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To the reader

Dear Reader:

The Moscow Journal of Combinatorics and Number Theory was founded in 2010 by the Moscow
Institute of Physics and Technology, and in 2018 it started being published by MSP (Mathematical
Sciences Publishers), a nonprofit scientific publisher based in Berkeley, California.

Our journal publishes original, high-quality research articles from a broad range of interests within
combinatorics, number theory and allied areas. Since 2011 we have published over 100 papers. Among
our authors are such mathematicians as Noga Alon, Antal Balog, Jean-Pierre Demailly, Dominic Foata,
Peter Frankl, Aleksandar Ivić, Sergei Konyagin, Yuri Nesterenko, János Pach, Yakov Sinai, Andrzej
Schinzel, Wolfgang Schmidt, Carlo Viola, Michel Waldschmidt, and many others.

This issue 1 of volume 8 is the first issue to appear under MSP’s aegis. It contains selected papers
presented by the participants of the Vilnius Conference in Combinatorics and Number Theory, which was
organized with support from our journal and took place at the Department of Mathematics and Informatics
of the University of Vilnius, Lithuania, 16–22 July 2017.

Previous conferences connected to our journal were held in Russia (Diophantine analysis, Astrakhan,
30 July to 3 August 2012), Lithuania (Palanga Conference in Combinatorics and Number Theory,
1–7 September 2013), again Russia (Moscow Workshop in Combinatorics and Number Theory, January
27 to 2 February 2014), and Denmark (Diophantine Approximation and Related Topics, Aarhus, 13–17
July 2015).

A collection of papers from the Astrakhan conference appeared in issue 3–4 of volume 3 (2013), and
papers related to the Aarhus conference in issue 2–3 of volume 6 (2016).

We hope that you will enjoy this issue and support the journal both with your submissions and by
recommending a subscription to your institutional library!

NIKOLAY MOSHCHEVITIN:

moshchevitin@gmail.com
Lomonosov Moscow State University Moscow, Russia

ANDREI RAIGORODSKII:

mraigor@yandex.ru
Moscow institute of Physics and Technology, and Lomonosov Moscow State University Moscow, Russia

MJCNT — published in partnership with the
Moscow Institute of Physics and Technology msp
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Sets of inhomogeneous linear forms
can be not isotropically winning

Natalia Dyakova

We give an example of irrational vector θ ∈ R2 such that the set

Badθ :=
{
(η1, η2) : inf

x∈N
x1/2 max

i=1,2
‖xθi − ηi‖> 0

}
is not absolutely winning with respect to McMullen’s game.

1. Introduction

We consider a problem related to inhomogeneous Diophantine approximation. Given θ = (θ1, θ2) ∈ R2

we study the set of pairs (η1, η2) ∈ R2 such that the system of two linear forms

‖xθ1− η1‖, ‖xθ2− η2‖,

where ‖·‖ stands for the distance to the nearest integer, is badly approximable. We prove a statement
complementary to our recent result from [Bengoechea et al. 2017]. We construct θ such that the set

Badθ :=
{
(η1, η2) : inf

x∈N
x1/2 max

i=1,2
‖xθi − ηi‖> 0

}
is not isotropically winning.

Our paper is organized as follows. In Section 2 we discuss different games appearing in Diophantine
problems. In Section 3 we give a brief survey on inhomogeneous badly approximable systems of linear
forms and formulate our main result, Theorem 3.1. Sections 4 and 5 are devoted to some auxiliary
observations. In Sections 6, 7, and 8 we give a proof for Theorem 3.1.

2. Schmidt’s game and its generalizations

The following game was introduced by Schmidt [1966; 1969; 1980]. Let 0 < α, β < 1. Suppose that
two players A and B choose in turn a nested sequence of closed balls:

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ · · ·

with the property that the diameters |Ai |, |Bi | of the balls Ai , Bi satisfy

|Ai | = α|Bi |, |Bi+1| = β|Ai | for all i = 1, 2, 3, . . . ,

The author is supported by RFBR Grant No. 18-01-00886a.
MSC2010: 11J13.
Keywords: inhomogeneous diophantine approximation, winning sets.
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4 NATALIA DYAKOVA

for fixed 0< α, β < 1. A set E ⊂ Rn is called (α, β)-winning if player A has a strategy which guarantees
that intersection

⋂
Ai meets E regardless of the way B chooses to play. A set E ⊃ Rn is called an

α-winning set if it is (α, β)-winning for all 0< β < 1.
There are different modifications of Schmidt’s game: the strong game and absolute game introduced in

[McMullen 2010], the hyperplane absolute game introduced in [Kleinbock and Weiss 2010], the potential
game considered in [Fishman et al. 2013], and some others. In [Bengoechea et al. 2017], we introduced
isotropically winning sets. Let us describe here some of these generalizations in more detail.

The definition of an absolutely winning set was given in [McMullen 2010]. Consider the following
game. Suppose A and B choose in turn a sequence of balls Ai and Bi such that the sets

B1 ⊃ (B1\A1)⊃ B2 ⊃ (B2\A2)⊃ B3 ⊃ · · ·

are nested. For fixed 0< β < 1
3 we suppose

|Bi+1| ≥ β|Bi |, |Ai | ≤ β|Bi |.

We say E is an absolute winning set if for all β ∈
(
0, 1

3

)
, player A has a strategy which guarantees

that ∩Bi meets E regardless of how B chooses to play. Mcmullen proved that an absolute winning set
is α-winning for all α < 1

2 . Several examples of absolute winning sets were exhibited by McMullen
[2010]. In particular, a set of badly approximable numbers in R is absolutely winning. However the set
of simultaneously badly approximable vectors in Rn for n > 1 is not absolutely winning.

In [Bengoechea et al. 2017] another strong variant of the winning property was given. We say that a
set E ⊂ Rn is isotropically winning if for each d ≤ n and for each d-dimensional affine subspace A⊂ Rn

the intersection E ∩A is 1
2 -winning for Schmidt’s game considered as a game in A. It is clear that an

absolute winning set is isotropically winning for each α ≤ 1
2 .

3. Inhomogeneous approximations

The first important result on inhomogeneous approximations in the one-dimensional case is due to Khin-
chine [1926]. He proved that there exists an absolute constant γ such that for every θ ∈ R there exists
η ∈ R such that

inf
q∈Z

q‖qθ − η‖> γ.

Later (see [Khinchin 1937; 1948]) he proved that for given positive numbers n,m ∈ Z there exists a
positive constant γnm such that for any m× n real matrix θ there exists a vector η ∈ Rn such that

inf
x∈Zm\{0}

(‖θx− η‖Zn )n‖x‖m > γnm

(here ‖·‖Zn stands for the distance to the nearest integral point in sup-norm). These results are presented
in a wonderful book by Cassels [1957].

Jarník [1941], proved a generalization of this statement. Suppose ψ(t) is a function decreasing to zero
as t→+∞. Let ρ(t) be the function inverse to the function t 7→ 1/ψ(t). Suppose that for all t > 1 one
has ψθ (t)≤ ψ(t). Then there exists a vector η ∈ Rn such that

inf
x∈Zm\{0}

(‖θx− η‖Zn ) · ρ(8m · ‖x‖) > γ
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with appropriate γ = γ (n,m).
Denote by

Badθ =
{
α ∈ [0, 1) : inf

q∈N
q · ‖qθ −α‖> 0

}
.

It happens that the winning property of this inhomogeneous Diophantine set was considered quite recently.
Tseng [2009] showed that Badθ is winning for all real numbers θ in classical Schmidt’s sense. For the
corresponding multidimensional sets

Bad(n,m)=
{
θ ∈Matn×m(R) : inf

q∈Zm
6=0

max
1≤i≤n

(|q|m/n
‖θi (q)‖) > 0

}
.

the winning property is shown, for example, in [Einsiedler and Tseng 2011; Moshchevitin 2011]. In
[Broderick et al. 2013] it was shown that the set Bad(n,m) is hyperplane absolutely winning. The
methods used in [Broderick et al. 2013] come from [Broderick et al. 2011].

Further generalizations deal with the twisted sets

Bad(i, j)=
{
(θ1, θ2) ∈ R2

: inf
q∈N

max(q i
‖qθ1‖, q j

‖qθ2‖) > 0
}
,

where i, j are real positive numbers satisfying i + j = 1, introduced by Schmidt. In [An 2016] it was
proved that Bad(i, j) is winning for the standard Schmidt game. In higher dimension, we fix an n-tuple
k = (k1, . . . , kn) of real numbers satisfying

k1, . . . , kn > 0 and
n∑

i=1

ki = 1, (1)

and define
Bad(k, n,m)=

{
θ ∈Matn×m(R) : inf

q∈Zm
6=0

max
1≤i≤n

(|q|mki‖θi (q)‖) > 0
}
.

Here, | · | denotes the supremum norm, θ = (θi j ), and θi (q) is the product of the i-th line of θ with the
vector q , i.e.,

θi (q)=
m∑

j=1

q jθi j .

In the twisted setting, much less is known. In particular up to now the winning property of the set
Bad(k, n,m) in dimension greater that two is not proved.

Given θ ∈Matn×m(R), we define

Badθ (k, n,m)=
{

x ∈ Rn
: inf

q∈Zm
6=0

max
1≤i≤n

(|q|mki‖θi (q)− xi‖) > 0
}
.

Harrap and Moshchevitin [2017] showed that this set is winning provided that θ ∈ Bad(k, n,m). In
[Bengoechea et al. 2017] it was proved that if we suppose that θ ∈ Bad(k, n,m), the set Badθ (k, n,m)
is isotropically winning.1

We should note that even in the case n = 2,m = 1 it is not known if the set Badθ (k, 2, 1) is α-winning
for some positive α without the condition θ ∈ Bad(k, 2, 1).

1In fact, the approach from [Bengoechea et al. 2017] gives a little bit more. Instead of property that for any subspace A the
intersection E ∩A is 1

2 -winning in A, one can see that it is α-winning for all α ∈
(
0, 1

2
]
. It is not completely clear for the author

if these two properties are equivalent. (For a closely related problem, see [Dremov 2002].)



6 NATALIA DYAKOVA

In this article we show that the condition θ be from Bad(k, n,m) is essential for the isotropically
winning property, and prove the following theorem.

Theorem 3.1. There exists a vector θ = (θ1, θ2) such that:

(1) 1, θ1, θ2 are linearly independent over Z.

(2) Badθ := {(η1, η2) : infx∈N x1/2 maxi=1,2 ‖xθi − ηi‖> 0} is not isotropically winning.

4. Some more remarks

In the sequel, x = (x0, x1, x2) is a vector in R3, | · | stands for the Euclidean norm of the vector, and by
(w, t) we denote the inner product of vectors w and t .

The proof of Theorem 3.1 we will give in Section 6. There we will construct a special θ and a one-
dimensional affine subspace P such that θ ∈ P and for the segment D = P ∩ {|z − θ | ≤ 1} one has
D∩Badθ =∅. Moreover, given an arbitrary positive function ω(t) monotonically (slowly) increasing
to infinity we can ensure that for all η = (η1, η2) ∈ D there exist infinitely many x ∈ Z such that

max
i=1,2
‖xθi − ηi‖<

ω(x)
x
.

To explain the construction of the proof it is useful to consider the case when θ1, θ2, 1 are linearly
dependent. This case we will discuss in Section 5.

Remark 4.1. From the result of the paper [Bengoechea et al. 2017] it follows that the vector θ constructed
in Theorem 3.1 does not belong to the set

Bad=
{
(θ1, θ2) | inf

x∈N
x1/2 max(‖θ1x‖, ‖θ2x‖) > 0

}
.

Remark 4.2. Let θ = (a1/q, a2/q) be rational. Let η = (η1, η2) /∈
1
q ·Z

2; then for any x ∈ Z,

max
i=1,2

∥∥∥∥x
ai

q
− ηi

∥∥∥∥≥ dist
(
η, 1

q ·Z
2)> 0.

So the set

B =
{
η : inf

x∈Z
max
i=1,2

∥∥∥∥x
ai

q
− ηi

∥∥∥∥> 0
}

contains R2
\

1
q ·Z

2 and is trivially winning. It is clear that for any one-dimensional affine subspace ` we
have B∩ `⊃

(
R2
\

1
q ·Z

2
)
∩ `. So obviously B∩ ` is also winning in `.

5. Linearly dependent case

Let 1, θ1, θ2 be linearly dependent and at least one of θ j is irrational. This means that there exists
z = (z0, z1, z2) ∈ Z3 such that (z, θ)= 0. Let us consider the two-dimensional rational subspace

π = {x ∈ R3
: (x, z)= 0},

so θ ∈ π .
Let us define the one-dimensional subspace P = {(x1, x2) : (1, x1, x2) ∈ π} ⊂ R2.
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We will prove that there exists a constant γ such that for any η = (η1, η2) ∈ P the inequality

max
i=1,2
‖θi x − ηi‖<

γ

x

has infinitely many solutions in x ∈ N. (This statement is similar to Chebyshev’s theorem [Khinchin
1964, Theorem 24, Chapter 2].)

Denote by 3 = π ∩ Z3 the integer lattice with the determinant d := det3 = |z|. Denote by {gν =
(qν, a1ν, a2ν)}ν=1,2,3,... ⊂3 the sequence of the best approximations of θ by the lattice 3 and the corre-
sponding parallelograms

5ν =
{

x = (x0, x1, x2) ∈ π : 0≤ x0 ≤ qν, dist(x, l(θ))≤ dist(gν−1, l(θ))
}
,

which contains a fundamental domain of the two-dimensional 3. Obviously, vol5ν ≤ 4d . So,

dist(gν−1, l(θ))�
d
qν
, (2)

with an absolute constant in the sign�. It is clear that for any point η ∈ π , the shift η+5ν contains a
point of 3.

For any η = (η1, η2) ∈ P and for any positive integer ν the planar domain η+5ν , η = (1,−η1,−η2)

contains an integer point y = (x, y1, y2) ∈3.
It is clear that

1≤ x ≤ 1+ qν (3)
and

max
i=1,2
‖θi x − ηi‖� dist( y, l(θ)+ η)� dist(l(θ), gν−1),

and by (2),

max
i=1,2
‖θi x − ηi‖�

d
qν
. (4)

From (3), (4) it follows that the inequality

max
i=1,2
‖θi x − ηi‖�

d
x

has infinitely many solutions and everything is proved.

6. Inductive construction of integer points

Let ω(t) be arbitrary positive function monotonically (slowly) increasing to infinity. Here we describe
the inductive construction of integer points zν = (qν, z1ν, z2ν). The base of the induction process is trivial.
One can take an arbitrary primitive pair of integer vectors that can be completed to a basis of Z3.

Suppose that we have two primitive integer vectors

zν−1 = (qν−1, z1 ν−1, z2 ν−1) ∈ Z3, zν = (qν, z1 ν, z2 ν) ∈ Z3.

Now we explain how to construct the next integer vector zν+1.
We consider the two-dimensional subspace

πν = 〈zν−1, zν〉R.
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The pair of vectors zν−1 and zν is primitive, so the lattice spanned by them is

3ν := 〈zν−1, zν〉Z = πν ∩Z3.

By dν = det3ν we denote the two-dimensional fundamental volume of the lattice 3ν . Now we define
the vector nν = (n0ν, n1ν, n2ν) ∈ R3 from the conditions

πν = {x ∈ R3
: (x, nν)= 0}, |nν | = 1.

Put
σν = dist(zν−1, l(zν)). (5)

Obviously, |zν | � qν and

σν �
dν
qν
. (6)

We define a vector eν from the conditions

eν ∈ πν, |eν | = 1, (eν, zν)= 0, (7)

so eν is parallel to πν and orthogonal to zν .
Define the rectangle

5ν =
{

x = (x0, x1, x2) : x = t zν + r eν, 0≤ t ≤ |zν |, |r | ≤ σν
}
.

It is clear that rectangle 5ν ⊂ πν contains a fundamental domain of the lattice 3ν . We need two axillary
vectors za

ν and zb
ν defined as

za
ν = zν + aνeν, zb

ν = za
ν + bνnν,

where positive aν is chosen in such a way that

aνd2
ν ≤ ν

−1ω

(
q2
ν

d2
ν

·
1
aν

)
(8)

and

bν = aν min
(

1,
dν
qν

)
. (9)

From the construction, it follows that

|za
ν | � |z

b
ν | � |zν | � qν . (10)

The integer lattice Z3 splits into levels with respect to the two-dimensional sublattice3ν in such a way that

Z3
=

⊔
i∈Z

3ν,i ,

where3ν, j =3ν+ j z′, j ∈Z and integer vector z′ completes the couple zν−1, zν to the basis in Z3. We con-
sider the affine subspace π1

ν = πν + z′ ⊃3ν,1, which is parallel to πν . It is clear that dist(πν, π1
ν )= 1/dν .

We need to determine the next integer point zν+1. Denote by P the central projection with center 0
onto the affine subspace π1

ν . We consider the triangle 1 with vertices zν, za
ν , zb

ν and its image P1 under
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O

Zν

Za
ν

Z

π1
ν

51
ν

πν

Figure 1. The central projection P.

the projection P (Figure 1).
Define

Z =Pzb
ν . (11)

One can see that
|Z| �

qν
dνbν

. (12)

Define rays
R1 = {z = Z+ t zν : t ≥ 0} and R2 = {z = Z+ t za

ν : t ≥ 0}.

It is clear that R1 ∩R2 = {Z} and R1,R2 ⊂ π
1
ν . Moreover, the whole convex angle bounded by rays

R1,R2 form the image of the triangle 1 under the projection P:

P1= conv(R1 ∪R2).

The affine subspace π1
ν contains the affine lattice 31

ν = 3ν + z′ which is congruent to the lattice 3ν .
Thus, for any ζ ∈ π1

ν , the shift 5ν + ζ contains an integer point from 31
ν .

Put

τν =
2σν |zν |

aν
. (13)

Consider the point
ζν = Z+ τν zν + σνeν ∈ π1

ν ,

and the rectangle
51
ν =5ν + ζν ⊂ π

1
ν .

It is clear that
51
ν ⊂P1

(here Z was defined in (11), eν was defined in (7), and the parameters σν, τν come from (5) and (13)).
Now we take the integer point

zν+1 = (qν+1, z1 ν+1, z2 ν+1) ∈3
1
ν ∩5

1
ν .
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From the construction it follows that

qν+1 � |zν+1| � |z| + τν |zν | + |zν | � qν

(
1+

1
dνbν
+
σν

aν

)
� qν

(
1+

1
dνbν

)
+

dν
aν
�

qν
dνbν

.

(Here we use (6), (9), (10), (12), and (13).) From (9) we see that

qν+1�

(
qν
dν

)2 1
aν
. (14)

Now we are able to define the next two-dimensional lattice

3ν+1 = 〈zν, zν+1〉Z.

Let dν+1 be its fundamental volume. We will estimate the value of dν+1 taking into account (9) as

dν+1� qν · dist(zν+1, l(zν))�
qν
dν
·

aν
bν
�

(
qν
dν

)2

� q2
ν . (15)

From (14) and (15), we deduce that
dν+1� aνd2

νqν+1.

By the choice of aν (by formula (8)) we have

dν+1 ≤
ω(qν+1)

ν
. (16)

7. The vector θ

Now we define
θν = (θ1ν, θ2ν), θ jν =

q jν

qν
.

We consider the angles between the successive vectors nν and nν+1:

αν = angle(nν, nν+1)� tan angle(nν, nν+1).

Since zν+1 ∈P1 (see Figure 2), we have

tan angle(nν, nν+1)≤
bν
aν
,

O
Zb
ν

Za
ν

Zν

Zν+1

Figure 2. The vector zzzν+1 intersects the interior of the triangle 1= zzzνzzza
νzzz

b
ν .
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and so

αν �
bν
aν
. (17)

As zν+1 ∈P1, we have

|θν − θν+1| �

√
a2
ν + b2

ν

qν
�

aν
qν

(18)

by the same argument. There exist limits

lim
ν→∞

θν = θ = (θ1, θ2) and lim
ν→∞

nν = n,

and from (17) and (18) we deduce that

0< |θ − θν | �
aν
qν

(19)

and

angle(n, nν)�
bν
aν
. (20)

It is clear that θ 6∈ Q2. A slight modification2 of the procedure of choosing vectors zν ensures the
condition that 1, θ1, θ2 are linearly independent over Z. Define π = {x ∈ R3

: (x, n)= 0}. Then θ ∈ π
by continuity and we can assume that n 6∈Q3.

8. Winning property

Consider the one-dimensional affine subspaces

Pν = {(x1, x2) ∈ R2
: (1, x1, x2) ∈ πν} ⊂ R2

and
P = {(x1, x2) ∈ R2

: (1, x1, x2) ∈ π} ⊂ R2,

where π was defined at the end of the previous section. Let

B1(θ)= {ξ ∈ R2
: dist(ξ , θ) < 1}.

We will show that for any η= (η1, η2) ∈ P ∩ B1(θ) there exists infinitely many solutions of the inequality

max
i=1,2
‖θi x − ηi‖<

ω(x)
x

in integers x . Denote by ην = (η1ν, η2ν) the orthogonal projection of η onto Pν . From (20) we see that

|η− ην | �
bν
aν
. (21)

2A similar procedure was explained in [Moshchevitin 2012]. There, the author provides the linear independence of coordi-
nates of the limit vector by “going away from all rational subspaces” (the beginning of the proof of Theorem 1 in the case k = 1,
p. 132 and the beginning of §5, p. 146).
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For any ην = (η1ν, η2ν) ∈ Pν the planar domain ην +5ν, ην = (1,−η1ν,−η2ν) contains an integer
point yν = (xν, y1ν, y2ν) ∈3ν . It is clear that

|xν | � qν (22)
and

max
i=1,2
|θiνxν − ηiν − yiν | �

dν
qν
. (23)

By (19), (21), (22), and (23) we have

max
i=1,2
‖θi xν − ηi‖ ≤ |xν |max

i=1,2
|θi − θiν | +max

i=1,2
‖θiνxν − ηiν‖+max

i=1,2
|ηi − ηiν | � aν +

dν
qν
+

bν
aν
�

dν
qν
.

In the last inequality we use (9). By (16) we have

max
i=1,2
‖θi xν − ηi‖ ≤

ω(qν)
qν

for large ν. As η ∈ π and yν ∈ πν , maxi=1,2‖θi xν − ηi‖ 6= 0 infinitely often (in fact for all large ν).
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Some remarks on the asymmetric sum-product phenomenon

Ilya D. Shkredov

Using some new observations connected to higher energies, we obtain quantitative lower bounds on
maxfjABj; jACC jg and maxfjABj; j.AC˛/C jg, where ˛¤ 0, in the regime when the sizes of the finite
subsets A;B;C of a field differ significantly.

1. Introduction

Let p be a prime number and A;B � Fp D Z=pZ be finite sets. Define the sum set, the difference set,
the product set, and the quotient set of A and B as

ACB WD faC b W a 2 A; b 2 Bg; A�B WD fa� b W a 2 A; b 2 Bg;

AB WD fab W a 2 A; b 2 Bg; A=B WD fa=b W a 2 A; b 2 B; b ¤ 0g:

One of the central problems in arithmetic combinatorics [Tao and Vu 2006] is the sum-product problem,
which asks for estimates of the form

maxfjACAj; jAAjg � jAj1Cc (1)

for some positive c. This question was originally posed by Erdős and Szemerédi [1983] for finite sets of
integers; they conjectured that (1) holds for all c < 1. The sum-product problem has since been studied
over a variety of fields and rings; see, e.g., [Bourgain 2003; 2005b; 2007, Bush and Croot 2014; Bourgain
et al. 2004; Erdős and Szemerédi 1983; Tao and Vu 2006]. We focus on the case of Fp (and sometimes
consider R), where the first estimate of the form (1) was proved by Bourgain, Katz, and Tao [Bourgain
et al. 2004]. At the moment the best results in this direction are contained in [Roche-Newton et al. 2016;
Konyagin and Shkredov 2016].

In this article we study an asymmetric variant of the sum-product question, in the spirit of the funda-
mental paper [Bourgain 2005c]: namely, sum-product theorems in Fp for sets of distinct sizes. We recall
two results from that paper:

Theorem 1. Given 0 < " < 1
10

, there is ı > 0 such that the following holds. Let A � Fp be such that
p" < jAj< p1�": Then either

jABj> pı jAj for all B � Fp with jBj> p"

or

jACC j> pı jAj for all C � Fp with jC j> p":

MSC2010: 11B30, 11P70.
Keywords: sum-product, expanders, exponential sums.
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Theorem 2. Given 0 < " < 1
10

, there is ı > 0 such that the following holds. Let A � Fp be such that
p" < jAj< p1�": Then for any x ¤ 0 either

jABj> pı jAj for all B � Fp with jBj> p"

or

j.AC x/C j> pı jAj for all C � Fp with jC j> p":

Theorems 1 and 2 were derived in [Bourgain 2005c] from the following result from [Bourgain 2005a].
Given a set A� Fp denote by TC

k
.A/ WD jf.a1; : : : ; ak; a

0
1; : : : ; a

0
k
/2A2k Wa1C� � �CakDa

0
1C� � �Ca

0
k
gj.

We write EC.A/ for TC2 .A/.

Theorem 3. For a positive integer Q, there are a positive integer k and a real � > 0 such that if H � F�p
and jHH j< jH j1C� , then

TC
k
.H/ < jH j2k.p�1C1=QC cQjH j

�Q/;

where cQ > 0 depends on Q only.

The aim of this paper is to obtain explicit bounds in the theorems above. Our arguments are different
and more elementary than those of [Bourgain 2005c; Bourgain et al. 2006; Garaev 2010]. In the proof
we almost do not use the Fourier approach and that is why we do not need lower bounds for sizes of
A;B;C in terms of the characteristic p, but, of course, these sets must be comparable somehow. Another
difference between this article and [Bourgain 2005c] is that our arguments work in R as well.

We now formulate our variants of Theorems 1 and 2 (see also Corollary 33). One can show that
Theorem 4 implies Theorems 1 and 2 if jAj< p1=2�"; see Remark 36.

