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Approximating π by numbers in the field Q(
√

3)

Mikhail Yu. Luchin and Vladislav Kh. Salikhov

Using a new integral construction which combines the idea of symmetry suggested by V. Salikhov in
2007 and the integral introduced by Marcovecchio in 2009, we obtain a new bound for approximation to
π by numbers from the field Q(

√
3).

1. Introduction. Integral construction. Arithmetic part.

We continue our research initiated in [Androsenko and Salikhov 2015] and [Luchin and Salikhov 2018].
In this paper we prove the following result.

Theorem 1. Letµ>10.2209; p1, p2, p3, p4∈Z, (p3, p4) 6= (0, 0), P=max1≤i≤4 |pi |, and P> P0(µ).
Then ∣∣∣∣∣π − p1

√
3+ p2

p3
√

3+ p4

∣∣∣∣∣> P−µ. (1)

The first inequality of this type was proven in [Amoroso and Viola 2001]:∣∣∣∣∣π − a+ b
√

3

c+ d
√

3

∣∣∣∣∣> constant ·max{|a|, |b|, |c|, |d|}−46.9075...,

where a, b, c, d ∈ Z, (c, d) 6= (0, 0). This result was improved in [Tomashevskaya 2008], with the value
10.3567 . . . for µ.

The proof of the new bound (1) is related to the application of the following integral construction. Let
h, j , k, l, m, q ∈ Z+, h+ j+q = k+ l+m, h+ j−k ≥ 0, k+ l− j ≥ 0, k+m−h ≥ 0; x ∈C, Re x > 0,
x 6= 1. Consider the integral

J =
1

2π i

∫
−∞

0
ds
∫ i∞

−i∞

sh t j dt√ s
s−1

(1− s)k+l− j+1(s− t)h+ j−k+1(t − x)k+m−h+1
. (2)

The result of Theorem 1 is obtained by taking

x =
2+
√

3
4

, (3)

h = 11n, j = 37n, k = 16n, l = 27n, m = 37n, q = 32n, n ∈ N, n→∞. (4)

The only thing that distinguishes the integral (2) from the one in [Marcovecchio 2009, (5), p. 148]
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is the factor
√

s/(s− 1) in the denominator of the integrand. For the first time the integral (2) was
considered in [Androsenko and Salikhov 2015]. Using this integral, Androsenko [2015] improved the
estimate for the irrationality measure of the number π/

√
3. In [Luchin and Salikhov 2018], thanks to

the integral (2), it became possible to obtain a new bound for the approximation of ln 2 by numbers from
the field Q(

√
2). In our argument below we substantially apply the method developed in that work.

In [Luchin and Salikhov 2018] (equalities (7)–(9)) it was shown that the integral (2) can be represented
in the form

J =−
∫ 1

0
R(z) dz, (5)

where

R(z)= 2(−1) j−k
k+m−h∑

l1=max(0,q−l)

(−1)l1
( j

k+m−h−l1

)
·

x l−q+l1

(x − 1)h+ j−k+l1+1

(h+ j−k+l1
l1

)
Rl1(z), (6)

Rl1(z)=
z2h(1− z2)l+l1( x

x−1
− z2

)h+ j−k+l1+1 =
z2h(1− z2)l+l1

(−(2+
√

3)2− z2)h+ j−k+l1+1
. (7)

Here we use notation from [Luchin and Salikhov 2018]. As in that article, we write

ω(l1)=
(h+ j−k+l1

l1

) ∫ 1

0
Rl1(z) dz. (8)

Let K be the ring of numbers of the form a+ b
√

3, where a, b ∈ Z, and for positive integers M ∈ N we
put qM = lcm(1, 2, . . . , M) and q0 = 1.

Lemma 1. Let M0 =max(2k+ 2l − 2 j, h+ j − k, k+m− h),m ≥ q. For all l1 ≤ k+m− h, one has

qM0ω(l1)=
1
48
· 22q−2m

· (a(l1)π + b(l1)), (9)

where a(l1), b(l1) belong to K.

Proof. For N ∈ Z+ we write

DN ( f (z))=
1
N !
· f (N )(2i + i

√
3).

