
2019
vol. 8 no. 4

On polynomial-time solvable linear Diophantine problems

Iskander Aliev





msp
Moscow Journal of Combinatorics and Number Theory

Vol. 8, No. 4, 2019

dx.doi.org/10.2140/moscow.2019.8.357

On polynomial-time solvable linear Diophantine problems

Iskander Aliev

We obtain a polynomial-time algorithm that, given input (A, b), where A = (B | N ) ∈ Zm×n, m < n,
with nonsingular B ∈ Zm×m and b ∈ Zm, finds a nonnegative integer solution to the system Ax = b
or determines that no such solution exists, provided that b is located sufficiently “deep” in the cone
generated by the columns of B. This result improves on some of the previously known conditions that
guarantee polynomial-time solvability of linear Diophantine problems.

1. Introduction and statement of results

Consider the linear Diophantine problem:

Given (A, b),where A ∈ Zm×n, m < n, rank(A)= m and b ∈ Zm,

find a nonnegative integer solution to the system Ax = b
or determine that no such solution exists.

(1-1)

The problem (1-1) is referred to as the multidimensional knapsack problem and is NP-hard already for
m = 1; see [Papadimitriou and Steiglitz 1982, Section 15.7].

Let v1, . . . , vn ∈ Zm be the columns of the matrix A and let

CA = {λ1v1+ · · ·+ λnvn : λ1, . . . , λn ≥ 0}

be the cone generated by v1, . . . , vn . In this paper, we are interested in the problem of determining
subsets S ⊂ CA such that (1-1) is solvable in polynomial time provided b ∈ S. We will use the general
approach of [Gomory 1969], which was originally applied to study asymptotic integer programs, and
combine it with results from discrete geometry.

We may assume, without loss of generality, that the matrix A is partitioned as

A = (B | N ),

where B ∈ Zm×m is nonsingular and N ∈ Zm×(n−m). In what follows, we will denote by lB and lN the
Euclidean lengths of the longest columns in the matrices B and N, respectively.

Let CB ⊂ CA be the cone generated by the columns of the matrix B. The main result of this paper
shows that (1-1) is solvable in polynomial time when the right-hand-side vector b is located deep enough
in the cone CB .

Let CB(t) ⊂ CB denote the affine cone of points in CB at Euclidean distance ≥ t from the boundary
of CB . We will denote by gcd(A) the greatest common divisor of all m×m subdeterminants of A.

MSC2010: primary 11D04, 90C10; secondary 11H06.
Keywords: multidimensional knapsack problem, polynomial-time algorithms, asymptotic integer programming, lattice points,

Frobenius numbers.

357

http://msp.org
http://msp.org/moscow
http://dx.doi.org/10.2140/moscow.2019.8-4
http://dx.doi.org/10.2140/moscow.2019.8.357


358 ISKANDER ALIEV

Theorem 1.1. There exists a polynomial-time algorithm which, given input (A, b), where A = (B | N ) ∈
Zm×n, with nonsingular B ∈ Zm×m, and

b ∈ Zm
∩ CB

(
lN

(
|det(B)|
gcd(A)

− 1
))
, (1-2)

finds a nonnegative integer solution to the system Ax = b or determines that no such solution exists.

We will now consider a special case where the matrix A satisfies the following conditions:

(i) gcd(A)= 1,

(ii) {x ∈ Rn
≥0 : Ax=0} = {0}.

(1-3)

Notice that condition (i) in (1-3) guarantees that the system Ax = b has an integer solution for each
b ∈ Zm ; see [Schrijver 1986, Corollary 4.1(c)]. The condition (ii) in (1-3) guarantees that the polyhedron
{x ∈ Rn

≥0 : Ax = b} is bounded.
When m = 1 in the setting (1-3), the problem (1-1) is linked to the well-known Frobenius problem; see

[Ramírez Alfonsín 2005]. By condition (i) in (1-3), we have gcd(a11, . . . , a1n)= 1 and by (ii) we may
assume that the entries of A are positive. For such A the largest integer b such that (1-1) is infeasible
is called the Frobenius number associated with A, denoted by F(A). It is an interesting question to
determine whether there exists a polynomial-time algorithm that solves (1-1) provided that

b > F(A);

see Conjecture 1.1 in [Aliev and Henk 2012].
The best known result in this direction is due to [Brimkov 1989]; see also [Aliev and Henk 2012;

