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Let Fq be a finite field of order q. We prove that if d ≥ 2 is even and E ⊂ Fd
q with |E | ≥ 9qd/2 then

Fq =
1(E)
1(E)

=

{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
,

where
1(E)= {‖x − y‖ : x, y ∈ E}, ‖x‖ = x2

1 + x2
2 + · · ·+ x2

d .

If the dimension d is odd and E ⊂ Fd
q with |E | ≥ 6qd/2, then

{0} ∪ F+q ⊂
1(E)
1(E)

,

where F+q denotes the set of nonzero quadratic residues in Fq . Both results are, in general, best possible,
including the conclusion about the nonzero quadratic residues in odd dimensions.

1. Introduction

The Erdős–Falconer distance problem in vector spaces over finite fields asks for the smallest possible
size of

1(E)= {‖x − y‖ : x, y ∈ E}, ‖x‖ = x2
1 + · · ·+ x2

d ,

given E ⊂ Fd
q , d ≥ 2. This problem was introduced by Bourgain, Katz and Tao [Bourgain et al. 2004].

Here Fq denotes the finite field with q elements and Fd
q is the d-dimensional vector space over this field.

In [Iosevich and Rudnev 2007], one of us and Misha Rudnev proved that if E ⊂ Fd
q , d ≥ 2, with

|E | > 2q(d+1)/2, then 1(E) = Fq . Hart, Rudnev and two of us [Hart et al. 2011] showed that, in a
sense, this result is best possible when d is odd. More precisely, for any c ∈ (0, 1) and any q sufficiently
large with respect to c, they construct subsets E ⊂ Fd

q with |E | > c
2q(d+1)/2 but |1(E)| < cq. This

construction does not appear to generalize to the even-dimensional case. In [Chapman et al. 2012],
Chapman, Erdoğan, Hart and two of us proved that if q is prime, q ≡ 3 (mod 4) and if E ⊂ F2

q with
|E | ≥ Cq4/3 for a sufficiently large constant C > 0, then

|1(E)|>
q
2
.

This result was extended to two-dimensional vector spaces over arbitrary finite fields in [Bennett et al.
2017]. In even dimensions d ≥ 2, it is reasonable to conjecture that if |E | ≥ Cqd/2 with a sufficiently
large C , then |1(E)| > 1

2q, but this conjecture currently remains open. The exponent d
2 cannot be
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improved. To see this, let q = p2, p prime, and let E = Fd
p ⊂ Fd

q . Then |E | = qd/2, yet 1(E)= Fp. When
q is a prime and d ≥ 4, the sharpness of d

2 can be demonstrated using Lagrangian subspaces [Hart et al.
2011]. In two dimensions, the sharpness of d

2 = 1 is easily demonstrated by taking a suitable subset of
a straight line.

The purpose of this paper is to show that under the assumption |E | ≥ Cqd/2, taking the quotient of
the elements of 1(E) recovers all of Fq for d even, and at least all the square elements of Fq when d is
odd. More precisely, for E ⊂ Fd

q we define

1(E)
1(E)

:=

{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
.

Our main results are the following.

Theorem 1.1. Let E ⊂ Fd
q, d even. Then if |E | ≥ 9qd/2, we have

Fq =
1(E)
1(E)

.

Theorem 1.2. Let d ≥ 3 be an odd integer and E ⊂ Fd
q . Then if |E | ≥ 6qd/2, we have

{0} ∪ F+q ⊂
1(E)
1(E)

.

Sharpness of results. The results are in general sharp up to constants. To see this, we once again take
q = p2 and E = F2

p. Then |E | = qd/2; yet{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
= Fp.

The statement about the squares in Theorem 1.2 is also sharp. The example in [Hart et al. 2011,
page 15] that illustrates the sharpness of the exponent (d + 1)/2 yields a set of size cq(d+1)/2, with c
sufficiently small, such that 1(E)⊂ {(a− a′)2 : a, a′ ∈ A}, where A is a suitable arithmetic progression
in Fq . In particular, 1(E) is a subset of the squares, so the ratios of the elements of 1(E) are also
squares.

2. Proof of Theorem 1.1

For t ∈ Fq , let
ν(t)=

∑
x,y∈Fd

q

E(x)E(y)St(x − y),

where
St = {x ∈ Fd

q : ‖x‖ = t}.