Since the integrand (7) of the integral in (8) is even, we have expansion into a sum of simplest fractions:

Rl1(z)=
(−1)q−m−1z2h(z2

− 1)l+l1

(z2− (2i + i
√

3)2)h+ j−k+l1+1

= P(z)+
h+ j−k+l1+1∑

ν=1

(
(−1)νkν

(z− 2i − i
√

3)ν
+

kν
(z+ 2i + i

√
3)ν

)
, (10)

where P(z) ∈ K[z] and deg P(z)= 2(k+ l − j − 1);

(−1)νkν = Dh+ j−k+l1+1−ν(Rl1(z)(z− 2i − i
√

3)h+ j−k+l1+1).
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By Leibniz’s formula, we see from (10) that

kν = (−1)q−m+ν−1 Dh+ j−k+l1+1−ν

(
z2h(z− 1)l+l1(z+ 1)l+l1

(z+ 2i + i
√

3)h+ j−k+l1+1

)
= (−1)q−m+ν−1

∑
m∈Mν

Dm1(z
2h) Dm2((z− 1)l+l1) Dm3((z+1)l+l1) Dm4

(
(z+ 2i + i

√
3)−(h+ j−k+l1+1)),

where we have set m = (m1,m2,m3,m4) and

Mν = {m ∈ (Z+)4 | m1+m2+m3+m4 = h+ j − k+ l1+ 1− ν; m1 ≤ 2h; m2,m3 ≤ l + l1}.

So

kν = (−1)q−m+ν−1
∑

m∈Mν

( 2h
m1

)( l+l1
m2

)( l+l1
m3

)(h+ j−k+l1+m4
m4

)
· (−1)m4 ·

· (2i + i
√

3)2h−m1 · (−1+ 2i + i
√

3)l+l1−m2 · (1+ 2i + i
√

3)l+l1−m3 ·

· (2(2i + i
√

3))−(h+ j−k+l1+m4+1)

For N ∈ N we have

(−1+ 2i + i
√

3)N
= (2i + 2ei 2π

3 )N
= 2N−1(i + ei 2π

3 )N
· 2.

But 2 · (i + ei 2π
3 )N
∈ K[i] and so (−1+ 2i + i

√
3)N
= 2N−1

· k ′N , where k ′N ∈ K[i]. Similarly we have
(1+ 2i + i

√
3)N
= 2N−1

· k ′′N , where k ′′N ∈ K[i].
So

kν =
∑

m∈Mν

kν(m) · 2l+l1−m2−1
· 2l+l1−m3−1

· 2−(h+ j−k+l1+m4+1),

where all kν(m) ∈ K[i].
Moreover m2+m3+m4 ≤ h+ j − k+ l1+ 1− ν, so

l + l1−m2− 1+ l + l1−m3− 1− (h+ j − k+ l1+ 1+m4)≥ 2(l + l1− h− j + k− l1)+ ν− 4

= 2q − 2m+ ν− 4.

This gives

kν = 22q−2m+ν−4
· k̃ν, k̃ν ∈ K[i], ν = 1, . . . , h+ j − k+ l1+ 1. (11)

From (10) we have∫ 1

0
Rl1(z) dz =

∫ 1

0
P(z) dz +

h+ j−k+l1+1∑
ν=2

(
kν
ν− 1

(
1

(2i + i
√

3− 1)ν−1
−

1

(2i + i
√

3+ 1)ν−1

))

+ k1 ln
2i + i

√
3+ z

2i + i
√

3− z

∣∣∣∣1
0
. (12)
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Obviously 2+
√

3= tan 5π
12 . Let ln z = ln |z| + iϕ where ϕ ∈ (−π;π ]. Then

ln
2i + i

√
3+ z

2i + i
√

3− z

∣∣∣∣1
0
= ln

1+ 2i + i
√

3

2i + i
√

3− 1
= ln

1+ i tan 5π
12

i tan 5π
12 − 1

= ln
ei 5π

12

ei 7π
12

=−i
π

6
;

1

2i + i
√

3+ 1
=

1− i
√

3− 2i

1+ (2+
√

3)2
=

e−i π3 − i

2(2+
√

3)
,

1

(2i + i
√

3+ 1)ν−1
=

2(e−i π3 − i)ν−1(2−
√

3)ν−1

2ν
.

