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COMPUTING THE QUASIPOTENTIAL
FOR HIGHLY DISSIPATIVE AND CHAOTIC SDES
AN APPLICATION TO STOCHASTIC LORENZ’63

MARIA CAMERON AND SHUO YANG

The study of noise-driven transitions occurring rarely on the time scale of systems
modeled by SDEs is of crucial importance for understanding such phenomena
as genetic switches in living organisms and magnetization switches of the Earth.
For a gradient SDE, the predictions for transition times and paths between its
metastable states are done using the potential function. For a nongradient SDE,
one needs to decompose its forcing into a gradient of the so-called quasipotential
and a rotational component, which cannot be done analytically in general.

We propose a methodology for computing the quasipotential for highly dis-
sipative and chaotic systems built on the example of Lorenz’63 with an added
stochastic term. It is based on the ordered line integral method, a Dijkstra-like
quasipotential solver, and combines 3D computations in whole regions, a dimen-
sional reduction technique, and 2D computations on radial meshes on manifolds
or their unions. Our collection of source codes is available on M. Cameron’s web
page and on GitHub.

1. Introduction

Suppose a system is evolving according to a stochastic differential equation (SDE)
of the form

dx = b(x) dt +
√
ε dw, x ∈ Rd , (1)

where b(x) is a continuously differentiable vector field, dw is the standard Brownian
motion, and ε is a small parameter. The quasipotential is a key function of the large
deviation theory (LDT) [14] that allows one to find a collection of useful asymptotic
estimates for long-time dynamics of such systems. They include the invariant
probability measure, expected escape times from neighborhoods of attractors of the
corresponding ODE ẋ = b(x) lying within their basins, and maximum likelihood
escape paths from the basins. The quasipotential can be viewed as an analogue to
the potential function V (x), x ∈ Rd , for a gradient SDE with deterministic term
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−∇V (x). The quasipotential is defined as the solution to the Freidlin–Wentzell
action functional minimization problem. The quasipotential is Lipschitz-continuous
in any bounded domain but not necessarily continuously differentiable [3]. Unfor-
tunately, it can be found analytically only in special cases, for example, for linear
SDEs [8; 7].

Ordered line integral methods (OLIMs) for computing the quasipotential for SDEs
of the form (1) in whole regions on regular rectangular meshes were introduced
in [11] for 2D and extended to 3D in [35]. They are Dijkstra-like solvers that
advance the solution from mesh points with smaller values to those with larger
values1 without iteration. Their general structure is inherited from the ordered
upwind method (OUM) [27; 28], but there are important differences. First, unlike
the OUM that uses the upwind finite difference scheme, the OLIMs solve a local
functional minimization problem at every step approximating a segment of curve
with a segment of straight line, and the integral along it by an at least second-
order accurate quadrature rule. This renders their observed rate of convergence
superlinear for some cases, and reduces error constants by two to three orders of
magnitude in comparison with the OUM. Second, while the OUM is practical only
for 2D problems due to large CPU times in larger dimensions, the OLIMs have been
successfully extended for 3D. This became possible due to the hierarchical update
strategy [11; 35], the use of the Karush–Kuhn–Tucker optimality conditions to
eliminate unnecessary updates, and a number of implementational rationalizations.

In previous works [11; 10; 35], the OLIMs were developed for computing the
quasipotential for mild-to-moderate ratio 4(x) of the magnitudes of the rotational
and potential components of the vector field b(x) in (1). In all test problems
considered in [11; 10; 35], 4(x) did not exceed 10 within the important region
around the attractor with respect to which the quasipotential was computed. For
all these test problems, the black-box algorithms [11; 10; 35] produced numerical
solutions with small relative errors.

Unfortunately, if one applies the black-box olim3D quasipotential solver from
[35] to a highly dissipative and chaotic system such as Lorenz’63 with an added
small white noise, the relative error of the numerical solution might be large leading
to completely wrong estimates for escape rates. For the parameter values σ = 10,
β = 8

3 , and ρ & 15, the quasipotential computed with respect to one of the point
attractors will become progressively inaccurate as ρ increases. We show in this work
that, as ρ approaches ρ2 ≈ 24.74 (where a subcritical Hopf bifurcation happens),
the upper bound for the ratio 4(x) blows up at any point of the computational
domain of interest. Even if one uses a very good desktop computer,2 this problem

1This is only approximately true. See [28] for details.
2We use a 2017 iMac with a 4.2 GHz Intel Core i7 processor and 64 GB of 2400 MHz DDR4

memory.
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cannot be cured by mesh refinement due to the computer’s limited memory: the
size of a 3D mesh cannot exceed 10003 by much.

In this work, we propose an approach for computing the quasipotential, finding
maximum likelihood transition paths, and estimating escape times from basins of
attractors for highly dissipative and possibly chaotic systems perturbed by small
white noise. This approach is suitable for systems where the 3D dynamics, after
some short transition time, takes place in a small neighborhood of a 2D manifold or
a union of 2D manifolds consisting of certain characteristics of the corresponding
ODE (see Assumption 4.2 in Section 4B below). Whether or not this phenomenon
takes place can be identified from the plots of the 3D level sets of the computed
quasipotential. We develop a technique for extracting these manifolds and generating
so-called radial meshes on them. We adjust and test the OLIM for 2D radial meshes
and compute the quasipotential on the constructed 2D manifolds or their unions.

The proposed techniques have been developed on the stochastic Lorenz’63:

dx =

 σ(x2− x1)

x1(ρ− x3)− x2

x1x2−βx3

 dt +
√
ε dw, where x ≡

x1

x2

x3

, (2)

with σ = 10, β = 8
3 , and 0.5≤ ρ < ρ2 ≈ 24.74. To the best of our knowledge, this

is the first time when the quasipotential is computed for a chaotic 3D system in
the whole region and 3D computations are refined by 2D computations on certain
manifolds. We study transitions between the stable equilibria at ρ = 12, 15, and 20,
and between the stable equilibria and the strange attractor at ρ = 24.4, and find
a collection of quasipotential barriers for them. Our transition paths obtained by
a direct integration using the computed quasipotential can be compared to those
found in [37] using the minimum action method, a path-based method consisting of
a direct minimization of the Freidlin–Wentzell action in the path space. At ρ= 24.4,
we compare two plausible transition mechanisms from the strange attractor to the
equilibria. We offer a number of plots of 3D level sets of the quasipotential at various
values of ρ varying from 0.5 to 24.4 and supplement them with links to YouTube
videos for a better 3D visualization. For ρ ≥ 15, when 2D approximation becomes
accurate enough, we perform refined 2D computations of the quasipotential.

Aiming at making our results readily reproducible, we made most of the codes
developed for this project publicly available at M. Cameron’s web page [5] — see
the package Qpot4lorenz63.zip — and on GitHub [4]. All codes mentioned
throughout this paper are included in this package. A user guide for the codes is
also provided there.

The techniques developed in this work can be used for analysis of other stochastic
systems. For example, the computation of the quasipotential for the 3D genetic
switch model from [23] would benefit from performing a refined 2D computation
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on a radial mesh on a 2D manifold as suggested by Figure 9 in [35]. Gissinger’s
3D model [15] relevant for the reversals of the magnetic field of the Earth can be
analyzed using the tools developed in this work.

The rest of the paper is organized as follows. In Section 2, some necessary
background on the quasipotential is given. A brief overview of the dynamics of
Lorenz’63 at σ = 10, β = 8

3 , and 0<ρ <∞ is offered in Section 3 and Appendix B.
Numerical techniques for computing the quasipotential are described in Section 4.
The application to stochastic Lorenz’63 is presented in Section 5. We summarize
our findings in Section 6. Some technical details are explained in Appendices A–G.

2. Definition and significance of the quasipotential

To explain what the quasipotential is [14], we first assume that the vector field b(x)
in SDE (1) admits the smooth orthogonal decomposition

b(x)=− 1
2∇u(x)+ l(x), ∇u(x) · l(x)= 0. (3)

If l(x)≡ 0, i.e., if the field b(x) were gradient, the Gibbs measure

µ(x)= Z−1e−u(x)/ε (4)

would be the invariant probability density for SDE (1). Suppose l(x) is not iden-
tically zero. Plugging the Gibbs measure (4) into the stationary Fokker–Planck
equation for SDE (1)

1
21µ(x)−∇ · (µ(x)b(x))= 0, (5)

we find that it is invariant if and only if l(x) is divergence-free, i.e., ∇ · l(x)≡ 0.
In this case, the function u(x) would play the role of a potential.

Unfortunately, the orthogonal decomposition (3) where l(x) is divergence-free
does not typically exist. However, a function U (x) called the quasipotential that
gives asymptotic estimates for the invariant probability measure near attractors of
ẋ = b(x) in the limit ε→ 0 can be designed [14].

Suppose that the vector field b(x) is continuously differentiable. In addition, we
assume that the ODE

ẋ = b(x) (6)

has a finite number of attractors, and every trajectory of (6) remains in a bounded
region as t→∞. Let A be an attractor of (6). The quasipotential with respect to A
is defined as the solution of the minimization problem

U (x)= inf
φ,T0,T1

{ST0,T1(φ) | φ(T0) ∈ A, φ(T1)= x}, (7)
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where the infimum of the Freidlin–Wentzell action

ST0,T1(φ)=
1
2

∫ T1

T0

‖φ̇− b(φ)‖2 dt (8)

is taken over the set of absolutely continuous paths φ with endpoints at A and x,
and all times T0, T1 ∈ R. The infimum with respect to T0 and T1 can be taken
analytically [14; 19; 18] resulting in the geometric action (see Appendix A)

S(ψ)=
∫ L

0
(‖ψ ′‖‖b(ψ)‖−ψ ′ · b(ψ)) ds, (9)

where the path ψ is parametrized by its arclength, and L is the length of ψ . As a
result, the definition of the quasipotential can be rewritten in terms of the geometric
action:

U (x)= inf
ψ
{S(ψ) | ψ(0) ∈ A, ψ(L)= x}. (10)

We have been using definition (10) to develop quasipotential solvers.
Using Bellman’s principle of optimality [1], one can show [3] that the quasi-

potential U (x) satisfies the Hamilton–Jacobi equation (see Appendix A)

1
2‖∇U (x)‖2+ b(x) · ∇U (x)= 0, U (A)= 0. (11)

Equation (11) implies that

b(x)=−1
2∇U (x)+l(x), where l(x):=b(x)+1

2∇U (x) is orthogonal to ∇U (x).
(12)

We will refer to −1
2∇U (x) and l(x) as the potential and rotational components,

respectively.
We remark that the boundary value problem (BVP) (11) is ill-posed. It always

has the trivial solution identically equal to zero and may or may not have a smooth
nontrivial solution. The quasipotential defined by (7) or (10) is a viscosity solution3

to (11) [9]. The other complication is that even a nontrivial solution to this BVP,
classical or viscosity, may not be unique due to the fact that the boundary condition
is imposed on an attractor [20]. For example, if b(x) = Bx where B is a matrix
with all eigenvalues having negative real parts, the number of solutions of (11) with
the BC u(0)= 0 is equal to the number of invariant subspaces for B.

Nonetheless, (11) is instrumental in deriving the equation for minimum action
paths (MAPs) also known as maximum likelihood paths or instantons that minimize

3A viscosity solution to a first-order nonlinear PDE f (x, u,∇u)= 0 is a continuous but possibly
nondifferentiable function obtained as the limit of a sequence of smooth solutions to f (x, u,∇u)=
ε1u as ε→∞.
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the geometric action (9) [14; 3] (see Appendix A):

ψ ′(s)=
b(ψ(s))+∇U (ψ(s))
‖b(ψ(s))+∇U (ψ(s))‖

. (13)

Once the quasipotential is computed, one can shoot a MAP from a given point x
back to the attractor A by integrating (13) backward in s. Alternatively, MAPs
can be found by path-based methods [13; 38; 19; 18] that directly minimize the
Freidlin–Wentzell action or the geometric action.