Theorem 4. Let A;B;C � Fp be arbitrary sets, and k � 1 be such that jAjjBj1C
kC1
2.kC4/

2�k
� p and

jBj
k
8
C 1
2.kC4/ � jAj �C

.kC4/=4
� logk.jAjjBj/; (2)

where C� > 0 is an absolute constant. Then

maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g; (3)

and for any ˛ ¤ 0

maxfjABj; j.AC˛/C jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g: (4)

Actually, we prove that the lower bounds for jACC j, j.AC ˛/C j in (3), (4) could be replaced by
similar upper bounds for the energies EC.A; C /, E�.AC ˛; C /; see the second part of Corollary 33.
We call Theorem 4 an asymmetric sum-product result because A can be much larger than B and C
(say, jAj> .jBjjC j/100) in contrast with the usual quadratic restrictions which follow from the classical
Szemerédi–Trotter theorem; see [Szemerédi and Trotter 1983; Tao and Vu 2006] for the real setting and
see [Bourgain et al. 2004; Garaev 2010; Rudnev 2017b] for prime fields. On the other hand, the roles
of B , C are not symmetric as well. The thing is that the method of the proof intensively uses the fact
that if jABj is small comparable to jAj, then, roughly speaking, for any integer k, the size of .kA/B is
small comparable to kA, roughly speaking (rigorous formulation can be found in Section 5). Of course
this observation is not true in any sense if we replace � to C and vice versa.
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Also, we obtain a “quantitative” version of Theorem 3.

Theorem 5. Let A;B � Fp be sets, M � 1 be a real number and jABj �M jAj. For any k � 2 such that
216kM 2kC1C 2� log8 jAj � jBj, one has

TC
2k
.A/�

24kC6C� log4 jAj �M
2k jAj2

kC1

p
C 16k

2

M 2kC1C k�1� log4.k�1/ jAj � jAj2
kC1�4

jBj�
k�1
2 EC.A/: (5)

Here, C� > 0 is an absolute constant.

As a by-product, we obtain the best constants in the problem of estimating the exponential sums over
multiplicative subgroups [Bourgain 2005a; Garaev 2010] (see Corollary 16 below) and relatively good
bounds in the question of basis properties of multiplicative subgroups [Glibichuk and Konyagin 2007].
Also, we find a wide series of “superquadratic expanders in R” [Balog et al. 2017] with four variables;
see Corollary 35.

In contrast to [Bourgain 2005c], we prove Theorem 4 and Theorem 5 independently. We realize that
Theorem 4 is equivalent to estimating energies of another sort, namely,

EC
k
.A/ WD

ˇ̌
f.a1; : : : ; ak; a

0
1; : : : ; a

0
k/ 2 A

2k
W a1� a

0
1 D � � � D ak � a

0
kg
ˇ̌

(see the definitions in Section 2). Thus, a new feature of this paper is an upper bound for EC
k
.A/ for

sets A with jABj � jAj for some large B; see Theorem 27 below. Such an upper bound can be of
independent interest. Let us formulate our result about EC

k
.A/.

Theorem 6. Let A;B � Fp be two sets, k � 0 be an integer, and put M WD jABkC1j=jAj. Then for any
k � 0 such that

jBjk=8C1=2 � jAj �M 2kC123kC1C
.kC4/=4
� logk jABkj;

where C� > 0 is an absolute constant, we have

EC
2kC1

.A/� 2jABkj2
kC1

: (6)

Our approach develops the ideas from [Bourgain 2005c; Shkredov 2014] (see especially Section 4
there) and uses several sum-product observations of course. We avoid repeating Bourgain’s combinatorial
arguments (although we use a similar inductive proof strategy) but the method relies on recent geometrical
sum-product bounds from [Rudnev 2017b] and further papers such as [Yazici et al. 2017; Murphy et al.
2017; Roche-Newton et al. 2016; Shkredov 2017]. In some sense we introduce a new approach of
estimating moments Mk.f / (e.g., TC

k
.H/ in Theorem 3 or EC

k
.A/ in Theorem 6) of some specific

functions f : instead of calculating Mk.f / in terms of suitable norms of f , we compare Mk.f / and
Mk=2.f /. If Mk.f / is much less than Mk=2.f /, then we use induction, and if not, then thanks some
special nature of the function f , we derive from this fact that the additive energy EC of a level set of
f is huge and it gives a contradiction. Clearly, this process can be applied at most O.log k/ number of
times and that is why we usually have logarithmic savings (compare the index in TC

2k
.A/ and the gain

jBj�.k�1/=2 in estimate (5), say).
The paper is organized as follows. Section 2 contains all required definitions. In Section 3 we give

a list of the results, which will be further used in the text. In Section 4, we consider a particular case
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of multiplicative subgroups � and obtain an upper estimate for TC
k
.�/. This technique is developed in

Section 5 although we avoid using the Fourier approach as was done in [Bourgain 2005c] and in the
previous Section 4. Section 5 contains all main Theorems 4–6.

2. Notation

In this paper p is an odd prime number, Fp D Z=pZ, and F�p D Fp n f0g. We denote the Fourier transform
of a function f W Fp! C by Of ,

Of .�/D
X
x2Fp

f .x/e.�� � x/; (7)

where e.x/D e2�ix=p. We rely on the following basic identities. The first one is called the Plancherel
formula and its particular case f D g is called the Parseval identity:X

x2Fp

f .x/g.x/D
1

p

X
�2Fp

Of .�/ Og.�/: (8)

A particular case of (8) is X
y2Fp

ˇ̌̌̌X
x2Fp

f .x/g.y � x/

ˇ̌̌̌2
D
1

p

X
�2Fp

j Of .�/j2j Og.�/j2; (9)

and the formula
f .x/D

1

p

X
�2Fp

Of .�/e.� � x/ (10)

is called the inversion formula. Further let f; g W Fp! C be two functions. Put

.f �g/.x/ WD
X
y2Fp

f .y/g.x�y/ and .f ıg/.x/ WD
X
y2Fp

f .y/g.yC x/: (11)

Then
1f �g D Of Og and 1f ıg D NOf Og: (12)

Put EC.A;B/ for the common additive energy of two sets A;B � Fp (see, e.g., [Tao and Vu 2006]); that is,

EC.A;B/D
ˇ̌
f.a1; a2; b1; b2/ 2 A�A�B �B W a1C b1 D a2C b2g

ˇ̌
:

If AD B we simply write EC.A/ instead of EC.A;A/ and EC.A/ is called the additive energy in this
case. Clearly,

EC.A;B/D
X
x

.A�B/.x/2 D
X
x

.A ıB/.x/2 D
X
x

.A ıA/.x/.B ıB/.x/

and by (9),

E.A;B/D
1

p

X
�

j OA.�/j2j OB.�/j2: (13)

Also, notice that
EC.A;B/�minfjAj2jBj; jBj2jAj; jAj3=2jBj3=2g: (14)
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Sometimes we write EC.f1; f2; f3; f4/ for the additive energy of four real functions, namely,

EC.f1; f2; f3; f4/D
X
x;y;z

f1.x/f2.y/f3.xC z/f4.yC z/:

It can be shown using the Hölder inequality (see, e.g., [Tao and Vu 2006]) that

EC.f1; f2; f3; f4/� .E
C.f1/E

C.f1/E
C.f1/E

C.f1//
1=4: (15)

In the same way define the common multiplicative energy of two sets A;B � Fp:

E�.A;B/D
ˇ̌
f.a1; a2; b1; b2/ 2 A�A�B �B W a1b1 D a2b2g

ˇ̌
:

Certainly, the multiplicative energy E�.A;B/ can be expressed in terms of multiplicative convolutions
similar to (11).

Sometimes we use representation function notations like rAB.x/ or rACB.x/, which counts the number
of ways x 2 Fp can be expressed as a product ab or a sum aC b with a 2 A, b 2 B , respectively. For
example, jAj D rA�A.0/ and EC.A/ D rACA�A�A.0/ D

P
x r

2
ACA.x/ D

P
x r

2
A�A.x/. In this paper,

we use the same letter to denote a set A � Fp and its characteristic function A W Fp ! f0; 1g. Thus,
rACB.x/D .A�B/.x/, say.

Now consider two families of higher energies. Firstly, let

TC
k
.A/ WD

ˇ̌
f.a1; : : : ; ak; a

0
1; : : : ; a

0
k/ 2 A

2k
W a1C � � �C ak D a

0
1C � � �C a

0
kg
ˇ̌
D
1

p

X
�

j OA.�/j2k : (16)

It is useful to note that

TC
2k
.A/D

ˇ̌
f.a1; : : : ; a2k; a

0
1; : : : ; a

0
2k/ 2 A

4k
W .a1C � � �C ak/C .akC1C � � �C a2k/

D .a01C � � �C a
0
k/C .a

0
kC1C � � �C a

0
2k/g

ˇ̌
D

X
x;y;z

rkA.x/rkA.y/rkA.xC z/rkA.yC z/; (17)

so one can rewrite TC
2k
.A/ via the additive energy of the function rkA.x/. Secondly, for k � 2, we put

EC
k
.A/D

X
x2Fp

.A ıA/.x/k D
X
x2Fp

rkA�A.x/D EC.�k.A/; A
k/; (18)

where
�k.A/ WD f.a; a; : : : ; a/ 2 A

k
g:

Thus, EC2 .A/ D TC2 .A/ D EC.A/. Also, notice that we always have jAjk � EC
k
.A/ � jAjkC1 and

moreover
EC
k
.A/� jAjk�lEC

l
.A/ for all l � k: (19)

Finally, let us remark that by definition (18) one has EC1 .A/D jAj
2. Some results about the properties

of the energies EC
k

can be found in [Schoen and Shkredov 2013]. Sometimes we use TC
k
.f / and EC

k
.f /

for an arbitrary function f and the first formula from (18) allows us to define EC
k
.A/ for any positive k.

It was proved in [Shkredov 2017, Proposition 16] that .EC
k
.f //1=2k is a norm for even k and a real
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function f . The fact that .TC
k
.f //1=2k is a norm is contained in [Tao and Vu 2006] and follows from a

generalization of inequality (15).
Let A be a set. Put

RŒA� WD

�
a1� a

a2� a
W a; a1; a2 2 A; a2 ¤ a

�
and

QŒA� WD

�
a1� a2

a3� a4
W a1; a2; a3; a4 2 A; a3 ¤ a4

�
:

All logarithms are base 2. The signs� and� are the usual Vinogradov symbols. When the constants
in the signs depend on some parameter M , we write �M and �M . For a positive integer n, we set
Œn�D f1; : : : ; ng.

3. Preliminaries

We begin with a variation on the famous Plünnecke–Ruzsa inequality; see [Ruzsa 2009, Chapter 1].

Lemma 7. Let G be a commutative group. Also, let A;B1; : : : ; Bh � G , jACBj j D j̨ jAj, j 2 Œh�.
Then there is a nonempty set X � A such that

jX CB1C � � �CBhj � ˛1 : : : ˛hjX j: (20)

Further for any 0 < ı < 1 there is X � A such that jX j � .1� ı/jAj and

jX CB1C � � �CBhj � ı
�h˛1 : : : ˛hjX j: (21)

We need a result from [Rudnev 2017b] or see [Murphy et al. 2017, Theorem 8]. By the number of
point-plane incidences I.P;…/ between a set of points P � F3p and a collection of planes … in F3p we
mean

I.P;…/ WD
ˇ̌
f.p; �/ 2 P �… W p 2 �g

ˇ̌
:

Theorem 8. Let p be an odd prime, P � F3p be a set of points and … be a collection of planes in F3p.
Suppose that jPj D j…j and that k is the maximum number of collinear points in P . Then the number of
point-plane incidences satisfies

I.P;…/�
jPj2

p
CjPj3=2C kjPj: (22)

Notice that in R we do not need in the first term in estimate (22).
Let us derive a consequence of Theorem 8.

Lemma 9. Let A;Q � Fp be two sets, A;Q¤ f0g, M � 1 be a real number, and jQAj �M jQj. Then

EC.Q/� C�

�
M 2jQj4

p
C
M 3=2jQj3

jAj1=2

�
; (23)

where C� � 1 is an absolute constant.
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Proof. Put AD A n f0g. We have

EC.Q/D jfq1C q2 D q3C q4 W q1; q2; q3; q4 2Qgj

� jA�j
�2
jfq1C Qq2=aD q3C Qq4=a

0
W q1; q3 2Q; Qq2; Qq4 2QA; a; a

0
2 A�gj:

The number of the solutions to the last equation can be interpreted as the number of incidences between
the set of points P DQ�QA�A�1� and planes … with jPj D j…j D jA�jjQjjQAj. Here k D jQAj
because A;Q¤ f0g. Using Theorem 8 and a trivial inequality jQAj � jQjjAj, we obtain

EC.Q/� jAj�2
�
jAj2jQj2jQAj2

p
CjQj3=2jQAj3=2jAj3=2

�
�
M 2jQj4

p
C
M 3=2jQj3

jAj1=2
;

as required. �

Finally, we need a purely combinatorial Lemma 10. It is a new (for k > 2) and simple tool which
allows us to estimate the restricted higher energy

P
x2P r

k
A�A.x/ via some energies of A and P ; see

(25), for example.

Lemma 10. Let G be a finite abelian group and A;P subsets of G . For any k � 1 one has�X
x2P

rkA�A.x/

�2
� jAjk

X
x

rkA�A.x/rP�P .x/: (24)

In particular, �X
x2P

rkA�A.x/

�4
� jAj2kEC

2k
.A/EC.P /: (25)

Proof. Clearly, inequality (25) follows from (24) by the Cauchy–Schwarz inequality. To prove estimate
(24), we observe that�X

x2P

rkA�A.x/

�2
D

� X
x1;:::;xk2A

jP \ .A� x1/\ � � � \ .A� xk/j

�2
� jAjk

X
x1;:::;xk

jP \ .A� x1/\ � � � \ .A� xk/j
2
D jAjk

X
x

rP�P .x/r
k
A�A.x/;

as required. �

Combining Theorem 8 and Lemma 10, we obtain a corollary.

Corollary 11. Let A� Fp, and B;P � F�p be sets. Then for any k � 1 one has�X
x2P

rkA�A.x/

�4
� C�jAj

2kEC
2k
.AB/

�
jP j4

p
C
jP j3

jBj1=2

�
: (26)

Proof. By Lemma 10, we have�X
x2P

rkA�A.x/

�2
� jAjk

X
x

rkA�A.x/rP�P .x/:
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Further, clearly for any b 2 B we have

rA�A.x/� rAB�AB.xb/:

Hence�X
x2P

rkA�A.x/

�2
�
jAjk

jBj

X
x

X
b2B

rkAB�AB.xb/rP�P .x/D
jAjk

jBj

X
x

rkAB�AB.x/rB.P�P/.x/:

Using the Cauchy–Schwarz inequality, we obtain�X
x2P

rkA�A.x/

�4
�
jAj2k

jBj2
EC
2k
.AB/

X
x

r2B.P�P/.x/:

To estimate the sum
P
x r

2
B.P�P/

.x/, we use Theorem 8 similar to the proof of Lemma 9 (see [Yazici et al.
2017]). Indeed, taking P D .p1; b0p2; b0/, …D .b; p01; bp2/, where .b; b0; p1; p2; p01; p

0
2/ 2 B

2 �P 4,
we haveX

x

r2B.P�P/.x/D jf.b; b
0; p1; p2; p

0
1; p
0
2/ 2 B

2
�P 4 W b.p1�p2/D b

0.p01�p
0
2/gj

D jf.x; y; z/ 2 P; .b; p01; bp2/ 2… W bxCy �p
0
1z D bp2gj D I.P;…/

� C�

�
jBj2jP j4

p
CjBj3=2jP j3

�
:

Thus, �X
x2P

rkA�A.x/

�4
� C�jAj

2kEC
2k
.AB/

�
jP j4

p
C
jP j3

jBj1=2

�
: �

4. Multiplicative subgroups

In this section we obtain the best upper bounds for TC
k
.�/, EC

k
.�/ and for the exponential sums over

multiplicative subgroups � . We begin with the quantity TC
k
.�/.

Theorem 12. Let � � F�p be a multiplicative subgroup. Then for any k � 2, 264kC 4� � j�j one has

TC
2k
.�/� 24kC6C� log4 j�j � j�j

2kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC1�

kC7
2 EC.�/; (27)

where C� is the absolute constant from Lemma 9.

Proof. Fix any s � 2. Our intermediate aim is to prove

TC2s.�/� 32C�s
4 log4 j�j �

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
: (28)

By (17), we have

TC2s.�/D
X
x;y;z

rs�.x/rs�.y/rs�.xC z/rs�.yC z/:
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Put �D TC2s.�/=.16j�j
3s/. SinceX

x;y;zWrs�.x/��

rs�.x/rs�.y/rs�.xC z/rs�.yC z/� �j�j
3s
D TC2s.�/=16

it follows that
TC2s.�/�

4

3

X0

kx;y;zrs�.x/rs�.y/rs�.xC z/rs�.yC z/C E ;

where the sum
P0 is taken over nonzero variables x; y; z with rs�.x/; rs�.y/; rs�.xCz/; rs�.yCz/ > �

and
E � 4rs�.0/

X
y;z

rs�.y/rs�.z/rs�.yC z/� 4rs�.0/j�j
sTCs .�/� 4j�j

2s�1TCs .�/: (29)

Put Pj D fx W �2j�1 < rs�.x/ � �2
j g � F�p . If (28) does not hold, then, in particular, TC2s.�/ �

25j�j2s�1=2TCs .�/ � 2
5j�j3s�1=2 and hence the possible number of sets Pj does not exceed L WD

s log j�j. Indeed, for any x one has rs�.x/ � j�js�1 and hence �2j�1 D 2j�5TC2s.�/j�j
�3s must be

less than j�js�1 otherwise the correspondent set Pj is empty. In other words,

2j�5 � j�j4s�1=TC2s.�/� j�j
s�1=2=25 � j�js=25

as required. By the Dirichlet principle there is �D �2j0 , and a set P D Pj0 such that

TC2s.�/�
4
3
L4.2�/4EC.P /C E D T02s.�/C E :

Indeed, putting fi .x/D Pi .x/rs�.x/, and using (15), we get

0X
x;y;z

rs�.x/rs�.y/rs�.xCz/rs�.yCz/�

LX
i;j;k;lD1

X
x;y;z

fi .x/fj .y/fk.xCz/fl.yCz/

�

LX
i;j;k;lD1

.EC.fi /E
C.fj /E

C.fk/E
C.fl//

1=4

D

� LX
iD1

.EC.fi //
1=4

�4
� L3

LX
iD1

EC.fi /� L
4 max

i
EC.fi /:

Moreover we always have jP j�2 � TCs .�/ and jP j�� j�js . Using Lemma 9, we obtain

EC.P /� C�

�
jP j4

p
C
jP j3

j�j1=2

�
:

Hence,

T02s.�/�
4
3
.16C�/L

4�4
�
jP j4

p
C
jP j3

j�j1=2

�
�
4
3
.16C�/L

4

�
j�j4s

p
C
jP j3�4

j�j1=2

�
: (30)

Let us consider the second term in (30). Then in view of jP j�2 � TCs .�/ and jP j�� j�js , we have

jP j3�4 D .P�/2P�2 � j�j2sTCs .�/:
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In other words, by (29), we get

TC2s.�/�
4
3
.16C�/L

4

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
C 4j�j2s�1TCs .�/

� 32C�s
4 log4 j�j �

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
and inequality (28) is proved.

Now applying formula (28) successively k�1 times, we obtain

TC
2k
.�/� 24kC6C� log4 j�j �

j�j2
kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC���C4�k�1

2 EC.�/

� 24kC6C� log4 j�j �
j�j2

kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC1�

kC7
2 EC.�/: (31)

To get the first term in the last formula we have used our condition 264kC 4� � j�j to ensure that j�j1=2 �
24kC1C� log4 j�j. �

Remark 13. The condition 264kC 4� � j�j can be dropped, but in that case we will have the factor
16k

2

.C� log j�j/k�1 in the first term of (27).

Splitting any �-invariant set onto cosets over � and applying the norm property of TC
l

, we obtain:

Corollary 14. Let � � F�p be a multiplicative subgroup, and Q � F�p be a set with Q� DQ. Then for
any k � 2, 264kC 4� � j�j one has

TC
2k
.Q/� 24kC6C� log4 j�j �

jQj2
kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j�
kC7
2 EC.�/jQj2

kC1

: (32)

Let � be a subgroup of size less than
p
p. Considering the particular case k D 2 of the formula in

Theorem 12 and using EC.�/� j�j5=2�c , where c > 0 is an absolute constant (see [Shkredov 2013]),
one has:

Corollary 15. Let � be a multiplicative subgroup, j�j �
p
p. Then

TC4 .�/�
j�j8 log4 j�j

p
Cj�j6�c :

In particular, j4�j � j�j2Cc .

Previous results on TC
k
.�/, j�j �

p
p with small k had the form TC

k
.�/� j�j2k�2Cck with some

ck > 0; see, e.g., [Konyagin and Shparlinski 1999]. The best upper bound for TC3 .�/ can be found in
[Shteinikov 2015].

Now we prove a corollary about exponential sums over subgroups, which is parallel to results from
[Bourgain and Garaev 2009; Bourgain et al. 2006; Garaev 2010]. The difference between the previous
estimates and Corollary 16 is just a slightly better constant C in (34).
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Corollary 16. Let � be a multiplicative subgroup, j�j � pı , ı > 0. Then for all sufficiently large p one
has

max
�¤0
j O�.�/j � j�j �p�ı=2

7C2ı�1

: (33)

Further we have a nontrivial upper bound o.j�j/ for the maximum in (33) if

log j�j � C logp
log logp

; (34)

where C > 2 is any constant.

Proof. We can assume that j�j<
p
p, say, because otherwise the estimate (33) is known; see [Konyagin

and Shparlinski 1999]. By � denote the maximum in (33). Then by Theorem 12, a trivial bound EC.�/�

j�j3 and (16), we obtain

j�j�2
kC1

�pT2k .�/� 2
4kC6C� log4 j�j�j�j2

kC1

C16k
2

C k�1� log4.k�1/ j�j�j�j2
kC1�.kC1/=2p; (35)

provided 264kC 4� � j�j. Put k D d2 logp= log j�jC 4e � 2=ıC 5. Also, notice that

p log4.k�1/ j�j
j�jk=2

� 1; (36)

because k � 2 logp= log j�jC 4 and p is a sufficiently large number depending on ı (the choice of k is
slightly larger than 2 logp= log j�j to “kill” p by division by j�jk=2 as well as logarithms log4.k�1/ j�j).
Also, since j�j � pı , it follows that 264kC 4� � j�j for sufficiently large p. Taking a power 1=2kC1 from
both parts of (35), we see in view of (36) that

�� j�j.j�j�1=2
kC2

Cj�j�1=2
kC2

/� j�j1�1=2
kC2

� j�j �p
� ı

27C2ı
�1 :

To prove the second part of our corollary just notice that the same choice of k gives something nontrivial
if 2kC2 � " log j�j for any " > 0. In other words, it is enough to have

kC 2�
2 logp
log j�j

C 7� log log j�j � log.1="/:

It means that the inequality log j�j � C logp=.log logp/ for any C > 2 is enough. �

Remark 17. One can improve some constants in the proof (but not the constant C in (34)), probably,
but we did not make such calculations.

Now we estimate a “dual” quantity ECs .Q/ for �-invariant setQ (about duality of TC
k=2
.A/ and EC

k
.A/;

see [Schoen and Shkredov 2013] and (40)–(43)). We give even two bounds and both of them use the
Fourier approach. Our first estimate (37) relatively quickly follows from Corollary 14 and the price for
it is the appearance p in the bounds. The second estimate (39) is more delicate but requires more work.

