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We prove various counting formulas for CM-types of CM-fields and use them to construct infinite fami-
lies of degenerate CM-types.

1. Introduction

Let M be a CM-field, which is, by definition, a totally imaginary quadratic extension of a totally real
field MC. Let � be a complex conjugation acting on M. Then MC is the maximal field fixed by �. Let
�M be the set of the complex embeddings of M into C. If we denote by 2d the degree ŒM WQ�, then we
have j�M j D 2d . A half set S of �M is called a CM-type of M if it satisfies �M D S tS� (a disjoint
union). Let L be the Galois closure of M over Q and G D Gal.L=Q/ and H D Gal.L=M/. We have
a one-to-one correspondence between �M and the right cosets HnG and � lifts to a central involution
of G, which we also denote by �. We denote the set of the CM-types with respect to .G;H; �/ by
CM.G;H; �/.

We define a family H of subgroups of G by

H D fH �G j � 62H g: (1-1)

The fixed field of each H 2H is a CM-subfield of L; thus, we call such an H a CM subgroup of G.
The set H of CM subgroups is a poset by inclusion. If H 2 H , we denote by �H W G ! HnG the
canonical surjection. Let zS D ��1H .S/ be the pullback of S to L. We define two subgroups of G by

s.S/D fg 2G j g zS D zSg; (1-2)

r.S/D fg 2G j zSg D zSg: (1-3)

It is easy to see that s.S/ and r.S/ are members of H . A CM-type S 2 CM.G;H; �/ is called simple if
s.S/DH. If H 0 D r.S/, then

S 0 D �H 0.fx
�1
j x 2 zSg/

is a CM-type of .G;H 0; �/ called the reflex CM-type of S. We call the group H 0 D r.S/ the reflex
subgroup of S.

Two CM-types S1 and S2 in CM.G;H; �/ are conjugate if there exists g 2 G such that S1 D S2g.
A conjugacy class of simple CM-types determines an isogeny class of complex abelian varieties with
complex multiplication by an order of M.
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The aim of this paper is to prove various counting formulas of the number of CM-types. Our funda-
mental formula (Theorem 2.4) counts the cardinality of the set

fS 2 CM.G; 1; �/ j s.S/DH and r.S/DKg

for givenH;K2H . Other counting formulas we shall prove are those of simple CM-types (Proposition 3.1)
and CM-types of .G;H; �/ with given reflex subgroup (Proposition 3.3) and conjugacy classes of CM-
types (Theorem 4.1). These counting formulas enable us to construct degenerate CM-types (Section 5).
In fact, we can construct infinite families of degenerate CM-types in Section 6 for nonabelian groups G.
Infinite families of degenerate CM-types are previously known by [Greenberg 1980; Dodson 1984].

Throughout this paper, we will use the following purely group-theoretic setting. Let G be a finite
group, and � a central involution of G fixed once for all. For H 2H (see (1-1)) we define a subposet
H�.H/ of H by

H�.H/D fK 2H jK �H g: (1-4)

For H1;H2 2H satisfying H1 �H2, the Möbius function � on H is defined inductively by

�.H1;H1/D 1 and �.H1;H2/D�
X

H1�H<H2

�.H1;H2/: (1-5)

2. Fundamental formula

In this section, we prove a counting formula of certain subsets of CM-types. The formula will play a
fundamental role throughout the paper. The objects for counting are defined as follows. For H;K 2H ,
we define

X .H;K/D fS 2 CM.G; 1; �/ j s.S/DH and r.S/DKg; (2-1)

X�.H;K/D fS 2 CM.G; 1; �/ j s.S/�H and r.S/�Kg: (2-2)

From these definitions, it readily follows that

X�.H;K/D
G

H12H�.H/

G
K12H�.K/

X .H1; K1/: (2-3)

The following function " also plays an important role in the rest of this paper.

Definition 2.1. We define a function " on H �H by

".H;K/D

�
1 if HKg 63 � for all g 2G;
0 otherwise;

where H;K 2H and Kg is the conjugate group gKg�1 of K.

We will need the following elementary properties of ".

Lemma 2.2. The function " in Definition 2.1 satisfies the following properties:

(i) ".H; 1/D ".1;H/D 1 for all H 2H .