The mentioned asymptotic estimate for the invariant probability density within a
level set of the quasipotential completely lying in the basin B(A) of A is [14]

µ(x)� e−U (x)/ε, i.e., lim
ε→0

(−ε logµ(x))=U (x). (14)

The symbol � denotes the logarithmic equivalence clarified in (14). The expected
escape time from B(A) can also be estimated up to exponential order [14]:

E[τB(A)] � eU (x∗)/ε, where U (x∗)= min
x∈∂B(A)

U (x). (15)

In some common special cases, a sharp estimate for the expected escape time can
be obtained [2].

The term transition state is often encountered in chemical physics literature.
Mostly it refers to a saddle lying on the manifold separating two basins of attraction.
The dynamics of the Lorenz system are complicated, and basins of its attractors are
tightly interlaced for ρ & 20. To accommodate such situations, we will define the
term escape state.

Definition 2.1. Consider a system evolving according to SDE (1). Let A be an
attractor of the corresponding ODE (6). The escape state from A is the set of points
minimizing the quasipotential with respect to A over the boundary of the basin of A.

The quasipotential at the escape state of A defines the expected escape time from
the basin of A up to exponential order according to (15).

3. A brief overview of Lorenz’63

The Lorenz’63 system
ẋ1 = σ(x2− x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2−βx3

(16)

is one of the most fascinating and transformative ODE models proposed in the
twentieth century. E. Lorenz [22] derived it from Saltzman’s 2D cellular convection
model [26] using a Fourier expansion and truncating the trigonometric series to
include a total of three terms. He proved that the resulting system exhibits a new
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type of long-term behavior. All trajectories of (16) stay in a bounded region. For
σ = 10, β = 8

3 , and ρ= 28, their ω-limit sets form an “infinite complex of surfaces”,
i.e., a fractal, whose Hausdorff dimension is 2.06 [33], later named the Lorenz
attractor. The Lorenz map [22], a 1D map zn+1 = f (zn), where zn is the n-th
maximum of the z-component of a trajectory, and f is the function estimated
numerically, explained the divergence of arbitrarily close characteristics. It has
become instrumental for analysis of chaotic dynamical systems.

The study of the Lorenz’63 system burst in the mid-1970s, perhaps due to
the progress in the computer industry. A number of remarkable properties and
quantitative characteristics have been discovered. The topological structure of the
Lorenz attractor was studied in [16; 25; 34]. The phenomenon called preturbulence
was described in [21]. The value ρ1 ≈ 24.06 at which the Lorenz attractor is born
for σ = 10 and β = 8

3 was found in [36] using a functional fit to the Lorenz map.
Homoclinic explosions, period-doubling cascades, and periodicity windows were
investigated in [30]. A beautiful overview of the Lorenz system is given in [32,
Chapters 9–12]. Nowadays, the Lorenz system is a popular test model for new
methods in such fields as machine learning and forecasting (e.g., [12; 29; 17]).

It is easy to check that (16) is invariant under the symmetry transformation
(x1, x2, x3) 7→ (−x1,−x2, x3). We fix the parameters σ = 10 and β = 8

3 and
consider the dynamics of (16) as ρ grows from zero to infinity. The notation and
bifurcations important for the rest of the paper are summarized in Table 1. A more
detailed description of the dynamics of (16) for 0< ρ <∞ is given in Appendix B.

In this work, we consider the Lorenz system perturbed by small white noise (2).
The noise term regularizes the chaotic deterministic dynamics of (16) in the sense
that one can predict the future probability density function given the current one
by solving the Fokker–Planck equation. On the other hand, the presence of the
noise term enables escapes from any neighborhood of an attractor of (16). If ρ
is such that there are multiple attractors, noise-induced transitions between their
neighborhoods become possible.

4. Numerical methods

In this section, we describe numerical techniques developed for computing the
quasipotential for highly dissipative and chaotic systems where the ratio of the
magnitudes of the rotational and potential components is of the order of 103.

4A. A brief overview of ordered line integral methods (OLIMs). We start with a
brief overview the OLIMs. A comprehensive description of the implementation of
the OLIM in 3D is provided in [35]. It involves many technical details that are impor-
tant for making the solver fast. A C source code olim3D4Lorenz63.c set up to com-
pute the quasipotential for (2) and instructions on how to run it are available in [5; 4].
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range of ρ comments and notation

0< ρ < 1 The origin is the unique globally attracting equilibrium.
ρ = 1 Supercritical pitchfork bifurcation.

1< ρ < ρ0 ≈ 13.926 The origin is a Morse index-one saddle for 1< ρ <∞.
Equilibria C± are located at

C± = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

C± are asymptotically stable for 1< ρ < ρ2.
ρ = ρ0 ≈ 13.926 Homoclinic orbits starting and ending at the origin exist.

ρ0 < ρ < ρ1 ≈ 24.06 C± are surrounded by saddle cycles γ±, respectively.
Chaotic dynamics (“preturbulence”) is developing as ρ grows.
We introduce cones ϒ± with vertices at C± and passing
through γ±, respectively:

ϒ+ := {C++ t (x−C+) | t ≥ 0, x ∈ γ+}.
ρ = ρ1 ≈ 24.06 The birth of the Lorenz attractor AL (a strange attractor).

ρ1 < ρ < ρ2 ≈ 24.74 AL coexists with asymptotically stable equilibria C±.
ρ = ρ2 ≈ 24.74 A subcritical Hopf bifurcation: γ± shrink to C±, respectively.

Table 1. A summary of bifurcations and notation for Lorenz’63 (16) for σ = 10, β = 8
3 ,

and 0< ρ ≤ ρ2 ≈ 24.74.

The OLIMs belong to the family of label-setting algorithms [6] and inherit
their set of labels from the OUM [27; 28]. Labels of mesh points indicate their
statuses. A mesh point is Accepted if the value of the computed function (the
quasipotential in our case) is finalized at it and all its nearest neighbors also have
finalized values. Accepted points are not used for updating values at other mesh
points. A mesh point is Accepted Front if the value at it is finalized but it has at
least one nearest neighbor with an unfinalized value. Considered mesh points are
those with unfinalized tentative values that have at least one Accepted Front nearest
neighbor. Unknown mesh points have no Accepted Front nearest neighbors and the
values at them have not been proposed yet.

The OLIMs use several kinds of neighborhoods of mesh points. The neigh-
borhoods are defined via distances between indices of the mesh points. Let
p := (i, j, k) ∈ Z3 and p0 := (i0, j0, k0) ∈ Z3 be the lattice points corresponding to
the mesh points x and x0, respectively. In other words, p and p0 are the indices of
the mesh points x and x0, respectively. Recall that the lq , q = 1, 2, and l∞ distances
between p and p0 are defined as

‖ p− p0‖q := [|i − i0|
q
+ | j − j0|q + |k− k0|

q
]
1/q ,

‖ p− p0‖∞ :=max{|i − i0|, | j − j0|, |k− k0|},

respectively. Let I be the set of indices of all mesh points.
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• The near neighborhood typically containing 26 points

Nnear( p0) := { p ∈ I | ‖ p− p0‖1 ≤ 3 and ‖ p− p0‖∞ = 1}

is used for recruiting Unknown points to Considered and changing the status of
Accepted Front points to Accepted. Correspondingly, the near neighborhood
of the mesh point x0 is defined as

Nnear(x0) := {x | p ∈ Nnear( p0)}.

• The far neighborhood NK
far( p0), where K is the update factor (a positive integer

chosen by the user), consists approximately4 of all lattice points p∈I such that
p 6= p0 and the l2 distance ‖ p− p0‖2 ≤ K . It is used for updating Considered
points. Correspondingly, the far neighborhood of the mesh point x0 is defined as

NK
far(x0) := {x | p ∈ NK

far( p0)}.

If the mesh steps in xi , i = 1, 2, 3, are all equal to h, then the far neighborhood
of x0 is approximately the ball centered at x0 of radius K h.

At the start, all mesh points are Unknown. Initialization consists of computing
tentative values at the mesh points lying near the attractor, switching their status to
Considered, and adding them to the binary tree. The binary tree maintains the heap
sort of the values at Considered points so that the smallest Considered value is always
at the root of the tree. At each step of the main body of the OLIM, a Considered
mesh point xnew with the smallest tentative value becomes Accepted Front. Then
the hierarchical update procedure proposed in [11] and further developed in [35]
is implemented. It consists of two substeps. First, for all Considered points in
NK

far(xnew) proposed update values involving xnew are computed. Second, each
Unknown point x in Nnear(xnew) becomes Considered and a tentative value at x is
computed using the Accepted Front points in NK

far(x). This algorithm is summarized
in the pseudocode below. The details of each step are elaborated in [35].

Now we outline the hierarchical update strategy. All details of it are worked out
in [35]. There are three types of updates done in the order

one-point updates→ triangle updates→ simplex updates.

Let x be a Considered point to be updated, and y ∈ NK
far(x) be Accepted Front.

4More precisely, p ∈ NK
far( p0) if and only if p 6= p0, p ∈ I, and |i − i0| ≤ K , | j − j0| ≤

ceil(
√

K 2− |i − i0|2), and |k− k0| ≤ ceil(
√

K 2−min{|i − i0|2+ | j − j0|2, K 2}). Defined so, p ∈
NK

far( p0) is slightly larger than { p ∈ I | p 6= p0, ‖ p− p0‖2 ≤ K }.
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Initialization. Start with all mesh points being Unknown. Set values of U at them to∞.
Let x∗ be an asymptotically stable equilibrium located at a mesh point. Compute tentative
values of U at the points x ∈ Nnear(x∗) and change their status to Considered.

The main body.
while the boundary of the mesh has not been reached and the set of Considered points is
not empty do

1. Change the status of the Considered point xnew with the smallest tentative value of U
to Accepted Front.

2. Change the status of all Accepted Front points in Nnear(xnew) that no longer have
Considered points in their Nnear-neighborhoods to Accepted.

3. Update all Considered points x ∈ NK
far(xnew). The updates must involve xnew.

4. Change the status of each Unknown point x ∈ Nnear(xnew) to Considered and update
them using the Accepted Front points in NK

far(x).

Algorithm 1. A coarse-grained pseudocode of the OLIM.

One-point update. We connect x and y with a line segment and approximate the
geometric action (9) along it using the midpoint quadrature rule QM( y, x). Then
the proposed value of the quasipotential at x is

Q1( y, x)=U ( y)+QM( y, x). (17)

If Q1( y, x) is less than the current tentative value U (x), we replace U (x) with it.
Otherwise, we leave U (x) unchanged. Furthermore, we compare Q1( y, x) with the
current minimizer of the one-point update at x and update it if Q1( y, x) is smaller.
In step 3 of Algorithm 1, the only one-point update computed is Q1(xnew, x). In
step 4, one-point updates are computed for all Accepted Front points y ∈ NK

far(x).

Triangle update. Triangle updates always involve the minimizer of the one-point
update x0. The base of an admissible triangle is a line segment connecting x0 and an
Accepted Front point x1 satisfying ‖ p1− p0‖1≤2 and ‖ p1− p0‖∞=1 where p0 and
p1 are the indices of x0 and x1, respectively. The points on the line segment [x0, x1]

are parametrized by λ ∈ [0, 1]: xλ := x0+λ(x1− x0). The values of U on [x0, x1]

are found by linear interpolation: U (xλ)≡Uλ :=U (x0)+λ(U (x1)−U (x0)). Then
the triangle update is done by solving the constrained minimization problem

Q2(x0, x1, x)= min
λ∈[0,1]

{Uλ+QM(xλ, x)} (18)

and replacing the current tentative value U (x)with the proposed value Q2(x0, x1, x)
if and only if the latter is less than the former. This replacement may take place
only if an interior point solution is found. Hence, we are interested in the solution
to (18) only if the minimizer λ∗ ∈ (0, 1). Therefore, we take the derivative of the
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function being minimized in the right-hand side of (18), compare its signs at the
endpoints, and proceed with solving the nonlinear equation only if the signs are
different.