Theorem 18. Let � � F�p be a multiplicative subgroup, andQ� F�p be a set withQ�DQ and jQj2j�j �
p2. Then for 0� k, 264kC 4� � j�j one has

EC
2kC1

.Q/

� 22
kC2C3.log jQj/2

kC1

jQj2
kC1�

24kC6C� log4 jQjC 16k
2

C k�1� log4.k�1/ jQj � j�j�
kC1
2 p

�
: (37)
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Further let k � 1 be such that
�j.kC2/=2 � jQj log4k jQj: (38)

Then
EC
2kC1

.Q/� .28C�/
kC1
jQj2

kC1

j�j1=2: (39)

Proof. We begin with (37) and we prove this inequality by induction. For k D 0 the result is trivial in
view of our condition jQj2j�j � p2. Put s D 2k , k � 1. By the Parseval identity and (12), we have

EC2s.Q/D
1

p2s�1

X
x1C���Cx2sD0

j OQ.x1/j
2 : : : j OQ.x2s/j

2 (40)

�
2sjQj2EC2s�1.Q/

p
C

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s/j

2 (41)

D
2sjQj2EC2s�1.Q/

p
CE02s.Q/: (42)

Put LD log jQj. By the Parseval identity

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s/j

2

�max
x¤0
j OQ.x/j2 �

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s�1/j

2
�max
x¤0
j OQ.x/j2 � jQj2s�1:

Hence, as in the proof of Theorem 12, consider �2 D EC2s.Q/=.4sjQj
2s�1/ and the sets

Pj D fx W �2
j�1 < j OQ.x/j � �2j g � F�p:

Using the Dirichlet principle, we find �D �2j0 � � and P D Pj0 such that

E02s.Q/�
4L2s.2�/4s

p2s�1
TCs .P /: (43)

Here we bound the number of sets Pj by the number L because of

22j�2 � jQj2=�2 � 4sjQj2sC1=EC2s.Q/� jQj=4

and the last inequality follows if (37) does not hold. Clearly, P� D P (and this is the crucial point of
the proof, actually). Applying Corollary 14, we get

E02s.Q/�

24sC2L2s�4s

p2s�1

�
24kC6C� log4 j�j �

jP j2s

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j�
kC7
2 EC.�/jP j2s

�
: (44)

By the Parseval identity, we see that
�2jP j � jQjp: (45)
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Hence

E02s.Q/� 2
4sC2L2sjQj2s � .24kC6C�L

4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC7
2 EC.�/p/: (46)

Using a trivial bound EC.�/� j�j3, we get

E02s.Q/� 2
4sC2L2sjQj2s � .24kC6C�L

4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/: (47)

Applying a crude bound (19), namely, EC2s�1.Q/ � jQj
s�1ECs .Q/, the condition jQj2j�j � p2, and

induction assumption, we get

2sjQj2EC2s�1.Q/

p
�
2sjQjsC1ECs .Q/

p

�
2sjQjsC1

p
�LsjQjs � 22sC3.24kC2C�L

4
C 16.k�1/

2

C k�2� L4.k�2/ � j�j�k=2p/

� 24sC2L2sjQj2s � .24kC6C�L
4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/:

Hence combining the last estimate with (47), we derive

EC
2kC1

.Q/� 22
kC2C3L2

kC1

jQj2
kC1

� .24kC6C�L
4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/

and thus we have obtained (37).
To get (39), put l D 2k�1, k � 1 and consider EC

4l
.Q/. Further define g.x/D r lQ�Q.x/ and notice

that Og.�/� 0, Og.0/D EC
l
.Q/. Moreover, taking the Fourier transform as in (40) and using the Dirichlet

principle, we get

EC
4l
.Q/D

X
x

.Q ıQ/4l.x/D
X
x

g4.x/D
EC. Og/

p3
D

1

p3

X
x;y;z

Og.x/ Og.y/ Og.xC z/ Og.yC z/

�
4 Og.0/

p3

X
y;z

Og.y/ Og.z/ Og.yC z/C
1

p3

X
x¤0;y¤0;z¤0

Og.x/ Og.y/ Og.xC z/ Og.yC z/

�
4EC
l
.Q/EC

3l
.Q/

p
C
4L4.2!/4

p3
EC.G/; (48)

where GD f� W! < Og.�/� 2!g � F�p , and ! � 2�3EC
4l
.Q/jQj�3l WD �� because the sum over Og.�/ < ��

by (10) does not exceed

4��

p3
�

X
x;y;z

Og.y/ Og.xC z/ Og.yC z/D 4��g
3.0/D 4��jQj

3l :

Further in view of the Parseval identity, we see that

!2jGj �
X
�2G

Og.�/2 � pEC
2l
.Q/; (49)

and by (10),
!jGj �

X
�2G

Og.�/D pg.0/D pjQjl : (50)
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Clearly, G is a �-invariant set (again, this is the crucial point of the proof). Further returning to (48) and
applying Lemma 9, we see that

EC
4l
.Q/�

4EC
l
.Q/EC

3l
.Q/

p
C
26L4!4

p3
EC.G/�

4EC
l
.Q/EC

3l
.Q/

p
C
26C�L

4!4

p3

�
jGj4

p
C
jGj3

j�j1=2

�
D
4EC
l
.Q/EC

3l
.Q/

p
CE04l.Q/:

Applying (49) and (50), we get

E04l.Q/� 2
6C�L

4
jQj4l C

26C�L
4.!jGj/2!2jGj

j�j1=2p3
� 26C�L

4
jQj4l C 26C�L

4
jQj2lEC

2l
.Q/j�j�1=2:

It follows that

EC
4l
.Q/�

4EC
l
.Q/EC

3l
.Q/

p
C 26C�L

4
jQj2lEC

2l
.Q/

�
jQj2l

EC
2l
.Q/
C

1

j�j1=2

�
: (51)

Further estimating the first term of (51) very roughly as

EC
l
.Q/EC

3l
.Q/

p
�
jQjlC1EC

3l
.Q/

p
�
jQj2lC1EC

2l
.Q/

p
;

we get in view of our condition jQj2j�j � p2 that this term is less than L4jQj2lEC
2l
.Q/j�j�1=2. Hence

EC
4l
.Q/� 27C�L

4
jQj2lEC

2l
.Q/

�
jQj2l

EC
2l
.Q/
C

1

j�j1=2

�
: (52)

Notice that the term jQj2l=EC
2l
.Q/C1=j�j1=2 � 2 �maxfjQj2l=EC

2l
.Q/; 1=j�j1=2g � 2. Applying bound

(52) exactly 0 � s � k times, where s is the maximal number (if it exists) such that the second term
1=j�j1=2 in (52) dominates, we obtain

EC
2kC1

.Q/� .28C�/
sL4sj�j�s=2jQj2

kC���C2k�sC1EC
2k�sC1

.Q/

�
jQj2

k�sC1

EC
2k�sC1

.Q/
C

1

j�j1=2

�
: (53)

Now by the definition of s, we see that the first term in (53) dominates. Hence, using (51), (52) one more
time (if s < k), we get

EC
2kC1

.Q/� 2.28C�/
sL4sj�j�s=2jQj2

kC1�2k�sC1
� jQj2

k�sC1

D 2.28C�/
sL4sj�j�s=2jQj2

kC1

: (54)

From the assumption j�j.kC2/=2 � jQj log4k jQj, it follows that j�j � jQj2=.kC2/ log8k=.kC2/ jQj.
Hence bound (54) is much better than (39) if s < k. If s D k, then by the same calculations, we
derive

EC
2kC1

.Q/� .28C�/
kL4kj�j�k=2EC2 .Q/jQj

2kC1�2:

Since jQj2j�j � p2 by Lemma 9, it follows that EC.Q/� 2C�jQj3=j�j1=2 and hence

EC
2kC1

.Q/� .28C�/
kC1L4kj�j�.kC1/=2jQj2

kC1C1:
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Further by the choice of k, namely, j�j.kC2/=2 � jQj log4k jQj we see that the last bound is bet-
ter than (39). Finally, if s D 0, then by definition EC

2k
.Q/ � jQj2

k

j�j1=2 and hence EC
2kC1

.Q/ �

jQj2
kC1

j�j1=2. �
Remark 19. From the second part of the arguments above one can derive explicit bounds for the energies
ECs .Q/ for small s. For example,

E4.Q/�
jQj2E3.Q/

p
C .log j�j/4jQj4C .log j�j/4jQj2E.Q/j�j�1=2:

Now we obtain a uniform upper bound for the size of the intersection of an additive shift of any �-
invariant set. Our bound (56) is especially effective if the sizes of Q1,Q2 are comparable with the size
of � , namely, jQ1j; jQ2j � j�jC , where C is an absolute constant (which can be large). In this case the
number k below is a constant as well.

Corollary 20. Let � � F�p be a multiplicative subgroup, j�j � pı , ı > 0, and Q1;Q2 � F�p be two sets
with Q1� DQ1, Q2� DQ2, jQ1j2j�j � p2, jQ2j2j�j � p2. Put QDmaxfjQ1j; jQ2jg. Then for any
x ¤ 0, one has

jQ1\ .Q2C x/j �
p
jQ1jjQ2j logQ �p�ı=2

7C2ı�1

: (55)

Further choose k � 1 such that j�j.kC2/=2 �Q log4kQ. Then, for an arbitrary x ¤ 0,

jQ1\ .Q2C x/j �
p
jQ1jjQ2j � j�j

�1=4�2�k : (56)

Proof. From the conditions jQ1j2j�j � p2, jQ2j2j�j � p2, it follows that j�j � p2=3. Put LD logQ.
On the one hand, applying the Cauchy–Schwarz inequality, we obtainX

y

r2
kC1

Q1�Q2
.y/� .EC

2kC1
.Q1//

1=2.EC
2kC1

.Q2//
1=2:

On the other hand, by formula (37) of Theorem 18 and �-invariance of Q1, Q2, we have

j�jjQ1\ .Q2C x/j
2kC1

�

X
y

r2
kC1

Q1�Q2
.y/

� 22
kC2C3L2

kC1

.jQ1jjQ2j/
2k .24kC6L4C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/;

provided 264kC 4� � j�j. As in Corollary 16 choosing k D d2 logp= log j�jC4e � 2=ıC5 and applying
an analogue of (36) which holds for large p, namely,

pL4.k�1/

j�jk=2
� 1

we obtain

jQ1\ .Q2C x/j � L
p
jQ1jjQ2j � .j�j

�1=2kC2
Cj�j�1=2

kC2

/

� L
p
jQ1jjQ2jj�j

�1=2kC2
� L

p
jQ1jjQ2jp

�ı=27C2ı
�1

;

and it easy to ensure that inequality 264kC 4� � j�j takes place for sufficiently large p.
To derive (56), we just use the second formula (39) of Theorem 18 and the previous calculations. �
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Remark 21. It is known (see, e.g., [Konyagin and Shparlinski 1999]) that if � � F�p is a multiplicative
subgroup with j�j< p3=4, then for any x ¤ 0 one has j� \ .�C x/j � j�j2=3 and this bound is tight in
some regimes. One can extend this to larger �-invariant sets and obtain a lower bound of a comparable
quality. It gives a lower estimate in (55).

Indeed, let � � F�p be a multiplicative subgroup with j�j< p1=2. Consider RDRŒ�� and QDQŒ��.
It was proved in [Shkredov 2016b] that jRj � j�j2= log j�j and one can check that RD 1�R; see, e.g.,
[Murphy et al. 2017]. Finally, the set Q is �-invariant and it is easy to check [Shkredov 2016a] that
jQj � j�j3. Hence

jQ\ .1�Q/j � jRj �
j�j2

log j�j
�
jQj2=3

log jQj
:

Also, notice that if j�j< p1=2 and jQŒ��j2j�j � p2, then jQŒ��j � j�j2Cc for some c > 0; see the
first part of Corollary 35 from the next section.

Corollary 20 gives a nontrivial upper bound for the common additive energy of an arbitrary invariant
set and any subset of Fp.

Corollary 22. Let � � F�p be a multiplicative subgroup, j�j � pı , ı > 0, and Q � F�p be a set with
Q� DQ, jQj2j�j � p2. Then for any set A� Fp, one has

EC.A;Q/� jQjjAj2 �p�ı=2
7C2ı�1

log jQjC jAjjQj: (57)

Further, for an arbitrary ˛ ¤ 0,

E�.A;QC˛/� jQjjAj2 �p�ı=2
7C2ı�1

log jQjC jAjjQj: (58)

In particular,

jACQj � jQj �minfjAj; p
ı

27C2ı
�1 log�1 jQjg; (59)

and

jA.QC˛/j � jQj �minfjAj; p
ı

27C2ı
�1 log�1 jQjg: (60)

If k � 1 is chosen as j�j.kC2/=2 � jQj log4k jQj, then one can replace the quantity p
ı

27C2ı
�1 log�1 jQj

above by j�j�1=4�2
�k

.

Proof. Inequalities (59), (60) follow from (57), (58) via the Cauchy–Schwarz inequality, so it is enough
to obtain the required upper bound for the additive energy of A and Q and for the multiplicative energy
of A and QC˛. By Corollary 20, we have

EC.A;Q/D
X
x

rA�A.x/rQ�Q.x/D jAjjQjC
X
x¤0

rA�A.x/rQ�Q.x/

� jAjjQjC jQjjAj2 �p�ı=2
7C2ı�1

log jQj;

as required. Similarly

E�.A;QC˛/� jAjjQjC
X
x¤0;1

rA=A.x/r.QC˛/=.QC˛/.x/� jAjjQjC jQjjAj
2
�p�ı=2

7C2ı�1

log jQj;
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because in view of Corollary 20 one has

r.QC˛/=.QC˛/.x/D jQ\ .xQC˛.x� 1//j � jQj �p
�ı=27C2ı

�1

log jQj:

So, we have obtained bounds (57)–(60) with p
ı

27C2ı
�1 log�1 jQj, and to replace it by j�j�1=4�2

�k

one
should use the second part of Corollary 20. �

From (59) one can obtain that for any multiplicative subgroup � � F�p there is N such that N� D Fp

and N � ı�14ı
�1

. The results of comparable quality were obtained in [Glibichuk and Konyagin 2007].

5. The proof of the main result

In this section we obtain an upper bound for TC
k
.A/ (see Theorem 23) and an upper bound for EC

k
.A/

(see Theorem 27) in the case when the size of the product set AB is small comparable to A, where B is a
sufficiently large set. From the last result we derive our quantitative asymmetric sum-product Theorem 5
from the introduction. Let us begin with an upper bound for TC

k
.A/.

Theorem 23. Let A;B � Fp be sets, M � 1 be a real number, and jABj �M jAj, jAj> 1. Then for any
k � 2, 216kM 2kC1C 2� log8 jAj � jBj, one has

TC
2k
.A/� 24kC6C� log4 jAj�

M 2k jAj2
kC1

p
C16k

2

C k�1� M 2kC1 log4.k�1/ jAj�jAj2
kC1�4

jBj�
k�1
2 EC.A/:

(61)

Proof. We have B ¤ f0g by the condition 216kM 2kC1C 2� log8 jAj � jBj, for instance. We apply the
arguments and the notation of the proof of Theorem 12. Fix any s � 2 and put L WD s log jAj. Our
intermediate aim is to prove

TC2s.A/� Cs
4M 2s log4 jAj �

�
jAj4s

p
C
jAj2sp
jBj

TCs .A/

�
; (62)

where C D 25C�. As in the proof of Theorem 12, we get

TC2s.A/�
4
3
L4.2�/4EC.P /C E ;

where
E � 4jAj2s�1TCs .A/: (63)

Further, �> TC2s.A/=.16jAj
3s/ is a real number and P D fx W�< rsA.x/� 2�g � F�p . Moreover, we

always have jP j�2 � TCs .A/. Notice also

jP j��
X
x2P

rsA.x/�
X
x

rsA.x/� jAj
s:

To proceed as in the proof of Theorem 12, we need to estimate jPBj. Observe that for any x 2 PB
one has rsAB.x/��. Thus, we have

jPBj��
X
x2PB

rsAB.x/� jABj
s
�M s

jAjs: (64)
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Hence using Lemma 9, we obtain

EC.P /� C�

�
M 2sjAj2sjP j2

�2p
C
M 3s=2jAj3s=2jP j3=2

�3=2jBj1=2

�
:

Hence in view of estimate (63), combining with jP j�� jAjs and jP j�2 � TCs .A/, we get

TC2s.A/�
4
3
.16C�/L

4�4
�
M 2sjAj2sjP j2

�2p
C
M 3s=2jAj3s=2jP j3=2

�3=2jBj1=2

�
C 4jAj2s�1TCs .A/

D
4
3
.16C�/L

4

�
M 2sjAj2sjP j2�2

p
C
M 3s=2jAj3s=2jP j3=2�5=2

jBj1=2

�
C 4jAj2s�1TCs .A/

�
4
3
.16C�/L

4

�
M 2sjAj4s

p
C
M 3s=2jAj3s=2.jP j�2/.jP j�/1=2

jBj1=2

�
C 4jAj2s�1TCs .A/

� 32C�L
4

�
M 2sjAj4s

p
C
M 3s=2jAj2sTCs .A/

jBj1=2

�
;

and inequality (62) is proved. Here, we have used a trivial inequality jBj1=2 � jAj which follows from
jBj � jABj �M jAj � jBj1=2jAj because M 2 � 216kM 2kC1C 2� log8 jAj � jBj.

Now applying formula (62) successively k�1 times, we obtain

T2k .A/

� 24kC6C� log4jAj �
M 2kjAj2

kC1

p
C 16k

2

M 2kC1C k�1� log4.k�1/jAj � jAj2
kC1�4

jBj�
k�1
2 EC.A/; (65)

where the exponent 2kC1 � 4 comes from the sum 2k C � � � C 4; to get the first term on the right-hand
side of (65), we used 216kM 2kC1C 2� � jBj to ensure that jBj1=2 � 24kC1C�M 2k log4 jAj. �

Remark 24. It is easy to see that instead of the assumption jABj � jAj we can assume a weaker
condition jAs ��s.B/j � jAjs , 1 < s � 2k�1; see (64).

The same arguments work in the case of real numbers. In this situation we have no characteristic p
and hence we have no any restrictions on the parameter k.

Theorem 25. Let A;B � R be finite sets, M � 1 be a real number, and jABj �M jAj. Then for any
k � 2, one has

TC
2k
.A/� 16k

2

C k�1� M
3
2
.2k�1/ log4.k�1/ jAj � jAj2

kC1�1
jBj�k=2: (66)

Corollary 26. Let A� R be a finite set, M � 1 be a real number, and jAAj �M jAj or jA=Aj �M jAj.
Then for any k � 2, one has

j2kAj �k jAj
1Ck=2M�3=2 .2

k�1/
� log�4.k�1/ jAj: (67)

Bounds of such a sort were obtained in [Konyagin 2014] by another method. The best results con-
cerning lower bounds for multiple sum sets kA, k!1 of sets A with a small product/quotient set can
be found in [Bush and Croot 2014].
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To obtain an analogue of Theorem 18 for sets with jAAj � jAj, we cannot use the same arguments as
in Section 4 because the spectrum is not an invariant set in this case. Moreover, in R there is an additional
difficulty with using Fourier transform: the dual group of R does not coincide with R of course. That is
why we suggest another method which works in “physical space” but not in the dual group.

To formulate our main result about EC
k
.Q/ for sets Q with small product Q� for some relatively large

set � we need some notation. Let us write Q.k/ D jQ�k�1j for k � 1 and Q.k/ D jQj for k D�1.

Theorem 27. Let �;Q� Fp be two sets, and k � 0 be an integer. Suppose that jQ�kC1jjQ�kjj�j �p2;
further Q.k/j�j � p, and M D jQ�kC1j=jQj. Then either

EC
2kC1

.Q/� .M 2kC123kC1C
.kC4/=4
� logkQ.k// � jQj2

kC1C1
j�j�k=8�1=2 (68)

or
EC
2kC1

.Q/� 2.Q.k//2
kC1

:

In particular, if we choose k such that j�jk=8C1=2 � jQj �M 2kC123kC1C
.kC4/=4
� logkQ.k/, then

EC
2kC1

.Q/� 2.Q.k//2
kC1

: (69)

Proof. Without loss of generality one can assume that 0 … � . Fix an integer l � 1 and prove that either

EC
5l=2

.Q/� 8C
1=4
� log jQj � jQjl=2EC

2l
.Q�/j�j�1=8 (70)

or
EC
5l=2

.Q/� 2jQj5l=2: (71)

Put g.x/D r lQ�Q.x/, LD log jQj, and E0
5l=2

.Q/D EC
5l=2

.Q/�jQj5l=2 � 0. We will assume below that

E0
5l=2

.Q/� 2�1EC
5l=2

.Q/ because otherwise we obtain (71) immediately. Using the Dirichlet principle,
we find a set P and a positive number � such that P D fx W�< g.x/� 2�g � F�p and

E05l=2.Q/� L
X
x2P

r
5l=2
Q�Q.x/:

Applying Corollary 11, we obtain

E05l=2.Q/� L.2�/
3=2

X
x2P

r lQ�Q.x/� 3C
1=4
� L�3=2jQjl=2.EC

2l
.Q�//1=4

�
jP j4

p
C
jP j3

j�j1=2

�1=4

� 3C
1=4
� LjQjl=2.EC

2l
.Q�//1=4

�
�6jP j4

p
C
�6jP j3

j�j1=2

�1=4
:

We have �jP j � EC
l
.Q/, �2jP j � EC

2l
.Q/ and hence �6jP j4 � .EC

2l
.Q//2.EC

l
.Q//2. It follows that

E05l=2.Q/� 3C
1=4
� LjQjl=2.EC

2l
.Q�//1=4

�
.EC
2l
.Q//2.EC

l
.Q//2

p
C
.EC
2l
.Q//3

j�j1=2

�1=4
:

To prove that the first term .EC
2l
.Q//2.EC

l
.Q//2=p is less than .EC

2l
.Q//3=j�j1=2, we need to check that

.EC
l
.Q//2j�j1=2 � EC

2l
.Q/p:
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But using the Hölder inequality, we see that the required estimate follows from

.EC
l
.Q//2j�j1=2 � .EC

2l
.Q//

2.l�1/
2l�1 jQj

4l
2l�1 j�j1=2 � EC

2l
.Q/p

or, in other words, from
jQj4l j�j.2l�1/=2 � EC

2l
.Q/p2l�1: (72)

Finally, we can suppose that for any s � 2 one has, say,

ECs .Q/� jQj
sC1
j�j�1=8 log s�1=2;

because otherwise estimate (68) follows easily. Our assumption Q.k/j�j � p implies that jQjj�j � p
and whence

jQj2l�1j�j
1
8

log2lCl
� p2l�1j�j1C1=8 log2l�l

� p2l�1;

and thus (72) takes place for l � 2. For l D 1, see the calculations below. Hence under this assumption
and the inequality E0

5l=2
.Q/� 2�1EC

5l=2
.Q/, we have

EC
5l=2

.Q/� 8C
1=4
� log jQj � jQjl=2EC

2l
.Q�/j�j�1=8

and we have proved (70). Trivially, it implies that

EC
4l
.Q/� 8C

1=4
� log jQj � jQj2lEC

2l
.Q�/j�j�1=8

and subsequently using this bound, we obtain

EC
2kC1

.Q/� .23kC
k=4
� logk jQ�k�1j/ �M 2k�1C���C2

jQj2
kC���C2EC.Q�k/j�j�k=8

D .23kM 2k�2C
k=4
� logk jQ�k�1j/ � jQj2

kC1�2EC.Q�k/j�j�k=8:

At the last step, we need to check jQ�k�1jj�j � p, and it is guaranteed by our assumption Q.k/j�j � p
(for k D �1 we just need jQjj�j � p). Now recalling the assumption jQ�kC1jjQ�kjj�j � p2 and
applying Lemma 9, we get

EC
2kC1

.Q/� .M 2kC123kC1C
.kC4/=4
� logk jQ�k�1j/ � jQj2

kC1C1
j�j�k=8�1=2:

In particular, this final step covers the remaining case l D 1 above. �

Remark 28. Let � be a multiplicative subgroup and Q� DQ. Then by Theorem 27 if jQjj�j � p and
a number k1 is chosen as j�jk1=8C1=2 � jQj logk1 jQj, then EC

2k1C1
.Q/�k1 jQj

2k1C1 . Let us compare
this with Theorem 18. By the second part of this result (see condition (38)), choosing k2 such that
j�j.k2C2/=2 � jQj log4k2 jQj, we get EC

2k2C1
.Q/�k2 jQj

2k2C1 j�j1=2. After that applying the second

part of Corollary 20 n WD 2k2C1 times, we obtain

EC
22k2C2

.Q/�k2 jQj
22k2C2

CEC
2k2C1

.Q/.jQjj�j�1=4�2
�k2

/n

�k2 jQj
22k2C2

CjQj2
k2C1

j�j1=2jQjnj�j�1=2� jQj2
2k2C2

:

Thus, Theorem 18 gives a slightly better bound (in the case of multiplicative subgroups), but of the same
form.
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Remark 29. From formula (40), it follows that for any l one has EC
l
.Q/ � jQj2l=pl�1. Hence the

upper bound (69) has a place just for small sets Q. For example, taking the smallest possible l D 2 and
comparing jQj2 with jQj4=p we see that the condition jQj<

p
p is enough. If QDQ� , where � is a

multiplicative subgroup, then it is possible to refine this condition because in the proof of Theorem 18
another method (the Fourier approach) was used. We did not make such calculations.

Now we can obtain analogues of Corollaries 20 and 22.

Corollary 30. Let �;Q1;Q2 � Fp be sets. Take k � 0 such that for j D 1; 2, one has

jQj�
kC2
jjQj�

kC1
jj�j � p2; jQj�

k
jj�j � p; jQj�j �M�jQj j; jQj�

kC2
j �M jQj j;

and
j�jk=8C1=2 � jQj j �M�M

2kC123kC1C
.kC4/=4
� logk jQj�kj: (73)

Then, for any x ¤ 0,

jQ1\ .Q2C x/j � 2M�M
p
jQ1jjQ2j � j�j

�1=2 .2�k/: (74)

Proof. Denote by � the quantity jQ1 \ .Q2 C x/j. On the one hand, applying the Cauchy–Schwarz
inequality and the second part of Theorem 27 for sets �Q1 and �Q2, we obtainX

y

r2
kC1

�Q1��Q2
.y/� .EC

2kC1
.�Q1//

1=2.EC
2kC1

.�Q2//
1=2

� 23kC2M 2kC1.jQ1�jjQ2�j/
2k
� 23kC2M 2kC1M 2kC1

� .jQ1jjQ2j/
2k :

On the other hand, it is easy to see that for any y 2 �x one has r�Q1��Q2.y/� �. Thus,

�2
kC1

j�j � 23kC2M 2kC1M 2kC1

� .jQ1jjQ2j/
2k ;

and hence
� � 2M�M

p
jQ1jjQ2j � j�j

�1=2.2�k/:

Here we have used the inequality k � 5, which easily follows from j�j � jQj�j �M jQj j and (73). �

In the next two corollaries we show how to replace the condition jQ�kj � jQj with a condition with
a single multiplication, namely, jQ�j � jQj.

Corollary 31. Let �;Q be subsets of Fp, M � 1 be a real number, jQ�j �M jQj. Suppose that for
k � 1 one has .2M/kC1jQjj�j � p, and

j�jk=8C1=2 � jQj � .2M/.kC3/2
k

C
.kC4/=4
� logk..2M/kjQj/: (75)

Then, for any A� Fp,

jACQj � 2�3jQj �minfjAj; 2�.4Ck/M�.kC3/j�j
1
2
2�k
g; (76)

and for any ˛ ¤ 0,

jA.QC˛/j � 2�3jQj �minfjAj; 2�.4Ck/M�.kC3/j�j
1
2
2�k
g: (77)
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Proof. Using Lemma 7, find a set X �Q, jX j � jQj=2 such that, for any l ,

jX� l j � .2M/l jX j: (78)

Also, notice that jX�j � jQ�j � 2M jX j. We apply Corollary 30 with M replacing by .2M/kC2,
M� D 2M and see that, for any x ¤ 0,

jQ1\ .Q2C x/j � 2
kC4M kC3

p
jQ1jjQ2j � j�j

�1=2 .2�k/:

Here, Q1 D X and Q2 D X or Q2 D ˛X . We will check the condition jQj�kC2jjQj�kC1jj�j � p2

of Corollary 30 later and notice that the assumptions jQj�kjj�j � p, jQj�j �M�jQj j, jQj�kC2j �
M jQj j easily follow from (78) and our condition .2M/kC1jQjj�j � p. Now using the arguments from
Corollary 22, we estimate the energies EC.A;X/, E�.A;XC˛/. In particular, we obtain lower bounds for
the sum set from (76) and the product set from (77). It remains to check condition .2M/2kC3jQj2j�j �

p2. But it follows from .2M/kC1jQjj�j � p if M � j�j=2. The last inequality is a simple consequence
of (75). �

Now we prove an analogue of Corollary 30 where we require that jQj�j, j D 1; 2 are small comparable
to jQj j. For simplicity, we formulate the next corollary in the situation jQ0j D jQj, but of course the
general bound takes place as well.

Corollary 32. Let �;Q;Q0 be subsets of Fp , jQ0jD jQj,M � 1 be a real number, jQ�j; jQ0�j �M jQj.
Suppose that for k � 1 one has .2M/kC1jQjj�j � p, and

j�j
k
8
C 1
2.kC4/ � jQj �M .kC3/2kC

.kC4/=4
� logk.j�j

k
2.kC4/

2�k
jQj/

Then for any x ¤ 0 one has

jQ\ .Q0C x/j � 4M jQj � j�j�
1

2.kC4/
2�k : (79)

Proof. Let QQ DQ\ .Q0C x/. Then j QQ�j � jQ�j �M jQj DM jQj=j QQj � j QQj WD QM j QQj. Similarly,
j. QQ� x/�j � jQ0�j �M jQj. Applying the second part of Corollary 31 with ˛ D x, Q D QQ, AD � ,
and M D QM , we get

M jQj � j. QQ� x/�j � 2�.7Ck/j QQj QM�.kC3/j�j
1
2
2�k
D 2�.7Ck/M�.kC3/j QQjkC4jQj�.kC3/j�j

1
2
2�k

provided

j�jk=8C1=2 � jQj � .2 QM/.kC3/2
k

C
.kC4/=4
� logk..2 QM/kjQj/

� j QQj � .2 QM/.kC3/2
k

C
.kC4/=4
� logk..2 QM/kj QQj/:

This gives us

j QQj � 4M jQj � j�j�
1

2.kC4/
2�k : (80)

Now if the last inequality does not hold, then

M jQj= QM D j QQj � 4M jQj � j�j�
1

2.kC4/
2�k
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and thus QM � j�j
1

2.kC4/
2�k=4. Hence the condition

j�j
k
8
C 1
2.kC4/ � jQj �M .kC3/2kC

.kC4/=4
� logk.j�j

k
2.kC4/

2�k
jQj/

is enough. �

Now we are ready to prove the main asymmetric sum-product result of this section.