(ii) If ".H;K/D 0, then ".H1; K1/D 0 for all H1 �H and all K1 �K.

(iii) ".H;K/D ".K;H/ for all H;K 2H .

(iv) ".H;K/D ".H;Kg/ for all H;K 2H and for all g 2G.
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Proof. (i) This follows from the fact that all H 2H do not contain �.

(ii) If � 2HKg for some g, then � 2HKg �H1K
g
1 for all H1 �H and K1 �K.

(iii) If � 2KHx for some x 2G, then �D x�1��1x 2HKx
�1

and vice versa.

(iv) If ".H;K/D 0, then there exist h 2H, k 2K, x 2G such that �D hxkx�1. By writing x D yg,
we have �D hygkg�1y�1 2H.Kg/y. Thus we obtain ".H;Kg/D 0. On the other hand, suppose that
".H;K/D 1. If ".H;Kg/D 0 for some g 2G, then there exists y 2G such that � 2H.Kg/y DHKgy.
This is a contradiction. Thus we have ".H;Kg/D 1 for all g 2G. �

Lemma 2.3. The following formula holds:

jX�.H;K/j D ".H;K/2
1
2
jHnG=Kj

D

�
0 if ".K;H/D 0;
2

1
2
jHnG=Kj otherwise:

Proof. Let S be a CM-type in CM.G; 1; �/. First note that if s.S/�H, then the natural projection �H
sends S to the right coset space HnG and S can be written as a union of right cosets of H :

S DHg1 t � � � tHgs .s D ŒG WH�/:

Similarly, if r.S/�K, then a natural map sends S to the left cosets space G=K and, thus, gives a left
coset decomposition of S :

S D t1K t � � � t tuK .uD ŒG WK�/:

Therefore if S 2X�.N;K/, then we have a double coset decomposition

S DHx1K t � � � tHxrK:

If ".H;K/ D 1, then both xi and �xi cannot belong to a same double coset HxiK simultaneously.
Suppose to the contrary that HxiK DH�xiK. This equality means that there exist h 2H and k 2K
such that xi D h�xik. Since � is central in G, this, in turn, implies � D hxikx�1i 2 HK

xi. This is a
contradiction. Thus if ".H;K/ D 1, then xi and �xi belong to different double cosets and we have a
double coset decomposition of G of the form

G DHx1K t � � � tHxrK tH�x1K t � � � tH�xrK (2-4)

and hence we have 2r D jHnG=Kj.
Conversely, if we have the double coset decomposition (2-4), then by choosing one double coset from

each pair of cosets .HxiK;H�xiK/, we can form a CM-type S such that s.S/�N and r.S/�K.
Hence under the assumption ".H;K/D 1, we have established a one-to-one correspondence between

X�.H;K/ and the pairwise choice from the double coset decomposition of the form (2-4). We conclude
that

jX�.N;K/j D 2
1
2
jHnG=Kj

if ".H;K/ D 1. On the other hand, if ".H;K/ D 0, then the double coset decomposition of the form
(2-4) is obviously impossible. Thus there is no CM-type satisfying the conditions. �

Now we state and prove our fundamental formula.



346 MASANARI KIDA

Theorem 2.4. The number of elements in X .H;K/ defined by (2-1) is given by

jX .H;K/j D
X

H12H�.H/

X
K12H�.K/

".H1; K1/�.H;H1/�.K;K1/2
1
2
jH1nG=K1j:

Proof. We consider a product poset H �H whose partial order is defined by

.H1; K1/� .H2; K2/ () H1 �H2 and K1 �K2:

Then the identity (2-3) can be rewritten as

X�.H;K/D
G

.H1;K1/�.H;K/

X .H1; K1/:

The Möbius inversion formula [Rota 1964, Proposition 3] on H �H implies

jX .H;K/j D
X

.H1;K1/�.H;K/

�..H;K/; .H1; K1//jX�.H1; K1/j:

Since the Möbius function on the product poset is nothing but a product of corresponding Möbius func-
tions [Rota 1964, Proposition 5], we have

jX .H;K/j D
X

H12H�.H/

X
K12H�.K/

�.H;H1/�.K;K1/jX�.H1; K1/j:

By Lemma 2.2(ii), neglecting the terms with ".H1; K1/D 0 does not affect the Möbius function. �
By the symmetry of the formula of Theorem 2.4 and that of " (Lemma 2.2(iii)), we have:

Corollary 2.5. For any H;K 2H , we have jX .H;K/j D jX .K;H/j.