Simplex update. One of the vertices of the triangle at the base of an admissible
simplex must be the minimizer of the one-point update x0, and one of its sides
adjacent to x0, let’s call it [x0, x1], must be such that the constrained minimization
problem (18) has given an inner-point solution λ∗ ∈ (0, 1). The third vertex of the
base of an admissible simplex must be an Accepted Front point x2 such that l∞
distances between the indices of x0, x1, and x2 are all 1, and at most one of the l1

distances between their indices is 2, while the other ones are 1. The proposed value
produced by the simplex update is the solution of the constrained minimization
problem

Q3(x0, x1, x2, x)= min
λ∈[0,1]

{Uλ+QM(xλ, x)}, (19)

where xλ = x0+ λ1(x1− x0)+ λ2(x2− x0),

Uλ =U (x0)+ λ1(U (x1)−U (x0))+ λ2(U (x2)−U (x0)),

subject to λ1 ≥ 0, λ2 ≥ 0, λ1+ λ2 ≤ 1. (20)

The warm start for solving (19) is the vector λ := [λ∗, 0] where λ∗ is the minimizer
of (18). As we do it for the triangle update, we wish to quickly reject the simplex
update if its minimizer is certainly lying on the boundary of the triangle (20). We
use the Karush–Kuhn–Tucker (KKT) optimality conditions [24, Chapter 12] to do
so. They boil down (see Appendix C) to checking whether

∂

∂λ2
(Uλ+QM(xλ, x))≥ 0. (21)

If (21) holds, then [λ∗, 0] is a local solution to (19), and hence, we reject the simplex
update. Otherwise we proceed with numerical minimization using Newton’s method.
If an interior point solution is found, we replace the current tentative value U (x)
with Q3(x0, x1, x2, x) provided that Q3(x0, x1, x2, x) < U (x). Otherwise, U (x)
remains unchanged.

We remark that the computation of the quasipotential terminates as soon as a
boundary mesh point becomes Accepted Front. This is important because the
MAP that leaves the computational domain via this point might return to it, and it
is crucial for an accurate computation of the quasipotential that the computation
follows the MAPs.

4B. Challenges of computing the quasipotential for stochastic Lorenz’63. An
important characteristic of the vector field in SDE (1) in a neighborhood of an
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The true MAP segment connecting x with
the Accepted Front

Level sets of the quasipotential

y
A

z x K h

Figure 1. An illustration for the difficulty of computing the quasipotential in the case
where the ratio 4(x) given by (22) is large. The blue closed curves represent some level
sets of the quasipotential, and x is a Considered point that is up for an update. The
green segment [z, x] is the best linear approximation to the MAP connecting x with the
Accepted Front within the given update radius K h.

attractor A is the ratio of the magnitude of the rotational component to that of the
potential one [35]:

4(x) :=
‖l(x)‖∥∥1

2∇U (x)
∥∥ . (22)

If 4(x) is not too large (does not exceed 10) in the basin of A, except, perhaps
in some small neighborhoods of the attractor or the escape state, the OLIMs give
accurate results on uniform rectangular meshes of reasonable sizes [11; 10; 35].
However, if 4(x) is large (much larger than 10) in a significant part of the basin
of A, the accuracy of the numerical solution by the OLIM on a regular rectangular
mesh deteriorates [11, §4]. The problem is illustrated in Figure 1. Suppose the
computation has reached the level set of the quasipotential depicted with the largest
closed blue curve. All mesh points inside it are either Accepted if they have no
Unknown or Considered nearest neighbors, or Accepted Front, if they do. Let x
be a Considered point up for an update. If 4(x) is large, the segment of the MAP
arriving at x from the span of Accepted Front mesh points is long. A rough estimate
for its length is 4(x)h where h is the mesh step. Let y be the point where this
MAP segment starts at the span of the Accepted Front. Even if the update factor K
were chosen large enough so that y lies in the ball centered at x of radius K h, the
straight line segment (the magenta line segment from x to y in Figure 1) and the
midpoint quadrature rule would give poor approximations for the MAP segment
and the geometric action along it, respectively, resulting in an inaccurate update
value at x. It is shown in [11; 35] that too large an update factor may deteriorate
the accuracy. A safer but still too rough approximate solution would be obtained if
the update radius is reasonably small, i.e., chosen according to the proposed rules
of thumb in [11; 35]. Then the segment of MAP would be approximated with the
green line segment [z, x] in Figure 1.
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Figure 2. The graph of the maximal ratio 4 of the magnitudes of the rotational and
potential components of the linear SDE d y = J y dt +

√
ε dw where J is the Jacobian

matrix of the right-hand side of the Lorenz system (16) evaluated at the equilibrium C+
for the range 1< ρ < ρ2 ≈ 24.74 where C+ is asymptotically stable.

Now imagine the case where 4(x)∼ 103 as it is for stochastic Lorenz’63 with
ρ1 < ρ < ρ2 where the stable equilibria and the strange attractor coexist. 3D
computations on regular rectangular meshes will give a qualitative idea about the
geometry of the level sets of the quasipotential, but the found quasipotential barriers
will be completely off.

The ratio 4(x) for the Lorenz system at 1< ρ < ρ2 ≈ 24.74 can be estimated
from that for the linearized system at C+ (see Appendix D). The graph of 4 for
the linearized system is displayed in Figure 2. It shows that the maximum of 4(x)
blows up as ρ→ ρ2. At ρ = 24.4, the largest ρ at which we present the results of
our computations, the maximal value of 4(x) for the linearized system is 973.4.

Challenged by this problem, we have developed an approach that allows us
to obtain reasonably accurate values of the quasipotential barriers. It consists of
finding approximate 2D manifolds (or unions of 2D manifolds) where the MAPs
emanating from the attractor are located, building so-called radial meshes on them,
and adjusting the OLIM for performing computations on radial meshes. This
approach is suitable for any 3D SDE where the level sets of the quasipotential are
thin, i.e., close to some 2D manifolds (see Assumption 4.2 below), which can be
determined by visual inspection of the computed 3D level sets. Note that this is a safe
diagnosis as the 3D OLIM tends to make the level sets thicker than the true ones if
4(x) is large. In this case, the MAP going from the attractor to the escape state will
be very close to any 2D manifold (or union of manifolds) approximating the level set
containing the escape state. We find such a manifold using the characteristics of the
corresponding ODE. The following lemma is instrumental for this approximation.

Lemma 4.1. Let A be an attractor of ẋ = b(x), where b ∈ C1(R3). Let

Va := {x ∈ R3
|U (x)≤ a}
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be a sublevel set of the quasipotential completely lying in the basin of A, and γ be
a curve lying on the boundary of Va; i.e., for any x ∈ γ , U (x)= a. Let M′ and M

be the manifolds consisting, respectively, of the MAPs going from A to γ , and the
characteristics starting at γ and running to A. Then M′ ⊂ Va and M⊂ Va .

A proof of Lemma 4.1 can be found in Appendix E.
Let γ be an unstable limit cycle serving as the escape state from the basin of an

attractor A. Let the quasipotential at γ be Uγ . We can consider a sublevel set Va for
a<Uγ and arbitrarily close to Uγ . By Lipschitz continuity of the quasipotential [3],
a can be chosen so that the distance between γ and Va is smaller than any given
positive number. Correspondingly, we can pick a curve γ ′ lying on the boundary of
Va located arbitrarily close to the limit cycle γ . By Lemma 4.1, the manifolds M′

and M consisting of MAPs/characteristics running to/from γ ′ will lie in Va .

Assumption 4.2. Suppose that the level set Va is close to both manifolds M and M′,
i.e., the Hausdorff distances5 between Va and M and between Va and M′ are less
than some small δ > 0:

dH (Va,M) < δ and dH (Va,M′) < δ.

Under Assumption 4.2, the triangle inequality implies that the Hausdorff distance
between M and M′ is bounded by 2δ:

dH (M,M′)≤ dH (M,Va)+ dH (M
′,Va) < 2δ. (23)

We will employ Assumption 4.2 for 15 ≤ ρ ≤ 24.4. Figures 7 and 9 below
illustrate it: compare the MAPs (the dark red curves) and the characteristics (the
dark blue curves) in these figures and observe that they lie on close manifolds
located inside visibly thin level sets.

Note that the manifold M can be readily sampled by shooting characteristics
from γ ′ to A. In the next section, we describe how to build radial meshes on M,
adjust the OLIM for them, and test its performance.

4C. Radial meshes on manifolds. We call a mesh radial if it is set up as follows.
Let γ0 be a point or a closed curve, and let γ be another closed curve. We pick a
finite set of simple closed curves that do not intersect pairwise and index them γi ,
i = 1, . . . , Nr − 2. We add γ0 and γNr−1 ≡ γ to this set. These curves will be
referred to as parallels. We also pick a finite set of curves, meridians, going from
γ0 to γ and crossing each γi exactly once in the order of increase of their indices.
We index the meridians from 0 to Na−1 and identify meridian 0 with meridian Na .
The resulting mesh has size Nr × Na . Examples of radial meshes for the Lorenz
system defined on manifolds consisting of all characteristics going from saddle

5dH (X,Y)=max{supx∈X inf y∈Y‖x− y‖, sup y∈Y infx∈X‖x− y‖}.
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cycles to asymptotically stable equilibria at ρ = 15 and ρ = 24.4 are shown in
Figures 8, top, and 13, left, respectively. A radial mesh defined between two closed
curves, the saddle cycle γ− and a closed curve approximating an “eye” of the
strange attractor at ρ = 24.4, is displayed in Figure 14, top left. Our technique for
building radial meshes is described in Appendix F and implemented in the Matlab
code make2Dmesh.m.

To adjust the OLIM for radial meshes, we redefine the neighborhood Nfar((ir , ia))

from which a mesh point indexed (ir , ia) can be updated using two update factors,
radial Kr and angular Ka , as follows: Nfar((ir , ia)) consists of all mesh points
( jr , ja) satisfying

max{0, ir − Kr } ≤ jr ≤min{ir + Kr , Nr − 1},

|( ja − ia) mod Na| ≤ Ka.

Let us check whether the OLIM applied to a system with large ratio 4 produces
small enough errors on 2D radial meshes of reasonable sizes and these errors
properly decay with mesh refinement. We set up an ad hoc 2D example with an
asymptotically stable spiral point at the origin and an unstable limit cycle ‖x‖ = 1:[

dx1

dx2

]
=

[
‖x‖2− 1 a
−a ‖x‖2− 1

] [
x1

x2

]
dt +
√
ε dw. (24)

We pick a = 103; then 4≥ 103. The exact quasipotential for (24) with respect to
the origin is given by

U (x)=
{
‖x‖2(1− 0.5‖x‖2), ‖x‖ ≤ 1,
0.5, ‖x‖> 1.

