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Approximating 7 by numbers in the field Q(+/3)
Mikhail Yu. Luchin and Vladislav Kh. Salikhov

Using a new integral construction which combines the idea of symmetry suggested by V. Salikhov in
2007 and the integral introduced by Marcovecchio in 2009, we obtain a new bound for approximation to
7 by numbers from the field QH3).

1. Introduction. Integral construction. Arithmetic part.

We continue our research initiated in [Androsenko and Salikhov 2015] and [Luchin and Salikhov 2018].
In this paper we prove the following result.

Theorem 1. Let 1 >10.2209; py, p2, p3, pa€Z, (p3, pa)#(0,0), P=max<;j<4|pil, and P > Po(u).
Then

3
N INERS Y "
P33+ p4
The first inequality of this type was proven in [Amoroso and Viola 2001]:
b+/3
T — ﬂ > constant - max{|a|, |b|, |c|, |d|} 462073,
c+dv3

where a, b, ¢, d € Z, (c, d) # (0, 0). This result was improved in [Tomashevskaya 2008], with the value
10.3567 ... for u.

The proof of the new bound (1) is related to the application of the following integral construction. Let
h,j,k,l,m,geZ"  h+j+q=k+l+m h+j—k>0,k+[—j>0,k+m—h>0;xecC,Re x >0,
x # 1. Consider the integral

1 —00 ioco shl‘jdl‘
J = —/ ds / . (2)
2wi Jo —ico /sil (1 — s)kH=jt1 (g — pyh+rj—k+1(f — y)ktm—h+1
The result of Theorem 1 is obtained by taking
2 3
L +\/_’ )
4
h=11n, j=3Tn, k=16n, [=27n, m=3Tn, ¢=32n, neN, n— oo. 4

The only thing that distinguishes the integral (2) from the one in [Marcovecchio 2009, (5), p. 148]
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is the factor 4/s/(s — 1) in the denominator of the integrand. For the first time the integral (2) was
considered in [Androsenko and Salikhov 2015]. Using this integral, Androsenko [2015] improved the
estimate for the irrationality measure of the number 7/ /3. In [Luchin and Salikhov 2018], thanks to
the integral (2), it became possible to obtain a new bound for the approximation of In 2 by numbers from
the field Q(+/2). In our argument below we substantially apply the method developed in that work.

In [Luchin and Salikhov 2018] (equalities (7)—(9)) it was shown that the integral (2) can be represented
in the form

1
1=- [ Reyd. s)
0
where
k+m—h . I—q+1, .
vk N Jj ) X <h—|—]—k+ll)
RO=20"% 5 0 () e () R@, ©
l1=max(0,q—1)
R ( ) B ZZh(l _ Z2)l+ll B Z2h(1 _ Z2)l+ll (7)
hiz) = ( X _Zz)/1+j—k+ll+1 B (_(2+ﬁ)2_z2)11+j—k+11+1 )
x—1
Here we use notation from [Luchin and Salikhov 2018]. As in that article, we write
h+j—k+1N [
ot =", ‘)/ Ry, (2) dz. ®)
0

Let K be the ring of numbers of the form a + b+/3, where a, b € Z, and for positive integers M € N we
put gy =lem(1,2, ..., M) and go = 1.

Lemma 1. Let My = max(2k+2l—2j,h+j—k,k+m—h),m > q. Forallly <k+m — h, one has

1 2g—2m
gmyw () = Ty 2575 (a(l)m + b)), 9)

where a(ly), b(ly) belong to K.
Proof. For N € Z" we write
1
Dy(f@) =5 [ @i+iV3).

Since the integrand (7) of the integral in (8) is even, we have expansion into a sum of simplest fractions:

(_1)q—m—lz2h (ZZ _ 1)1+11
(Zz — Qi+ iﬁ)Z)h+j—k+ll+l

htj—k+1+1 (—1)% i
=P+ —— + i ; 10
© Z ((z—zi—iﬁ)” (Z+2i+i«/§)"> (10

where P(z) € K[z] and deg P(z) =2(k+1—j —1);

R, (2) =

v=1

(=1)ky = Dy jity+1-0 (Ryy (2) (2 — 20 — i8/3)HI—FIFD)
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By Leibniz’s formula, we see from (10) that

ZZh(Z_l)l+l1(Z+1)l+ll )
(Z+2i+iﬁ)h+j—k+l1+l
= (=D Dy (27" Doy (2 = ') Dy (2 4 1)) Dy, (2 4 20+ i3/3) " 74HHD)

meM,

ky = (=D ™Dy i 1w (

where we have set m = (my, my, mz, my) and
M, ={me @) \m4+my+ms+mg=h+j—k+I+1—v; m <2h; mo,m3 <I+1}.

