Recent Issues
Volume 14, Issue 1
Volume 13, Issue 4
Volume 13, Issue 3
Volume 13, Issue 2
Volume 13, Issue 1
Volume 12, Issue 4
Volume 12, Issue 3
Volume 12, Issue 2
Volume 12, Issue 1
Volume 11, Issue 4
Volume 11, Issue 3
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 4
Volume 10, Issue 3
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Older Issues
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 2-3
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 1-2
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 3-4
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
Abstract
We construct a sequence of lattices
{ L n i
⊂ ℝ n i }
for
n i
→ ∞
with exponentially large kissing numbers, namely,
log 2 τ ( L n i )
> 0 . 0 3 3 8
⋅ n i
−
o ( n i ) .
We also show that the maximum lattice kissing number
τ n l in
n dimensions
satisfies
log 2 τ n l
> 0 . 0 2 1 9
⋅
n
−
o ( n )
for any
n .
Keywords
lattices, algebraic geometry codes, kissing numbers,
Drinfeld modular curves
Mathematical Subject Classification 2010
Primary: 11H31, 11H71, 14G15, 52C17
Milestones
Received: 22 August 2018
Revised: 3 October 2018
Accepted: 18 October 2018
Published: 20 May 2019