The following corollaries help us to conclude X .H;K/D∅ when H is a normal subgroup of G.

Corollary 2.6. Let H;K 2H . Suppose that H is a normal subgroup of G:

(i) If H �K, then X .H;K/¤∅ if and only if H DK.

(ii) If HK �K, then X .H;K/D∅.

Proof. If H is normal in G, then the double coset decomposition (2-4) agrees with the left coset decom-
position by HK. If H �K as in (i), then HK DH. Hence the result follows. Also if HK �K as in (ii),
then the reflex subgroup must be strictly larger than K and X .H;K/D∅. �
Corollary 2.7. Let H;K 2H . Suppose that both H and K are normal subgroups of G. If H ¤K, then

X .H;K/D∅:

In particular, if all CM subgroups of G are normal, then the matrix .jX .H;K/j/H;K2H is diagonal.

Proof. If H ¤K, then HK �K holds. Hence by Corollary 2.6(ii), we have X .H;K/D∅. �
If, in particular, all the subgroups of G are normal (such finite groups are called Dedekind groups),

then the second assertion of Corollary 2.7 can apply. Dedekind classified such groups: they are of the
form Q8 �A where A is an abelian group whose 2-Sylow subgroup is elementary. Other than Dedekind
groups, nonabelian groups whose CM subgroups with respect to some central involution are all normal
include the generalized quaternion groups Q2n and many others.
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Corollary 2.8. For all H;K 2H and all x; y 2G, we have

jX .H;K/j D jX .Hx; Ky/j:

Proof. If ".H;K/D 1, then there is a double coset decomposition of G by H and K given by (2-4). By
Lemma 2.2(iv), there also exists a double coset decomposition by H and Kx for all x 2G. In fact, it is
given by

G DGx�1 DHx1x
�1Kx t � � � tHxrx

�1Kx tH�x1x
�1Kx t � � � tH�xrx

�1Kx :

In particular, we have jX�.H;K/j D jX�.H;Kx/j. The corollary now follows from Corollary 2.5. �

3. Simple CM-types and reflex CM-types

LetH 2H . In this section, we enumerate simple CM-types in CM.G;H; �/ and CM-types in CM.G;H; �/
whose reflex subgroup coincides with given K 2H . Although these sets are unions of some X .H 0; K 0/’s
in Section 2, we can obtain simpler formulas than that can be derived from Theorem 2.4. These formulas
will be required to compute the number of conjugacy classes in Section 4.

For that purpose, we define

S .H/D fS 2 CM.G; 1; �/ j s.S/DH g; (3-1)

S�.H/D fS 2 CM.G; 1; �/ j s.S/�H g; (3-2)

R.H/D fS 2 CM.G; 1; �/ j r.S/DH g; (3-3)

R�.H/D fS 2 CM.G; 1; �/ j r.S/�H g; (3-4)

where s.S/ and r.S/ are defined by (1-2) and (1-3), respectively.
The set S .H/ consists of the pullbacks of the simple CM-types of CM.G;H; �/, while S�.H/ is

the set of the pullbacks of CM.G;H; �/.

Proposition 3.1. The number of the simple CM-types in CM.G;H; �/ is given by

jS .H/j D
X

N2H�.H/

�.H;N /2
1
2
jNnGj:

Proof. The following equality obviously holds by definition:

S�.H/D
G

N2H�.H/

S .N /:

The cardinality of S�.H/ is given by

jS�.H/j D j�
�1
H .CM.G;H; �//j D jCM.G;H; �/j D 2

1
2
jHnGj:

Hence simple Möbius inversion implies our result. �

Corollary 3.2. The cardinality of R.H/ is the same as that of S .H/:

jR.H/j D
X

N2H�.H/

�.H;N /2
1
2
jNnGj:
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Proof. By the definitions (3-1) and (3-3), it is easy to see that