It is clear that 0 ∈ 1(E)/1(E) unless 1(E) = {0}. Thus it suffices to prove that for each r 6= 0 there
exists t ∈1(E) \ {0} such that tr ∈1(E). Since t ∈1(E) if and only if ν(t) > 0, we must show that for
any r ∈ F∗q ,

ν2(0) <
∑
t∈Fq

ν(t)ν(r t). (2-1)
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We shall need the following standard Fourier-analytic preliminaries. Given f : Fd
q → C, define the

Fourier transform f̂ by the formula

f̂ (m)= q−d
∑
x∈Fd

q

χ(−x ·m) f (x),

where χ is a nontrivial principal character on Fq . We shall use the following calculation repeatedly.

Lemma 2.1. With the notation above,

f (x)=
∑
m∈Fd

q

χ(x ·m) f̂ (m) (Fourier inversion)

and ∑
m∈Fd

q

| f̂ (m)|
2
= q−d

∑
x∈Fd

q

| f (x)|2. (Plancherel)

By Fourier inversion,

ν(t)= q2d
∑
m∈Fd

q

Ŝt(m)|Ê(m)|2 = q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2.

It follows that for r ∈ F∗q ,∑
t∈Fq

ν(t)ν(r t)=
∑
t∈Fq

(
q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2
)(

q−d
|E |2 |Sr t | + q2d

∑
m′ 6=E0

Ŝr t(m′)|Ê(m′)|2
)

= q−2d
|E |4

∑
t∈Fq

|St ||Sr t | + qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

+ qd
|E |2

∑
m 6=E0

|Ê(m)|2
∑
t∈Fq

|Sr t |Ŝt(m)+ q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= I + II + III + IV . (2-2)

We shall invoke the explicit value of |St |, which can be deduced by Theorem 6.26 in [Lidl and Nieder-
reiter 1997].

Lemma 2.2. Let St ⊂ Fd
q denote the sphere with radius t ∈ Fq . Then if d ≥ 2 is even,

|St | = qd−1
+ λ(t)q(d−2)/2η((−1)d/2),

where η is the quadratic character of F∗q , λ(t)=−1 for t ∈ F∗q , and λ(0)= q − 1.

We also use the following result, which was given as Lemma 4 in [Iosevich and Koh 2010].

Lemma 2.3. Let S j be a sphere in Fd
q , d ≥ 2. Then for any m ∈ Fd

q , we have

Ŝ j (m)= q−1δ0(m)+ q−d−1ηd(−1)Gd
∑
s∈F∗q

ηd(s)χ
(

js+
‖m‖
4s

)
,

where G denotes the Gauss sum, η is the quadratic character of F∗q , and δ0(m)= 1 if m = (0, . . . , 0) and
δ0(m)= 0 otherwise.
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A lower bound of
∑

t∈Fq
ν(t)ν(r t) for even dimensions d ≥ 2. Since

∑
t∈Fq

λ(r t) = 0 for r 6= 0, it
follows from Lemma 2.2 that

I := q−2d
|E |4

∑
t∈Fq

|St ||Sr t | = q−2d
|E |4

(
q2d−1

+ qd−2
∑
t∈Fq

λ(t)λ(r t)
)

= q−2d
|E |4

(
q2d−1

+ qd−2λ2(0)+ qd−2
∑
t 6=0

λ(t)λ(r t)
)

= q−2d
|E |4

(
q2d−1

+ qd−2(q − 1)2+ qd−2(q − 1)
)
.

Hence, we obtain
I = q−1

|E |4+ q−d
|E |4− q−d−1

|E |4. (2-3)

In order to estimate the remaining terms, we need the following calculations.

Lemma 2.4. Suppose that m 6= E0 in Fd
q , d ≥ 2. Then for any r 6= 0, we have∑

t∈Fq

Ŝr t(m)= 0, (2-4)

∑
t∈Fq

λ(t)Ŝr t(m)= q Ŝ0(m), (2-5)

where λ(t) is defined as in Lemma 2.2.