As before we have 2(e−i π3 − i)ν−1
∈ K[i] and so

1

(2i + i
√

3+ 1)ν−1
= 2−νx ′ν, ,

1

(2i + i
√

3− 1)ν−1
= 2−νx ′′ν ,

where x ′ν , x ′′ν ∈ K[i]. Thus from (11) and (12) we have∫ 1

0
Rl1(z) dz =

∫ 1

0
P(z) dz +

h+ j−k+l1+1∑
ν=2

1
ν− 1

· 22q−2m−4
· k̃ν +

22q−2m−3

6
· k̃1π, (13)

where k̃ν ∈ K[i] for all ν.
It follows from the definition of M0 that A1 := qM0

∫ 1
0 P(z) dz lies in K. It is also easy to check that

qM0

(h+ j−k+l1
l1

)
·

1
ν−1 =: Aν lies in N for all ν = 2, . . . , h+ j − k + l1+ 1. Then it follows from (8) and

(13) that

qM0ω(l1)= qM0

(h+ j−k+l1
l1

)
·

∫ 1

0
Rl1(z) dz

=

(h+ j−k+l1
l1

)
A1+ 22q−2m−4

·

h+ j−k+l1+1∑
ν=2

Aν k̃ν +
1
3
· 22q−2m−4

· k̃ ′1π,

whence, since m ≥ q, we get equality (9), where a(l1), b(l1) ∈ K[i]. But, obviously, a(l1), b(l1) ∈ R.
Therefore a(l1), b(l1) ∈ K. This completes the proof of lemma. �

Corollary 1. The integral (2) for m ≥ q admits the representation

6 · 2−2qqM0 J = aπ + b, a, b ∈ K. (14)

Proof. For x = 2+
√

3
4

we have

x l−q+l1

(x − 1)h+ j−k+l1+1 =
(2+
√

3)l−q+l14h+ j−k+l1+1

4l−q+l1

(√
3− 2

)h+ j−k+l1+1 = 4m+1
·C(l1),

where C(l1) ∈ K.
Therefore from (5), (6), (8) and (9) we have

qM0 J =
1
6
· 4m
· 4q−m

k+m−h∑
l1=max(0,q−l)

d(l1)c(l1) (a(l1)π + b(l1)) ,

where all d(l1) ∈ Z, and this implies (14). �
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Together with the family of parameters (4), we should consider a more general choice of parameters

(h, j, k, l,m, q)= n(h′, j ′, k ′, l ′,m′, q ′), (15)

where h′, j ′, k ′, l ′,m′, q ′ ∈ Z+.
It is convenient to denote the integral (2) for parameters of the form (15) and for x of the form (3) as

J := Jn = Jn(h′, j ′, k ′, l ′,m′, q ′). (16)

For the family of parameters (15) we write

Mn =max{2(k+ l − j), 2h, 2k, h+ j − k, k+m− h, l,m, j, q}. (17)

Let p be a prime, p>
√

Mn and ω= { n
p } be the fractional part of the number n

p . Consider the inequalities

[2k ′ω]+[(l ′+k ′− j ′)ω]+[m ′ω]+[l ′ω]−[k ′ω]−[2(l ′+k ′− j ′)ω]−[(h′+ j ′−k ′)ω]−[(k ′+m ′−h′)ω]> 0,

[2h′ω]+[(l ′+k ′− j ′)ω]+[ j ′ω]+[q ′ω]−[h′ω]−[2(l ′+k ′− j ′)ω]−[(h′+ j ′−k ′)ω]−[(k ′+m ′−h′)ω]> 0,

[ j ′ω]+[m ′ω]−[(h′+ j ′−k ′)ω]−[(k ′+m ′−h′)ω]> 0,

[2k ′ω]+[(l ′+k ′− j ′)ω]+[q ′ω]−[k ′ω]−[2(l ′+k ′− j ′)ω]−[(k ′+m ′−h′)ω]> 0,

[2h′ω]+[(l ′+k ′− j ′)ω]+[l ′ω]−[h′ω]−[2(l ′+k ′− j ′)ω]−[(h′+ j ′−k ′)ω]> 0.

(18)

These inequalities were first studied in detail in [Androsenko and Salikhov 2015, (11), p. 491] and later
applied in [Luchin and Salikhov 2018]. They are slightly different from those considered for the same
purpose in [Marcovecchio 2009, (31)].

By 1n we denote the product of all primes p >
√

Mn for which ω = { n
p } satisfies at least one of the

inequalities (18). The following lemma sharpens the result obtained in Corollary 1.

Lemma 2. When m ≥ q the integral (16) admits the representation

6 · 2−2q
·

qMn

1n
· Jn = Anπ + Bn, (19)

where An, Bn ∈ K, n ∈ N.

Proof. The representation (19) follows from (14) due to a standard procedure of refining the denominator
(see, for example, Lemma 3 in [Androsenko 2015]). �

The following lemma, similar to Lemma 4 from [Luchin and Salikhov 2018], plays an important role
in the proof of Theorem 1.