(25)

We have conducted two experiments with computing the quasipotential for (24).
The goal of the first experiment is to establish the dependence of the numerical error
on the relationship between Nr , Na , Kr , and Ka . We set Nr = 1024 and run the
solver for Na = 2q Nr , q = 0, 1, 2, 3, and Kr varying from 1 to round(Nr/40)= 25
and Ka = 2q Kr , respectively. The computational domain is the unit circle. The
dependence of the normalized maximal absolute error

E :=
maxir ,ia |U (ir , ia)−Uexact(ir , ia)|

maxir ,ia Uexact(ir , ia)
(26)

on Kr is shown in Figure 3, left. The normalized maximal absolute error (the red
curve) for the 1024× 1024 rectangular mesh defined on the square [−1, 1]2 is also
provided for comparison. These results eloquently demonstrate the superiority of
the radial meshes for computing the quasipotential in the case where the ratio 4 is
large. Also, the choice Kr = round(Nr/40) and Ka = round(Na/40) is reasonable
and can be used as a default setting for radial meshes.
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Figure 3. Measurements of numerical errors for radial meshes Nr × Na in computing the
quasipotential for SDE (24). Left: the dependence of the normalized maximal absolute
error (26) on the update parameter Kr . The parameter Ka was chosen so that Na/Nr =
Ka/Kr . Right: the dependence of the normalized maximal absolute error (26) (the blue
plot) on Nr with Na = 2Nr , Kr = round(Nr/40), and Ka = 2Kr . The least squares fit
(27) is included for comparison.

The goal of the second experiment is to verify error decay with mesh refinement.
We have run computations with Nr = 2p, p = 8, 9, 10, 11, 12, Na = 2Nr , Kr =

round(Nr/40), and Ka = 2Kr . The plot of the normalized maximal absolute error
in Figure 3, right, shows the desired convergence. The least squares fit gives a
superquadratic convergence:

E = 3.3 · 104
· N−2.2

r . (27)

The superiority of radial meshes over rectangular ones for the computation
of the quasipotential in the basins of spiral point attractors of vector fields with
large rotational components is due to the fact that the radial meshes have update
regions better adjusted to the geometry of the MAPs than the rectangular ones. This
phenomenon is illustrated in Figure 4. The update regions of radial meshes are small
near the equilibrium where the MAP has high curvature and grow away from it
where the MAP’s curvature decreases. In contrast, the update regions of rectangular
meshes remain uniform. As a result, they are too large near the equilibrium and not
large enough away from it.

In summary, our experiments with SDE (24) with a stable spiral point, an
unstable limit cycle, and 4≥ 103 have demonstrated that the computation of the
quasipotential on radial meshes of moderate sizes gives accurate and reliable results.

Remark 4.3. We emphasize that we still use line segments in the OLIM on radial
meshes to approximate MAP segments. We have explored a variant of OLIM where
the minimizer for each local constraint minimization problem is sought on the set
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Figure 4. An illustration explaining the advantage of radial meshes over rectangular ones
for the computation of the quasipotential on the example of SDE (24) with a = 40. Two
computations were performed. The first one was done on the radial mesh with Nr = 128,
Na=256, Kr =3, and Ka=6. The maximal absolute and RMS errors for this computations
are 1.00 ·10−2 and 2.44 ·10−3, respectively. The second computation was performed on the
rectangular mesh with N = 256 and K = 6 and gave the maximal absolute and RMS errors
of 1.39 · 10−1 and 6.43 · 10−2, respectively, which are more than an order of magnitude
larger than those for the radial mesh. The CPU times for the radial and rectangular meshes
are approximately the same: 0.24 and 0.22 seconds, respectively, Top: the thick red curve
is the exact MAP going from the equilibrium at the origin to the unstable limit cycle r = 1.
The thin black mesh is the radial mesh. The thick black curves bound some samples of
its update regions. The thin magenta mesh is the rectangular mesh, and the thick magenta
circles are samples of its update regions. Bottom: a zoom-in of the top.

of curves of the form

{(r(t), θ(t)) | t ∈ [0, 1], r(t)= r1+ t (r2− r1), θ(t)= θ1+ t (θ2− θ1)}

where (ri , θi ), i = 1, 2, are the polar coordinates of the endpoints of the curve.
We have found that the use of line segments as in the original OLIM gives more
accurate results, so we stick with line segments.

5. Results

In this section, we present a collection of plots of the level sets of the computed
quasipotential in 3D for the Lorenz system at ρ = 0.5, 12, 15, 20, and 24.4. Where
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Figure 5. Two views of the level sets of the quasipotential at ρ = 0.5 corresponding to
U = 20 (the blue surface) and U = 40 (the red surface). The thin blue and red closed
curves lying on the corresponding level sets are shown to aid 3D visualization. The dark
blue curves depict a collection of the characteristics starting at the set of points marked by
large orange dots and approaching the origin. The dark red curves represent a collection of
the MAPs emanating from the origin and arriving at the same set of points. A movie with
this figure rotating around the x3-axis is available at https://youtu.be/YscXN18lgyU.

appropriate, we perform 2D computations on radial meshes on manifolds and refine
the estimates for the quasipotential barriers between different basins or regions of
the phase space. Our collection of MAPs computed by integrating (13) backwards
in s (code ShootMAPs.c [5]) can be compared with that obtained in [37] for a
somewhat different set of values of ρ using the minimum action method (MAM).
Note that, while the MAM is easier to program than the OLIM and is suitable for
any phase-space dimension, its output is biased by the initial guess for the path
and hence might converge to a local minimizer in the path space instead of the
global one. Furthermore, MAM does not allow one to visualize the level sets of the
quasipotential. Estimates for quasipotential barriers are not provided in [37] while
we do it here.

5A. 0<ρ < 1. For 0<ρ < 1, the origin is globally attracting. Two level sets of the
quasipotential for ρ=0.5 are shown in Figure 5. The computation was performed on
a 513×513×513 mesh with the update factor K =14. This choice of K for N =513
was suggested in [35]. The level sets are heart-shaped and oriented approximately
along the plane x1 = x2. Let X be a level set, and let γX be the intersection of X
with the vertical plane x1 = x2. The curve γX runs approximately along the edge
of the heart-shaped level set X . We pick X to be a level set corresponding to one
of the largest computed values of the quasipotential and find a collection of points
marked with large orange dots lying on the corresponding curve γX and forming
angles from 0 to 2π with step π/72. The characteristics of (16) (the dark blue

https://youtu.be/YscXN18lgyU
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curves) and the MAPs of (2) (the dark red curves) starting and arriving at this set of
points, respectively, are notably different. The set of characteristics starting at γX

and the set of MAPs arriving at γX form visibly distinct 2D manifolds.
Let us find the directions along which typical characteristics and typical MAPs

approach the origin and emanate from it, respectively. It is hard to see in Figure 5
whether they coincide or not. Let J be the Jacobian matrix of the right-hand side
of (16) evaluated at the origin:

J =

−σ σ 0
ρ −1 0
0 0 −β

 . (28)

For the linear SDE
dx = J x dt +

√
ε dw, (29)

the quasipotential decomposition is given by J x =−Qx+ Lx (see Appendix D),
where Q and L are matrices. The quasipotential is the quadratic form U (x)= x>Qx
where Q can be found analytically [3]:

Q =
[

Q1

β

]
, (30)

where Q1 =
σ + 1

d

[
σ(σ + 1)+ ρ(ρ− σ) −ρ− σ 2

−ρ− σ 2 (σ + 1)− σ(ρ− σ)

]
,

d = (σ + 1)2+ (ρ+ σ)2. (31)

The rotational matrix L = J + Q is

L =
[

L1

0

]
, (32)

where L1 =
ρ− σ

d

[
ρ+ σ 2

−(σ + 1)+ σ(ρ− σ)
σ(σ + 1)+ ρ(ρ− σ) −ρ− σ 2

]
.

For the linear SDE (29), MAPs are the characteristics of ẋ = (Q+ L)x. Obtaining
spectral decompositions of J =−Q+ L and J̃ = Q+ L for ρ = 0.5, we find that
typical characteristics of (16) approach the origin tangent to the line span v, while
typical MAPs emanate from the origin tangent to the line span ṽ, where

v ≈

0.7241
0.6897

0

 , ṽ ≈

0.6924
0.7215

0

 . (33)

5B. 1 < ρ < ρ0 ≈ 13.926. In this interval, the equilibria C± switch from stable
nodes to stable spiral points at ρ ≈ 2.1546. Figure 6 displays the level sets of the
quasipotential for ρ = 12 with respect to each stable equilibrium. It was computed
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Figure 6. Two views of the level sets of the quasipotential at ρ = 12 corresponding to
U = 10 (the blue surface) and U = 19.42 (the red surface). The dark blue curves are the
characteristics emanating from the origin along its unstable directions ±ξ (42) and arriving
at C±, respectively. The dark red curves are the MAPs going from C± to the origin. The
MAP from C± to C∓ is obtained by the concatenation of the MAP from C± to the origin
(a dark red curve) and the characteristic from the origin to C∓ (a dark blue curve). A movie
with this figure rotating around the x3-axis is available at https://youtu.be/-ABbuD8oDjI.

on a 513× 513× 513 mesh with K = 14. The found value of the quasipotential
at the origin that serves as the transition state between C± is 19.47. Therefore, at
ρ = 12, the expected escape time from the basin of C+ scales as

E[τC+] � e19.47/ε . (34)

The MAP from C+ to C− is obtained by the concatenation of the computed MAP
from C+ to the origin (the dark red curve starting at C+) and the characteristic
from the origin to C− (the dark blue curve ending at C−). Figure 6, left, shows
that the MAPs and the characteristics connecting C± and the origin lie on close 2D
manifolds.

We did a consistency check by finding the quasipotential barrier by integrating
the geometric action (9)–(10) along the found MAP and got the value 19.89, which
is in reasonable agreement with 19.47 found by our 3D computation.

5C. 13.926 ≈ ρ0 < ρ < ρ1 ≈ 24.06. In this range, the escape states from C+ and
C− are the saddle limit cycles γ+ and γ−, respectively. We have computed the
quasipotential for two values of ρ: ρ = 15 and ρ = 20.

5C1. ρ = 15. The computed quasipotential for ρ = 15 with respect to C+ is
visualized in Figure 7. First, we picked a large computational domain to embrace
the level set of the quasipotential enclosing both of the stable equilibria C± and used
a 613× 613× 613 mesh and K = 15. Second, we chose a smaller domain just to
enclose γ+. It was a cube with side length 13 centered at C+, and the mesh in it was
1001× 1001× 1001. K was set to 20. The found quasipotential is nearly constant
on γ+: it varies between 17.42 and 17.45. The saddle cycles γ± are depicted with
thick bright red curves. A maximum likelihood transition path from C+ to C− can

https://youtu.be/-ABbuD8oDjI
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Figure 7. Two views of the level sets of the quasipotential at ρ = 15 corresponding to
U = 8 (the green surface), U = 17.37 (the blue surface), and U = 20 (the red surface). The
thick bright red curves are the saddle cycles γ±. The dark blue curves are characteristics
running from γ+ and approaching C±. The dark red curve is a MAP starting at C+
and approaching γ+. A movie with this figure rotating around the x3-axis is available at
https://youtu.be/mzdUD-ngqYs.

be obtained by the concatenation of a MAP from C+ to γ+, the saddle cycle γ+, and
a characteristic going from γ+ to C−. One such MAP and one such characteristic
are the dark red and dark blue curves in Figure 7, respectively.