S .H/D
G
K2H

X .H;K/ and R.H/D
G
K2H

X .K;H/:

From Corollary 2.5, the result follows. �

Let H;K 2H . We next count the number of CM-types in CM.G;H; �/ whose reflex subgroup is K,
namely the cardinality of the set

�H .S�.H/\R.K//D fS 2 CM.G;H; �/ j r.S/DKg:

Proposition 3.3. We have the following formula:

j�H .S�.H/\R.K//j D
X

N2H�.K/

".H;N /�.K;N /2
1
2
jHnG=N j:

Proof. In the right-hand side of (2-3), we seeG
H12H�.H/

X .H1; K1/D fS 2 CM.G; 1; �/ j s.S/�H and r.S/DK1g

DS�.H/\R.K1/

and thus
X�.H;K/D

G
K12H�.K/

S�.H/\R.K1/:

Möbius inversion implies

jS�.H/\R.K/j D
X

K12H�.K/

�.K;K1/jX�.H;K1/j:

By Lemma 2.2(ii), the function ".H;N / is compatible with the poset structure of H�.K/, and we obtain
the proposition using Lemma 2.3. �

Corollary 3.4. We have jS .H/\R�.K/j D jS�.K/\R.H/j.

Proof. By Corollary 2.5, we see that

jS .H/\R�.K/j D
X

K12H�.K/

jX .H;K1/j D
X

K12H�.K/

jX .K1;H/j D jS�.K/\R.H/j: �

For convenience, we summarize the counting formulas obtained up to this section. We arrange the
members of H in a line so that Hi >Hj implies i > j and we form a matrix X D .jX .H;K/j/H;K2H .
The counting formulas are summarized as follows:

each entry jX .H;K/j Theorem 2.4
a row sum jS .H/j Proposition 3.1
a column sum jR.K/j Corollary 3.2
a row subsum jS .H/\R�.K/j Corollary 3.4
a column subsum jS�.H/\R.K/j Proposition 3.3
a submatrix sum jX�.H;K/j Lemma 2.3
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4. Number of conjugacy classes

In this section, we prove a counting formula for the conjugacy classes in CM.G;H; �/.
Recall that two CM-types S; S 0 2 CM.G;H; �/ are conjugate if there exists g 2G satisfying S 0 D Sg.

Therefore the number of conjugacy classes is the number of the orbits under this group action.

Theorem 4.1. Let G be a finite group and � a central involution of G and H a subgroup of G not
containing �. The number c.G;H; �/ of the conjugacy classes in CM.G;H; �/ is given by

c.G;H; �/D
1

jGj

X
K2H

jKjjS�.H/\R.K/j

D
1

jGj

X
K2H

jKj
X

N2H�.K/

".H;N /�.K;N / 2
1
2
jHnG=N j:

To prove Theorem 4.1, we need the following proposition.

Proposition 4.2. For H;K 2H , the number of conjugacy classes in S�.H/\R.K/ is

jKj

jGj
jS�.H/\R.K/j:

Proof. If g 2G and S 2 CM.G;H; �/, then SgD S holds if and only if g 2 r.S/. Hence the g-invariant
subset of .S�.H/\R.K// is given by

.S�.H/\R.K//g D fS 2S�.H/\R.K/ j S D Sgg

D

�
S�.H/\R.K/ if g 2K;
∅ otherwise:

Thus we obtain

j.S�.H/\R.K//g j D chK.g/jS�.H/\R.K/j;

where

chK.g/D
�
1 if g 2K;
0 otherwise

is the characteristic function of K. From the lemma of Burnside and Frobenius [Aigner 2007, Lemma 6.2]
it follows that the number of the orbits is then given by

1

jGj

X
g2K

chK.g/ jS�.H/\R.K/j D
jKj

jGj
jS�.H/\R.K/j: �

Now we can prove the counting formula for the conjugacy classes.