Brimkov 1988; Brimkov and Barneva 2001]. Specifically, set

f1 = a11, fi = gcd(a11, . . . , a1i ), i ∈ {2, . . . , n}. (1-4)

A classical upper bound of [Brauer 1942] for the Frobenius numbers states that

F(A)≤ G(A) := a12
f1

f2
+ · · ·+ a1n

fn−1

fn
−

n∑
i=1

a1i . (1-5)

Brauer [1942] and, subsequently, Brauer and Seelbinder [1954] proved that the bound (1-5) is sharp and
obtained a necessary and sufficient condition for the equality F(A) = G(A). Brimkov [1989] gave a
polynomial-time algorithm that solves (1-1) provided that

b > G(A). (1-6)

We will show that an algorithm obtained in the proof of Theorem 1.1 matches the bound (1-6).

Corollary 1.2. There exists a polynomial-time algorithm which, given input (A, b), where A ∈ Z1×n
>0

satisfies (1-3) and b ∈ Z satisfies
b > G(A),

computes a nonnegative integer solution to the equation Ax = b.



ON POLYNOMIAL-TIME SOLVABLE LINEAR DIOPHANTINE PROBLEMS 359

Recall that the Minkowski sum X+Y of the sets X, Y ⊂Rm consists of all points x+ y with x ∈ X and
y ∈ Y. For m ≥ 2, Aliev and Henk [2012] considered the problem of estimating the minimal t = t (A)≥ 0
such that the problem (1-1) is solvable in polynomial time provided that A satisfies (1-3) and

b ∈ Zm
∩ (tv+ CA),

where v = v1+ · · ·+ vn is the sum of columns of A.
Theorem 1.1 in [Aliev and Henk 2012] gives the bound

t ≤ 2(n−m)/2−1 p(m, n)(det(AAT ))1/2, (1-7)
where

p(m, n)= 2−1/2(n−m)1/2n1/2.

Furthermore, Theorem 1.2 in [Aliev and Henk 2012] shows that the exponential factor 2(n−m)/2−1 in
(1-7) is redundant for matrices with

det(AAT ) >
(n−m)22(n−m−2)γ n−m

n−m

n2 . (1-8)

Here γk is the k-dimensional Hermite constant, for which we refer to [Martinet 2003, Definition 2.2.5].
Let us now consider the case m = 2. Condition (1-3)(ii) implies that the cone CA is pointed. Thus we

may assume without loss of generality that A = (B | N ) with CB = CA. The last result of this paper gives
an estimate on the function t (A) that is independent on the dimension n and allows a refinement of (1-7)
when the ratio lBlN/|det(B)| is relatively small.

Corollary 1.3. There exists a polynomial-time algorithm which, given input (A, b), where A = (B | N ) ∈
Z2×n, B ∈ Z2×2 is nonsingular with CB = CA, A satisfies (1-3) and

b ∈ Z2
∩

(
lBlN

|det(B)|

(
|det(B)| − 1

)
v+ CA

)
, (1-9)

computes a nonnegative integer solution to the system Ax = b.

Noticing that |det(B)|≤(det(AAT ))1/2, condition (1-9) improves on (1-7) provided that lBlN/|det(B)|≤
2(n−m)/2−1 p(m, n). For matrices A satisfying (1-8) an improvement occurs when lBlN/|det(B)| ≤
p(m, n).

2. Tools from discrete geometry

For linearly independent b1, . . . , bk in Rd, the set 3 =
{∑k

i=1 λi bi : λi ∈ Z
}

is a k-dimensional lattice
with basis b1, . . . , bk and determinant det(3)= (det(bi · bj )1≤i, j≤k)

1/2, where bi · bj is the standard inner
product of the basis vectors bi and bj . For a lattice 3⊂ Rd and y ∈ Rd, the set y+3 is an affine lattice
with determinant det(3).

Let3 be a lattice in Rd with basis b1, . . . , bd and let b̂i be the vectors obtained from the Gram–Schmidt
orthogonalisation of b1, . . . , bd :

b̂1 = b1, b̂i = bi −

i−1∑
j=1

µi, j b̂j , j ∈ {2, . . . , d}, (2-1)

where µi, j = (bi · b̂j )/|b̂j |
2.
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We will associate with the basis b1, . . . , bd of 3 the box

B̂(b1, . . . , bd)= [0, b̂1)×[0, b̂2)× · · ·× [0, b̂d).