Willing to refine our relatively rough 3D computation and find a more accurate
value of the quasipotential on γ+ with respect to C+, we perform 2D computations
on the manifold M+ consisting of all characteristics going from γ+ to C+ using the
code olim2DEquilibLimitCycle.c. Figure 7 suggests that M+ is close to the
2D manifold consisting of all MAPs from C+ to γ+. So we neglect the discrepancy
between them. We generate 2D radial meshes on M+ (see Appendix F) whose
coarsened version is shown in Figure 8, left. The computed quasipotential on M+ is
shown in Figure 8, right. We first ran the OLIM on a radial mesh of size 2001×7200
and then repeated the computation on a refined mesh of size 4001× 14400. The
radial update factors Kr were 50 and 100, respectively, and the angular update
factors Ka were 180 and 360, respectively. For the coarser mesh, the resulting values
of the quasipotential on γ+ varied from 18.19488 to 18.19501, averaging 18.19495.
For the finer mesh, these numbers were, respectively, 18.19536, 18.19541, and
18.19536. These results suggest the following estimate for expected escape time
from C+ at ρ = 15:

E[τC+] � e18.2/ε . (35)

For comparison and a consistency check, we have also found the quasipotential
barrier by integrating the geometric action along the MAP going from C+ to γ+.

https://youtu.be/mzdUD-ngqYs
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Figure 8. Left: radial meshes on the manifold M± consisting of all characteristics going
from the saddle cycles γ+ (the thick purple curve) and γ− (the thick red curve) to the
equilibria C± (the large red dots), respectively. Right: the quasipotential computed on M+.

Note that the length of this MAP is infinite. However, the contribution to the
geometric action from the integration along its infinite piece lying within a δ-tube
around γ+ tends to zero as δ→ 0 as the quasipotential is Lipschitz-continuous [3].
Therefore, it suffices to take a finite piece of the MAP starting at C+ and ending
near γ+. We took a piece of MAP of length 308.7 and obtained the value of the
quasipotential barrier 19.3, which is closer to 18.2 as found by the 2D computation
rather than to 17.4 as found by the 3D one. The result 19.3 is affected by numerical
errors in the MAP and by the quadrature error amplified by the large length of
the MAP. As ρ increases to ρ2 ≈ 24.74, the MAP spirals denser and denser, and
integration of the geometric action along it becomes less and less accurate. So we
abandon this consistency check for values of ρ larger than 15.

5C2. ρ = 20. For ρ = 20, we performed a computation in the cube with side
length 26 centered at C+ on a 1001× 1001× 1001 mesh with K = 20. This cube
encloses γ+. The values of the computed quasipotential on γ+ range from 6.59
to 6.62 and average 6.61. The level sets corresponding to U = 3.3 and U = 6.58
are shown in Figure 9. A 2D computation on the manifold M+ similar to the
one described in Section 5C1 gave U (γ+) ∈ [6.1172, 6.1175] with the average
at 6.1172. The MAP going from C+ to γ+ as well as the characteristics going
from γ+ to C+ spiral notably denser than their counterparts at ρ = 15, and the
level sets of the quasipotential are thinner. The saddle cycles are the escape states
from the basins of C± to a chaotic region [21] where it is hard to predict for a
characteristic which attractor, C+ or C−, it will eventually approach. We traced
1000 trajectories starting on the cone ϒ+ (see Table 1) at the points of the form
yi := xi + 0.002(xi −C+) where xi ∈ γ+, i = 1, . . . , 1000, are equispaced, and
recorded whether they converged to C+ or C− as t→∞: 508 and 492 trajectories
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Figure 9. Two views of the level sets of the quasipotential at ρ = 20 corresponding to
U = 3.3 (the blue surface), and U = 6.58 (the red surface). The thick bright red curves are
the saddle cycles γ±. The dark blue curves are characteristics going from γ+ to C+ and
C−. The dark red curve is a MAP starting at C+ and approaching γ+. A movie with this
figure rotating around the x3-axis is available at https://youtu.be/JhBU0-dnos8.

converged to C+ and C−, respectively. Then we subdivided γ+ into 100 intervals of
equal length and used the recorded data to estimate the probability for a trajectory
starting at each yi corresponding to xi in each interval to converge to C+. The result
is shown in Figure 10, left. The probabilities for γ− are obtained by symmetry.
Note that a similar calculation for ρ = 15 gave the probability distribution depicted
in Figure 10, right: 975 out of 1000 trajectories starting at the analogous points of
the cone ϒ+ eventually approached C−, while 25 returned to C+. The uncertainty
for where the trajectory of (2) that escapes all level sets of the quasipotential not
containing the saddle cycle will eventually go, to C+ or to C−, appears where the
saddle cycles γ± come close to each other.

Summarizing our findings for ρ = 20, we predict that the expected escape time
from C± to the chaotic region scales as

E[τC+] � e6.1/ε . (36)

5D. 24.06 ≈ ρ1 < ρ < ρ2 ≈ 24.74. It was recognized by Lorenz [22] that the
strange attractor is an “infinite complex of surfaces”, i.e., a fractal, which is a very
complicated geometric object. The addition of small white noise to the Lorenz
system regularizes and simplifies its dynamics in the sense that it renders the
fine structure of the Lorenz attractor irrelevant and allows for a description of the
dynamics in terms of probability measures. Taking this into account, we approximate
the strange attractor AL with a union of four manifolds as shown in Figure 11.

https://youtu.be/JhBU0-dnos8
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Figure 10. The probability for a trajectory starting on the cones ϒ± at the point of the
form x + 0.002(x −C±) where x ∈ γ±, respectively, to converge to C+. Left: ρ = 20.
Right: ρ = 15.

Figure 11. The strange attractor AL at ρ = 24.4 is approximated by a union of four
manifolds: red, magenta, blue, and green. The color of the large dots on the manifolds
indicate the thickness of the fractal (the Lorenz attractor) at the corresponding locations.
The colorbar corresponds to − log10 w(x) where w(x) is the thickness of the fractal near
the location x. Hence, dark blue dots indicate thickness ∼ 10−1, light blue ones ∼ 10−2,
yellow ones ∼ 10−3, orange ones ∼ 10−4, and red ones ∼ 10−5.

These manifolds were obtained using the code StrangeAttractorMesh.m in a way
similar to the one described in Appendix F. The key component of this construction
is finding a trajectory going into the saddle at the origin. We will refer to the inner
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Figure 12. ρ = 24.4. Two views of the level sets of the quasipotential computed with
respect to C+. The green surface corresponds to the quasipotential value slightly less than
the one at γ+. The blue and red ones correspond to U = 2 and U = 20, respectively. The
strange attractor is depicted with a mesh visible inside the blue and red surfaces. A movie
with this figure rotating around the x3-axis is available at https://youtu.be/ELqkeb8M1fg.

boundaries of the red and blue manifolds plotted with brown and cyan, respectively,
as the eyes Y+ and Y−. The union of the red and green boundaries will be called wing
W+. Similarly, the union of the blue and magenta boundaries forms the wing W−.
In order to understand what the minimal reasonable value of the parameter ε in
(2) that makes such an approximation sensible is, we have estimated the thickness
of the strange attractor at 398 randomly picked points. Details are provided in
Appendix G. The thickness map in Figure 11 indicates that the thickness of AL does
not exceed 10−2 wherever it is approximated by a single manifold. Larger values of
thickness are found in places where we approximate AL with two close manifolds.
Hence, they are just an artifact of our thickness measurement method. The thickness
map suggests that

√
ε in SDE (2) should be at least 10−2, i.e., ε & 10−4.

We performed a 3D computation of the quasipotential with respect to C+ aiming
at obtaining the overall picture. The computational domain was a box centered
at C+ and embracing the strange attractor. Note that this computation is too rough
to give accurate numbers; nevertheless, it captures the geometry of the level sets.
The level sets of the computed quasipotential shown in Figure 12 agree with our
expectations: the quasipotential grows until it reaches the strange attractor, remains
nearly constant on it, and then grows fast away from it, mainly along the union of
manifolds that extends the strange attractor. Again, we performed a 2D computation
on the manifold M+ on a radial 6001× 7200 mesh with Kr = 150 and Ka = 500
and found the quasipotential at γ+ to be equal to 0.03466 (see Figure 13). For
comparison, the 3D computation performed in a cube with size 6 centered at C+ on
a 1001×1001×1001 mesh with K = 20 gave the quasipotential on γ+ around 0.25,
which is more than 7 times larger due to the issues illustrated in Figure 1. This shows

https://youtu.be/ELqkeb8M1fg
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Figure 13. Left: a coarsened radial mesh on the manifold M+ at ρ = 24.4. The coordinate
system is associated with the directions of eigenvectors of the quasipotential matrix for the
Jacobian evaluated at C+. Right: the quasipotential computed on this mesh.

that our reduction to 2D is very important for obtaining accurate quasipotential
barriers.

Figure 11 shows that the quasipotential level sets primarily grow along the edge
of the strange attractor while remaining quite thin. This observation suggests two
possible transition mechanisms from the strange attractor to C+. The first one
would start near the eye Y+, climb up to γ+, and then switch to spiraling toward C+.
The second one would involve sliding toward γ+ from the neighborhood of the
wing W− to a region lying between the eye and γ+ and starting spiraling toward γ+
and then toward C+. Note that a MAP for the second mechanism at ρ = 24.08
was found in [37]. Coarsened versions of meshes generated for computing the
quasipotential barriers for each of these transition mechanisms are displayed in
Figure 14, top left and center, respectively. The “eye” mesh in Figure 14, top left,
is lying on the unstable loop-shaped manifold of γ+ between the γ+ and Y+. Its
size is 1501× 6000. The found quasipotential on γ+ is 0.01543 (see Figure 14,
top right). The “wing + eye” mesh in Figure 14, center, is defined on the union of
the following two manifolds. The wing manifold is defined by trajectories starting
near the negative x3-semiaxis and bounded by W+ and a trajectory approaching γ+.
The second one is the loop-shaped unstable manifold of γ+ located between γ+
and Y+. The total mesh size is 1501× 26001, of which a 1501× 6000 piece covers
the loop. The quasipotential computed on it is shown in Figure 14, bottom. Its part
corresponding to the loop, naturally, involves significantly smaller values than the
one corresponding to the strip around the wing. The quasipotential value on γ+ for
this mesh is 0.01479, which is smaller than the one for the eye mesh.
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Figure 14. ρ = 24.4. Top left: a coarsened version of the“eye” mesh. The coordinate
axes vi , i = 1, 2, 3, are chosen along the eigenvectors of the quasipotential matrix Q
of the linearized near C+ vector field. Top right: the quasipotential computed on the
“eye” mesh. Center: a coarsened version of the “wing + eye” mesh. Bottom: the
quasipotential computed on the “wing + eye” mesh. The arclength values less and
greater than approximately 125 correspond to the “wing” and “eye” meshes, respectively.
The discontinuity along the line where these meshes are glued is caused by the behavior of
MAPs. The lightest yellow region of the plot corresponds to values of the quasipotential
exceeding the maximal value 0.016 on the colorbar.
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ρ attractor escape state barrier

12 C+ the origin 19.5
15 C+ γ+ 18.2
20 C+ γ+ 6.1
24.4 C+ γ+ 0.0247
24.4 AL γ+ 0.0154 (“eye”)
24.4 AL γ+ 0.0148 (“wing + eye”)

Table 2. Quasipotential barriers for stochastic Lorenz’63 (2) at σ = 10, β = 8
3 , and a set

of values of ρ.

As we have mentioned above, the strange attractor has a finite width varying
roughly from 0 to 10−2. This means that, in order to treat it as a union of four
manifolds as shown in Figure 11 while considering the dynamics according to
SDE (2), the parameter ε should be chosen at least as large as 10−4. The discussed
transition mechanisms from AL to C± are associated with close quasipotential barri-
ers: the difference between them is about 5 · 10−4. Therefore, in order to determine
which transition mechanism is dominant for ε ∼ 10−4, one needs to compute the
preexponential factors of the corresponding transition rates. Estimation of these
prefactors is beyond the scope of the present work. We leave the development of
numerical methods for their evaluation for the future.

We summarize the found quasipotential barriers in Table 2.