Lemma 3. Let n, d ∈ N, θ ∈ R,
√

d /∈ N , and Ln = (31(n)
√

d +32(n))θ +33(n)
√

d +34(n), where
each 3i (n) belongs to Z, and let 3(n)=max1≤i≤4 |3i (n)|. Let limn→∞

1
n ln |31(n)

√
d +32(n)| = γ1,

limn→∞ sup 1
n ln |3(n)| ≤ γ2. Suppose that for some constant γ3 > γ2 and for every ε1, ε2 > 0 there exists

N = N (ε1, ε2) such that the inequalities

e−(γ3+ε1)m ≤ |Lm | ≤ e−(γ3−ε2)m (20)



426 MIKHAIL YU. LUCHIN AND VLADISLAV KH. SALIKHOV

hold for any n ≥ N and at least one of the values m ∈ {n, n+ 1}. Further, let γ1+ γ2 > 0, µ > 2(γ1+γ3)

γ3−γ2
;

p1, p2, p3, p4 ∈ Z,(p3, p4) 6= (0, 0), P =max1≤i≤4 |pi | and P > P0(µ). Then∣∣∣∣∣θ − p1
√

d + p2

p3
√

d + p4

∣∣∣∣∣> P−µ. (21)

Remark. Assumptions similar to those from Lemma 3 were used in [Amoroso and Viola 2001; Salnikova
2008; Hata 2000].

We prove Theorem 1 by applying Lemma 3 to the linear form

Ln = (2−
√

3)128n
· 4−32n

·
qMn

1n
Jn = (31(n)

√
3+32(n))π +33(n)

√
3+34(n), (22)

where each 3i (n) is an integer, Jn is the integral (16) for the family of parameters (4), and Mn is defined
by equality (17) for the family of parameters (4).

The corresponding constants γ1 and γ3 will be calculated in the next Section 2, and the constant γ2 in
Section 3.

2. Asymptotics

The argument of this part is almost completely analogous to those from [Luchin and Salikhov 2018, §2].
Everywhere in the sequel (see (2) and (16)) we write

Jn := Jn(11, 37, 16, 27, 37, 32)=
1

2π i

∫
−∞

0
ds
∫ i∞

−i∞
G(s, t) dt, (23)

where
G(s, t)= ϕ(s, t)( f (s, t))n, (24)

with

f (s, t)=
s11t37

(1− s)6(s− t)32(t − x)42 , ϕ(s, t)=
1√ s

s−1
(1− s)(s− t)(t − x)

, x =
2+
√

3
4

.

The saddle points are the solutions of the system f ′s (s, t)= 0, f ′t (s, t)= 0 that differ from the zeros of
the function f (s, t). In [Androsenko and Salikhov 2015] (see p. 492, equations (12)) this system was
solved in the general case for the integral (16). For the function f (s, t) considered above we have three
saddle points:

(s1, t1)≈ (0.994847; 0.967621), (25)

(s2, t2)≈ (0.324712+ 0.292582i,−0.637736− 0.207638i), (26)

and (s3, t3)= (s̄2, t̄2), the complex conjugate of (s2, t2). We write ξ = (s, t) ∈ C2.

Lemma 4. Let ξ 0 be a nondegenerate saddle point of the function S(ξ), let γ be a two-dimensional
smooth complex manifold with boundary, let ξ 0 be an interior point of γ , let the functions ϕ(ξ) and S(ξ)
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be holomorphic at the point ξ 0, and let also maxξ∈γ Re S(ξ) be attained only at the point ξ 0. Let

F(λ)=
∫
γ

ϕ(ξ) exp(λS(ξ))dξ

and S′′ξξ (ξ
0)=

((
S′′ss(ξ

0)

S′′st(ξ
0)

) (
S′′st(ξ

0)

S′′t t(ξ 0)

))
be the Hesse matrix, and suppose that det S′′ξξ (ξ

0) 6= 0. Then

F(λ)=
2π
λ

exp(λS(ξ 0)) · (det S′′ξξ (ξ
0))−

1
2 (ϕ(ξ 0)+ O(λ−1)) (27)

as λ→+∞.

Proof. This statement is proved in the [Fedoryuk 1977], p. 259, Proposition 1.1. �

Lemma 5. For the linear form (22) we have the equation

γ1 := lim
n→∞

1
n

ln |31(n)
√

3+32(n)| = 128 ln (2−
√

3)−32 ln 4+M1+ln | f (s1, t1)| ≈ 85.303863, (28)

where the value

M1 = M − lim
n→∞

1
n

ln1n ≈ 11.313066 (29)

is calculated using inequalities (18) for the set of parameters (4) and

ln | f (s1, t1)| ≈ 286.922828.