Proof of Theorem 4.1. If two CM-types S and S 0 are conjugate, then we have r.S/ D r.S 0/ by the
definition of the conjugacy. Thus the decomposition CM.G;H; �/D

F
K2H S�.H/\R.K/ is stable
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under this G-action. Hence we have

c.G;H; �/D
X
K2H

jthe conjugacy classes in S�.H/\R.K/j

D

X
K2H

jKj

jGj
jS�.H/\R.K/j

by Proposition 4.2. This is the first equality of the theorem. The second equality follows readily from
Proposition 3.3. This completes the proof of Theorem 4.1. �

Remark 4.3. By Theorem 4.1, we have

jCM.G;H; �/j D
X
K2H

jS�.H/\R.K/j

D

X
K2H

jGj

jKj
jthe conjugacy classes in S�.H/\R.K/j:

For each K 2H , we see ŒLK WQ�D jGj=jKj, where LK is the reflex field. Hence the sum of ŒLK WQ�
over a representative of the conjugacy classes of CM.G;H; �/ is 2

1
2
jHnGj. This fact was previously

noticed by Dodson [1984, p. 5] and Oishi-Tomiyasu [2010, Lemma 1.4].

5. Construction of degenerate CM-types

For a simple CM-type S 2 CM.G;H; �/, let H 0 D r.S/ be the reflex subgroup. We define a linear map

ˆS W ZŒHnG�! ZŒH 0nG�

by x 7!
P
H 0�2S 0 H

0�x, where S 0 is the reflex CM-type of S . Here we understand that ZŒHnG� is a
free left Z-module on HnG and ZŒH 0nG� is that on H 0nG on which HnG acts from the right. Since
the elements of the form .Hx CHx�/� .Hy CHy�/ with x; y 2 G are contained in the kernel of
ˆS , the rank of ˆS is less than or equal to 1

2
jHnGj C 1. The CM-type S is called nondegenerate if

the rank is maximal, that is, if rankˆS D 1
2
jHnGjC 1 holds; otherwise it is called degenerate. If S is

nondegenerate, then the Hodge conjecture is true for CM abelian varieties with CM-type S, whereas, if
S is degenerate, then exceptional Hodge cycles exist on a self-product of the CM abelian variety. Hence
it is interesting to know how to construct degenerate CM-types. One easy way to construct degenerate
simple CM-types S of .G;H; �/ is to construct CM-types S satisfying jH 0j> jH j, since we know the
rank of ˆS is less than or equal to min

˚
1
2
jHnGjC 1; 1

2
jH 0nGjC 1

	
by [Ribet 1980, (3.5)].

We have the following criteria for such CM-types to exist. The first criterion is obvious from the
definition of X .H;K/ and Corollary 2.5.

Proposition 5.1. If X .H;K/¤∅ for some H;K 2H such that jH j ¤ jKj, then there exists a degen-
erate CM-type in CM.G;H; �/ or CM.G;K; �/.

Although we have a formula for X .H;K/, it is not immediate how to determine whether X .H;K/D∅
or not. Indeed, there is an example of H such that X .H;K/D∅ for all K 2H (see Example 6.2).

The following proposition is sometimes useful.
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Proposition 5.2. Let H 2H . Assume that ".H;K/ D 0 for all K 2H such that jKj D jH j. If there
exists a simple CM-type in CM.G;H; �/, then there exists a degenerate CM-type in CM.G;H; �/.

Proof. By the assumptions and Lemma 2.3, it is impossible to have a double coset decomposition by H
and K like (2-4). If H D 1, then the assumption apparently does not hold and, hence, we may assume
H ¤ 1. Then there exists N 2 H such that jN j ¤ jH j and HN x 63 � for all x 2 G. For example,
we can take N D 1. The double coset decomposition of G by H and N is now of the form (2-4). By
the assumption of the proposition, the order of r.S/ of a simple CM-type S with respect to .G;H; �/
is different from jH j. If jr.S/j < jH j, then replacing H by r.S/, we obtain a CM-type satisfying
jr.S/j> jH j. �

In the next section, we will construct infinite families of pairs of finite groups .G;H/ satisfying the
conditions of Propositions 5.1 and 5.2.

6. Examples

In this section, we use our theorems to give several examples.
The following lemma is useful in explicit computation and interesting in its own right.

Lemma 6.1. If H 2H is a normal subgroup of G such that the quotient G=H is isomorphic to either
the direct product C2 �C2 of cyclic groups of order 2 or the dihedral group D4 of order 8, then we have

S .H/DR.H/D∅:

In particular, every CM abelian variety with CM-types in CM.G;H; �/ splits.