Lemma 2.1. There exists a polynomial-time algorithm that, given a basis b1, . . . , bd of a d-dimensional
lattice 3⊂Qd and a point x in Qd, finds a point y ∈3 such that x ∈ y+ B̂(b1, . . . , bd).

A proof of Lemma 2.1 is implicitly contained, for instance, in the description of the classical nearest-
plane procedure of [Babai 1986]. For completeness, we include a proof that follows along an argument
of the proof of Theorem 5.3.26 in [Grötschel et al. 1988].

Proof. Let x be any point of Qd. We need to find a point y ∈3 such that

x− y =
d∑

i=1

λi b̂i , λi ∈ [0, 1), i ∈ {1, . . . , d}. (2-2)

This can be achieved using the following procedure. First, we find the rational numbers λ0
i , i ∈ {1, . . . , d},

such that

x =
d∑

i=1

λ0
i b̂i .

This can be done in polynomial time by Theorem 3.3 in [Schrijver 1986]. Then we subtract bλ0
dcbd to

get a representation

x−bλ0
dcbd =

d∑
i=1

λ1
i b̂i ,

where λ1
d ∈ [0, 1). Next subtract bλ1

d−1cbd−1 and so on until we obtain the representation (2-2). �

Let now 3 be a d-dimensional sublattice of Zd. By Theorem I(A) and Corollary 1 in Chapter I of
[Cassels 1959], there exists a unique basis g1, . . . , gd of the sublattice 3 of the form

g1 = v11e1,

g2 = v21e1+ v22e2,
...

gd = vd1e1+ · · ·+ vdd ed ,

(2-3)

where ei are the standard basis vectors of Zd and the coefficients vi j satisfy the conditions vi j ∈Z, vi i > 0
for i ∈ {1, . . . , d} and 0≤ vi j < v j j for i, j ∈ {1, . . . , d}, i > j .

Lemma 2.2. There exists a polynomial-time algorithm that, given a basis b1, . . . , bd of a lattice 3⊂ Zd,
finds the basis of 3 of the form (2-3).

Proof. Let V = (vi j ) ∈ Zd×d be the matrix formed by the coefficients vi j in (2-3) with vi j = 0 for j > i .
Observe that after a straightforward renumbering of the rows and columns of V we obtain a matrix in
the row-style Hermite normal form. Now it is sufficient to notice that the Hermite normal form can be
computed in polynomial time using an algorithm of [Kannan and Bachem 1979]. �
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The Gram–Schmidt orthogonalisation (2-1) of the basis (2-3) of 3 has the form ĝ1 = v11e1, . . . , ĝd =

vdd ed . Therefore, noticing that the basis (2-3) is unique, we can associate with 3 the box

B(3)= B̂(g1, . . . , gd)= [0, v11)×[0, v22)× · · ·× [0, vdd).

Lemma 2.3. For any w = (w1, . . . , wd)
T
∈ B(3)∩Zd we have

d∏
i=1

(1+wi )≤ det(3).

Proof. It is sufficient to notice that by (2-3) det(3)= v11 · · · vdd . �

3. Proof of Theorem 1.1

Given A ∈ Zm×n and b ∈ Zm, we will denote by 0(A, b) the set of integer points in the affine subspace

S(A, b)= {x ∈ Rn
: Ax = b},

that is
0(A, b)= S(A, b)∩Zn.

The set 0(A, b) is either empty or is an affine lattice of the form 0(A, b) = r +0(A), where r is any
integer vector with Ar = b and 0(A)= 0(A, 0) is the lattice formed by all integer points in the kernel of
the matrix A. We will call the system Ax = b integer feasible if it has integer solutions or, equivalently,
0(A, b) 6=∅. Otherwise the system is called integer infeasible.

Let π denote the projection map from Rn to Rn−m that forgets the first m coordinates. Recall that
Theorem 1.1 applies to A = (B | N ), where B is nonsingular. It follows that the restricted map π |S(A,b) :
S(A, b)→ Rn−m is bijective. Specifically, for any w ∈ Rn−m we have

π |−1
S(A,b)(w)=

(
u
w

)
, with u = B−1(b− Nw).

