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On the domination number of a graph defined by containment

Peter Frankl

Let n > k > 2 be integers. Define a bipartite graph between all k-element and all 2-element subsets of
an n-element set by drawing an edge if and only if the first one contains the second. The domination
number of this graph is determined up to a factor of 1+ o(1). The short proof relies on some extremal
results concerning hypergraphs.

1. Introduction

For a graph G = (V, E) a subset D ⊂ V is called a dominating set if for every vertex x ∈ V \ D there is
an edge E ∈ E satisfying x ∈ E and E ∩ D 6=∅. The domination number %(G) is the minimum of |D|
over all dominating sets.

To determine %(G) for a given graph is very difficult in general. In the present paper we address this
problem for a bipartite graph defined via containments of sets.

For n and k positive integers, with n > k, we denote by [n] = {1, 2, . . . , n} the standard n-element
set and by

(
[n]
k

)
the collection of all k-element subsets of [n]. For integers n > k > ` ≥ 2, we define

the bipartite graph B = Bn(k, `) on the vertex set
(
[n]
k

)
∪
(
[n]
`

)
by drawing an edge between F ∈

(
[n]
k

)
and

G ∈
(
[n]
`

)
if and only if G ⊂ F .

The problem of determining or estimating %(B) was raised in [Badakhshian et al. 2019] by Badakhshian,
Katona and Tuza. They determined %(Bn(3, 2)) up to a factor 1+ o(1), where o(1)→ 0 as n→∞.

In the present paper we extend their work to all k ≥ 3.

Theorem 1.1. %
(
Bn(k, 2)

)
= (1+ o(1))

(
n
2

)
k+ 3
k2− 1

.

To prove the lower bound we use a result from [Erdős et al. 1986] extending the celebrated Ruzsa–
Szemerédi theorem [1978]. To obtain the matching upper bound we apply a probabilistic construction
based on a result of [Frankl and Rödl 1985]. To prove similar results for %

(
Bn(k, `)

)
where `≥ 3 appears

to be much harder (Section 4).

2. Proof of the lower bound

Let k ≥ 3 be fixed and ε > 0 be arbitrarily small. Choose G ⊂
(
[n]
2

)
and F ⊂

(
[n]
k

)
such that F ∪ G is a

dominating set for B = Bn(k, 2). Our aim is to prove

|F | + |G|>
(

n
2

)(
k+ 3
k2− 1

− ε

)
. (1)
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Since k+3
k2−1

≤
3
4

for k ≥ 3, we may assume that

|F | ≤
3
4

(
n
2

)
. (2)

Proposition 2.1. |G|>
1− ε
k− 1

(
n
2

)
for all n > n0(k, ε).

Proof of the proposition. Let m be an integer (later qualified) and consider an m-element set R ⊂ [n]. If
R contains no F ∈ F , then the assumption on domination is equivalent to the fact that G|R := G ∩

(R
2

)
has

no independent set of k vertices. By Turán’s theorem [1941] (or see [Bollobás 1978]), we have∣∣∣∣G ∩(R
2

)∣∣∣∣> (k− 1)
(

m/(k−1)
2

)
=

m(m− k+ 1)
2(k− 1)

>

(
m
2

)
1− ε/2
k− 1

for m > 2k/ε. (3)

We now assume m is large enough that (3) is satisfied. Let us choose the set P ∈
(
[n]
m

)
uniformly at

random.

Claim 2.2. Let n > m3/ε. Then the probability of
(P

k

)
∩F 6=∅ is smaller than ε/2.

Proof. Since each F ∈ F is contained in
(n−k

m−k

)
subsets R ∈

(
[n]
m

)
, (2) implies the upper bound 3

4

(n
2

)(n−k
m−k

)
on the number of R in question. Using k ≥ 3 we obtain the upper bound

3
4

(
n
2

)(
n− 3
m− 3

)
=

(
n
m

)
·

m− 2
n− 2

(
m
2

)
·

3
4
<

(
n
m

)
m3

2n
<
ε

2

(
n
m

)
.

In view of the claim, for n > m3/ε a proportion of more than (1−ε/2) of R ∈
(
[n]
m

)
satisfy (3). Now

(1− ε/2)2 > 1− ε implies the inequality in Proposition 2.1, with n0(k, ε) > (2k/ε)3/ε. �

Let H=
(
[n]
2

)
\G be the graph of those edges H ∈

(
[n]
2

)
that are not in G. Since F ∪G is a dominating

set for B, for each H ∈H there exists some F ∈ F with H ⊂ F . From this we infer

|F | ≥
|H|(k

2

) . (4)

Using (4) together with Proposition 2.1 one can show that

|F | + |G| ≥
1− ε
k− 1

(
n
2

)
+

k− 2+ ε
(k− 1)

(n
2

)(k
2

)
which is slightly weaker than (1). To prove (1), we would need (4) with

(k
2

)
− 1 in the denominator.