So

ky, = (—1)7—m+v=1 72 (3”/11)(14-11)(1-1-11><h+j—k+ll+m4> 1y

my ms my
meM,

Qi+ i3I (=14 20 4 iV/3)TI T (142 4 i/3) T
(221 + iﬁ))—(h+j—k+ll+m4+1)

For N € N we have
(142 +ivV3)N = Qi + 26 T)YN =2N-1(i 4 T)V .2,

But2- (i +¢ )N e K[i] and so (—1 4 2i +ix/3)N =2V=1 .k}, where k), € K[i]. Similarly we have
(1+2i +iv/3)N =2N=1 k) where k7, € K[i].
So
k, = Z k, () - 2/H=ma=1 pltli=ms=1 o —(htj—k+litmy+1)

meM,

where all k,(in) € K[i].
Moreover my +ms+myg <h+j—k+1+1—v,s0

I+ —my—14+14+L—m3—1—(h+j—k+0+14mg) =20+l —h—j+k—1)+v—4
=2g —2m+v—4.
This gives
k, =2%72mtv=4 ko kyeKlil,v=1,...,h+j—k+1 +1. (11)

From (10) we have

1 1 h+j—k+11+1
/Rz (z)dz:/ P@dz+ Y (k” ( : - 1 ))
, 0 V=1 \Qi+iv/3-1)"1  (2i+i/3+1)v!

v=2
2i+iv34+72
2i4iv3 -z

1

+ki1n (12)

0
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Obviously 2+\/_—tan .Letlnz =In|z| 4+i¢ where ¢ € (—m; w]. Then

2i+i3+z|'  142i+iv3  1+itan%  #H g
In =lh_————=In 5 =In — =—i—;
21—{—1\/_—2 2i +i/3—-1 i tan 35 — PiaT: 6
1 C1-i3-2i  e'i i 1 C2(e75 —i) 2= /3) !
2i+iv3+1 1+Q2+3)?2 22+3) Qi+i/3+1)1 v ‘
As before we have 2(6_‘% — i)'~ e K[i] and so
1 — —v ./ 1 — —v_/
(2i +iv/3+1)"! VU Qi4i3— 1) v
where x/,, x| € KK[i]. Thus from (11) and (12) we have
1 h+j—k+l+1 1 22q_2m_3
2g—2m—4 7 o
/(;Rl](z)dz_/P(Z)dZ+ Z m'zq " 'kv-l-T'liT, (13)

where lzv € K[i] for all v.

It follows from the definition of My that A} := g, fol P(z)dz lies in K. It is also easy to check that
am, (") - 5L =1 A, liesin Nforall v =2, ..., h+ j —k+1; + 1. Then it follows from (8) and
(13) that

h+j—k+1 !
amo ) =am ("7 1)/0 R, (2) dz

htj—k-+1+1

s B l B
_ (h+_] llk+ll)A] +22q72m74. Z Avkv+§'22q72m74'ki”a
v=2

whence, since m > ¢, we get equality (9), where a(ly), b(l;) € K[i]. But, obviously, a(l}), b(l;) € R.
Therefore a(ly), b(l;) € K. This completes the proof of lemma. O
Corollary 1. The integral (2) for m > g admits the representation

6-2"qy,J =an +b, a,belK. (14)
Proof. For x = 2+4\/§ we have

xi—a+h (2+\/§)l—q+ll4h+j—k+ll+l o
‘ = - =4"".C(ly),
(x — 1)h+j—k+11+1 Al—q+h (f— 2)h+j—k+l1+1

where C () € K.
Therefore from (5), (6), (8) and (9) we have

k+m—h

1 m q—m
qm ] = 24" 4 > ddne) (alm +bdy)).
l1=max(0,q—1)

where all d(/) € Z, and this implies (14). O
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Together with the family of parameters (4), we should consider a more general choice of parameters
(h’ j’ k’ l’ m? q):n(h/’ j/7 k/? 1/7 m,’ q/)’ (]5)

where ', j', k' I',m', q' € Z™.
It is convenient to denote the integral (2) for parameters of the form (15) and for x of the form (3) as

