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A dynamical Borel-Cantelli lemma
via improvements to Dirichlet’s theorem

Dmitry Kleinbock and Shucheng Yu

Let X = SL,(R)/SL,(Z) be the space of unimodular lattices in R2, and for any r > 0 denote by K, C X
the set of lattices such that all its nonzero vectors have supremum norm at least e~". These are compact
nested subsets of X, with Ky = ("), K, being the union of two closed horocycles. We use an explicit
second moment formula for the Siegel transform of the indicator functions of squares in R? centered at
the origin to derive an asymptotic formula for the volume of sets K, as r — 0. Combined with a zero-one
law for the set of the ¥-Dirichlet numbers established by Kleinbock and Wadleigh (Proc. Amer. Math.
Soc. 146 (2018), 1833—-1844), this gives a new dynamical Borel-Cantelli lemma for the geodesic flow
on X with respect to the family of shrinking targets {K,}.

1. Introduction

Let (X, i) be a probability space, and let {a,}s;cr be a one-parameter measure-preserving flow on X.
Given a family of measurable subsets { B}~ of X with u(B;) — 0 as s — oo (called shrinking targets),
the shrinking targets problem asks for a dichotomy on whether generic orbits of {a,}s~o would hit the
shrinking targets indefinitely. That is, we are looking for a zero-one law for the measure of the limsup set

By :=limsupa_;B; = {x € X | agzx € B, for an unbounded set of s > 0}.
S—>00
For any n e N let
B, = U A_sByyis (1-1)

0<s<l1

be the thickening of the shrinking targets {B;},<s<n+1 along the flow {a_;}p<s<1. Note that a,x € En if
and only if there exists some s € [n, n + 1) such that a,x € B;. We thus have

Bs = limsup a_ngn ={xeX|axe€ En infinitely often}, (1-2)

n—oo

and the classical Borel-Cantelli lemma implies

Y uB)<oe = pu(Bx)=0. (1-3)

n
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On the other hand, following the terminology of [Chernov and Kleinbock 2001] we say the family of
shrinking targets {B;}s~q is Borel-Cantelli (BC) for the flow {a,}s~0 if t(Bs) = 1. Thus a necessary
condition for {Bs}s-¢ to be BC for {a,}s~0 is that the sequence of its thickenings has divergent sum of
measures, and we say {By};~¢ satisfies a dynamical Borel-Cantelli lemma for {a,}s~¢ if this is also a
sufficient condition.

The shrinking targets problem for continuous time flow in the context of homogeneous spaces was
first studied in [Sullivan 1982], where he established a logarithm law for the fastest rate of geodesic
cusp excursions in finite-volume hyperbolic manifolds. Later using the exponential mixing rate and a
smooth approximation argument, the first author and Margulis [Kleinbock and Margulis 1999] proved
that the family of cusp neighborhoods {7 (r(s), 00)}s=0 With divergent sum of measures is BC for
any diagonalizable flow on (G/T", i), where G is a connected semisimple Lie group without compact
factors, I' < G is an irreducible lattice, and u is the probability measure on X = G/I" coming from
a Haar measure on G. Here & is a distance-like function on X [loc. cit., Definition 1.6] and r(-) is a
quasi-increasing function [loc. cit., Section 2.4]. Later Maucourant [2006] obtained a similar dynamical
Borel-Cantelli lemma for geodesic flows making excursions into shrinking hyperbolic balls (with a fixed
center) on a finite-volume hyperbolic manifold. See [Athreya 2009] for a survey on shrinking targets
problems in dynamical systems.

One main reason that such dynamical Borel-Cantelli lemmas have gained much attention is due to their
connections to metric number theory, which were first explored in [Sullivan 1982]. Such connections
were made more apparent later in [Kleinbock and Margulis 1999]. Let m, [ be two positive integers and
let M,, ;(R) be the space of m by [ real matrices. Given ¥ : [ty, 00) — (0, 00) a continuous nonincreasing
function, let us define W () C M,, ;(R), the set of yr-approximable m x [ real matrices such that A €
W () if and only if there are infinitely many g € 7/ satisfying

lAg — pI™ < ¥ (lgll) for some p € 7",

where || - || is the supremum norm on respective Euclidean spaces. The classical Khinchin—Groshev
theorem gives an exact criterion on when W () has full or zero Lebesgue measure.

Theorem KG (Khinchin—Groshev). Given a continuous nonincreasing v, the set W () has full (resp.
zero) Lebesgue measure if and only if the series ), V (k) diverges (resp. converges).

See [Schmidt 1980] for more details. On the other hand, let X = SL,,,1;(R)/ SL,,,11(Z) be the space
of unimodular lattices in R™* and let A : X — [0, 0o) be the function on X given by

A(A) = sup log<i). (1-4)

veA~{0} [lv]l

Note that A(A) > 0 for any A € X due to Minkowski’s convex body theorem, and for all » > 0 the sets
K, :=A~(0, r]) (1-5)

(of lattices such that all its nonzero vectors have supremum norm at least e~") are compact due to
Mahler’s compactness criterion; see, e.g., [Cassels 1997]. Following ideas of [Dani 1985], it was shown
in [Kleinbock and Margulis 1999] that there exists a unique function r = ry, : [so, 00) — R depending
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on Y (this was referred to as the Dani correspondence) such that A € M,, ;(R) is yr-approximable if and
only if the events a; A4 € A (r(s), 00) happen for an unbounded set of s > 59, where

ag :diag(es/m, et eI e_s/l),

s/m and [ copies of e~*/!, and

I, A
A = m Zm-i—l X.
A ( 0 1,) <

with m copies of e

This way the first author and Margulis showed Theorem KG to be equivalent to a dynamical Borel—
Cantelli lemma for the a,-orbits making excursions into the cusp neighborhoods A7 (r(s), 00) =5, and
used this to give an alternative dynamical proof of Theorem KG based on mixing properties of the
as-action on X; see [Kleinbock and Margulis 1999].

More recently, for a given i as above, the first author and Wadleigh [Kleinbock and Wadleigh 2018]
studied the finer problem of improvements to Dirichlet’s theorem. See [Davenport and Schmidt 1970a;
1970b] for the history of the problem of improving Dirichlet’s theorem. Following the definition in
[Kleinbock and Wadleigh 2018] an m by [ real matrix A is called v -Dirichlet if the system of inequalities

|Ag — pI™ <¥(t) and |q|' <t

has solutions in (p, q) € Z™ x (Z' <. {0}) for all sufficiently large . Following the general scheme
developed in [Kleinbock and Margulis 1999] they gave a dynamical interpretation of i-Dirichlet matrices.
Namely, they showed that A € M,, ;(R) is not y-Dirichlet if and only if the events

asAA € Kr(s)

happen for an unbounded set of s > s9, where a;, A4 and r = ry, are all as above. Hence in this case the
family of shrinking targets is given by {K,(s)}s>s,» and one is naturally interested in whether this family
of shrinking targets is BC for the flow {a;}s-0.

However this dynamical interpretation is not helpful when it comes to determining necessary and
sufficient conditions on ¥ guaranteeing that almost every (almost no) A is {-Dirichlet. One of the
main difficulties is that the shrinking targets K, are far away from being SO,,1;(R)-invariant, and thus
applying the mixing properties of the as-action will involve certain Sobolev norms which are hard to
control. Still, using a different method based on continued fractions the aforementioned conditions were
found in [Kleinbock and Wadleigh 2018] for the case m =/ = 1. Namely, the following was proved:

Theorem KW (Kleinbock—Wadleigh). Let ¥ : [t9, 00) — (0, 00) be a continuous, nonincreasing function
satisfying
the function t — t\(t) is nondecreasing (1-6)
and
tYy() <1 forallt > 1. 1-7)
Then if the series
Z — (I —ny(n)) log(l —ny(n))

n

(1-8)

n

diverges (resp. converges), then Lebesgue-a.e. x € R is not (resp. is) -Dirichlet.
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In this paper we use the above theorem to derive a dynamical Borel-Cantelli lemma for the diagonal
flow a, := diag(e®, e*) on X :=SL,(R)/ SL,(Z). Let u be the probability Haar measure on X, consider
the function A on X as in (1-4), and define the sets K, as in (1-5).

We now state our dynamical Borel-Cantelli lemma.

Theorem 1.1. Let r : [s9, 00) — (0, 00) be a continuous and nonincreasing function. Let By = K, (5) and
let Boo = limsup,_, o, a—sBs. Then we have

E:rookg(;55><mm = u(Bx) =0.

If in addition we assume that the function s — s + r(s) is nondecreasing, then we have

1
E:ronkg(;65>:mw =  w(Bx)=1.

n

n

Comparing the statement of the above theorem with (1-3), one can guess that it can be approached by
studying the thickenings

En: U a_sB, s = U a—sKr(n+s) (1-9)

0<s<l1 0<s<l

as in (1-1). We do it in several steps. In the beginning of Section 3 we prove an asymptotic measure
formula for the sets K, where r is small:
Theorem 1.2. Forany 0 <r < (log2)/2 we have

4r2log(1/r) 5
K)=———1"2410(@?),
w(K,) 0] + O(r)

where ¢ (2) = % /6 is the value of the Riemann zeta function at 2.

Here and hereafter for two positive quantities A and B, we will use the notation A <« B or A = O(B)
to mean that there is a constant ¢ > 0 such that A < ¢B, and we will use subscripts to indicate the
dependence of the constant on parameters. We will write A < B for A < B < A.

The next step is to use Theorem 1.2 to estimate the measure of the thickening of K, along the flow
{a_s}o<s<1 by bounding it from above and below by a finite union of a-translates of K. This is also
done in Section 3 and yields the following result:

Theorem 1.3. For any 0 <r <log1.01 we have
1
,u( U a_sK,> xrlog(;).
O<s<l1

The above asymptotic equality shows that the series appearing in Theorem 1.1 converges/diverges if
and only if so does the series ), i(B,), where B, is as in (1-9):

Corollary 1.4. Letr : [sg, 00) — (0, 00) be a nonincreasing function, and let En be as in (1-9). Then we

have |
;u(gn)zoo = Xn:r(n)log<%>=oo
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Therefore, in view of (1-2) and (1-3), the convergence part of Theorem 1.1 is immediate from the
Borel-Cantelli lemma. The divergence part however is trickier. Instead of using a dynamical approach
as in [Kleinbock and Margulis 1999], our proof in Section 4 is non-dynamical and relies on Theorem KW
and the Dani correspondence.

It remains to comment on our proof of Theorem 1.2. Instead of trying to describe the sets K, explicitly
in terms of coordinates and compute their measures directly, we adapt an indirect approach which relies
on an explicit second moment formula of the Siegel transform of certain indicator functions. Recall that
if f is a function on R?, its primitive Siegel transform is the function on X given by

fny=Y" f),
VEAp
where A, is the set of primitive vectors of A. Clearly f (A) =#(Ap N'S) when f is the indicator
function of a subset S of R2.
Let us briefly describe the history of the problem. The Siegel transform was originally defined by
Siegel [1945] as the sum over all nonzero lattice points for unimodular lattices of any rank. In the same pa-
per Siegel proved a mean value theorem for the Siegel transform, which in the primitive set-up amounts to

A 1
AN)du(A) = —— d 1-10
| Fwanw = [ seax (1-10)

for any bounded compactly supported f on R?. Since then there has been much work extending his
result to higher moments. For example, Rogers [1955] proved a series of higher moment formulas,
which in particular includes a second moment formula for the Siegel transform defined on the space of
unimodular lattices of rank greater than 2. However, his result did not give a second moment formula on
X as in our setting. For this setting, Schmidt [1960] proved an upper bound for the second moment of the
primitive Siegel transform of indicator functions on R?. His bound was later logarithmically improved by
Randol [1970] for discs centered at the origin and by Athreya and Margulis [2009] for general indicator
functions building on Randol’s bound. Athreya and Konstantoulas [2016] obtained similar bounds on
the space of general symplectic lattices for a certain family of indicator functions. Continuing [Athreya
and Konstantoulas 2016], Kelmer and the second author [Kelmer and Yu 2019] proved a second moment
formula on the space of symplectic lattices Y, := Sp(2n, R)/ Sp(2n, Z). In particular, when n = 1 we
have ¥; = X and their formula also applies to our setting.! However, for our applications all these
formulas are not explicit enough.

We now state an explicit second moment formula which we use to derive Theorem 1.2.

Theorem 1.5. For any r > 0 let S, be the open square with vertices given by (e™", xe™"), and let f,
be the indicator function of Sy. Then we have

T (‘2’+/ (e_r+e_r ! )d d ) (1-11)
=——|e ——— )dxi1dxz), -
RN I0) s\ x1 | x2  xx

D, = {x = (X1,x2) €S, |)C1 >0, X2 > 0, X1+ x2 > er}’

where

and || - ||2 stands for the L*-norm with respect to 1.

I'See also [Fairchild 2019] for moment formulas of the Siegel—Veech transform recently obtained by Fairchild.
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Remark 1.6. When r > (log2)/2 the region D, is empty, and (1-11) simply reads as

8672r

N

We note that the latter equality in fact already follows from Siegel’s mean value theorem, since in this
case for any unimodular lattice there can only be at most one pair of primitive lattice points allowed
in §,, which implies that fr /2 is an indicator function on X. When 0 <r < (log2)/2, the region D, is

not empty, and it is not hard to compute the integral in (1-11) explicitly; see (3-5) below. In particular,
plugging » = 0 into (1-11) we have || foll5 = (12/7)* — 8 ~ 6.59.

A2
I1frlly =

In Section 2 we prove a much more general second moment formula, see Theorem 2.1, with an
arbitrary bounded measurable subset S of R? in place of S,. Theorem 1.5 is derived from Theorem 2.1
by taking S = S,.

2. The second moment formula

In this section, we prove Theorem 1.5 by establishing the following second moment formula for quite
general subsets of R

Theorem 2.1. Let S be a measurable bounded subset of R%, and let f be the indicator function of S. Let
= {x € R? | —x € S}. Then we have

112 = (12) (area(5)+area(sm3)+zM"D/|I"|d )

where ¢ is the Euler’s totient function, ! C R is defined by

—X3 X1
nl ——-5, -5 | +tx,x) €Sy,
Xy +x5 x7+x5

and |Z}!| is the length of I} with respect to the Lebesgue measure on R.

I;‘::{te[l%

Before giving the proof let us make a few remarks about Theorem 2.1. First we note that for any
bounded S there exists a sufficiently large T > 0 depending on S such that for any || > T the set Z is
empty for all x € S. Thus the series on the right-hand side of (2-1) is a finite sum. Next we note that if
we further assume S is symmetric with respect to the origin, then by symmetry we have SN S=Sand
|Z;| = |Z."| for any n # 0. In particular, for such & we have the slightly simpler formula

A 2
1718 = = <area(8)+z(p( )f|z"|d) @1

Finally we note that for any A € X and f as in Theorem 2.1 we have

(M) =F(A) + 25+ D [ f(w2).

vl,vzeApr
lin. ind.
Thus Theorem 2.1 together with (1-10) implies
1 @(Inl)
Y. fDfw)dpA) = (2) [ B (2-2)
X vl,vzeAp, é‘ n

lin. ind.
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It is worth pointing out that the above formula can be compared to its higher-dimensional analogue: when
£ is an indicator function of a bounded measurable subset S of R¥ with k > 3, X = SL;(R)/SLi(2),
and u is the Haar probability measure on X, according to Rogers’ second moment formula [1955] the
left-hand side of (2-2) equals (vol(S)/ £ (k))%. However, as we can see here the k = 2 case is much more
complicated, with the answer depending on both the shape and the position of S.

Coordinates and measures. We fix coordinates on G = SL,(R) via the Iwasawa decomposition G =
KAN with

K=1{ky|0<0 <21}, A={a;|secR), and N ={u |teR},

k_cos@—sin@ a_eSO andu—lt
9= \sing cos8)’ T \0 e —\o 1)

Explicitly, under coordinates g = kgasu;, w is given by

where

_ 1 2s
du(g) = Ee dodsdt. (2-3)

There is a natural identification between the homogeneous space G/N and R? . {0} induced by the
map G — R? < {0} sending g = kgpasu; € G to

(X1 1\ [e’cosO
x(g) - (X2> =8 (O) - (es sin@) ’ (2'4)

the left column of g. The Lebesgue measure, dx, on R? . {0} = G/N can be expressed via the polar
coordinates (s, 6) as

dx (kgay) = €>* do ds. (2-5)

The second moment formula. In this subsection we prove Theorem 2.1, and with some more analysis
we prove Theorem 1.5. As the first step of our computation we recall the following preliminary identity
which relies on a standard unfolding argument. We note that one can find it in [Lang 1975, Chapter VIII,
Section 1], and we include a short proof here to make the paper self-contained. See also [Kelmer and
Yu 2019, Proposition 2.3] for a generalization to the space of symplectic lattices.

Lemma 2.2. For any bounded and compactly supported function f on R* and for any bounded F e
L*(X, ) we have

00 2
o= [ [ ratkiaPraane dods.
where Pr is defined by

1
Pr(x(koay)) 2/ F (kgasu,7%) dt
0

with kg, as and u, as above, and (-, - ) is the inner product on L*(X, ).
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Proof. Let I' = SL,(Z) and let ', = I N N. Recall that there is an identification between I'/ I'oc and
Zgr sending y 'y to y((l)). Using this identification, for any A = gZ> with g € SL,(R) we can write

fy=Y fo=Y) few= Y [y, (2-6)

vEApr welgr }/GF/ I

where f @) =f (g((l))) We note that f is a right N-invariant function on G. Let Fr be a fundamental
domain for X = G/ T, and let F, be a fundamental domain for G/ I's. Note that using the Iwasawa
decomposition G = KAN we can choose

Foo = f{kgasu; |0 <0 <2m, seR, 0<t <1}. 2-7)

Moreover, fix a set of coset representatives X, C I" for I'/ ', and note that UyeZOo Fry is a disjoint
union and forms a fundamental domain for G/ I's. Now for any bounded F € L*(X, ), using (2-3),
(2-6), (2-7) and the facts that F is right I'-invariant and f is right N-invariant, we have

(f )= | fGZHFGZHdu@ = DY | fey)F(gZ*) du(g)
Fr yel/To V7T
=Y F@F(e7%) du(g) = / F(@F(g7?)du(g)
Y€ Fry Llygzoo]:l‘y

o0 27 pl »
— [ PG dnis) = — / f Flkoass) FlhoaunZe™ di d6 ds
Foo {(2) —00 J0 0

1 o0 21 1
= —/ / f(x(koas)) / F (kgazu; 7%) dt * d ds.
£(2) Jox Jo 0
Finally, we note that the above equalities can be justified since F is bounded and the defining series for
f is absolutely convergent; see [Veech 1998, Lemma 16.10]. U
With this preliminary identity, we can now give:

Proof of Theorem 2.1. Using the relation (2-5) and Lemma 2.2 we have

1

o 1
1716 =5

/Rz f (x(koas))Pr(x (kgay)) dx = %[spf(x(keas))dx, (2-3)
where

1
Pp(x(kgay)) 2/ f (kgasu,Z%) dt,
0

with kg, a; and u, as before. First, by the definition of the primitive Siegel transform we have

koagu, (m) € S}.
n
Thus for x (kgay) € S and 0 <t < 1 we have

r 2
fkoasu 2 =3 Xy (0),
(m,n)eZ%r o

f(koasu,7%) = #{(m, n) €7y,
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where
m

I = {o <r<1 ‘ koasiuy (n) € S},
implying

. (m,n) | _ | 7(1,0) (—1,0) (m,n)

Prtxkoa)) = 3 Weo| = goan |+ xgurl + 22 1a-
(m,n)eZ, (m.n)ez2,
n#0

Next, by direct computation we have for x (kgas) = (x1, x2) = (¢ cos 0, e’ sinf) € S

m\ —e S sinf e‘cost) —xz/(x12+x§) X1
Koasit <n> = < e* cos9> + (m - n1) (es sin@) - ( x1/(xf +x3)  (m 4 n1) x2) " 9

When (m, n) = (1, 0) we have for x (kgas) € S

e (o) = ()

is contained in S for any 0 <t < 1. Thus IJE},’{SLS) =10, 1) and |I§,’€2)as)| =1 for any x (kgas) € S. Similarly,

when (m, n) = (—1, 0) we have for x(kga;) € S

—1 —X
on(3)-(2)
is contained in S if and only if x € SN S with S as in the theorem, implying Ii&lﬁ)) =[0, 1) whenever

xeSNS.
When n # 0 by (2-9) we have for any integer m coprime to n

|1;'"’">|=H05t<1

n( 2 al 2)+(m—i—nt)()cl,)cz)ESH

2 20 .2
Xy +xy xy+x;

—X2 X1
n( 3 33 2)+nt(x1,xz)eSH.
Xy +xy xy+x;

We note that as m runs through all the integers in each congruence class in (Z/|n|Z)*, the intervals
[m/n, 14+ m/n) cover R exactly once. Thus for n # 0

m m
:H—§t<l+—
n n

—x2 X1 @(|n))
> i=einlfrer o i) e esl = 5
meZ Xy +xy Xy +x; Inl
(m,n)=1

where ¢ is the Euler’s totient function and Z is as in Theorem 2.1. We thus have for x € S

@(|n))

|

Prx) =1+ xsn®) + )
n#0

|Zs 1.

We conclude the proof by plugging the above equation into (2-8). ]
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We can now give:
Proof of Theorem 1.5. To simplify notation for any x € R%, ¢ € R, and n > 1 let
—X2 X1

v(x,t,n) :=n< » 3 2)+t(x1,xZ).

)
Xytxy xp+x;

First we note that ) -

T 2 5+t (xl—l-xz)_x 2
1 2 1 2

2
lv(x, 1, n)ll; =

where || - ||, stands for the standard Euclidean norm on R?. Thus for x € S, and n > 2 we have

2 2
loGe. . mll = —=llvC. 1, Ml>-——>e >e"’,

[l 1|2 -

implying that Z! is empty for any x € S, and any n > 2. Here || - || stands for the supremum norm on R2,
and for the third inequality we used the fact that ||x||; < V2e", which follows from x being an element
of S,. Since S, is symmetric with respect to the origin, applying (2-1) to f = f, we get

se—Zr 2 | 1) g 8e‘2’ N 8
£(2) C o)) @ @
where S is the intersection of S, with the first quadrant, and for the second equality we used the fact that
|I o)) = |I(1 FI which follows from the invariance of S, under reflections around the coordinate
axes. We note that for x € S}

A2
1fr Il =

. 17! | dx, (2-10)

—Xx X

( = 2>+t(x1,xz)eSr
Xy +xy xy+x;

if and only if

e " X2 e " X2

S <t<—t—
X1 X (xl2 +x§) X1 X (xl2 —i—x%)

and

—r —r

X1 e X1

X2 x(xf+x3) X2 x(xy +x3)

e

By direct computation if » > (log2)/2 then there is no ¢ € R satisfying above inequalities. Thus I; is
empty, and the integral in the right-hand side of (2-10) is zero. If 0 <r < (log2)/2, we define for any
xeSF

- X2 e’ X1
L(x) := max — L e N v S N O
X1 xp(xy+x3) X2 xo(xy +x3)
e X2 e " X1
U(x) 1= min L S N v BN
X x(xy+x3) X2 xy+x3)

It is not hard to verify that as long as 0 < r < (log2)/2, for x € S} we have

—r X3 —r
————- and U(x) = —_——
X1 xi(xf+x3) X2 x(x?+x3)

L(x)=— il
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Thus I; is nonempty if and only if L(x) < U(x) and whenever it is nonempty we have

7l e " X2 e’ X1
x T\ L R N S N b
X1 x1(xy +x3) X2 xo(xp +x3)

By direct computation we have L(x) < U (x) if and only if x € D, = {(x1, x2) € S;" | x1 +x2 > €"}. Hence

1A 113 B 8 ((e_r al ) ( . - )) dx; d
r = A< — 5 A5\ — —F ~_ X X
T @ @\ G +ad) x1 x(xP+xd) HeR

) dxy dx;. |

—88_2r+— < +
@ @ Jp\x ox xixm

Besides the sets S,, another natural candidate to test formula (2-1) is the family of indicator functions
of balls. For any R > 0 let Bg be the open ball of radius R centered at the origin, and let 4z be the
indicator function of Br. We note that [Randol 1970] established an asymptotic formula for ||ﬁ R ||% for
large R, and here we prove the following formula for ||fl R ||§:

Corollary 2.3. For any R > 0 let hg be as above. Then we have

p 12R 2 8\ VR*—n? . n V1
gl = Z w(n)( —|—arcsm(ﬁ) - E)

Proof. Since Bg is symmetric with respect to the origin, we can apply (2-1) to Ak ||%, and use ¢(2) =72/6
to get

12R? Z (p(n)

lhrll; = —— II;’Idx,

where

Ij:::{te[R{

—X2 X1
n( )—l—t(xl,xg) <R}.
x1+x2 x1+x2 2

Using the polar coordinates, for any (x,, x3) = (r cos 8, r sinf) € Bg and n > Rr we can write

—X2 X1
Hn( 5 2)—|—t(x1,x2)
Xy +xy xy+x;
implying that Z is empty whenever n > Rr = R||x||>. In particular, Z is empty for any x € By if
n > RZ. Similarly, for any 1 <n < LR2J the set Z! is empty if [|x|| <n/R, and

. (_\/Rzrz_nz \/Rzrz_nz)

X

2

n2
= — +1r* > R?,
r2

2

’

r2 72

if n/R < ||x||2» < R. Hence

12R2 2 LB

lhgl3 = N T drde

(n)/'2”/ 2«/R2 2—n
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_ R, 8 & R/

Z(p(n)/ Vi-r=2dr

LRJ

12R2 v R* —n? (o T
Z(p(l’l)( +ar051n<R2)— 2),

where for the second equality we applied a change of variable (R/n)r + r, and for the last equality we
used the fact that [ +/1—r=2dr =+/r>—1+arcsin(1/r) 4+ C forr > 1. O

3. Measure estimates of the shrinking targets

In this section, using the methods developed in the previous section, we prove Theorem 1.2 and then use
it to derive Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.2. For any r > 0, let f, be the indicator function of S, as before. For any integer
k >0, let B¥ C X be the set of unimodular lattices having 2k nonzero primitive points in S,. First, we
note that K, = BY consists of lattices with no nonzero points in S,. Moreover, for any A € X, there are
at most two linearly independent primitive points of A inside S,. We thus have for any r > 0

2
> uBH =1, (3-1)
=0
and
fr = 2XBr1 +4XB,2'

Thus we can take the first moment and apply (1-10) to get
W(B)+2(B) = & f Ftydnay =2 (3-2)
2 Jx 2(2)
Taking the second moment of fr we get
4u(B)) + 16, (B} = || /+113. (3-3)

Solving (3-1), (3-2) and (3-3) and applying Theorem 1.5 to (3-3), we get

(K= (B =1 -2 4 ] ("_r+e_r ! )d y
r)=un(B)=1- — — —— | dxidxs.
. " (@ @\ T ) R

By direct computation we have for 0 < r < % log2

e e’ 1
/ + ——— )dx1dxy
D\ XL X2 X1X2
log ¢

e—2r
=2(1—r)2e 7 —14r)+(2—2e" =2r) log(1—e 2" )=2r>+ / T dt
l1—e=2r 1—

=2(1—-r)2e 7 —14r)+Q2—2e > =2r)log(1—e 2" ) =2r’+Lir(1—e~¥)—Liz(e™>), (3-4)
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where Lis(z) = Y 1o 7F/k* is the polylogarithm function. Now for the term log(l1 — e~%"), using the
Taylor expansion e~ =1 —2r 4+ 2r> + O (r?), we get

log(1 —e™2") =log(2r) +log(1 —r + O (r?)) =log(2r) — r + O (r?).

Using the series representation Liy(z) = Z,fil P /k?, we get Lip (1 — e ) =2r+0(r?). Finally for the
term Lip (e %) we have the expansion, see [Wood 1992, Equation (9.7)],

Lir(e™ ") = —2r(1 —log(2r)) + £ (2) + O (r?).