Corollary 33. Let A;B;C � Fp be arbitrary sets, and k � 1 be such that jAjjBj1C
kC1
2.kC4/

2�k
� p and

jBj
k
8
C 1
2.kC4/ � jAj �C

.kC4/=4
� logk.jAjjBj/: (81)

Then
maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj

1
2.kC4/

2�k
g; (82)

and for any ˛ ¤ 0,

maxfjABj; j.AC˛/C jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g: (83)

Moreover,

jABjC
jAj2jC j2

EC.A; C /
� 2�4jAj �minfjC j; jBj

1
4.kC4/

2�k
g; (84)

and, for any ˛ ¤ 0, we have

jABjC
jAj2jC j2

E�.AC˛; C /
� 2�4jAj �minfjC j; jBj

1
4.kC4/

2�k
g; (85)

provided
jBj

k
8
�1=4C 1

4.kC4/ � jAj �C
.kC4/=4
� logk.jAjjBj/:

Proof. We will prove just (82) because the same arguments hold for (83). Put jABj DM jAj, M � 1,
and apply Corollary 31 with QD A, � D B , AD C . Supposing that

jBjk=8C1=2 � jAj � 2.kC3/2
k

M .kC3/2kC
.kC4/=4
� logk..2M/kjAj/; (86)

we obtain
jACC j � 2�3jAj �minfjC j; 2�.kC4/M�.kC3/jBj

1
2
2�k
g: (87)

Put M0 D 2
�2jBj

1
2.kC4/

2�k and consider two cases: M �M0 and M <M0. If M �M0, then there is
nothing to prove. If not, then we apply (87) and obtain the same. In other words,

maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g:

To check (86), we use M <M0 and see that the inequality

jBjk=8C1=2 � jAj � 2.kC3/2
k

M
.kC3/2k

0 C
.kC4/=4
� logk..2M0/

k
jAj/

follows from our condition (81). The condition .2M/kC1jAjjBj � p gives us jAjjBj1C
kC1
2.kC4/

2�k
� p.

To prove (84), (85), we use Corollary 32 instead of Corollary 31 and apply the arguments of the proof
of Corollary 22. We obtain EC.A; C /;E�.AC˛; C /� 2jAjjC jC 4jAjjC j2 �M � jBj�

1
2.kC4/

2�k : After
that it remains to compare M with the optimal value M0 D 2

�1jBj
1

4.kC4/
2�k . �
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Notice that one cannot obtain any nontrivial bounds for minfE�.A;B/, EC.A; C /g. Just take B equals
a geometric progression, C equals an arithmetic progression, jBj D jC j, and AD B [C .

Remark 34. The results of this section take place in R. In this case we do not need in any conditions
containing the characteristic p.

Corollary 33 gives us a series of examples of “superquadratic expanders” [Balog et al. 2017] with four
variables, i.e., functions f .x1; : : : ; xn/ such that for any finite A� R one hasˇ̌

ff .x1; : : : ; xn/ W .x1; : : : ; xn/ 2 A
n
g
ˇ̌
� jAj2Cc ;

where c > 0 is an absolute constant. The first example of such an expander with four variables was given
in [Rudnev 2017a], namely the cross-ratio function

f .x; y; z; w/D
.y�x/.w�z/

.z�x/.w�y/

(see also [Rudnev 2017b]). It would be is interesting to find an example of a rational superquadratic
expander with three variables.

Corollary 35. Let ' W R! R be an injective function. Then for any � < 1
40
2�16 and an arbitrary finite

set A� R, one has jRŒA�'.A/j � jAj2C� . In particular,

RŒA�AD
n
.y�x/w

z�x
W x; y; z; w 2 A; x ¤ z

o
is a superquadratic expander with four variables.

Moreover, for any finite sets A;B;C;D of equal sizes one hasˇ̌̌n
.y�x/w

z�x
W x 2 A; y 2 B; z 2 C; w 2D; x ¤ z

oˇ̌̌
� jAj2C� : (88)

Proof. By a result from [Jones 2013; Roche-Newton 2015], we have jRŒA�j � jAj2= log jAj. Further
RŒA�D 1�RŒA� and R�1ŒA�D RŒA�; see Remark 21. Hence applying estimate (83) of Corollary 33
with ADRŒA�, B D C D '.A/, and ˛ D�1, we obtain

jRŒA�'.A/j � jRŒA�j � jAj
1

2.kC4/
2�k ;

provided

jAj
k
8
C 1
2.kC4/ � jRŒA�j � 22kC

.kC4/=4
� logk jAj � jRŒA�j �C .kC4/=4� logk jRŒA�'.A/j: (89)

Put jRŒA�j D C jAj2Cc= log jAj, c � 0, and C > 0 is an absolute constant. Then taking k D 16C 8c, say,
we satisfy (89) for large A. It follows that

jRŒA�'.A/j � jAj2CcC
1

2.20C8c/
2�16�8c log�1 jAj:

One can check that the optimal choice of c is c D 0. Finally, to prove (88) just notice that from the
method of [Jones 2013; Roche-Newton 2015] it follows thatˇ̌̌n

b�a

c�a
W a 2 A; b 2 B; c 2 C; c ¤ a

oˇ̌̌
� jAj2= log jAj

for any sets A;B;C of equal cardinality. After that, repeat the arguments above. �
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Remark 36. Let us show quickly how Corollary 33 implies both Theorems 1, 2 for sets A with jAj<
p1=2�" (the appearance

p
p bound was discussed in Remark 29).

Let B;C be sets of sizes greater than p" such that maxfjABj; jACC jg � pı jAj or maxfj.AC˛/Bj;
jACC jg � pı jAj for some ˛ ¤ 0. We can find sufficiently large k D k."/ such that condition (81) takes
place for B because jAj< p1=2�" � p and jBj � p". Applying Corollary 33 for A;B;C , we arrive to

a contradiction. Finally, to ensure that jAjjBj1C
kC1
2.kC4/

2�k
� p just use the assumption jAj < p1=2�",

inequality jBj � jABj � pı jAj, and take sufficiently small ı D ı."/ and sufficiently large k D k."/.

Let A� R be a finite set. We consider a characteristic of A (see, e.g., [Shkredov 2016a]) that gener-
alizes the notion of small multiplicative doubling of A. Namely, put

dC.A/ WD inf
f

min
B¤∅

jf .A/CBj2

jAjjBj
;

where the infimum is taken over convex/concave functions f .

Problem. Suppose that dC.A/� jAj" and " > 0 is a small number. Is it true that there is k D k."/ such
that EC

k
.A/� jAjk?

Notice that one cannot obtain a similar bound for TC
k
.A/. Indeed, let A D f12; 22; : : : ; n2g. Then

one can show that for such A, the quantity dC.A/ is O.1/ (see, e.g., [Shkredov 2016a]) but, clearly,
jkAj �k jAj

2. This means that it is not possible to obtain any upper bound for TC
k
.A/ of the form

TC
k
.A/� jAj2k�2�c , c > 0, and hence any analogues of Theorems 23, 25 for sets A with small dC.A/.
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Convex sequences may have thin additive bases

Imre Z. Ruzsa and Dmitrii Zhelezov

For a fixed c > 0 we construct an arbitrarily large set B of size n such that its sum set B+ B contains a
convex sequence of size cn2, answering a question of Hegarty.

Notation

The following notation is used throughout the paper. The expressions X � Y , Y � X , Y = O(X),
X =�(Y ) all have the same meaning in that there is an absolute constant c such that |Y | ≤ c|X |.

If X is a set then |X | denotes its cardinality.
For sets of numbers A and B the sumset A+ B is the set of all pairwise sums

{a+ b : a ∈ A, b ∈ B}.

1. Introduction

Let A = {ai }, i = 1, . . . , n, be a set of real numbers ordered in a way that a1 ≤ a2 ≤ · · · ≤ an . (We also
refer to A a sequence, if we wish to emphasize the ordering.) Recall that A is called convex if the gaps
between consecutive elements of A are strictly increasing, that is

a2− a1 < a3− a2 < · · ·< an − an−1.

Studies of convex sets were initiated by Erdős, who conjectured that any convex set must grow with
respect to addition, so that the size of the set of sums A+ A := {a1 + a2 : a1, a2 ∈ A} is significantly
larger than the size of A.

The first nontrivial bound confirming the conjecture of Erdős was obtained by Hegyvári [1986]. The
state of the art bound for the size of A+ A of a convex sequence A is due to Shkredov [2015]:

|A+ A| � |A|58/37 log−20/37
|A|.

The best bound for the size of the difference set A− A is due to Schoen and Shkredov [2011], who
proved that

|A− A| � |A|8/5 log−2/5
|A|

if A is arbitrary convex sequence. It is conjectured that in fact

|A+ A| ≥ C(ε)|A|2−ε

holds for any ε > 0 and some C > 0 which depends only on ε.

MSC2010: 11B13.
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In general, it is believed that convex sets cannot be additively structured. In particular, Hegarty [2012]
asked whether there is a constant c > 0 with the property that there is a set B of arbitrarily large size n
such that B+ B contains a convex set of size cn2.

Recall that B is a basis (of order two) for a set A if A ⊂ B+ B. In other words, Hegarty asked if a
convex set of size n can have a thin additive basis (of order two) of size as small as O(n1/2), which is
clearly the smallest possible size up to a constant.

Perhaps contrary to the intuition that convex sets lack additive structure, we present a construction
which answers Hegarty’s question in the affirmative. Our main result is as follows.

Theorem 1. There is c > 0 such that for any m there is a set B of size n > m such that B+ B contains
a convex set of size cn2.

2. Construction

Assume n is fixed and large. We will construct a set B of size O(n) such that B+ B contains a convex
set of size �(n2). Theorem 1 will clearly follow.

The following constants (we assume n is fixed) will be used throughout the proof:

α :=
1
n2 , γ :=

1
1000n3 , ε := 0.1.

Define
xi = i + (α+ γ )i2, y j = j −α j2.

Next, we define
Bk = {xi + y j : i + j = k},

where i and j are allowed to be negative.
Let k ∈ [0.999n, n] so that αk2

∈ [0.99, 1]. For such an integer k writing j = k− i we have that the
i-th element of Bk is given by

b(k)i = k+ (α+ γ )i2
−α(k− i)2 = (k−αk2)+ γ i2

+ 2ikα. (1)

Now assume that i ranges in [−n, 2n]. The consecutive differences b(k)i+1− b(k)i are then given by

1
(k)
i := γ (2i + 1)+ 2kα.

Observe that 1(k)i are positive and increasing, thus the block Bk := {b
(k)
i }

2n
−n is convex. Further, by (1)

for sufficiently large n we have

b(k)−n = k−αk2
+ γ n2

− 2nkα ∈ [k− 2.9, k− 3], (2)

b(k)2n = k−αk2
+ γ (2n)2+ 4nkα ∈ [k+ 2.9, k+ 3.1], (3)

so Bk ⊂ [k− 3, k+ 3] + [−ε, ε].
Now we are going to build a large convex sequence out of blocks Bk with 4 | k. Since each Bk is

already convex, it remains to show how to glue together Bk and Bk+4 so that the resulting set is again
convex. We proceed with the following simple lemma.
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Lemma 2. Let X = {xi }
N
i=0 and Y = {y j }

M
j=0 be two convex sequences and there are indices u and v such

that

[xu, xu+1] ⊂ [yv, yv+1].

Then

Z := {xi }
u
i=0 ∪ {y j }

M
j=v+1

is a convex sequence.

Proof. Since [xu, xu+1] ⊂ [yv, yv+1] we have that

xu − xu−1 < xu+1− xu < yv+1− xu .

On the other hand,

yv+1− xu < yv+1− yv < yv+2− yv+1. �

By Lemma 2, in order to merge Bk and Bk+4 it suffices to find two consecutive elements b(k)i , b(k)i+1 ∈ Bk

in between two consecutive elements b(k+4)
j , b(k+4)

j+1 ∈ Bk+4. Define

δ := max
i∈[−n,2n]

1
(k)
i , 1 := min

i∈[−n,2n]
1
(k+4)
i .

We have

δ < 4nγ + 2kα < 2.1
n
, (4)

1− δ > 8α− 10nγ >
6
n2 . (5)

Let b(k)v be the least element in Bk greater than b(k+4)
−n (such an element exists by (2) and (3)). We claim

that with m := dn/2e+ 1 holds b(k+4)
−n+m > b(k)v+m , which in turn by the pigeonhole principle guarantees the

arrangement of elements required by Lemma 2.
Indeed, by our choice of v,

0≤ d := b(k)v − b(k+4)
−n ≤ δ. (6)

But by (4) and (5),

b(k+4)
−n+m − b(k)v+m >−d +m(1− δ) > 3

n
− δ > 0, (7)

so the claim follows.
It remains to note that by (3),

b(k)v+m < b(k+4)
−n +m1< (k+ 1+ ε)+ 2n2α

2
+ 4γ nm < k+ 2.2,

and thus v+m < 2n again by (3). This verifies that b(k)v , b(k)v+m ∈ Bk .
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3. Putting everything together

Applying the procedure described in the previous section, we can glue together consecutive blocks B4l

with 4l := k ∈ [0.999n, n]. Let A be the resulting convex sequence. First, observe there are �(n) blocks
being merged. Moreover, each interval [4l−1+ε, 4l+1−ε] is covered only by the block B4l and by (2),
(3), and (4) it contains �(n) elements from B4l , so |A| =�(n2). On the other hand, by our construction,
A is contained in the sumset B+ B of B := {xi }

2n
−2n ∪ {y j }

2n
−2n of size O(n).

Remark 3. It follows from our construction that there are arbitrarily large convex sets A such that the
equation

a1− a2 = x : a1, a2 ∈ A

has �(|A|1/2) solutions (a1, a2) for at least �(|A|1/2) values of x .
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Admissible endpoints of gaps in the Lagrange spectrum

Dmitry Gayfulin

For any irrational number α define the Lagrange constant µ(α) by

µ−1(α)= lim inf
p∈Z, q∈N

|q(qα− p)|.

The set of all values taken by µ(α) as α varies is called the Lagrange spectrum L. An irrational α is
called attainable if the inequality ∣∣∣α− p

q

∣∣∣6 1
µ(α)q2

holds for infinitely many integers p and q. We call a real number λ ∈ L admissible if there exists
an irrational attainable α such that µ(α) = λ. In a previous paper we constructed an example of a
nonadmissible element in the Lagrange spectrum. In the present paper we give a necessary and sufficient
condition for admissibility of a Lagrange spectrum element. We also give an example of an infinite
sequence of left endpoints of gaps in L which are not admissible.

1. Introduction

The Lagrange spectrum L is usually defined as the set of all values of the Lagrange constants

µ(α)=
(

lim inf
p∈Z, q∈N

|q(qα− p)|
)−1

as α runs through the set of irrational numbers. Consider the continued fraction expansion of α

α = [a0; a1, a2, . . . , an, . . .].

For any positive integer i define

λi (α)= [ai ; ai+1, ai+2, . . .] + [0; ai−1, ai−2, . . . , a1].

It is well-known fact that
lim sup

i→∞
λi (α)= µ(α). (1)

The equation (1) provides an equivalent definition of the Lagrange constant µ(α).
The following properties of L are well known. The Lagrange spectrum is a closed set [Cusick 1975]

with minimal point
√

5. All the numbers of L which are less than 3 form a discrete set. The Lagrange
spectrum contains all elements greater than

√
21; see [Freiman 1973; Schecker 1977]. The complement

Research supported by RNF grant No. 14-11-00433. The author is a Young Russian Mathematics award winner and would like
to thank its sponsors and jury.
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of L is a countable union of maximal gaps of the spectrum. The maximal gaps are open intervals (a, b)
such that (a, b)∩ L=∅, but a and b both lie in the Lagrange spectrum. There are infinitely many gaps
in the nondiscrete part of the Lagrange spectrum [Gbur 1976].

Let α be an arbitrary irrational number. If the inequality∣∣∣∣α− p
q

∣∣∣∣6 1
µ(α)q2

has infinitely many solutions for integer p and q , we call α attainable. This definition was first given in
[Malyshev 1977]. One can easily see [Gayfulin 2017] that α is attainable if and only if λi (α) > µ(α)
for infinitely many indices i . We also call a real number λ ∈ L admissible if there exists an irrational
attainable number α such that µ(α)= λ.

Let B denote a doubly infinite sequence of positive integers

B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .).

For an arbitrary integer i define

λi (B)= [bi ; bi−1, . . .] + [0; bi+1, bi+2, . . .].

We will call a doubly infinite sequence B purely periodic if there exists a finite sequence P such that
B = (P). A doubly infinite sequence B is called eventually periodic if there exist three finite sequences
Pl, R, Pr such that B = (P l, R, Pr ). One can also consider an equivalent definition of the Lagrange
spectrum using the doubly infinite sequences. We use the notation from [Cusick and Flahive 1989]:

L(B)= lim sup
i→∞

λi (B), M(B)= sup λi (B).

The Lagrange spectrum L is exactly the set of values taken by L(B) as B runs through the set of doubly
infinite sequences of positive integers. The set of values taken by M(B) is called the Markoff spectrum.
We will denote this set by M.

We will call a doubly infinite sequence B weakly associated with an irrational number α= [a0; a1, . . . ,

an, . . .] if the following condition holds:

(1) For any natural i the pattern (b−i , b−i+1, . . . , b0, . . . , bi ) occurs in the sequence a1, a2, . . . , an, . . .

infinitely many times.

We will call B strongly associated with α if, additionally,

(2) µ(α)= λ0(B)= M(B).

One can easily see that if B is weakly associated with α then µ(α) > M(B). As we will show in
Lemma 4.1, if α has bounded partial quotients, it has at least one strongly associated sequence.

2. Results of [Gayfulin 2017]

Theorem I. The quadratic irrationality λ0 = [3; 3, 3, 2, 1, 1, 2]+ [0; 2, 1, 1, 2] belongs to L, but if α is
such that µ(α)= λ0 then α is not attainable.

Theorem II. If λ ∈ L is not a left endpoint of some maximal gap in the Lagrange spectrum then there
exists an attainable α such that µ(α)= λ.
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One can easily formulate these theorems using the concept of admissible numbers, introduced above.

Theorem I′. The quadratic irrationality λ0 = [3; 3, 3, 2, 1, 1, 2] + [0; 2, 1, 1, 2] belongs to L, but is not
admissible.

Theorem II′. If λ ∈ L is not a left endpoint of some maximal gap in the Lagrange spectrum then λ is an
admissible number.

3. Main results

Our first theorem is a small generalization of Theorem 3 in [Gayfulin 2017]. The proof will be quite
similar and use some lemmas from that paper.

Theorem 1. Let a be a left endpoint of a gap (a, b) in the Lagrange spectrum and α be an irrational
number such that µ(α)= a. Consider a doubly infinite sequence B strongly associated with α. Then B
is an eventually periodic sequence.

It follows from Theorems I and II that there exist nonadmissible elements in the Lagrange spectrum
but all such numbers are left endpoints of some maximal gaps in L. The following theorem gives a
necessary and sufficient condition of admissibility of a Lagrange spectrum element.

Theorem 2. A left endpoint of a gap in the Lagrange spectrum a is admissible if and only if there exists
a quadratic irrationality α such that µ(α)= a.

Of course, every quadratic irrationality is strongly associated with the unique sequence, which is
purely periodic. Therefore Theorem 2 is equivalent to the following statement.

Corollary 3.1. A left endpoint of a gap in the Lagrange spectrum a is not admissible if and only if there
does not exist a purely periodic sequence B such that λ0(B)= M(B)= a.

Theorem 2 provides an instrument to verify nonadmissible points in L. Define

α∗n = 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2],

βn = 2+ 2[0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2].

The fact that (α∗n , βn) is the maximal gap in the Markoff spectrum was proved in [Gbur 1976]. It is easy
to show that α∗n and βn belong to L; we will do this in Section 6. Hence, as L⊂M [Cusick 1975], the
interval (α∗n , βn) is the maximal gap in L too.

Theorem 3. For any integer n > 2 the irrational number α∗n is not admissible.

One can easily see that α∗1 = 2+[0; 2, 2, 1, 2]+[0; 1, 2, 2, 2, 1, 2] =µ([0; 2, 2, 1, 2])= M(2, 2, 1, 2).
Thus, α∗1 is an admissible number by Theorem 2.
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4. Proof of Theorem 1

The following statement is well known. See the proof in [Cusick and Flahive 1989, Chapter 1, Lemma 6].

Lemma 4.1. Let A = . . . , a−1, a0, a1, . . . be any doubly infinite sequence. If M(A) is finite, then there
exists a doubly infinite sequence B such that M(A)= M(B)= λ0(B).

Using the same argument for the sequence A = (a1, a2, . . . , an, . . .), one can easily show:

Lemma 4.2. Let α = [0; a1, . . . , an, . . .] be an arbitrary irrational number and ai < c for all i ∈N, for
some positive real number c. Then there exists a doubly infinite sequence B which is strongly associated
with α.

As α 6
√

21, all elements of B are bounded by 4. For any natural n define εn = 2−(n−1), δn = 5−2(n+2).
We need the following lemmas from [Gayfulin 2017].

Lemma 4.3. Suppose α = [a0; a1, . . . , an, b1, . . .] and β = [a0; a1, . . . , an, c1, . . .], where n > 0, a0 is
an integer, and a1, . . . , an, b1, b2, . . . , c1, c2, . . . are positive integers bounded by 4 with b1 6= c1. Then
for n odd, α > β if and only if b1 > c1; for n even, α > β if and only if b1 < c1. Also,

δn < |α−β|< εn.

Lemma 4.4. Let γ = [0; c1, c2, . . . , cN , . . .] and γ ′ = [0; c′1, c′2, . . . , c′N , . . .] be two irrational numbers
with partial quotients not exceeding 4. Suppose that every sequence of partial quotients of length 2n+ 1
which occurs in the sequence (c′1, c′2, . . . , c′N , . . .) infinitely many times also occurs in the sequence
(c1, c2, . . . , cN , . . .) infinitely many times. Then µ(γ ′) < µ(γ )+ 2εn .

The following technical lemma was formulated in [Gayfulin 2017] for N = (2n+ 1)(42n+1
+ 1) and

the proof was incorrect. However, this is not crucial for the results of that paper, as we just need N to be
bounded from above by some growing function of n. In this paper, we give a new version of the lemma
with correct proof.

Lemma 4.5. Let n be an arbitrary positive integer. Define N = N (n) = (2n + 2)(42n+2
+ 1). If

b1, b2, . . . , bN is an arbitrary integer sequence of length N such that 1 6 bi 6 4 for all 1 6 i 6 N,
then there exist two integers n1, n2 such that bn1+i = bn2+i for all 06 i 6 2n+ 1 and n1 ≡ n2 (mod 2).

Proof. There exist only 42n+2 distinct sequences of length 2n + 2 with elements 1, 2, 3, 4. Consider
42n+2

+ 1 sequences: (b1, . . . , b2n+2), (b2n+3, . . . , b4n+4), . . . , (b(2n+2)42n+2+1, . . . , b(2n+2)42n+2+2n+2).
Dirichlet’s principle implies that there exist two coinciding sequences among them. Denote these se-
quences by (bn1, . . . , bn1+2n+1) and (bn2, . . . , bn2+2n+1). Note that the index of the first element of each
sequence is odd; hence n1 ≡ n2 ≡ 1 (mod 2), which finishes the proof. �

If n1 ≡ n2 (mod 2) then the sequence (bn1, bn1+1, . . . , bn2−1) has even length. This fact will be useful
in our argument.

Lemma 4.6. Let B be an arbitrary integer sequence of even length. Let A be an arbitrary finite integer
sequence and C an arbitrary nonperiodic infinite sequence. Then

min([0; A, B, B,C], [0; A,C]) < [0; A, B,C]<max([0; A, B, B,C], [0; A,C]). (2)
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Proof. As the sequence C is nonperiodic, the continued fractions in (2) are not equal. Without loss of
generality, one can say that the sequence A is empty. Suppose that

[0; B,C]> [0; B, B,C].

As the length of B is even, one can see that [0;C]> [0; B,C], which is exactly the right-hand side of (2).
The case when [0; B,C]< [0; B, B,C] is treated in exactly the same way. �

Lemma 4.7. Let γ = [0;b1,b2, . . . ,bN , . . .] be an arbitrary irrational number, not a quadratic irrational-
ity. Consider the sequence BN = (b1, b2, . . . , bN ) and define two numbers n1 and n2 from Lemma 4.5.
Define two new sequences of positive integers

B1
N = (b1, b2, . . . , bn1−1, bn2, bn2+1, . . . , bN ),

B2
N = (b1, b2, . . . , bn1−1, bn1, . . . , bn2−1, bn1, . . . , bn2−1, bn2, bn2+1, . . . , bN ).

Let us also define two new irrational numbers:

γ 1
= [0;b1,b2, . . . ,bn1−1,bn2,bn2+1, . . . ,bN ,bN+1, . . .] = [0; B1

N ,bN+1, . . .],

γ 2
= [0;b1,b2, . . . ,bn1−1,bn1, . . . ,bn2−1,bn1, . . . ,bn2−1,bn2,bn2+1, . . . ,bN , . . .] = [0; B2

N ,bN+1, . . .].

Then max(γ 1, γ 2) > γ .

Proof. We apply Lemma 4.6 for A=(b1,b2, . . . ,bn1−1), B=(bn1,bn1+1, . . . ,bn2−1), C=(bn2,bn2+1, . . .).
Here γ = [0; A, B,C], γ 1

= [0; A,C], and γ 2
= [0; A, B, B,C]. Note that as γ is not a quadratic

irrationality, the sequence C is not periodic. �

Now we are ready to prove Theorem 1.

