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We give a short proof that for each multiplicative subgroup H of finite index in Q+, the set of integers a
with a, a+ 1 ∈ H is an IP-set. This generalizes a theorem of Hildebrand concerning completely multi-
plicative functions taking values in the k-th roots of unity.

A theorem of Hildebrand [1991, Theorem 2], which was essential in answering a question of Lehmer,
Lehmer and Mills [Lehmer et al. 1963] on consecutive power residues can be formulated as follows:

Theorem 1 (Hildebrand). Fix some k ∈ Z+. If f : Z+→ C is a completely multiplicative function (i.e.,
f (mn)= f (m) f (n) for all m, n ∈ Z+) taking its values in the k-th roots of unity then the set of a ∈ Z+

fulfilling f (a)= f (a+ 1)= 1 is nonempty.

Remark 2. Hildebrand actually proved more; i.e., there is a constant c(k), independent of the specific
multiplicative function f , and an a ∈ Z+ such that a ≤ c(k) and f (a) = f (a+ 1) = 1. By a standard
compactness argument, these versions can be seen to be equivalent. It should, however, be noted that
from Hildebrand’s proof one can get an effective value for c(k) (as was pointed out by the anonymous
referee).

It makes sense to restate Hildebrand’s result as follows:

Theorem 3 (Hildebrand). Let H ≤Q+ be a (multiplicative) subgroup such that Q+/H is cyclic of finite
order. Let H∗ := H ∩Z+. Then H∗ ∩ (H∗− 1) is nonempty.

The original proof made use of analytic methods and was rather long. We will give a short elementary
proof of a more general theorem.

However, before we can state (and prove) our generalization we need some notation and the set-
theoretical version of Hindman’s theorem:

We denote by Pfin(Z+) the set of finite, nonempty subsets of Z+.
For A, B ∈ Pfin(Z+) write A ≺ B if max A < min B.
Furthermore, for a sequence A1 ≺ A2 ≺ · · · in Pfin(Z+), we define

FU((Ai )i∈Z+)=

{⋃
i∈I

Ai : I ⊆ Z+, 0 < |I |<∞
}
.

Similarly, for a sequence a1, a2, . . . in Z+, we define

FS((ai )i∈Z+)=

{∑
i∈I

ai : I ⊆ Z+, 0 < |I |<∞
}
.

MSC2010: 11B75.
Keywords: IP-set, multiplicative subgroup.

189

http://msp.org
http://msp.org/moscow
http://dx.doi.org/10.2140/moscow.2019.8-2
http://dx.doi.org/10.2140/moscow.2019.8.189


190 CARSTEN DIETZEL

We call a set M ⊆ Z+ an IP-set [Hindman and Strauss 2012, Definition 16.3] if there is a sequence
a1, a2, . . . in Z+ such that FS((ai )i∈Z+)⊆ M.

If a set A is the disjoint union of subsets B1, . . . , Bn ⊆ A, that is, B1 ∪ · · · ∪ Bn = A and Bi ∩ Bj =∅
for 1≤ i < j ≤ n, we denote this relation by A = B1 t · · · t Bn .

Now Hindman’s theorem on partitions of Pfin(Z+) [Hindman and Strauss 2012, Corollary 5.17] can
be stated as follows:

Theorem 4 (Hindman). For any finite partition Pfin(Z+)=M1tM2t· · ·tMn there are sets A1≺ A2≺· · ·

and 1≤ j ≤ k such that
FU((Ai )i∈Z+)⊆ Mj .

We can now state our generalization of Hildebrand’s theorem:

Theorem 5. Let H ≤ Q+ be a (multiplicative) subgroup of finite index.1Let H∗ := H ∩ Z+. Then
H∗ ∩ (H∗− 1) is an IP-set.

Hildebrand’s proof of Theorem 3 is an application of Ramsey’s theorem on special sets, i.e., finite
sets {n1 < n2 < · · ·< nr } such that n j − ni = gcd(ni , n j ) holds for 1≤ i < j ≤ r .

We will use a similar concept:

Definition 6. For a sequence sn and a finite subset A ⊂ Z+, set

sA :=
∑
n∈A

sn.

A block-divisible sequence is a strictly decreasing sequence sn in Z+ such that for A, B ∈ Pfin(Z+),
sA divides sB whenever A ≺ B.

For our proof, any block-divisible sequence will work. Thus, we only need to confirm the existence
of block-divisible sequences:

Lemma 7. There is a block-divisible sequence in Z+.

Proof. We construct a sequence as follows:

s0 := 1, sn+1 :=
∏

A⊆{0,...,n}
A 6=∅

sA.

Ignoring the s0 at the beginning, we end up with a strictly increasing sequence fulfilling the desired
divisibility condition. �

Now we can show our main result:

Proof of Theorem 5. Let N ′i (1≤ i ≤ k) be the (multiplicative) cosets of H in Q+.
These give a finite partition Z+ = N1 t N2 t · · · t Nk , where Ni = N ′i ∩Z+.
We now fix a block-divisible sequence sn (whose existence is guaranteed by Lemma 7) and define a

partition Pfin(Z+)= M1 tM2 t · · · tMk by declaring A ∈ Mi if and only if sA ∈ Ni .
By Theorem 4 there is a sequence A1 ≺ A2 ≺ · · · such that FU(A1, A2, . . .) is contained in one Mi

for some 1≤ i ≤ k.
1Note that we do not require Q+/H to be cyclic.
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By the definition of block-divisibility, sA1 divides sA for all A ∈ FU(A2, A3, . . .) and, consequently,
for all A ∈ FU(A1, A2, . . .), too.

Thus, defining bi := sAi , the members of FS(b1, b2, . . .) all lie in the same coset of H and are divisible
by b1. Therefore, setting ai := bi/b1, one has

FS(a1, a2, . . .)= FS(1, a2, a3, . . .)⊆ H∗.

Furthermore, FS(1, a2, a3, . . .)= FS(a2, a3, . . .)∪ (FS(a2, a3, . . .)+ 1)⊆ H∗.
We conclude that FS(a2, a3, . . .)⊆ H∗ ∩ (H∗− 1). �

Remark 8. We use the terminology of Theorem 5 to summarize the state of possible generalizations:
There are (multiplicative) subgroups H of arbitrary even index in Q+ such that H∗∩(H∗−1)∩(H∗−2)

is empty, as has been shown by Lehmer and Lehmer [1962, p. 103].
Graham [1964] proved that there are subgroups of arbitrary (finite) index in Q+ such that H∗ ∩ · · · ∩

(H∗− 3) is empty.
However, if Q+/H is of odd order k, it is still an open question if H∗ ∩ (H∗ − 1) ∩ (H∗ − 2) is

necessarily nonempty. Only in the case k = 3 is this set known to be always nonempty, as has been shown
computationally by Lehmer, Lehmer, Mills and Selfridge [Lehmer et al. 1962]. Maybe the combinatorial
methods presented in this article may help in resolving this problem!

Remark 9. Some ideas shown in this article are based on notes of the author, [Dietzel 2013], which
have not been submitted to any journal.
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