Plugging these into (3-4) and using the expansion e =2 =1 — 2r +2r% 4+ O (r3), we get

—r —r 1
/(6 4+ ¢ ——)dxldxz=2—§'(2)—4r—4r210gr+0(7’2), (3-5)
D\ XL X2 X1X2
implying
Kn=1-2 "4 Lo —4r—arogr+ 002 = - B L o2
w(K,)=1- —Q2- —4r —4r”logr ro))=————> ro),
(@) @) & Q)
finishing the proof. ]

To estimate the measure of the thickening, we will need the following two preliminary lemmas. We
note that by the Hajés—Minkowski theorem, see [Cassels 1997, IX.1.3], we have

Ko=a"'0)= | J <(1) f) ZZUC (1)) 7>

x€[0,1)

A simple observation is that any A € K contains either the point (1, 0) or the point (0, 1). Thus intuitively
one shall expect that when r is small, lattices in K, contain points close to either (1, 0) or (0, 1). For
any r > 0, let A, C R? be the closed rectangle with vertices (+/e? — 1, ¢") and (+/e? —1,e™") and
let C, be the closed rectangle with vertices (e”, &=+/€2" — 1) and (e™", &=+/€?" — 1); see Figure 1. The
following lemma asserts that when r is small, then any A € K, contains points either in 4, or in C,
(noting that A, is a small rectangle containing (0, 1) and C, is a small rectangle containing (1, 0)).

Lemma 3.1. Let A, and C, be as above. For any 0 < r < log1.01 and for any A € K,, we have
Ap N (A UC) # 2.

Figure 1. The square S, (red), the rectangles A, (green) and C, (blue).
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Figure 2. The square S, (red), the rectangles U, (green) and R, (blue).

Proof. Let U, be the closed rectangle with vertices (e, e™") and (£e™", "), and let R, be the closed
rectangle with vertices (e, 2e™") and (e", 2e™"); see Figure 2. Let

U ={xecR| —xeld,}.

Consider the rectangle U, LIS, uid » and note that it has area 4. For any ¢ > 0 let U, . be the open rectangle
with vertices (£e™", £(e" +¢)). Applying the Minkowski’s convex body theorem to U, . and letting ¢
approach zero, we see that for any A € X, A, intersects U, LS, uljr nontrivially. Now let A € K, ; since
A has no nonzero point in S, and A, is invariant under inversion, we have A, N, # &. Similarly we
also have A, N'R, # &. Moreover, we note that for 0 < r <log 1.01, we have A NU, = A, NU, and
ANR, = Ay, NR,. This is because otherwise there would be some nonzero point v € AN U, UR,) and
some integer kK > 2 such that v/k € A, but v €, UR, and k > 2 imply that v/k € S, contradicting
the assumption that A, NS, = J. Let vy = (71, 1 +v;) be a point in A, N, that is closest to the y-axis
and let v; = (1 + v2, 12) be a point in A, MR, that is closest to the x-axis. We thus have [f;| <e™"
e"<l+4v <e fori=1,2.
Let Py, s, be the parallelogram spanned by v; and v,. Then we have for 0 <r <log1.01

and

Poywyl =11+ o)A+ 02) =16 = (L +v)(L+v2) —hitr <€ +e > <3,
where |Py, 4,| denotes the area of P, 4,, and for the second equality we used that
(I+v)(+v2) = e™ = |nn).

Thus |Py, v, | equals 1 or 2. We claim that [Py, ,,| = 1. Suppose not; then [Py, 4,| = 2 and we have for
0<r <logl.01
hh=vi+n+vn-1<2 -+ -1)>-1<0
and
htl=1—vi—va—v>1-2( —1)—( —1)>=2—-¢" > 0.9.

This implies min{|z|, |£2]} > 0.9/e™" > 0.9. Since t,#, < 0, without loss of generality we may assume
that 7, < 0. Then we have —e™" <, < —0.9. On one hand, since |Py, v,| =2 and vy, v2 € Ap,;, we have

v+, Hh+1l+vy H+1+v;
w= = , € A.
2 2 2
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On the other hand, we have

<t1+1+v2<e_ +e o O<tz+1+v1 1+v1<€_<e_,,

0 < , < =
2 2 2 2 2

and w ¢ S, implying w € R,. Thus w € ANR, = A, MR, is also a primitive vector of A. Moreover,
since —e~" <1, < —0.9, we have
H+14+v; €€ -09 1.01-09

0 < < < —0.055 < |2,
2 2 2

contradicting the assumption that v, is the closest point in Ap MR, to the x-axis. We thus have proved
the claim, and it implies

Itita] = [v1 +va+viva] <2(e" — 1)+ (" — DI =¥ — 1.

Hence we have

min{|t;], ]} < V/|th| < Ve —1,
which implies A, N (A, UC,) # < finishing the proof. U

The following lemma states that for » > 0 small, the orbits a; K, will completely leave the set K, very
shortly, and will remain separated for quite a long time.

Lemma 3.2. Forany 0 <r <log1.01 and any 6r <|s| <log 1.9, we have
a K, NK, =3O.

Proof. Suppose not, then there exists some A € a,K, N K, and by definition the intersection of A,
with S, U a,S, is empty. Without loss of generality we may assume that s > 0. By Lemma 3.1 we
have A, N (A, UC,) # @ and similarly, Ay N (ay A, UagCr) # @. We note that agA, is the rectangle
with vertices (e*ve2 — 1, ¢’ %) and (e’ve2 — 1, e "%). Since ¢® < ¢* < 1.9 we have a, A, C S,
implying Ap N a;C, # J. Similarly, we have C, C a;S, and this implies Ap N A, # & (see Figure 4).
Let vy € AN A, and vy € Ay NagC,, and let Py, o, be the parallelogram spanned by v; and v;. Then
for 0 <r <log1.01 and 6r <s <log1.9 we have

1< eszr o (82}’ _ l)efs < |Pv1,v2| < es+2r 4 (le _ l)efs <2
contradicting the fact that | Py, ,,| is a positive integer. U
We can now give:

Proof of Theorem 1.3. We prove the upper and lower bounds separately. For the upper bound, we first
note that for any v € R> we have e !||v|| < ||a,v|| < e"!||v||. Hence for any A € X we have

[AasA) — AN < |s].
This implies that for any s € R and any r > 0

a; K, C Kr+|s\- (3'6)
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Figure 3. Figure 1 under the flow a;: the rectangles a,S, (orange), a;. A, (brown), and
asC, (purple).

Figure 4. Figures 1 and 3 in one picture: the rectangle a;.4, (brown) is contained in
S, (red), the rectangle C, (blue) is contained in a,;S, (orange).

Let N =[1/r]. Using (3-6) and the fact that 1/N < r we can estimate
U a_sK, = U U a—i/Na—tKr C U a—i/NKZr-
0<s<l1 0<i<N 0<t<l/N 0<i<N

Hence by Theorem 1.2 and since N < 1/r we have
N-1

1
“( U a—sKr) = Z nla—i/nKor) < rlog<;>,

0<s<l1 i=0
For the lower bound, for 0 < r <log1.01 let N = | 1/(6r)]. First we have

U a—i/NKrg U asK,.

0<i<|Nlog1.9] 0<s<1
Moreover, foreach0 <i < j < |Nlog1.9|, we have 6r <1/N < (j—i)/N <log1.9; thus by Lemma 3.2

we have
a_inK,Na_jnK, =a_jn(ai-in/nKNK;)=4.

Thus the union (-, <|Nlog1.9) d—i/N K 1s disjoint and, again applying Theorem 1.2 and noting that
N =< 1/r we can estimate
[Nlog1.9]—1 1
u( U a—sKr> > Z wla—i/nK;) < rlog(;),
0<s<l1 i=0

finishing the proof. U
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Proof of Corollary 1.4. First we note that we can assume lim;_, o, 7(s) = 0 since otherwise both series
would diverge. It follows that there exists N > 0 such that for any n > N, 0 < r(n) <log1.01. Next,
since r( - ) is nonincreasing, for any n > N we have

U a—sKr(n—H) C B, C U a_sK,(n).
0<s<l1 0<s<l1

Moreover, since n > N we have 0 <r(n+1) <r(n) <log1.01. Applying Theorem 1.3 to the left- and
right-hand sides of the above inclusion relations we get

~ 1
rin+1) log( ) L u(By) L r(n) 10g<—),

r(n+1) r(n)
which finishes the proof. O

4. The dynamical Borel-Cantelli lemma

In this section we give the proof of Theorem 1.1 based on Theorem KW. Recall that for a given function
Y [tg, 00) — (0, 0o) with #y > 1 fixed, we say a real number x € R is {-Dirichlet if the system of
inequalities

lgx —pl <¢ (1) and |q| <t

has a solution in (p, q) € Z x (Z ~. {0}) for all sufficiently large . Let us denote by D () the set of all

Y-Dirichlet numbers. Theorem KW gives a zero-one law for the Lebesgue measure of D () as follows:

if ¥ : [tg, 0c0) — (0, 00) is a continuous, nonincreasing function satisfying (1-6) and (1-7), then the series

(1-8) diverges (resp. converges) if and only if the Lebesgue measure of D(y) (resp. of D()°) is zero.
For our purpose, we prove the following slightly modified version of Dani correspondence.

Lemma 4.1. Let ¢ : [ty, 00) — (0, 00) be a continuous, nonincreasing function satisfying (1-6) and
(1-7). Then there exists a unique continuous, nonincreasing function

logty  log (%)

r=ry :[s0,00) = (0,00), wheresy=

2 2
such that
the function s — s +r(s) is nondecreasing, 4-1)
and
V() = forall s > sp. 4-2)

Conversely, given a continuous, nonincreasing function r : [sg, 00) — (0, 00) satisfying (4-1), then there
exists a unique continuous, nonincreasing function yr =, : [ty, 00) = (0, 00) with tg = e~ satisfying
(1-6), (1-7) and (4-2). Furthermore, if we assume lim,_, » t W (t) = 1 (or equivalently, lim;_, oo r(s) = 0),
then the series in (1-8) diverges if and only if the series

1
3 ) log<m> (4-3)

n
diverges.

Proof. The correspondence between ¥ = v, and r = ry, follows from the exact same construction
as in [Kleinbock and Margulis 1999, Lemma 8.3], where ¥/(-) and r(-) determine each other with
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the relations
EY@)=e " =e5t,

with s and ¢ satisfying s = (log?)/2 — (log ¥ (¢))/2. The only difference is that here we require the two
extra assumptions (1-6) and (1-7) on ¢ which are respectively equivalent to the assumptions that (- ) is
nonincreasing and r( - ) is positive. We refer the reader to [Kleinbock and Margulis 1999, Lemma 8.3]
for more details about this correspondence.

For the furthermore part, first we claim that the series in (1-8) diverges if and only if the integral

© —(1 =ty @) log(l —tyr(t
/ ( Y (1)) log( V(1)) dt (4-4)
to t
diverges. It suffices to show the function G(¢) := —log(1 — ¢t (¢))(1 — ¥ (¢)) is eventually nonincreas-

ing in 7. Note that the function T +— —T log T is strictly increasing on the interval (0, e~ '). Since
lim; oot (¢) = 1 and ¢t (t) < 1 for all ¢ > 1y, there exists some Ty > fy such that for all ¢+ > Ty,
0<1—1ty(t) <e\. Moreover, together with the assumption (1-6) we get that G(¢) is nonincreasing
in ¢ for any T > Ty, finishing the proof the claim. Next, since r(-) is positive and nonincreasing, we
have 0 < r(s) < r(sg). Thus there exist constants 0 < ¢; < ¢, such that for all s > sg and all r > 1y with
s = (logt)/2 — (log ¥ (t))/2 we have

cr(s) <l—ty @) =1—e29 <cor(s).

This also implies

—log(1 —1yr(r)) = —log(r(s)) + Oc, ¢, (1) =cy e, —log(r(s)),

where for the second estimate we used that lim;_, o 7 (s) = 0. Moreover, since r( - ) is nonincreasing and
continuous, it is differentiable at Lebesgue almost every s € R, and we denote by r'(s) its derivative at
se R whenever it exists. Using the relation t = ") we get dt/t = (1 —r'(s)) ds for Lebesgue almost
every s € R. We thus have

/00 —(1 =19 (1)) log(1 — 19/ (1))
T t

o]

dt <¢, ¢, /00 —r(s) log(r(s))(l—r’(s)) dsxf —r(s)log(r(s))ds,

S0 S0

where for the second estimate we used that 1 < 1 — r/(s) < 2 for Lebesgue almost every s € R which
comes from the assumption (4-1) and that (- ) is nonincreasing. Finally, we conclude the proof by noting
that the integral fs zo —r(s)log(r(s)) ds diverges if and only if the series ) —r(n)log(r(n)) diverges
since limg_, oo 7(s) = 0 and r(-) is nonincreasing, which imply that the function s — —r(s) log(r(s)) is
eventually nonincreasing in s. O

As mentioned in the Introduction, we have the following dynamical interpretation of -Dirichlet
numbers.

Lemma 4.2 [Kleinbock and Wadleigh 2018, Proposition 4.5]. Let i : [tg, 00) — (0, 00) be a continuous
and nonincreasing function satisfying (1-6) and (1-7). Let r =ry, be as in Lemma 4.1. Then x € D()¢
if and only if

asAx € K,y for an unbounded set of s, 4-5)
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where ag; = diag(e®, e™*) and

lx 2
Ax_<0 I)Z eX

Combining Theorem KW with Lemmas 4.1 and 4.2, we immediately have the following zero-one law.

are as before.

Proposition 4.3. Let r : [sg, 00) — (0, 00) be continuous, nonincreasing, satisfying (4-1) and such that
limg_, oo 7(s) = 0. Then (4-5) holds for Lebesgue almost every (resp. almost no) x € R provided that the
series (4-3) diverges (resp. converges).

To connect the above proposition with the corresponding property of almost every A € X, we need an
auxiliary lemma, which borrows some ideas from the work [Kleinbock and Rao 2019] of the first author
with Anurag Rao.

Lemma 4.4. Let r(-) be as in Proposition 4.3. For any ¢ € R and A > 0 let
rea(s):=r(s+c) — pe 26t
and define
D.; ={xeR|asA, € K, ;s for an unbounded set of s}.

If the series (4-3) diverges, then the set

D:= ﬂ ﬂ D,
ceRA>0
has full Lebesgue measure.

Remark 4.5. We note that by our assumption r, ;(-) is not necessarily always positive, and the set
K., (s) is empty whenever r. 5 (s) is negative.

Proof of Lemma 4.4. For any function f : [s7, 00) — (0, 00) with sy > 1 we define

Ao s i={x € R|asA, € Ky for an unbounded set of s > s}

1
Np:=> f(n) 1og<m).

nZSf

and

First we note that the divergence of the series N, is equivalent to the divergence of the series N,/ for
any ¢ € R, where r.(s) :=r(s +c) =r.0(s). Moreover, it is clear that (r./2)( - ) satisfies the assumptions
in Proposition 4.3. Thus, by Proposition 4.3, if the series N, diverges, then the set A /2 is of full
Lebesgue measure for any ¢ € R. On the other hand, for any ¢ € R and A > 0 let £, ;(s) = Ae ™26+ Tt
is easy to check that f ;[ o) satisfies the assumptions in Proposition 4.3 with

log(2h) . 1}

Sep = max{

and the series Ny, , converges for any ¢ € R and A > 0. Thus by Proposition 4.3 the set Ay, , is of zero
Lebesgue measure for any ¢ € R and A > 0. Define

A= ﬂ Acory2 and A:= U U Ao fo)

ceR ceRA>0
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We note that since r(-) is nonincreasing, for any ¢; < ¢, we have r¢, /2 > r., /2 implying Ao ¢,/2 C
Aoo,rq/Z- Hence the family of sets {Ax ;. /2}cer 1s nested and A =limq_ o Aco,r.2 18 of full Lebesgue
measure. Similarly, the family of sets {Aw, 1., }cer 2>0 1S also nested and the set

A= lim lim Ay,

c——00 A—00 ’

is of zero Lebesgue measure. Thus the set A \. A is of full Lebesgue measure and it suffices to show that
A~ A C D. That is, for any x € A ~. A we want to show that for any ¢ € R and any A > 0 the events
asAx € K, (s) happen for an unbounded set of s. First we note that x € A means that for any ¢ € R
there exists an unbounded subset S. C R such that a; A, € K, (5)/2 for any s € S.. Secondly, we note that
x ¢ A means that for any ¢ € R and A > 0 there exists some constant 7 5 > 0 such that for any s > T, ;
we have a; A, € A‘l(fm(s), 00). In particular, for any s € S, N (T¢ ,, 00) we have

re(s)

fc,k(s) < A(asAx) = )

This implies

P I I ) =)

for any s € S, N (T, 0o0). Finally, we finish the proof by noting that since S, is unbounded, the set
S N (T¢,5, 00) is also unbounded. O

0 < AfasAyx) <

We can now give:

Proof of Theorem 1.1. The convergent case follows directly from Corollary 1.4 and the classical Borel—
Cantelli lemma, and we thus only need to prove the divergent case. Let r : [sg, 00) — (0, 00) be
continuous, nonincreasing, satisfying (4-1) and such that the series (4-3) diverges; we want to show
that (Bs) = 1. First we note that we can assume limg_, , 7(s) = 0, since otherwise the result would
follow from the ergodicity of the flow {a;}s-~0 on X. Let D := ﬂceR N 2=0 De, be as in Lemma 4.4 and
define B C X such that

B={<Z a(_)l)AxeX‘be[R{,a>0,xeD}.

We note that by Lemma 4.4 the set D has full Lebesgue measure. Thus the set B C X is also of full
measure (with respect to ) and it suffices to show that B C B First, by direct computation for

a O
A:(b a_1>AxeB

1 0
asA = (€2Sa1b 1) aHlOgan. (4-6)

_ (10
I/ly—yl.

we have

Next, for any y € R let
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Note that for any v € R?, we have ||uy_v|| < (Jyl+ D|lv||. This implies that for any A € X
|AGuy A) — A(A)| = Tog(1 +y]).
Using the above inequality, the relation (4-6), and the inequality log(1 + x) < 2x for all x > 0, we get
|A(asA) = Aastiogalda)] < 2a~ble ™.

Since x € D for any ¢ € R and any A > 0 we have a, A, € K,_, (5) for an unbounded set of s. In particular,
taking ¢ = —loga, A =2a~'|b| we get

0 < A(agA) < A(ag_cAy) +re ™ <re;(s—c)+re 2 =r(s)

for an unbounded set of s, finishing the proof. O

Acknowledgements

The authors would like to thank Anurag Rao, Nick Wadleigh and Cheng Zheng for many helpful conver-
sations. Thanks are also due to the anonymous referee for a quick and careful report.

References

[Athreya 2009] J. S. Athreya, “Logarithm laws and shrinking target properties”, Proc. Indian Acad. Sci. Math. Sci. 119:4
(2009), 541-557. MR Zbl

[Athreya and Konstantoulas 2016] J. S. Athreya and 1. Konstantoulas, “Discrepancy of general symplectic lattices”, preprint,
2016. arXiv

[Athreya and Margulis 2009] J. S. Athreya and G. A. Margulis, “Logarithm laws for unipotent flows, I, J. Mod. Dyn. 3:3
(2009), 359-378. MR Zbl

[Cassels 1997] J. W. S. Cassels, An introduction to the geometry of numbers, Springer, 1997. MR Zbl

[Chernov and Kleinbock 2001] N. Chernov and D. Kleinbock, “Dynamical Borel-Cantelli lemmas for Gibbs measures”, Israel
J. Math. 122 (2001), 1-27. MR Zbl

[Dani 1985] S. G. Dani, “Divergent trajectories of flows on homogeneous spaces and Diophantine approximation”, J. Reine
Angew. Math. 359 (1985), 55-89. MR Zbl

[Davenport and Schmidt 1970a] H. Davenport and W. M. Schmidt, “Dirichlet’s theorem on diophantine approximation”, pp.
113-132 in Symposia Mathematica, IV (Rome, 1968/69), Academic Press, London, 1970. MR Zbl

[Davenport and Schmidt 1970b] H. Davenport and W. M. Schmidt, “Dirichlet’s theorem on diophantine approximation, II”,
Acta Arith. 16 (1970), 413-424. MR Zbl

[Fairchild 2019] S. K. Fairchild, “A higher moment formula for the Siegel-Veech transform over quotients by Hecke triangle
groups”, preprint, 2019. arXiv

[Kelmer and Yu 2019] D. Kelmer and S. Yu, “The second moment of the Siegel transform in the space of symplectic lattices”,
Int. Math. Res. Not. (online publication February 2019).

[Kleinbock and Margulis 1999] D. Y. Kleinbock and G. A. Margulis, “Logarithm laws for flows on homogeneous spaces”,
Invent. Math. 138:3 (1999), 451-494. Correction in 211:2 (2018), 855-862. MR Zbl

[Kleinbock and Rao 2019] D. Kleinbock and A. Rao, “A zero-one law for uniform Diophantine approximation in Euclidean
norm”, preprint, 2019. arXiv

[Kleinbock and Wadleigh 2018] D. Kleinbock and N. Wadleigh, “A zero-one law for improvements to Dirichlet’s theorem”,
Proc. Amer. Math. Soc. 146:5 (2018), 1833-1844. MR Zbl

[Lang 1975] S. Lang, SL;(R), Addison-Wesley, Reading, MA, 1975. MR Zbl


http://dx.doi.org/10.1007/s12044-009-0044-x
http://msp.org/idx/mr/2647198
http://msp.org/idx/zbl/1184.37004
http://msp.org/idx/arx/1611.07146
http://dx.doi.org/10.3934/jmd.2009.3.359
http://msp.org/idx/mr/2538473
http://msp.org/idx/zbl/1184.37007
http://msp.org/idx/mr/1434478
http://msp.org/idx/zbl/0866.11041
http://dx.doi.org/10.1007/BF02809888
http://msp.org/idx/mr/1826488
http://msp.org/idx/zbl/0997.37002
http://dx.doi.org/10.1515/crll.1985.359.55
http://msp.org/idx/mr/794799
http://msp.org/idx/zbl/0578.22012
http://msp.org/idx/mr/0272722
http://msp.org/idx/zbl/0226.10032
http://dx.doi.org/10.4064/aa-16-4-413-424
http://msp.org/idx/mr/279040
http://msp.org/idx/zbl/0201.05501
http://msp.org/idx/arx/1901.10115
http://dx.doi.org/10.1093/imrn/rnz027
http://dx.doi.org/10.1007/s002220050350
http://msp.org/idx/mr/1719827
http://msp.org/idx/zbl/0934.22016
http://msp.org/idx/arx/1910.00126
http://dx.doi.org/10.1090/proc/13685
http://msp.org/idx/mr/3767339
http://msp.org/idx/zbl/06846904
http://msp.org/idx/mr/0430163
http://msp.org/idx/zbl/0311.22001

122 DMITRY KLEINBOCK AND SHUCHENG YU

[Maucourant 2006] F. Maucourant, “Dynamical Borel-Cantelli lemma for hyperbolic spaces”, Israel J. Math. 152 (2000),
143-155. MR Zbl

[Randol 1970] B. Randol, “A group-theoretic lattice-point problem”, pp. 291-295 in Problems in analysis (papers dedicated
to Salomon Bochner, 1969), 1970. MR Zbl

[Rogers 1955] C. A. Rogers, “Mean values over the space of lattices”, Acta Math. 94 (1955), 249-287. MR Zbl

[Schmidt 1960] W. M. Schmidt, “A metrical theorem in geometry of numbers”, Trans. Amer. Math. Soc. 95 (1960), 516-529.
MR Zbl

[Schmidt 1980] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, 1980. MR Zbl
[Siegel 1945] C. L. Siegel, “A mean value theorem in geometry of numbers”, Ann. of Math. (2) 46 (1945), 340-347. MR Zbl

[Sullivan 1982] D. Sullivan, “Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for
geodesics”, Acta Math. 149:3-4 (1982), 215-237. MR Zbl

[Veech 1998] W. A. Veech, “Siegel measures”, Ann. of Math. (2) 148:3 (1998), 895-944. MR Zbl

[Wood 1992] D. C. Wood, “The computation of polylogarithms”, technical report 15-92*, University of Kent, Computing
Laborabory, 1992, available at https://www.cs.kent.ac.uk/pubs/1992/110/content.pdf.

Received 2 Oct 2019. Revised 30 Dec 2019.

DMITRY KLEINBOCK:

kleinboc @brandeis.edu

Department of Mathematics, Brandeis University, Waltham, MA, United States
SHUCHENG YU:

yushucheng @campus.technion.ac.il
Department of Mathematics, Technion, Haifa, Israel

MJCNT — published in partnership with the :.
Moscow Institute of Physics and Technology msp


http://dx.doi.org/10.1007/BF02771980
http://msp.org/idx/mr/2214457
http://msp.org/idx/zbl/1129.53057
http://msp.org/idx/mr/0347757
http://msp.org/idx/zbl/0212.07002
http://dx.doi.org/10.1007/BF02392493
http://msp.org/idx/mr/75243
http://msp.org/idx/zbl/0065.28201
http://dx.doi.org/10.2307/1993571
http://msp.org/idx/mr/117222
http://msp.org/idx/zbl/0101.27904
http://msp.org/idx/mr/568710
http://msp.org/idx/zbl/0421.10019
http://dx.doi.org/10.2307/1969027
http://msp.org/idx/mr/12093
http://msp.org/idx/zbl/0063.07011
http://dx.doi.org/10.1007/BF02392354
http://dx.doi.org/10.1007/BF02392354
http://msp.org/idx/mr/688349
http://msp.org/idx/zbl/0517.58028
http://dx.doi.org/10.2307/121033
http://msp.org/idx/mr/1670061
http://msp.org/idx/zbl/0922.22003
https://www.cs.kent.ac.uk/pubs/1992/110/content.pdf
mailto:kleinboc@brandeis.edu
mailto:yushucheng@campus.technion.ac.il
https://mipt.ru/english/
http://msp.org

Moscow Journal of Combinatorics and Number Theory
Vol. 9, No. 2, 2020

https://doi.org/10.2140/moscow.2020.9.123

Algebraic cryptanalysis and new security enhancements

Vitalii Roman’kov

We briefly discuss linear decomposition and nonlinear decomposition attacks using polynomial-time de-
terministic algorithms that recover the secret shared keys from public data in many schemes of algebraic
cryptography. We show that in this case, contrary to common opinion, typical computational security
assumptions are not very relevant to the security of the schemes; i.e., one can break the schemes without
solving the algorithmic problems on which the assumptions are based. Also we present another and in
some points similar approach, which was established by Tsaban et al.

Before demonstrating the applicability of these two methods to two well-known noncommutative
protocols, we cryptanalyze two new cryptographic schemes that have not yet been analyzed.

Further, we introduce a novel method of construction of systems resistant against attacks via linear
algebra. In particular, we propose improved versions of the well-known Diffie—-Hellman-type (DH) and
Anshel-Anshel-Goldfeld (AAG) algebraic cryptographic key-exchange protocols.

1. Introduction

In [Roman’kov 2013a], the author introduced a method of linear decomposition applicable in algebraic
cryptanalysis. This method was further developed in [Myasnikov and Roman’kov 2015]; see also [Ro-
man’kov 2013b; 2018a; 2018b]. In [Roman’kov 2016], this method was supplemented by a nonlinear
decomposition method; see also [Roman’kov 2018b]. These methods can be applied for obtaining secret
keys without computing private parameters or solving algorithmic problems on which the protocols are
based. These applications are called linear and nonlinear decomposition attacks respectively. They
are deterministic, provable and polynomial-time. These methods were widely applied in cryptanalysis
of dozens of protocols of algebraic cryptography; see [Roman’kov 2018b]. The linear decomposition
attack can be applied to protocols based on matrix groups over arbitrary (finite or infinite) fields. The
nonlinear decomposition attack is applicable to protocols based on groups that are not necessary matrix,
or do not use matrix representations. See details in [Roman’kov 2016; 2018b].