Proof. Suppose that B is not periodic on the right side. Consider an increasing sequence of indices k( j)
such that for any natural j the sequence (ak( j)− j , . . . , ak( j), . . . , ak( j)+ j ) coincides with the sequence
(b− j , . . . , b0, . . . , bj ). Of course,

lim
j→∞

λk( j)(α)= λ0(B)= µ(α).

Without loss of generality, one can say that k( j + 1)− k( j)→∞ as j →∞. Consider an even n
such that εn <

1
2(b− a) and N = N (n) as defined in Lemma 4.5. Define n1 < n2 from Lemma 4.5 for

the sequence (b1, . . . , bN ). As B is not periodic to the right, define a minimal positive integer r such
that bn1+r 6= bn2+r . Consider the sequences B1

N , B2
N and the continued fractions γ1, γ2 from Lemma 4.7

applied to the continued fraction [0; b1, . . . , bn . . .] = γ . If γ2 > γ , define g = 2; otherwise we put g = 1.
Consider the doubly infinite sequence B ′ = (. . . , b−n, b0, Bg

N , bN+1, . . .). Note that

a = λ0(B) < λ0(B ′) < a+ εn < b.

Consider the corresponding continued fraction α′ which is obtained from the continued fraction α by
replacing every segment (ak( j), . . . , ak( j)+N )= (ak( j), BN ) by the segment (ak( j), Bg

N ) for every j >n2+r .
One can easily see that α′ and α satisfy the condition of Lemma 4.4 and hence µ(α′) < µ(α)+ 2εn . But
as µ(α)+ 2εn < b and (a, b) is the gap in L, we have

µ(α′)6 µ(α)= a. (3)
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On the other hand, one can easily see that the sequence B ′ is weakly associated with α′. This means that

µ(α′)> M(B)> λ0(B ′) > λ0(B)= a.

We obtain a contradiction with (3). The case when B is not periodic on the left side is considered in
exactly the same way. �

5. Proof of Theorem 2

The following lemma from [Gayfulin 2017] immediately implies the “⇐” part of the statement of
Theorem 2.

Lemma 5.1. Consider an arbitrary point a in the Lagrange spectrum. If there exists a quadratic irra-
tionality γ such that µ(γ )= a, then a is admissible.

Now it is sufficient to prove that if a is an admissible left endpoint of a gap in the Lagrange spectrum,
then there exists a quadratic irrationality α such that µ(α)= a.

Proof. Let a be an admissible left endpoint of some gap in the Lagrange spectrum. Let α = [a0; a1, . . . ,

an, . . .] be an irrational number such that µ(α) = a. Suppose that α is attainable, but not a quadratic
irrationality. Let k( j) be a growing sequence of indices such that

λk( j)(α)> µ(α). (4)
Of course,

lim
j→∞

λk( j)(α)= µ(α).

Consider a sequence B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) strongly associated with α having the
following property: the sequence (b−i , . . . ,b0, . . . ,bi ) coincides with the sequence (ak( j)−i , . . . ,ak( j), . . . ,

ak( j)+i ) for infinitely many j’s. Theorem 1 implies that B is eventually periodic. That is, there exist a
positive integer m and two finite sequences L and R such that

B = (L, b−m, . . . , b0, . . . , bm, R).

It follows from (4) that one of the inequalities

[ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R],

[0; ak( j−1), . . . , a1]> [0; b−1, . . . , b−m, L]

holds for infinitely many j’s. Note that [ak( j); ak( j+1), . . .] 6= [b0; b1, . . . , bm, R], as α is not a quadratic
irrationality and, of course, [0; ak( j−1), . . . , a1] 6= [0; b−1, . . . , b−m, L]. Suppose that

[ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R] (5)

for infinitely many j ’s. Denote by p the length of period R. Denote by r( j) the minimal positive number
such that ak( j)+r( j) 6= br( j). Without loss of generality, one can say that:

(1) k( j + 1)− k( j)− r( j)→∞ as j→∞.

(2) [ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R] for every j ∈ N.

(3) [ak( j); ak( j+1), . . . , ak( j)+m] = [b0; b1, . . . , bm] for every j ∈ N.
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(4) The sequence (ak( j)− j , . . . , ak( j), . . . , ak( j)+ j ) coincides with the sequence (b− j , . . . , b0, . . . , bj )

for every j ∈ N.

(5) Period length p is even.

Denote by t ( j) the number of periods P in the sequence (bm+1, . . . , br( j)). Of course,

t ( j)=
[

r( j)−m
p

]
and t ( j) tends to infinity as j→∞. Lemma 4.3 implies that since (5) holds, we have

[ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
t ( j) times

, . . . , ak( j)+r( j), . . .]> [b0; b1, . . . , bm, R].

Denote by αn a continued fraction obtained from the continued fraction α = [a0; a1, . . . , an, . . .] as
follows: for any j ∈ N if t ( j) > n, then every pattern

ak( j), ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
t ( j) times

, . . . , ak( j)+r( j)

is replaced by the pattern

ak( j), ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j).

As the length of the period R is even, by Lemma 4.3 one has

[ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j), . . .] − [b0; b1, . . . , bm, R]> δm+(n+1)p. (6)

On the other hand, as the sequence (ak( j)− j , . . . , ak( j)) coincides with the sequence (b− j , . . . , b0) for all
j ∈ N, by Lemma 4.3 one has∣∣[0; ak( j)−1, . . . , ak( j)− j , . . . , a1] − [0; b−1, . . . , b−m, L]

∣∣< εj . (7)

For any positive integers n,m, p there exists J such that for all j > J one has εj <
1
2δm+(n+1)p. Now,

from (6) and (7) we have for j > J(
[0; ak( j)−1, . . . , ak( j)− j , . . . , a1]

+ [ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j), . . .]
)

−
(
[0; b−1, . . . , b−m, L] + [b0; b1, . . . , bm, R]

)
> 1

2δm+(n+1)p. (8)

Considering the limit in (8) as j→∞, we can easily see that µ(αn)> µ(α)+
1
2δm+(n+1)p.

Note that
lim

n→∞
µ(αn)= µ(α)= a. (9)

Indeed, every pattern of length np which occurs in the sequence of partial quotients of α infinitely many
times occurs in the sequence of partial quotients of αn infinitely many times. Similarly, every pattern of
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length np which occurs in the sequence of partial quotients of αn infinitely many times, occurs in the
sequence of partial quotients of α infinitely many times too. Then, by Lemma 4.4,

|µ(α)−µ(αn)|< 2εnp = 2−np+2
→ 0

as n→∞. We obtain a contradiction with the fact that a is the left endpoint of the gap (a, b) in the
Lagrange spectrum. Indeed, (8) implies that µ(αn) > µ(α) for all n ∈ N. In addition, (9) implies that
there exists a positive integer N such that for any n > N one has a = µ(α) < µ(αn) < b.

If (5) does not hold infinitely many times, then the inequality

[0; ak( j−1), . . . , a1]> [0; b−1, . . . , b−m, L]

holds infinitely many times. As α is not a quadratic irrationality, for any positive integer s there exists an
integer N (s) > s such that for all n > N (s) the continued fraction [0; an, an−1, . . . , as] is not convergent
to the continued fraction [0; b−1, . . . , b−m, L]. Without loss of generality, one can say that k(1) > N (1),
k( j + 1) > N (2k( j)). Denote by r( j) the minimal positive number such that ak( j)−r( j) 6= b−r( j). It is
easy to see that the number r( j) is well-defined and

r( j + 1)6 k( j + 1)− N (2k( j)) < k( j + 1)− 2k( j).

Therefore k( j + 1)− r( j + 1)− k( j)→∞ as j →∞. Now one can easily complete the proof using
exactly the same argument as we used in the first case. �

6. Proof of Theorem 3

First of all, let us show that (α∗n , βn) is the maximal gap in L. As

βn = 2+ 2[0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2] = µ([0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2]),

we have βn ∈ L. The proof of the fact that α∗n ∈ L when n > 2 is a little more complicated. Recall that

α∗n = 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2].

Denote by Cn(k) the finite sequence of integers

Cn(k)= (2, 1, 2, 2︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

).

A little calculation shows that

L(Cn(k))= 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

, . . .] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

, . . .].

Therefore limk→∞ L(Cn(k))= α∗n . As L is closed set, we obtain that α∗n ∈ L.
By [Gbur 1976, Lemma 4], α∗n is a growing sequence. One can easily see that

lim
n→∞

α∗n = 2+ 2[0; 1] =
√

5+ 1≈ 3.236.
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Thus, we have
α∗2 6 α

∗

n < 1+
√

5, where n > 2.

The following lemma is a compilation of Lemmas 3 and 4 from [Gbur 1976].

Lemma 6.1. Consider a doubly infinite sequence B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) such that
M(B) <

√
5+ 1. Then all elements of B are bounded by 2 and B does not contain patterns of the form

(2, 1, 2, 1) and (1, 2, 1, 2).

By Lemma 4.1, without loss of generality one can say that M(B) = λ0(B). Denote the continued
fractions [0; b1, . . . , bn, . . .] and [0; b−1, . . . , b−n, . . .] by x and y respectively. Then

M(B)= b0+ x + y.

Without loss of generality one can say that x 6 y. Now we need the following lemma from [Gbur 1976,
Theorem 4(i)].

Lemma 6.2. Let B be a doubly infinite sequence such that M(B)= λ0(B). Then for all n > 1 we have

βn 6 M(B)= 2+ x + y 6 α∗n+1 ⇐⇒ x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2, . . .] and y = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, . . .].

It also follows from [Gbur 1976, Theorem 4(ii)] that

2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, . . .] + [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, . . .]<
√

5+ 1.

Define
w0 = [0; 2, 1, 2, 2],

x0 = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2] = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0],

y0 = [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2] = [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0].

Lemma 6.3. Let w = [0; a1, a2, . . . , an, . . .] be a continued fraction with elements equal to 1 or 2.
Suppose that the sequence (a1, a2, . . . , an, . . .) does not contain the pattern (2, 1, 2, 1). Then w > w0.

Proof. Denote the elements of the continued fraction w0 = [0; 2, 1, 2, 2] by [0; a′1, . . . , a′m, . . .]. Denote
by r the minimal index such that ar 6= a′r . Suppose that w < w0. Then either r is odd, ar = 2, a′r = 1
or r is even, ar = 1, a′r = 2. However a′r = 2 for any odd r ; thus the first case leads to a contradiction.
Consider the second case. Of course, r > 4. Then a′r−3 = ar−3 = 2, a′r−2 = ar−2 = 1, a′r−1 = ar−1 = 2.
This means that (ar−3, ar−2, ar−1, ar )= (2, 1, 2, 1) and we obtain a contradiction. �

Now we prove Theorem 3.

Proof. Suppose that α∗n is admissible for some n > 2. Consider an attainable number α such that
µ(α)= α∗n . Let B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) be any sequence strongly associated with α.
Denote by f the increasing function

f (t)= [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2+ t].
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By Lemma 6.2, there exist 0< v,w < 1 such that

x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+ v] and y = [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 1+w].

Note that x 6 x0. Indeed,

x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+ v]6 [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0] = x0 ⇐⇒ v > w0.

The last equality follows from Lemmas 6.3 and 6.1. Therefore

y = [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 1+w]> y0 = f (x0).

In particular, b−2n−1 = 1, b−2n−2 = 2 and there exists 0< v 6 x0 such that y = f (v)> f (x0). Hence
v > x0. On the other hand,

2+ v+ f (x)= λ−2n−2(B)6 M(B)= λ0(B)= 2+ x + f (v).

As | f (y)− f (z)| < |y − z| for any 0 < y, z < 1, one can easily see that v 6 x . Thus, v = x = x0 and
y = y0. Hence the sequence B satisfies

B = (2, 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2)

and is not purely periodic. We obtain a contradiction with Corollary 3.1, as we supposed B to be an
arbitrary sequence strongly associated with α. �
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Transcendence of numbers related with Cahen’s constant

Daniel Duverney, Takeshi Kurosawa and Iekata Shiokawa

Cahen’s constant is defined by the alternating sum of reciprocals of terms of Sylvester’s sequence minus 1.
Davison and Shallit proved the transcendence of the constant and Becker improved it. In this paper, we
study rationality of functions satisfying certain functional equations and generalize the result of Becker
by a variant of Mahler’s method.

1. Introduction

Sylvester’s sequence {Sn}n≥0 is defined by the recurrence

S0 = 2, Sn+1 = S2
n − Sn + 1 (n ≥ 0).

It is well known that
∞∑

n=0

1
Sn
= 1. (1)

Cahen [1891] showed that the number

C =
∞∑

n=0

(−1)n

Sn − 1
, (2)

which is now called Cahen’s constant, is irrational. Davison and Shallit [1991] established the transcen-
dence of Cahen’s constant. They constructed a class of alternating series each of which can be expanded
in an explicit simple continued fraction having irrationality exponent greater than 2.5 and showed that
the series (2) belongs to this class. Here, for an irrational number α, the irrationality exponent µ(α) is
defined by the least upper bound of the set of numbers µ for which the inequality∣∣∣∣α− p

q

∣∣∣∣< 1
qµ

has infinitely many irreducible rational solutions p/q. Thus, the transcendence of Cahen’s constant C
follows from Roth’s theorem. Becker [1992, Corollary 3] improved the result by a variant of Mahler’s
method. Indeed, he proved the following: Let p(z) be a polynomial with algebraic coefficients and
deg p(z) ≥ 2 and q(z) = z − γ with an algebraic number γ . Let x be an algebraic number such that
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limn→∞ pn(x) = ∞ and q(pn(x)) 6= 0 for all n ≥ 0, where p0(z) = z, pn(z) = p(pn−1(z)) (n ≥ 1).
Then, the number

∞∑
n=0

(−1)n

q(pn(x))

is transcendental except when q(p(z))= λ−1q(z)2+ q(z)− λ for some constant λ 6= 0, in which case

∞∑
n=0

(−1)n

q(pn(z))
=

1
q(z)+ λ

.

For example, if p(z)= z2
− z+ 1 and α = S0, then the number

∞∑
n=0

(−1)n

Sn − γ

is transcendental for any algebraic γ with Sn 6= γ for all n ≥ 0.
In this paper, we consider the function

f (z)=
∞∑

n=0

an

q(pn(z))
, (3)

where a 6= 0 is a complex number, p(z) ∈ C[z] with deg p(z) ≥ 2, and q(z) ∈ C[z] with deg q(z) ≥ 1.
We note that the right-hand side of (3) is convergent at any z ∈ C for which limn→∞ pn(z) =∞ and
q(pn(z)) 6= 0 for all n ≥ 0. Furthermore, there exists a constant C f > 1 such that f (z) is analytic in
D f = {z ∈ C | |z|> C f } and f (D f )⊂ D f .

The function f (z) satisfies the functional equation

a f (p(z))= f (z)−
1

q(z)
, (4)

and more generally

f (pn(z))=
1
an

(
f (z)−

n−1∑
j=0

a j

q(p j (z))

)
(n ≥ 1). (5)

We now state our results.

Theorem 1.1. Let f (z) be the function defined by

f (z)=
∞∑

n=0

an

q(pn(z))
,

where a ∈ C×, p(z) ∈ C[z] with deg p(z) ≥ 2 and q(z) ∈ C[z] is monic with deg q(z) ≥ 1. Then, the
function f (z) is algebraic over the field C(z) of rational functions if and only if deg p(z)= 2 and p(z)
and q(z) satisfy the relation

blq(p(z))− a = blq(z)(blq(z)− a), (6)
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where b is the leading coefficient of p(z) and l = deg q(z), and if so

f (z)=
bl

blq(z)− a
. (7)

Theorem 1.2. With the same notation as in Theorem 1.1, assume that a and the coefficients of p(z) and
q(z) are algebraic. Then the number

f (x)=
∞∑

n=0

an

q(pn(x))

is transcendental for any algebraic x with limn→∞ pn(x) =∞ and q(pn(x)) 6= 0 for all n ≥ 0, except
when d = 2 and p(z) and q(z) satisfy the relation (6), in which case f (z) is the rational function given
by (7).

Theorem 1.3. Let f (z) be the function defined by

f (z)=
∞∑

n=0

an

(pn(z)− γ )l
, (8)

where p(z) ∈ C[z] with deg p(z) ≥ 2 and l is a positive integer. Assume that a 6= 0, γ , and the coeffi-
cients of p(z) are algebraic numbers. Then the value f (x) is transcendental for any algebraic x with
limn→∞ pn(x)=∞ and pn(x) 6= γ for all n ≥ 0, except in the following two cases:

(i) l = 1, p(γ )− γ + b−1 p′(γ )= 0 and a =−p′(γ ), in which case

f (x)=
b

b(x − γ )− a
. (9)

(ii) l = 2, p(γ )− γ =−2b−1, p′(γ )= 0 and a = 4, in which case

f (x)=
b2

b2(x − γ )2− 4
. (10)

Remark 1.4. The case (ii) can be obtained as a special case of (i). Indeed, if a = 4 in case (ii), we have
by Taylor’s formula p(z)= b(x−γ )2−4(x−γ )+γ +4b−1, and therefore p(z)−γ = b(x−γ −2b−1)2.
Hence

f (x)=
1

x − γ
+

∞∑
n=1

4n

p(pn−1(x))− γ
=

1
x − γ

+ 4b−1
∞∑

n=0

4n

(pn(x)− γ − 2b−1)2
.

Replacing f (x) by using (9) and γ + 2b−1 by γ yields

b
b(x − γ )− 2

=
b

b(x − γ )+ 2
+ 4b−1

∞∑
n=0

4n

(pn(x)− γ )2
,

which is exactly (10).

We give some examples of Theorem 1.3.
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Example 1.5. Let {Sn}n≥0 be Sylvester’s sequence defined by

Sn+1 = S2
n − Sn + 1 (n ≥ 0)

with arbitrary S0 ∈ Z\ {0, 1}. Here p(z)= z2
− z+1, p′(z)= 2z−1 and b= 1. Let us study first case (i)

in Theorem 1.3. The equation p(γ )− γ + b−1 p′(γ )= 0 is equivalent to γ 2
= 0. Therefore γ = 0 and

a =−p′(γ )= 1. Case (ii) cannot occur. Hence for any algebraic numbers a 6= 0 and γ with Sn 6= γ for
all n ≥ 0 and a positive integer l, the number

∞∑
n=0

an

(Sn − γ )l

is transcendental except when l = a = 1 and γ = 0, and if so
∞∑

n=0

1
Sn
=

1
S0− 1

.

Example 1.6. Let {Tn}n≥0 be the recurrence

T0 ∈ Z, |T0|> 2, Tn+1 = T 2
n − 2 (n ≥ 0).

Here p(z) = z2
− 2, p′(z) = 2z and b = 1. By Theorem 1.3, we see that, for any algebraic numbers

a 6= 0 and γ with Tn 6= γ for all n ≥ 0 and a positive integer l, the number
∞∑

n=0

an

(Tn − γ )l

is transcendental except in the following three cases:

(i) l = 1, γ = 1, and a =−2, in which case
∞∑

n=0

(−2)n

Tn − 1
=

1
T0+ 1

. (11)

(ii) l = 1, γ =−2, and a = 4, in which case
∞∑

n=0

4n

Tn + 2
=

1
T0− 2

. (12)

(iii) l = 2, γ = 0, and a = 4, in which case
∞∑

n=0

4n

T 2
n
=

1
(T0− 2)(T0+ 2)

.

As mentioned in Remark 1.4, (iii) is intrinsically the same as (ii).

Example 1.7. Fermat numbers Fn = 22n
+ 1 satisfy the recurrence relation

Fn+1 = F2
n − 2Fn + 2 (n ≥ 0)
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with F0 = 3. By Theorem 1.3, for any algebraic numbers a 6= 0 and γ with Fn 6= γ for all n ≥ 0 and a
positive integer l, the number

∞∑
n=0

an

(Fn − γ )l
(13)

is transcendental except when l = 1, a = 2, and γ = 0, and if so

∞∑
n=0

2n

Fn
=

1
F0− 2

= 1. (14)

Remark 1.8. Formulas (11), (12), and (14) are known; see formulas (2.22), (2.25), and (2.26) in [Du-
verney 2001]. In fact, let α and β with |α|> |β| be roots of the equations x2

− T0x − 1= 0. Then the
Lucas-type sequence

Tn = α
2n
+β2n

satisfies Tn+1 = T 2
n − 2 (n ≥ 1). Therefore the series (11) and (12), as well as (14), can also be seen

as examples of exceptional cases related to the classical Mahler’s method; see [Duverney et al. 2002,
Theorem 1.3; Kanoko et al. 2009, Example 1].

2. Proof of Theorems 1.1 and 1.3

To prove the theorems, we study rational solutions of a functional equation which generalizes (4).

Lemma 2.1. Let a, c ∈C×, p(z) ∈C[z] with d = deg p(z)≥ 2 and leading coefficient b, and q(z) ∈C[z]
be monic with l = deg q(z)≥ 1. Assume that a rational function g(z) satisfies the functional equation

ag(p(z))= g(z)−
δ

q(z)
. (15)

Then d = 2, and p(z) and q(z) satisfy the relation

blq(p(z))− a = blq(z)(blq(z)− a), (16)

in which case:

(i) If a 6= 1, then (15) has one and only one rational solution, which is

g(z)=
δ

q(z)− ab−l . (17)

(ii) If a = 1, then (15) has infinitely many rational solutions given by

g(z)= α+
δ

q(z)− b−1 (α ∈ C). (18)

Proof. Let R(z) and S(z) be two coprime monic polynomials and α ∈ C× be such that

g(z)= α
R(z)
S(z)

.
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As g(z) satisfies (15), we have for c = δα−1

a
R(p(z))
S(p(z))

=
R(z)
S(z)
−

c
q(z)

. (19)

Put for brevity r = deg R(z) and s = deg S(z). If s = 0, then there is no solution satisfying (19) since
g(z)− ag(p(z))= c/(q(z)) 6∈ C[z]. Hence, s ≥ 1. The functional equation (19) can be written as

a R(p(z))S(z)q(z)= R(z)S(p(z))q(z)− cS(z)S(p(z)). (20)

Since (R(p(z)), S(p(z)))= 1, we have

S(p(z)) | S(z)q(z). (21)

Hence, ds ≤ s+ l. Therefore, we obtain

1≤ s ≤
l

d − 1
. (22)

Comparing the degrees of both sides of (20), we get r ≤ s.
If r < s, the degree of the first term of the right-hand side in (20) is greater than that of the left-hand

side. Therefore, the degree of the first term of the right-hand side is equal to that of the second term of
the right-hand side. Then, we have using (22)

0= r + ds+ l − (s+ ds)≥ r − s+ (d − 1)s = r + (d − 2)s ≥ 0.

Therefore, we deduce d = 2 and r = 0. This together with (20) leads to

aS(z)q(z)= S(p(z))q(z)− cS(z)S(p(z)). (23)

The degree of the left-hand side is less than that of the first term of the right-hand side. Hence, the
degrees of the two terms in the right-hand side are equal, and so s = l. This and (21) with d = 2 imply

S(p(z))= blq(z)S(z). (24)

Substituting (24) in (23), we get a = bl(q(z)− cS(z)). Comparing the leading coefficients of both sides,
we find c = 1 and

S(z)= q(z)− ab−l . (25)

Substituting into (24) yields (16). In this case, as R(z) is monic and deg R(z)= 0, we have R(z)= 1 and

g(z)= α
R(z)
S(z)
= c−1δ

1
q(z)− ab−l ,

which proves that (17) holds (also for a = 1).
Now, let r = s. Then we get a = 1 by comparing the leading coefficients of both sides in (20). Put

T (z)= R(z)− S(z). Then, by (20),

T (p(z))S(z)q(z)= T (z)S(p(z))q(z)− cS(z)S(p(z)). (26)

Noting that deg T (z) < s and (S(z), T (z)) = 1, we apply the above discussion for S(z) and T (z), and
thus we obtain d = 2, T (z) is a constant, and (24). Let T (z)= k 6= 0. Substituting (24) into (26), we get

1= bl(q(z)− ck−1S(z)).
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Comparing the leading coefficients of both sides, we find k = c, and we see that (25) holds again.
Therefore (16) holds. In this case R(z)− S(z)= c, whence

g(z)= α
R(z)
S(z)
= α+

αc
q(z)− b−l ,

which proves (18). �

Now we prove Theorem 1.1 by using Lemma 2.1.

Proof of Theorem 1.1. Assume that the function (3) is algebraic over the field C(z) of rational functions.
Then we have

( f (z))δ + g(z)( f (z))δ−1
+ · · · = 0, (27)

where the degree δ is chosen to be minimal and g(z) is a rational function with complex coefficients.
Replacing z by p(z) in (27) yields(

1
a

(
f (z)−

1
q(z)

))δ
+ g(p(z))

(
1
a

(
f (z)−

1
q(z)

))δ−1

+ · · · = 0

by using (4). This can be written as

f (z)δ +
(

ag(p(z))−
δ

q(z)

)
f (z)δ−1

+ · · · = 0. (28)

As δ is minimal, comparison with (27) and (28) yields

ag(p(z))= g(z)+
δ

q(z)
.

Since g(z) satisfies the functional equation (15), we can apply Lemma 2.1 and obtain (6). Replacing z
by pn(z) in (6) yields

abl

blq(pn+1(z))− a
=

a
q(pn(z))(blq(pn(z))− a)

=
bl

blq(pn(z))− a
−

1
q(pn(z))

.

After multiplying by an, the function f (z) appears as a telescoping series and we have

f (z)= bl
∞∑

n=0

(
an

blq(pn(z))− a
−

an+1

blq(pn+1(z))− a

)
=

bl

blq(z)− a
. �

Lemma 2.2. Make the same assumptions as in Lemma 2.1. Let q(z)= (z− γ )l , where l ≥ 1. Then l = 1
or 2:

(i) If l = 1, then b(p(γ )− γ )+ p′(γ )= 0 and a =−p′(γ ).

(ii) If l = 2, then p′(γ )= 0, p(γ )− γ =−2b−1, and a = 4.

Proof. By Lemma 2.1, (16) holds and we get

(p(z)− γ )l − ab−l
= bl(z− γ )2l

− a(z− γ )l . (29)
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Differentiating both sides of (29), we get

p′(z)(p(z)− γ )l−1
= 2bl(z− γ )2l−1

− a(z− γ )l−1. (30)

If l = 1, then taking z = γ yields p(z)− γ − ab−l
= 0 and p′(γ ) = −a. Replacing a in the first

equality gives b(p(γ )− γ )+ p′(γ )= 0, as claimed.
Let l ≥ 2. By (29), we have

(p(γ )− γ )l = ab−l
6= 0. (31)

Since p(γ ) 6= γ by (31), (z− γ )l−1 divides p′(z). Hence l = 2, and so (30) is reduced to

p(z)− γ = b(z− γ )2− 1
2ab−1. (32)

Substituting z = γ in (32) and using (31), we find a = 4 and p(γ )− γ =−2b−1. Substituting z = γ in
(30) and using (31), we obtain p′(γ )= 0. �

Finally, we prove Theorem 1.3 by using Lemma 2.2 and Theorem 1.2, which will be shown indepen-
dently in the next section using Theorem 1.1.

