

Moscow Journal of Combinatorics and Number Theory

2020

vol. 9 no. 1

3

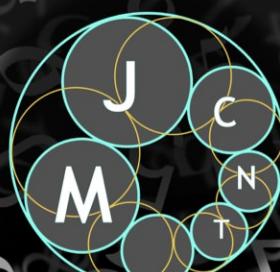
ω

Σ

A convexity criterion for unique ergodicity
of interval exchange transformations

René Rühr

msp



A convexity criterion for unique ergodicity of interval exchange transformations

René Rühr

A criterion for unique ergodicity for points of a curve in the space of interval exchange transformation is given.

There is a metaconjecture in metric number theory that states that any Diophantine property that holds for generic vectors in \mathbb{R}^n should hold for generic vectors on nondegenerate submanifolds; see [Kleinbock 2001, Section 4]. Mahler asked for example whether almost all points on the curve $s \mapsto (s, s^2, \dots, s^d)$ are very well approximable. This has been answered affirmatively by Sprindzuk. It is believed that an analogue of this phenomenon holds also for the unique ergodicity property for interval exchange transformations. Minsky and Weiss [2014] provided a general condition for unique ergodicity to hold. In this note we provide an easy-to-check criterion for their condition to be satisfied.

Let σ denote a permutation of d elements. Let Ω denote the antisymmetric matrix

$$\Omega_{ij} = \begin{cases} 1 & i > j, \sigma(i) < \sigma(j), \\ -1 & i < j, \sigma(i) > \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{R}_+^d$ be a row vector with positive entries $a_i > 0$ and the associated interval be $I_{\mathbf{a}} = [0, \sum a_i]$, which is divided into d subintervals $I_i = [x_{i-1}, x_i]$, where $x_i = \sum_{j \leq i} a_j$ are called discontinuities. Also introduce $x'_i = \sum_{j \leq i} a_{\sigma^{-1}(j)}$. An *interval exchange transformation* $T : I_{\mathbf{a}} \rightarrow I_{\mathbf{a}}$ defined by the data (σ, \mathbf{a}) is the map

$$T(x) = x + (\mathbf{a}\Omega)_j = x - x_j + x'_{\sigma(j)} \quad \text{for } x \in I_j.$$

In words, T permutes the intervals I_j of length a_j according to σ . The form Ω_{ij} captures the exchange of two intervals I_i, I_j relative to each other.

We shall always assume that the permutation σ is irreducible in the sense that if $\{1, \dots, k\} \subset \mathcal{A} = \{1, \dots, d\}$ is invariant under σ then $k = d$.

Masur [1982] and Veech [1982] proved independently that for almost all $\mathbf{a} \in \mathbb{R}_+^d$, the interval exchange transformation T associated to (σ, \mathbf{a}) is uniquely ergodic; that is, the only T -invariant probability measure on I is Lebesgue measure.

Motivated by a conjecture of Mahler in the theory of Diophantine approximation, Minsky and Weiss [2014] proved the following theorem.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 754475).

MSC2010: 28D10.

Keywords: uniquely ergodic interval exchange transformation, translation surface suspension.

Theorem 1 (Minsky–Weiss). *Let $\sigma = (d, \dots, 1)$ and $\mathbf{a}(s) = (s, s^2, \dots, s^d)$. Then for Lebesgue almost all $s > 0$, the interval exchange transformation associated to $(\sigma, \mathbf{a}(s))$ is uniquely ergodic.*

We extend the theorem of Minsky and Weiss to arbitrary permutations by means of a simple convexity criterion.

We first recall the theorem from which Theorem 1 is deduced, which requires us to introduce more definitions. A connection of T is a triple (m, x_i, x_j) for which $T^m(x_i) = x_j$. As noted by Keane, if the coordinates a_k of \mathbf{a} are rationally independent then T has no connections. We shall restrict to curves $\mathbf{a}(s)$ for which this is the case for almost all s . This implies that there are no T -invariant atomic probability measures.

Let $\mathbf{b} = (b_1, \dots, b_d) \in \mathbb{R}^d$ be a row vector, which we will take to be $\mathbf{b} = \dot{\mathbf{a}}$, the derivative of a curve $\mathbf{a}(s)$. Define $y_i = \sum_{j \leq i} b_j$ and $y'_i = \sum_{j \leq i} b_{\sigma^{-1}(j)}$. We put

$$L(x) = (\Omega \mathbf{b}^T)_i = y_i - y'_{\sigma(i)} \quad \text{for } x \in I_i.$$

We call $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^d \times \mathbb{R}^d$ a positive pair if $\mu(L) > 0$ for any T -invariant probability measure μ . The following is a simplified statement of Theorem 6.2 in [Minsky and Weiss 2014].