To see this, observe that the left-hand side of (2-4) equals

q−d
∑
t∈Fq

∑
x∈Fd

q

χ(−x ·m)Sr t(x)= q−d
∑
x∈Fd

q

χ(−x ·m)
∑
t∈Fq

Sr t(x)= q−d
∑
x∈Fd

q

χ(−x ·m)= 0

since m 6= (0, . . . , 0). Hence (2-4) follows. By the definition of λ(t),∑
t∈Fq

λ(t)Ŝr t(m)= (q − 1)Ŝ0(m)−
∑
t 6=0

Ŝr t(m)= (q − 1)Ŝ0(m)−
∑
t∈Fq

Ŝr t(m)+ Ŝ0(m).

Then (2-5) follows by (2-4). This completes the proof of Lemma 2.4.

We shall also need the following orthogonality lemma.

Lemma 2.5. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 2 is even, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−d
− q−d−1 if ‖m‖ = r‖m′‖,

−q−d−1 if ‖m‖ 6= r‖m′‖.

The proof shall be given at the end of the paper (see Lemma 4.2). With the lemmas in tow, we are
ready to handle terms II , III and IV . In view of Lemmas 2.2 and 2.4, if m′ 6= E0, then∑

t∈Fq

|St |Ŝr t(m′)= qd−1
∑
t∈Fq

Ŝr t(m′)+ q(d−2)/2η((−1)d/2)
∑
t∈Fq

λ(t)Ŝr t(m′)= qd/2η((−1)d/2)Ŝ0(m′).
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Using this equation, it follows that

II := qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)= q3d/2η((−1)d/2)|E |2
∑
m′ 6=E0

|Ê(m′)|2 Ŝ0(m′).

By the same argument, it is not difficult to see that II = III . Namely, we have

II + III = 2q3d/2η((−1)d/2)|E |2
∑
m 6=E0

|Ê(m)|2 Ŝ0(m). (2-6)

We now move on to the term

IV := q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′).

Using Lemma 2.5, we can write IV = A+ B, where

A =−q3d−1
∑

‖m‖6=r‖m′‖
m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2,

B = (q3d
− q3d−1)

∑
‖m‖=r‖m′‖

m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2.

It follows that

IV = A+ B = q3d
∑

‖m‖=r‖m′‖
m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2− q3d−1
∑

m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2 = A′− B ′.

Combining this with (2-3), (2-6), we obtain that if d ≥ 2 is even and r 6= 0, then∑
t∈Fq

ν(t)ν(r t)= I + II + III + IV

= (q−1
|E |4+ q−d

|E |4− q−d−1
|E |4)

+ 2q3d/2η((−1)d/2)|E |2
(∑

m 6=E0

|Ê(m)|2 Ŝ0(m)
)
+ (A′− B ′).

Notice that each term above is a real number. It follows that∑
t∈Fq

ν(t)ν(r t)≥ q−1
|E |4− 2q3d/2

|E |2
(
max
m 6=E0
|Ŝ0(m)|

)(∑
m∈Fd

q

|Ê(m)|2
)
+ (A′− B ′)

= q−1
|E |4− 2qd/2

|E |3
(
max
m 6=E0
|Ŝ0(m)|

)
+ (A′− B ′),

where we used the Plancherel theorem, which states∑
m∈Fd

q

|Ê(m)|2 = q−d
|E |.
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By the definitions of A′ and B ′, we see that

A′− B ′ ≥ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− q3d−1
(∑

m∈Fd
q

|Ê(m)|2
)2

= q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− qd−1
|E |2.

We also see from Lemma 2.3 that if d ≥ 2 is even, then

max
m 6=E0
|Ŝ0(m)| ≤ q−d/2.

Thus we conclude that if d ≥ 2 is even and r 6= 0, then∑
t∈Fq

ν(t)ν(r t)≥ q−1
|E |4− 2|E |3+ q3d

( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− qd−1
|E |2. (2-7)

An upper bound of ν2(0) for even dimensions d ≥ 2. It follows that

ν(0)= q2d
∑
m∈Fd

q

Ŝ0(m)|Ê(m)|2.

By Lemma 2.3, notice that if d ≥ 2 is even, then

Ŝ0(m)= q−1δ0(m)+ q−d−1Gd
∑
s∈F∗q

χ(s‖m‖).