Ji=J, =2, j KU, m, q). (16)

For the family of parameters (15) we write
Mn =max{2(k+1—j),2h,2k,h+j—k, k+m—nh,l,m, j, q}. 17)
Let p be a prime, p > ~/Mn and = {%} be the fractional part of the number %. Consider the inequalities

2K o]+ [(I'+k'— j o]+ [m' o]+ [I' 0] — [K'w] — [2('+k'— j Yol — [(h'+j =k Yw] — [(k'+m'—h")w] > 0,

2K 0]+ [('+k' = j Yol + [ 0l + ¢ o] — [F o] = [2('+k'— j Yol — [(F'+j' =k Yw] = [(k'+m'—h")w] > 0,
[J'@]+[m' o] = [(h'+j =Kol = [(K'+m'~h")w] > 0, (18)

2K w] +[(I'+k'— jHwl +[q @] — [K o] — [2('+k' — j ] — [(K'+m'—h )] > 0,

2K o] +[(I'+k' = jHwl +[I'w] = [h 0] = [20'+k' = j ) o] = [(h'+j' =k )] > 0.
These inequalities were first studied in detail in [Androsenko and Salikhov 2015, (11), p.491] and later
applied in [Luchin and Salikhov 2018]. They are slightly different from those considered for the same

purpose in [Marcovecchio 2009, (31)].

By A, we denote the product of all primes p > +/Mn for which w = {%} satisfies at least one of the
inequalities (18). The following lemma sharpens the result obtained in Corollary 1.

Lemma 2. When m > q the integral (16) admits the representation

6-2—24-1&-1,1:Ann+3n, (19)

n

where A,, B, € K, n € N.

Proof. The representation (19) follows from (14) due to a standard procedure of refining the denominator
(see, for example, Lemma 3 in [Androsenko 2015]). O

The following lemma, similar to Lemma 4 from [Luchin and Salikhov 2018], plays an important role
in the proof of Theorem 1.

Lemma3. Letn,d €N, 0 € R, v/d ¢ N, and L, = (A (n)vVd + Ar(n))0 + Az(n)/d + As(n), where
each A;(n) belongs to Z, and let A(n) = max,<;<4 |A;(n)]. Let lim, o0 2 In|A1(n)vd + Ar(n)| =y,
lim,,_, o Sup % In|A(n)| < y,. Suppose that for some constant y; >y, and for every &1, £2 > 0 there exists
N = N(e1, &) such that the inequalities

e_()’3+€l)m < |Lm| < e—(}/3—82)m (20)
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hold for any n > N and at least one of the values m € {n, n + 1}. Further, let y, +y, > 0, u > %;
P1s P2, P3, p4 € Z,(p3, pa) # (0,0), P = maxi<;<4 |pi| and P > Po(w). Then
d
p_PYatp| o
p3vd + ps

Remark. Assumptions similar to those from Lemma 3 were used in [Amoroso and Viola 2001; Salnikova
2008; Hata 2000].

We prove Theorem 1 by applying Lemma 3 to the linear form
L,=(Q2—+/3)!%" .47 qAﬂJn = (M MV3+ M7+ As(MV3+Ag(n),  (22)
n

where each A;(n) is an integer, J, is the integral (16) for the family of parameters (4), and Mn is defined
by equality (17) for the family of parameters (4).

The corresponding constants y, and y; will be calculated in the next Section 2, and the constant y, in
Section 3.