Theorem 2 (Minsky–Weiss). *If $\mathbf{a} : A \rightarrow \mathbb{R}_+^d$ is a C^2 -curve defined on an interval $A \subset \mathbb{R}$ and σ is a permutation for which $(\mathbf{a}(s), \dot{\mathbf{a}}(s))$ is positive for Lebesgue almost all $s \in A$ then T associated to $(\sigma, \mathbf{a}(s))$ is uniquely ergodic for almost all $s \in A$.*

While the condition seems hard to check—involving all T -invariant μ 's (from which we want to deduce that there is only one!)—we see however that a sufficient criterion for positivity is $L(x) > 0$ pointwise for every $x \in I$.

Let us now explain a suspension construction of Masur for an interval exchange transformation T associated to (σ, \mathbf{a}) . Let $\mathbf{b} \in \mathbb{R}^d$ be a “height vector” (associated to the “length vector” \mathbf{a}) and define ζ_i to be $(a_i, b_i) \in \mathbb{R}^2$ and their slopes to be $\kappa_i = b_i/a_i$.

Let Γ_t be the curve obtained by connecting the points

$$C_0 = C_0^t = (0, 0), \quad C_1^t = \zeta_1, \quad C_2^t = \zeta_1 + \zeta_2, \quad \dots, \quad C_d = C_d^t = \sum_{i=1}^d \zeta_i$$

and Γ_b be the curve obtained by connecting

$$C_0 = C_0^b, \quad C_1^b = \zeta_{\sigma^{-1}(1)}, \quad C_2^b = \zeta_{\sigma^{-1}(1)} + \zeta_{\sigma^{-1}(2)}, \quad \dots, \quad C_d = C_d^b.$$

If ζ_1 lies above $\zeta_{\sigma^{-1}(1)}$, i.e., if $\kappa_1 > \kappa_{\sigma^{-1}(d)}$, then we call Γ_t the top curve and Γ_b the bottom curve. They have common endpoints C_0 and C_d . We denote their union by Γ . If there are no further intersections, Γ bounds a polygon. In this case, we are identifying the line segment $[C_{k-1}^t, C_k^t]$ of Γ_t with segment $[C_{j-1}^b, C_j^b]$ in Γ_b , where $k = \sigma^{-1}(j)$. One obtains a closed topological surface S which outside of the corners of the polygon inherits a flat structure from \mathbb{R}^2 . This means that there is an atlas of charts $\{(U, \psi)\}$ with U open and $\psi : U \rightarrow \mathbb{R}^2$ continuous such that for any two charts $\psi_i : U_i \rightarrow \mathbb{R}^2$ over a common point p , we find a translation $v \in \mathbb{R}^2$ such that $\psi_1 = \psi_2 + v$ for all points around p . It is possible to complement to an atlas defined on all of M by considering the complex multiplication on $\mathbb{R}^2 = \mathbb{C}$ with maps of the form $\psi = \phi^{\alpha+1}$ for a homeomorphism $\phi : U \rightarrow \mathbb{C}$ that contains 0 in its range. The points with $\alpha > 0$ are called the singularities of M .

M is endowed with a dynamical system, the vertical straight line flow that preserves the natural area form coming from the flat metric. We note that the interval I embeds into M as a horizontal line starting from the origin. The vertical straight line flow defines a suspension of the interval exchange transformation T by considering the induced transformation on I , namely the first return map of $I \rightarrow I$. We can now understand the meaning of $L(x)$: it is the return time of x to I , and as such positive.

Self-intersections of the curves Γ_t and Γ_b give rise to a “nonsensical picture”; see depictions on page 247 of [Minsky and Weiss 2014]. We observe here that one can make sense of the picture even if the curve Γ has self-intersection, by attaching a half-translation structure to it, but we have not tried to follow up on this direction. Instead, we shall restrict ourselves to a criterion that avoids self-intersections.

Lemma 3. *Let $\mathbf{a} \in \mathbb{R}^d$ be a length vector, $\mathbf{b} \in \mathbb{R}^d$ be a height vector and $\Gamma_t : I \rightarrow \mathbb{R}^2$ be the top curve constructed by concatenating the vectors $\zeta_i = (a_i, b_i) \in \mathbb{R}^2$, i.e., $\Gamma_t(\sum_{i \leq j} a_i) = C_j^t$. Suppose the slopes $\kappa_i = b_i/a_i$ of ζ_i are strictly monotonically decreasing so that Γ_t is convex. Then for any irreducible permutation σ and bottom curve Γ_b constructed from vectors $\zeta_{\sigma^{-1}(1)}, \dots, \zeta_{\sigma^{-1}(d)}$, the closed curve $\Gamma = \Gamma_t \cup \Gamma_b$ has no self-intersections. In particular, (\mathbf{a}, \mathbf{b}) defines a positive pair if connection-free.*

Proof. We shall argue by induction on the number of symbols d . The base case is on two elements $d = 2$. By monotonicity $\kappa_1 > \kappa_2$ and by irreducibility $\sigma = (2, 1)$. Then $\Gamma_t \cup \Gamma_b$ bounds a parallelogram.