Then we see that

ν(0)= q−1
|E |2+ qd−1Gd

∑
m∈Fd

q

|Ê(m)|2
(
−1+

∑
s∈Fq

χ(s‖m‖)
)
.

By the Plancherel theorem and the orthogonality of χ ,

ν(0)= q−1
|E |2− q−1Gd

|E | + qd Gd
∑
‖m‖=0

|Ê(m)|2.

Since Ê(E0)= q−d
|E |, we can write

ν(0)= q−1
|E |2− q−1Gd

|E | + q−d Gd
|E |2+ qd Gd

∑
‖m‖=0
m 6=E0

|Ê(m)|2. (2-8)

We shall use the following explicit form of the Gauss sum G.

Lemma 2.6 [Lidl and Niederreiter 1997, Theorem 5.15]. Let Fq be a finite field with q = p` for an odd
prime p and ` ∈ N. Then the Gauss sum G satisfies

G =
{
(− 1)`−1q1/2 if p ≡ 1 (mod 4),
(− 1)`−1i`q1/2 if p ≡ 3 (mod 4).
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Observe from Lemma 2.6 that if the dimension d is even, then Gd
=±qd/2, where the sign depends

on d and q . Combining this observation with (2-8), and considering the sign of each term, we see that if
d is even, then

ν(0)≤
{

q−1
|E |2+ q(d−2)/2

|E | if Gd
=−qd/2,

q−1
|E |2+ q−d/2

|E |2+ q3d/2∑
‖m‖=0,m 6=E0 |Ê(m)|

2 if Gd
= qd/2.

Assuming that |E | ≥ qd/2, we see that

ν(0)≤
{

2q−1
|E |2 if Gd

=−qd/2,

2q−1
|E |2+ q3d/2∑

‖m‖=0,m 6=E0 |Ê(m)|
2 if Gd

= qd/2.

Since ν(0) is a nonnegative real number, it follows that if |E | ≥ qd/2, then

ν2(0)≤ 4q−2
|E |4+ 4q(3d−2)/2

|E |2
∑
‖m‖=0
m 6=E0

|Ê(m)|2+ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

.

Since ∑
‖m‖=0
m 6=E0

|Ê(m)|2 ≤
∑
m∈Fd

q

|Ê(m)|2 = q−d
|E |,

we conclude that if |E | ≥ qd/2, then

ν2(0)≤ 4q−2
|E |4+ 4q(d−2)/2

|E |3+ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

. (2-9)

Now we are ready to complete the proof of Theorem 1.1.

Complete proof of Theorem 1.1. We must show that (2-1) holds. By (2-7) and (2-9), it is enough to
show that if |E | ≥ 9qd/2, then

q−1
|E |4− 2|E |3− qd−1

|E |2 > 4q−2
|E |4+ 4q(d−2)/2

|E |3.

It suffices to show that

q−1
|E |4− 6q(d−2)/2

|E |3− qd−1
|E |2 > 4q−2

|E |4.

If |E | ≥ 9qd/2, then we see that

q−1
|E |4− 6q(d−2)/2

|E |3− qd−1
|E |2 ≥ 1

3q−1
|E |4− qd−1

|E |2,

so it is sufficient to show that
1
3q−1
|E |4− qd−1

|E |2 > 4q−2
|E |4.

Observe that if |E | ≥ 9qd/2(≥
√

12qd/2), then
1
3q−1
|E |4− qd−1

|E |2 ≥ 1
4q−1
|E |4.

Consequently, it suffices to show that
1
4q−1
|E |4 > 4q−2

|E |4,



110 ALEX IOSEVICH, DOOWON KOH AND HANS PARSHALL

which holds if q > 16. Therefore, when q ≤ 16, it suffices to prove the statement of Theorem 1.1.
More precisely, it remains to show that if |E | ≥ 9qd/2 and q ≤ 16, then Fq = 1(E)/1(E). Since
9qd/2 > 2q(d+1)/2 for q ≤ 16, it will be enough to prove that if |E |> 2q(d+1)/2, then 1(E)= Fq . This
was proved in [Iosevich and Rudnev 2007]. Thus the proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2

We proceed as in the proof of Theorem 1.1. As seen in (2-2), for r ∈ F+q , we can write∑
t∈Fq

ν(t)ν(r t)=
∑
t∈Fq

(
q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2
)(

q−d
|E |2 |Sr t | + q2d

∑
m′ 6=E0

Ŝr t(m′)|Ê(m′)|2
)

= q−2d
|E |4

∑
t∈Fq

|St ||Sr t | + qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

+ qd
|E |2

∑
m 6=E0

|Ê(m)|2
∑
t∈Fq

|Sr t |Ŝt(m)+ q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= I+ II+ III+ IV.