2. Asymptotics

The argument of this part is almost completely analogous to those from [Luchin and Salikhov 2018, §2].
Everywhere in the sequel (see (2) and (16)) we write

1 —00 100
Jy = J,(11,37,16,27,37,32) = —/ ds / G(s, 1) dt, (23)
2mi 0 —ioo

where

G(s, 1) =o(s, )(f (s, 1)", (24)

with

S11t37

1 2443
’ (p(s7 t)= £ X = .
(1=5)0(s =02 —x)* ,/s“%l(l —$)(s =)t —x) 4

The saddle points are the solutions of the system f/(s, 1) =0, f/(s, r) = O that differ from the zeros of
the function f (s, t). In [Androsenko and Salikhov 2015] (see p.492, equations (12)) this system was
solved in the general case for the integral (16). For the function f (s, ) considered above we have three
saddle points:

fls, 1) =

(s1, 11) ~ (0.994847; 0.967621), (25)
(s2, 1) ~ (0.324712 4+ 0.292582i, —0.637736 — 0.207638i), (26)
and (s3, 13) = (52, 1), the complex conjugate of (s2, 72). We write £ = (s, 1) € C2.

Lemma 4. Let £° be a nondegenerate saddle point of the function S(&), let y be a two-dimensional
smooth complex manifold with boundary, let £° be an interior point of y, let the functions ¢ (&) and S(£)
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be holomorphic at the point £°, and let also maxgc, Re S(§) be attained only at the point & 0 Let

F() = / (&) exp(AS(E))dé
Y

" 0 SA//A (SO) Ss//t (%-0) . 14 0
and Sg:(§7) = be the Hesse matrix, and suppose that det S £ (§Y) #£0. Then

S (€9 ) \ Si(E°)
F() = 27” exp(LS(£%)) - (det L (6%) 2 (9" + 0 (.71 27)
as A — +oo.
Proof. This statement is proved in the [Fedoryuk 1977], p. 259, Proposition 1.1. U

Lemma 5. For the linear form (22) we have the equation
1
Vi :=n1i)ngo . In|A1(M)V3+Ax(n)| =1281n (2 — v/3)—32In4+M;+1n | £ (s1, 11)| ~ 85.303863, (28)

where the value
1
Mi=M-— lim —1InA, =~ 11.313066 (29)

n—oo n

is calculated using inequalities (18) for the set of parameters (4) and
In|f(s1, )| =~ 286.922828.
Proof. Let the integral (23) be written in the form
Jo=A 7w+ B,,

where A/, B, € Q[+/3] (see (19)). Consider the circles Ly = {t : |t| = t;} and Ly = {s : |s| = s1}.
Obviously, max ;e LExL* In| f (s, t)| is attained only at the point (sy, #;). As in Lemma 6 from [Luchin

and Salikhov 2018], we have
1
A = d G(s,t)dt,
" 22mi)? /Lz y /Ll (s, 1)

where the function G (s, ) was defined in (23). Here we used the inequalities x < f; < s1 < 1.

We apply Lemma 4 for the function S(s,#) = In f(s,¢) = In|f(s,t)| + ih(s, t) (a certain branch
of the logarithm defined on the set y = y, x y,, where y, is a small arc of the circle L, including
the point s; + 0i and y, is a small arc of L including #; + 0i. In our case for the Hessian we have
det S{ (s1, 11) & 1.92 x 10'0 0.

Using equality (27) of Lemma 4, we obtain

1
lim —In A, =In|f(s, )| ~286.922828. (30)
n

n—oo

Let us now evaluate the constant M. For the family of parameters (4) from (17) we obtain

Mn =max (12n,22n, 32n, 32n,42n,27n, 37n, 37n, 32n) = 42n.
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Inequalities (18) for the family of parameters (4) have the form
[32w] + [6w] + [37w] + [27w] — [16w] — [12w] — [32w] — [42w] > O,
[22w] 4 [6w] + [37w] + [320w] — [11w] — [120w] — [320w] — [42w] > O,
[37w]+ [37w] — [32w] — [42w] > O, 3D
[32w] + [6w] + [32w] — [16w] — [12w] — [42w] > 0,
[22w] 4+ [6w] + [27w] — [11w] — [12w] — [32w] > O.