5E. Perspectives and challenges for large ρ. Our numerical experiments show
that the level sets of the quasipotential thin out and the diameter of the strange
attractor increases as ρ grows (Figure 15). On one hand, this creates an underres-
olution problem for 3D computations as mesh planes cannot be aligned with the
level sets of the quasipotential because they are not flat. Handling this issue by
means of mesh refinement is limited by the computer’s memory. For example, for
ρ = 100.75 where two attracting limit cycles exist, the minimal level set of the
quasipotential computed with respect to one of these cycles and enclosing the other
one is thinner than the mesh step at some places.

On the other hand, thinning out of the level sets allows us to use 2D computations
provided that we have an insight about possible transition mechanisms as we have
had for ρ = 24.4. This insight for larger values of ρ can be gained from a 3D
computation conducted not in a box but on a specially designed mesh.

6. Conclusions

We have developed a methodology for computing the quasipotential and finding
quasipotential barriers for highly dissipative and possibly chaotic 3D dynamical
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systems perturbed by small white noise. The proposed approach combines 3D
computations on regular rectangular meshes with, if relevant, dimensional reduction
techniques and 2D computations on radial meshes. This methodology has been
developed on and applied to stochastic Lorenz’63 with σ = 10, β = 8

3 , and a number
of values of ρ ranging from 0.5 to 24.4.

We have shown that, as ρ increases, the level sets of the quasipotential thin
out and the ratio of magnitudes of the rotational and potential components grows
dramatically. On one hand, these facts render the numbers produced by 3D com-
putations progressively less accurate. On the other hand, the manifolds consisting
of characteristics going from escape states to attractors and those consisting of
MAPs running the other way around become very close to each other. This obser-
vation motivated us to approximate the manifolds formed by the MAPs with those
consisting of the characteristics.

We have developed a technique for generating radial meshes on manifolds
consisting of such characteristics and tested our 2D OLIM quasipotential solver on
an ad hoc system where the magnitude of the rotational component exceeds that
of the potential one by a factor at least as large as 103, approximately as it is for
ρ = 24.4 in (2). The least squares fit for this example has given a superquadratic
convergence and small normalized maximal absolute errors on practical mesh sizes.

Using a combination of 3D and 2D computations, we found quasipotential barriers
for the escapes from the basins of C± at ρ = 12, 15, 20, and 24.4. Furthermore, we
estimated quasipotential barriers for the escape from the basin of the Lorenz attractor
at ρ = 24.4 via two escape mechanisms. These barriers for 24.4 are close to each
other: the difference between them is of the same order of magnitude as the minimal
value of ε that makes traversing between different sheets of the Lorenz attractor
easy. Therefore, estimates for the preexponential factors for these escape rates are
necessary in order to determine which transition mechanism is dominant. We have
left the development of techniques for computing these prefactors for the future.

An important advantage of computing the quasipotential in 3D is that it allows
us to visualize the stochastic dynamics. Plots of quasipotential level sets reveal the
hierarchy of regions of the phase space reachable by the system perturbed by small
white noise on different timescales. In particular, the visualization of the level sets
of the quasipotential at ρ = 24.4 suggested we consider and compare two possible
transition mechanisms between the strange attractor and the stable equilibria.

Our C and Matlab programs developed for the application to Lorenz’63 are
posted on M. Cameron’s web site [5] (see the package Qpot4Lorenz63.zip) and
on GitHub [4].

The numerical techniques developed in this work can be used for the quasipoten-
tial analysis of certain classes of other 2D and 3D SDEs. The dimensional reduction
to 2D can be beneficial for any 3D SDEs where the quasipotential with respect to
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an attractor grows primarily along some 2D manifold. The use of radial meshes
can dramatically improve the accuracy of found quasipotential thresholds in the
case if the attractor is a stable spiral point and, perhaps, the transition state is an
unstable limit cycle.

The application to the Lorenz’63 model allows us to see the limitations of the
3D quasipotential solver: the growth of required computational domains together
with thinning out of the level sets results in underresolving the latter even with
the use of 10013 mesh sizes. This motivates the directions of the future research
associated with (i) combining the 3D OLIMs with techniques for generating a 3D
mesh adapted for the geometry of the problem and (ii) advancing the techniques for
learning 2D manifolds near which the stochastic dynamics are effectively focused.

Appendix A: Derivation of some equations in Section 2

The geometric action (9). Let φ : [T0, T1] → Rd be a path with the endpoints
φ(T0) ∈ A and φ(T1) = x. Expanding the squared norm in (8) and using the
inequality

‖φ̇‖2+‖b(φ)‖2 ≥ 2‖φ̇‖‖b(φ)‖,
we obtain

ST0,T1(φ)≥

∫ T1

T0

(‖b(φ)‖‖φ̇‖− b(φ) · φ̇) dt. (37)

The equality holds if and only if ‖b(φ)‖ = ‖φ̇‖. Since we are taking the infimum
of ST0,T1(φ) in particular with respect to T0 and T1, we choose the parametrization
of φ so that ‖b(φ)‖ = ‖φ̇‖ and change T0 and T1 accordingly. Note that T0 and T1

are allowed to be −∞ and +∞, respectively. Next, we observe that the integral in
the right-hand side of (37) is invariant under reparametrization of the path φ. We
denote the path φ reparametrized by its arclength by ψ and obtain (9).

The Hamilton–Jacobi equation (11) for the quasipotential and (13) for the MAP.
Let the path ψ parametrized according to its arclength (i.e., ‖ψ ′‖ = 1) be the
minimizer of the geometric action (9) among all absolutely continuous paths with
one endpoint at x and the other one at A. Let us pick a small number δ > 0. Using
Bellman’s optimality principle [1] and Taylor expansion of U , we obtain

U (x)= inf
‖ψ ′‖=1

{∫ δ

0
(‖b(ψ)‖− b(ψ) ·ψ ′) ds+U

(
x−

∫ δ

0
ψ ′ ds

)}
= inf
‖ψ ′‖=1

{δ(‖b(ψ)‖− b(ψ) ·ψ ′−∇U (x) ·ψ ′)+U (x)+ O(δ2)}.

Canceling U (x) on both sides and dividing by δ we get

0= inf
‖ψ ′‖=1

{‖b(ψ)‖− b(ψ) ·ψ ′−∇U (x) ·ψ ′+ O(δ)}.
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Taking the limit as δ→ 0, we obtain

inf
‖ψ ′‖=1

{‖b(x)‖− (b(x)+∇U (x)) ·ψ ′} = 0. (38)

The infimum is attained when the term (b(x)+∇U (x)) ·ψ ′ is maximal, i.e., when

ψ ′ =
b(x)+∇U (x)
‖b(x)+∇U (x)‖

. (39)

Observing that x is the point of the path ψ at which ψ ′ is evaluated, we see that
(39) coincides with (13). Plugging (39) into (38), we get

‖b(x)‖ = ‖b(x)+∇U (x)‖. (40)

Taking squares of both sides of (38), canceling ‖b(x)‖2, and dividing by 2, we
obtain the desired Hamilton–Jacobi equation (11):

1
2‖∇U (x)‖2+ b(x) · ∇U (x)= 0.

Appendix B: The dynamics of the Lorenz system (16)

Let us fix the parameters σ = 10 and β = 8
3 . As ρ grows from zero to infinity, the

dynamics of (16) go through a number of bifurcations [21; 30; 31; 32].

• For all 0< ρ <∞, the origin is a fixed point of (16). It is the only equilibrium
for 0 < ρ < 1, and it is globally attracting. At ρ = 1, a supercritical pitchfork
bifurcation occurs transforming the origin into a Morse index-one saddle and giving
birth to two equilibria

C± =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
. (41)

They remain asymptotically stable for 1< ρ < ρ2 ≈ 24.74. The unstable manifold
of (16) linearized near the saddle at the origin for 1 < ρ <∞ is the span of the
vector

ξ =

 σ

(σ − 1)/2+
√
((σ + 1)/2)2+ σ(ρ− 1)

0

 . (42)

To delineate the evolution of the dynamics of (16) as ρ grows from 1 to infinity,
we have plotted the bifurcation diagram displayed in Figure 15. For each ρ from
1.05 to 349.95 with step 0.1, we traced the trajectory starting at 10−2ξ for time
0≤ t ≤ 200 and recorded its points of intersection with the plane

α = {x | x3 = ρ− 1}

passing through the equilibria C±. The x1-components of these intersects are shown
with pink dots in the (ρ, x1)-plane. The time interval 0≤ t ≤ 200 is large enough for
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Figure 15. Top: consider the characteristics of (16) emanating from the origin along the
directions ξ and −ξ and traced for the time interval 0≤ t ≤ 200. The x1-components of
their intersections with the horizontal plane passing through the equilibria C± are plotted
for 1≤ ρ ≤ 350 with pink and gray dots, respectively. Then each characteristic continues
to be traced for 200 ≤ t ≤ 400. The resulted x1-components of their intersections with
the same plane are marked with red and black, respectively. Bottom: a zoom-in of the
top. The dashed green vertical lines correspond to the critical values of ρ: ρ0 ≈ 13.926,
ρ1 ≈ 24.06, and ρ2 ≈ 24.74.
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this trajectory to approach an attractor. Then, in order to depict x1-components of
the intersection of the attractor with the plane α, we continued tracing the trajectory
for 200≤ t ≤ 400 and plotted the x1-components of its intersects with α with red
dots. The corresponding sets of points for the trajectory starting at −10−2ξ are
obtained using the aforementioned symmetry of (16). They are plotted with gray
and black dots, respectively. This procedure is implemented in the Matlab code
lorenz_diagram.m.

• For 1 < ρ < ρ0 ≈ 13.926, the characteristics emanating from the saddle at the
origin along the directions ξ and −ξ approach, respectively, C+ and C− without
crossing the plane x1 = 0 (see Figure 15).

• The interval 13.926 ≈ ρ0 < ρ < ρ2 ≈ 24.74 is marked by the existence of the
saddle limit cycles γ+ and γ− surrounding C+ and C−, respectively. The equilibria
C± remain the only attractors for ρ0 < ρ < ρ1 ≈ 24.06. At ρ = ρ0, there exist
homoclinic orbits emanating from the origin and approaching it as t→∞. For all
ρ0 < ρ < ρ1, the characteristics emanating from the origin along the directions ξ
and −ξ go approximately half-way around the limit cycles, cross the plane x1 = 0,
and approach C− and C+, respectively (see Figure 15). As ρ grows within this
interval, there develops a phenomenon called preturbulence [21], characterized by
chaotic behavior and divergence of close characteristics in a region surrounding γ±.
Let ϒ+ be a cone consisting of all rays starting at C+ and crossing γ+, i.e.,

ϒ+ := {C++ t (x−C+) | t ≥ 0, x ∈ γ+}. (43)

Characteristics starting on ϒ+ near and outside γ+ perform more and more revolu-
tions around C+ and C− prior to settling to spiraling near one of the stable equilibria.
Moreover, as ρ tends to ρ1, it is getting progressively harder and finally impossible
to predict using double-precision arithmetic which equilibrium such a characteristic
will eventually approach. An example of two characteristics for ρ = 20 starting
at two close points near γ+ on the cone ϒ+ and eventually approaching different
equilibria is shown in Figure 16. At ρ = ρ1, the characteristics emanating from the
origin along the directions ξ and −ξ approach γ− and γ+, respectively. This gives
birth to a strange attractor also known as the Lorenz attractor. We will denote it
by AL .

• For 24.06≈ ρ1 < ρ < ρ2 ≈ 24.74, there are three attractors: the strange attrac-
tor AL , and the asymptotically stable equilibria C±. The characteristics emanating
from the origin along ±ξ miss the saddle cycles γ∓, respectively, and start spiraling
away from them. The γ± lie on the boundaries of the basins of C±, respectively,
and as we show in Section 5D play roles of the escape states. At ρ = ρ2, the saddle
cycles γ± shrink to the corresponding equilibria C±, rendering them unstable; i.e.,
a subcritical Hopf bifurcation takes place.
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Figure 16. An example of two characteristics at ρ = 20 starting at two close points lying
near γ+ on the cone with vertex at C+ and consisting of all rays passing through γ+ and
eventually diverging and approaching different equilibria.