Proof. If H is a normal subgroup, then there is a one-to-one correspondence between CM.G;H; �/ and
CM.G=H; 1; �H/, where the latter � is the image of � under the natural projection. Therefore it suffices
to show that S .1/DH .1/D∅ for G D C2 �C2 or G DD4. For these two groups, the CM subgroups
are of order 1 or 2 and the Hasse diagrams of H are

respectively. By Proposition 3.1, for G D C2 �C2 we have jS .1/j D 22� 2 � 2D 0 and for G DD4 we
have jS .1/j D 24� 4 � 22 D 0 as desired. The claim for R.H/ follows from Corollary 3.2. �

Schappacher [1977] proved that the converse of Lemma 6.1 also holds.

Example 6.2 (cyclic group C2p). Let p be an odd prime number and GDC2p a cyclic group of order 2p
generated by x. The element �Dxp is a unique central involution inG and we have H Dfhx2i; 1g. Since
all subgroups of G are normal in G, it follows from Corollary 2.7 that if H ¤K, then X .H;K/D∅.
We have to compute only jX .1; 1/j and jX .hx2i; hx2i/j. The Möbius function on H is computed as

�.1; 1/D 1; �.1; hx2i/D�1 and �.hx2i; hx2i/D 0:

By Theorem 2.4, we have

jX .1; 1/j D �.1; 1/22pC 2�.1; 1/�.1; hx2i/2C�.1; hx2i/22D 2p � 2;

jX .hx2i; hx2i/j D �.hx2i; hx2i/2D 2:
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The number of conjugacy classes can be computed by Theorem 4.1 and, in this case, it is convenient
to use

c.G;H; �/D
1

jGj

X
K2H

jKjjS�.H/\R.K/j D
1

jGj

X
K2H

X
H12H�.H/

jKjjX .H1; K/j;

and we have

c.G; hx2i; �/D 1; c.G; 1; �/D
2p�1� 1

p
C 1:

The first term of the right-hand side of the second expression is an integer by Fermat’s theorem. In
particular, the situation discussed in Section 5 does not occur.

CM-fields over Q with Galois group C2p can be constructed easily as follows: We choose a prime num-
ber q such that p k .q� 1/. Then the q-th cyclotomic field contains a unique totally real cyclic extension
M of degree p over Q. The composite field of M with an imaginary quadratic field gives a desired field.

Example 6.3 (dihedral group D2p). Again let p be an odd prime number. We consider the dihedral
group G DD2p of order 4p, which has a presentation

D2p D hs; t j s
2
D 1; t2p D 1; sts D t2p�1i:

A unique central involution in D2p is � D tp. The members of H are: two nonconjugate subgroups
H1 D hsti, H10 D hst2i of order 2 whose lengths are p and two normal subgroups H2 D hst; t2i,
H2
0
D hst2; t2i of order 2p and one normal subgroup H2\H20 D ht2i of order p. The conjugates of

H1 and H10 are, respectively, H t i

1 and H10t
i

.i D 0; 1; : : : ; p � 1/. The Hasse diagram of H modulo
the conjugacy is

H2 H2
0

H2\H2
0

H1 H1
0

1

Since H1.H10/t
1
2

.pC1/

3 st � t
1
2
.pC1/st2t�

1
2
.pC1/

D tp D �, we have the following table of "D "H :

HnK 1 H1 H 01 H2\H
0
2 H2 H 02

1 1 1 1 1 1 1

H1 1 1 0 1 1 0

H 01 1 0 1 1 0 1

H2\H
0
2 1 1 1 1 1 1

H2 1 1 0 1 1 0

H 02 1 0 1 1 0 1
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The Möbius function �.H;K/ on H can be computed by the definition (1-5) by noting that both H1
and H2 have p conjugate groups:

HnK 1 H1 H 01 H2\H
0
2 H2 H 02

1 1 �1 �1 �1 p p

H1 0 1 0 0 �1 0

H 01 0 0 1 0 0 �1

H2\H
0
2 0 0 0 1 �1 �1

H2 0 0 0 0 1 0

H 02 0 0 0 0 0 1

If N 2H is normal in G, then jH1nG=N j D jH1NnGj, and hence, we have only to compute a double
coset decomposition of G by H1 and H1:

G DH1H1 tH1tH1 t � � � tH1t
pH1:

This yields jH1nG=H1j D pC 1.
To compute jX .1;H1/j, it is convenient to use Proposition 3.3. Since H2 is normal in G, we have

X .1;H2/D∅ by Corollary 2.6. Therefore we obtain

S .1/\R�.H1/D
G

K2H�.H1/

X .1;K/DX .1;H1/tX .1;H2/DX .1;H1/:

Using Corollary 3.4 and Proposition 3.3, we compute

jX .1;H1/j

D jS .1/\R�.H1/jD jS�.H1/\R.1/j

D

X
N2H�.1/

".H1;N /�.1;N /2
1
2
jH1nG=N j

D�.1;1/2
1
2
jH1nGjCp�.1;H1/2

1
2
jH1nG=H1jC�.1;H2\H

0
2/2

1
2
jH1nG=H2\H

0
2jC�.1;H2/2

1
2
jH1nG=H2j

D 2p�p2
1
2
.pC1/

C2p�2:

This quantity is positive if p � 7. By Proposition 5.1, CM-types contained in this set are simple and
degenerate. It is interesting to note that

lim
p!1

jX .1;H1/j

jCM.D2p; 1; �/j
D 0:

We also compute X .H2\H
0
2; K/ for allK 2H . LetH DH2\H 02 for short. SinceH is normal inG,

we have X .H;K/D∅ for K D 1;H1;H2 by Corollary 2.6 and this also holds for K DH2 and H 02 if
we combine Corollaries 2.5 and 2.6. Thus only X .H;H/ remains. On the other hand, since G=H ŠD4,
we have S .H/D∅ by Lemma 6.1 and, thus, X .H;H/ must be empty. Hence X .H2\H

0
2; K/D∅

holds for all K 2H .

Example 6.4 (semidirect product C2k Ì C2). Let k be an integer greater than or equal to 3. In this
example, we consider semidirect products C2k ÌC2, where C2 D hsi acts on C2k D hti by sts D tu. In
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this situation, u is one of �1, 2k�1˙ 1. If uD�1, then C2k ÌC2 'D2k and if uD 2k�1C 1, then the
group is isomorphic to the semidihedral group SD2kC1 and if uD 2k�1� 1, then the group is called the
modular maximal-cyclic group and we denote it by M2kC1 . A unique central involution of these groups
is �D t2

k�1

. The CM subgroup posets are

H .D2k /D fH1 D hsti; H2 D hst
2
ig;

H .SD2kC1/D fH3 D hsig;

H .M2kC1/D fH4 D hsig:

The lengths ofH1,H2, andH3 are 2k�1 and that ofH4 is 2. SinceH1H t2
k�2

1 3 st t2
k�2

st t�2
k�2

D �, we
have ".H1;H1/D 0. Similarly H2H t2

k�2

2 , H3H t�1

3 , and H4H t
4 contain � and we conclude

".Hi ;Hi /D 0 .i D 1; 2; 3; 4/: (6-1)

Hence, in particular, SD2kC1 and M2kC1 satisfy the assumption in Proposition 5.2. On the other hand,
we have

D2k D

2k�2G
iD1

.H1t
iH2 tH1ti�H2/ (6-2)

and ".H1;H2/D 1.
We compute jX .1;Hi /j by computing jS�.Hi /\R.1/j as in Example 6.3.
For H1 and H2, using (6-1) we have

jX .1;Hi /j D
X

N2H�.1/

".Hi ; N /�.1;N /2
1
2
jHinD2k =N j

D ".Hi ; 1/�.1; 1/2
1
2
jHinGjC

X
x

".Hi ;H
x
j /�.1;H

x
j /2

1
2
jHinD2k =Hj j;

where i; j 2 f1; 2g and i ¤ j and the last summation is taken over a transversal of NG.Hj /nD2k . From
Lemma 2.2(iv) and (6-2) it follows

jX .1;Hi /j D 2
2k�1

� 2k�122
k�2

D 22
k�1

� 22
k�2CkC1 .i D 1; 2/;

which is positive if k is greater than 3.
For H3 and H4, computation is simpler. In fact, we have

jX .1;Hi /j D ".Hi ; 1/�.1; 1/2
1
2
jHinGj D 22

k�1

;

where G is either SD2kC1 or M2kC1 .