Assume now that for all $d' < d$ the lemma is true. Let $\Gamma_{b,j}$ the curve from concatenating C_0, C_1^b, \dots, C_j^b from left to right, i.e., restricting $\Gamma_b : I \rightarrow \mathbb{R}^2$ to $\bigcup_{i=1}^j I_{\sigma^{-1}(i)}$. We now start another induction and assume that for all $j' < j$, $\Gamma_{b,j'}$ does not intersect Γ_t . For the base of the induction $j = 1$, there is nothing to check.

If $\Gamma_{b,j}$ intersects Γ_t then by the induction hypothesis it does so with its final line segment $[C_{j-1}^b, C_j^b]$. We put $k = \sigma^{-1}(j)$ such that $C_{j-1}^b + \zeta_k = C_j^b$, intersecting, say, the i -th segment $[C_{i-1}^t, C_i^t]$ of Γ_t . Then $\kappa_k > \kappa_i$. By monotonicity, ζ_k has to appear to the left of ζ_i in Γ_t ; i.e., $k < i$.

We now describe a procedure of removing $[C_{j-1}^b, C_j^b]$ to obtain a smaller permutation to apply the induction hypothesis on d' .

Observe that if $K \subset \sigma^{-1}(\{1, \dots, j\})$, we can define the curves $\Gamma_{t,K}, \Gamma_{b,j,K}$ that one obtains from taking Γ_t and removing the line segments $[C_{k-1}^t, C_k^t]$ for $k \in K$ from Γ_t and taking $\Gamma_{b,j}$ and removing the line segments $[C_{\sigma^{-1}(j'-1)}^b, C_{\sigma^{-1}(j')}^b]$ from $\Gamma_{b,j}$ for $\sigma^{-1}(j') \in K$. Below, we shall have the additional property that $K \subset \{1, \dots, i-1\}$. We obtain a new permutation σ_K obtained by removing the symbols $k \in K$. If it is no longer irreducible then the maximal invariant subset $\{1, \dots, \ell\}$ must be contained in $\sigma^{-1}(\{1, \dots, j-1\})$ (or else σ is already reducible). By removing the subpermutation on $(1, \dots, \ell)$ from σ_K , we can allow ourselves to only consider the irreducible component σ' of σ_K containing i .

We now choose $K = \{k' = \sigma^{-1}(j') : j' \leq j \text{ and } \kappa_{k'} \geq \kappa_k\}$. We note that $k' \in K$ implies $k' \leq k = \sigma^{-1}(j)$ and that $i \notin K$. Hence the curve $\Gamma_{t,K}$ is only changed to the left of its line segment $[C_{i-1}^t, C_i^t]$, and most importantly, the curve $\Gamma_{b,j,K}$ still intersects $[C_{i-1}^t, C_i^t]$. To see this, divide the plane into two half-planes with boundary ∂ containing ζ_k attached to the right endpoint of $\Gamma_{b,j,K}$, and we see that $\Gamma_{b,j,K}$ stays to the upper-left half-plane. Since $[C_{i-1}^t, C_i^t]$ intersects ∂ , it also intersects $\Gamma_{b,j,K}$ as claimed.

If σ_K is no longer irreducible then we proceed with the irreducible restriction σ' as described above, supported on, say, $\mathcal{B} \subset \mathcal{A}$. Consider the associated pair $(\mathbf{a}', \mathbf{b}')$, where $\mathbf{a}', \mathbf{b}' \in \mathbb{R}^{|\mathcal{B}|}$ by restricting to the support of σ' . These give still monotone slopes, and the induction hypothesis on $d' < d$ applies; i.e., there are no self-intersections. By construction, however, the curve defined by \mathbf{a}', \mathbf{b}' and σ' has at least one self-intersection. \square

Remark 4. We have an analogous criterion if κ_i are increasing in i , in which case $\Gamma_b(\sum_{i \leq j} a_j) = C_j^t$, and we apply the argument of Lemma 3 with roles of Γ_t and Γ_b exchanged.

Remark 5. Barak Weiss has informed us of a topological proof of Lemma 3, which we invite the reader to find herself.