The following explicit value of |St | is given as Theorem 6.27 in [Lidl and Niederreiter 1997].

Lemma 3.1. Let St ⊂ Fd
q denote the sphere with radius t ∈ Fq . If d ≥ 3 is odd, then

|St | = qd−1
+ q(d−1)/2η((−1)(d−1)/2t),

where η denotes the quadratic character of F∗q and η(0)= 0.

We recall from Lemma 2.3 that if d ≥ 3 is odd, then for any m ∈ Fd
q ,

Ŝ j (m)= q−1δ0(m)+ q−d−1η(−1)Gd
∑
s∈F∗q

η(s)χ
(

js+
‖m‖
4s

)
. (3-1)

Estimate of
∑

t∈Fq
ν(t)ν(r t) for odd dimensions d ≥ 3. Since

∑
t∈F∗q

η(t)= 0 (by the orthogonality
of η) and η(0)= 0, it follows from Lemma 3.1 that

I := q−2d
|E |4

∑
t∈Fq

|St ||Sr t |

= q−2d
|E |4

∑
t∈Fq

(
qd−1
+ q(d−1)/2η((−1)(d−1)/2t)

)(
qd−1
+ q(d−1)/2η((−1)(d−1)/2r t)

)
= q−2d

|E |4
(∑

t∈Fq

q2d−2
+

∑
t∈Fq

qd−1η(r)η2(t)
)
= q−2d

|E |4
(
q2d−1

+ qd−1η(r)(q − 1)
)
.

Since η(r)= 1 (by the assumption that r ∈ F+q ), we have

I≥ q−1
|E |4.

In order to estimate the second term II, we begin by proving the following result.
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Lemma 3.2. Let S j be the sphere in Fd
q for odd d ≥ 3. Then for r 6= 0 and m 6= E0, we have

� :=
∑
t∈Fq

|St |Ŝr t(m)= q(−d−3)/2Gd+1η(r (−1)(d+1)/2)

(
−1+

∑
s∈Fq

χ(s‖m‖)
)
.

To prove this lemma, recall from (2-4) of Lemma 2.4 that
∑

t∈Fq
Ŝr t(m)= 0 for r 6= 0 and m 6= E0. By

Lemma 3.1,

�=
∑
t∈Fq

(
qd−1
+ q(d−1)/2η((−1)(d−1)/2t)

)
Ŝr t(m)= q(d−1)/2η((−1)(d−1)/2)

∑
t∈Fq

η(t)Ŝr t(m).

By using the value of Ŝr t(m) in (3-1), we can write

�= q(−d−3)/2η((−1)(d+1)/2)Gd
∑
s 6=0

η(s)χ
(
‖m‖
4s

)(∑
t∈Fq

η(t)χ(rst)
)
.

Since η(0)= 0 and η(a)= η(a−1) for a 6= 0, a simple change of variables yields∑
t∈Fq

η(t)χ(rst)= η(rs)G

and thus we have
�= q(−d−3)/2η((−1)(d+1)/2)Gd+1η(r)

∑
s 6=0

χ(s‖m‖),

which completes the proof of Lemma 3.2.
By Lemma 3.2 and the orthogonality of χ , we see that

II := qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

= q(d−1)/2
|E |2Gd+1η(r (−1)(d+1)/2)

∑
m′ 6=E0
‖m′‖=0

|Ê(m′)|2−q(d−3)/2
|E |2Gd+1η(r (−1)(d+1)/2)

∑
m′ 6=E0

|Ê(m′)|2

= II1−II2.

Now observe from Lemma 2.6 that Gd+1
∈ R for odd d and so both II1 and II2 are real numbers. Further-

more, both values are real numbers with the same sign. Hence, II= II1− II2 ≥min{−|II1|,−|II2|}. Since

min{−|II1|,−|II2|} ≥ −
∣∣q(d−1)/2

|E |2Gd+1η(r (−1)(d+1)/2)
∣∣ ∑

m′∈Fd
q

|Ê(m′)|2,

which is same as −|E |3, we obtain that
II≥−|E |3.