Proof of Theorem 1.3. If the function f (z) defined in Theorem 1.3 is not a rational function, then the
value f (x) is transcendental by Theorem 1.2. Assume to the contrary that f (z) is a rational function.
Then Lemma 2.2 with (7) yields the exceptional cases. �

3. Proof of Theorem 1.2

Becker’s result mentioned in Section 1 is a special case of the main theorem in [Becker 1992], which es-
tablishes algebraic independence of the values of power series f1(z), . . . , fm(z) satisfying the functional
equations

fi (z)= ai (z) fi (T z)+ bi (z) (i = 1, . . . ,m),

where ai (z), bi (z) are rational functions with algebraic coefficients and T z = p(z−1)−1 for a polynomial
p(z) with algebraic coefficients and deg p(z)≥ 2. The proof of this theorem is based on a deep result due
to Philippon [1986] on a criterion for algebraic independence of complex numbers and is rather involved.
Although Theorem 1.2 can also be deduced from [Becker 1992, Theorem], we give here a self-contained
proof for completeness.

We prove Theorem 1.2 by a variant of Mahler’s method. In the proof we will have to estimate the
denominators and houses of algebraic numbers. We will use the following lemmas.

Lemma 3.1. Let K be any algebraic field of degree k, and let h ∈ K[z]. Let δ = deg h. Then there exists
µ= µ(h)≥ 1 such that, for every θ ∈ K×,

(i) den h(θ)≤ µ(den θ)δ,

(ii) |h(θ)| ≤ µ(max(1, |θ |))δ.

Proof. Put h(z)=
∑δ

i=0ai zi, with aδ 6= 0. Then clearly

den h(θ)≤ D(den θ)δ,
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where D = LCM(den a1, den a2, . . . , den aδ). Moreover, denote by σ1 = Id, σ2, . . . , σk the monomor-
phisms of K. Then for every j = 1, 2, . . . , k, we have∣∣∣∣ δ∑

i=0

σ j (ai )(σ j (θ))
i
∣∣∣∣≤ δ∑

i=0

|σ j (ai )|(|θ |)
i
≤

( δ∑
i=0

|σ j (ai )|

)
(max(1, |θ |))δ, �

Lemma 3.2. Let K be any algebraic field of degree k, and let h ∈ K[z]. Let δ = deg h. Then for every
θ ∈ K× such that h(θ) 6= 0, there exist ν = ν(h)≥ 1 such that

max
(

den
(

1
h(θ)

)
,

∣∣∣∣ 1
h(θ)

∣∣∣∣)≤ ν(den θ ×max(1, |θ |))kδ.

Proof. First we have

den
(

1
h(θ)

)
= den

(
den h(θ)

den h(θ)× h(θ)

)
= den

(den h(θ)
∏

i 6=1 σi (den h(θ)× h(θ))

N (den h(θ)× h(θ))

)
,

where N (α) is the norm of α ∈K over Q. The numerator of the fraction is an integer of K, and therefore

den
(

1
h(θ)

)
≤ |N (den h(θ)× h(θ))| ≤ (den h(θ))k × |h(θ)|k,

which proves the first part of Lemma 3.2 by using Lemma 3.1(i).
For the second part, for every i = 1, 2, . . . , k, we have∣∣∣∣σi

(
1

h(θ)

)∣∣∣∣= ∣∣∣∣ den h(θ)
den h(θ)× σi (h(θ))

∣∣∣∣= ∣∣∣∣(den h(θ))k ×
∏

j 6=i σ j (h(θ))

N (den h(θ)× h(θ))

∣∣∣∣.
Now |N (den h(θ)× h(θ))| ≥ 1 since (den h(θ)× h(θ)) is a nonzero integer of K. Consequently∣∣∣∣σi

(
1

h(θ)

)∣∣∣∣≤ (den h(θ))k × |h(θ)|k−1 (1≤ i ≤ k),

which proves Lemma 3.2 by using again Lemma 3.1. �

Now we prove Theorem 1.2. For every z ∈ C satisfying |z|> 1/C f and every n ≥ 0, put

q(pn(z))=
ldn∑
i=0

αn,i zi , αn,ldn = b(d
n
−1)/(d−1)

6= 0.

Then
an

q(pn(1/z))
=

anzldn∑ldn

i=0 αn,i zldn−i
, (33)

so that the function

F(z)= f
(

1
z

)
=

∞∑
n=0

an

q(pn(1/z))
(34)

is analytic in E f = {z ∈ C | |z|< 1/C f }.
If f is algebraic over C(z), we have the exceptional case by Theorem 1.1. From now on let f be not

algebraic over C(z), and the coefficients of p(z) and q(z) be algebraic numbers, as well as x , a, and
f (x). We may assume without loss of generality that x ∈ D f , since otherwise we can choose n0 such
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that pn(x) ∈ D f for all n ≥ n0 and consider the value f (x ′) with x ′ = pn0(x). To prove the theorem, we
assume that the value f (x) is algebraic and deduce a contradiction.

Let K ⊂ C be the number field generated by all these numbers, let A be the ring of integers of K, and
let k = deg K. It is clear from (33) and (34) that the power series expansions of F(z) and all its powers,
namely

(F(z)) j
=

∞∑
n=0

γ j,nzn, (35)

satisfy γ j,n ∈ K for all nonnegative integers j and n. Now let r be a fixed positive integer. We claim that
there exist polynomials P0, P1, . . . , Pr ∈ A[z] of degrees at most r , not all zero, such that

P0(z)+ P1(z)F(z)+ P2(z)(F(z))2+ · · ·+ Pr (z)(F(z))r = zr2
+σ Lr (z), (36)

where σ = σ(r)≥ 0, Lr (z)∈K[[z]] with Lr (0) 6= 0. Indeed, the left-hand side is not identically 0 since F
is not algebraic. To realize (36) we have to solve a system of r2 homogeneous equations (the coefficients
of the successive powers zi of the left-hand side must be equal to 0 for i from 0 to r2

− 1) with (r + 1)2

unknowns (the coefficients of the Pi ’s). Since (F(z))h ∈ K[[z]] for every nonnegative integer h, we know
from an elementary result of linear algebra that the system has a nontrivial solution in K(r+1)2, and hence
in A(r+1)2 if we multiply by a common denominator, which proves our claim.

Replacing z by 1/pn(x) yields

θr,n =

r∑
j=0

Pj

(
1

pn(x)

)
( f (pn(x))) j

=

(
1

pn(x)

)r2
+σ

Lr

(
1

pn(x)

)
. (37)

Under our hypotheses, the left-hand side of (37), which we call θr,n , belongs to K. As usual, we will
obtain a contradiction by letting n tend to infinity for a suitable value of r and applying the size inequality
to θr,n . In what follows, we denote by C1,C2, . . . real numbers greater than 1 which do not depend on n
or r (they may depend on x , p(x) or f (x)).

Lemma 3.3. There exists C1 such that

max
(

den
(

1
q(pn(x))

)
,

∣∣∣∣ 1
q(pn(x))

∣∣∣∣)≤ Cdn

1 . (38)

Proof. An easy induction using Lemma 3.1(i) shows that, for every n ≥ 1,

den(pn(x))≤ µ(p)(d
n
−1)/(d−1)(den x)d

n
≤ Cdn

2 . (39)

Furthermore, we have by Lemma 3.1(ii)

|pn(x)| ≤ µ(p)(d
n
−1)/(d−1)(max(1, |x |))d

n
≤ Cdn

3 . (40)

For n ≥ 2, we see by Lemma 3.2 that

max
(

den
(

1
pn(x)

)
,

∣∣∣∣ 1
pn(x)

∣∣∣∣)≤ ν(p)(den pn−1(x)×max(1, |pn−1(x)|)
)kd
.
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Therefore by (39) and (40)

max
(

den
(

1
pn(x)

)
,

∣∣∣∣ 1
pn(x)

∣∣∣∣)≤ Cdn

4 . (41)

By Lemma 3.2, this implies (38). �

Lemma 3.4. There exist C5, C6, and C7 such that

den(θr,n)≤ Crdn

5 , (42)

|θr,n| ≤ (r + 1)2χCrdn

6 , (43)

|θr,n| ≤ 2Lr (0)C−r2dn

7 , (44)

where χ is the greatest house of all the coefficients of all the polynomials Pi , which depends on r.

Proof. First we prove the inequality (42). By using (5), we have

den( f (pn(x)))= den
(

1
an

(
f (x)−

n−1∑
j=0

a j

q(p j (x))

))
≤

(
den

(
1
a

))n

× den( f (x))× (den a)n−1
×

n−1∏
j=0

den
(

1
q(p j (x))

)
.

By using (41), we obtain

den( f (pn(x)))≤ Cn
8 ×

n−1∏
j=0

Cd j

1 ≤ Cdn

9 . (45)

The polynomials Pi defined in (36) have integer coefficients and their degrees are at most r . Hence for
every i = 0, 1, . . . , r , we have by (41)

LCM
(

den
(

Pi

(
1

pn(x)

)))
≤

(
den

(
1

pn(x)

))r

≤ Crdn

4 . (46)

Now we can give an upper bound for the denominator of (θr,n):

den(θr,n)= den
( r∑

j=0

Pj

(
1

pn(x)

)
( f (pn(x))) j

)
≤ Crdn

4 ×Crdn

9 ≤ Crdn

5 .

Next, we prove the inequality (43). For every i = 0, 1, . . . , r , we have by (41)∣∣∣∣Pi

(
1

pn(x)

)∣∣∣∣≤ χ r∑
i=0

∣∣∣∣ 1
pn(x)

∣∣∣∣ i
≤ (r + 1)χCrdn

4 . (47)

For every n ≥ 0, we have by (5) and (38) above

| f (pn(x))| ≤
∣∣∣∣ 1
an

∣∣∣∣(| f (x)| +(n−1∑
j=0

|a| j
)

Cdn

1

)
≤ Cdn

10 . (48)
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By using (47) and (48), we can give an upper bound for the house of θr,n:

|θr,n| ≤

r∑
i=0

∣∣∣∣Pi

(
1

pn(x)

)∣∣∣∣× |[ f (pn(x))]i |

≤ (r + 1)χ
r∑

i=0

Crdn

4 ×Crdn

10 ≤ (r + 1)2χCrdn

6 .

Finally, we show the inequality (44). By (37), we have

|θr,n| =

(
1

|pn(x)|

)r2
+σ ∣∣∣∣Lr

(
1

pn(x)

)∣∣∣∣. (49)

Since |pn(x)| ≥ Cdn

7 , we see that

lim
n→∞

∣∣∣∣Lm

(
1

pn(x)

)∣∣∣∣= |Lr (0)| 6= 0, (50)

which proves that θr,n 6= 0 for every large n. Moreover, by (49) we have (44). �

We come now to the conclusion. Define δ = deg(θr,n). As θr,n 6= 0 for every large n, it satisfies the
size inequality:

|θr,n| ≥ (den(θr,n))
−δ
× |θr,n|

−δ+1. (51)

Using (42), (43) and (44) yields

2(γ (r + 1)2)δ−1Lr (0)≥
(

Cr
7

Cδ
5 ×Cδ

6

)rdn

. (52)

If we choose r such that Cr
7 > Cδ

5 ×Cδ
6 and fix it, we obtain a contradiction when n tends to infinity,

which proves Theorem 1.2.
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Algebraic results for the values ϑ3(mτ) and ϑ3(nτ)
of the Jacobi theta-constant

Carsten Elsner, Florian Luca and Yohei Tachiya

Let ϑ3(τ )= 1+ 2
∑
∞

ν=1 eπ iν2τ denote the classical Jacobi theta-constant. We prove that the two values
ϑ3(mτ) and ϑ3(nτ) are algebraically independent over Q for any τ in the upper half-plane such that
q = eπ iτ is an algebraic number, where m, n ≥ 2 are distinct integers.

1. Introduction and statement of the results

Throughout this paper, let τ be a complex variable in the upper half-plane H := {τ ∈ C | =(τ ) > 0}. The
three classical theta functions

ϑ2(τ )= 2
∞∑
ν=0

q(ν+1/2)2, ϑ3(τ )= 1+ 2
∞∑
ν=1

qν
2
, ϑ4(τ )= 1+ 2

∞∑
ν=1

(−1)νqν
2

are known as theta-constants or Thetanullwerte, where q := eπ iτ. These theta-constants are holomorphic
in H and never vanish for any τ ∈ H. In particular, the function ϑ3(τ ) is called a Jacobi theta-constant
or Thetanullwert of the Jacobi theta function ϑ(z | τ)=

∑
∞

ν=−∞ eπ iν2τ+2π iνz . For an extensive discus-
sion of the Jacobi theta function and theta-constants we refer the reader to [Stein and Shakarchi 2003,
Chapter 10]. Y. V. Nesterenko [2006] has improved upon a result from [Grinspan 2001] and obtained
some identities for the theta-constants.

Theorem A [Nesterenko 2006, Theorem 1]. For any odd integer n ≥ 3 there exists an integer polynomial
Pn(X, Y ) with degX Pn(X, Y )= ψ(n) such that

Pn

(
n2ϑ

4
3 (nτ)

ϑ4
3 (τ )

, 16
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0

holds for any τ ∈ H, where

ψ(n) := n
∏
p | n

(
1+ 1

p

)
.

For example, the first polynomials P3 and P5 are given in [Nesterenko 2006] by

P3 = 9− (28− 16Y + Y 2)X + 30X2
− 12X3

+ X4,

P5 = 25− (126− 832Y + 308Y 2
− 32Y 3

+ Y 4)X + (255+ 1920Y − 120Y 2)X2

+ (−260+ 320Y − 20Y 2)X3
+ 135X4

− 30X5
+ X6

MSC2010: primary 11J85; secondary 11J91, 11F27.
Keywords: algebraic independence, Jacobi theta-constants, modular functions.
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and the polynomials P7, P9, and P11 are listed in the appendix of [Elsner 2015]. Recently one of us
(Elsner) constructed similar integer polynomials in two variables X and Y , which vanish identically at
certain rational functions of theta-constants including the function ϑ3(nτ) for n = 2m. He applied this
result and Theorem A to settle the algebraic independence problem of the two values ϑ3(τ ) and ϑ3(nτ)
for integers n ≥ 2, and obtained the following Theorem B.

Theorem B [Elsner 2015, Theorem 1.1]. Let τ ∈ H such that eπ iτ is an algebraic number. Then the two
values ϑ3(τ ) and ϑ3(2mτ) are algebraically independent over Q for each integer m ≥ 1. Furthermore,
the same holds for the two values ϑ3(τ ) and ϑ3(nτ) if n = 3, 5, 6, 7, 9, 10, 11, 12.

The proof of Theorem B is based on an algebraic independence criterion, see [Elsner et al. 2011,
Lemma 3.1], which requires a nonvanishing of a Jacobian determinant. In particular, to prove the latter
assertion in Theorem B, he needed the explicit forms of the polynomials P3, P5, P7, P9 and P11 stated
above. In [Elsner and Tachiya 2017], two of us obtained the following Theorem C by studying the
specific properties of the polynomials Pn .

Theorem C [Elsner and Tachiya 2017, Theorem 1.2]. Let n ≥ 2 be an integer and j ∈ {2, 3, 4}. Then for
any τ ∈ H at least three of the numbers eπ iτ, ϑ3(τ ), ϑ3(nτ), and Dϑ j (τ ) are algebraically independent
over Q, where D := (π i)−1d/dτ denotes a differential operator.

An application of Theorem C gives an improvement of Theorem B as follows:

Theorem D. Let τ ∈ H be such that eπ iτ is an algebraic number. Then the two numbers ϑ3(τ ) and
ϑ3(nτ) are algebraically independent over Q for each integer n ≥ 2.

On the other hand, the algebraic dependence result is also obtained in [Elsner and Tachiya 2017]
through the properties of the polynomials Pn .

Theorem E [Elsner and Tachiya 2017, Theorem 1.4]. Let `,m, n ≥ 1 be integers and τ ∈ H be any
complex number. Then the three values ϑ3(`τ ), ϑ3(mτ), and ϑ3(nτ) are algebraically dependent over Q.

In this paper, we fill the gap between Theorems D and E. Our main result is the following.

Theorem 1. Let m, n ≥ 1 be distinct integers and τ ∈ H. Then at least two of the numbers eπ iτ, ϑ3(mτ),
and ϑ3(nτ) are algebraically independent over Q. In particular, the two numbers ϑ3(mτ) and ϑ3(nτ)
are algebraically independent over Q for any τ ∈ H such that eπ iτ is an algebraic number.

Of course the two numbers ϑ3(mτ) and ϑ3(nτ) can be algebraically dependent over Q without an
algebraic condition on eπ iτ. Indeed, for τ = i ∈ H the two numbers ϑ3(i) and ϑ3(2i) are algebraically
dependent over Q, since the nontrivial relation

4ϑ2
3 (2i)− (

√
2+ 2)ϑ2

3 (i)= 0 (1)

exists; see [Berndt 1998, p. 325]. Note that the number eπ = i−2i was shown to be transcendental for
the first time by A. O. Gelfond (1929) and, a few years later, this property of eπ was corroborated by
the Gelfond–Schneider theorem (1934). Conversely, the above identity (1) and Theorem 1 imply the
transcendence of eπ as well.
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2. Some properties of Pn(X,Y)

We now discuss some properties of Pn(X, Y ) given in Theorem A. We start with a short description of
the construction of Pn(X, Y ); for details, see [Nesterenko 2006]. Let 0(2) be the principal congruence
subgroup of level 2 in SL(2,Z); that is,

0(2) :=
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣∣ (a b
c d

)
≡

(
1 0
0 1

)
(mod 2)

}
.

Then for each odd integer n ≥ 3 the set of matrices(
a b
c d

)
≡

(
1 0
0 1

)
(mod 2), (a, b, c, d)= 1, ad − bc = n,

is a union of ψ(n) equivalence classes with respect to the left–multiplication on the elements of 0(2),
and the class representatives are given by

αν :=

(
u 2v
0 w

)
, (u, v, w)= 1, uw = n, 0≤ v < w. (2)

For these ψ(n) matrices α1, . . . , αψ(n) in (2), we define the polynomial

ψ(n)∏
ν=1

(X − xν(τ ))=: Xψ(n)
+ a1(τ )Xψ(n)−1

+ · · ·+ aψ(n)−1(τ )X + aψ(n)(τ ),

where

xν(τ ) := u2ϑ
4
3 ((uτ + 2v)/w)

ϑ4
3 (τ )

with
(

u 2v
0 w

)
= αν, ν = 1, . . . , ψ(n). (3)

Then, using the modular method as well as Galois considerations, one finds that there exist polynomials
R j (Y ) ∈ Z[Y ], j = 1, . . . , ψ(n), such that

a j (τ )= R j (16λ(τ)), λ(τ ) :=
ϑ4

2 (τ )

ϑ4
3 (τ )

. (4)

Thus, the integer polynomial

Pn(X, Y ) := Xψ(n)
+ R1(Y )Xψ(n)−1

+ · · ·+ Rψ(n)−1(Y )X + Rψ(n)(Y ) (5)

vanishes identically at X = n2ϑ4
3 (nτ)/ϑ

4
3 (τ ) and Y = 16λ(τ).

Lemma 2. For each odd integer n ≥ 3, the polynomial Pn(X, 16λ(τ)) is irreducible over the field
C(λ(τ )).

Proof. The group 0(2) fixes the function λ(τ)= ϑ4
2 (τ )/ϑ

4
3 (τ ), since the functions ϑ4

3 (τ ) and ϑ4
4 (τ ) are

modular forms of weight 2 with respect of the subgroup 0(2). Moreover, we have the transformation
formula

xν

(
aτ + b
cτ + d

)
= xµ(τ ) (6)

for a proper matrix β :=
(a

c
b
d

)
∈0(2) and subscripts ν, µ such that a proper matrix γ ∈0(2) satisfies ανβ=

γαµ; see formulae (6) and (7) in [Nesterenko 2006]. This may be regarded as an equivalence relation over
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the matrices α1, α2, . . . , αψ(n) from (2). One can show that any two matrices αν and αµ, 1≤ ν, µ≤ψ(n),
are equivalent. Together with (6) it turns out that the group 0(2) permutes the ψ(n) distinct functions
x1(τ ), . . . , xψ(n)(τ ) transitively. This implies that Pn(X, 16λ(τ)) is a minimal polynomial of x1(τ ) over
the field C(λ(τ )). �

Remark 3. There is no complex number α such that Pn(α, Y ) is identically zero. If such an α existed,
the polynomial Pn(X, Y ) would be divisible by (X − α), which is impossible by Lemma 2. This fact
can also be checked directly from the definition of xν(τ ); see [Elsner and Tachiya 2017, Lemma 2.1]. In
particular, Pn(X, Y ) has positive degree in Y.

Lemma 4. We have
Pn(X, 0)=

∏
u | n, u≥1

(X − u2)w(u,n/u),

where
w(a, b) :=

∑
(a,b,k)=1

0≤k<b

1.

Proof. This follows immediately from the relation

Pn(X, 16λ(τ))=
ψ(n)∏
ν=1

(X − xν(τ ))

as τ → i∞, since we have λ(τ)→ 0 and xν(τ )→ u2 for each ν = 1, . . . , ψ(n) in (3), respectively. �

Example 5. For the polynomial P3 given in Section 1, we have

P3(X, 0)= 9− 28X + 30X2
− 12X3

+ X4
= (X − 1)3(X − 32).

Here, ψ(3)= 4 and the four triples (u, v, w) in (2) are given by

(3, 0, 1), (1, 0, 3), (1, 1, 3), (1, 2, 3).

More generally, Pp(X, 0)= (X − 1)p(X − p2) for any odd prime p ≥ 3.

3. Lemmas

Let τ ∈ H. We prove in Lemmas 7 and 8 below that the number ϑ3(τ ) is algebraic over the field
Q(ϑ3(uτ), ϑ3(vτ)) for certain positive integers u and v. To see this, we need the following Lemma 6.
Note that Pn(0, Y ) is a nonzero integer for the polynomial Pn(X, Y ) in Theorem A; see [Elsner and
Tachiya 2017, Lemma 2.3].

Lemma 6 [Elsner and Tachiya 2017, Lemma 2.5]. Let n = 2αm be an integer with α ≥ 1 and odd integer
m ≥ 3. Then there exists a polynomial Qn(X, Y ) ∈ Z[X, Y ] such that

Qn

(
ϑ4

3 (nτ)

ϑ4
3 (τ )

,
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0
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for any τ ∈ H. Furthermore, the polynomial Qn(X, Y ) is of the form

Qn(X, Y )= c2αY 2αψ(m)
+

2αψ(m)−1∑
j=0

Rn, j (X)Y j , (7)

with

Qn(0, Y )= c2αY 2αψ(m),

where c is equal to the nonzero integer Pm(0, Y ).

First we consider the case where u and v have different parity.

Lemma 7. Let u ≥ 1 be an odd integer and v ≥ 2 be an even integer which is not a power of 2. Then for
any τ ∈ H the number ϑ3(τ ) is algebraic over the field Q(ϑ3(uτ), ϑ3(vτ)).

Proof. The assertion is clear if u = 1. Let u ≥ 3 be an odd integer and Pu(X, Y ) be as in Theorem A.
Then

Pu

(
u2ϑ

4
3 (uτ)

ϑ4
3 (τ )

, 16
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0 (8)

for any τ ∈ H. Noting that Pu(X, Y ) has positive degree in Y and Pu(0, Y ) is a nonzero integer, we have
the form

Pu(X, Y )=
du∑

j=0

Su, j (X)Y j , Su,du (X) 6≡ 0,

with

cu := Su,0(0)= Pu(0, 0) ∈ Z \ {0} and Su, j (0)= 0 (1≤ j ≤ du). (9)

On the other hand, since v is not a power of 2, Lemma 6 shows that there exists a nonzero polynomial
Qv(X, Y ) ∈ Z[X, Y ] such that

Qv

(
ϑ4

3 (vτ)

ϑ4
3 (τ )

,
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0 (10)

for any τ ∈ H, where Qv(X, Y ) is of the form (7) with

Qv(0, Y ) := cvY dv , cv ∈ Z \ {0}. (11)

Let τ ∈H be a fixed complex number. Then, by (8) and (10), the polynomials Pu(u2ϑ4
3 (uτ)/ϑ

4
3 (τ ), 16Y )

and Qv(ϑ
4
3 (vτ)/ϑ

4
3 (τ ), Y ) have the same common root Y0 = ϑ

4
2 (τ )/ϑ

4
3 (τ ). Hence, the resultant

R1(X, Z) := ResY (Pu(X, 16Y ), Qv(Z , Y ))

is given by the determinant DY of the square (du + dv) Sylvester matrix depending on the coeffi-
cients of Pu(X, 16Y ) and Qv(Z , Y ) with respect to Y. Then, R1(X, Z) (and thus DY ) vanishes at
X := u2ϑ4

3 (uτ)/ϑ
4
3 (τ ) and Z := ϑ4

3 (vτ)/ϑ
4
3 (τ ), so that the polynomial

R2(W ) := R1(u2ϑ4
3 (uτ)W, ϑ

4
3 (vτ)W )
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has a root W0 = ϑ
−4
3 (τ ) over the field K :=Q(ϑ3(uτ), ϑ3(vτ)). Note that R2(W ) is not identically zero,

since by (9) and (11) the determinant DY takes the form

R2(0)= R1(0, 0)= det



cu 0 0
. . . 0

cu
cv
0
. . .

0 0 cv

=±cdv
u cdu

v 6= 0.

Therefore the number ϑ3(τ ) is algebraic over K and the proof of Lemma 7 is completed. �

Next we treat the case where both u and v are odd.

Lemma 8. Let u, v ≥ 1 be distinct odd integers. Then for any τ ∈ H the number ϑ3(τ ) is algebraic over
the field Q(ϑ3(uτ), ϑ3(vτ)).

Proof. We may assume u, v ≥ 3. Similarly to the proof of Lemma 7, we consider the resultant

R1(X, Z) := ResY (Pu(X, Y ), Pv(Z , Y )), (12)

and the polynomial
R2(W ) := R1(u2ϑ4

3 (uτ)W, v
2ϑ4

3 (vτ)W ), (13)

which has a root W0 = ϑ
−4
3 (τ ). Suppose to the contrary that the above polynomial R2(W ) is identically

zero for some τ0 ∈ H. Then, putting α := u2ϑ4
3 (uτ0) and β := v2ϑ4

3 (vτ0), we have by (12) and (13)

ResY (Pu(αW, Y ), Pv(βW, Y ))= R1(αW, βW )= R2(W )≡ 0,

and so there exists a common factor H(W, Y )∈C[W, Y ] with positive degree in Y of the two polynomials
Pu(αW, Y ) and Pv(βW, Y ). Let

Pu(αW, Y )= H(W, Y )G(W, Y ).