For technical reasons, it is convenient to consider the projected set 3(A, b) = π(0(A, b)) and the
projected lattice 3(A)= π(0(A)). Since the map π |S(A,0) is bijective, we obtain the following lemma.

Lemma 3.1. Let g1, . . . , gn−m be a basis of 0(A). The vectors b1 = π(g1), . . . , bn−m = π(gn−m) form
a basis of the lattice 3(A).

Using notation of Lemma 3.1, let G ∈ Zn×(n−m) be the matrix with columns g1, . . . , gn−m . We will
denote by F the (n−m)× (n−m)-submatrix of G consisting of the last n−m rows; hence, the columns
of F are b1, . . . , bn−m . Then det(3(A))= |det(F)|. The rows of the matrix A span the m-dimensional
rational subspace of Rn orthogonal to the (n−m)-dimensional rational subspace spanned by the columns
of G. Therefore, by Lemma 5G and Corollary 5I in [Schmidt 1991], we have |det(F)| = |det(B)|/ gcd(A)
and, consequently,

det(3(A))=
|det(B)|
gcd(A)

. (3-1)

Consider the following algorithm.
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Algorithm 1. Input: (A, b), where A= (B | N ) ∈ Zm×n, m < n, with nonsingular B ∈ Zm×m and b∈ Zm.

Output: Solution x ∈ Zn to an integer feasible system Ax = b.

Step 0: If 0(A, b)=∅ then the system Ax = b is integer infeasible. Stop.

Step 1: Compute a point z of the affine lattice 3(A, b).

Step 2: Find a point y ∈3(A) such that z ∈ y+B(3(A)).

Step 3: Set w = z− y and output the vector

x =
(

u
w

)
, with u = B−1(b− Nw). (3-2)

Note that Algorithm 1 will be also used in the proof of Corollary 1.2, where the condition (1-2) is
replaced by its refinement (1-6). For this reason, we do not require that the input of the algorithm satisfies
(1-2) and, as a consequence, the algorithm outputs a certain integer, but not necessarily nonnegative,
solution to an integer feasible system Ax = b or detects integer infeasibility.

To complete the proof of Theorem 1.1, it is sufficient to show that Algorithm 1 is polynomial-time
and that this algorithm computes a nonnegative integer solution to any integer feasible system Ax = b
that satisfies its input conditions together with (1-2).

Let us show that all steps of Algorithm 1 can be computed in polynomial time. By Corollaries 5.3(b,c)
in [Schrijver 1986] we can compute in polynomial time integer vectors r, g1, . . . , gn−m such that

0(A, b)= r +
n−m∑
i=1

λi gi , λi ∈ Z, i ∈ {1, . . . , n−m}, (3-3)

or determine that 0(A, b) is empty. This settles Steps 0 and 1. Further, the vectors g1, . . . , gn−m in (3-3)
form a basis of the lattice 0(A). In Step 2 we first find the projected vectors b1 = π(g1), . . . , bn−m =

π(gn−m) that form a basis of the lattice 3(A) by Lemma 3.1. Then the point y can be computed
in polynomial time using Lemmas 2.2 and 2.1. Finally, the lifted point x in Step 3 is computed in
polynomial time by a straightforward calculation (3-2).

We will now show that Algorithm 1 computes a nonnegative integer solution to any integer feasible
system Ax = b with (A, b) satisfying its input conditions together with (1-2). By Step 0, we may
assume that 0(A, b) 6= ∅ and hence at Step 1 we can find a point z ∈3(A, b). At Step 2 we can find
a point y ∈ 3(A) with z ∈ y+ B(3(A)) by Lemma 2.1. Hence, the point w = z − y at Step 3 is a
nonnegative point of the affine lattice 3(A, b). Further, since w ∈3(A, b) and π |S(A,b) is bijective, the
point x = π |−1

S(A,b)(w) is integer. Summarising, we have

x =
(

u
w

)
∈ S(A, b)∩Zn and π(x)= w ≥ 0. (3-4)

It is now sufficient to show that u ≥ 0.
Observe that, by construction, w ∈ B(3(A)). Hence, Lemma 2.3, applied to w and 3=3(A), implies

n−m∏
i=1

(1+wi )≤ det(3(A)). (3-5)
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Expanding the product in (3-5) gives
n−m∑
i=1

wi ≤ det(3(A))− 1.