By the same argument, it is not hard to see that II= III and we also have

III≥−|E |3.

In order to estimate the fourth term IV, we shall need the following orthogonality lemma.
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Lemma 3.3. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 3 is odd, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ (q−d
− q−d−1)η(r) if ‖m‖ = r‖m′‖,

−q−d−1η(r) if ‖m‖ 6= r‖m′‖,

where η denotes the quadratic character of F∗q .

The proof shall be given at the end of the paper (see Lemma 4.2). By the definition of the term IV
and Lemma 3.3, it follows that

IV := q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= − q3d−1η(r)
∑

m,m′ 6=E0
‖m‖6=r‖m′‖

|Ê(m)|2 |Ê(m′)|2+ (q3d
− q3d−1)η(r)

∑
m,m′ 6=E0
‖m‖=r‖m′‖

|Ê(m)|2 |Ê(m′)|2.

Since η(r)= 1 (by our assumption that r is a square number in F∗q), the second term above is positive.
Thus we have

IV≥−q3d−1
∑

m,m′∈Fd
q

|Ê(m)|2 |Ê(m′)|2.

By the Plancherel theorem,
IV≥−qd−1

|E |2.

Putting this together with all other estimates, we obtain that if d ≥ 3 is odd and r is a square number,
then ∑

t∈Fq

ν(t)ν(r t) := I+ II+ III+ IV≥ q−1
|E |4− 2|E |3− qd−1

|E |2. (3-2)

Estimate of ν2(0) for odd dimensions d ≥ 3. Recall that we can write

ν(0)= q2d
∑
m∈Fd

q

Ŝ0(m)|Ê(m)|2 = q2d Ŝ0(E0)|Ê(E0)|2+ q2d
∑
m 6=E0

Ŝ0(m)|Ê(m)|2 := M + R.

Since |S0| = qd−1 for odd d ≥ 3 (see Lemma 3.1),

M = q−d
|S0||E |2 = q−1

|E |2.

To estimate R, observe that

R ≤ q2d(max
m 6=E0
|Ŝ0(m)|

)(∑
m∈Fd

q

|Ê(m)|2
)
=
(
max
m 6=E0
|Ŝ0(m)|

)
qd
|E |.

By (3-1), we see that if d ≥ 3 is odd and m 6= E0, then

Ŝ0(m)= q−d−1η(−1)Gd
∑
s 6=0

η(s)χ
(
‖m‖
4s

)
.
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Since ∣∣∣∣∑
s 6=0

η(s)χ
(
‖m‖
4s

)∣∣∣∣=√q

for ‖m‖ 6= 0 and 0 otherwise, we see

max
m 6=E0
|Ŝ0(m)| ≤ q(−d−1)/2.

Hence we obtain
R ≤ q(d−1)/2

|E |.

We have seen that ν(0) := M + R ≤ q−1
|E |2+ q(d−1)/2

|E |, which in turn implies

ν2(0)≤ q−2
|E |4+ 2q(d−3)/2

|E |3+ qd−1
|E |2, (3-3)

since ν(0) is a nonnegative integer.

Complete proof of Theorem 1.2. Let d ≥ 3 be odd. Suppose that r is a square number in F∗q . We must
show that if E ⊂ Fd

q with |E | ≥ 6qd/2, then∑
t∈Fq

ν(t)ν(r t) > ν2(0).

By (3-2) and (3-3), it will be enough to show that if |E | ≥ 6qd/2, then

q−1
|E |4− 2|E |3− qd−1

|E |2 > q−2
|E |4+ 2q(d−3)/2

|E |3+ qd−1
|E |2.

Note that to prove this it suffices to show that

q−1
|E |4− 4q(d−3)/2

|E |3− 2qd−1
|E |2 > q−2

|E |4.

If |E | ≥ 6qd/2(≥ 6q(d−1)/2), then we see that

q−1
|E |4− 4q(d−3)/2

|E |3− 2qd−1
|E |2 ≥ 1

3q−1
|E |4− 2qd−1

|E |2.