Substituting the function λ(τ) defined by (4) into Y in the above, we have

Pu(αW, 16λ(τ))= H(W, 16λ(τ))G(W, 16λ(τ)). (14)

In what follows, we denote by deg H(W, Y ), deg G(W, Y ), and deg Pu(αW, Y ) the total degrees of the
polynomials H(W, Y ), G(W, Y ), and Pu(αW, Y ) with respect to W and Y , respectively. Then

degW H(W, 16λ(τ))≤ deg H(W, Y ), degW G(W, 16λ(τ))≤ deg G(W, Y ),

so that
degW Pu(αW, 16λ(τ))= degW H(W, 16λ(τ))+ degW G(W, 16λ(τ))

≤ deg H(W, Y )+ deg G(W, Y )

= deg Pu(αW, Y ).

On the other hand, it is clear that

degW Pu(αW, 16λ(τ))= deg Pu(αW, Y ),
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since by [Nesterenko 2006, Corollary 4] the inequalities

degY Rk(Y )≤ k · n−1
n
, 1≤ k ≤ ψ(n),

hold in (5). Thus, we get

degW H(W, 16λ(τ))= deg H(W, Y )≥ degY H(W, Y )≥ 1. (15)

Hence by Lemma 2 together with (14) and (15), we obtain

Pu(αW, 16λ(τ))= c1 H(W, 16λ(τ))

for some nonzero complex numbers c1. Similarly there exists a nonzero complex number c2 such that

Pv(βW, 16λ(τ))= c2 H(W, 16λ(τ)),
and hence

Pu(αW, 16λ(τ))= cPv(βW, 16λ(τ)), c := c1/c2.

Taking τ → i∞ in the above equality, we have by Lemma 4∏
d | u, d≥1

(αW − d2)w(d,u/d) = c
∏

d | v, d≥1

(βW − d2)w(d,v/d).

Assume, without loss of generality, that u > v. Then, comparing the multiplicity of the zeros of these
polynomials at 1/α, we obtain

u = w(1, u)≤max
d
w(d, v/d)≤ v,

which is a contradiction. Hence, the polynomial R2(W ) is not identically zero for any τ ∈ H, and the
proof of Lemma 8 is completed by R2(ϑ

−4
3 (τ ))= 0. �

4. Proof of Theorem 1

Proof of Theorem 1. Let m and n be distinct positive integers. Define m1 := m/d and n1 := n/d,
where d := gcd(m, n). Without loss of generality, we may assume that m1 is odd. In what follows, we
distinguish two cases based on the parity of n1. We first suppose that n1 is even. Let τ ∈ H. Then, by
Lemma 7 with u := 3m1 ≥ 3, v := 3n1 6= 2α (α ≥ 0), and τ0 := dτ/3 ∈H, the number ϑ3(τ0) is algebraic
over the field Q(ϑ3(uτ0), ϑ3(vτ0)). Hence, we obtain

trans. degQ Q(eπ iτ , ϑ3(mτ), ϑ3(nτ))= trans. degQ Q(eπ iτ0, ϑ3(uτ0), ϑ3(vτ0))

= trans. degQ Q(eπ iτ0, ϑ3(τ0), ϑ3(uτ0), ϑ3(vτ0))

≥ trans. degQ Q(eπ iτ0, ϑ3(τ0), ϑ3(uτ0))

≥ 2,

where for the last inequality we used the fact that u > 2 and that at least two of the numbers eπ iτ0, ϑ3(τ0)

and ϑ3(uτ0) are algebraically independent over Q; see [Elsner and Tachiya 2017, Theorem 1.2]. In the
case where n1 is odd, we can deduce the same inequality as above by applying Lemma 8 with the same
quantities u, v, τ0 as above.
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Therefore, at least two of the numbers eπ iτ, ϑ3(mτ), and ϑ3(nτ) are algebraically independent over Q,
and the proof of Theorem 1 is complete. �

In the case where m > n with two odd integers m, n, we obtain a stronger result based on [Elsner and
Tachiya 2017, Theorem 1.2] and on Lemma 8.

Theorem 9. Let m > n ≥ 1 be odd integers, j ∈ {2, 3, 4} and τ ∈ H. Then we have

trans. degQ Q(eiπτ , ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))≥ 3.

Proof. We apply Lemma 8 with u = m and v = n. Therefore, we know that ϑ3(τ ) is algebraic over the
field Q(ϑ3(mτ), ϑ3(nτ)). Hence we obtain with Theorem C,

trans. degQ Q(eiπτ , ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))= trans. degQ Q(eπ iτ , ϑ3(τ ), ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))

≥ trans. degQ Q(eiπτ , ϑ3(τ ), ϑ3(mτ), Dϑ j (τ ))

≥ 3,

as desired. This proves the theorem. �
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Linear independence of 1, Li1 and Li2
Georges Rhin and Carlo Viola

We improve and extend the irrationality results proved by the authors (Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 4:3 (2005), 389–437) for dilogarithms of positive rational numbers to results of linear indepen-
dence over Q of 1, Li1(x) and Li2(x) for suitable x ∈Q, both for x > 0 and for x < 0.

1. Introduction

The polylogarithm of order k, arising in Euler’s work, is defined by

Lik(x)=
∞∑

n=1

xn

nk (|x |< 1).

Qualitative and quantitative irrationality results for dilogarithms Li2
( 1

z

)
with z∈Z, z∈(−∞,−5]∪[7,+∞),

were proved in [Hata 1993]. Hata’s results were subsequently improved and extended in [Rhin and Viola
2005], and more recently in [Viola and Zudilin 2018] and in [Marcovecchio 2016]. We showed in [Rhin
and Viola 2005], henceforth abbreviated [RV05], that Li2

( r
s

)
/∈ Q for all integers r, s with r ≥ 1 and

s ≥ s1(r) > r , where s1(r) can be explicitly computed, and gave new irrationality measures of such
Li2
( r

s

)
. In particular we proved that Li2

( 1
6

)
/∈Q, with an explicit irrationality measure, thus extending

Hata’s range [7,+∞) mentioned above to [6,+∞).
Viola and Zudilin [2018] proved qualitative and quantitative results of linear independence over Q of

the four numbers

1, Li1
(1

z

)
=− log

(
1− 1

z

)
=−Li1

( 1
1−z

)
, Li2

(1
z

)
and Li2

( 1
1−z

)
for all z = s

r with integers r and s satisfying

r ≥ 1 and s ≥ s2(r) > r, (1-1)

where again s2(r) is explicit. Specifically, they proved that, for any z = s
r satisfying (1-1) and for any

ε > 0, there exist an effective constant C(ε, z) > 0, and an explicit linear independence measure µ(z) > 0
over Q such that ∣∣∣a0+ a1Li1

(1
z

)
+ a2Li2

(1
z

)
+ a3Li2

( 1
1−z

)∣∣∣> C(ε, z) A−µ(z)−ε (1-2)

for all (a0, a1, a2, a3) ∈ Z4
\ {(0, 0, 0, 0)}, where A = max{|a0|, |a1|, |a2|, |a3|}. In particular, in [Viola

and Zudilin 2018] the authors proved inequalities (1-2) with z = s
r for r = 1 and s ≥ 9, for r = 2 and

s ≥ 143, for r = 3 and s ≥ 742, for r = 4 and s ≥ 2355.

MSC2010: primary 11J72; secondary 11J82, 33B30.
Keywords: polylogarithms, linear independence measures, permutation group method, saddle-point method in C2.
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In the present paper we prove lower bounds of type (1-2) for∣∣∣a0+ a1Li1
(1

z

)
+ a2Li2

(1
z

)∣∣∣, (1-3)

without considering Li2(1/(1− z)), for all (a0, a1, a2) ∈ Z3
\ {(0, 0, 0)} and for z = s

r with integers
r, s satisfying r ≥ 1 and either s ≥ s+(r) > r , or s ≤ s−(r) < 0, with explicit s+(r) and s−(r). We
combine some technical results employed in [RV05] and [Viola and Zudilin 2018]. In particular we
use the permutation-group method, introduced by the authors in [Rhin and Viola 1996] and later used
in a series of papers including [RV05] and [Viola and Zudilin 2018], and the saddle-point method in
C2 in the form used in [Viola and Zudilin 2018]. The latter tool allows us to improve and extend the
irrationality measures of Li2

( 1
z

)
for z= s

r > 1 obtained in [RV05] to linear independence measures over Q

of 1, Li1
( 1

z

)
and Li2

( 1
z

)
, both for z= s

r > 1 and for z= s
r < 0. Moreover, our method yields improvements

upon the linear independence measures of 1, Li1
( 1

z

)
and Li2

( 1
z

)
for z < 0 given in [Marcovecchio 2016,

Table p. 231], and a new proof of the linear independence measures for z > 1 given therein.
We point out that, in contrast to (1-2), the lower bounds for (1-3) obtained in the present paper do not

simultaneously involve values of Li2 at positive and at negative rational numbers. Treating separately
the cases z > 1 and z < 0 in (1-3), as we do in this paper, yields linear independence results for 1,
Li1
( 1

z

)
and Li2

( 1
z

)
stronger than those obtained through the construction in [Viola and Zudilin 2018]

under the constraint a2 = 0 or a3 = 0 in (1-2). This is not surprising, because the algebraic structure of
the group 〈ϕ,λ〉 in (2-21) below generated by the permutations λ and ϕ in (2-18)–(2-19), used in the
present paper as well as in [RV05] to get the arithmetical correction

∫
Ω

dψ(x)+
∫
Ω ′

dψ(x) in (4-2), is
richer than that of the corresponding group 〈ϕ, ν〉 required in [Viola and Zudilin 2018] to deal with the
full linear form on the left-hand side of (1-2). This is a consequence of the relation νϕ = ϕν satisfied
by the permutations ν and ϕ in [Viola and Zudilin 2018, (3.5)], which implies that 〈ϕ, ν〉 is isomorphic
to Klein’s Vierergruppe of order 4, while the group 〈ϕ,λ〉, with λϕ 6= ϕλ, is larger, being isomorphic to
the group S2×S3 of order 2! · 3! = 12.

2. Simultaneous approximations to Li1 and Li2

Let z ∈ R \ [0, 1], and let h, j , k, l, m be nonnegative integers such that l+m− j , m+h−k, h+ j−l and
j+k−m are also nonnegative. If z > 1, as in [RV05, Section 2] we define the following double integrals
I (ν)z (h, j, k, l,m) (ν = 0, 1, 2):

I (0)z (h, j, k, l,m)= z−l−m
∫ 1

0

∫ 1

0

x j (1− x)h yk(1− y)l

(x(1− y)+ yz) j+k−m+1 dx dy, (2-1)

I (1)z (h, j, k, l,m)= z−l−m
∫ 1

0

(
1

2π i

∮
|y−x/(x−z)|=%

x j (1− x)h yk(1− y)l

(x(1− y)+ yz) j+k−m+1 dy
)

dx, (2-2)

I (2)z (h, j, k, l,m)=
z−l−m

2π i

∮
|x−z|=σ

(
1

2π i

∮
|y−x/(x−z)|=%

x j (1− x)h yk(1− y)l

(x(1− y)+ yz) j+k−m+1 dy
)

dx (2-3)

for any %, σ > 0. We also define the linear combination of (2-1) and (2-2) given by

Iz(h, j, k, l,m)= I (0)z (h, j, k, l,m)− (log z) I (1)z (h, j, k, l,m), (2-4)

where log z is the real value of the logarithm for z > 1.



LINEAR INDEPENDENCE OF 1, Li1 AND Li2 83

Clearly the definitions (2-2) and (2-3) make sense also for z < 0, whereas the definition (2-1) of
I (0)z (h, j, k, l,m) does not apply if z < 0, since in this case the denominator x(1− y)+ yz vanishes
for (x, y) along a segment of hyperbola inside the unit square (0, 1)× (0, 1) ⊂ R2. In order to define
I (0)z (h, j, k, l,m) for z < 0 we use a method introduced in [Viola and Zudilin 2018, Section 2.2]. We
apply to I (0)z (h, j, k, l,m) the change of variables

x = ξ, y =
η

η− z
. (2-5)

For z > 1, (2-5) changes the integration path [0, 1) for y to [0,−∞) for η. Thus

I (0)z (h, j, k, l,m)= (−1) j+k+l+m z− j−k
∫ 1

0
ξ j (1− ξ)h dξ

∫
−∞

0

ηk

(ξ − η) j+k−m+1(η− z)l+m− j+1 dη.

Let ζ be any complex number such that |ζ | = 1, ζ 6= 1, and let arg ζ denote the argument satisfying
0 < arg ζ < 2π . For % > 0 let µ% be the arc {|η| = % : arg η from arg ζ to π}. For any ξ, z with
0< ξ ≤ 1< z, as %→+∞ we get∣∣∣∣∫

µ%

ηk

(ξ − η) j+k−m+1(η− z)l+m− j+1 dη
∣∣∣∣≤ %k

(%− 1) j+k−m+1(%− z)l+m− j+1 ·2π% � %−l−1
→ 0. (2-6)

Therefore, by Cauchy’s theorem, for any z > 1 and for any ζ ∈ C such that |ζ | = 1, ζ 6= 1, we obtain

I (0)z (h, j, k, l,m)= (−1) j+k+l+m z− j−k
∫ 1

0
ξ j (1−ξ)h dξ

∫ ζ∞

0

ηk

(ξ−η) j+k−m+1(η−z)l+m− j+1 dη, (2-7)

where the integration path for η is the half-line [0, ζ∞) from 0 to∞ through ζ . Note that, since z > 1
and ζ 6= 1, we have (ξ − η)(η− z) 6= 0 in (2-7).

As in [Viola and Zudilin 2018, Section 2.2], it is easy to prove that the double integral on the right-
hand side of (2-7) converges absolutely and uniformly when z varies in any compact region of C not
intersecting the half-line [0, ζ∞), and in particular the integrations in ξ and η can be interchanged. Thus

I (0)z (h, j, k, l,m)= (−1) j+k+l+m z− j−k
∫ ζ∞

0

(∫ 1

0

ξ j (1− ξ)hηk

(ξ − η) j+k−m+1(η− z)l+m− j+1 dξ
)

dη, (2-8)

and I (0)z (h, j, k, l,m), viewed as a function of the complex variable z, is holomorphic in the cut plane

C \ [0, ζ∞).

Therefore, if in (2-7) or (2-8) we choose ζ ∈ C with |ζ | = 1, ζ 6= ±1, by analytic continuation we can
move z from the half-line z > 1 to the half-line z < 0 along a path contained in the lower half-plane
Im z < 0 if Im ζ > 0, or in the upper half-plane Im z > 0 if Im ζ < 0, because such a path does not cross
the cut [0, ζ∞).

Since, from (2-7),

I (0)z (h, j, k, l,m)= (−1) j+k+l+m z̄− j−k
∫ 1

0
ξ j (1− ξ)h dξ

∫ ζ̄∞

0

ηk

(ξ − η) j+k−m+1(η− z̄)l+m− j+1 dη,

for any z < 0 we get two values of I (0)z (h, j, k, l,m), conjugate to each other, one defined by (2-7) or
(2-8) for Im ζ > 0, and the other for Im ζ < 0. Accordingly, for z < 0 we define Iz(h, j, k, l,m) by (2-4),
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where

log z =
{

log |z| −π i if Im ζ > 0 in I (0)z (h, j, k, l,m),
log |z| +π i if Im ζ < 0 in I (0)z (h, j, k, l,m).

(2-9)

By applying the change of variables (2-5) to the double integrals (2-2) and (2-3) we easily get, similarly
to [Viola and Zudilin 2018, (2.11) and (2.12)],

I (1)z (h, j, k, l,m)= (−1) j+k+l+m z− j−k

2π i

∮
Γ0,1

(∫ 1

0

ξ j (1− ξ)hηk

(ξ − η) j+k−m+1(η− z)l+m− j+1 dξ
)

dη, (2-10)

where Γ0,1 denotes any closed contour for η enclosing the interval (0, 1) but not enclosing z, and, for
any %1, %2 > 0,

I (2)z (h, j, k, l,m)

= (−1) j+k+l+m+1 z− j−k

2π i

∮
|η−z|=%1

(
1

2π i

∮
|ξ−η|=%2

ξ j (1− ξ)hηk

(ξ − η) j+k−m+1(η− z)l+m− j+1 dξ
)

dη. (2-11)

We showed in [RV05, (2.5) and (2.6)] that the involution λ= λx,z : y↔ ỹ defined by

ỹ =
x(1− y)

x(1− y)+ yz
, (2-12)

used as a change of variable for y in the double integrals (2-1), (2-2) and (2-3), transforms the quantities
(2-1), (2-2), (2-3), and hence (2-4), according to the permutation λ of the exponents defined by

λ= ( j m)(k l), (2-13)

which acts identically on h. Thus (2-2) and (2-3), and hence (2-10) and (2-11), are invariant under the
action of λ both for z > 1 and for z < 0, and the same holds for (2-1) if z > 1.

It is easy to see that I (0)z (h, j, k, l,m) is invariant under the action of the permutation λ also in the
case z < 0, where (2-1) is replaced by the definition (2-7) or (2-8) for |ζ | = 1, ζ 6= ±1. Indeed, the
change of variables (2-5) transforms the involution (2-12) into the involution η↔ η̃ given by

η̃ = z
ξ

η
. (2-14)

If in (2-7) we use the change of variable (2-14) for η, we get

I (0)z (h, j, k, l,m)

= (−1) j+k+l+m z−l−m
∫ 1

0
ξm(1− ξ)h dξ

∫
−ζ̄∞

0

η̃ l

(ξ − η̃ )l+m− j+1(η̃− z) j+k−m+1 dη̃. (2-15)

Since Im(−ζ̄ )= Im ζ , by the same argument as in (2-6) we see that the right-hand side of (2-15) equals

(−1) j+k+l+m z−l−m
∫ 1

0
ξm(1− ξ)h dξ

∫ ζ∞

0

η̃ l

(ξ − η̃ )l+m− j+1(η̃− z) j+k−m+1 dη̃.

By (2-7), this is I (0)z (h,m, l, k, j). Hence for z < 0 we get

I (0)z (h, j, k, l,m)= I (0)z (h,m, l, k, j)

both for Im ζ > 0 and for Im ζ < 0, as claimed.
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Throughout this paper, for any integer n ≥ 1 we denote by dn the least common multiple of 1, . . . , n,
and we set d0 = 1. Also, as in [RV05, (2.9)], we define

H =max{l +m− j, m+ h− k, h+ j − l, j + k−m},

K =max{l +m− j, min{m+ h− k, h+ j − l}, j + k−m},

α =max{ j + k, k+ l, l +m},

β =max{0, k+ l − h},

δ = α+β + h− k− l

(2-16)

(note that the integer

δ =max{h, m+ h− k, h+ j − l, j + k, k+ l, l +m}

defined in [RV05, (2.9)] equals α+ β + h− k− l by virtue of Lemma 2.8 of the same paper). Clearly
the integers (2-16) are nonnegative and invariant under the action of the permutation λ in (2-13).

We prove the following:

Theorem 2.1. For any z ∈ R \ [0, 1], define (2-2), (2-3), (2-7) with |ζ | = 1, ζ 6= ±1, (2-9), (2-4) and
(2-16). Then

dH dK zα(z− 1)β Iz(h, j, k, l,m)= P(z)− Q(z)Li2
(1

z

)
,

dH dK zα(z− 1)β I (1)z (h, j, k, l,m)= R(z)− Q(z)Li1
(1

z

)
,

dH dK zα(z− 1)β I (2)z (h, j, k, l,m)= Q(z),
where

P(z), Q(z), R(z) ∈ Z[z], max{deg P(z), deg Q(z), deg R(z)} ≤ δ.

Proof. If z > 1, the theorem is [RV05, Theorem 2.1]. If z < 0, the theorem follows from the case z > 1
by analytic continuation, moving z from the half-line z > 1 to the half-line z < 0 along a path contained
in the lower half-plane Im z < 0 if Im ζ > 0, or in the upper half-plane Im z > 0 if Im ζ < 0. �

Let
S = {h, j, k, l, m, l +m− j, m+ h− k, h+ j − l, j + k−m}. (2-17)

The action on the set S of the permutation λ defined in (2-13) is

λ= ( j m)(k l)(l +m− j j + k−m)(m+ h− k h+ j − l). (2-18)

As in [RV05], we also consider the permutation ϕ whose action on S is

ϕ = (h m+ h− k)( j j + k−m)(k m). (2-19)

We proved in [RV05, Section 3] that for any z > 1 the quotients

I (ν)z (h, j, k, l,m)
h! j ! k! l!m!

(ν = 0, 1, 2) and
Iz(h, j, k, l,m)

h! j ! k! l!m!
(2-20)
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are invariant under the action of ϕ. Hence, by analytic continuation, the same holds in the case z < 0,
where I (0)z (h, j, k, l,m) and log z are given by (2-7) and (2-9) with ζ ∈ C such that |ζ | = 1, ζ 6= ±1.
Thus the quotients (2-20) are invariant under the action of the whole permutation group

Φ = 〈ϕ,λ〉 (2-21)

generated by λ and ϕ, both for z > 1 and for z < 0. As we proved in [RV05, Section 3], Φ is isomorphic
to the product S2×S3 of the symmetric groups of orders 2! and 3!, whence

|Φ| = 2! · 3! = 12.

Therefore, the transformation formulae in [RV05, p. 416] hold for I (ν)z (h, j, k, l,m) (ν = 0, 1, 2) and for
Iz(h, j, k, l,m), in both cases z > 1 and z < 0.

The integers α, β and δ in (2-16) are also invariant under the action of the permutation ϕ in (2-19),
and hence are invariant under the action of the whole permutation group (2-21), while H and K in (2-16)
are not invariant under the action of ϕ. Therefore, in place of H and K, we require the integers M and N
defined in [RV05, (4.1) and (4.2)], namely

M =maxS
and

N =max{max′(h, m+ h− k, h+ j − l), j, k, l, m, l +m− j, j + k−m},

where max′ denotes the second maximum in a finite sequence of real numbers. Clearly M and N are
invariant under the action of the permutation group Φ in (2-21). Also H ≤ M and K ≤ N, whence
Theorem 2.1 holds with M in place of H and N in place of K. Moreover, as in [RV05, p. 417], for any
permutation χ ∈Φ, Theorem 2.1 holds with h, j , k, l, m respectively replaced by χ(h), χ( j), χ(k), χ(l),
χ(m), with polynomials Pχ (z), Qχ (z), Rχ (z) ∈ Z[z] depending on the left coset χΛ, where Λ= 〈λ〉 is
the subgroup of Φ of order 2 generated by (2-18), and with M, N, α, β, δ all independent of χ .

For h, j , k, l, m fixed and n = 1, 2, 3, . . . , we replace the tuple (h, j, k, l,m) by (hn, jn, kn, ln,mn).
Then Theorem 2.1 yields

dMndNnzαn(z− 1)βn Iz(hn, jn, kn, ln,mn)= Pn(z)− Qn(z)Li2
(1

z

)
,

dMndNnzαn(z− 1)βn I (1)z (hn, jn, kn, ln,mn)= Rn(z)− Qn(z)Li1
(1

z

)
,

dMndNnzαn(z− 1)βn I (2)z (hn, jn, kn, ln,mn)= Qn(z),

(2-22)

with polynomials Pn(z), Qn(z), Rn(z) ∈ Z[z] of degrees not exceeding δn. Similarly, for any permutation
χ ∈Φ,

dMndNnzαn(z−1)βn Iz(χ(h)n, χ( j)n, χ(k)n, χ(l)n, χ(m)n)= Pχ ,n(z)−Qχ ,n(z)Li2
(1

z

)
,

dMndNnzαn(z−1)βn I (1)z (χ(h)n, χ( j)n, χ(k)n, χ(l)n, χ(m)n)= Rχ ,n(z)−Qχ ,n(z)Li1
(1

z

)
,

dMndNnzαn(z−1)βn I (2)z (χ(h)n, χ( j)n, χ(k)n, χ(l)n, χ(m)n)= Qχ ,n(z),

(2-23)

with polynomials Pχ ,n(z), Qχ ,n(z), Rχ ,n(z) ∈ Z[z] of degrees not exceeding δn.
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By the invariance of the quotients (2-20) under the action of the group Φ, from (2-22) and (2-23) we
obtain the identity

(χ(h)n)! (χ( j)n)! (χ(k)n)! (χ(l)n)! (χ(m)n)! Qn(z)= (hn)! ( jn)! (kn)! (ln)! (mn)! Qχ ,n(z), (2-24)

whence

(χ(h)n)! (χ( j)n)! (χ(k)n)! (χ(l)n)! (χ(m)n)! Pn(z)= (hn)! ( jn)! (kn)! (ln)! (mn)! Pχ ,n(z), (2-25)

(χ(h)n)! (χ( j)n)! (χ(k)n)! (χ(l)n)! (χ(m)n)! Rn(z)= (hn)! ( jn)! (kn)! (ln)! (mn)! Rχ ,n(z). (2-26)

Let Ω and Ω ′ be the sets of real numbers ω ∈ [0, 1) defined in [RV05, p. 420], and let

∆n =
∏

p>
√

Mn
{n/p}∈Ω

p, ∆′n =
∏

p>
√

Mn
{n/p}∈Ω ′

p (n = 1, 2, 3, . . . ),

where p denotes a prime number. By applying to the coefficients of the polynomials in (2-24), (2-25)
and (2-26) the discussion in [RV05, p. 418–420], we see that ∆n∆

′
n divides all the coefficients of Pn(z),

Qn(z) and Rn(z). Therefore
P∗n (z) := (∆n∆

′

n)
−1 Pn(z) ∈ Z[z],

Q∗n(z) := (∆n∆
′

n)
−1 Qn(z) ∈ Z[z],

R∗n(z) := (∆n∆
′

n)
−1 Rn(z) ∈ Z[z].

Let

Dn =
dMndNn

∆n∆
′
n
.