Our strategy is relatively simple. We try and list (some of) the edges of F : F1, F2, . . . , Fq such that(F1
2

)
∩ G 6= ∅, then

(F2
2

)
∩
(
G ∪

(F1
2

))
6= ∅, etc. That is, we choose sequentially Fi , 1 ≤ i ≤ q, so that(Fi

2

)
∩ G 6= ∅ or |F j ∩ Fi | ≥ 2 for some 1 ≤ j < i . For each Fi let E(Fi ) consist of those E ∈ H that

E /∈ F j for 1≤ j < i . From the construction it follows that∣∣E(Fi )
∣∣≤ (k

2

)
− 1 for all 1≤ i ≤ q. (5)
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Should F = {F1, . . . , Fq} hold, (1) would follow. In the opposite case set F0 = {F1, . . . , Fq} and
H0 =

((F1
2

)
∪ . . .∪

(Fq
2

))
\G.

Choosing q maximal,
(F

2

)
∩G =∅ and |F ∩ Fi | ≤ 1 follow for F ∈ F \F0, 1≤ i ≤ q .

We define F1 = {F1, . . . , Fq1} similarly. We choose F1 ∈ F \F0 arbitrarily and once F1, . . . , Fs−1 ∈

F \F0 are fixed, we choose an arbitrary Fs ∈ F \F0 from the rest, satisfying |Fi ∩ Fs | ≥ 2 for some
1≤ j < s. Now let F1 be a maximal collection obtained in this way. This choice guarantees |F ∩ F ′| ≤ 1
for all F ∈ F \ (F0 ∪F1), F ′ ∈ F1.

Set H1 =
⋃

F∈F1

(F
2

)
. Our procedure guarantees

|H1| ≤ 1+ |F1|

((
k
2

)
− 1

)
. (6)

We iterate this procedure. Once F1, . . . ,Fp and thereby Hi =
⋃

F∈Fi

(F
2

)
, 1≤ i ≤ p are chosen we have

|F ∩ F ′| ≤ 1 for all F ∈ G ∪F0 ∪ . . .∪Fp and F ′ ∈ F \ (F0 ∪ . . .∪Fp).

As long as there are sets remaining in F we can define Fp+1 and Hp+1 in the above way.
Eventually we obtain a partition,

F = F0 t . . .tFt

such that

H0 t . . .tHt =

(
[n]
2

)
\G

(here we used that G ∪F is a dominating set). Moreover (6) holds for 1 replaced by i :

|Hi | ≤ 1+ |Fi |

((
k
2

)
− 1

)
, 1≤ i ≤ t. (7)

Since for i = 0 we do not need the extra 1, we infer(
n
2

)
− |G| ≤ t + |F |

((
k
2

)
− 1

)
,

or equivalently

|G| + |F | ≥
(n

2

)(k
2

)
− 1
+ |G|

(k
2

)
− 2(k

2

)
− 1
−

t(k
2

)
− 1

.

Substituting |G|> 1−ε
k−1

(n
2

)
we obtain

|G| + |F |>
(n

2

)(k
2

)
− 1

(
1+

(k
2

)
− 2

k− 1
−

ε

k− 1

)
−

t(k
2

)
− 1

=

(
n
2

)(
k+ 3
k2− 1

−
2ε

(k2− 1)(k− 2)

)
−

t(k
2

)
− 1

.
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To conclude the proof of the lower bound it is clearly more than sufficient to show that t = o
((n

2

))
. To

achieve this we will need the following extension of a celebrated result from [Ruzsa and Szemerédi
1978]:

Theorem 2.3 (Erdős, Frankl, Rödl [Erdős et al. 1986]). Suppose that T ⊂
(
[n]
k

)
satisfies |T ∩ T ′| ≤ 1

for all distinct T, T ′ ∈ T , moreover one cannot find a k-set {x1, . . . , xk} ⊂ [n] and
(k

2

)
distinct members

T (i, j) ∈ T , 1≤ i < j ≤ k, such that {xi , x j } ⊂ T (i, j). Then

|T | = o
((

n
2

))
. (8)

To apply (8) we choose F(i) as an arbitrary member of Fi for 1≤ i ≤ t and define

T = {F(i) : 1≤ i ≤ t}.

The condition |T ∩ T ′| ≤ 1 is automatically satisfied. To prove the second condition we argue indirectly.
Suppose that we found F = {x1, . . . , xk} and

(k
2

)
members T (i, j) ∈ T such that {xi , x j } ⊂ T (i, j).

Since F∪G is a dominating set for B, either F ∈F or G⊂ F for some G ∈G. In the latter case G={xi , x j }

for some 1 ≤ i < j ≤ k. I.e., G ⊂ T (i, j). But this is impossible since we put all such T (i, j) into F0.
Suppose next F ∈ F . Assume by symmetry T (1, 2) ∈ F1, T (1, 3) ∈ F2. From |T (1, `)∩ F | ≥ 2 we infer
F ∈ F`−1 for `= 2, 3. This is impossible because of F1 ∩F2 =∅, giving the desired contradiction. �

3. The proof of the upper bound

We give a probabilistic construction based on the following old result.
Let r ≥ 2 be an integer and consider an r-uniform hypergraph H ⊂

(X
r

)
, where |X | = m. For x ∈ X

let d(x) be the degree of x in H, that is, the number of H ∈H containing x . The double degree d(x, y)
is defined analogously.