Hence it is sufficient to show that if |E | ≥ 6qd/2, then

1
3q−1
|E |4− 2qd−1

|E |2 > q−2
|E |4.

Observe that if |E | ≥ 6qd/2(≥
√

24qd/2), then

1
3q−1
|E |4− 2qd−1

|E |2 ≥ 1
4q−1
|E |4.

In conclusion, it is enough to prove that if |E | ≥ 6qd/2, then

1
4q−1
|E |4 > q−2

|E |4,

which is clearly true provided that q > 4. For this reason, it suffices to prove the statement of Theorem 1.2
in the case when q ≤ 4 and |E | ≥ 6qd/2. In other words, our task is to prove that if |E | ≥ 6qd/2 for
q ≤ 4, then Fq = 1(E)/1(E). Since 6qd/2 > 2q(d+1)/2 for q ≤ 4, it will be enough to show that if
|E |> 2q(d+1)/2, then 1(E)= Fq . This is a well-known result on the Erdős–Falconer distance problem
shown in [Iosevich and Rudnev 2007]. Thus we finish the proof of Theorem 1.2.
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4. Proofs of Lemmas 2.5 and 3.3

We begin by proving the following lemma.

Lemma 4.1. Let r ∈ F∗q and m,m′ ∈ Fd
q . Then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−2d G2dηd(−r)(1− q−1) if ‖m‖ = r‖m′‖,
−q−2d−1G2dηd(−r) if ‖m‖ 6= r‖m′‖.

Proof. By Lemma 2.3, we have

Ŝt(m)= q−1δ0(m)+ q−d−1ηd(−1)Gd
∑
s∈F∗q

ηd(s)χ
(

ts+
‖m‖
4s

)
:= A(t)+ B(t),

Ŝr t(m′)= q−1δ0(m′)+ q−d−1ηd(−1)Gd
∑
s′∈F∗q

ηd(s ′)χ
(

r ts ′+
‖m′‖
4s ′

)
:= C(t)+ D(t).

Since
∑

t∈Fq
A(t)D(t)= 0=

∑
t∈Fq

B(t)C(t) by the orthogonality of χ , we have∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
∑
t∈Fq

A(t)C(t)+
∑
t∈Fq

B(t)D(t)

= q−1δ0(m)δ0(m′)+q−2d−2G2d
∑

s,s′∈F∗q

ηd(s)ηd(s ′)χ
(
‖m‖
4s
+
‖m′‖
4s ′

)∑
t∈Fq

χ(t (s+rs ′))

= q−1δ0(m)δ0(m′)+q−2d−1G2d
∑
s∈F∗q

ηd(−s2/r)χ
(
‖m‖
4s
−

r‖m′‖
4s

)
= q−1δ0(m)δ0(m′)+q−2d−1G2dηd(−r)

∑
s∈F∗q

χ(s(‖m‖−r‖m′‖))

= q−1δ0(m)δ0(m′)+
[
q−2d−1G2dηd(−r)

∑
s∈Fq

χ(s(‖m‖−r‖m′‖))
]
−q−2d−1G2dηd(−r).

Thus the statement follows by the orthogonality of χ . �

As a corollary of Lemma 4.1, one can deduce Lemmas 2.5 and 3.3 which can be restated as follows.

Lemma 4.2. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 2 is even, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−d
− q−d−1 if ‖m‖ = r‖m′‖,

−q−d−1 if ‖m‖ 6= r‖m′‖.

On the other hand, if d ≥ 3 is odd, then we have∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ (q−d
− q−d−1)η(r) if ‖m‖ = r‖m′‖,

−q−d−1η(r) if ‖m‖ 6= r‖m′‖.
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Proof. Suppose that d ≥ 2 is even. Then ηd
= 1. By Lemma 2.6, we see that G2d

= qd for even d ≥ 2.
Thus the statement follows by Lemma 4.1.

Next, assume that d≥3 is odd. Then ηd
=η. Hence, by Lemma 4.1 it suffices to show that G2dη(−1)=

qd for odd d ≥ 3. This equality follows by combining Lemma 2.6 with the facts that η(−1) = 1 for
q ≡ 1 (mod 4), and η(−1)=−1 for q ≡ 3 (mod 4). �
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