Example 6.5 (wreath product C2 o Cd ). Let H be a CM-subgroup of G and S 2 CM.G;H; �/. It is
generally known that

2 log2 jHnGj � jr.S/nGj � 2
1
2
jHnGj

and that there exists a CM-type S such that jr.S/nGj D 2
1
2
jHnGj holds (see [Ribet 1980, (3.2)]). In this

example, we explicitly construct such CM-types when 1
2
jHnGj is odd.
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Let d be an odd integer. We consider the wreath product G D C2 oCd , where Cd acts on d copies of
C2 by permutation. Hence the order of G is 2dd . The group G has a presentation

G D hc1; : : : ; cd ; r j c
2
1 D � � � c

2
d D r

d
D 1; rcir

�1
D ciC1 .i D 1; : : : ; d /i;

where the index i is understood modulo d . It is easy to show that �D c1 � � � cg is a central involution (in
fact, a unique central involution). We consider the two subgroups of G

H D hc2; c3; : : : ; cd i; K D hri:

They are obviously CM-subgroups of G with respect to � and we see jH j D 2d�1 and jKj D d and
hence jKnGj D 2d D 2

1
2
jHnGj holds. We shall show X .H;K/D 2.

We first show that H is a maximal CM-subgroup. Suppose that H 0 is a CM-subgroup such that
H 0 � H. If jH 0j is a power of 2, then jH 0j D 2d and H 0 is a 2-Sylow subgroup of G. On the other
hand, we know that C D hc1; : : : ; cgi is a 2-Sylow group, which is normal in G. We thus conclude that
H 0 D C and � 2H 0. This is a contradiction. Therefore there exists an odd prime p dividing jH 0j and,
by Cauchy’s theorem, there exists an element x 2 H 0 of order p. We can write x D crk with c 2 H
and an integer d > k � 1. We then have xc1x�1 D crkc1r�kc�1 D cckC1c�1 2H. Here we note that
ckC1 ¤ c1. This implies c1 2 x�1Hx �H 0 and then � 2H 0 and we again get a contradiction. Thus we
have proved that H is a maximal CM-subgroup and therefore, we have

X .H;K/DS .H/\R.K/DS�.H/\R.K/:

We use Proposition 3.3 to enumerate this.
To this end, we have to consider the groups N in H�.K/ and compute jHnG=N j. We note that the

cardinality jHxKj of every double coset of G by H and N is divisible by both jH j and jKj and therefore
we have jHxKj D 2d�1d or 2dd .

We begin with the case N DK. Let c 2H and rk 2K and suppose that the order of crk 2HK is 2.
If we write rkcr�k D c0 2 C , then we have crkcrk D cc0r2k D 1. This implies 2k � 0 .mod d/. We
conclude that every element of order 2 in HK is contained in H. In particular, we obtain � 62HK and
the double coset decomposition G DHK tH�K.

Next we consider H�.K/ 3 N � K. There exists c 2 N of order 2, which is a product of some of
c2; : : : ; cg . Since N is a subgroup, N also contains rkcr�k for 0� k < d . At least one of the elements
rkcr�k contains c1 as a cycle factor. This implies � 2HN and we have G DHN.

Now it follows from Proposition 3.3 that

X .H;K/D
X

N2H�.K/

".H;N /�.K;N /2
1
2
jHnG=N j

D 2
1
2
jHnG=Kj

D 2

as desired.

The groups considered in Examples 6.3, 6.4, and 6.5 are all solvable groups. Thus the existence of
CM-fields with Galois group isomorphic to these groups is guaranteed by Dodson’s theorem [1986, Theo-
rem 1.4]. Many explicit examples with small order are found in the database http://galoisdb.math.upb.de/.
In particular, C2 oCd -extensions are constructed by starting from a totally real Cd -extension and using
a construction explained in [Shimura 1970, 1.10].

http://galoisdb.math.upb.de/
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