Proof. Let the integral (23) be written in the form

Jn = A′nπ + Bn,

where A′n , B ′n ∈ Q[
√

3] (see (19)). Consider the circles L1 = {t : |t | = t1} and L2 = {s : |s| = s1}.
Obviously, max(s,t)∈L∗2×L∗1 ln | f (s, t)| is attained only at the point (s1, t1). As in Lemma 6 from [Luchin
and Salikhov 2018], we have

A′n =
1

2(2π i)2

∫
L2

ds
∫

L1

G(s, t) dt,

where the function G(s, t) was defined in (23). Here we used the inequalities x < t1 < s1 < 1.
We apply Lemma 4 for the function S(s, t) = ln f (s, t) = ln | f (s, t)| + ih(s, t) (a certain branch

of the logarithm defined on the set γ = γ2 × γ1, where γ2 is a small arc of the circle L2 including
the point s1 + 0i and γ1 is a small arc of L1 including t1 + 0i . In our case for the Hessian we have
det S′′ξξ (s1, t1)≈ 1.92× 1010

6= 0.
Using equality (27) of Lemma 4, we obtain

lim
n→∞

1
n

ln A′n = ln | f (s, t)| ≈ 286.922828. (30)

Let us now evaluate the constant M1. For the family of parameters (4) from (17) we obtain

Mn =max (12n, 22n, 32n, 32n, 42n, 27n, 37n, 37n, 32n)= 42n.
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Inequalities (18) for the family of parameters (4) have the form

[32ω] + [6ω] + [37ω] + [27ω] − [16ω] − [12ω] − [32ω] − [42ω]> 0,

[22ω] + [6ω] + [37ω] + [32ω] − [11ω] − [12ω] − [32ω] − [42ω]> 0,

[37ω] + [37ω] − [32ω] − [42ω]> 0,

[32ω] + [6ω] + [32ω] − [16ω] − [12ω] − [42ω]> 0,

[22ω] + [6ω] + [27ω] − [11ω] − [12ω] − [32ω]> 0.

(31)

The set E of numbers ω ∈ [0; 1) satisfying at least one of the inequalities (31) has the form

E =
[ 1

37 ;
1
14

)
∪
[ 2

27 ;
2
21

)
∪
[ 4

37 ;
5
42

)
∪
[ 5

37 ;
1
7

)
∪
[ 4

27 ;
1
6

)
∪
[ 5

27 ;
4
21

)
∪
[ 8

37 ;
1
4

)
∪
[ 10

37 ;
2
7

)
∪
[ 11

37 ;
13
42

)
∪
[ 12

37 ;
5
14

)
∪
[ 10

27 ;
8

21

)
∪
[15

37 ;
5

12

)
∪
[16

37 ;
7

16

)
∪
[17

37 ;
10
21

)
∪
[ 18

37 ;
1
2

)
∪
[ 19

37 ;
23
42

)
∪
[ 5

9 ;
4
7

)
∪
[ 16

27 ;
25
42

)
∪
[ 23

37 ;
5
8

)
∪
[ 24

37 ;
2
3

)
∪
[ 25

37 ;
29
42

)
∪
[ 26

37 ;
31
42

)
∪
[ 20

27 ;
3
4

)
∪
[ 28

37 ;
16
21

)
∪
[ 7

9 ;
11
14

)
∪
[ 30

37 ;
13
16

)
∪
[31

37 ;
6
7

)
∪
[19

22 ;
37
42

)
∪
[ 8

9 ;
11
12

)
∪
[ 34

37 ;
13
14

)
∪
[ 35

37 ;
20
21

)
∪
[ 26

27 ;
41
42

)
.

Let ψ(x) = 0′(x)/0(x), where 0(x) stands for the gamma function. Then, in a standard way (see
Lemma 6 in [Nesterenko 2010]) we obtain

1= lim
n→∞

1
n

ln1n =
(
ψ
( 1

14

)
−ψ

( 1
37

))
+
(
ψ
( 2

21

)
−ψ

( 2
27

))
+ · · ·+

(
ψ
( 41

42

)
−ψ

( 26
27

))
≈ 30.686934.

Finally,

lim
n→∞

1
n
· ln

qMn

1n
= 42−1=: M1 ≈ 11.313066.