B. Tsaban [2015] introduced a method for obtaining provable polynomial-time solutions of problems
in noncommutative algebraic cryptography called the linear span-method, or simply the span-method,
see also [Ben-Zvi et al. 2018]. This method is probabilistic and is a fundamental base for algebraic span
cryptanalysis, a general approach for provable polynomial-time solutions of computational problems in
groups of matrices over finite fields, and thus in all groups with efficient matrix representations over finite
fields. This approach is widely applicable; in particular, it is applicable to the AAG protocol. Algebraic

This work was supported by the Mathematical Center in Akademgorodok under agreement no. 075-15-2019-1613 with the
Ministry of Science and Higher Education of the Russian Federation.
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span cryptanalysis improves upon earlier approaches, such as Cheon—Jun’s method [2003] and Tsaban’s
linear centralizer method [2015].

We will not describe these methods in detail, but we will give a couple of examples of how these
methods can be applied. Some of these applications, namely to the DH and to the AAG protocols, were
previously presented in the literature. We present them here because we propose improved versions of
them. There are exactly two new applications: one of them to cryptanalysis of the ElIGamal-type version
of the cryptosystem MOR introduced in [Bhunia et al. 2019], and the other to the cryptosystem proposed
in [Baba et al. 2011].

A different probabilistic attack on the braid group cryptosystems is the length-based attack. The
length-based attack on AAG protocol was initially proposed by J. Hughes and A. Tannenbaum [2002].
A. D. Myasnikov and A. Ushakov [2007] showed that accurately designed length-based attack can suc-
cessfully break a random instance of the simultaneous conjugacy search problem for certain parameter
values and argued that the public/private information chosen uniformly random leads to weak keys. This
attack can be applied to other groups too. See [Garber et al. 2006; Hofheinz and Steinwandt 2002;
Hughes 2002; Myasnikov et al. 2005; 2006].

The presence of effective methods of linear algebra in algebraic cryptanalysis requires the development
of tools to counter these methods. Section 7 presents such tools. Their use makes some well-known
schemes protected against attacks by the linear algebra methods. As examples of such protection, we
provide improved versions of the DH and AAG algebraic cryptographic key-exchange protocols.

Throughout we use the following notation:

7, the set of integer numbers.
« N, the set of nonnegative integer numbers.
» S, the symmetric group of degree n.
e g" =hgh™', conjugate.
e [g,h]=ghg 'h~!, commutator.
For a group G, we have:
o G’, commutant (derived subgroup).
e Ci(A), centralizer of A in G.
» Aut(G), automorphism group.

2. Mathematical background for the linear algebra methods

Let [ be a field and M(n, [F) be the set of n x n matrices with entries in F. For a set § C M(n, [F), let
Alg(S) be the algebra generated by S, that is, the smallest algebra A € M(n, ) that contains S as a
subset. Every subalgebra of M(n, [) is also a vector space over the field F. Let GL(n, F) be the group
of invertible matrices in M(n, ). For a subgroup G < GL(n, F), we have Alg(G) = span(G), where
span(G) is the vector space spanned by G.

Proposition 2.1 [Ben-Zvi et al. 2018, Proposition 1]. Let G = gp(g1, - .-, g&) < GL(n, F) be a group,
and d < n? be the dimension of the vector space Alg(G). A basis for the vector space Alg(G) can be
computed using O (kd*n?) field operations.
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Lemma 2.2 (invertibility lemma [Tsaban 2015, Lemma 9]). For a finite field F, of order q, let hy, ..., hy €
M(n, Fy) such that some linear combination of these matrices is invertible. If oy, ..., oy, are chosen
uniformly and independently from [, then the probability that the linear combination a1hy + - - -+ aphp,
is invertible is at least 1 —n/q.

Let V be a finite-dimensional vector space over a field F with basis B = {vy, ..., v,}. Let End(V)
be the semigroup of endomorphisms of V. We assume that elements v € V are given as vectors relative
to BB, and endomorphisms a € End(V') are given by their matrices relative to B. For an endomorphism
a € End(V) and an element v € V we denote by v* the image of v under a. Also, for any subsets W C V
and A € End(V) we put WA ={w:w e W,ae A}. We assume that elements of the field F are given in
some constructive form and the “size” of the form is defined. Furthermore, we assume that the basic field
operations in [ are efficient; in particular they can be performed in polynomial time in the size of the
elements. In other words, F is constructive. For an element o € | we write |«| for the size of @ and put
|v] = max{|e;|} for a vector v = (ay, ..., ) € V, and |a| = max{|e;;|} for a matrix a = (¢;;) € End(V).

Lemma 2.3 (principal lemma [Myasnikov and Roman’kov 2015, Lemma 3.1]). There is an algorithm
that for given finite subsets W C V and U C End(V) finds a basis of the subspace span(WS™(U)) in
the form {wi”, ..., wi"}, where w; € W and a; € sm(U). Here sm(U) denotes the submonoid generated
by U. Furthermore, the number of field operations used by the algorithm is polynomial in r = dim(V)
and the cardinalities of W and U. The total estimate is O (r3|U|? +r|W|?).

3. Cryptanalysis of two schemes of Baba et al. by the linear algebra methods

In [Baba et al. 2011], S. Baba, S. Kotyada and R. Teja demonstrated how to define a supposedly one-way
function FACTOR in a noncommutative group. As an example of a platform for implementing FACTOR,
they proposed one of the groups, such as GL(n, F,), UT(n, F,) or braid groups B,, n € N. Here [,
denotes a finite field of order q.

They believed that the function FACTOR was one-way, which means that the inverse to FACTOR
is easy to compute, while the function itself is hard to compute. Shortly afterwards Stanek [2011]
published an extension of the baby-step giant-step algorithm disproving this conjecture. Note that the
baby-step giant-step methods are limited in practice because of memory requirements. In [Romsy 2011]
a modification of Pollard’s kangaroo algorithm was presented that solves the FACTOR problem requiring
only negligible memory. Anyway these methods have very complicated implementations. We will show
that the linear algebra approach is much simpler and more efficient. At the same time, this will be an
example of using the methods presented.

Then, using the FACTOR function as a primitive, the authors of [Baba et al. 2011] defined a public
key cryptosystem which is comparable to the classical ElGamal system based on the discrete logarithm
problem. Recall, that the ElGamal system can be described as follows: Let G be a public finite cyclic
group with generator g, and let x € Z be Alice’s private key. The element g* is public. To send a message
m € G, Bob picks a random integer y and sends the ciphertext ¢ = (g, g*”m) to Alice. To decrypt, Alice
calculates (g”)* = g™ and inverts it to retrieve m. There are a couple of cryptosystems of ElGamal-type.
See, for example, [Kahrobaei and Khan 2006; Fine et al. 2016]. The versions proposed in [Mahalanobis
2008; 2012] were analyzed in [Roman’kov and Obzor 2018]. See also cryptanalysis in [Roman’kov
2018b].
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In [Baba et al. 2011], the authors also proposed a key exchange, analogous to the DH key exchange
protocol in a noncommutative setting using FACTOR. Recall, that the classical DH protocol can be
described as follows: Let G be a public finite cyclic group with generator g, and let x € Z be Alice’s
private key and y € Z be Bob’s private key. Alice publishes g* and Bob publishes g”. Then each of them
computes the exchanged key g*” = (g*)” = (g”)*

In this paper, we apply and compare two methods of algebraic cryptanalysis via linear algebra, namely,
the linear decomposition method invented and developed by the author in [Roman’kov 2013a; 2013b;
2018b] and in [Myasnikov and Roman’kov 2015], and the span-method invented by B. Tsaban and
developed with A. Ben-Zvi, and A. Kalka [Tsaban 2015; Ben-Zvi et al. 2018] to show the vulnerability
of the cryptosystem and protocol proposed in [Baba et al. 2011].

3A. The ElGamal-type cryptosystem based on FACTOR [Baba et al. 2011]. Let G be any group and let
g, h € G be two noncommuting elements chosen by Alice. Let gp(g) and gp(h) be the cyclic subgroups
generated by these elements, respectively. In order to define the FACTOR function one assume that
gp(g) Ngp(h) = {1}. Let ¢ : gp(g) x gp(h) — G be a function defined by ¢(g*, h”) = g* - h”, where
x,y € Z. Obviously, ¢ is injective. Then FACTOR (g*hY) = ¢~ !(g*h?).

We suppose that Alice is the recipient of the messages and Bob is communicating with Alice. Let
m € G be a message.

Algorithm. e Alice picks arbitrary random integers x, y € Z and sets a public key (G, g, h, g*h”).
Alice has a private key (g*, h”) for decryption.

« To send m, Bob picks arbitrary random private integers x’, y" and sends the ciphertext
c= (@Y ¢ h¥m)
to Alice.

» To decrypt the ciphertext, Alice uses her private key and calculates
) @R HB) T =g h
Then she inverts it to retrieve m.

The authors of this scheme hoped that the security of the cryptosystem described above reduces to
solving FACTOR problem in the underlying group. Below we will show that the system is vulnerable to
linear algebra attacks.

3B. Cryptanalysis of the ElGamal-type cryptosystem based on FACTOR. We will show that any in-
truder can efficiently retrieve m.
First we will use the span-method.

Theorem 3.1. Suppose that G is a finite group presented as a matrix group over a finite field [, of
order q;ie., G <M(n, ;). Let g, h € G be two noncommuting elements such that gp(g) Ngp(h) = {1}.
Given g*h”, g"ﬂ/hyﬂ/ € G, where x,x',y,y' €N, one can find in polynomial time (in the size of the
public data) the element gx/hy i
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Proof. Let V = span(gp(g)) be the linear subspace of M(n, [,) generated by all matrices of the form g,
i € Z. Then dim(V) < n — 1. Since g is the root of its characteristic polynomial of degree n, ma-
trices 1, g, g2, ..., g" are linearly dependent. Obviously, if g“¥*! lies in span({1, g, g2, ..., g*}), then
gkt g espan({l, g%, ..., gX}) forevery t =2,3, . ...

By the Gaussian elimination method, we can efficiently construct a basis for V. For example, we can
take as a basis the maximum independent set of elements of the form 1, g, g2, ..., g%, checking for each
subsequent / =0, 1, ... whether or not g“rl lies in span({1, g, gz, R gl}).

Consider the equation

f(&*hW)h=hf(g"h") ~ fg"h=hfg", )]

which is linear with respect to n> unknown entries of matrix f. We will seek f in the form
k
f=Y wgh
i=0

i.e., we seek a solution f in V. We know that there is a nondegenerate solution f = g~*. By Proposition 2.1
we can efficiently construct a basis ey, ..., e, of the subspace of all solutions of (1) in V. Then we apply
the invertibility lemma, Lemma 2.2 to find an invertible solution f.

Let the element f be found. Then

@R =g (F@ DR = (g 1) f(g5h?)

and

/

1) f )R T =g R O
Now we apply the result just obtained to the protocol under consideration.

Corollary 3.2. We have
& n) g h m) =m,

and the message m is thus computed.

Now we will show how, using the linear decomposition method, we can calculate the message m for
an arbitrary constructive field by a deterministic algorithm.

Theorem 3.3. Let G < M(n, F) be a matrix group over an arbitrary (constructive) field F. Let g, h € G
be two noncommuting elements such that gp(g) N gp(h) = {1} and m € G. Given the elements
gEhY, gt Y g Y m e G, where x,x',y,y € 7, one can find in polynomial time (in the
size of the public data) the element m.

Proof. Let V = span(gp(g)g*h” gp(h)) be the linear subspace of M(n, F) generated by all matrices of
the form g’ (¢*h*)h’, i, j € Z. Then dim(V) < (n — 1)2. In the notation of Lemma 2.3, V = W™(U),
W ={g*h’}, U =sm(l(g*', r(h*")), where for any f € G, I(f) means the endomorphism of M(n, )
corresponding to left-sided multiplication by f. Similarly r(f) means the endomorphism of M(n, F)
corresponding to right-sided multiplication by f.

By Lemma 2.3, we can efficiently obtain a basis ¢; = g (g*h>)h", u;,vieZ,i=1,...,r of V.
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. /o vay . . .
Since, g*™ h?*Y € V, by Lemma 2.3 we can efficiently obtain an expression of the form
r
!’ /
g Yty =Zoz,-el~, aelF,i=1,...,r 2)

i=1

The right side of (2) is equal to
-
g (Z oa-g"fh”f)hy, 3)
i=1
and it follows by (2) that
,
gJC/hyr _ Zaiguihvi' (4)
i=1

The message m is retrieved as above. ]

Remark 3.4. Recall that the authors of [Baba et al. 2011] suggest as a platform for their cryptosystem
one of the groups GL(n, F,), UT(n, [,), or braid groups B,, n € N. In our cryptanalysis, we consider
only matrix groups. Any group B, admits a faithful matrix representation [Bigelow 2001; Krammer
2002]. The braid group B, is linear via the so-called Lawrence—Krammer (LK) representation B, —
GL(m, Z[t*', 1/2]), where m = n(n — 1)/2, which is injective. The LK representation can be computed
by a polynomial-time algorithm. This representation is also invertible by (similar) polynomial-time
algorithm; see [Krammer 2002; Cheon and Jun 2003].

3C. The DH key exchange protocol based on FACTOR [Baba et al. 2011] as a particular case of the
protocol in [Sidelnikov et al. 1993]. Suppose Alice and Bob want to exchange keys. Suppose G, g, h
are as in Section 3A.

Algorithm 1.  « Alice chooses a random pair of integers (xi, y;). Then Alice sends the element g*! h!
to Bob.

» Bob picks up two random integers (x;, y»). Then Bob sends the element g*24Y2 to Alice.
o Alice computes K4 = g1 (g"2h>2)h = g*1T2pi+2,

 Bob computes Kp = g*2(g"1h)h2 = ghitzpnti,

o Now Alice and Bob have their exchanged secret key K1 = K4 = Kp.

This algorithm is a particular case of the following algorithm of [Sidelnikov et al. 1993].
Let G be a group, A and B two of its commutative subgroups, and g € G. This data is public.

Algorithm 2.  « Alice chooses a random pair of elements (a, b) € A x B. Then Alice sends the
element agb to Bob.

 Bob picks up two random elements (a’, »’') € A x B. Then Bob sends the element a’gb’ to Alice.
o Alice computes K4 = aa’gb'b.

o Bob computes Kg = a’agbb’.

» Now Alice and Bob have their exchanged secret key K» = K4 = Kp.
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3D. Cryptanalysis the DH key exchange protocols presented above. Now we will apply the linear de-
composition method to reveal K.

Theorem 3.5. Let G < M(n, F) be a matrix group over an arbitrary constructive field F. Let g € G and
let A=gp(ai,...,an), B=gp(bi,...,bs) be two finitely generated subgroups of G. Given agb, a’gb’,
where a,a’ € A, b,b’ € B, one can find in polynomial time (in the size of the public data) the element
aa’gbb'.
Proof. Let V = span(Ag B) be the linear subspace of M(n, F) generated by all matrices of the form ugv,
ueA, veB. Thendim(V) < (n — 1)
In the notation of Lemma 2.3, V = WS™(U), where W ={g}, U = sm(l(aiil), r(bjxl)), i=1,...,m,
j=1,...,s. Lete; =u;gv; i =1,...,r, be abasis of V that can be efficiently obtained by Lemma 2.3
Since, agb € V, we can efficiently obtain an expression of the form

p
agb:Zaiei, o elfF,i=1,...,r ®))
i=1
Then
> ajui(d'gh)yvi = a(z oe,-ei>b’ =aa'gbb/, (6)
i=1 i=1
completing the proof. O

Corollary 3.6. Each of the keys K| and K, of Algorithms 1 and 2 can be efficiently calculated in poly-
nomial time (from the size of the public data of the algorithms).

The described cryptanalysis has many analogues, presented in [Roman’kov 2013a; 2013b; 2016;
2018a; 2018b; 2019a; Ben-Zvi et al. 2018; Tsaban 2015]. In [Roman’kov 2018a], a general scheme
based on multiplications is presented. It corresponds to a number of cryptographic systems known in the
literature, which are also vulnerable to attacks by the linear decomposition method. Note that Tsaban’s
span-method allows him to show the vulnerability of the well-known schemes of [Anshel et al. 1999],
and the triple decomposition key exchange protocol of [Peker 2014].

4. Cryptanalysis of a new version of the MOR scheme

S. Bhunia, A. Mahalanobis, P. Shinde and A. Singh [Bhunia et al. 2019] studied the ElGamal-type
version of the MOR cryptosystem with symplectic and orthogonal groups over finite fields [, of odd
characteristics. The MOR cryptosystem over SL(d, ;) was previously investigated by the second of
these authors. In that case, the hardness of the MOR cryptosystem was found to be equivalent to the
discrete logarithm problem in Fq. It is shown in [Bhunia et al. 2019] that the MOR cryptosystem over
Sp(d, ¢) has the security of the discrete logarithm problem in [F,«. The MOR cryptosystem was also
studied in [Paeng et al. 2001; Mahalanobis 2015] and was cryptanalyzed in [Monico 2016].

We are to show that the version of MOR in [Bhunia et al. 2019] is not entirely accurate. It should be
supplemented with an additional assumption. The equivalence theorem there should be clarified too.

We also show that the proposed ElGamal-type version of MOR over any finitely generated matrix
group G < GL(d, ;) is vulnerable with respect to the linear decomposition attack in any case when
the automorphism ¢ can be naturally extended to a linear transformation of the linear space span(G)
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generated by G in M(d, ), for example, if ¢ is an inner automorphism. In fact, there exists an efficient
algorithm to compute the original message by its ciphertext. It can be done for every constructive field,
i.e., a field for which all operations are efficient, and the Gaussian elimination process is efficient too.

4A. The ElGamal version of the MOR cryptosystem [Bhunia et al. 2019]. Let G = gp(g1, €2, .-, &n)
be a (finite) public group and ¢ a nontrivial public automorphism of G.
Alice’s keys are as follows:

e Private key: r € N.

o Public key: {¢(g;)):i=1,...,n}and {¢'(g;)):i=1,...,n}.

We suppose that Alice is the recipient of the messages and Bob is communicating with Alice. Let m € G
be a message.

Algorithm.  « To send the message (plaintext) m Bob picks up a random integer r, then he computes
{o"(gi):i=1,...,n}and ¢ (m). The ciphertext is ({¢"(g;) :i =1, ..., n}, ' (m)).

o Since Alice knows 7, she computes ¢’ (g;) from ¢"(g;) and then ¢ ~""(g;), i = 1, ..., n. Finally,
the message m can be computed by ¢~ (¢ (m)) = m.

Remark 4.1. There is one obstacle to the implementation of the decryption process. To recover m, Alice
should compute {¢p " (g;):i =1,,n} by {¢"(g;) :i =1, ...,n} or compute it by ¢". It can be done if
she knows go_l, i.e., {(p‘l(g,-) i=1,...,n}

In the general case, the calculation of the inverse automorphism is not an obviously efficient process.
We have to assume that Alice can do it, for example, because she knows s € N such that ¢* =1id. It
happens, in particular, if she knows the order s; of ¢ or the order s, of Aut(G). Then ¢!
or s = s7). Also Alice can know ¢~ .

Alice can simultaneously build ¢ and ¢~! during the setting of parameters of the protocol.

=o' (s=4

This obstacle manifests itself more significantly in the proof of the following theorem.

Theorem [Bhunia et al. 2019, Theorem 2.1]. The difficulty in breaking the above MOR cryptosystem is
equivalent to the DH problem in the group gp(p).

Proof. Tt is easy to see that if one can break the DH problem, then one can compute ¢'" from ¢’ in the
public key and ¢" in the ciphertext. This breaks the system.

On the other hand, observe that the plaintext is m = ¢ " (¢'"(m)). Assume that there is an oracle that
can break the MOR cryptosystem, i.e., given ¢, ¢’ and a ciphertext (¢”, f) will deliver ¢ " (f). Now
we query the oracle n times with the public key and the ciphertexts (¢p"(g;), g;) fori =1, ..., n. From
the output, one can easily find ¢~""(g;) fori = 1,2, ...,n. So we just witnessed that for ¢"(g;) and
¢'(g;) fori =1, ..., n, one can compute ¢ " (f) for every f = f(g1,..., g,) using the oracle. This
solves the DH problem. O

Remark 4.2. In the first part of the proof one computes ¢'", but one needs ¢~ to compute m in the
protocol. However, it is not always easy to find the inverse. There are some cryptographic schemes based
on the complexity of the problem of finding the inverse to a given automorphism.
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4B. Cryptanalysis of the ElGamal version of the MOR cryptosystem. We propose the following crypt-
analysis that works in the case of an arbitrary (constructive) field F.

Suppose that the ElGamal-type system MOR is considered over a finitely generated matrix group
G < GL(d,F). Then G € M(d, F). Let G = gp(g1,...,&). We suppose that ¢ can be naturally
extended to a linear transformation of V = span(G) that is a linear subspace generated by G in M(d, F).
It happens for example, if ¢ is an inner automorphism of G. Note, that the case of inner automorphism ¢
is considered in [Bhunia et al. 2019] as the most significant.

To reveal m using only open protocol data, we perform the following actions.

Step 1: Let V;, i € {1,...,n}, be the subspace of V generated by all elements of the form ¢*(g;) for
k € Z. There is a basis of V; of the form e (i) = goo(gl-) =g, e2(i) =(gi), ..., e;(i) = golf—l(g,-). It
can be efficiently constructed as follows.

Initially, we include e;(i) = g; in the basis. Then we check whether ¢(g;) belongs to the linear
subspace generated by e (i). If not, then we add e, (i) = ¢(g;) to the basis under construction. Suppose
e1(i), ..., ej(i) is a constructed part of the basis. Then we check whether 0l (g) = @(e;j(i)) belongs to
the linear subspace generated by e (i), ..., e;(i). If not, then we add e; (i) = ©/ (g:) to the basis under
construction, and continue. If so, we stop the process and claim that the basis is constructed and /; = j.
Indeed, a linear presentation of ¢/ (g;) via e; (i), ..., e (i) after applying ¢ gives a linear presentation of
@/ t(g) via ex(i), ..., e (i), 9’/ (gi), and so via e (i), . . ., e;(i). This argument works for every j + v,
v > 1. Similarly we can obtain the linear decomposition of each ¢~V(g;), v > 1.

Step 2: Foreachi =1, ..., n, we have constructed a basis e (i), ..., e, (i) of V;, where e (i) = 0l (g,
j=0,...,1; — 1. Each subspace V; is ¢-invariant. In the general case, [; < d>.

In [Bhunia et al. 2019], the authors single out as the main the case of inner automorphism ¢. They
write:

The purpose of this section is to show that for a secure MOR cryptosystem over the classical
Chevalley and twisted orthogonal groups, we have to look at automorphisms that act by conjuga-
tion like the inner automorphisms. There are other automorphisms that also act by conjugation,
like the diagonal automorphism and the graph automorphism for odd-order orthogonal groups.
Then we argue what is the hardness of our security assumptions.

Then they note that by the Dieudonné theorem, ¢ = oty 0, where o is a central automorphism, ¢
is an inner automorphism, 7 is a diagonal automorphism, y is a graph automorphism, and 6 is a field
automorphism.

Then they continue:

The group of central automorphisms is too small and the field automorphisms reduce to a
discrete logarithm in the field F,. So there is no benefit of using these in a MOR cryptosystem.
Also there are not many graph automorphisms in classical Chevalley and twisted orthogonal
groups other than special linear groups and odd-order orthogonal groups. In the odd-order
orthogonal groups, these automorphisms act by conjugation.

Recall that our automorphisms are presented as actions on generators. It is clear [Maha-
lanobis 2012, Section 7] that if we can recover the conjugating matrix from the action on the
generators, the security is a discrete logarithm problem in [ 4, or else the security is a discrete
logarithm problem in quz.
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In our cryptanalysis, we assume that ¢ can be naturally extended to an automorphism of the linear
space V. This happens if ¢ is an inner or field automorphism or is induced by an inner automorphism of
GL(, IF).

We return to the above-introduced subspaces V;, i =1, ..., n. For a fixed V;, denote by ¢; the linear
map of V; induced by ¢. The matrix A(g;) in the basis E; = {e1(i), ..., e;, (i)} has the form

01 0 - --. 0
0O 0 1 O 0
Alpi) = 0 .o ... () 1 ol
0 v eer 0 1
al az --------- all

where (e, (1)) = Y0_, axer(i), o € F.

In this way, we can efficiently compute for each i the value ¢ ~!(g;) corresponding to the first row of
A((pl-)_l. So we can compute (p‘l.

Now we know the matrices A((pi)il, A((p,-)i’, A((p,-)it, i=1,...,n, and we need to calculate r or ¢.
Then we can calculate ¢; " and restore m. We can provide sufficient calculations using only one or more
of the matrices above.

In [Menezes and Vanstone 1992], it was shown how the discrete logarithm problem in some special
class of matrices can be reduced to the discrete logarithm problem in some extensions of the underlying
field. In [Menezes and Wu 1997], these results were extended to show how the discrete logarithm problem
in every group GL(d, [F) can be reduced in probabilistic polynomial time to the similar problem in small
extensions of F. The case of a finitely generated nilpotent group is considered in [Roman’kov 2019b].

We see that matrix groups over finite fields offer no significant advantage for the implementation of
cryptographic protocols whose security is based on the difficulty of computing discrete logarithms.

The described cryptanalysis has many analogues, presented in [Roman’kov 2013a; Myasnikov and
Roman’kov 2015]. In [Roman’kov 2018a], a general scheme based on multiplications is presented. It
corresponds to a number of cryptographic systems known in the literature, which are also vulnerable
to attacks by the linear decomposition method. The nonlinear decomposition method was invented in
[Roman’kov 2016]. The nonlinear method can be applied when the group chosen as the platform for a
cryptographic scheme is not linear or the least degree of their representability by matrices is too big for
efficient computations. See details in [Roman’kov 2018b].

A protection against linear algebra attacks was recently invented in [Roman’kov 2019a]. It is described
in the case of the cryptographic scheme of [Anshel et al. 1999] but can be applied to the DH and some
other schemes too. See [Roman’kov 2019c; 2019d]. Further, we’ll present this protection in more detail.
This version is improved with respect to [Anshel et al. 1999].

5. Cryptanalysis of the Ko et al. and Anshel-Anshel-Goldfeld classical protocols
of algebraic cryptography

5A. Noncommutative analogues of the DH protocol. In algebraic cryptography, the following noncom-
mutative analogues of the DH protocol are considered:
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» An analogue with conjugations [Ko et al. 2000]: for a group G and an element g € G, determine by
two elements g =aga~" and g” =bgb~!, where a, b € G, ab = ba, the element g* =abga~'b~' =
bagb~'a=.

« An analogue with twoside multiplication: for a group G and an element g € G, determine by two
elements of the form aga’ and bgb’, where a, b € G, ab = ba, a’b’ = b'a’, the element abga’'b’ =
baghb'a’.

e An analogue with automorphisms: for a group G and an element g € G, determine by two elements
of the form «(g) and S(g), where «, B € Aut(G), af = Ba, the element a(B(g)) = B(x(g)).

The linear decomposition method under certain natural conditions into the group G (first of all, this
is the existence of an effective embedding in a finite-dimensional linear space) effectively solves each of
these problems.

The case of two-sided multiplication in its slightly weak form was analyzed in Section 3C. Now
we consider the case with conjugations. We will demonstrate two attacks, the first based on the linear
decomposition, and the second based on the nonlinear decomposition.

5B. The Ko et al. protocol [2000]. Let G < M(n, F) be a public matrix group over an arbitrary (construc-
tive) field [, and let g be a public element of G. Suppose that A =gp(ay, ..., ar) and B =gp(by, ..., b;)
are two pointwise commuting public subgroups of G.

Alice’s keys are as follows:

« Private key: a € A.
« Public key: g% =aga'.
Bob’s keys are as follows:
« Private key: b € B.
« Public key: g” = bgb~!.
Algorithm. o Alice sends g to Bob.
« Bob sends g’ to Alice.
« Since Alice knows a, she computes (g%)% = g* from g°.

