stopping
criterion will be met in a finite number of iterations. Note that this stopping criterion,
based on ‖u[k+1]

− u[k]‖, does not guarantee that the relaxation procedure’s iterate
u[k+1] is actually close to the exact solution; nevertheless, one would expect that it
should be at least a better estimate than the first iterate u[1], which is the first-order
accurate GFM solution; and in practice we find from the examples in Section 3 that
the iterations terminate at a second-order accurate solution.
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