It follows from (19) and (22) that 31(n)
√

3+32(n) = 6(2−
√

3)128n
· 4−32n

· (qMn/1n) · A′n , and
from (30) we obtain the statement of the lemma. �

Lemma 6. The value of γ3 for the linear form (22) satisfies the equality

γ3 = 32 ln 4− 128 ln (2−
√

3)−M1− ln | f (s2, t2)| ≈ 245.593134, (32)

Proof. The argument here is similar to the proof of Lemma 7 in [Luchin and Salikhov 2018]. In our case
for the value of the Hessian we have det S′′ξξ (s2; t2)≈−6702+4059i 6= 0. Note that if h(s, t)= Im ln s, t ,
then h(s2, t2)=:ω≈−1.833. Let ω0=

1
2(π+ω) (earlier in [Luchin and Salikhov 2018] the corresponding

values were ω ≈ 1.9062, ω0 =
1
2(π −ω)). The end of the proof of Lemma 6 is identical to Lemma 7

from [Luchin and Salikhov 2018]. �

We note that, by Lemma 5, we have M1 ≈ 11.313066 and ln | f (s2, t2)| ≈ −43.974169. So we obtain
the equality (32).

3. Evaluation of the constant γ2. End of the proof of Theorem 1.

The argument of §3 in [Luchin and Salikhov 2018] with minor changes should be repeated here. There-
fore, we restrict ourselves to the statement of results and some comments.
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In this section we put DN ( f (x))= 1
N ! f (N )(x), where N ∈Z+, and consider the operator T = Dk+m−h ·

x j
· Dh+ j−k = D42nx37n D32n . This operator is analogous to those considered in [Luchin and Salikhov

2018]. It should be mentioned that operators like T where used in [Marcovecchio 2009; Sorokin 1991;
Marcovecchio 2014] and many other papers.

Lemma 7. Let l ≤ j . The integral (2) satisfies the equality

J = 2(−1)k+l− j
·T
(k+l− j−1∑

ν=0

1
2(k+ l− j−ν)−1

·
xm−q+ν

(x−1)ν+1+
xh−0.5(−1)k+l− j

(1− x)k+l− j+0.5 arctan

√
1− x

x

)
. (33)

Proof. It is necessary to repeat the argument of Lemma 10 from [Luchin and Salikhov 2018] with the
only change related to the case

x =
2+
√

3
4

< 1.

We obtain ∫ 1

0

dz
z2− x

x−1
=

∫ 1

0

dz
z2+ x

1−x
=

√
1− x
√

x
arctan

√
1− x

x
.

A similar integral was considered in [Luchin and Salikhov 2018, Lemma 10]:∫ 1

0

dz
z2− x

x−1
=−

√
x − 1
√

x
ln
(√

x +
√

x − 1
)
,

This is the only difference between (33) and the similar equality (53) from [Luchin and Salikhov 2018].
�

Lemma 8. Let M ∈ N, a, b ∈ R. Then

DM

(
xa

(1− x)b

)
=

M∑
r=0

(
a
r

)(
b− a+M − 1

M − r

)
xa−r

(1− x)b+M .

Proof. A similar statement was proven in [Luchin and Salikhov 2018, Lemma 11] for (1− x)→ (x − 1).
To use that lemma it is enough to choose the branch of the logarithm such that ln(−z)= ln |z| + iπ is
satisfied for z ∈ R, z > 0, ln z ∈ R. Then, since x < 1, we have

(1− x)b = (x − 1)b · eiπb, (1− x)b+M
= (x − 1)b+M

· eiπb(−1)M ,

and the statement of Lemma 8 follows from (54) from [Luchin and Salikhov 2018]. �

Lemma 9 [Luchin and Salikhov 2018, Lemma 12]. For every N ∈N and for arbitrary analytic functions
u = u(x) and ϑ = ϑ(x) one has

DN (u ϑ)= ϑ · DN (u)+
N−1∑
λ=0

λ! (N − 1− λ)!
N !

DN−1−λ(Dλ(u) ·ϑ ′).
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For x ∈ R we introduce the function

x∗ =


x ln x if x > 0,

0 if x = 0,

x ln(−x) if x < 0.

(34)

Obviously, the function x∗ is odd.