« Since Bob knows b he computes (g%)” = g".

» Now both, Alice and Bob, know a secret key K = g“b, because ab = ba.

5C. Cryptanalysis of the Ko et al. protocol. We will apply the linear and nonlinear decomposition attacks.

Linear decomposition attack. Let V = span(g?) be the linear subspace of M(n, F) generated by all
matrices of the form g€, ¢ € A. Then dim(V) < n?.

Let ey, e, ..., e, be a basis of V that can be efficiently obtained; see [Roman’kov 2013a; 2018b;
Myasnikov and Roman’kov 2015]. Lete; = g%, c; € A, i=1,...,r.

Since, g € V, we can efficiently obtain a presentation of the form

P
g“:Zaiei, aelf,i=1,...,r @)
i=1
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Then
r r b
D wigighe i = <Z aiei> =K. ®)
i=1 i=1

The exchanged key is recovered without computing the private parameters a and . We did not solve the
underlined search conjugacy problem (to find a by g¢ or to find b by g?).

Nonlinear decomposition attack. All assumptions and algorithms are the same as above except the as-
sumption that G is a linear group. In addition we suppose that every subgroup of G is finitely generated
and the membership problem for G is efficiently decidable. For example, G is a finitely generated
nilpotent or more generally polycyclic group. See [Roman’kov 2016; 2018b] for details.

Let g4 be subgroup of G generated by all elements of the form g€, c € A. Let g; = g%, ¢; € A,
i =1,...,r, be a finite generating set of g4. We suppose that this generating set can be efficiently
constructed; see [Roman’kov 2016; 2018b] again.

Since, g% € g#, we can efficiently obtain a presentation of the form

S
g“=]_[g§;, ijefl,....r}, gelxl}, i=1,...,s. )
i=l1

Then
s S b
[ e = (1‘[ g) =K. (10)
i=1 i=1

The exchanged key is recovered without computing the private parameters a and . We did not solve the
underlined search conjugacy problem (to find a by g¢ or to find b by g?).

5D. The Anshel-Anshel-Goldfeld protocol [Anshel et al. 1999]. M. Anshel, 1. Anshel and D. Goldfeld
[Anshel et al. 1999], see also [Myasnikov et al. 2008; 2011; Roman’kov 2012], proposed a group-based
key exchange protocol that we call the AAG protocol. It works as follows.

Suppose two correspondents Alice and Bob want to exchange a key. They agree about a group G
given by a finite set of generators that is used as the platform. It is supposed that G is equipped with
an efficient normal form of its elements and the main group operations can be computed efficiently. All
the information about G, the normal form and efficient algorithms to compute products of elements, its
inversions and normal forms, is public. In particular, the word problem is efficiently solvable for G.

To exchange a key the correspondents act as follows.

Alice fixes a positive integer k and chooses a tuple of elements a = (ay, ..., a;). Bob fixes a positive
integer / and chooses a tuple of elements b = (by, ..., b;). These two tuples are public.
Algorithm. o Alice picks a private group word u =u(xy, ..., x¢); then she computes ug=u(ay, ..., ay)

and sends the tuple /"0 = (b}°, ..., b/*) to Bob.

» Bob picks a private group word v = v(yy, ..., y1); then he computes vo = v(by, ..., by) and sends
the tuple a* = (a;", ..., a;°) to Alice.

 Alice computes

—1 —1
u(afo,...,a;(jo)uo :ugouo = [vo, up].
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» Bob computes
vou(y’, ..., ")~ = vo(vg") " = [vo, o).

Now the commutator
K =vy, uol

is the secret exchanged key.

5E. Cryptanalysis of the Anshel-Anshel-Goldfeld protocol. The AAG protocol was analyzed by Tsa-
ban in [Tsaban 2015; Ben-Zvi et al. 2018]. We will give his analysis for the reader’s convenience because
we are going to present an improvement of AAG to make it resistant to such sort of attacks.

The commutator key-exchange protocol uses the Artin braid group B, n € N, as its platform group.
It was shown in [Tsaban 2015] that the problem of computing the exchanged key reduces, polynomially,
to the same problem in matrix groups over finite fields. Now let G be a matrix group and two sets
{ai, ..., ar} and {by, ..., b;} be as in the protocol. Let A = gp(ay, ..., ar) and B = gp(by, ..., b;) be
subgroups generated by these sets respectively. Also denote by Alg(A) and Alg(B) the subalgebras (and
so vector spaces) generated by A and B respectively.

The linear span-method by Tsaban works as follows:
(1) Compute bases for the vector spaces of Alg(A) and Alg(B).

(2) Solve the following homogeneous system of linear equations in the unknown matrix x € Alg(A):
bi-x:x-bfo, i=1,...,1,
a system of linear equations on the coefficients determining the matrix x, as a linear combination
of the basis of the space Alg(A).
(3) Fix a basis for the solution space, and pick random solutions until the picked solution xg is invertible.
(4) Solve the following homogeneous system of linear equations in the unknown matrix y € Alg(B):
aj-y=y~a})°, j=1,...,k,
a system of linear equations on the coefficients determining y, as a linear combination of the basis
of the space Alg(A).
(5) Fix a basis for the solution space, and pick random solutions until the picked solution yy is invertible.
(6) Output:
[xo0, Yol

It is easy to prove, see [Ben-Zvi et al. 2018], that the output is correct, i.e., [xg, yo] = [ug, vo]. That steps
(3) and (5) terminate quickly follows from the invertibility lemma, Lemma 2.2.

Remark 5.1. The linear span-method by Tsaban et al. described above is efficiently applicable to schemes
based on the intractability of the conjugacy search problem for matrix groups over finite fields. It cannot
be directly applied to schemes that use abstract groups or matrices over infinite fields groups as the
platforms.
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6. Marginal subsets

In this section we introduce a new concept that can be effectively used to improve some cryptographic
schemes, including algebraic cryptography protocols like AAG and DH. This concept formally general-
izes the well-known concept of the marginal subgroup, but it is worth noting that this generalization is
very different from the original concept.

The marginal subgroup is determined by the word, and the marginal subset is determined by the word
and its chosen value. The set of all marginal subsets is not closed under group-theoretic operations. A
marginal subset can be very wild.

Let F be a free group on a countably infinite set {x;, x, ...} and let W be a nonempty subset of F.
fw=w(x,...,x,) € Wand gy, ..., g, are elements of a group G, we define the value of the word w
at (g1,...,&n) tobe w(gy, ..., gn). The subgroup of G generated by all values in G of words in W is
called the verbal subgroup of G determined by W,

W(G) =gp(w(gi,..., &) : & €G,weW).

If W is a nonempty set of words in xq, x3, ... and G is any group, a normal subgroup N is said to be
W-marginal in G if
w(gts---»>8n) = w181, .-, Ungn)

for all w(xy,...,x,) € W, g € G, u; € N, 1 <i <n. This is equivalent to the requirement g; =
fi (mod N), 1 <i <n, always implies that w(gy, ..., g») = w(f1, ..., fu)-
In particular, for n € N, any group word w = w(xy, ..., x,) and any group G, a normal subgroup N

is said to be w-marginal in G if

w(gt, ..., &) = w181, ..., Un&n)

for all g; € G, u; € N, 1 <i <n. This is equivalent to the requirement g; = f; (mod N), 1 <i <n,
always implies that w(gy, ..., g) =w(fi, ..., fu).

Since every set of W-marginal subgroups of G generate a normal subgroup that is also marginal, there
is the maximal W-marginal (in particular w-marginal) subgroup of G denoted by W*(G) (in particular
w*(G)). See [Robinson 1982] for more details about verbal and marginal subgroups.

We introduce a new notion that significantly extends the marginality property. For simplicity we give
this notion for the case when W consists of a single word w. This notion can be easily extended to any
set W.

Definition 6.1. Forn e N, let w = w(xy, ..., x,) be a group word, G be a group and g = (g1, ..., &)
be a tuple of elements of G. We say that a tuple ¢ = (cy, ..., ¢;) € G" is a marginal tuple determined
by w and g if

w(C181s-+-sCn&n) = wW(gL, -, &n)-

We will write ¢ L w(g) in this case. A set C C G” is said to be marginal with respect to w and g, and
write C L w(g), if ¢ L w(g) for every tuple ¢ € C.

Remark 6.2. Let G be a group, w = w(xy, ..., x,) be aword and g = (g1, ..., g,) be a tuple of elements
of G. Then the following marginality properties are true for G, w and g:

(1) Each subset of a marginal set is marginal.



ALGEBRAIC CRYPTANALYSIS AND NEW SECURITY ENHANCEMENTS 137

(2) The direct power (w*)" is marginal.

(3) The component ¢; of any marginal tuple ¢ can be any element of the group G if w is independent
of x;.

(4) Theset C;, i =1, ..., n, consisting of all i-th components of all ¢ € C,is generally not closed with
respect to group operations. For example, if g; occurs in w(g) all times in the form gl.2 then any
element & € G such that > = 1 and hg; = g;h can be the i-th component of a marginal tuple ¢ with
trivial other components. But the product of two such elements . cannot be an involution and so
this product is out of C; in the general case.

(5) There are many ways to construct a marginal set. Obviously, we can even construct a nonrecursive
marginal set in the case of the infinite group G. Below we present a very simple and efficient
algorithm for constructing a marginal set using the word w.

A method for constructing the marginal set C,C L w, based on w. As we noted in Remark 6.2, the
marginal set C, C L w, is generally not closed under group operations. This set can be chosen as very
wild; for example, it can be computable, but not recursive. We are to develop various methods for
creating such sets. We also note that the proposed idea can be established as an improvement of many
other cryptographic schemes based on the insolubility of the problem of finding conjugacy in groups to
make these schemes resistant to attacks by the linear algebra methods.

Now we give a very simple and efficient algorithm for constructing the marginal set C using the
word w. This method is universal because it does not depend on the structure of G.

Letw=w(ay,...,a)=aiar---ax, a; € G, i =1, ..., k, be any expression in the straight form of
a fixed element f € G. It is possible that a; = a; or a; = aj_l for i # j. Also this expression can be
nonreduced. Consider the equation

xiayxaap - - - xpax = f. (11D

Every solution of (11) can be included in a marginal set C, C L w. We can fix i and choose any values
xj=cj, j #1i, ¢; € G. Then we obtain the solution of (11) by setting

R BT I R | 1 -1
Xi=a; ¢y cceap ¢ fag e a0 (12)

We can also generate a solution of (11) using a sequence of the following random elementary inserts.
Suppose we have a solution (cy, ..., c) of (11). For any i and any random element d € G we can change
¢ to cl/. = ciaidafl and ¢; 4 to cl/.Jrl =dc;+1. Then we get a new solution of (11). Continuing this process
with random i and d, we get a series of new solutions of (11).

Remark 6.3. In the case when G < M(n, [F) is a matrix group over [, the notion of a marginal set
can be naturally generalized to any ring-word (even to any algebra-word). Let R be a free associative
algebra on a countably infinite set {x;, x2, ...} over a field [, and let W be a nonempty subset of R. If

w=w(xq,...,x,) € Wand uy, ..., u, are elements of M = M(n, ), we define the value of the word w
at (uy,...,u,) tobe w(uy,...,u,). Let g = (g1, ..., gn) be a tuple of elements of G. We say that a
tuple c = (cy, ..., cp) € M" is a marginal tuple determined by w and g if

w(clgl7 AR ’Cngn) = w(gl’ MR gl’l)'

Other generalizations when we use the ring 7 instead of the group G or use more general operations
instead of multiplication on the left side are also possible.
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7. Improved versions of the AAG and Ko et al. cryptographic protocols

Suppose two correspondents Alice and Bob want to exchange a key. They agree about a group G given
by a finite set of generators that is used as the platform. It is supposed that G is equipped with an
efficient normal form of its elements and the main group operations can be computed efficiently. All the
information about G, the normal form and efficient algorithms to compute products of elements, their
inversions and normal forms, is public. In particular, the word problem is efficiently solvable for G.

7A. An improved version of the AAG key exchange protocol. To exchange a key the correspondents
act as follows.

Alice fixes a positive integer k and chooses a tuple of elements a = (ay, ..., ar). Then she picks up
a private group word u = u(xy, ..., x;) and computes u(a) = u(ay, ..., ar). Also she finds a marginal
set C € GX, C Lu(a).

Bob fixes a positive integer [ and chooses a tuple of elements b = (by, ..., b;). Then he picks up a
private group word v =v(yy, ..., y;) and computes v(b) =v(by,...,b). Also he finds a marginal set
DC G, D Lvb).

Alice publishes elements aj, ..., ax as arys, . . . , Az k), Wwhere m € Sy is a random permutation. The

same permutation is applied to the corresponding tuples ¢ € C.
Bob acts in the similar way.

Virtual and hidden elements. Alice can also introduce a virtual element £ that is not used in the expres-
sion for u(a). Then she add a new random component to any ¢ € C, C L w. She can add many such
components with aim to hide the length of the word «, or to hide equality (12), or choose some element &
with huge centralizer as well as with small centralizer, to make solution of the problem more difficult for
an intruder. Bob acts similarly.

Also Alice can hide some elements a; as follows. Let a; = a; and the corresponding components
ci=cjforallce C. Then Alice does not publish a ; and removes the j-component from every ¢. Bob
acts similarly.

These two operations are recommended. After these operations the parameters k and / can be changed
to k" and I’ respectively.

Alice publishes elements ay, ..., ax as dx(1y, . . ., Az, Where m € Sy is a random permutation. The
same permutation is applied to the corresponding tuples ¢ € C.

Bob acts in the similar way.

Alice publishes elements ay, ..., ar as ax(1y, ..., Az, where m € Sy is a random permutation. The
same permutation is applied to the corresponding tuples ¢ € C, and they are published.

Bob acts in the similar way.

Algorithm. < Alice picks a private tuple d= (dy,...,dy) e D and computes db = (d\by, ..., dyby).
Then she sends the tuple db*@ = ((d1b1)" @, ..., (dyby)*®) to Bob.

* Bob picks a private tuple ¢ = (cy, ..., cp) € E and computes ca = (c1ay, . .., cpay). Then he sends
the tuple ca®® = ((c;a)'®, ..., (cpar)'®) to Alice.

» Alice computes

u((cra)*®, ... (cka)*®) = u@ ulcrar, . ... cra)'® = [u (@), v(b)].
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» Bob computes similarly
v((dib)" @, .. (dib)" D) (b) = (v(diby, . . ., dib)" D) w(b) = [u(a), v(b)].

Now the commutator
K =[u(a), v(b)]

is the secret exchanged key.

Definition 7.1. The conjugacy-membership problem is solvable for G with respect to C CF if there is
an algorithm that decides for any two tuples a = (ay, ..., ax) and f = (f1,..., fr) of elements of G
whether or not there exists an element y € G such that ( fly a, Lo fkyak_ Y € C. In short, is there an
element y € G such that fYa~! € C? The corresponding problem, which is a mixture of conjugacy and
membership problems, is the question of the existence of an algorithm that finds a solution, if such a
solution exists.

The proposed version of the AAG protocol is based on intractability of the mixed conjugacy-membership
search problem when Cisa marginal set, CL u(ai, ..., ay), for the unknown word u(xy, ..., x,) (or
similarly when D is a marginal set, D L v(by,...,b)). Indeed, suppose that an intruder finds ¢’ € C
and y € G such that ca*® = ¢’a”, and similarly he finds ' € D and x € G such that db"@ = d’b*. Then
[x, y] = [u(a), v(b)] as in the original version.

There are other problems that should probably be addressed first. The presence of virtual and hidden
elements does not allow us to calculate the lengths of # and v. We also note that each solution of (11)
is also a solution to each equation of the form g;a; 41 ---aray---a;—1 = f, i =2, ..., k, and possibly
some other equations. Therefore, the open data does not allow us to unambiguously restore f*®, even
if the attacker knows the length of v and all the letters v(b) with their multiplicity.

7B. An improved version of the Ko et al. key exchange protocol. To exchange a key the correspondents
act as follows.

Let G be a group. Alice and Bob agree about a public element g € G. Let A and B be two finitely
generated elementwise commuting subgroups of G. This data is public.

Alice fixes a positive integer k and chooses a tuple of elements f = (fi, ..., f¢) such that g €
ep(fi, ..., f¢). Then she picks a private group word u = u(xy, ..., x¢) such that g = u(f). Also she
finds a marginal set C € G*, C L u(f). Alice publishes C.

Bob fixes a positive integer / and chooses a tuple of elements f' = ( fis-.., f]) such that g €

ep(f, ..., f/). Then he picks a private group word v = v(xy, ..., x;) such that g = v(f’). Also he
finds a marginal set D € G/, D L v(f’). Bob publishes D.
If G is a matrix group, the words u and v can be ring-words.

Algorithm.  « Alice chooses a private tuple h=(hy, ..., hx)eCq(B)¥ and computes f:(flhl yeees JEHE).
Then she publishes f.
« Bob chooses a private tuple 2’ = (1’ , ..., h)) eCg (A)! and computes f' = (f{h,..., f{h)). Then
he publishes f’.
« Alice picks a random tuple d= (di,...,d) € D and computes c?f/ = (dlfl’, ...,d,f/). She also
chooses a random private element a € A. Then she sends (d f')* = ((d, D4 ... d f)H®) to Bob.
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» Bob picks a random tuple ¢ = (¢, ..., ck) € C and computes Ef = (clﬂ, ...,ckfk). He chooses a
random private element b € B. Then he sends (¢ f Y =((c1 f1)?, ..., (ck fr)?) to Alice.

« Alice computes
@NPh™ = (et it ) D = (e )’ (e f)”) = @)
« Alice computes
w(@f))=uCf)’ =uf)’ =g".
» Bob computes
@) =[BT @D BT = (@ ) i ) = d
» Bob computes
v(@d ) =vdf) =v(f)* =g"
« Alice computes K4 = (g?)¢ = g?.
e Bob computes Kp = (g%)? =g, and
K=Ky=Kp=g"

is the secret exchanged key.

Remark 7.2. Alice publishes instead of fi, ..., fi changed elements fi, ..., fi. This is done in order
to make it difficult for a potential cracker to select the expression u( fy, ..., fx). Since each element /;
lies in C(B), the element b € B acts on h; trivially. Alice may exclude hf.’ = h; from ¢; f b and get ¢; fl.b.
Some of the elements fi, ..., fi are virtual. This means that the value u(fi, ..., fx) does not depend

on them. Therefore, the choice in the marginal set C of the corresponding components can be carried
out randomly. It is also possible that for i # j we have f; = f;. Then both of these elements are
published, and the corresponding elements 4;, ¢; and 4, c; are chosen independently. If an element f;
occurs several times in the expression u( fi, ..., fi), then it is published once. The elements 4; and c;
corresponding to it are also selected once.

All of the above also holds true for Bob to select parameters.

We show a toy example of the just-considered improved version of the key exchange protocol with
simple parameters.

Example 7.3. First we will give a symbolic description of the protocol.
Let G = GL(6, Z), and let A, B < G be two elementwise permutable subgroups of G given by their
generating sets {aj, ..., a;} and {by, ..., b;} respectively, and g € G. This data is public. Suppose that

—1
u(xy, x2, x3) = [x1, x2]x, " +x2x3 — X1

is a ring word in which the variables x; and x; take invertible values.
We choose a pair of elements f; and f, of G so that the element

H=6le= 5 RIS+ A

is invertible.
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Then
g=u(fi, fo. ) =111, L1fs '+ ffs— fi.

For c1, ¢z, c3 € M(6, Z), the equality
u(cr f1, 2 f2, c3 f3) = u( f1, f2, f3)

is true if and only if
= f e g —leifi, ol fs s e fo) f (13)

The formula (13) describes the full marginal set CL u(f1, f2, f3). Then Alice constructs an infinite
marginal set Cs={(c1(), c2(i), c3()) :i=1,2,...}, choosing the elements ¢ (i) and c2(i) in G and
calculating ¢3(i) according to (13).

Then Alice randomly chooses the elements %1, hy, i3 € Cg(B) (where Cg(B) denotes the centralizer
of B in G) and calculates the elements f, = fih; for i = 1,2,3. She also chooses a number k > 3

and the random virtual elements f4, R fk € G. Foreachi =4,5, ..., she takes the random elements
c4(i), ..., ck(i) € G and publishes the constructed marginal set C= {(c1(@), c2(i), c3(i), ca(@), ..., cr(Q)):
i=1,2,...}. In practice, she also applies a random permutation to the indices of the tuple (f1, ..., fr)

and to each of the corresponding tuples from C, so as not to show which ones are virtual. To simplify
the recording, we do not do this hereinafter.

In continuation of the algorithm Bob picks a random element b € B, chooses randomly é(g) € C,
calculates and publishes the elements

(ci(q) i)’ fori=1,... k.
Alice calculates
(i (@) fi)h7 " = (ci(q) fi)! fori=1,2,3. (14)
Then she obtains

u((c1(q) )Y (c2(@) 20, (e3(9) £5)°) = ule1(@) fi, c2(q) for c3(@) £3)" =u(fi, fo. )" =gb.  (15)

Also Alice randomly chooses an element a € A and computes the key: (g?)% = g®.
Bob acts the same way.
Next, we will give numerical values for the protocol parameters in our example. We set

A =gp(t13, 131, 135, 153), B = gp(t4, ta2, l46, t64),

where t;; = e +e;;, i # j,is a transvection and, for each pair ij, ¢;; is an elementary matrix that differs
from the zero matrix by one element 1 that stands in the i j-position. Obviously, A and B are elementwise
permutable. We also set

g=e+ten+tenteutesstess, fi=t3, fr=tu.
Then
f3=e+en+2exteutess+ess—ers—ess,
f3 ' =e—enn—2ex—esu—ess—eso+2e13+3e2n+2e35+ess—3e1a—Sers—2eze+5e1s+5ex—5eis.

Alice picks
-1 2
hy =131, hy=nt3ats;, h3=Isls3.
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Then
fi=fihi=e+en+er+es,
fr=fiha=e+eu+e3—ess,
5= f3hs = e —e33 +e12+2ex3 + €34 + eqs + es6 — 2e13 — exq — 35+ 2e15 + eq3 + es3.
Bob chooses randomly ¢(qg) € C. For example he takes

ci1(qo) = e — ez +eay,
c2(qo0) = 123,
c3(qo) = e —2exp + 623 — €34 + €35 — 10e24 + 16€25 — €36 — 16e26 + 2e21, ,
ci(qo) fori=4,... k
(we do not specify these virtual elements).
Then Bob picks b = t,4 € B, he calculates the elements
(c1(q0) /1)’ = e+ ex3 — €34 + 221 + €31,
(c2(q0) /2)" = e+ €34+ €13 — es3,
(c3(90) f3)" = e + €12 + €23 + eas + es6 — 2e13 — 3eas — e35 + Seas — e14 + 2e15 + 2en1 + es3 +es3,
(ci(qo) fi)? fori=4,... k.
Then he publishes
(c1(g0).f1)". ... (cx(g0) f)).

Suppose that Alice picks a = t35 € A.
Alice calculates
(€1(q0) /D) = (c1(go) f)hT = e+ e23 —esa +enn,
(2(q0) )" = (c2(g0) )1y ' = e+ esa,
(c3(q0) £3)" = (c3(q0) /5)°h " = e + e1n +dex3 + ess + es6 — 3eas — €35 — €14 + €25 + 2e21.
By (15) she obtains that

g" =eteintexn+esstess+ess— e+ eas.
Then
(8" = g" =e+e1n+ex+eas+ess +eso+ ez — e (16)
is the exchanged key.
Bob takes a ring word
v(X1, X2, X3, X4)) = X1X2 — X3+ X4
and elements
f{ =e+exy —er, f3/ = e —e23 —e45 —e56 1 ey —ex] — €3,

fr=e+ e, fi=e+en—emn.
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Then
g=v(fi.....fD=fr—fi+ [y
Bob picks the following random elements in Cg(A):
hy=e+en, hh=e—en, hi=e+tesw+en, hy=e+2en.
Then he computes
f~1/ = fl/hll =e — ey +2ey4,
fr=fihy =e+e3 — e —exn,
fi = fihy = e —ex3 — ess — esg -+ eas — a1 — e3p + eag + ear + €26+ e,
fa= fihly = e+e1n — ez +2ex +2e14 — 2e34.
The full marginal set D L v(f{,..., f) is described by

dy=(g—difldofs+ds ) (f)~ "
Then one has

v(diff, .. daf) =v(f], s f1)-

Bob constructs an infinite marginal set Dy={d@0),...,ds(@D):i=1,2,...}.
Bob chooses a number / > 4 and the random virtual elements fZ, ..., f/. Foreachi =5,6,... he
takes the random elements ds(i), ..., d;(i) and publishes the constructed marginal set

D=1{d\(i),...,ds(0), ds(i),....di(i):i=1,2,...}.

In practice, he also applies a random permutation to the indices of the tuple ( f~1’ e fl’ ) and to each of
the corresponding tuples from D, so as not to show which ones are virtual. To simplify the recording,
we do not do this hereinafter.
Alice chooses d (po) € D:
di(po) = e+ e32, da(po) = € — €23, d3(po) = € — ess + €13,
da(po) = e+ e +e33 + €23 — eas + €13 + €xs + ea6 — €32 + €31, di (po)

fori =35, ...,[. She computes

(d1(po) [1)* = e — 2e34 +2e24 — €21 + €32 — €31,

(d2(po) f3)" = e+ e — ex3 + ez — exa+ €25 — €30 — ean,

(d3(po) )" = e+ ex — €23 — e4s — €56+ €24 + €46 + €25 — €36 + €26 — €21 — €32+ €2,
(ds(po) f1)* = e+ ex + €33 + €23 — eus + €13 + €4 — €35 + ea6 — €25 — €15 — €3 + €31,

and (d; (po) )@ fori =5,...,1.
Then she publishes

(di(po) f)° ..., (di(po) ).
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Bob computes

(di(po) [ = (d1(po) F)* ()" = eesaters—en+en—e,

(d2(po) 1) = (da(po) )" (1) ™" = e—enstess—enters,

(d3(po) £3)" = (d3(po) f3)" (W) ™' = e—e1n—ex3—2ess—eset+e13+erntessters—ezg—ers—er —esn,
(ds(po) £ = (da(po) f)* (W)~ = etesst+ers—ess+erzterstess—ess—ers—eis—2en+es).

Now he obtains

v((@di(po) [, -, (da(po) f)*) = v(di(po) fi, - - -, da(po) f)* = &, (17)

and computes (g9)P = g; see (16).
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On the behavior of power series
with positive completely multiplicative coefficients

Oleg A. Petrushov

We consider power series with positive completely multiplicative coefficients. We obtain a large family
of power series that have the unit circle as natural boundary, as well as new Q2-theorems for power series
with positive completely multiplicative coefficients when the argument tends to roots of unity. Also
Q-estimates for some partial sums of completely multiplicative functions are given.

1. Introduction

In this paper we study power series with completely multiplicative coefficients. Power series with co-
efficients that have some arithmetical structure possess interesting properties. Most of the power series
with arithmetical coefficients converge on the unit disc but have no continuation beyond the unit circle.
Moreover they usually have interesting properties when z tends to the unit circle along a radius.

The results of [Petrushov 2014; 2015a] are about two specific and important series ) _, u(n)z" and
> w?(n)z". For example in [Petrushov 2015a] we exposed a connection between the asymptotic behav-
ior of the series ), w?(n)z" as z tends to 2™ along its radius and the Diophantine properties of S,
namely its irrationality exponent when g is irrational and its denominator when g is rational. A similar
study for the series D, i (n)z" was performed in [Petrushov 2014] with less-striking conclusions.