Corollary 6. *Theorem 1 holds for any irreducible permutation.*

Proof. The slopes associated to $\alpha(s) = (s, s^2, \dots, s^d)$ are $\kappa_i = i s^{i-1} / s^i = i/s$, monotone in i . \square

References

- [Kleinbock 2001] D. Kleinbock, “Some applications of homogeneous dynamics to number theory”, pp. 639–660 in *Smooth ergodic theory and its applications* (Seattle, WA, 1999), edited by A. Katok et al., Proc. Sympos. Pure Math. **69**, Amer. Math. Soc., Providence, RI, 2001. MR Zbl
- [Masur 1982] H. Masur, “Interval exchange transformations and measured foliations”, *Ann. of Math.* (2) **115**:1 (1982), 169–200. MR Zbl
- [Minsky and Weiss 2014] Y. Minsky and B. Weiss, “Cohomology classes represented by measured foliations, and Mahler’s question for interval exchanges”, *Ann. Sci. Éc. Norm. Supér.* (4) **47**:2 (2014), 245–284. MR Zbl
- [Veech 1982] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, *Ann. of Math.* (2) **115**:1 (1982), 201–242. MR Zbl

Received 13 Nov 2019.

RENÉ RÜHR:

rener@campus.technion.ac.il

Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel

Moscow Journal of Combinatorics and Number Theory

msp.org/moscow

EDITORS-IN-CHIEF

Yann Bugeaud	Université de Strasbourg (France) buageaud@math.unistra.fr
Nikolay Moshchevitin	Lomonosov Moscow State University (Russia) moshchevitin@gmail.com
Andrei Raigorodskii	Moscow Institute of Physics and Technology (Russia) mraigor@yandex.ru
Ilya D. Shkredov	Steklov Mathematical Institute (Russia) ilya.shkredov@gmail.com

EDITORIAL BOARD

Iskander Aliev	Cardiff University (United Kingdom)
Vladimir Dolnikov	Moscow Institute of Physics and Technology (Russia)
Nikolay Dolbilin	Steklov Mathematical Institute (Russia)
Oleg German	Moscow Lomonosov State University (Russia)
Michael Hoffman	United States Naval Academy
Grigory Kabatiansky	Russian Academy of Sciences (Russia)
Roman Karasev	Moscow Institute of Physics and Technology (Russia)
Gyula O. H. Katona	Hungarian Academy of Sciences (Hungary)
Alex V. Kontorovich	Rutgers University (United States)
Maxim Korolev	Steklov Mathematical Institute (Russia)
Christian Krattenthaler	Universität Wien (Austria)
Antanas Laurinčikas	Vilnius University (Lithuania)
Vsevolod Lev	University of Haifa at Oranim (Israel)
János Pach	EPFL Lausanne (Switzerland) and Rényi Institute (Hungary)
Rom Pinchasi	Israel Institute of Technology – Technion (Israel)
Alexander Razborov	Institut de Mathématiques de Luminy (France)
Joël Rivat	Université d'Aix-Marseille (France)
Tanguy Rivoal	Institut Fourier, CNRS (France)
Damien Roy	University of Ottawa (Canada)
Vladislav Salikhov	Bryansk State Technical University (Russia)
Tom Sanders	University of Oxford (United Kingdom)
Alexander A. Sapozhenko	Lomonosov Moscow State University (Russia)
József Solymosi	University of British Columbia (Canada)
Andreas Strömgrensson	Uppsala University (Sweden)
Benjamin Sudakov	University of California, Los Angeles (United States)
Jörg Thuswaldner	University of Leoben (Austria)
Kai-Man Tsang	Hong Kong University (China)
Maryna Viazovska	EPFL Lausanne (Switzerland)
Barak Weiss	Tel Aviv University (Israel)

PRODUCTION

Silvio Levy	(Scientific Editor) production@msp.org
-------------	---

Cover design: Blake Knoll, Alex Scorpan and Silvio Levy

See inside back cover or msp.org/moscow for submission instructions.

The subscription price for 2020 is US \$310/year for the electronic version, and \$365/year (+\$20, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Moscow Journal of Combinatorics and Number Theory (ISSN 2640-7361 electronic, 2220-5438 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

MJCNT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
 mathematical sciences publishers
nonprofit scientific publishing
<http://msp.org/>
© 2020 Mathematical Sciences Publishers

Complete generalized Fibonacci sequences modulo primes MOHAMMAD JAVAHERI and NIKOLAI A. KRYLOV	1
Discretized sum-product for large sets CHANGHAO CHEN	17
Positive semigroups and generalized Frobenius numbers over totally real number fields LENNY FUKSHANSKY and YINGQI SHI	29
The sum-of-digits function on arithmetic progressions LUKAS SPIEGELHOFER and THOMAS STOLL	43
A convexity criterion for unique ergodicity of interval exchange transformations RENÉ RÜHR	51
Long monochromatic paths and cycles in 2-edge-colored multipartite graphs JÓZSEF BALOGH, ALEXANDR KOSTOCHKA, MIKHAIL LAVROV and XUJUN LIU	55