The covering index b(H) is defined as the minimal number b such that there exist b edges in H whose
union is equal to X . Obviously, b(H)≥ m/r .

Theorem 3.1 [Frankl and Rödl 1985]. Let β, ε be positive constants, r ≥ 2 fixed. There exists δ =
δ(r, β, ε) such that, for every H⊂

(X
r

)
satisfying

(i)
∣∣d(x)− |H|r/m

∣∣< δ|H|/m or

(ii) d(x, y) < |H|r/m1+β ,

one has b(H) < (1+ ε)m/r .

Now we are ready to explain the construction of a nearly optimal dominating set for Bn(k, 2), k ≥ 3.
(Badakhshian et al. [2019] use the same construction for the case k = 3.)

Let n = p(k−1)+q , 0≤ q < k−1 and let [n] = X1t . . .t Xk−1 be a partition with p ≤ |X i | ≤ p+1.
Let G :=

⋃
1≤i<k

(X i
2

)
be the so-called Turán graph. By the pigeonhole principle, G dominates all k-sets

in Bn(k, 2).
Set r =

(k
2

)
− 1. We define an r-uniform hypergraph H on the partite set

(
[n]
2

)
from Bn(k, 2). Note

that for every k-set F ⊂ [n] satisfying F ∩ X i 6= ∅ for 1 ≤ i < k there is exactly one j = j (F) such
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that |F ∩ X j | = 2. With such an F we associate the r -set H(F)=
(F

2

)
\ {F ∩ X j }. Let H be the r -graph

formed by these H(F). The actual vertex set of H is

X =
(
[n]
2

) ∖ (( X1
2

)
∪ . . .∪

( Xk−1
2

))
;

that is, the number of vertices is m ∼ k−2
k−1

(n
2

)
.

If |X1| = · · · = |Xk−1|, then H is regular but even in the general case it is nearly regular. That is, (i)
holds for m > m(δ).

Since |H| = (k−1+o(1))pk/2 and |H(x, y)|< pk−3, (ii) is satisfied with e.g. β = 1
3 if m >m0(k, β).

Applying Theorem 3.1 we obtain a covering of X which is, say, formed by the edges H(F1), . . . , H(Fb),
b < (1+ ε)m/r .

Let F = {F1, . . . , Fb} be the corresponding family in
(
[n]
k

)
. Then G∪F is a dominating set for Bn(k, 2).

Substituting m = (1+ o(1)) k−2
k−1

(n
2

)
, r =

(k
2

)
− 1, we infer

|G ∪F | ≤
(

n
2

)(
1

k− 1
+

k− 2
k− 1

·
1(k

2

)
− 1
+ ε

)
=

(
n
2

)(
k+ 3
k2− 1

+ ε

)
.

Since ε > 0 was arbitrary, this concludes the proof of the upper bound in Theorem 1.1. �

4. The general problem

Let us say a few words about %
(
Bn(k, `)

)
in the case ` ≥ 3. One would imagine that to find a small

dominating set imitating the strategy used for `= 2 should be the best. However, that means that first we
choose G ⊂

(
[n]
`

)
covering the whole of

(
[n]
k

)
, that is, for every F ∈

(
[n]
k

)
there exists G ∈ G with G ⊂ F .

The problem is that we do not know the minimal size, |G| for such families. It is the famous Turán’s
Problem (cf. [Turán 1961]) which is still open for all pairs (k, `), k > `≥ 3.

At the same time there are some plausible conjectures. For example Turán [Turán 1961] conjectured
that in the case k = 5, `= 3 and n > n0(k, `) the best construction is G =

(X
3

)
∪
(Y

3

)
where X ∪ Y = [n]

is a partition and |X | =
⌊ n

2

⌋
. Using this G one can use the approach of Section 3 and show that

%
(
Bn(5, 3)

)
≤ (1+ o(1))

(
1
4
+

3
4

1(5
3

)
− 1

)(
n
3

)
=

(
1
3
+ o(1)

)(
n
3

)
. (9)

Using the results of [Frankl and Rödl 2002] one can prove the matching lower bound assuming that
Turán’s conjecture is true.

The situation is pretty much the same for other pairs (k, `) whenever the conjectured optimal family
for Turán’s Problem is a “highly regular” `-graph.

Let us close this paper with a conjecture.

Conjecture 4.1. %
(
Bn(2`− 1, `)

)
= (1+ o(1))

(
1

2`−1 +

(
1−

1
2`−1

)/ ((
2`− 1
`

)
− 1

))(
n
3

)
.
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