The specific problem of determining the analytic behavior of power series with multiplicative coeffi-
cients was posed by W. Schwarz in the Oberwolfach Meeting on Number Theory. L. G. Lucht [1981]
proved that for an extensive set of multiplicative functions «(n) the unit circle is the natural boundary
of the series Y -, a(n)z". The set is defined by some complicated conditions. In particular it requires
the existence of a complex number s with nonnegative real part, a slowly oscillating function /(x) and a
nonzero sequence of coefficients ¢, such that for any principal character xo modulo g

D amxomn) = (cg+o()x'1(x), x — +o0,
n<x
and for any nonprincipal character x
Y amx(n) =o' ll(x)]), x — +oo.
n<x

In the simpler case of positive multiplicative coefficients, results of Wirsing may be applied to obtain
the desired asymptotic behavior in some cases (see [Lucht 1981, Corollary 3]) but even then, the simple

MSC2010: primary 11N37; secondary 30B30.
Keywords: power series, positive completely multiplicative coefficients, completely multiplicative functions, Omega
estimates.

147


http://msp.org
http://msp.org/moscow
https://doi.org/10.2140/moscow.2020.9-2
http://https://doi.org/10.2140/moscow.2020.9.147

148 OLEG A. PETRUSHOV

multiplicative function defined by «¢(2m) = 3¢, where m is an odd number and a is a nonnegative
integer, cannot satisfy the conditions of Lucht’s class: since

Z ap(n) =3" —2™ and Zao(n):2(3m)—2’”,

n<2m—1] n<2m

the function x~'0g3/lce2 3~
The scope of this article is restricted to nonnegative, completely multiplicative functions.
An arithmetical function a(n) is called completely multiplicative if

ap(n) is not slowly oscillating.

a(mn) =a(m)a(n)

for each m and n.

For example n* is a completely multiplicative function. A Dirichlet character is also a completely
multiplicative function.

Denote ¢>™# by e(B). Denote by (z), where z € C, the power series

o
Za(n)z".
n=1

Denote by A(x, 8), where x € RT, B € R, the sum

> a(memp).

n<x

Throughout the paper the letter p always denotes a generic prime number and o the real part of the
complex number s. Let g(x) > 0. The equality f(x) = Q(g(x)) when x — a means that there is an
infinite sequence f;, — a such that | f(t;)| > 3g(#;) for some § > 0. The relation f(x) = Q(g(x)) when
x — a is also equivalent to lim,_., | f(x)/g(x)| > 0.

In [Petrushov 2018] we proved Q2-estimates of power series with positive completely multiplicative
coefficients.

To be specific, for a completely multiplicative function «(n) such that a(p) < pand 0 < A <a(p) <
B < 2A for any prime p, we proved that there is a computable constant C > 0 such that for any [ € Z
and any prime g with a(g) # 1, we have

q 1—r
asr — 1—.

This implies that if «(p) # 1 for infinitely many primes p, the natural boundary of 2((z) is the unit
circle.

In the present article we substantially enlarge the set of completely multiplicative functions for which
the associated power series has the unit circle as natural boundary.

Theorem 1. Let a(n) be a completely multiplicative function satisfying:

(1) Zp a(p)(1 —NRN(x(p)))/p diverges for any nonprincipal .
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(2) The series

Z a(p)

o
o P
converges for Rs > 1.
If the series ZZOZI a(n)z" has a nonsingular point on the unit circle, then a(n) = 1.

Any completely multiplicative function «(n) satisfying a(p) > A > 0 for every prime p satisfies
condition (1) of Theorem 1, and any completely multiplicative function satisfying |« (p)| < B for every
prime p satisfies condition (2). Therefore this theorem improves results obtained in [Petrushov 2018]
and covers functions which are not in Lucht’s class, such as our example o(n).

Theorem 1 is easily derived from Q2-estimates for the power series 2((z) along every radius [0, e(l/q))
where every prime factor p of g satisfies a(p) # 1.

Theorem 2. Let a(n) be a positive completely multiplicative function satisfying conditions (1) and (2)
of Theorem 1. Let q be a positive integer whose prime factors all satisfy a(p) £ 1. Let B =1/q with
(,q)=1

Set § = sup,(loga(p)/log p) — 1 if there are primes p with a(p) > p, and § = 0 otherwise. Choose
m > 0 such that there are at least m distinct primes satisfying o(p) = p'*%. If 8 =0, we set € > 0 such
that there is ¢ € R with

a(p)
Zp—azelln(a—l)H—c aso — 1+.
p

Assume first that

(3.1) § =0.

Then for all b <0
1

(I =r)[In(1 —r)|}->

Ql(e(ﬁ)r)29< ) asr— 1—.

X
A(x’ﬁ)zg(—(lnx)l—}) as x — +oo.
If moreover

(32)8=0and e +m >0,

then one can replace b by € + m in the previous formulas; that is,

[In(1 — r)|etm—1

Ae(B)r) = sz( ) asr s 1—.

1—r
A(x, B) = Q(x(Inx)*t" as x — +oo.
Now, if
(3.3) 8 >0and a(q) =q'*,
then .
e(B)r) = Q(lln((ll__—:))ll_M> asr — 1—,

Alx, )=« nx)" Y asx — +oo.
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To get these estimates, we follow a method that we developed in [Petrushov 2015b; 2017] to study
power series with additive coefficients and to prove similar 2-estimates.

We use the Mellin transforms of 2(e(8)r) and A(x, 8), which both turn out be easily expressed in
terms of the twisted Dirichlet series

a(n)
FIBIs) =) je(m)— .
n
When 8 =1/q with (I, q) =1, F[B](s) can be decomposed into a linear combination of
a(n)

Fis)=)_ —= and Fis.x)=)_

n n

a(n)x (n)

nS

where x runs among nonprincipal characters mod g. This decomposition gives a nice description of the
meromorphic extension of F[B](s) on the half-plane s > 1. Finally Tauberian arguments allow us to
deduce the different Q2-estimates of Theorem 2 from the corresponding analytic properties of F[B](s).
In Section 2 we prove that the decomposition of F[B](s) into a linear combination of L(s, ) is
possible, study some sums with characters, and study the Mellin transform. In Section 3 we prove some
general Q2-estimates. In Section 4 we prove the theorems and prove the generalization of Theorem 2.

2. Preliminary results

In this section we decompose F[B](s) into a linear combination of F (s, x) and prove a useful integral
equality.

Let ¢ be a natural number, ¢ > 1 and let g = ]_[f‘: 1 pf" be its decomposition into prime factors
throughout this section. Let K(g) = {n eN:n= ]_[f;l p;""} and in this definition m; are arbitrary
nonnegative integers. From the fundamental theorem of arithmetic it easily follows that each n € N has
a unique representation

n=km, (D

where k € K(gq), (m,q) = 1.
For a Dirichlet character x modulo ¢, we denote by t(x, /) the Gauss sum

1 nl
Z x (el — ).
n=1 q
We define C) (s) as the Dirichlet series

k
> e,

keK(q)
where x is the conjugate character of x. Throughout the paper C, (s) depends on / and q.

Lemma 3. Let a(n) be a multiplicative function and let the Dirichlet series

F(s) :iam)

nS

n=1
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be absolutely convergent in the domain {Ms > o1}. Then for Ns > o] the following identity holds:
1

FIBIs)=—— > Cy&)F(s, x) )
@) b

(see [Petrushov 2015a, p. 20]).
Let ¢, (n) be Ramanujan sum,
nl
cqg(n) = Z e(—).
0<l<q q
(g)=1
Recall standard properties of the Ramanujan sum:
(1) If (g1, q2) = 1 then ¢y, 4, (n) = ¢y, (n)cy, (n).
(2) ¢4(k) depends only on (k, q).
(3) cr(g) = t(x0, k), where g is the principal character modulo g.
Lemma 4. Let f be a completely multiplicative function with | f (p)| < 1 for p | q. We have
( > fle (n)) [Ta-rwn=T] ren™—@renmH, 3)
nek(q) rlq Pl
where the notation p™ || g means that the multiplicity of p in the prime decomposition of q is m.

Proof. We see

( > f(n)cq(n)) [Ta-ren= H( > f(n)cqm))(l — f(p))

nek(q) rlq plg “nek(p)

=11 (Z fj(p)c,,j(p”’)>(1—f(p))
p"llq ~j=0

=[] (—p’"lf’"l(p)+p’"l(p—1)1fi)(l—f(p))
P llq A

= [T A=)+ p" (o= D" (p)
r"llq

= [T e e+ )+ 7 " () = P ™ (p))
p"llg

= [ «prey™ = ren™. O
r"llq

Lemma 5. Let a(n) be a completely multiplicative function, and let o1 be as in Lemma 3. The following
formula holds:

r m;—l mi—1 .
Cro()F (5. x0) = ]‘[(%(a(m)p}‘s - 1>)F(s). 4)
p.

i=1 i
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Proof. If the series ) |a(n)|/n° converges for o > oy, then |o(p)| < p”' for all prime p. The completely
multiplicative function defined by f(p) = a(p)/p?® satisfies the condition of Lemma 4 if Ns > 0. Along
with the facts that 7 (xo, /) = c,(I) and F (s, xo) = ]_[plq(l — f(p)/p°)F(s), this lemma follows from
Lemma 4 with f(p) =a(p)/p°. ]

Lemma 6. Each character modulo g can be expressed in the form

X = X1X2,

where x1 is the principal character modulo qy, x» is a character induced by a primitive character
modulo q;, qé g2, 9 = q192, (q1, q2) = 1, and the prime divisors of g, and qé are the same.

Lemma 6 follows from [Apostol 1976, Theorem 8.18, p. 171].

Lemma 7. Let g = q192, (q1,q2) = 1. Let x = x1x2, where x1 and x, are characters modulo g, and g
respectively. Then for each | € Z we have T(x,1) = x2(q1) x1(q2)T (x1, DT (X2, D).

Lemma 7 follows from [Montgomery and Vaughan 2007, Theorem 9.6, p. 287].

Lemma 8 Let x be a character modulo q = []; pf' induced by a primitive character modulo q/z, and
suppose q2 | 92, 9 =q192, (q1,q2) =1, and the prime divisors of g, and q2 are the same. If there is an i
such that p " divides m then (), m) =

Proof. Letm =[];_, pi". Let x =[];_, xi» where x; are characters induced by characters modulo p;".
Then by Lemma 7 and that fact that t(x, al) = x(a)tr(x,!) (see [Montgomery and Vaughan 2007,
Theorem 9.5, p. 287]), we obtain

T(x, lk) = C]_[m, P,

i=1
where |C| = 1. Since pll.‘ | m we have n; > Il; > r;. Thus ©(x;, p;*) =0. O

Lemma 9. Let Rs > oy, where oy is as defined in Lemma 3. Let

X = X1X2,

where x is the principal character modulo qy, 2 is a character induced by a primitive character modulo
qé, qé | g2, 9 = q192, (q1, q2) =1, and the prime divisors of ¢, and q; are the same. Then

) Jk
Cr(9) = @i® Y. X]; ACATLI VN )a(kozf(xz 2 (k). 5)

kieK (q1) kalq 2

Proof. Using Lemmas 6 and 7 and the fact that t(x, al) = x(a)t(x, ) when x(a) # 0 we derive

X2, lkik % Lk k X2, lk1k k k
Cols) = Z T(Xl)liiks 1 Z)a(kl)oe(kz)= Z x2(q)T(x1, Ik 2)IT€S(])€(3 1ka)a(ky)a (k)
k€K (q1) 172 k€K (q1) 12
k2€K (q2) k2€K (q2)
_ _ (X1, k1) (X2, k2)
=Xl iad) Y g reket Y k). (6)

kieK (q1) k€K (g2) 2
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By Lemma 8 for k, € K(g2) we have t(x2, k2) = 0 unless k; | go. Hence the second sum may be written
as a Dirichlet polynomial

Z T(Xz,kz)a(kz). 0

s

k2 | q2 2

Lemma 10. Let
X = X1X2,

where x is the principal character modulo qy, x» is character induced by a primitive character modulo q;,
qé g2, ¢ = q192, (q1, q2) = 1, and the prime divisors of g and q; are the same. Then

Cy()F (s, x) = Ay () F (s, x2),
where A, (s) is an entire function.
Proof. Let g =[i_, pll." . From Lemma 9 we get
C@)F(s. )= By(s) Y I(X]i’ K e ]_[( M)F(& X2,
k€K (qr) 1 i=1 pi
where B, (s) is a Dirichlet polynomial. Hence

CoIF(s. )= By(s) Y. &

kieK (q1) i

K g, () 1'[( leip ) (p,))F(s, x)- @)

1

Using Lemma 4 with f(p) = a(p)x2(p)/p°, we obtain
r l; li—1
Cy($)F (s, x) = By (s) H((pm) — @@) )F(s, x2) = Ay ) F s, 1),
i=1
where A, (s) is a Dirichlet polynomial. O

Lemma 11. The following equality holds:

1
F = D F +—D(s)F 8
[B1(s) = o )XX@; (s)F (s, x) e (5)F(s), (8)

where X is the set of primitive characters of modulus g1 with q1 | q,

li—1 l

r i—1(p.
D(s) = H(%(a(m)p}s - 1)), ©)

i=1
and D, (s) are Dirichlet polynomials just like D(s).
Proof. The proof follows from Lemmas 3, 5, 6 and 10. (I

Note that D(1) = 0 if and only if «(p) = 1 for some p | q.
The following proposition relates F[I/q](s) to A(e(l/q)r) and A(x, B).
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Proposition 12. Let a(n) be a sequence such that |a(n)| < n'*°. Then for any B € R, for Rs > 2+6

T(s)F[BI(s) = / h 1A (Bre) dt,
0

1
Lrig1cs) = / PLAGT, By .
0

Proof. From inequality |a(n)| < n'*® we derive A(x, 0) < x>*% and

+OO J,-oo
|Ql(e—l)| < an-ﬂse—l’ll Sel/ u1+se—ul dt fetF(2+8)t_2_5.
0
n=

Using the Lebesgue dominated convergence theorem with [20(e(B)e™")| < |A(e™")| we obtain

/ A (Be ™) dt = Za(n)e(ﬁn)f e dt = Za(n)e(,Bn)F(s)n_s.
0 n=1 n=1

Let B, (x) =1if x < 1/m and B,,(x) =0 if x > 1/m. Then }_, a(m)B,(x) = A(1/x,0) K x~27°,
Using the Lebesgue dominated convergence theorem with |A(1/¢, B)| < |A(1/t,0)| we obtain

1/m

1 o o0 1 [e'e)
f X! Za(m)e(m,@)Bm(x)dx = Za(m)e(mﬂ)/ X 7IB,(x)dx = Za(m)e(m,@)/ xldx
0 m=1 0 m=1 0

h|>—

=3 X (me(mpym™ = FIBI(5). O

3. Growth of some functions

In this section we study growth of some Euler products as s — 1.

Let » »
G)= [] (1_&‘;’)) and H(s)= [] <1—°‘(’7)>

S
a(p)<p p a(p)>p P

Throughout this section, we assume that condition (2) of Theorem 1 is satisfied, that is, we assume
the convergence of the series Z a(p)/p° forany o > 1. It follows that G(s) is an analytic function on

{Ms > 1}. It also follows that for any € > 0 there are at most finitely many p such that a(p) > p'*<.
Lemma 13. Let x be a nonprincipal character modulo q. If the series
1 =39%x(p)
Z ( ) 1+x
diverges, then the following relation holds:
GA+x,x)=0(G(1+x)) asx—0+. (10)

Proof. The condition (10) is equivalent to

In|G(1 +x)| —In|G(1 +x, x)| = +00
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as x — 0+. Let x > 0. We have

NG+ =G +x,0l=— Y I(l—a(p)p™ ™+ Y Wll—a@P)x(p)p
a(p)<p a(p)<p
= Y —W(—a(pp "+ Y Sin(d—a@x(pp ),
a(p)<p a(p)<p

where In is the principal value of the logarithm.
Using the power series expression of — In(1 — z) on the unit disk we have

mGA+x)|== Y h(l-ap)p ' ™H= Y Y %a(p)kp*kﬂ“).
a(p)<p a(p)<p k>1
Notice that the summands are nonnegative and the double sum converges. Similarly
_ \ _ —1- _ 1 & kK —k(14x)
|G +x, 0=~ Y R —ap)p™ ™ x(p)= ) Y ReG"ap)p™ ),

a(p)<p a(p)=p k=1
where the double sum is absolutely convergent (using the previous double sum). Therefore
In|G (14x)|=In |G (14x, x)|= (z): ; %(l—ﬁixk(p))a(p)kp_k(lﬂ)Z (2): (=9 x (p))a(p)p~ I+

a(p)=p k> alp)=p

since all summands are nonnegative. If ) » a(p)(1 —Rx(p))/p'*™ is bounded as x tends to O then
it has a limit and by the Tauberian theorem (see [Hardy and Littlewood 1914, Theorem 17]) the sum
> » a(p)(1 =Ny (p))/p is convergent, which contradicts our assumption. Therefore we have

Y L= () — 400
p

for x — 0+. O

Lemma 14. Let assumption (2) of Theorem 1 hold. Then

IF(L+x, 0l <[ [ —ep)p™ T IIFA+x)l,
plq

where q is the modulus of x.

Proof. For any t € [0, 400) and z € C with |z] = 1, we have |t — 1| < |t — z|(since 1 is the point of the
unit circle closest to any given point of [0, 00)) or again |t — 1| < |tz — 1|. For p with «(p) > 0 and
x(p) #0wehave |1 —a(p)x(p)p 7' < |1 —a(p)p~'*|7!. Hence we deduce

IF(L+x, 0l =] 11 =apx(p)p™"
pla

<[[n=ap™ 1" =[] 11 —ap)p™ ™ IF1+x)|. O
pta pla
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Let f be locally integrable on (0, +o00). The Mellin transform of f is defined by the integral f*(s) =
fooo x*~! f(x) dx. The fundamental strip is the largest open strip on which it is defined. In particular, if
f satisfies the asymptotic conditions f(x) = O(x ) as x — 0+ for some o € R and f(x) =o(x V) as
x — +oo for any N > 0, then the integral defining f*(s) is convergent for any s € C such that fis > o,
and the Mellin transform f* is an analytic function over {fs > o}.

Proposition 15. Let f be a locally integrable function on (0, +00) such that its Mellin transform f* is
analytic on {Ns > op} with og > 0. Let o € R. Ifﬁ(,_ﬂwr | f*(o +ity)| = 400, then for any b > 0, we

have
o |f ()]
im

- = +OO
x—04 x~90|In x|>—1

Moreover, if there are b > 0 and ¢ > 0 such that

T | f*(o +ito)]
im —— >
o—>oot+ (0 —0p)®

fim [ f ()] > c

x—0+ x~%|lnx|>~1 — I'(b)’

then

Proof. Since f admits a Mellin transform, there exists oy > og such that f0+°° u® Y f(u)| du is conver-
gent. Therefore, for any s such that fs < o7, we have

+00
/ w ! f(u)du
1

Assume now there are constants b € R, ¢ > 0, and ug € (0, 1) such that | f (u)| < c’'u=%|Inu|’~! for any
u < uo. In that case, for any s satisfying fis > g, the function u°~! £ (u) is integrable on (0, 1) and

+00
5/1 W f )l du < | f (o).

uo 1
< c’/ w0 nuP~' du +/ u® ) f ()| du.
0 u

0

1
)/ w1 f(u)du
0
We deduce that for any s such that oy < Ns < o, we have
uo
L= [l i c.
0

where C is some constant independent of s.
If we can choose b < 0, then the integral fouo 1”1 Inu|>~! du is bounded by the convergent integral
0”0 u! |1nu|”_1 du which does not depend on s. We conclude that lim, 4,4 | f* (0 4+ ifg)| < 400 for
any fo. This proves the first case.

If b > 0, then
1 +o00
/ u @O Nyt~ du = / e~ @o0u b=l gy — T (b) (0 — 00)”.
0 0

We conclude that | f*(s)| < ¢'T'(b)(o — 00)? + C and consequently

im |f*(o +ito)]
m —

e —on) <c'T(b).
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Hence, if this limit superior is larger than ¢, it contradicts the previous conclusion for any ¢’ < ¢/ T'(b)
and the assumption | f (u)| < c'u®|In u|>~1 has to be contradicted in any neighborhood of 0 and for any
¢ <c/T(b). This implies

m [f ()l . c

= . U
x—0+ x~%|lnx|b=1 T I'(b)

Proposition 16. Let a(n) be a sequence satisfying |a(n)| < n't% Let B € R and oo > 0 such that the
Dirichlet series F[B1(s) =)_, e(np)a(n)n™"* is analytic on {Rs > op}. If
lim |F[B](o +ito)| = +o0,
o—0y
then for any b > 0
Ae(B)r) = Q (1 —r)"®n(l —r)["h,
Ax, B) = Q" (Inx)"h).
Let

i [Fl/ql(o +it)]
1m

>C.
o—>o+ (00 —0g)?

Then
Ae(B)r) = (1 —r)~[In(1 —r)P~h),

A(x, B) = Q(x(Inx)*h.

Proof. The assumptions of Proposition 12 are satisfied. Therefore I'(s) F[B](s) and (1/s)F[B](s)
are the Mellin transforms of 2A(e(B)e™") and A(r~!, B)10,1)(¢) and they satisfy the assumptions of
Proposition 15.
By change of variable r = e™" we have
i Ae(Ble™)  — 2(e(B)r)

= lim )
u—0+ M—UO|1nu|b—l r—1— (1 —r)=%]In(1 — I’)|b_l

and by change of variable y = x~! we have

o AL Bl — A, B)
im 1

b1, b1
x—0+ x~9|In x|~ y—-+oo yo(In y)b—

Consider the first case. We see by Proposition 12

[ = F(S)F[L](S) = /00 ts_1ﬂ<e(£>e_t) dt,
q 0 q

E+ | f*(o +itg)| = +00.

o0 —>0(
Thus by Proposition 15
— Alel/q)e™)
lim =

- - T = +oo
u—0+ u*5|lnu|b*1

for each b > 0.
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Similarly

FrGs) = /oox“A(xl, B)dx = lFH(s),
0 § q

hm | f* (o +ity)| = +o00.

a—>

Thus by Proposition 15

FE A _19 I A ’
AT L AGA
x—0+ x~90]|In x |0~1 y=-+o0 yoo(In y)b-!

for each b > 0.

Consider the second case. Let
— |F[l/q](o +19)] -

lim
oot (0 —0p) "

Thus by Proposition 15
o |”A(el/q)e™™)I c
im > .
u—0+ u|Inu|~1t T T'(b)

Further
— (o +ity)F(o+ity) 1
lim > —.
oot (0 —09)P loo + o]
Hence by Proposition 15
fm ACA ¢ g fm AWAD e
x—0+ x~|Inx| =142 7 |og +ity|T(b) y=>-+o0 yoo(In y) =10 = |0y +ito| T (b)

By Lemma 11

FIBIS) = —— 3" Dy6)F (s, )+ —— D)),
i 5@

xeX

where X is the set of primitive characters of modulus g; with g1 | g, D, (s) are entire functions, D(s) is
defined in (9).

Proposition 17. Let a(n) be a positive completely multiplicative function satisfying conditions (1) and
(2) of Theorem 1. Let B =1/q with (I, q) = 1.
If a(p) < p for all primes p, and o(p) # 1 for all primes p dividing q, then

FIBI0 +0~ 2V p40) asx—0+.

¢(q)

If there exists 8 > 0 such that a(p) = p'*® for every prime factor p of q, then
F[BlA4+x)~F(1+4+x) asx— 6.
Proof. Consider the first case. Since D, (s) is entire we see

IDy(1+x)F(1+x, )l < |F(1+x, x)I
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as x — 0+. Further by Lemma 13 we obtain (in our case F = G)
|IDy (1 +x)F(1+x, )| K< [F(1+x, x)l =0(F(1+x))

as x — 0+. Hence for each x # xo (mod q) we have D, (1+x)F(1+x, x) =o(F(1+x)) as x — 0+.

Thus
1

v Y D1+ x)F(I+x, x)=0(F(1+x)) asx—0+.

xeX
It follows that

F[B1(1 +x) ~ LD(l +x)F(14+x) asx—0+.
¢ (q)

From the expression (9) for D(s), we get
D)= [] «(p" Ha(p)—1).
r"llq
Since a(p) # 1 for any p dividing ¢, we have D(1) # 0 and

F[ﬁ](1+x)~LD(1)F(1+x) asx — 0+. (11)
?(q)

Consider the second case. Since D, (s) are Dirichlet polynomials we have
D,)F(1+x,x) <|F(1+x,x)] asx— 3§
for any character x € X. By Lemma 14, we have

a(p)

L

IF(+x,01<[]

rlqo

|F(1+x)],

where ¢ is the modulus of x. Since a(p) = p'*® for any prime p dividing o, the product tends to 0 as
x — § and

F(l+x,x)=0o(|F(14+x)|) asx — 6.

Again we derive that

FIBI(1+x) ~ LD(l +x)F(14x) asx— 8.
¢ (q)

From the expression (9) for D(s), we get

DA+8 =[] e Hp?" Pp)p™®—1)
P"lq

and since a(p) = p' T for every p | g, we have D(1 +8) = ¢(g). Therefore

F[Bl(14+x)~F(1+4+x) asx—3$. O
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4. Proof of the theorems

Proof of Theorem 2. Assume first that assumptions (1) and (2) of Theorem 1 and assumption (3.1) of
Theorem 2 are satisfied. Under these conditions, we have established that F[8](s) is analytic on {)is > 1}
and ), a(p)p't* — 400 as x — 0+. We derive that

a(p) a(p)
InF(l+x)= —;ln(l - F) > Z T +00

p

as x — 0+. By Proposition 17 we obtain F[B](1 + x) — co. By Proposition 16 with oy = 1 we obtain
the Q2-estimates.

Assume now that assumptions (1) and (2) of Theorem 1 and assumption (3.2) are satisfied. Under
these conditions, we have established that F[B](s) is analytic on {fs > 1} and ) » a(p)/ pH'x — 400
as x — 04. We choose a set Py of m > 0 primes p satisfying «(p) = p. The Euler product Fy(s) =
]_[ngo(l —a(p)p~)~lis convergent for any s with Jis > 1 and we have

In Fop(1 4+x) = — Z ln(l— a(p)) > Z (p) >—€elnx+c—m

p1+x p1+x

pePy pePy

as x — 0+. On the other hand, for any p € Py we have

-1

p1+x “xlnp ’
We derive that

ec—m
F(l4x)> ———x " €tm
H[JEP() ln p

when x is sufficiently close to 0. By Proposition 17 we obtain
ecm
FIB1( +x) > C=—x"“t 5 o0,
Hpe Py In p
By Proposition 16 with o9 = 1 we obtain the Q-estimates.

Assume now that assumptions (1) and (2) of Theorem 1 and assumption (3.3) of Theorem 2 are
satisfied. Under these conditions, we have established that F[S](s) is meromorphic over Jis > 1, and
that for any € > O there are finitely many primes p such that a(p) = p'*€ is finite and nonempty.
We can set m as its cardinal. We deduce also that there exists §op < § such that the Euler product
Fo(s) = HPGPO(I — oz(p)p_s)_1 converges for any s with fs > §p. In particular, Fo(1 + §) is well-
defined. On the other hand, for any p € Py we have

a(p)\™' 5)In pr—1 1
(1_1_+> :(l_e(x* )np)* ~—
p (x—=38)Inp

as x — §. We derive
Fo(1+96)

F(l4+x)~
( ) l_[pEP()lnp

(x—8)™"
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as x — §. By Proposition 17 we obtain
F[BI(1+x)~C(x—8) " — o0
as x — §. By Proposition 16 with og = 1 + § we obtain the Q2-estimates. U

Proof of Theorem 1. Using Theorem 2 it has been proven that the point e(//p™) is a singular point of
2A(z) for [ with (I, p) =1 and m > 0, if p is chosen such that a(p) # 1 if § =0 or a(p) = p'*? if § > 0.
This provides a dense set of singular points on the unit circle, unless a(p) = 1 for any p. O

Now we can prove the generalization of Theorem 1.
Theorem 18. Let a(n) be a positive completely multiplicative function and oy € R such that:

(1) For any nonprincipal Dirichlet character x the following series diverges:
ﬂlx (p)
Z (X2

(2) For any o > oy, the following series converges:

Z“(P)'

o
P

If the series Zzozl a(n)z" has a nonsingular point on the unit circle, then a(n) = n®=1,

Note that the series Y .-, n*z" is the polylogarithm of order s which admits an analytical extension
beyond the unit circle for any s € C.