• For 24.74 ≈ ρ2 < ρ < ∞, the dynamics are complicated as can be inferred
from Figure 15, top. AL is the only attractor for some open interval of ρ starting
at ρ2 (Figure 15, bottom). It exists for a union of intervals of ρ stretching up to
approximately ρ = 215.364 [30]. The interval ρ2 < ρ . 215.364 is cut through
by a number of windows of periodicity where there exist attracting limit cycles.
The largest of them is 145 . ρ . 166. Other windows are seen around ρ = 93,
ρ = 100, ρ = 133, and ρ = 181.5. Zooming in, we can spot more windows of
periodicity (see Figure 15, bottom) and reveal cascades of period doublings marking
the Feigenbaum scenarios of transition to chaos. The final doubling period interval
215.364 . ρ . 313 [30] is clearly visible in Figure 15, top. Near ρ = 313, two
symmetric attracting limit cycles merge into one resulting in the final limit cycle
that remains the only attractor for all larger values of ρ.

Appendix C: The KKT conditions for the simplex update

The Lagrange function for the constrained minimization problem (19)–(20) is

L(λ, µ)=Uλ+QM(xλ, x)−µ1λ1−µ2λ2−µ3(1− λ1− λ2), (44)

where λ= [λ1, λ2] and µ= [µ1, µ2, µ3]. For brevity, we denote the function to be
minimized by f :

f (λ) :=Uλ+QM(xλ, x).
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The KKT optimality conditions applied to (44) are

∇λL(λ, µ)=∇ f (λ)−µ1

[
1
0

]
−µ2

[
0
1

]
−µ3

[
−1
−1

]
=

[
0
0

]
, (45)

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, (46)

λ1 ≥ 0, λ2 ≥ 0, 1− λ1− λ2 ≥ 0, (47)

λ1µ1 = 0, λ2µ2 = 0, (1− λ1− λ2)µ3 = 0. (48)

Let us check whether the initial guess λ= [λ∗, 0] where λ∗ is the minimizer of f
on [λ1, 0], 0<λ1 < 1, corresponding to the line segment [x0, x1], satisfies the KKT
conditions (45)–(48). Condition (48) with λ1 = λ

∗
∈ (0, 1) and λ2 = 0 implies that

µ1 = µ3 = 0. Therefore, the first component in (45) is zero as

∂

∂λ1
f (λ∗, 0)= 0. (49)

The second component of (45) must be also zero; hence,

∂

∂λ2
f (λ∗, 0)−µ2 = 0. (50)

Condition (46) demands that µ2 ≥ 0. Hence, λ = [λ∗, 0] is a solution of the
constrained minimization problem (19)–(20) if

µ2 =
∂

∂λ2
f (λ∗, 0)≥ 0, (51)

i.e., if (21) holds. In this case, we reject the simplex update. Otherwise, we proceed
with solving the minimization problem (19)–(20).

Appendix D: Quasipotential decomposition for linear SDEs

In this appendix, we explain how one can find the quasipotential for linear SDEs
for which the origin is an asymptotically stable equilibrium. This is useful for
initializing the OLIMs near asymptotically stable equilibria and for estimating the
ratio of the magnitudes of the rotational and potential components of the vector
field.

Let J be a d × d matrix with all eigenvalues having negative real parts. In this
work, J is the Jacobian matrix of the vector field b evaluated at an asymptotically
stable equilibrium x∗ of ẋ = b(x). We consider the linear SDE for the variable
y := x− x∗:

d y = J y dt +
√
ε dw. (52)

The problem of finding the quasipotential decomposition for the vector field J y
reduces to the problem of finding a symmetric positive definite matrix Q such
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that [8; 7]

y>Q(J + Q) y = 0 for all y ∈ Rd . (53)

The matrices Q and L := J + Q are called the quasipotential matrix and the
rotational matrix, respectively. Condition (53) is equivalent to the requirement that
the matrix Q(J + Q) is antisymmetric, i.e., Q(J + Q)+ (J + Q)>Q = 0. The
last equation for Q is reducible to a Sylvester equation for Q−1 and has a unique
positive definite solution that can be found using the Bartels–Stewart algorithm
implemented in Matlab in the command sylvester (see [35] for details).

To make our quasipotential solver for the Lorenz system self-contained and
facilitate experiments with various values of ρ, we have developed a C code
LinLorenz.c for finding the quasipotential decomposition for the Lorenz system
linearized near its asymptotically stable equilibria. The quasipotential decom-
position is found by an algorithm similar to Bartels–Stewart but simplified and
customized for Lorenz’63. A description of it is linked to the provided software
package [5].

Once the quasipotential decomposition for a linearized system is available, one
can obtain an estimate for the ratio 4(x) of the magnitudes of the rotational and
potential components near asymptotically stable equilibria:

4. max
‖ y‖=1

‖L y‖
‖Q y‖

. (54)

The graph of the right-hand side of (54) with J been the Jacobian matrix evaluated
at C+ of (16) is plotted in Figure 2 for the range 1< ρ < ρ2 ≈ 24.74.

Appendix E: Proof of Lemma 4.1

Proof. First we prove that the manifold M′ consisting of MAPs going from the
attractor A to the curve γ lies in the sublevel set Va . Let ψ be a MAP going from A
to γ . Since Va completely lies in the basin of A, the quasipotential strictly increases
along the MAP. Therefore, for any y lying on the path ψ , U ( y)≤ a, which means
that ψ ⊂ Va . Since this is true for all such MAPs, M′ ⊂ Va .

Now let us prove that the manifold M consisting of all characteristics starting at γ
and running to A lies in Va . We proceed from the converse. Suppose a characteristic
starting at γ and going to A leaves Va at a point x0 and reenters Va at a point x1

after that. Let y be a point of this characteristic located between x0 and x1. Since
the motion of the characteristic contributes nothing to the Freidlin–Wentzell action
(8), U ( y) = U (x0) = a. This contradicts the assumption that y /∈ Va . Therefore,
the characteristic must completely lie in Va . Since this argument applies to all
characteristics constituting M, we conclude that M⊂ Va . �
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Appendix F: Building radial meshes

Suppose we would like to build a radial mesh on a 2D manifold formed by character-
istics of ẋ = b(x) going from an unstable limit cycle γ to an asymptotically stable
spiral point x∗. First, we pick a set of points xk , k = 0, 1, . . . , Na − 1, equispaced
along γ . For each point xk , we define a plane αk passing through x∗ and xk whose
normal ak lies in the plane spanned by b(xk) and xk

− x∗.
Then, we trace a trajectory y(t) starting near γ and ending upon reaching a δ-ball

centered at x∗ where δ is a small number. Let y1, . . . , yn be the set of intersects
of y(t) with the plane α0 at which the sign of ( y(t)− x0)>a0 changes from “−”
to “+”. Adding x0 and x∗ to this set and interpolating, we get a curve lying in α0

and connecting γ and x∗. We define a set of points {z0
i }

Nr−1
i=0 uniformly distributed

along this curve such that z0
0 ≡ x∗ and z0

Nr−1 ≡ x0.
Next, for k = 0, 1, 2, . . . , Na − 2, we trace the trajectories starting at zk

i , i =
1, . . . , Nr − 2, and terminate them as soon as they reach the plane αk+1. As above,
we add xk+1 and x∗ to these terminal points, interpolate them, and pick a set of
points zk+1

i , i = 0, . . . , Nr −1, uniformly distributed along the interpolant and such
that zk+1

0 ≡ x∗ and zk+1
Nr−1 ≡ xk+1. As a result, we obtain the radial mesh

{zk
i | 0≤ i ≤ Nr − 1, 0≤ k ≤ Na − 1}.

This procedure is implemented in the Matlab code make2Dmesh.m in the package
Qpot4Lorenz63.zip [5].

Similar methodologies have been used to construct radial meshes between two
simple closed curves and between two given segments of two distinct characteristics.

Appendix G: Estimating the width of the Lorenz attractor

Let x be a point lying on the Lorenz attractor AL , and let α be the plane passing
through x and normal to b(x) where b is the Lorenz vector field; i.e.,

α := {z ∈ R3
| (z− x)>b(x)= 0}.

We trace a trajectory y(t) starting at x for time 104 and record the points yi ,
1≤ i ≤ N , at which the sign of ( y(t)− x)>b(x) switches from “−” to “+”. We set
up a Cartesian coordinate system (η1, η2) in the plane α with the origin at y1 ≡ x
and find the coordinates of the recorded points yi : yi ≡ (η

i
1, η

i
2). We pick a square

S := [−0.25≤ η1 ≤ 0.25]× [−0.25≤ η2 ≤ 0.25] in this plane and select the subset
I ⊂ {1, . . . , N } such that the points yi , i ∈ I , lie in S. Visualizing the set yi , i ∈ I ,
and zooming in if necessary, we see that they are arranged near two almost parallel
lines (see Figure 17). The least squares fit to this set of points with a linear function
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Figure 17. Estimating the thickness of the Lorenz attractor using linear least squares fits
in a Poincaré section.

η2 = aη1+ b gives a line dividing it into two subsets:

I1 = {i ∈ I | ηi
2 < aηi

1+ b},

I2 = {i ∈ I | ηi
2 > aηi

1+ b}.

Next, we find linear least squares fits η2 = a1η1+ b1 and η2 = a2η1+ b2 for the
subsets of yi corresponding to I1 and I2, respectively. One of these linear functions
must pass very close to the origin because x lies near one of these lines; hence,
either b1 or b2 is very close to zero in comparison with the other one. Assume
that |b2| � |b1|. If this is the other way around, we swap the notations. Also,
these lines are almost parallel; hence, a1 and a2 are very close. Finally, we find a
line orthogonal to η2 = a1η1 + b1 and passing through the origin: η2 = −a−1

1 η1.
Then the thickness of AL near x is approximately equal to the distance between
the origin and the intersect of η2 =−a−1

1 η1 and η2 = a1η1+ b1. This technique is
implemented in the Matlab program thickness.m [5; 4].

Acknowledgements

We thank Doctor E. S. Kurkina for inspiring discussions on the Lorenz’63 system
and sharing numerical techniques for plotting bifurcational diagrams and finding
unstable limit cycles. We are also grateful to Professor James Yorke and Professor
Kevin Lin for valuable advice regarding preparation of this manuscript. This work
is partially supported by NSF grant DMS1554907.



STOCHASTIC LORENZ’63 245

References

[1] R. Bellman, Dynamic programming, Princeton University, 1957. MR Zbl

[2] F. Bouchet and J. Reygner, Generalisation of the Eyring–Kramers transition rate formula to
irreversible diffusion processes, Ann. Henri Poincaré 17 (2016), no. 12, 3499–3532. MR Zbl

[3] M. K. Cameron, Finding the quasipotential for nongradient SDEs, Phys. D 241 (2012), no. 18,
1532–1550. MR Zbl

[4] , OLIM-for-Lorenz63, 2019, C and Matlab code, version 1.1, also available on GitHub.

[5] , OLIM: ordered line integral methods for computing the quasi-potential, 2019, C and
Matlab code.

[6] A. Chacon and A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM J. Sci.
Comput. 34 (2012), no. 2, A547–A578. MR Zbl

[7] Z. Chen, Asymptotic problems related to Smoluchowski–Kramers approximation, Ph.D. thesis,
University of Maryland, 2006.