Lemma 10 [Luchin and Salikhov 2018, Lemma 13]. Let n∈N, n→+∞, b=b0n+O(1), r = r0n+O(1),
b0, r0 ∈ R, r ∈ Z+ and

(b
r

)
6= 0. Then one has

lim
n→∞

1
n

ln
∣∣∣(b

r

)∣∣∣= b∗0 − r∗0 − (b0− r0)
∗. (35)

Now we apply the results obtained above to the linear form (22).
Relation (33) for the family of parameters (4) can be rewritten as

Jn =

6n−1∑
ν=0

2(−1)ν+1

12n− 2ν− 1
6 1,ν + 262, (36)

where

6 1,ν = D42n

(
x37n D32n

(
x5n+ν

(1− x)ν+1

))
, (37)

62 = D42n

(
x37n D32n

(
x11n− 1

2

(1− x)6n+ 1
2

arctan

√
1− x

x

))
. (38)

For example, we calculate a simpler function (37). Applying Lemma 8 for ν = 0, 1, . . . , 6n − 1, we
obtain

D32n

(
x5n+ν

(1− x)ν+1

)
=

5n+ν∑
r=5n

(5n+ν
r

)( 27n
32n−r

) x5n−ν−r

(1− x)32n+1+ν .

In a similar way we get

D42n

(
x37n x5n+ν−r

(1− x)32n+ν+1

)
= D42n

(
x42n+ν−r

(1− x)32n+ν+1

)
=

42n∑
ρ=0

(42n+ν−r
ρ

)( 32n+r
42n−ρ

) x42n+ν−r−ρ

(1− x)74n+ν+1 .

For x = 2+
√

3
4

we obtain

x42n+ν−r−ρ

(1− x)74n+ν+1 =
(2+
√

3)42n+ν−r−ρ

442n+ν−r−ρ · 474n+ν+1
· (2+

√
3)74n+ν+1

= 432n+r+ρ+1
· (2+

√
3)116n+2ν−r−ρ+1

= A · 4r+ρ+1(2−
√

3)12n−2ν−1+r+ρ,

where
A = 432n(2+

√
3)128n. (39)
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Moreover our parameters should necessarily satisfy ρ ≤ 42n + ν − r and 42n − ρ ≤ 32n + r , i.e.,
ρ ≥ 10n− r . Thus, for ν = 0, 1, . . . , 6n− 1, we have 6 1,ν = A ·6′1,ν and

6′1,ν =
∑

(r,ρ)∈B

(5n+ν
r

)( 27n
32n−r

)(42n+ν−r
ρ

)( 32n+r
42n−ρ

)
· 4r+ρ+1

· (2−
√

3)12n−2ν−1+r+ρ, (40)

where B = {(r, ρ)| r ∈ [5n; 5n+ ν], ρ ∈ [max (0; 10n− r);min (42n; 42n+ ν− r)]}.
Let us calculate the function 62 from (38), applying Lemma 9 for

N = 32n, u =
x11n−0.5

(1− x)6n+0.5 , ϑ = arctan

√
1− x

x
, ϑ ′ =−

1

2
√

x
√

1− x
.

We have

D32n

(
x11n− 1

2

(1−x)6n+ 1
2

arctan

√
1−x

x

)
= arctan

√
1−x

x
· D32n

(
x11n− 1

2

(1−x)6n+ 1
2

)

−
1
2

32n−1∑
λ=0

λ!(32n− 1− λ)!
(32n)!

D32n−1−λ

(
Dλ

(
x11n− 1

2

(1−x)6n+ 1
2

)
·

1
√

x
√

1−x

)
.

Applying Lemma 9 to the first summand of this sum again, we obtain from (38) (when N = 42n,
u = x37n D32n

(
x11n− 1

2 /(1− x)6n+ 1
2
)

and ϑ = arctan
√
(1− x)/x) the equality

62 = arctan

√
1−x

x
D42n

(
x37n D32n

(
x11n− 1

2

(1−x)6n+ 1
2

))

−
1
2

42n−1∑
λ1=0

λ1!(42n− 1− λ1)!

(42n)!
D42n−1−λ1

(
Dλ1

(
x37n D32n

(
x11n− 1

2

(1−x)6n+ 1
2

))
1

√
x
√

1−x

)

−
1
2

32n−1∑
λ=0

λ!(32n− 1− λ)!
(32n)!

D42n

(
x37n D32n−1−λ

(
Dλ

(
x11n− 1

2

(1−x)6n+ 1
2

)
1

√
x
√

1−x

))
. (41)

We note that for x = 2+
√

3
4

one has

√
x ·
√

1− x =
1
4
, arctan

√
1− x

x
= arctan (2−

√
3)=

π

12
.