Proof. We can reduce to the case where o > 0: If the series Y - | (n)z" has a nonsingular point on
the unit circle, that is, an analytical extension beyond the unit circle, its derivative has the same radius of
convergence and the same domain of analyticity. Therefore we can apply the theorem to ,Tzocf o' (n)"
with o’ (n) = na(n). The function o’ (n) satisfies the same assumptions as «(n) except with the abscissa
o4, = 0o + 1 instead of op. Therefore, using the homogeneity differential operator sufficiently many times,
we can consider the function n*a(n) with the abscissa o + k, where k > —oq. Applying the theorem for
the abscissa og + k > 0, we deduce that n¥o(n) = n+*=1 for all n, that is, «(n) = n®~".

If o9 > 0, we can instead study & (n) = n°°~'a(n). The associated Dirichlet series F [B](s) satisfies
F [Bl(s) = F[B](s +00—1). If a(n) satisfies the assumptions of Theorem 18, then & (n) satisfies those of
Theorem 1. We can deduce that there is a dense set of 8 such that F [B1(s) is analytical over fs > oy and
with F[B](1 + x) — oo as x — 0+. By translation, we derive that for the same S, F[B](s) is analytical
over {Iis > oy} and with F[B](op + x) — +00 as x — 0+. By Proposition 16, e(f) is a singular point
of ZZOZI a(n)z" for a dense set of B, unless @(n) = 1 for all n, that is, unless a(n) = n~\. O
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On the roots of the Poupard and Kreweras polynomials

Frédéric Chapoton and Guo-Niu Han

The Poupard polynomials are polynomials in one variable with integer coefficients, with some close
relationship to Bernoulli and tangent numbers. They also have a combinatorial interpretation. We prove
that every Poupard polynomial has all its roots on the unit circle. We also obtain the same property
for another sequence of polynomials introduced by Kreweras and related to Genocchi numbers. This is
obtained through a general statement about some linear operators acting on palindromic polynomials.

1. Introduction
Let us consider the sequence of polynomials (F},),>1 in one variable x characterized by the equation
(= D?*Fpp1 (0) = "2+ DF, (1) = 2x7F,(x)  forn>1, (1-1)

with the initial condition 1 = 1. When described in this way, their existence is not completely obvious,
because the right-hand side must have a double root at x = 1 for the recurrence to make sense. The first
few terms are given by

F=1,

Fy=x*+2x+1,

F3=4x*+8x" + 10x” + 8x + 4,

Fy=34x%+68x” + 94x* + 104x> 4 94x* + 68x + 34.
The polynomial F,, has degree 2n — 2 and palindromic coefficients.

The coefficients of these polynomials form the Poupard triangle (A8301), first considered by Chris-
tiane Poupard [1989] and proved to enumerate some sets of labelled binary trees. It follows from this
combinatorial interpretation that all coefficients of F;, are nonnegative integers. For further combinatorial
information on these polynomials and their relatives, see [Foata and Han 2013; 2014].

The constant terms of these polynomials form the sequence of reduced tangent numbers (A2105),
which can be defined for n > 1 by the formula

2"(2*" — 1)| Byl

’

(1-2)

n

where B, are the classical Bernoulli numbers, and starts by
1, 1, 4, 34, 496, 11056, 349504, 14873104, 819786496, ....

MSC2010: primary 26C10, 47B39; secondary 11B68, 39A70.
Keywords: palindromic polynomial, unit circle, complex root, linear operator, Bernoulli number.
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One can deduce from (1-1) that F,;1(0) = F,, (1), so the reduced tangent numbers also describe the
values of the polynomials F, at x = 1.

Our first result is the following unexpected property, which was the experimental starting point of this
article.

Theorem 1.1. Forn > 1, all roots of the polynomial F, (x) are on the unit circle.

This is proved in Section 2 in a much more general context, by showing that, for any positive inte-
ger D, a linear operator .4#p maps palindromic polynomials with nonnegative coefficients to palindromic
polynomials with nonnegative coefficients and all roots on the unit circle.

Whether there is any combinatorial meaning for this theorem, and for the similar theorem below, is
rather unclear. Although the coefficients of these polynomials have a combinatorial interpretation, the
location of their roots does not tell us anything about the combinatorics. One may speculate about some
kind of arithmetic interpretation, maybe in terms of Weil polynomials, given the close relationship to
Bernoulli numbers.

As another interesting application, one can consider the sequence of polynomials characterized by
x=1D*Gpp1(x) = P+ 1)G,(1) — 242G, (x) forn>1, (1-3)
with initial condition G| = 1 + x. The first few terms are
Gi=x+1,
Gy =2x +4x* +4x + 2,
G3 = 12x° +24x* +32x% + 32x2 +24x + 12,
Ga=136x" +272x° + 384x° + 448x* + 448x> + 384x2 +272x + 136.

The polynomial G, has degree 2n — 1 and palindromic coefficients.
Theorem 1.2. For n > 1, all roots of the polynomial G, (x) are on the unit circle.

Because the polynomials G, have odd degree, they are all divisible by x 4+ 1. One can also show by
induction that the polynomial G, is divisible by 2"~!. The quotient polynomials 2!~"G,/(x + 1) have
appeared in [Kreweras 1997], dealing with refined enumeration of some sets of permutations. Their
constant terms are the Genocchi numbers (A1469), given by the formula

2(2°" — 1)| Baal, (1-4)

where B,, are again the Bernoulli numbers.

Both theorems above are proved in Section 2 using a family of operators .#p acting on palindromic
polynomials. Section 3 describes explicit simple eigenvectors of the operator .#1. In Section 4, some
evidence is given for the general asymptotic behaviour of the iteration of the operators .4p for D > 1.
Section 5 contains various statements and conjectures on values of the operators .#p on specific palin-
dromic polynomials.

Let us note as a side remark that another family of polynomials, also related to Bernoulli numbers,
has been proved in [Lalin and Smyth 2013] to have only roots on the unit circle, by different methods.
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2. Operators .4p and roots on the unit circle

Let us consider a polynomial P(x) = Z?:o pjxj with rational coefficients. Let us say that the polynomial
P is palindromic of index d if p; = py_; for all j. Note that the index can also be described as the sum
of the degree and the valuation. For example, the index of the polynomial x = 0+ x + 0x? is 2. For any
d > 0, let V4 be the vector space spanned by palindromic polynomials of index d.

For every nonnegative integer D, let us introduce a linear operator .4#p from Vg4 to Vyy2p—». This
operator is characterized by the formula

x =12 p(P)(x) = 2P £ DHP(1) = 2xP P(x). -1

The definition requires that the right-hand side is divisible by (x — 1)2. By the linearity of (2-1), it is
enough to check this property for the basis elements x’ + x?~# with 0 <i < d, where one finds
) ) 1— i+D 1— d+D—i
1—x) (1-x)
which is a polynomial with nonnegative integer coefficients. Note that when d = 2i, one can divide (2-2)
by 2.
The definition of .#p and formula (2-2) imply immediately the following lemma.

Lemma 2.1. Let P be a nonzero palindromic polynomial of index d with nonnegative integer coefficients.
If d < 1, assume moreover that D > 0. Then Ap(P) is a nonzero palindromic polynomial of index
d + 2D — 2 with positive integer coefficients.

Let us record the following useful statement as a lemma.

Lemma 2.2. When iterating i times Ap on a palindromic polynomial P of odd index with integer coeffi-
cients, the integer 2 divides ,/VDi P.

Proof. 1f the index of a palindromic polynomial P is odd, then it is divisible by x + 1. When P has integer
coefficients, (2-1) then implies that .47 (P) has one further factor 2. The lemma follows by induction. [

Recall that a palindromic polynomial P = Z?:O P jxj is called unimodal if the sequence of coefficients
is increasing up to the middle coefficient(s), then decreasing. A polynomial P is called concave if the
piecewise linear function that maps j to p; is a concave function. A concave polynomial P is called
strictly concave if every point (j, p;) is moreover an extremal point in the graph of this piecewise linear
function.

Lemma 2.3. Let P be a nonzero palindromic polynomial of index d with nonnegative integer coefficients.
Ifd <1, assume moreover that D > 0. Then Ap(P) is unimodal and concave. If P has no zero coefficient,
then Ap(P) is strictly concave.

Proof. By (2-2), the polynomial .45 (P) is a nonnegative linear combination of unimodal and concave
polynomials, and hence is itself unimodal and concave. Each term in (2-2) gives two extremal points,
or just one extremal point when i =d —i. When P has no zero coefficient, this implies that there is an
extremal point above every integer between 1 and d + 1. O

Let us now recall a beautiful criterion obtained in [Lakatos and Losonczi 2004].
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Lemma 2.4. Let P(x) = Z?:O pjxj be a palindromic polynomial of index d. If
ld—l
|pal 2521|p,,-|, 23)
=

then all roots of P are on the unit circle.

The criterion above has been generalized recently in [Vieira 2017], which gives a sufficient condition
for having a given number of roots on the unit circle.
From the criterion of Lemma 2.4, one deduces:

Theorem 2.5. Let P(x) = Z?:O pjxj be a palindromic polynomial of index d. If
2pj > pj—1+pjs1 forall 0 <j<d, (2-4)

with the convention that p_1 = py+1 = 0, then all roots of P are on the unit circle.

Proof. Let Q(x) = (1 —x)2P(x). Then O(x)= Z‘ji(z) gjx’, where

q0 = Po;
gj+1=pj+1+tpi-1—2p; (0=j=d),
qd+2 = Pd-
Note that Q is also palindromic of index d + 2.
By the hypothesis (2-4), all g; <O for 1 < j <d + 1. Since Q(1) =0, we have

d+1 d+1

Y gl ==> a4 =q0+qar2 =2q4+2.
j=1 j=1
Note that therefore gg > 0.

Since Q(x) is palindromic, and
d+1

1
|ga+2] = 5 2; ;!
]:

one can therefore apply Lemma 2.4 to QO (x) and conclude that Q(x) has all its roots on the unit circle.
This implies the same property for P(x). (I

Theorem 2.6. Let P be a nonzero palindromic polynomial of index d with nonnegative integer coeffi-
cients. If d < 1, assume moreover that D > 0. Then #4p(P) is a nonzero palindromic polynomial of
index d + 2D — 2 with nonnegative integer coefficients, and all roots of Ap(P) are on the unit circle.

Proof. This is an application of Theorem 2.5. The definition of .#p and the hypothesis that P has
nonnegative coefficients imply immediately the condition (2-4). ([

Let us now apply Theorem 2.6 to the proofs of Theorems 1.1 and 1.2. The defining recurrence (1-1)
for the polynomials F;, can be written as F,, 1| = Ap(F,) with the initial condition F| = 1. The property
follows by induction. The same proof works for G, with the initial polynomial 1 4 x.

Let us now state two useful lemmas.



ON THE ROOTS OF THE POUPARD AND KREWERAS POLYNOMIALS 167

Lemma 2.7. For all d > 0, the polynomial x? + 1 is in the kernel of N,

Proof. This is a direct consequence of (2-2). (I
Lemma 2.8. Let d > 2 be an integer. Then
d-2
M +x 4 +xD)=>"(d—1-i)i + Dx'. (2-5)
i=0
Proof. From the definition of .4j by (2-2), and by the previous lemma, this is equal to

j=1
Expanding, one finds that the coefficient of x' is the cardinality of
{(j,k)|0<k<j—landO0<i—-k<d—j—1}.
But this is the same as the set
{JI1=<j—k<d—i—1land0 =<k <i},
whose cardinality is (d — 1 —i)(@ +1). O

3. Sinus polynomials as eigenvectors

As can be seen in Figure 1, right, the roots of the Poupard polynomials F),(x) are very close to some of
the roots of x2" 4 1, with two missing roots on the right. Moreover the plot of the coefficients of F, (x)
seems to approximate a concave continuous function, as in Figure 1, left.

One expects that, up to a global multiplicative factor, the polynomials obtained when iterating n times
the operator .4p (for some fixed D > 1) are always becoming, when # is large, very close to the polyno-
mials described in this section. Some kind of justification will be given in the next section.

Let us consider the polynomial S, ,(x) defined for n > 2 and odd m > 1 by
x™ 41
x2—2xcos T +1’

Sm,n(x) = (3-D

whose roots are the roots of x™" 4 1 except exp(irr/n) and its conjugate.

2e15 ° ° - -0.5 05

Figure 1. Coefficients and roots of the Poupard polynomial Fj,.
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Let us first give an alternative expression for S, ,.

Lemma 3.1. The polynomial S, , has the explicit expression

mn—2
1 k+1
Spa(¥) = —= Y sin K+ DT (3-2)
s1n% P n

Proof. The proof is a simple computation, expanding both sides as polynomials in x and { = exp(iw/n),
also using that m is odd. O

This implies that the plot of the coefficients of S ,, looks very much like a sinus curve, like Figure 1, left.

Proposition 3.2. For every n > 2 and odd m > 1, the polynomial S, , is an eigenvector of the operator
M acting on V y;,—s for the eigenvalue 1/(1 — cos(/n)).

Proof. The proof is another explicit computation using the definition of S, , in (3-1) and the definition
of the operator .41 in (2-1). O

Note that the eigenvalue is also the value S, ,(1).

In general, the Galois conjugates of the polynomial S; , do not provide a complete set of eigenvectors
for the operator .47 acting on V,,_5. The other eigenvectors are S, ,/,, for odd divisors m of n, and their
Galois conjugates.

The family of operators .47 acting on the spaces V,_, of palindromic polynomials looks very much
like discrete versions of the Laplacian operator 83 acting on the space of functions f on the real interval
[0, 1] such that f(1 —x) = f(x) for all x and f(0) = f(1) =0.

4. Asymptotic behaviour from recurrence

Our next point is to justify in a heuristic way that iterating an operator .4 for some D > 1 produces a
sequence of polynomials that gets closer and closer to the sinus polynomials S; ,,. We have not tried to
make these computations rigorous.

Let us consider a family of polynomials H, of index n defined by iterating .4p, starting from an
arbitrary palindromic polynomial H,, with nonnegative coefficients and index m. Throughout this section,
the index n belongs to an arithmetic progression of step § = 2D — 2 starting at m. Let us write

n
H,(x) =Y Hyx*. (4-1)
k=0
We will assume the following asymptotic ansatz for the constant terms:

H, (0) ~ AB"n’n®" (4-2)

for some constants A, B, C, E, with A, B, E positive. This ansatz is motivated by the known case of the
tangent numbers, where B=2/(er), E=1and C= —%. This ansatz implies

Hy15(0)/ H, (0) == B’ ®En’E, (4-3)
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We will also assume that there exists a smooth function W which is a probability distribution function
on the real interval [0, 1] vanishing at O and 1, with W(1 — x) = W (x) on this interval and such that

k

o
Hyp = —W (—) + Hyo (4-4)
n n

is a good asymptotic approximation when n is large, for some sequence «,, to be determined.
Taking the sum of (4-4) over k ranging from O to n and using the hypothesis on W, one gets

Hyy50=Hy(1) ~an + (n+ 1) Hy .
Assuming that n H, o is negligible compared to H,; o, one obtains that a correct choice for o, is
op = Hpi50-
From (2-1), one deduces that the action of .4} at the level of coefficients is given by
Hyys5k+p—2Huys5k+p—1+ Huyyskrp—2 = —2H, . (4-5)

except for k =0 and k = n.
Replacing in (4-5) the coefficients by the expression from (4-4), one obtains

k+ D k+D-—1 k+D -2 k
Ontd (KT 2N g (B2 =) Lo (S22 L (Y (S 4 H,). (4e6)
n—+46 n+4é n+4é n+4é n n ’

Using now the growth ansatz, one can get rid of H, o in the rightmost term and obtain

k+ D k+D—1 k+D -2 k
WD) g (P TI) g (P L @ g (), (4-7)
n+34 n+34 n+34 Opts n
The left-hand side is an approximation of the second derivative of W, so one obtains
1 Wk oy k
w ~ =2 wl—). (4-8)
2(n+96)? n+é Opts  \N

If 5E = 2, one therefore reaches the differential equation
U’ = —Fy, (4-9)

where F =4/ (B%¢?). Because W vanishes at 0, it must be a multiple of sin(+/Fx). Because W vanishes
at 1 and is positive on the interval [0, 1], necessarily F = 72 and therefore B® = (2/(em))?. Because ¥
is a probability distribution, one must have W = 7 sin(7 x).

One can therefore conclude that, under several plausible but unproven assumptions, the asymptotic
shape of the coefficients of the polynomials H,, is approximating that of the polynomials Sj ,12.

5. Various remarks

5.1. Action of the operator Ay. Applying the operator .4 decreases the index by 2, so that iterating
this operator on any initial polynomial P of index d always vanishes after a finite number of steps. Let
Ay be the last nonidentically zero iterate of .4y acting on V. Let us denote by p the linear map that
maps P to the constant term of A" (P).



170 FREDERIC CHAPOTON AND GUO-NIU HAN

For example, here is a sequence of iterates of .4p:
AP+ 1, 3x2 +4x +3, 4.
In this case, p(x* + x> +xZ2+x+1) =4.
Let us present some special cases of initial choices where the value of p is interesting.
For n > 0, consider the polynomial
2nt1 i 2n+1—i
xt—x ;
0, (1) = Zp(—x_] )z, (5-1)
i=0
recording this sequence of final values. By the antisymmetry of the argument of p, the polynomial Q,
vanishes at t = 1. Let P, (¢) be the quotient Q,,(¢)/(t — 1), which is clearly a palindromic polynomial.
Proposition 5.1. For every n > 0, the polynomial P, is the Poupard polynomial F, .

Proof. For n =0, one can check that P, (t) = 1. Assume n > 0. For 0 <i < 2n, the coefficient ¢, ; of t
in P,(t) can be written as

ok 2ntl—k S S B
— I )= . 5-2
'0( Z x—1 ) 'O( x—1 x—1 ) (5-2)

0<k<i

Let us now compute ¢, j+2 —2¢y.i+1 4 ¢p,; for 0 <i <2n — 2. Starting from the left-hand side of (5-2),
this is given by
p(xi+1 + x2n—i—1).

Using now (2-2) for .4 and the definition of p as the final value for the iteration of .4p, this becomes
i+1 _ 1 2n—i—1 __ 1
2 X X ’
x—1 x—1
in which one can recognize —2c,_1; using the right-hand side of (5-2).
Moreover, ¢,,1 —2c,0 = p(1 + x2") = 0 because 1 +x2" is in the kernel of .4} by Lemma 2.7.

Let us now check that ¢, o = 212262 cn—1,i- First, by (5-2), the left-hand side is the image by p of
No(1+x 4 ---+x?"), given by Lemma 2.8. The right-hand side is the image by p of

2n—-2 2n—2
D2 D A=) en—1-p b (5-3)
i=0 O<k<i k<j<2n—2—k j=0

which is the exact same expression.
All these properties of the coefficients ¢, ; imply exactly that the polynomial P,(¢) is the image of
P,_1(t) by A1, acting on the variable . U

For n > 0, consider the polynomial
2n i 2n—i
’ _ X=X i
0,(0=)_ p(xT>t : (5-4)
i=0
recording this sequence of final values. By the antisymmetry of the argument of p, the polynomial Q/,

vanishes at r = 1. Let P, () be the quotient Q/, (t)/(t — 1), which is clearly a palindromic polynomial of
odd index.
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Proposition 5.2. For every n > 1, the polynomial Q!, is the Kreweras polynomial G .

Proof. The proof is very similar to the previous one. One first check that Q) is 14 x. Then one checks
by looking at coefficients that Q| is .41 (Q},). (I

Let us now describe some similar conjectural properties. For the starting sequence (277 (1 +x)%/); >0,
one gets the following values of p:

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, ...,

which seem to be the Euler numbers (A364). Similarly, for the starting sequence (27/ (1 4 x)2+h >0
one gets

1, 3, 25, 427, 12465, 555731, 35135945, ....

This seems to be the closely related sequence (A9843).
As a final conjectural remark, let us consider the following extension of the two previous cases.

Conjecture 5.3. For every i, j, the number p(x' (1 + x)7) is divisible by 217/

This property is clear if j is odd by Lemma 2.2, but not at all if j is even.
Assuming this conjecture, one can define, for every integer n, the square matrix M,, whose coefficient
M, (i, j), forO<i<nand0<j<n,is p(xi(l1+x)/)2"L/2,

Conjecture 5.4. For all n > 0, the determinant d,, of the matrix M, is given by the formula

dy=(n—DIEDH—2)1F @ —3)1#@ ... 11#0=D, (5-5)
where
> ki
e(k) = l.fk z.s odd,
4 if k is even.
For example, Mj is equal to
1 1 1 3 5 25
1 2 3 14 33 226
2 8 18 120 378 3336

10 64 198 1728 6858 74304 | (5-6)

104 896 3528 38016 182088 2339712
1816 19456 92808 1188864 6668568 99118080

whose determinant is indeed 5! 414 312214112,
This matrix contains entries with large prime factors, for example 92808 = 23321289, but the deter-
minant has only small prime factors.

5.2. Action of the operator /1. Applying the operator .#] does not change the index, so iterating this
operator on any initial choice gives an infinite sequence of palindromic polynomials of the same index.
For example, starting with x gives a sequence of polynomials

X, x24+2x+1, 4x*>+6x+4, 14x>+20x+14, 48x>+68x+48, 164x>+232x+ 164,

. ey
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whose constant terms and middle coefficients are given by A7070 and by A6012. Indeed, the action of
1 on reciprocal polynomials of index 2 is given in the basis {1 4 x2, x} by the matrix

21
22
so that both sequences satisfy the recurrence a, = 4a,_1 — 2a,—, with appropriate initial conditions.

5.3. Action of the operator A45. Applying the operator .45 increases the index by 2, so iterating this
operator gives an infinite sequence of polynomials for every initial choice. In each such sequence, the
sequence of constant terms is, up to a shift of indices by 1, the same as the sequence of values at x = 1.
Some examples were presented in the introduction, related to reduced tangent numbers and Genocchi
numbers. Let us record one more family of examples.

Using the polynomials x’(x + 1) for i > 0 as starting points, one gets a table of constant terms:

1 3 17 155 2073
1 6 55 736 13573
1 10 135 2492 60605
1 15 280 6818 211419
1 21 518 16086 619455
1 28 882 34020 1592811

el eoleolBolel

Here i is the row index and in each row the term of index j is the constant term divided by 2/. This table
seems to be essentially the Salié triangle (A65547).
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Generalized colored circular palindromic compositions

Petros Hadjicostas

We derive the generating function (g.f.) of the number of colored circular palindromic compositions of
N with K parts in terms of the g.f. of an input sequence a that determines how many different colors
each part of the composition can have. As a result, we get the g.f. of the number of all colored circular
palindromic compositions of N. Using the latter formula and the g.f. of the number of colored circular
compositions, we may easily derive the g.f. of the number of all colored dihedral compositions of N.

1. Introduction
A linear composition of a positive integer N with length K is a K-tuple (A, ..., Ag) € Zfo such that
N=A+ -+ Xrg.

Here the numbers A1, ..., Ak are called parts of the composition. For example, (1, 2, 3, 3) and (3, 3, 2, 1)
are two different linear compositions of N =9 with K = 4 parts each.

Cyclic or circular compositions of N with length K are equivalence classes on the set of all linear
compositions of N with length K such that two compositions are equivalent if and only if one can be
obtained from the other by a cyclic shift. For example, {(1, 2, 3, 3), (3, 1,2, 3),(3,3,1,2),(2,3,3, 1)}
and {(3,3,2,1),(1,3,3,2), (2,1, 3,3), (3,2, 1, 3)} are two different cyclic or circular compositions of
N =9 with K =4 parts each.

Cyclic or circular compositions were studied, for example, in [Ferrari and Zagaglia Salvi 2018; Gibson
et al. 2018; Hadjicostas 2016; 2017; Knopfmacher and Robbins 2010; Sommerville 1909; Zagaglia Salvi
1999].

A (bilaterally) symmetric cyclic composition is a circular palindrome, that is, a circular or cyclic com-
position with at least one axis of (reflective) symmetry. Such circular or cyclic palindromic compositions
were studied in [Bower 2010; Hadjicostas and Zhang 2017; Sommerville 1909; Williamson 1972].

For example, {(1, 3,2,3), (3, 1,3,2),(2,3,1, 3), (3,2, 3, 1)} is a circular palindromic composition
of N =9 with K =4 parts with one axis of symmetry (through 1 and 2). On the other hand, {(1, 2, 1, 2),
(2,1, 2, 1)} is a circular palindromic composition of N = 6 with K =4 parts and two axes of symmetry
(through the two 1’s and through the two 2’s). Finally, {(1, 1, 2,2), (2,1, 1, 2), (2,2, 1, 1), (1, 2,2, 1)}
is a circular palindromic composition of N = 6 with K = 4 parts and one axis of symmetry (that passes
through no part).

Dihedral compositions of N with length K are equivalence classes on the set of all linear compositions
of N with length K such that two compositions are equivalent if and only if one can be obtained from the

MSC2010: 05A10, 05A15, 11B39.
Keywords: circular palindrome, dihedral composition, generating function.

173


http://msp.org
http://msp.org/moscow
https://doi.org/10.2140/moscow.2020.9-2
http://https://doi.org/10.2140/moscow.2020.9.173

174 PETROS HADJICOSTAS

other by a cyclic shift or a reversal of order. Such compositions were studied, for example, in [Hadjicostas
2017; Knopfmacher and Robbins 2013; Zagaglia Salvi 1999]. For example,

{(1,2,3,3),(3,1,2,3),(3,3,1,2),(2,3,3,1),3,3,2,1),(1,3,3,2), (2, 1,3,3), 3,2, , 3)}

is a dihedral composition of N =9 with K = 4 parts.
A colored linear composition of N with K parts according to an input sequence

a=(a(m):me”Z-y), wherea(m)eZsforeachmeZ.y,
is a K-tuple (A, my), ..., (A, mg)) such that A;,m; e Z.gfori =1, ..., K with
N=AM+--4+Ax and 1<m; <a(r;) fori=1,..., K. (1-1)

Note that, when a(m) = 0 for some m € Z. ¢, no part A; of the colored linear compositions of N we are
considering (according to the input sequence a) can equal m.

For example, (1,, 23, 13, 21) is a colored linear composition of N = 6 with K = 4 parts, where the
parts have colors 2, 3, 3 and 1, respectively. This is a colored composition with respect to any input
sequence a = (a(m) : m € Z~) that satisfies a(m) € Zx¢ for each m € Z. ¢ and the inequalities a(1) > 2
and a(2) > 2.

Colored cyclic compositions, colored (bilaterally) symmetric cyclic compositions (i.e., colored palin-
dromic cyclic compositions), and colored dihedral compositions of N with length K can be defined
much as above. Colored compositions (of any kind) were studied in [Agarwal 2000; 2003; Bower 2010;
Heubach and Mansour 2010, Section 3.5; Gibson et al. 2018].

For example, {(1,, 23, 13, 21), (23, 13, 21, 12), (13, 21, 12, 23), (21, 12, 23, 13)} is a circular nonpalin-
dromic (not bilaterally symmetric) colored composition of N = 6 with K = 4 parts. On the other
hand, {(12, 23, 13, 23), (23, 13, 23, 12), (13, 23, 12, 23), (23, 12, 23, 13)} is a circular palindromic colored
composition of N = 6 with K = 4 parts and one axis of symmetry (through 1, and 13).

Consider the collection C(N, K; a) of all colored compositions of N with K parts according to an input
sequence a = (a(m) : m € Z~). Consider a partition P = P(N, K; a) of C(N, K; a) into (nonempty)
equivalence classes. Denote by bP (N, K) =bP (N, K; a) the total number of such equivalence classes
in P. Throughout the paper, instead of using P, we use different superscripts (e.g., L, PL, CP, etc.)
to denote the partition P of C(N, K; a). In particular, when each equivalence class in P has only one
element, we use the superscript L (which stands for linear compositions).