Hence, denoting by ‖ · ‖2 the Euclidean norm, we obtain the inequality

‖Nw‖2 ≤ lN

n−m∑
i=1

wi ≤ lN (det(3(A))− 1). (3-6)

By (3-1), b ∈ CB(lN (det(3(A))− 1)) and by (3-6), b− Nw ∈ CB . The cone CB can be written as

CB = { y ∈ Rm
: B−1 y ≥ 0}

and therefore

u = B−1(b− Nw)≥ 0. �

4. Proof of Corollary 1.2

Let A = (a11, . . . , a1n) ∈ Z1×n satisfy (1-3). Then the lattice 3(A) can be written in the form

3(A)= {x ∈ Zn−1
: a12x1+ · · ·+ a1nxn−1 ≡ 0 (mod a11)}.

Note also that det(3(A))= a11 by (3-1).
The next lemma shows that the box B(3(A)) is entirely determined by the parameters fi defined

by (1-4).

Lemma 4.1. The box B = B(3(A)) has the form

B =
[

0,
f1

f2

)
×

[
0,

f2

f3

)
× · · ·×

[
0,

fn−1

fn

)
.

Proof. By the definition of the box B(3(A)), it is sufficient to show that

v11 =
f1

f2
, v22 =

f2

f3
, . . . , vn−1 n−1 =

fn−1

fn
. (4-1)

Let g1, . . . , gn−1 be the basis of the form (2-3) of the lattice 3(A). Let 3i (A) denote the sublattice of
3(A) generated by the first i basis vectors g1, . . . , gi . We can write 3i (A) in the form

3i (A)=
{
(x1, . . . , xi , 0, . . . , 0)T ∈ Zn−1

:
a12

fi+1
x1+ · · ·+

a1i+1

fi+1
xi ≡ 0

(
mod

a11

fi+1

)}
.

Hence, det(3i (A))= a11/ fi+1, i ∈ {1, . . . , n− 1}. On the other hand, (2-3) implies

det(3i (A))= v11v22 · · · vi i , i ∈ {1, . . . , n− 1}.

Since a11 = det(3(A))= v11v22 · · · vn−1 n−1, we have

fi+1 = vi+1 i+1 · · · vn−1 n−1 for i ∈ {1, . . . , n− 2}.

Noticing that f1 = a11 and fn = 1, we obtain (4-1). �
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Suppose that b > G(A). Condition (1-3)(i) implies that the equation Ax = b has integer solutions.
Therefore, it is sufficient to show that the vector x computed by Algorithm 1 is nonnegative. When
m = 1, (3-2) sets x = (u, w1, . . . , wn−1)

T with

u =
b− a12w1− · · ·− a1nwn−1

a11
. (4-2)

Further, (3-4) implies that w = (w1, . . . , wn−1)
T
∈3(A, b) is nonnegative and u ∈ Z.

To see that u ≥ 0, we observe first that the points of the affine lattice 3(A, b) are split into layers of
the form

a12x1+ · · ·+ a1nxn−1 = b+ ka11, k ∈ Z. (4-3)

Suppose, to derive a contradiction, that u < 0. Then, by (4-2),

a12w1+ · · ·+ a1nwn−1 > b. (4-4)

On the other hand, by construction, w ∈ B(3(A)) and hence, using Lemma 4.1 and noticing (1-5),

a12w1+ · · ·+ a1nwn−1 ≤ G(A)+ a11 < b+ a11. (4-5)

Due to (4-3), the bounds (4-4) and (4-5) imply w /∈3(A, b). The obtained contradiction shows that u ≥ 0.

5. Proof of Corollary 1.3

We will show that a nonnegative integer solution to the system Ax= b can be computed using Algorithm 1
from the proof of Theorem 1.1. By condition (1-3)(i), the system Ax = b is integer feasible. Following
the proof of Theorem 1.1, it is sufficient to show that any b that satisfies (1-9) must satisfy (1-2).

Let h denote the distance from the vector v to the boundary of CB . Observe that we can write v =

v1+ v2+ p, where v1, v2 are the columns of B and p ∈ CB . Therefore, we have

h ≥
|det(B)|

lB

and, consequently, the points of the affine cone

lBlN

|det(B)|
(|det(B)| − 1)v+ CA

are at the distance ≥ lN (|det(B)| − 1) to the boundary of CB .
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