[8] Z. Chen and M. Freidlin, Smoluchowski–Kramers approximation and exit problems, Stoch. Dyn.
5 (2005), no. 4, 569–585. MR Zbl

[9] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer.
Math. Soc. 277 (1983), no. 1, 1–42. MR Zbl

[10] D. Dahiya and M. Cameron, An ordered line integral method for computing the quasi-potential
in the case of variable anisotropic diffusion, Phys. D 382/383 (2018), 33–45. MR Zbl

[11] , Ordered line integral methods for computing the quasi-potential, J. Sci. Comput. 75
(2018), no. 3, 1351–1384. Zbl

[12] S. V. Dudul, Prediction of a Lorenz chaotic attractor using two-layer perceptron neural network,
Appl. Soft Comput. 5 (2005), no. 4, 333–355.

[13] W. E, W. Ren, and E. Vanden-Eijnden, Minimum action method for the study of rare events,
Comm. Pure Appl. Math. 57 (2004), no. 5, 637–656. MR Zbl

[14] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 3rd ed.,
Grundlehren der Mathematischen Wissenschaften, no. 260, Springer, 2012. MR Zbl

[15] C. Gissinger, A new deterministic model for chaotic reversals, Eur. Phys. J. B 85 (2012), no. 4,
137–148.

[16] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études
Sci. Publ. Math. (1979), no. 50, 59–72. MR Zbl

[17] F. Hamilton, T. Berry, and T. Sauer, Predicting chaotic time series with a partial model, Phys.
Rev. E 92 (2015), no. 1, art. id. 010902(R).

[18] M. Heymann and E. Vanden-Eijnden, The geometric minimum action method: a least action
principle on the space of curves, Comm. Pure Appl. Math. 61 (2008), no. 8, 1052–1117. MR
Zbl

[19] , Pathways of maximum likelihood for rare events in nonequilibrium systems: application
to nucleation in the presence of shear, Phys. Rev. Lett. 100 (2008), no. 14, art. id. 140601.

[20] H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of
eikonal type, Proc. Amer. Math. Soc. 100 (1987), no. 2, 247–251. MR Zbl

[21] J. L. Kaplan and J. A. Yorke, Preturbulence: a regime observed in a fluid flow model of Lorenz,
Comm. Math. Phys. 67 (1979), no. 2, 93–108. MR Zbl

[22] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), no. 2, 130–141. Zbl

http://msp.org/idx/mr/0090477
http://msp.org/idx/zbl/0077.13605
http://dx.doi.org/10.1007/s00023-016-0507-4
http://dx.doi.org/10.1007/s00023-016-0507-4
http://msp.org/idx/mr/3568024
http://msp.org/idx/zbl/1375.82081
http://dx.doi.org/10.1016/j.physd.2012.06.005
http://msp.org/idx/mr/2957825
http://msp.org/idx/zbl/1253.35229
http://dx.doi.org/10.5281/zenodo.3246550
https://github.com/mar1akc/OLIM-for-Lorenz63/tree/1.1
https://www.math.umd.edu/~mariakc/olim.html
http://dx.doi.org/10.1137/10080909X
http://msp.org/idx/mr/2914295
http://msp.org/idx/zbl/1244.49047
https://search.proquest.com/docview/305300792
http://dx.doi.org/10.1142/S0219493705001560
http://msp.org/idx/mr/2185506
http://msp.org/idx/zbl/1083.60018
http://dx.doi.org/10.2307/1999343
http://msp.org/idx/mr/690039
http://msp.org/idx/zbl/0599.35024
http://dx.doi.org/10.1016/j.physd.2018.07.002
http://dx.doi.org/10.1016/j.physd.2018.07.002
http://msp.org/idx/mr/3861794
http://msp.org/idx/zbl/07075023
http://dx.doi.org/10.1007/s10915-017-0590-9
http://msp.org/idx/zbl/1395.65150
http://dx.doi.org/10.1016/j.asoc.2004.07.005
http://dx.doi.org/10.1002/cpa.20005
http://msp.org/idx/mr/2032916
http://msp.org/idx/zbl/1050.60068
http://dx.doi.org/10.1007/978-3-642-25847-3
http://msp.org/idx/mr/2953753
http://msp.org/idx/zbl/1267.60004
http://dx.doi.org/10.1140/epjb/e2012-20799-5
http://www.numdam.org/item?id=PMIHES_1979__50__59_0
http://msp.org/idx/mr/556582
http://msp.org/idx/zbl/0436.58018
http://dx.doi.org/10.1103/PhysRevE.92.010902
http://dx.doi.org/10.1002/cpa.20238
http://dx.doi.org/10.1002/cpa.20238
http://msp.org/idx/mr/2417888
http://msp.org/idx/zbl/1146.60046
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.2307/2045953
http://dx.doi.org/10.2307/2045953
http://msp.org/idx/mr/884461
http://msp.org/idx/zbl/0644.35017
http://dx.doi.org/10.1007/BF01221359
http://msp.org/idx/mr/539545
http://msp.org/idx/zbl/0443.76059
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://msp.org/idx/zbl/06851676


246 MARIA CAMERON AND SHUO YANG

[23] C. Lv, X. Li, F. Li, and T. Li, Constructing the energy landscape for genetic switching system
driven by intrinsic noise, PLOS One 9 (2014), no. 2, art. id. e88167.

[24] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed., Springer, 2006. MR Zbl

[25] D. Rand, The topological classification of Lorenz attractors, Math. Proc. Cambridge Philos. Soc.
83 (1978), no. 3, 451–460. MR Zbl

[26] B. Saltzman, Finite amplitude free convection as an initial value problem, I, J. Atmos. Sci. 19
(1962), no. 4, 329–341.

[27] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equations,
Proc. Natl. Acad. Sci. USA 98 (2001), no. 20, 11069–11074. MR Zbl

[28] , Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms,
SIAM J. Numer. Anal. 41 (2003), no. 1, 325–363. MR Zbl

[29] F. Sorrentino and E. Ott, Using synchronization of chaos to identify the dynamics of unknown
systems, Chaos 19 (2009), no. 3, art. id. 033108. Zbl

[30] C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, Applied Mathe-
matical Sciences, no. 41, Springer, 1982. MR Zbl

[31] , An introduction to the Lorenz equations, IEEE Trans. Circuits and Systems 30 (1983),
no. 8, 533–542. MR

[32] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering, 2nd ed., Westview, Boulder, CO, 2015. MR Zbl

[33] D. Viswanath, The fractal property of the Lorenz attractor, Phys. D 190 (2004), no. 1-2, 115–128.
MR Zbl

[34] R. F. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. (1979),
no. 50, 73–99. MR Zbl

[35] S. Yang, S. F. Potter, and M. K. Cameron, Computing the quasipotential for nongradient SDEs
in 3D, J. Comput. Phys. 379 (2019), 325–350. MR

[36] J. A. Yorke and E. D. Yorke, Metastable chaos: the transition to sustained chaotic behavior in
the Lorenz model, J. Statist. Phys. 21 (1979), no. 3, 263–277. MR

[37] X. Zhou and W. E, Study of noise-induced transitions in the Lorenz system using the minimum
action method, Commun. Math. Sci. 8 (2010), no. 2, 341–355. MR Zbl

[38] X. Zhou, W. Ren, and W. E, Adaptive minimum action method for the study of rare events, J.
Chem. Phys. 128 (2008), no. 10, art. id. 104111.

Received November 22, 2018. Revised June 15, 2019.

MARIA CAMERON: cameron@math.umd.edu
Department of Mathematics, University of Maryland, College Park, College Park, MD, United States

SHUO YANG: shuoyang@math.umd.edu
Department of Mathematics, University of Maryland, College Park, College Park, MD, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1371/journal.pone.0088167
http://dx.doi.org/10.1371/journal.pone.0088167
http://dx.doi.org/10.1007/978-0-387-40065-5
http://msp.org/idx/mr/2244940
http://msp.org/idx/zbl/1104.65059
http://dx.doi.org/10.1017/S0305004100054736
http://msp.org/idx/mr/481632
http://msp.org/idx/zbl/0375.58015
http://dx.doi.org/10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
http://dx.doi.org/10.1073/pnas.201222998
http://msp.org/idx/mr/1854545
http://msp.org/idx/zbl/1002.65112
http://dx.doi.org/10.1137/S0036142901392742
http://msp.org/idx/mr/1974505
http://msp.org/idx/zbl/1040.65088
http://dx.doi.org/10.1063/1.3186458
http://dx.doi.org/10.1063/1.3186458
http://msp.org/idx/zbl/1317.34124
http://dx.doi.org/10.1007/978-1-4612-5767-7
http://msp.org/idx/mr/681294
http://msp.org/idx/zbl/0504.58001
http://dx.doi.org/10.1109/TCS.1983.1085400
http://msp.org/idx/mr/715508
http://msp.org/idx/mr/3837141
http://msp.org/idx/zbl/1343.37001
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://msp.org/idx/mr/2043795
http://msp.org/idx/zbl/1041.37013
http://www.numdam.org/item?id=PMIHES_1979__50__73_0
http://msp.org/idx/mr/556583
http://msp.org/idx/zbl/0484.58021
http://dx.doi.org/10.1016/j.jcp.2018.12.005
http://dx.doi.org/10.1016/j.jcp.2018.12.005
http://msp.org/idx/mr/3892894
http://dx.doi.org/10.1007/BF01011469
http://dx.doi.org/10.1007/BF01011469
http://msp.org/idx/mr/542050
http://dx.doi.org/10.4310/CMS.2010.v8.n2.a3
http://dx.doi.org/10.4310/CMS.2010.v8.n2.a3
http://msp.org/idx/mr/2664454
http://msp.org/idx/zbl/1202.34104
http://dx.doi.org/10.1063/1.2830717
mailto:cameron@math.umd.edu
mailto:shuoyang@math.umd.edu
http://msp.org


Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Politecnico di Milano, Italy
alfio.quarteroni@polimi.it

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2019 is US $105/year for the electronic version, and $155/year (+$15, if shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to
MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@polimi.it
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.org/camcos
http://msp.org/
http://msp.org/


Communications in Applied Mathematics
and Computational Science

vol. 14 no. 2 2019

121Simple second-order finite differences for elliptic PDEs with discontinuous
coefficients and interfaces

Chung-Nan Tzou and Samuel N. Stechmann

1492D force constraints in the method of regularized Stokeslets
Ondrej Maxian and Wanda Strychalski

175Potential field formulation based on decomposition of the electric field for a
nonlinear induction hardening model

Tong Kang, Ran Wang and Huai Zhang

207Computing the quasipotential for highly dissipative and chaotic SDEs an
application to stochastic Lorenz’63

Maria Cameron and Shuo Yang

247Efficient multigrid solution of elliptic interface problems using
viscosity-upwinded local discontinuous Galerkin methods

Robert I. Saye

1559-3940(2019)14:2;1-7

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.14,
no.2

2019


	1. Introduction
	2. Definition and significance of the quasipotential
	3. A brief overview of Lorenz'63
	4. Numerical methods
	4A. A brief overview of ordered line integral methods (OLIMs)
	4B. Challenges of computing the quasipotential for stochastic Lorenz'63
	4C. Radial meshes on manifolds

	5. Results
	5A. 0< < 1
	5B. 1< < 0 13.926
	5C. 13.9260 < < 1 24.06
	5C1. = 15
	5C2. = 20

	5D.  24.061 < <224.74
	5E. Perspectives and challenges for large 

	6. Conclusions
	Appendix A. Derivation of some equations in 0=section.61=2
	Appendix B. The dynamics of the Lorenz system lorenz
	Appendix C. The KKT conditions for the simplex update
	Appendix D. Quasipotential decomposition for linear SDEs
	Appendix E. Proof of 0=lemma.451=Lemma 4.1
	Appendix F. Building radial meshes
	Appendix G. Estimating the width of the Lorenz attractor
	Acknowledgements
	References
	
	