Given K € Z-¢ and an input sequence a = (a(m) : m € Z~q), consider a sequence of partitions
Pxk.a=(P(N,K;a): N e€Z.p) and the set

U C(N,K:a)

NEZ>0

of all colored compositions of positive integers with K parts such that P(N, K; a) is a partition of
C(N, K; a) for each N € Z.y. We call the sequence

bk =(b(N,K):NeZ.gp)

the corresponding output sequence, where for simplicity we have dropped the superscript Pk , from bg
and the superscript P(N, K; a) from b(N, K).
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Given a = (a(m) : m € Z~), we may also consider a family of partitions

P,=P(N,K;a):N,KeZ.ogwithl <K <N)

and the set
U C(N,K:a)

N,K€Z>o
I<K<N

of all colored compositions with input sequence a such that P(N, K; a) is a partition of C(N, K; a) for
each pair (N, K). The N-th term of the sequence

N
b=(b(N): N €Z.)= <Z b(N,K): N € Z>0>
K=1

gives the total number of equivalence classes of colored compositions of N according to the family of
partitions (P(N, K;a) : 1 < K < N). Again, for simplicity, we have dropped the superscript P, from b
and b(N) and the superscript P(N, K; a) from b(N, K).

Throughout the paper, for integers N and K, we set (for convenience)

b(N,K)=0 when K <lor K > N. (1-2)

Following [Bower 2010], we denote the (formal) generating functions (g.f.’s) of the three sequences
a, bk, and b by

Alx) = Z a(m)x™, Bg(x)= Z b(N, K) xV,
m=1 N=1
o0 0 N
B(x) = Z b(N)xN = Z Z b(N, K) xV,
N=1 N=1K=1

respectively. The following trivial result connects Bg (x) with B(x) under mild assumptions.

Proposition 1.1. Ifb(N,K)=0forall K >2and N € {1, ..., K — 1}, then

oo
B(x)= ) Bx(x).
K=1
As mentioned above, we use the superscript L to denote linear colored compositions of N according
to some input sequence a = (a,, : m € Z-) with g.f. A(x). It is well known that

Bi(x) =Y b“(N.K)x" = Ax)X for K € Z.,,

N=1 (1-3)

AR

L _ L N
B (x)_;b (N) x =T A0)"

This is the INVERT transform in [Bernstein and Sloane 1995, p. 61] and the AIK transform in [Bower
2010].
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Example 1.2. When the input sequence is a = (m : m € Z), then we are dealing with the so-called m-
colored (linear) compositions of N studied in [Abrate et al. 2014; Agarwal 2000; Heubach and Mansour
2010, Section 3.5]. In such a case, A(x) =x/(1 — x)? with

K
Loy_ % Loy _ X
BK()C) = m for K € Z>0 and B (X) = m (1—4)
From this, we may easily deduce that
N+K-—1
bE(N, K) = ( 2}_1 ) for KeZ.o and  b“(N)= Fay, (1-5)

where F, is the n-th Fibonacci number. Other properties of “n-color compositions” can be found in
[Agarwal 2003; Guo 2012; Sachdeva and Agarwal 2017].

The organization of the paper is as follows. In Section 2, we study colored linear palindromic compo-
sitions and derive their generating functions (see Theorems 2.1 and 2.2). The material in that section is
needed for the material in Section 3, which is the main section of the paper. In Section 3, we study colored
circular palindromic compositions and derive their generating functions (see Theorems 3.1 and 3.2, which
generalize results in [Hadjicostas and Zhang 2017]). In particular, we prove that, if bCP(N) is the total
number of colored circular palindromic compositions of N with input sequence a = (a(m) : m € Z-y),
then the g.f. of the sequence (b (N) : N € Z.¢) is given by

o0

3 b 5V = LHAD

1
= (1-6)
o 21— A(x2) 2

where A(x) =Y, a(m) x™

Equation (1-6) is important because it allows the calculation of the g.f. of the number of colored
dihedral compositions of N, say bP(N). When A(x) is the g.f. of the input sequence a = (a(m) :m € Z),
then it can be proved (using Mdbius inversion) that the g.f. of the number of colored circular compositions
of N is — 2211 (p(d)/d)log(1 — A(x%)), where ¢ (d) is the Euler totient function. We omit the details
of the proof of this result, but see, for example, [Flajolet and Sedgewick 2009; Flajolet and Soria 1991].
The g.f. of the number of colored dihedral compositions is then given by

= N1 ad 9(d) i (14+ A(x))? B
szlb (N)xV = 2; o log(1—AG) + (1-7)

1
41— A(x2) 4

2. Colored linear palindromic compositions

The study of linear palindromic compositions goes back all the way to the 19th century work [MacMa-
hon 1893]. These compositions have been studied by several mathematicians since then. They are
compositions (Ay, ..., Ag) of N with K parts such that Ax_; = A; fori =1, ..., K. Hadjicostas and
Zhang [2017] called these compositions type-I palindromic compositions and denoted their number by
PLI(N, K). MacMahon [1893] proved that, for n, k € Z.o with 1 <k <n,

Ph@2n, 2k) = PH'2n,2k— 1) =PH2n—1,2k— 1) = (Z:})

while PL1(2n — 1, 2k) = 0. We shall not use the notation P! in this paper.
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Using the superscript PL for colored linear palindromic compositions and the superscript L for (gen-
eral) linear compositions of N with K parts according to the input sequence a = (a(m) : m € Z~¢) in
both cases, it is easy to prove (e.g., see the LPAL transform in [Bower 2010]) that:

« If N and K are even, then b*“(N, K) =b“(N/2, K /2).
« If N is odd and K is even, then b"“(N, K) =0
e If K =1, then b"™(N, K = 1) = a(N).
e If N iseven and K is odd > 3, then
PN, K= a(2i)bL(% _i K_l).

2
0<i<N/2

e If N and K are both odd with K > 3, then

AN Ky = Y a(2i—1)bL(N;_1—i, K2_1>.
0<i<N/2

Theorem 2.1. For fixed K € Z-, the g.f- of the sequence (b (N, K) : N € Z~) is given by
BPL( ) = {
Proof. Assume first K is even. Since b*“(N, K) =0 when N is odd, we get

B (x) = ib]“(s, %) (x2) = A2,
s=1

A(xHK/2 if K is even,
Ax)A(x2)E=D/2if K is odd.

Assume K is odd. If K =1, the result is trivial because BIP(L_I(x) = A(x). If K > 3, then

oo m—1

B’IEP(X) Zza(2z)bL( i 1) 2m+22a(21—1)bL<m+1—i K2 1) 2m+1

m=1 i=1 m=0 i=1

oo oo

Za(Zz)le Z bL(m—i, —K2_1>x2(m7")
i=1 m=i+1 o0 o0
+3 aqi - a2 ZbL(m i1, KT_I) K242,
i=1 m=i
If we let Ap(x) =Y 02, a(2i)x? and Ap(x) = Y 2, a(2i — 1)x% 1, we then get
LP L =1\ 2 L =1\ 2@+
B () = AE<x)Zb (e £51) Ao Db (e+1, 50

£=0
= AEOC)A(xZ)(K D2 4 Ag() A E=D2 = A(x) A K-D/2, 0

Theorem 2.2. The g.f. of the sequence (b*“(N) : N € Z-) is given by

Py Lo v A+ AGD)
B (x)=> s ()x = Ae
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Proof. By Proposition 1.1,

o

i BPE(N) xN = Z (i bPY(N, K) xN)
N=1

K=1 *N=1

° > _ Alx)+ A(xz)
Z 225/2 E : A A(x2H)(@s+D-D/2 _ 227 7 7

Example 2.3. Consider again the m-colored compositions from Example 1.2 with input sequence a =
(m:m € Z-p) and input g.f. A(x) =x/(1 — x)2. Using Theorems 2.1 and 2.2, we can easily prove that

K

B,P(L(x) = (1_)67)1( for K even,
K 2
PL X (1+x)
BK ()C) = m for K Odd,
BP(x) — x(x2+3x4+1) x(x243x+1)

x4 =3x241  (24x—DE2—x—-1)

It follows that the number of m-colored (linear) palindromic compositions of N with K parts is given by

N /| N K _
%(LZJKJF g 1) if K is even.
PL _ -
BTN, Ky = | 4]+ £L (474 &1
(2 P )+( 2 ) if K is odd.

Here, |a] and [a] denote the floor and ceiling of a € R, respectively. In addition, the total number of
m-colored (linear) palindromic compositions of N is given by

3Fy if N is even,

b (N) = S
Fy_1+ Fy41 if N isodd.

Example 2.4. Using a combinatorial argument and using g.f.’s, Mansour and Shattuck [2014] proved
that, for N € Z. ¢, the number of F,,-compositions of N equals the Pell number py, which is defined by
the recurrence

po=0, p1=1, and PN=2pN-1+pNn-—2 forN >2. (2-1)

Of course, using g.f.’s, the proof of this claim is very easy: we have a(m) = F,, for each m € Z-y,
and as aresult, A(x) =x/(1 —x — x2). It follows that the g.f. of the number b%(N) of colored linear
compositions of N with respect to the input sequence a = (F,, : m € Z~g) is

A(x) _ X

BN (x) = = ,
x) 1—A(x) 1—2x—x2

which is the g.f. of the Pell numbers defined by (2-1).
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By Theorem 2.2, the g.f. of the number b"F(N) of colored linear palindromic compositions of N with
respect to the input sequence a = (Fy,, : m € Z~g) is

A(x)+A(x2)_ x(14x—2x2—x3—x% 2+ 1) 24 3x +x3

BP () — _ — — .
*x) 1—Ax2?) 1=x—=xHA=-2x2—x%) 1—x—x2 1-2x2—x*

It follows immediately that

2FNy2 —2pNj2+41 if N is even,

e =2FN42 — P|N/2+1] — P[N/2+1]-
2Fn12 —=3pw+1)2 — P(v—1)2  if N is odd W2 N2

HYP(N) = {

For example, the b (5) = 9 linear palindromic F,,-compositions of N = 5 are

(51), (52), (53), (54), (55), (11,31, 11), (11,32, 11), (21, 11, 21), (11, 1y, 1y, 14, 1y).

Remark 2.5. Hadjicostas and Zhang [2017] considered also type-II palindromic compositions of N
with K, denoted by P2 (N, K), which are compositions (A, ..., Ag) of N of length K that satisfy
M =Agqo_jfori=2,...,K;thatis, (A1, A2, ..., Ag) = (A1, Ak, ..., A2). (For K =1, it is assumed
that (A1) = (V) is a linear palindromic composition of both types.) Again, we shall not use the notation
P2 (N, K) in this paper (since the superscript L in this paper denotes a general linear composition, not
necessarily palindromic).

3. Colored circular palindromic compositions

Circular palindromic compositions or circular symmetrical compositions were originally studied in [Som-
merville 1909]. Hadjicostas and Zhang [2017] defined them as equivalence classes (with respect to
cyclic shifts) on the set of linear compositions of N with K parts that contain at least one palindromic
composition of type I or type II (see Remark 2.5 in this paper). Williamson [1972] called them bilaterally
symmetric cyclic compositions, while Bower [2010] called them circular palindromes.

In this paper, we use the superscript CP for colored circular palindromes (as opposed to PL used for
colored linear palindromes and L for general colored linear compositions). In order to find the g.f.s of
the sequences (bP(N,K): N €Z-0) and (bP(N) : N € Z-), we need first to express these quantities
in terms of b*(N, K) or b’ (N, K) (for which we know the g.f.’s from previous sections).

Using input sequence a = (a(m) : m € Z), for N, K € Z-, it is clear that

bP(N, K) =b""(N, K) when K is odd. 3-D

When K is even and N is odd, we have (e.g., see [Bower 2010])

Zi o_dd,_j even a(l)a(.]) if K =2,
bCP(N, K) — i+j=N N__ . K (3_2)
S oatjeven a@a(y O (=L B 1) itk >4,
i+j<N

When N and K are both even, the situation is more complicated. Following [Bower 2010], we divide
the possible output configurations (with parts of the composition on a circle) into two kinds:

Case 1: those configurations for which the axis of symmetry passes through no parts of the composition.
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Part A

Part 1 : Part 1 Part 1 3 Part 1
Part 2 Part 2
Part 2 Part 2
K K
Part 5 — 1 Part 5 — 1 Part%—l Sk 1
K K : 2

Part 5 @ Part 5 Part B

Figure 1. Case 1, left: no parts joined. Case 2, right: two parts joined.

Case 2: those configurations for which the axis of symmetry passes through two parts, which we label
Part A and Part B.

See Figure 1. Because two circular configurations of parts are equivalent if one can be obtained from
the other through cyclic rotation, it is possible for a configuration to belong to both categories.
We have the following formula for 5P (N, K) when both N and K are even:

In+Jy
2
The quantities Iy, Jy, Py, Sy, and My are defined by [Bower 2010] (see his CPAL transform):
o Iy =bY“(N/2, K/2) (no parts are joined).
e Jy =a(N/2) when K =2 and
w=Y abhp(5E L)

2 72
0<i<N/2

bP(N,K) = + Py 4 Sy + My.

when K > 4 (the two parts joined, A and B, are identical).

Y ijeen al)a()) when K =2,
o Py = J>i,i+j=N .
> e a@a(p (YLK 1) when k24
j>ilitj<N 2 2
(the two parts joined, A and B, are even and have different values).
Z ijodd a()a(j) when K =2,
.« Sy = j>i,i+j=N Nl K
Z i,j odd a(i)a(j)bL<$,—— ) when K >4
j>iitj<N 2 2

(the two parts joined, A and B, are odd and have different values).

L(2)'-o(3)

%ZO<i<N/2(a(i)2 —a(i)) bL<N;2i, % - 1) when K > 4

(the two parts joined, A and B, have the same value but different colors).

o« My =
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Theorem 3.1. For fixed K € Z-, the g.f. of the sequence (b°*(N, K) : N € Z¢) is given by

> TAGH KDL AX)? +AG?)  if K is even,
B () = ZleP(N K) " {A(x)A(xz)(K /2 if K is odd.
N=

Proof. In view of (3-1) and Theorem 2.1, we only need to prove the theorem when K is even. Let B,C() (x)
and BE (x) be the contribution to the g.f. BSF (x) =Y"%_, (N, K) x" from the terms bP(N, K) with
odd and even indexes N, respectively. We claim that
BR(x) = Ao() Ap(x) A /27, (3-3)
Bg (x) = 3 A0H)PIAG?) 4+ Ap (1) + Ao ()], (3-4)
where Ag(x) =Y or_oam+1) x> and Ag(x) =Y o_; a(2m) x*™. From (3-3) and (3-4), we get
B’ (x) = Bg(x) + Bg (x) = A P AG?) + A(0)7]
and this would complete the proof of theorem.
Proof of equation (3-3): We use (3-2). For K =2, we have
B,(g:z(x):i > a@s+1ar) ! =iia(2s+l)a(2r)x2rxzs+l =Ao(X)Ap(x)A(xH)** 1.

t=1s5>0,r>1 s=0 r=1
s+r=t

For K even > 4, we have
oo t—2t—1-s

B,?(x) = ZZ Z a2s+1)a2r) bL(t—r -, g — 1) x2H

=2 s=0 r=1

o0 o0 o0 K
_ 2r 2s+1 L, _,._ H 2(t—r—s)
_ZZa(2s+l)a(2r)x X Z b (t r—s, > l)x

s=0 r=1 t=r+s+1

= Ao(0)Ap(x)A(x*)*/>71,
which proves (3-3).
Proof of equation (3-4): We calculate the contributions of the terms Iy, Jy, Py, Sy, and My to the gen-

erating function BIF; (x).For T €{1, J, P, S, M}, denote the corresponding contribution to the g.f. BIF; (x)
by BIE (x). We claim that

e8]
B (x) = Z L™ = AGH K2,

By (x) = Z Jomx?" (Z a(i)xZi)A(xz)K/2l’

i=1

B}?(x) = ZPme2 (Z Z a(Zl)a(2])x2(’+j))A(x yk/2=1
m=1

i=1 j= L+1
o0 00
BE) =Y S0 = (3 3 ai+ D a(2j+ 1) 22HH0) A2 K/
K 2m J ,
= i=0 j=i+1

o0

B 00 = 3 Mo = 5 (L (e)” —a(i))x2i>A(x2)K/2_l.

m=1 i=1
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Below we prove the formulae for B IJ( (x) and BIS( (x). The proofs for the rest are similar, and hence we

omit them.
For By (x), when K = 2, we have

o0

Bi_p(x) = Z Jomx*" = Z a(27m>x2’" = <Z a(i)xZi)A(XZ)Z/Z—l‘
m=0

For K even > 4, we have

o0

B =Y oy = Z( 3 a(i)bL<2m2_2i, g - 1)>x2m
m=1

m=1 “0<i<m

o0

o
= Za(i)xzj Z bL(m —1, g — 1) x20m=0)
i=1 m=i+1
x (o.¢] o0

=Y a3 b (e g 1) = <Za(i)x2i>A(x2)K/2—1.

i=1 =1 i=1

For By (x), when K = 2, we have

By _,(x) = ZSzmx Z > a@t+Da@s+ Dx™"

m=2 s>t>0
s+t=m—1

e °] o0
B (Z > a@s+ a2+ 1>x2<“'*”“)A<x2>2/2—1.
=0 s=t+1
For K even > 4, we have

BS(x) = ZSme Z( 3 a(i)a(j)bL(@,g—l))xzm

m=1 i,j odd
J>i,i+j<2m

=i i Z a(2t+1)a(2£+1)bL<m—t—E—1,g_l)xzm

t=0 {=t+1 m=t+L+2
Therefore,

BK(x) Z Z a(2t+1)a(2£+1)x2(’+‘5+1)

t=0 {=t+1

X Z a(2t+l)a(2€+1)bL<m—t—£—1,g—l)xz(m_’_z_l)
m=t+0+2
o0 o0 K
_ 21+0+1) L(. K
=Y Y a@i+Da@e+Dx Zb <s > 1)
t=0 l=t+1

oo [ee]
> 3 ai Da)+ 1P ) A

|
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In a similar way, we can prove the formulae for B II( (x), B ,}; (x), and BIA(’[ (x). We then have

By (x) = (B (x) + Bx (x)) + Bg (x) + By (x) + By (x)
= A2 T (),

where
1 2i 23i+))
TK(x)—E(A(x )+Za(z)x )+Z Z a(2i)a(2j) x20+
i=1 j t+l
1 o0
+Z Z ai+1a@j+1) x>0+ 4 +5 Z(a(i}z —a(i)) x%
i=0 j=i+1 i=1
1 o0
E(A(x )+ Za(z)xZ’ +AE(X)” = ) a@m)’x*" + Ao (x)?
i=1 m=1 00
- Z a@m+ 1% £ 3 " (a()* — ali)) le')
m=0 i=1
1
= S(AG?) + Ap(@)? + Ao (x)?).
This finishes the proof of (3-4) and the proof of the theorem. ]

Theorem 3.2. The g.f. of the sequence (b*(N) : N € Z-¢) is given by

P, > cp N (14 A(x))? 1
B (x)—Zb (N) x = 30— a0 2

Proof. By Proposition 1.1,

ibCP(N)xN Z(Z bP(N, K) x )
N=1

K=1

= % Z A(xz)(ZS/Z)—l(A(x)Z + A(XZ)) + Z A(X)A(XZ)(ZS-H—I)/Z
s=1 =0
_ A A 240 _ (1+AW)?

1 0
20—AGD)) 20— AG2) 2

A special case of Theorems 3.1 and 3.2 has to do with circular palindromic compositions of a positive
integer with parts belonging to a subset E of Z. (. (Several similar results for various kinds of linear com-
positions were surveyed in [Heubach and Mansour 2004].) Hadjicostas and Zhang [2017, Theorem 2.6
and Corollary 2.9] proved the following result using different methods. We give a new proof of this
result using Theorems 3.1 and 3.2 above.

Theorem 3.3. Let E C Z-. For each pair of positive integers N and K , let Pg (N, K) be the number
of circular palindromic compositions of N with length K whose parts belong to E. Let also Pg (N) be
the total number of circular palindromic compositions of N with parts in E. Then:
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(a) For K € 7,

" \E=D/2 . ‘
ZPR(N K)xV = (ZmeEx )(;xz ) if K is odd,
£ UV, = m )
= %<(ZMGE xm)2 + (ZmeE x2m>) <ZmeE xzm)(K)/Z l ifK is even.
(b) We have

( +ZmeExm)2 1
PRN)xN = =
/%:1 A ( ZmeExzm) 2

Proof. Define the input sequence a = (a(m) : m > 1) by

1 ifmekE,
a(m) = .
0 ifm¢gE.
Then the g.f. of sequence a is A(x) =), x™. We have
PE(N; K)=b"(N,K) and PR(N)=DbF(N).

The theorem then follows from Theorems 3.1 and 3.2 above. O

Example 3.4. Consider again the m-colored compositions from Example 1.2 with input sequence a =
(m:m € Z-¢) and input g.f. A(x) = x/(1 —x)?. Using Theorems 3.1 and 3.2, we can easily prove that

K 1 2 1 2
B,C(P(x) . ((1+x 2))(Kj;x) for K even,
—X
K 1 2
BSP(x) = % for K odd,
BCP( ) x(A 3 =2x24+x+1) xOA 3 =2x24+x+1)
X)= =

A =3x24+ D1 —-x)?2  24+x—D2—x—-1(1—x)%

Thus, the number of m-colored circular palindromic compositions of N with K parts is given by

(LNT—‘J+%)+(WT—‘1+%>+<LN“J )+(V“+‘1 —) if K is even
K+1 K+1 K+1 K+1 ’
bP(N,K) = N1 K-l N7, K-l
(L?J + T) n <fﬂ + T) if K is odd.
K K

In addition, the total number of m-colored circular palindromic compositions of N is given by
bP(N)=Fyis+(—D)NFy_4s—2N for N >4
with 5P(1) = 1, bP(2) =3 and b*(3) = 6

Example 3.5. Consider again Example 2.4 with input sequence a = (F,, : m € Z-) and input g.f.
A(x) =x/(1—x —x?), which extends an example from [Mansour and Shattuck 2014]. Using Theorem 3.2,
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we can prove that the g.f. of the number ¥ (N) of colored circular palindromic F,,-compositions of N
is given by

x(1=32+x+x°+x% 50 +2) 1 9+ 14x + 4x? 4 6x°
(1—x—=x22(1=2x2—x% 1—x—x2 (1—x—x2)? 1 —2x2 —x*

B (x) =
It follows that

bP(N) = —=5(Fy +2Fy+1) + (N +3)Fy41+ (N + D) Fy43) + g(N),

where
dpnp2+9pnjatt if N is even,

g(N) = { o
6pN—1)2+ 14pn11y2 If N is odd.

Here p, denotes the n-th Pell number defined by (2-1). For example, the 5°F(5) = 15 circular palindromic
F,,-compositions of N =5 are

(51), (52), (53), (54), (55), (11,41), (11,42), (11,43), (21,31), (21, 32),
(11,31, 1), (11,32, 11), 21, 11,21), (1q, 14, 14, 21), (14, 1y, 1y, 1y, 1),

where we have listed only one representative from each equivalence class.
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Square-full primitive roots in arithmetic progressions

Vichian Laohakosol, Teerapat Srichan and Pinthira Tangsupphathawat

An asymptotic estimate for the number of positive primitive roots which are square-full integers in
arithmetic progressions is derived. The employed method combines two techniques and is based on
the character-sum method involving two characters; one character is to take care of being a primitive
root, based on a result of Shapiro, and the other character is to take care of being square-full, based on a
result of Munsch.

1. Introduction

An integer n > 1 is called square-full if in its canonical prime representation each prime appears with
exponent > 2. The integer 1 is square-full by convention. For a positive real number x, let Q»(x) denote
the number of square-full integers that are < x. The oldest known work related to Q,(x) is due to Erdds
and Szekeres [1934], who proved that
() 1 0!
02(x) = =2 x3 + O(x3).
£(3)

This was later refined by Bateman and Grosswald [1958], who replaced the error term by

¢ (%) 1 1 3 _1

@x 34 0 (xs exp(—C(logx)s(loglogx)™5))
for some absolute constant C > 0. There have been many works on the improvement of the error term;
see, e.g., [Cai 1997; Cao 1994; 1997; Liu 1994; Suryanarayana and Sitaramachandra Rao 1973; Wu
1998; 2001]. Regarding square-full integers in an arithmetic progression, Liu and Zhang [2013] used
Perron’s formula and properties of the Dirichlet L-functions to study the character sums over square-full
numbers and gave an asymptotic formula for Q,(x : £, g¢), the number of square-full integers which are
congruent to £ modulo an integer g and not exceeding x. One year later, Munsch [2014] applied the
Pdlya—Vinogradov inequality to bound the character sums over square-full integers and improved the
results obtained by Liu and Zhang by showing that for all ¢ > 0 we have

3 2
=) A Z) B

() tq | ¢(5) Y45 4 O(xt(logx) g ), (1-1)
q

¢
34, q) =
R bD=15 7, Q)

where Ay 4, B¢, are constants depending on certain L-functions. Chan and Tsang [2013] used the
Dirichlet hyperbola method and Burgess bound on character sums to study this problem. Later, Chan
[2015] improved their results. Character sums over square-full integers are also prominent in [Liu and

MSC2020: 11A07, 11B25, 11N37, 11N69.
Keywords: arithmetic progressions, primitive roots, square-full numbers.
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Zhang 2013; Munsch 2014]. The second author [Srichan 2013] used the exponent-pair method to study
the appearance of square-full integers in an arithmetic progression and showed that the right-hand side
of (1-1) can be strengthened to

L(3, Y (OL(2, . L(% 2 (0L (2, | Ll
(o x0) + X, OL( Xl)xi+ (- x0) + X 22OL(S Xz)x§+0(qé+€x6), (1-2)
qL(@3, xo) qL(2, xo)

where xo, x1 and x» denote the principal, quadratic and cubic characters modulo g, respectively. Char-
acter sums over square-full integers play a significant role in the proof of (1-2).

For relatively prime integers a, m with m > 1, if the smallest positive integer f such that a/ =
1 mod m satisfies f = ¢ (m) (the Euler totient), then a is called a primitive root mod m. Shapiro [1983,
Sections 8.5-8.6] also used the character-sum method to obtain the following estimates related to the
number of primitive roots modulo an odd prime p:

o The number of positive primitive roots mod p that are < x is

olp - )( + 027 V1 log p)),

where w(n) denotes the number of distinct prime factors of n.