Dividing the identities (2-22) by ∆n∆
′
n we get

Dnzαn(z− 1)βn Iz(hn, jn, kn, ln,mn)= P∗n (z)− Q∗n(z)Li2
(1

z

)
,

Dnzαn(z− 1)βn I (1)z (hn, jn, kn, ln,mn)= R∗n(z)− Q∗n(z)Li1
(1

z

)
,

Dnzαn(z− 1)βn I (2)z (hn, jn, kn, ln,mn)= Q∗n(z),

(2-27)

with
P∗n (z), Q∗n(z), R∗n(z) ∈ Z[z], max{deg P∗n (z), deg Q∗n(z), deg R∗n(z)} ≤ δn. (2-28)

By [RV05, (4.13)],

lim
n→∞

1
n

log Dn = M + N −
(∫

Ω

dψ(x)+
∫
Ω ′

dψ(x)
)
, (2-29)

where ψ(x)= Γ ′(x)/Γ (x) is the logarithmic derivative of the Euler gamma-function.

3. The saddle-point method

We shall employ asymptotic formulae, as n →∞, for the linear forms involving Li1
( 1

z

)
and Li2

( 1
z

)
and for their common coefficients arising from (2-27). Such asymptotic formulae can be obtained by
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applying to the integrals in (2-27) the saddle-point method for double complex integrals [Hata 2000,
Section 1], in the form used in [Viola and Zudilin 2018].

We henceforth assume the integers belonging to the set S in (2-17) to be all strictly positive. Moreover,
we assume

j ≤ h and k < m. (3-1)

Let, as in [RV05, (5.1)],

fz(x, y)=
x j (1− x)h yk(1− y)l

(x(1− y)+ yz) j+k−m ,

and let

Fz(ξ, η)=
ξ j (1− ξ)hηk

(ξ − η) j+k−m(η− z)l+m− j . (3-2)

The substitution (2-5) yields

(−z)−l−m fz

(
ξ,

η

η− z

)
= (−z)− j−k Fz(ξ, η), (3-3)

whence

(−z)− j−k ∂Fz

∂ξ
= (−z)−l−m ∂ fz

∂x

∣∣∣∣
x=ξ, y=η/(η−z)

,

(−z)− j−k ∂Fz

∂η
=
(−z)−l−m+1

(η− z)2
∂ fz

∂y

∣∣∣∣
x=ξ, y=η/(η−z)

.

(3-4)

Owing to (2-8), (2-10) and (2-11), the double integrals occurring in (2-27) can be written as

I (0)z (hn, jn, kn, ln,mn)=± z−( j+k)n
∫ ζ∞

0

(∫ 1

0
Fz(ξ, η)

n dξ
ξ − η

)
dη
η− z

, (3-5)

I (1)z (hn, jn, kn, ln,mn)=±
z−( j+k)n

2π i

∮
Γ0,1

(∫ 1

0
Fz(ξ, η)

n dξ
ξ − η

)
dη
η− z

, (3-6)

I (2)z (hn, jn, kn, ln,mn)=±
z−( j+k)n

2π i

∮
|η−z|=%1

(
1

2π i

∮
|ξ−η|=%2

Fz(ξ, η)
n dξ
ξ − η

)
dη
η− z

. (3-7)

Since
1
Fz

∂Fz

∂ξ
=
∂

∂ξ
log Fz =

j
ξ
−

h
1− ξ

−
j + k−m
ξ − η

,

1
Fz

∂Fz

∂η
=
∂

∂η
log Fz =

k
η
+

j + k−m
ξ − η

−
l +m− j
η− z

,

the saddle-points of Fz(ξ, η), i.e., the stationary points of Fz(ξ, η) satisfying Fz(ξ, η) 6= 0, are the solu-
tions of the system 

j
ξ
−

h
1− ξ

=
j + k−m
ξ − η

,

l +m− j
η− z

−
k
η
=

j + k−m
ξ − η

.

(3-8)
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As in [Viola and Zudilin 2018, (4.3)], the first equation (3-8) yields

η = H(ξ) := ξ
(m+ h− k)ξ + k−m

(h+ j)ξ − j
. (3-9)

Subtracting the equations (3-8) and then substituting (3-9), we get the same cubic equation in ξ as in
[RV05, (5.4)], namely

U (ξ) := ξ((m+ h− k)ξ + k−m)((h+ j − l)ξ + l− j)− z((h+ j)ξ − j)((h+m)ξ −m)= 0. (3-10)

Thus, denoting by (ξν, ην) (ν = 0, 1, 2) the saddle-points of Fz(ξ, η), we see that ξ0, ξ1, ξ2 are the roots
of (3-10), and

ην = H(ξν)= ξν
(m+ h− k)ξν + k−m

(h+ j)ξν − j
(ν = 0, 1, 2). (3-11)

Also, by (3-4),
xν = ξν, yν =

ην

ην − z
(ν = 0, 1, 2), (3-12)

where (xν, yν) are the saddle-points of fz(x, y).
We refer to the detailed discussion in [Viola and Zudilin 2018, Section 4] for the application of the

saddle-point method in C2 to the double integrals (3-5), (3-6), (3-7). Let

ξ± =
j

h+ j
±

√
hj (m+ h− k)( j + k−m)
(h+ j)(m+ h− k)

be the solutions of dH/dξ = 0, and let

η± =
h( j + k−m)+ j (m+ h− k)± 2

√
hj (m+ h− k)( j + k−m)

(h+ j)2
.

The function (3-9) satisfies
η+ = H(ξ+), η− = H(ξ−),

and maps both the upper and the lower half-circumference of diameter [ξ−, ξ+] in the plane of the
complex variable ξ onto the real interval [η−, η+]. Thus, if we denote by C and D the upper and lower
half-planes of the complex variable η,

C = {Im η > 0}, D = {Im η < 0},

and in the plane of the complex variable ξ we define the regions

C1 = {Im ξ > 0, |ξ − j/(h+ j)|> R},

D1 = {Im ξ < 0, |ξ − j/(h+ j)|> R},

C2 = {Im ξ < 0, |ξ − j/(h+ j)|< R},

D2 = {Im ξ > 0, |ξ − j/(h+ j)|< R},
where

R =
√

hj (m+ h− k)( j + k−m)
(h+ j)(m+ h− k)

,

we see that (3-9) is a one-to-one mapping of both C1 and C2 onto C, and of both D1 and D2 onto D.
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In Sections 3.1 and 3.2 we shall treat the cases z > 1 and z < 0, respectively.

3.1. The case z > 1. As is shown in [RV05, (5.6)] the roots of (3-10) are real, and ξ0 < ξ1 < ξ2 using
the notation therein. By (3-1) we get

0< ξ− <
m− k

m+ h− k
< ξ0 <

j
h+ j

< ξ+ < 1< z < ξ2.

Hence, by (3-12) and [RV05, (5.15)],

η0 < 0< η− < η+ < 1< z < η2 < ξ2.

Let ξ =Ξ(η) be a local inverse of (3-9), holomorphic in an open region ∆ contained in the plane of
the complex variable η. We use the notation in [Viola and Zudilin 2018, Sections 4.1 and 4.2], where
(ξ∗, η∗) denotes the relevant saddle-point for the double integral considered. Here we apply the saddle-
point method to the double contour integral (3-7). We choose

∆= C ∪D∪ (η+,+∞), Ξ :∆→ C1 ∪D1 ∪ (ξ+,+∞), (ξ∗, η∗)= (ξ2, η2).

We change the integration path |η− z| = %1 in (3-7) to a closed contour Γ ⊂∆ of steepest descent for
|Fz(Ξ(η), η)| enclosing z and passing through 1 and η2, whence

max
η∈Γ
|Fz(Ξ(η), η)| = |Fz(ξ2, η2)|,

with the maximum attained only at η = η2. Such a contour Γ exists because Ξ(1)= 1, whence, by (3-1)
and (3-2), Fz(Ξ(η), η)→ 0 as η→ 1, and Fz(Ξ(η), η)→∞ as η→ z or η→∞. Furthermore, for any
fixed η ∈ Γ , the function Fz(ξ, η) vanishes at ξ = 1 and tends to infinity as ξ → η or ξ →∞. Hence
we can change the integration path |ξ − η| = %2 to a closed contour δη of steepest descent for |Fz(ξ, η)|,
enclosing η and passing through 1 and through the saddle-point ξ =Ξ(η). Thus

max
ξ∈δη
|Fz(ξ, η)| = |Fz(Ξ(η), η)|,

with the maximum attained only at ξ =Ξ(η). Therefore, by Hata’s theorem [2000, Section 1],

lim
n→∞

1
n

log |I (2)z (hn, jn, kn, ln,mn)| = −( j + k) log z+ log |Fz(ξ2, η2)|. (3-13)

For the integrals (3-5) and (3-6) we can dispense with the saddle-point method, and apply instead the
asymptotic formulae [RV05, (5.16) and (5.19)]; i.e., by (3-3) and (3-12),

lim
n→∞

1
n

log I (0)z (hn, jn, kn, ln,mn)=−(l +m) log z+ log fz(x0, y0)

=−( j + k) log z+ log |Fz(ξ0, η0)| (3-14)

and

lim sup
n→∞

1
n

log |I (1)z (hn, jn, kn, ln,mn)| ≤ −(l +m) log z+ log | fz(x1, y1)|

= −( j + k) log z+ log |Fz(ξ1, η1)|. (3-15)



LINEAR INDEPENDENCE OF 1, Li1 AND Li2 91

3.2. The case z < 0. Since the polynomial U (ξ) in (3-10) has the leading coefficient

(m+ h− k)(h+ j − l) > 0

and takes the value − jmz > 0 at ξ = 0, the cubic equation (3-10) has a negative root, which we now
denote by

ξ2 < 0.

Taking into account that

U
(

j
h+ j

)
=

h2 jl( j + k−m)
(h+ j)3

> 0,

we choose the integers h, j , k, l, m such that the remaining roots ξ0 and ξ1 of U (ξ) are distinct, and
either real with

j
h+ j

< ξ0 < ξ1 <
j

m+ h− k
< ξ+, (3-16)

or complex conjugate,
ξ1 = ξ0 with ξ1 ∈ C2, ξ0 ∈ D2. (3-17)

We first apply the saddle-point method to the integral (3-7). From ξ2 < 0 and (3-11) we get ξ2 <η2 < 0.
Again with notation as in [Viola and Zudilin 2018, Sections 4.1 and 4.2], we choose

∆= C ∪D∪ (−∞, η−), Ξ :∆→ C1 ∪D1 ∪ (−∞, ξ−), (ξ∗, η∗)= (ξ2, η2).

For η ∈ ∆, η→∞, we have Ξ(η)→∞. Thus from (3-2) and (3-9) we see that Fz(Ξ(η), η)→ 0 as
η→ 0, and Fz(Ξ(η), η)→∞ as η→ z or η→∞. Since dFz(Ξ(η), η)/dη = 0 at η = η2, we obtain

ξ2 < η2 < z < 0.

Thus there exists a closed contour Γ ⊂∆ of steepest descent for |Fz(Ξ(η), η)| enclosing z and passing
through 0 and η2. Therefore

max
η∈Γ
|Fz(Ξ(η), η)| = |Fz(ξ2, η2)|,

with the maximum attained only at η= η2. For any fixed η ∈ Γ we have Fz(0, η)= 0 and Fz(ξ, η)→∞

as ξ → η or ξ →∞. Hence we change the path |ξ − η| = %2 for ξ to a closed contour δ′η of steepest
descent for |Fz(ξ, η)|, enclosing η and passing through 0 and Ξ(η). Thus with the same discussion as
in Section 3.1 we get the analogue of (3-13); i.e.,

lim
n→∞

1
n

log |I (2)z (hn, jn, kn, ln,mn)| = −( j + k) log |z| + log |Fz(ξ2, η2)|. (3-18)

For the application of the saddle-point method to the integrals (3-5) and (3-6) we choose

∆= C \ [η−, η+], Ξ :∆→ C2 ∪D2 ∪ (ξ−, ξ+),

and we distinguish two cases, according to whether (3-16) or (3-17) holds.

First case: ξ0, ξ1 ∈ R satisfy (3-16). By (3-11) and (3-16) we get

η+ < 1< η1 < η0.
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For η ∈∆ we now have, by (3-9), Ξ(η)→ j/(h+ j) as η→∞, and Ξ(η)→ (m−k)/(m+h−k) as
η→ 0. Hence, by (3-2), Fz(Ξ(η), η)→∞ as η→ z, and Fz(Ξ(η), η)→ 0 as η→ 0 or η→∞. Since
η0 and η1 are, respectively, a local maximum and a local minimum of |Fz(Ξ(η), η)| for η ∈ R along the
half-line (η+,+∞), the steepest descent direction for |Fz(Ξ(η), η)| is the direction of the real line at η0,
and the direction orthogonal to the real line at η1. Hence, by steepest descent, there exists a path γ from
0 to η1 in the half-plane Im η < 0, with tangent at η1 orthogonal to the real line, such that the maximum
of |Fz(Ξ(η), η)| on γ is attained only at η = η1. Thus for the integral (3-6) we may take Γ0,1 = γ ∪ γ̄ ,
whence

max
η∈Γ0,1

|Fz(Ξ(η), η)| = |Fz(ξ1, η1)|

with the maximum attained only at η = η1; accordingly we choose (ξ∗, η∗) = (ξ1, η1). For any fixed
η ∈ Γ0,1, η 6= 0, by (3-2) we have Fz(0, η)= Fz(1, η)= 0 and Fz(ξ, η)→∞ as ξ→ η or ξ→∞. Since
Im η and ImΞ(η) have opposite signs, keeping the endpoints ξ = 0 and ξ = 1 fixed we can continuously
deform the integration interval [0, 1] for ξ , without encountering η, to an integration path δ′′η of steepest
descent for |Fz(ξ, η)|, equivalent to [0, 1] by Cauchy’s theorem and passing through the saddle-point
ξ =Ξ(η). Hence

max
ξ∈δ′′η

|Fz(ξ, η)| = |Fz(Ξ(η), η)| (3-19)

with the maximum attained only at ξ =Ξ(η). By Hata’s theorem,

lim
n→∞

1
n

log |I (1)z (hn, jn, kn, ln,mn)| = −( j + k) log |z| + log |Fz(ξ1, η1)|. (3-20)

For the integral (3-5) we choose Im ζ < 0. Again by the argument in (2-6), the integration half-line
(0, ζ∞) for η can be transformed to γ ∪ [η1,+∞), where γ is defined as above, without changing the
value of (3-5). Clearly

max
η∈ γ∪[η1,+∞)

|Fz(Ξ(η), η)| = |Fz(ξ0, η0)|,

with the maximum attained only at η = η0. Thus we take here (ξ∗, η∗) = (ξ0, η0). For any fixed η ∈
γ ∪ [η1,+∞) we have Ξ(η) ∈ D2 ∪ (ξ−, ξ+). Hence, as above, the integration interval [0, 1] for ξ in
(3-5) can be deformed to a path δ′′η from 0 to 1 passing through Ξ(η), equivalent to [0, 1] by Cauchy’s
theorem and satisfying (3-19). Therefore

lim
n→∞

1
n

log |I (0)z (hn, jn, kn, ln,mn)| = −( j + k) log |z| + log |Fz(ξ0, η0)|. (3-21)

Second case: ξ1 ∈ C2, ξ0= ξ1 ∈D2. Now η1 ∈ C, η0=η1 ∈D. Since Fz(Ξ(η), η)→ 0 as η→ 0 or η→∞,
there exists a path γ ′ ⊂ D from 0 to a sufficiently large η′ > 0, passing through the saddle-point η0, such
that

max
η∈γ ′
|Fz(Ξ(η), η)| = |Fz(ξ0, η0)|

with the maximum attained only at η0. For the integral (3-6) we take Γ0,1 = γ
′
∪ γ ′, whence

max
η∈Γ0,1

|Fz(Ξ(η), η)| = |Fz(ξ0, η0)| = |Fz(ξ1, η1)|.



LINEAR INDEPENDENCE OF 1, Li1 AND Li2 93

Thus we must apply the saddle-point method separately for η ∈ γ ′ and η ∈ γ ′. We have∣∣∣∣∮
Γ0,1

(∫ 1

0
Fz(ξ, η)

n dξ
ξ − η

)
dη
η− z

∣∣∣∣
≤

∣∣∣∣∫
γ ′

(∫ 1

0
Fz(ξ, η)

n dξ
ξ − η

)
dη
η− z

∣∣∣∣+ ∣∣∣∣∫
γ ′

(∫ 1

0
Fz(ξ, η)

n dξ
ξ − η

)
dη
η− z

∣∣∣∣. (3-22)

For any fixed η ∈ γ ′ or η ∈ γ ′, η 6= 0, we have Fz(0, η) = Fz(1, η) = 0 and Fz(ξ, η)→∞ as ξ → η

or ξ → ∞. As above, there exists an integration path δ′′η for ξ from 0 to 1 passing through Ξ(η),
equivalent to [0, 1] by Cauchy’s theorem and satisfying (3-19). By Hata’s theorem [2000, (1.9)], the
quotient of the absolute values of the integrals over γ ′ and γ ′ in (3-22) tends to a constant as n→∞,
since |Fz(ξ0, η0)| = |Fz(ξ1, η1)|. It follows that

lim sup
n→∞

1
n

log |I (1)z (hn, jn, kn, ln,mn)| ≤ −( j + k) log |z| + log |Fz(ξ1, η1)|. (3-23)

In (3-5) we choose Im ζ < 0, and we change the integration half-line (0, ζ∞) for η to a suitable path
γ ′′ ⊂ D from 0 to∞, passing through the saddle-point η0, so that

max
η∈γ ′′
|Fz(Ξ(η), η)| = |Fz(ξ0, η0)|

with the maximum attained only at η0. Again, for any η ∈ γ ′′ there exists a path δ′′η for ξ from 0 to 1
passing through Ξ(η), equivalent to [0, 1] by Cauchy’s theorem and satisfying (3-19). Therefore

lim
n→∞

1
n

log |I (0)z (hn, jn, kn, ln,mn)| = −( j + k) log |z| + log |Fz(ξ0, η0)|. (3-24)

4. Linear independence measures

In (2-27) we set z = s
r , with integers r ≥ 1 and s satisfying either s > r or s < 0, and we multiply by r δn.

We obtain the following extension of [RV05, (4.12)]:

Dnsαn(s− r)βnr (δ−α−β)n Is/r (hn, jn, kn, ln,mn)= pn − qnLi2
(r

s

)
,

Dnsαn(s− r)βnr (δ−α−β)n I (1)s/r (hn, jn, kn, ln,mn)= p′n − qnLi1
(r

s

)
,

Dnsαn(s− r)βnr (δ−α−β)n I (2)s/r (hn, jn, kn, ln,mn)= qn,

(4-1)

with
pn = r δn P∗n

( s
r

)
, qn = r δn Q∗n

( s
r

)
, p′n = r δn R∗n

( s
r

)
.

By (2-28),
pn, p′n, qn ∈ Z.

Let, by (3-3) and (3-12),

cν =− log | fs/r (xν, yν)| = ( j + k− l −m) log
|s|
r
− log |Fs/r (ξν, ην)| (ν = 0, 1),

c2 = log | fs/r (x2, y2)| = (l +m− j − k) log
|s|
r
+ log |Fs/r (ξ2, η2)|,
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and

c3 = M+ N −
(∫

Ω

dψ(x)+
∫
Ω ′

dψ(x)
)
+ (α− l−m) log |s|+ (m+h− k) log r +β log |s−r |. (4-2)

Since, by (2-16), δ−α−β = h− k− l, applying (2-29), (3-13) and (3-18) in the last equation of (4-1)
we obtain

lim
n→∞

1
n

log |qn| = c2+ c3. (4-3)

Similarly, defining
r (1)n = p′n − qnLi1

(r
s

)
, r (2)n = pn − qnLi2

(r
s

)
,

and using (2-29), (3-14), (3-15), (3-20), (3-21), (3-23) and (3-24) in the first two equations of (4-1), we
get

lim sup
n→∞

1
n

log |r (1)n | ≤ c3− c1 (4-4)

and, by (2-4),

lim sup
n→∞

1
n

log |r (2)n | ≤ c3−min{c0, c1}. (4-5)

Moreover, if c0 < c1,

lim
n→∞

1
n

log |r (2)n | = c3− c0, (4-6)

by virtue of (3-14), (3-21) and (3-24). Thus, for a given z = s
r , if we choose the integers h, j , k, l, m such

that c3< c0< c1, applying [Viola and Zudilin 2018, Lemma 5.1] with S= 2, γ1=Li1
( r

s

)
, γ2=Li2

( r
s

)
and

τ = c0 − c3, from (4-4) and (4-6) we deduce the linear independence over Q of 1, Li1
( r

s

)
and Li2

( r
s

)
.

Once the linear independence is established, in order to improve the Q-linear independence measure of 1,
Li1
( r

s

)
and Li2

( r
s

)
that can be obtained through the above choice of h, j , k, l, m, we can make a new

choice of h, j , k, l, m, possibly different from the previous one, with c0 Q c1 and c3 <min{c0, c1}. Then,
by Hata’s lemma for S = 2 generalized by Marcovecchio for any S, i.e., by [Viola and Zudilin 2018,
Lemma 5.2] with S = 2, γ1 = Li1

( r
s

)
, γ2 = Li2

( r
s

)
, d = 0, σ = c2+ c3 and τ =min{c0, c1}− c3, from

(4-3), (4-4) and (4-5) we get for 1, Li1
( r

s

)
and Li2

( r
s

)
the Q-linear independence measure

c2+ c3

c− c3
with c =min{c0, c1}; (4-7)

i.e., for any ε > 0 and any (a0, a1, a2) ∈ Z3
\ {(0, 0, 0)},∣∣∣a0+ a1Li1

(r
s

)
+ a2Li2

(r
s

)∣∣∣> C(ε)A−(c2+c3)/(c−c3)−ε,

where A =max{|a0|, |a1|, |a2|} and where the constant C(ε) > 0 is independent of (a0, a1, a2).
We separately treat the positive and the negative cases, z > 1 and z < 0. From [RV05, Theorem 5.2]

where c3 < c0 < c1 is assumed, and from the subsequent discussion in Section 6 of that paper, we obtain
the Q-linear independence of 1, Li1

( r
s

)
and Li2

( r
s

)
for all integers r, s with r ≥ 1 and s ≥ s+(r) > r ,

where s+(r) is explicit. In [RV05] we found the values s+(1)= 6, s+(2)= 51, s+(3)= 173, s+(4)= 423.
Concerning Q-linear independence measures, applying [Viola and Zudilin 2018, Lemma 5.2] we get a
new proof of the linear independence measures of 1, Li1

( 1
z

)
and Li2

( 1
z

)
for z = s

r > 1 given in [Mar-
covecchio 2016, Table p. 231], by choosing h = γ , j = α1, k = β1 + α2 − α1, l = β2 + α1 − α2,
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z h j k l m (c2+c3)/(c−c3)

∗ −5 10 8 7 6 10 61.68698. . .
∗ −6 10 8 7 6 10 43.51295. . .
∗ −7 64 32 37 27 43 32.76353. . .
∗ −8 64 32 37 27 43 25.05713. . .
∗ −9 64 32 37 27 43 20.87789. . .
∗ −10 64 32 37 27 43 18.24158. . .
∗ −11 64 32 37 27 43 16.41900. . .
−12 64 32 37 27 43 15.08001. . .
∗ −13 130 65 76 54 86 14.04958. . .
−14 130 65 76 54 86 13.22908. . .
−15 130 65 76 54 86 12.58420. . .
−16 130 65 76 54 86 12.05561. . .
−17 130 65 76 54 86 11.61188. . .
−18 130 65 76 54 86 11.23276. . .
−19 130 65 76 54 86 10.90426. . .
−20 130 65 76 54 86 10.61629. . .

Table 1

m = α2 for each z, where α1, β1, α2, β2, γ are the integers in Marcovecchio’s table. Note, however,
that in Marcovecchio’s notation the quantity µ appearing in the last column of his table equals our linear
independence measure (4-7) plus 1; i.e.,

µ=
c2+ c3

c− c3
+ 1=

c+ c2

c− c3
.

In the negative case, our method yields new Q-linear independence measures of 1, Li1
( r

s

)
and Li2

( r
s

)
for integers r ≥ 1 and s ≤ s−(r) < 0 with explicit s−(r), improving both the results in [Hata 1993, Table 2
p. 386] and in [Marcovecchio 2016, Table p. 231]. For brevity we give numerical results only for r = 1,
and for −20≤ z = s ≤ s−(1)=−5. For such values of z it is easy to prove the Q-linear independence
of 1, Li1

( 1
z

)
and Li2

( 1
z

)
, e.g., with the choice h = 20, j = 10, k = 13, l = 8, m = 16, which yields

c3 < c0 < c1 for all z ∈ Z satisfying −20 ≤ z ≤ −5, and hence allows one to apply [Viola and Zudilin
2018, Lemma 5.1]. Then for each z we apply Lemma 5.2 of the same paper with the corresponding
values of h, j , k, l, m in Table 1, thus obtaining for 1, Li1

( 1
z

)
and Li2

( 1
z

)
the Q-linear independence

measure (c2+ c3)/(c− c3) in the last column of the table.
The values of z in Table 1 marked with an asterisk are associated with h, j , k, l, m for which (3-17)

holds, i.e., such that the polynomial U (ξ) in (3-10) has complex conjugate roots ξ0, ξ1, whence c= c0= c1.
For the remaining values of z, the corresponding h, j , k, l, m yield (3-16) with c = c0 < c1.

As an example we give below all the numerical values for z =−5, with h = 10, j = 8, k = 7, l = 6,
m = 10. We get

l +m− j = 8, m+ h− k = 13, h+ j − l = 12, j + k−m = 5,
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whence
M = 13, N = 12, α = l +m = 16, β = k+ l − h = 3,

Ω =
[ 1

10 ,
1
4

)
∪
[ 3

10 ,
5

13

)
∪
[ 2

5 ,
5
12

)
∪
[ 1

2 ,
7

13

)
∪
[4

7 ,
5
8

)
∪
[ 7

10 ,
10
13

)
∪
[ 4

5 ,
11
13

)
∪
[6

7 ,
7
8

)
∪
[ 9

10 ,
12
13

)
,∫

Ω

dψ(x)= 7.87642 . . . , Ω ′ =∅,

c3 = M + N −
∫
Ω

dψ(x)+β log 6= 22.49885 . . . .

The saddle-points of F−5(ξ, η) are

(ξ0, η0)= (0.45905 . . .+ i 0.04354 . . . , 0.96082 . . .− i 1.38422 . . . ),

(ξ1, η1)= (ξ0, η0),

(ξ2, η2)= (−12.05913 . . . , −8.56053 . . . ).
Therefore

c = c0 = c1 = 23.60655 . . . , c2 = 45.83193 . . . ,

whence we obtain the Q-linear independence measure of 1, Li1
(
−

1
5

)
, Li2

(
−

1
5

)
given by

c2+ c3

c− c3
= 61.68698 . . . .
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