Let us write

D42n

(
x37n D32n

(
x11n−1

2

(1− x)6n+1
2

))
=: A ·6′2, (42)

D42n−1−λ1

(
Dλ1

(
x37n D32n

(
x11n−1

2

(1− x)6n+1
2

))
1

√
x
√

1− x

)
=: A ·62,1(λ1), (43)

D42n

(
x37n D32n−1−λ

(
Dλ

(
x11n−1

2

(1− x)6n+1
2

)
1

√
x
√

1− x

))
=: A ·62,2(λ). (44)
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Functions (42)–(44) are calculated using Lemma 8 in a standard way (see (40), for example).
We thus restrict ourselves to presenting the final results, namely

6′2 =
∑

(r,ρ)∈B

(11n− 1
2

r

)( 27n
32n−r

)(48n−r− 1
2

ρ

)( 32n+r
42n−ρ

)
· 4r+ρ+1

· (2−
√

3)r+ρ, (45)

where B = {(r, ρ)| r ∈ [5n; 32n], ρ ∈ [max (0; 10n− r); 42n]};

6′2,1(λ1)=
∑

(r1,r2,ρ)∈B1

(11n− 1
2

r1

)( 27n
32n−r1

)(42n−r1−
1
2

r2

)(r1+λ1−10n
λ1−r2

)
·

(48n−r1−r2−1
ρ

)( 32n+r1+r2
42n−1−λ−ρ

)
· 4r1+r2+ρ+1

· (2−
√

3)r1+r2+ρ+1, (46)

where B1 =
{
(r1, r2, ρ) ∈ (Z

+)3
∣∣ r1 ∈ [5n; 32n], r2 ≤ λ1; if r1 + λ1 ≥ 10n, then r1 + r2 ≥ 10n;

ρ ≤ 42n − 1− λ1, λ1 + r1 + r2 + ρ ≥ 10n − 1; if r1 + r2 < 48n − 1, then ρ ≤ 48n − r1 − r2 − 1
}
;

and

6′2,2(λ)=
(λ−3)!3!(32n− 1− λ)!

(32n)!

·

∑
(r1,r2,r3,ρ)∈B2

(11n− 1
2

r1

)(6n+3−r1−
1
2

3−r1

)(11n−r1−
1
2

r2

)(
λ−5n

λ−3−r2

)(11n−r1−r2
r3

)( 27n+r2
32n−r3−λ−1

)
·

(48n−r1−r2−r3−1
ρ

)(32n+r2+r3
42n−ρ

)
· 4r2+r3+ρ+1

· (2−
√

3)2r1+r2+r3+ρ+1, (47)

where λ ∈ [0; 32n− 1],3 ∈ [0; λ], B2 =
{
(r1, r2, r3, ρ) ∈ (Z

+)4
∣∣ r1 ∈ [0;3], r2 ∈ [0; λ−3], if λ > 5n,

then also r2 ≥ 5n −3; r3 ∈ [max (0, 5n− λ− r2− 1); 32n − 1− λ], if r1 + r2 < 11n − 1, then also
r3 ≤ 11n− r1− r2− 1; ρ ∈ [0;min (42n, 48n− 1− r1− r2− r3)]

}
.

Finally from (36)–(44) we obtain Jn = A · J ∗n , where

J ∗n =
6n−1∑
ν=0

2(−1)ν+1

12n− 2ν− 1
6′1,ν+26′2 −

42n−1∑
λ1=0

λ1!(42n− 1− λ1)!

(42n)!
6′2,1(λ1) −

32n−1∑
λ=0

λ!(32n− 1− λ)!
(32n)!

6′2,2(λ).

(48)
Then from (22) and (39) it follows that (2−

√
3)128n4−32n A = 1. Thus,

Ln =
q42n

1n
J ∗n .

All the summands in (48) were calculated in (40) and (45)–(47). The asymptotic q42n/1n was calcu-
lated in the proof of Lemma 5, so

lim
n→∞

1
n

q42n

1n
= M1 ≈ 11.313066.

The final step of calculating γ2 for the linear form (22) is similar to the proof from §3 in [Luchin
and Salikhov 2018]. In particular, it is necessary to replace (2−

√
3) by (2+

√
3) in the sums (40) and

(45)–(47). The asymptotic behavior of the binomial coefficients included in the summands of these sums
is calculated using Lemma 10. Computer calculations show that the corresponding maximal summand
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is attained in the sum 6′2 for the values of parameters r ≈ 10.256n, ρ ≈ 31.431n. The corresponding
value of γ2 is γ2 = 169.531+ 11.313066= 180.844066.

Then, by Lemma 3, the inequality (1) holds for

µ=
2(γ1+ γ3)

γ3− γ2
≈ 10.2209.

This completes the proof of Theorem 1.
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