« For integers k > 0, £ with gcd(p, k) = 1, the number of positive primitive roots mod p that are < x
and = ¢ mod k is

d(p—

: )(k +00°PVpllog p))

o The number of positive primitive roots mod p that are < x which are square-full is

PP=D (et 4012071 pilog p) ), (1-3)
where c is a constant.
Liu and Zhang [2005], using Perron’s formula, improved the error term in (1-3) to O (x!/4+¢ p%/44+¢),
Munsch and Trudgian [2018] improved this result by showing that (1-3) can be replaced by
—1 1\"'Cpx2
‘Mp ) (( +—t— ) PX° 4 O(x3 (logx) p¥ (log p)ézwu’l))), (1-4)
—1 p p*) <3

where C), > p~V (Sﬁ). Recently, Srichan [2020] used the exponent-pair method and the lemmas used in
the proof of Theorem 2.1 in [Srichan 2013] to further refine the estimate (1-4) with the following result:
for a given odd prime p < x!/3, the number of square-full integers which are primitive roots mod p and
< x is equal to

p(p -1 {(L(%, x0) = L(5. m))x; N (L(%, x0) = L(5. x%))x;}

p L(3, xo0) L(2, x0)

+O@sg(p— 13D pite) - (1.5)

Here, xo0, x1 # xo0, and x2 # xo denote, respectively, the principal, quadratic and cubic characters mod p,
and w; 3(n) denotes the number of distinct primes =1 (mod 3) which are divisors of n.
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In the present work, we derive an asymptotic estimate for the number of primitive roots mod p which
are square-full in an arithmetic progression. Shapiro [1983] was first to give an asymptotic formula for
the number of primitive roots mod p in an arithmetic progression by showing for given integers k > 0, £,
and prime p with ged(p, k) = 1, the number of positive primitive roots modulo p that are congruent to
£ mod k and not exceeding x is equal to

¢(p

1
; )(k +0@PVps logp))

Throughout, let ¢ be a fixed sufﬁciently small positive constant, let ¢ (n) be Euler’s totient, let w(n)
be the Mobius function, and for a given odd prime p let

1 if n is a square-full primitive root mod p,

Ir(n) = { (1-6)

0 otherwise

be the characteristic function of the primitive roots modulo p which are square-full integers. Our main
result is:

Theorem 1.1. Given an integer q > 2, an integer 0 < £ < g with gcd(€, g) = 1, and a given odd prime p
such that ptq, we have

¢(p—1) 1 1 Oy 1 Lo
Y. D= YT 5003y Ara¥™ + Bpax i+ 0(pg)= " xi (log )22 PV (q))).

n<x

n={ mod q
where ( ) |
1 1\
, - 1+—+—> Hy(%, 1) (1-7)
P ()mlpq(Hp ) ;Y c<3>< pop)
1
£y rw- 2’ (+—+ )F | (1-8)
X;; aL o Pl p(z X)
_ Z _((Z) ) 1—[ 1¢(P¢]) (1-9)
X€Xy C() p1lpq P4
rEY]
((2) (1—pﬁ) | L(%,kz)( 1)“ 1
B,,=—3L =y 314+ —) H (2 1-10
P4 (2) Pll|_[[7‘] 1+p1 2)\62;2 z(2) P) 4(3:2) (1-10)
_ x%) 1\
I CE (2) H(HE) Fp(3: %) (1-11)
XEX2 P\q
1 _
¢ 1-12
s xat ) g() H( +p (1-12)
XE€X2 pilpg
reY,
with , ) ) )
1=A(pDp; ™ 1—x“(p)p~™
H,(s,\) = — )= —2
g5 1) H1+k3(p1)p’33 p(s: 1) 1+ x3(p)p=

p1lq
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the products being over primes p1. Here, X1, X» denote the set of quadratic, respectively, cubic charac-
ters mod q, while Y1, Y, denote the set of quadratic, respectively, cubic characters mod p.

Our approach is based mostly on that of [Munsch 2014]. However, in contrast to the analysis in
that paper, which deals with character sums involving one character, here we work with character sums
involving two characters; one to take care of square-full integers (the approach in [Munsch 2014]) and the
other to take care of primitive roots (the approach in [Shapiro 1983]). This leads inevitably to handling
many more subcases. The subcases with contributions towards the main terms arise from one of the
characters being principal and are presented with detailed proofs, while proofs for those subcases with
contributions only towards the error terms are given more tersely.

2. Lemmas

We collect in this section, several auxiliary results used in the proof of the theorem.

Lemma 2.1 [Shapiro 1983, Lemma 8.5.1]. For a given odd prime p, the characteristic function indicat-
ing if n is a primitive root mod p satisfies
d(p —11) Z M(le) Z An) = {(1) ifZ is a.primitive root mod p,
2 d) p—1 ¢ (d) aely otherwise,
where I'; denotes the set of characters of the character group mod p that are of order d.

The next lemma gives special cases of the well-known as Pélya—Vinogradov inequality, taken from
[Iwaniec and Kowalski 2004, Theorem 12.5, p. 324].

Lemma 2.2. Fora real x > 1, an integer ¢ > 2, and a Dirichlet character x, let

Sy(x)= Y xm.

1<n<x
For any nonprincipal character x mod q, we have:
(D [Iwaniec and Kowalski 2004, Theorem 12.5, p. 324]

IS, (x)| <6./qloggq.
(II) [Burgess 1962; Iwaniec and Kowalski 2004, Theorem 12.6, p. 326]

1S, ()] < x2gT e, @1
(IIT) [Iwaniec and Kowalski 2004, equation (12.58)] If q is prime, then

1S, (1) < x7gT(logg)?. (2-2)

For two characters x mod ¢ and A mod p, we define our main sum of the product of two characters
over square-free integers:

Vs X, A) =y ) x (man). (2-3)

n<x
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Lemma 2.3. Let x and A be nontrivial characters mod q and mod p, respectively. We have

1 1 1
x2(pg)+(log pq)2,

Vi x MK
sl {x%aogx)(pq)%*e.

Proof. Since pu?(n) = > a2 0 H(d), we get

Vs x =Y wld)x (m)x (d)rmrd?)

md?<x
= Y w@x*@x*(d) Y x(mrm). (2-4)
d<x1/2 m<x/d?

To obtain the first bound, we introduce H > 1 and split the sum into two parts
V.0 =) udx>@a*d) Y xmrm)+ Y udx*drFd) Y x(m)rm).
d<H m<x/d?* H<d<x!/? m<x/d?
Using Lemma 2.2, since y - A is a character mod pg, we have

VX W< Y VP logpg+ ) x/d> < Hpqlog pg+ 7.
d<H H<d<x!/?

Choosing
H = |x?(pq)~ i (log pq) 2],
we obtain
V(x5 x, M) < x%(pg)* (log pg)?,

which is the first bound. To obtain the second bound, we apply (2-1) in Lemma 2.2 to (2-4) to get

1
x \2 ;
IV (x: g W] < Z(Ez) (pg)6+¢ < x? (logx)(pq) 16+, O

d<x!/2

One can also obtain Lemma 2.3 by using Lemma 2.3 in [Munsch 2014] and the fact that if x; is a
character mod ¢g; and x; is a character mod ¢, their product y; x; is a character mod lcm(q1, ¢2).
By proofs similar to those of Lemmas 2.5 and 2.7 in [Munsch 2014], we obtain:

Lemma 2.4. Let g be an integer > 2, let p be an odd prime with ptq, let x, A be nonprincipal characters
mod q and p, respectively, and let H be a positive integer. Then

S =229 0y, 25)
n=x prq
ged(n, pg)=1
> W =—— I+—) +0G&2t(pg)), (2-6)
n<x ;(2) | pl
ged(n, pg)=1 i
i LGOA) gEPaIE ),

n<H



192 VICHIAN LAOHAKOSOL, TEERAPAT SRICHAN AND PINTHIRA TANGSUPPHATHAWAT

xmmn) _

2 L(%» xA) + O(H’%(logpq)(pq)%), (2-8)
n<H ns

where T (n) denotes the number of positive divisors of n, and the product runs over primes p1 | pq.
For any character x mod g, we define

1 ifnis 2.1 square-full integer, (2:9)
0 otherwise,

0x(x; ) =) a(mxn), a):= {

n<x

which is the character sum of square-full integers not exceeding x. The next lemma is [Munsch 2014,
Lemma 1.3].

Lemma 2.5. Let p > 3 be an integer, let A be a Dirichlet character mod p, and let \y be the trivial
character mod p. Then

O2(x; A)
2
3 -1 2 -3
3 - 2 1—
(o et S T (2 e ok i,
g()mlp I+p,° g()P1|P I+p,
L(3, 11y ;
M 1_[ <1+—+—2> X2+ O(x%(logx)%p%%g) if A is a quadratic character,
=1 ¢(3 oip prp;
M l_[ <1 +—) X3+ O(X%p%H) if A is a cubic character,
£(2) oip P
1 1o, s ;
O(x#(logx)2pn™") if X2 # Ao and A3 # Ao.

By exactly the same steps of proof as that of [Munsch 2014, p. 562], we extract:

Lemma 2.6. Let p, g be positive integers with pg > 3, let €J) (j = 1, 2) be Dirichlet characters mod
pq, and let &) be the trivial character mod pq. If €V # & and € +# &y, then

Yo eD@ Y 20)EP k) < xilogx) (pg) R

anl/Z bg(x/a2)1/3

3. Proof of Theorem 1.1

Keeping the notation as in the statement of Theorem 1.1, let

Q,(xit,q):= Y Tn) (3-1)

n<x
n=¢{ mod ¢q

denote the number of square-full integers n = ¢ mod g not exceeding x which are primitive roots mod p.
By the orthogonality relation for Dirichlet characters mod ¢, we have

1
0,(xi by = s D@D Tmx (). (3-2)

x mod g n=x
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Using (1-6), the definition of 75(n), together with Lemma 2.1 and (2-9), we have

0,5 6, q) = 2L 5 DS 2 S i,

(p=Dolq) 1= o) = = =
where the sum for A runs over the Dirichlet characters mod p of order d. For brevity, let
T(x; x,A) =Y amxmirn), (3-3)
n<x
so that J
¢(p—1) n(d) ,
Qpxilg)=———— %" = N F(0) Y T(x;x. M. (3-4)

(P=19@ = ¢

x mod g rely

The Euler product formula for L(s, x) = Y o, x(n)n™* leads to the Dirichlet series of the function
a(n)x (m)r(n) as

o0

> @) xmrmn™ =

n=1

L(2s, x*\*)L(3s, x°1?)
L(6s, x°1%)

(3-5)

Our task now is to derive asymptotic estimates for 7 (x; x, A), the sum of the product of two characters
over square-full integers. There are three main cases. Case 1 deals with y = yo, the principal character
mod g. Case 2 deals with A = Ag, the principle character mod p and Case 3 is when both x and A are
nonprincipal characters with respect to their moduli. The subcases run through all possible shapes of the
two characters.

Case 1: x = xo, the principal character mod ¢g. If A is any Dirichlet character modulo p, then

> xomimn=
n=1 _ L(2s, xoA)L(3s, xo1?)
L(6s, xoA®)
_ H((l — x0(PDR(p1)p (1~ xO<p1>x3<m>p;3‘>)‘l
pl 1= x0(pAS(p) py*
| ((1 — 2o - x3<p1>p;3‘>>“
i L=28(p1)p™

pitq
11 ((1 — 2 (pnprHa —x3<p1)p;3‘>)“ I (1=22(p)p )1 =23 (p)p ™)
1—28(p1)py® 1—28(p1)py®

_ L(2s,A*)L(3s, %)
N L(6s, 15)

P1 pilq

oo
Hy(s, A) = <Z a(n))»(n)n_“) H,(s, A),
n=1
where the last product runs over primes p; | ¢, and

Hy(s, 1) = 1_[ L}?l)piz = ihq(n, Mn~e. (3-6)
pig LER 0P
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Equating coefficients of the Dirichlet series, summing over n, and making use of (3-3) and (2-9) leads to

T(x:xo. M) =Y a@xomin) =" hy(d, Male)rle)

n<x n<x de=n
=Y hg(d,2) D alerle)=) hyd, A)Q2(2, x). 3-7)
d<x e<x/d d<x

We next obtain asymptotic formulas for (3-7) by applying Lemma 2.5 to Q,(x/d; 1).
Subcase 1.1: A = Ag, the principal character mod p. We get, using also (3-6),

T(x: x0.h0) = 3 hy(d, xo)Qz(g, ?»0)

d<x

_c(%)n(l—prl) Z(hqw,xo))%
éb(3)pl\p 1—|—p7% ., d<x d
¢(5) ( ) ) (h .. m) (IH ‘ (hq(d,)»o)>é+s>
—+ 3 6 g4 - 7
C(Z)HP 1+ p; ! ZS: P g; d
() H(l—p;‘>l () e pﬁ)l
= —== > ]x2 x34+ 0" p°).
¢® pilpg N4 py? ()plpq I+ p
The contribution from T (x; xo, o) towards (3-4) is equal to
¢(p—1) pd) _
——xo(O)T , A
b (@) p(1) DT (0 20)
¢(p—1) (z(%) I (1— *) L, 8(3) ( ) . L )
- S )xz + ]_[ — A _)xs+ 0kt po)). (3-8)
se@\¢3 Lo\ =) e L

Subcase 1.2: A2 = Ao, A # Ao, 1.€, A a quadratic character mod p. Similar reasoning as in the last case
leads to

L(3,2) | I T 1 13
T(X§X0,)\):W 1+;+? Hq(z,k)x2+0(x4(logx)2p32 )

The contribution from T (x; xo, A) towards (3-4) is equal to

¢o(p—1 n@ _
o (P)o(q) ¢(2)

6o ( (%,A)(1 ! 1)—1H H)
o(p)d(q) LY ) 240 3 1 ipm 3.9
s 2\ e \Tptr) HG A)xE 40 (logx)? pP*)). (3-9)

A€Y]

<>ZT(x X0, %)

Subcase 1.3: A3 =X, A # Ao, 1.€., A a cubic character mod p. As before, similar calculation yields

Lg,)uz 1\ ! 1 11
T(x;)(o,)»):%(l—i—;) Hq(%,k)x§+0(x1p1+€).



SQUARE-FULL PRIMITIVE ROOTS IN ARITHMETIC PROGRESSIONS 195

The contribution from T (x; xo, A) towards (3-4) is equal to
Pp—1) 1@ _
Ko@) > T(x; X0, 2)

(9@ $3)" e
_¢p-1 Z(M%”\Z) <1+l>_1H (L A)x§+0(xipl+€)) (3-10)
26(P(@) F\ ¢ p) '

Subcase 1.4: A% # Ao, A> # Ag. Similar calculation gives
1 1 11
T (x; x0, A) = O(x*(logx)2 p=Tte).
The contribution from 7 (x; xo, A) towards (3-4) is equal to

-1 d
é(p ) Z M( ) _ F0(0) Z T(x: x0, A)

2@ = o™ L
d>3
dp(p—1) u(d) 1 R TI
= O(xi(logx)zpate). (3-11
PPP@) 2 9 >m§um (r#logx)2p=T).  G-11)
d>3

Case 2: A = Ag, the principal character mod p, and x # xo. From (3-5), steps similar to those at the
beginning of Case 1 yield

= s L@s, x®20)L(3s, x> 1)
;a(mx(nno(mn =T )
:l—[<(1—X2(p1))»0(p1)p123)(1—X3(P1))»0(P1)P13S)>_1
. 1=xS(pD)ro(p1) py®

(1=x2(p0p; ) (1—x <p1>p13~‘>)

N l;[( 1—xS(p1)p;®

PI#D
_ =@ ) A= @)p~>) 1—[<(1 X2 ()P A=x3(p0)py 3‘))
1=x(p)p=® o L=x®(ppy®
L(2s, x*)L(s, x°) - -,
=l as 0= (;a(n)x(n)n )Fq<s,x),
where
1=« s
Fp(s, x) = W = n; fp(n, x)n™=,
and consequently,
T(x; X, h0) =Y fr(d, X)Qz(g, x)- (3-12)

d<x
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Subcase 2.1: x2 = xo0, x # xo. We have

L(3.x) I I N 1 1 o3
T(x; x,Ap) = —=——= 1_[ 1+—+—2 Fp(i,x)x2+0(x4(logx)2qsz ).
¢G) pilq Pt pi

The contribution from 7T (x; x, Ag) towards (3-4) is equal to

o(p—1) p()
o(PP@) $(1) =

¢(p—1) _ (L(%,x) ( 1 1>—1 N | . 3+8)
=—" O ——— 1+—4+—=) Fupls, 240 )ig27%)). (3-13)
s 21O\ %G pll llq pi T pp) Tl aniE Okt loenty

X (OT (x5 X, o)

XEX|

Subcase 2.2: x> = x0, x # xo. We have

LG x%) N Ly e
T(EXJ»O)ZWH 1+E Fp(g,X)x3—|—0(x4q4 ).
pilg

The contribution from T (x; x, Ag) towards (3-4) is equal to

¢(p—1) () _
FYIRY VIR X (OT (x; x, Ao)
(9@ $(1) Xéz
_9(=D - L(3. x?) . _lF | PO g 314
_¢<p>¢(q)z"() (2 I1 o) BoGa)xs £ 0GrgE). Ge14)

xeXa pilq

Subcase 2.3: x2 # x0. x° # xo. We have
1 1 11
T(x: X, o) = O(x4(logx)2g2**).

The contribution from 7T (x; x, Ag) towards (3-4) is equal to

$(p—1) u(l) _ $(p—1) _ N
OT(x; x, o) = ——— HO(xx+(1 2032 . )
¢<p)¢<q)¢(1>X¢§JXZX() (65 20) PP | %XZX() (rillogx)2g =) (3-15)

Case 3: x # X0, A # Ao, 1.., both are nonprincipal characters.

Subcase 3.1: X2 = Xo, A2 = A, i.e., both are quadratic characters. We proceed as in [Munsch 2014,
p. 560]. Since 7 is square-full, we can uniquely write n = a?b> with b square-free, and so

T(x; x, M) =Y amxmim) = Y wB)x@b)Irab)

n=x a’b3<x
= Y O @b Y x@ra@) =Y @FhxGHae) YL
h=xl/3 a<(x/b})12 bxl/3 a=(x/b%)'”2

ged(a, pg)=1
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For any real H > 1, we have

T M=) @Ox®N@y Y 1+ Y x|

b<H a<(x/b)'*  H<b=x'/3 a<(x/b*)'/?
ged(a, pg)=1 ged(a, pg)=1

= WO ®NGH Y 1+ Y PR OPICRYIY

b<H af(x/b3)]/2 QS(X/H3)I/2 H<b5(x/a2)l/3

ged(a,pg)=1  ged(a,pg)=1
The first term is bounded using (2-5), the character shapes and (2-7):

DO xGNG) 1

b<H (lf(x/b3)|/2
ged(a, pg)=1
¢(pq) x
=> uz(b)x(b)k(b)(—— +0(x(pq))
b<H Pq b
L 3
_ LG 11 o1 8PD L gy 4 og B H) + OCH (pa)).
Z() rq
pilpq
The second term is bounded using the character shapes and the second bound in Lemma 2.3:
3 S OxGHG) < (p) T Exiogx) Y a7 < (pg)T5exd (logx)H
a<(x/H*)'* H<b=(x/a})'/3 a<(x/H3)'/?
ged(a, pg)=1

Choosing H = x1/4(logx)1/2(pq)3/32 we have

T(x; x, ) = 1‘[ (- X2+ 0(xi (logx)? (pg) ).

g“() pilpq

The contribution from 7 (x; x, A) towards (3-4) is equal to

$(p—1) @)
P (PP P2 -

P 19(pg)
pq

X(E)ZT(x;x,/\)

reY

Pl ( 3180 4 +8)
I=p X240 (xi (1 s 3-16
X g 02\ 76 ﬂ; 7L 0 tog) (p)H ™). (-16

Subcase 3.2: x> = xo, A> = Ao, i.e., both are cubic characters. We proceed as in [Munsch 2014, p. 561]
using the character shapes, for any real H > 1, to get

T(x; x, M) =Y amxmim) =Y wB)x@b)Irab?)

n<x a’b3<x
= Y x@nr@?) Y Ox®’a®)’ =) x@i@) Y @b
anl/Z bS(X/llz)l/3 anl/Z bf(x/az)Iﬂ

ged(b, pg)=1
=D x@n@) Y WO+ Y x@r@d Y @) (3-17)
a<H b<(x/a®)'3 H<a<x1/? b<(x/a¥)\/3

ged(b, pg)=1 ged(, pg)=1
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The first term in (3-17) is bounded by using (2-6) and (2-8):

Y x@Hn@? Y k)

a<H bs(x/az)m
ged(b, pg)=1
1 —1
=Zx(a2)k(a2)( — 1 (1+i) +0(xf'>a‘%r(pq)))
a<H a38(2) p,ipq p1
x? ( 1)‘1 X2 (@)A*(a)
=T (+—) X 55"C+oaiperad
£ mlpq P a<H as
L IR 1 e r2 1 ! _2
= ;() 1‘[(1+p1) X3+ 0(x0(pq)° H3) + 0(x7(pq)? (log pg) H 7).
pilpg

The second term in (3-17) is bounded by inverting the summation and using Lemma 2.2(I):

Yo x@ned Y pPoy= ), o) Y. ani@

He<a<x? b<(x/a®)' b<(x/HH'/3 H<a<(x/b%)/?
- ged(b, pg)=1 gcd(b, pq)=1
1 1 2
<L (pg)2(log pq)x3H™3.
Thus,
L(2%, x2)2 1 1 ) 1 1 ;
T(x;x,x)z—(}(z) ) [T A+pH7"%5 + 0G5 (pg)"HY) + 03 (pg)? (log pg) H™3).

p1lpg

Choosing H = x'/8(pq)3/8, we obtain

L 1 1 1
T(x; x, ) = ( ) H 1+ pi )75 + 0(x3 (pg) ).
pilpq

The contribution from 7 (x; x, A) towards (3-4) is equal to

¢(p—1) nB3 <~ . |
MMX%N)MZY T(x; %, 2)

d(p— _ ( H)
20(p)p(q) 1 340t (pg)? 3-18
2¢<p>¢<q> 2 X0 2 ) D as s+ oeipate). G

xeXs reY, pilpg

Subcase 3.3: X2 Z X0, X3 Z X0, A2 #£ Ao, A3 # Ao, 1.€., both are nonquadratic and noncubic characters.
We proceed as in [Munsch 2014, p. 562]. Similar to the last subcase, using the character shapes, for any
real H > 1, we have

Tos M=) x@n@? Y wGxGHMG)
aixl/z bf(x/u2)1/3

=Y x@n@) Y O ®GH+ Y x@n@® Y @ BxGHAG?).

a<H b<(x/a2)\/3 H<a<x/2 b<(x/a®)!73
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The first term is bounded using the second bound in Lemma 2.3:

S x@ina® Y w0 b) < (pg)EHixs(logx) Y a i
a<H bs(x/az)1/3 a<H

< (pg)T6 x5 (logx)H53.

The second term is bounded using Lemma 2.2:

Yo ox@n@d) Y EOx@Heh= Y FOxGMEG) Y (v @)

H<a<x!/? b<(x/a*)'/3 b<(x/H?H/3 H<a<(x/b3)1/2

<L \/pq log(pq)x%H_%.
Thus,
3 1 2 1 1 2
T(x; x,») =0((pq)s x5 (logx)H3) + O((pg)? log(pg)x3 H3).

Choosing H = x1/8(pq)15/64(10g x)73/4 we obtain
JI 1
T(x; x,2) = O((pg)="“x*(log x)?).

The contribution from 7 (x; x, A) towards (3-4) is equal to

¢(p—1) w(d) .
(P (q) ) t T (x; X, »
$(P)9() ;~ P(d) 2 X0 ) Thixh

b XEX1UX, A€l \Y1UY,
>3
¢p(p—1D p(d) _ T 1
= x0) O((pg)=""x4(logx)?). (3-19)
é(p)o(q) d;p; ¢(d) ngxz AGFL%/:IUYZ

Subcase 3.4: x% = xo, A> = Ao. Since x and A are nonprincipal characters mod ¢ and mod p, respectively,
with prime ptq, in this subcase the product x A can be considered as a nonprincipal character mod pgq.
Thus,

T x, )= Y x@i@) > @ BxGHMG?)

a<x/? b<(x/a®)!3
= Y oD@ Y, WG =Y V@ Y FBEP®),  (3-20)
a<xl/2 b<(x/a2)1/3 a<x!/2 b<(x/a®)!73

where £ := yoA? and £?® := y 31 are Dirichlet characters modulo pg. Since & and £® are non-
principal characters mod pg, by Lemma 2.6, we have

T(x; X, ) = O((pg) = **x (logx)?) (3-21)
and the contribution from 7 (x; x, A) towards (3-4) is equal to

o(p—1) p@) -~ $(p=1) <~ . e Lo
VIRV ¢ Tx; x, )=——"—"—— 14 0 27xa( 2). (3-22
¢<P>¢<Q>¢’<2>X€X1X( )MZYZ (x5 X, 1) ¢(P>¢(q)X§.X( )AGZYZ ((pg)»"*x3 (logx)?). (3-22)

The remaining subcases can all be treated in a manner similar to Subcase 3.4 to yield the same estimate
(3-21) for T(x; x, A), and their contributions from 7T (x; x, ) towards (3-4) are listed below.
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Subcase 3.5: x2 = x0, A2 # Ao, A3 # Ao.
p(p—1) )
¢(P)p(q) ;10 ¢(d)

3

d>

Sk > 0= Fxd(logx)?). (3-23)

xeX; relg\Y1UY,

Subcase 3.6: x> = x0, A2 =1%o, A # Ag.
(=1 n@)
(P99 $2) &

Subcase 3.7: x3 = xo, AZ #£ o, A3 #£ A.

dp(p—1) wu(d) ) b .
¢ O((pq) =" x4 (logx)?). 3-25
¢(p)¢(q)d§p_:] 6@ X%(:zx( )AEF§UY2 ((pg) = x4 (logx)2) (3-25)

20 Y 0((pg)=*xi (logx)?). (3-24)

)\.EY]

Subcase 3.8: x2 # x0, x> # X0, A= Ao, A % Ao.

p(p—1 12 _ oy .
A S " l (0] 2 il 7). 396
$(19(@) $2) ¢XZNX2X()§ ((pg)=™"x+(log x)2) (3-26)

Subcase 3.9: x2 # xo0, x> # X0, A> = Ao.

$(p—1) ) ] e
6 ) 0Upg)» xi(logx)z). 327
$(0)b(@) $3) %JXZX”AGZYZ ((pg) ™ 5% (logx)?) (3-27)

The largest contribution towards the sum in (3-4), i.e., the term containing

$p=1
s(Pp@)
comes from (3-8) in Subcase 1.1, (3-9) in Subcase 1.2, (3-13) in Subcase 2.1, and (3-16) in Subcase 3.1,
with coefficient equal to A, , as displayed in (1-7).
The second largest contribution in (3-4), i.e., the term containing
$p—1
s(Pp@)
comes from (3-8) in Subcase 1.1, (3-10) in Subcase 1.3, (3-14) in Subcase 2.2, and (3-18) in Subcase 3.2
with coefficient equal to B, , as displayed in (1-10).
The contribution from the error terms in (3-4) coming from Subcases 1.1-1.4 is, apart from the factor

¢(p—1)
o (P)d(q)’
equal to
1 1 1 3 1 1 d 1 1 11
0w p) =Y 0GHtog0) i) -1 T 0ttt 30 S ochdogn i)
rEY] rEY) d|p—1 ¢( ) rely\Y1UY,

d>3
The contribution from the error terms in (3-4) coming from Subcases 2.1-2.3 is, apart from the factor
¢(p—1)
(PP (@)
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equal to
3 2OO0G(logx)ig =) + Y 3OO0+ Y 1O (logx)ig= ).
x€X1 xX€X? x€X1UX,

The contribution from the error terms in (3-4) coming from Subcases 3.1-3.9 is, apart from the factor

$p(p—1
PP (q)

equal to

~ 3 7@ Y 0 (log )2 (pg) =)

XEXl X4

—3 3 A0 Y 06 (payit)

XE€EX2 reYr

+ Z s Y x> 0pg)Etexi(ogx)?)

¢( ) X€X1UX2 rely\Y1UY,

- Z 20 0((pg)=*xi(logx)?)

)(EXl rEY)
d 11 1 1
+ ) &d) dx@ D 0Wpg)=txE(logx)?)
d|p—1 ¢( )X€X1 rely\Y1UY,
d>3
~ 3 7@ Y 0pg) B Hexi (logx)?)
XEXZ XS4
n(d) _ Ly, 1 1
+ Y @ DR D 0Wpg)=txi(logx)?)
d|p—1 xX€X? rely\Y1UY,
d>3

— Y 2@ 0pg)Etextlogx)?)

X%X]UXZ A€Y]
—1 3 kO o) Frataogn?.
X €X1UX2 X7}

Taking all the subcases into account, the error term is

d
< (pg)=*xi(logx)? Z |ZE ;' X1y 1

x mod g rely
d>3

< (pg) ™ xi (logx)22°P Vg (g),

using the estimates

Z 1 =0(()), Z 1% ()] = 0(9(q)), Z lu(d)| = 0(2°P=D),

relly x mod g d|p—1

and the theorem is proved.
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