The set E of numbers w € [0; 1) satisfying at least one of the inequalities (31) has the form

E=[5u) U7 0)Vlsma) V) uiEe) vz ) Vs
U5 2)Vl5 5) Vi ) VI ) Vs &) VI 1) Vs o)
V[F: )V VDV B VEDVEHVE D)
V[H RV )V Vs p) Vs w) VE ) Vs 5)

C
—
\O| oo
|
sl=

34, 13 35. 20 26. 41
)Vl @)Yz ) Y5 n)-
Let ¥ (x) = I'"(x) /T (x), where I'(x) stands for the gamma function. Then, in a standard way (see
Lemma 6 in [Nesterenko 2010]) we obtain

A= lim % In &y = (W (55) =¥ () + (W () =¥ (5) +-+ (U (5) - v(5)) ~ 30686934,

Finally,
qMn

1
lim —-In =42 - A =:M; ~11.313066.

n—oo 1 n

It follows from (19) and (22) that A;(n)v/3 4+ Az (n) = 6(2 — +/3)1287 . 47327 . (g4, /A,) - A/, and
from (30) we obtain the statement of the lemma. O

Lemma 6. The value of y; for the linear form (22) satisfies the equality
Y3 =32In4—1281n (2 — V3)—=M; —1In | f(s2, 12)| & 245.593134, (32)

Proof. The argument here is similar to the proof of Lemma 7 in [Luchin and Salikhov 2018]. In our case
for the value of the Hessian we have det Sgg (s2; 1) =& —67024+4059i #£ 0. Note that if £(s, ) =ImIns, ¢,
then h(sy, 1) =:w~ —1.833. Let wg = %(n ~+w) (earlier in [Luchin and Salikhov 2018] the corresponding
values were w ~ 1.9062, wy = %(71 — w)). The end of the proof of Lemma 6 is identical to Lemma 7
from [Luchin and Salikhov 2018]. O

We note that, by Lemma 5, we have M ~ 11.313066 and In | f (s, t2)| & —43.974169. So we obtain
the equality (32).

3. Evaluation of the constant y,. End of the proof of Theorem 1.

The argument of §3 in [Luchin and Salikhov 2018] with minor changes should be repeated here. There-
fore, we restrict ourselves to the statement of results and some comments.
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In this section we put Dy (f(x)) = % FfM(x), where N € Z, and consider the operator T = Dy yp—p -
xJ - Dpyj = Dy x3"" D1y, This operator is analogous to those considered in [Luchin and Salikhov
2018]. It should be mentioned that operators like 7" where used in [Marcovecchio 2009; Sorokin 1991;
Marcovecchio 2014] and many other papers.

Lemma 7. Let !l < j. The integral (2) satisfies the equality

= = - h—0.5 Kl—i

. 1 ym—q+v X (—1)k+= T
J=2=0r () . 4 : tan,/ —— }. (33
(=D ( =0 2k +1—j—v)—1 (x—1Dv+HL " (1 —x)kH=j+05 arctan . ) (33)

Proof. It is necessary to repeat the argument of Lemma 10 from [Luchin and Salikhov 2018] with the
only change related to the case

2+4/3
4

/1 dz /‘1 dz V1—x . 1—x
—_ = = arctan .
0 Zz—ﬁ 0 Z2_|_1xTx \/)? X

A similar integral was considered in [Luchin and Salikhov 2018, Lemma 10]:

< 1.

We obtain

[ o =T v,

This is the only difference between (33) and the similar equality (53) from [Luchin and Salikhov 2018].
O

Lemma 8. Let M e N, a, b € R. Then

x4 M ra\ (b—a +M—1 xa=r
Du b~ Z b+ M
(1—-x) —\r M —r (1 —x)bt
Proof. A similar statement was proven in [Luchin and Salikhov 2018, Lemma 11] for (1 —x) — (x — 1).

To use that lemma it is enough to choose the branch of the logarithm such that In(—z) =In|z| +ix is
satisfied for z € R, z > 0, Inz € R. Then, since x < 1, we have

(1 _x)b — (x _ l)b . eiﬂb’ (1 _x)b—l-M — (x _ 1)b+M . eiﬂb(—l)M,
and the statement of Lemma 8 follows from (54) from [Luchin and Salikhov 2018]. Il

Lemma 9 [Luchin and Salikhov 2018, Lemma 12]. For every N € N and for arbitrary analytic functions
u =u(x) and v = ¥ (x) one has

NN —1=2) )
Dyud)=17-Dy(u)+ TDN—l—A(DA(M)'ﬁ)-
A=0 ’
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For x € R we introduce the function
xInx if x > 0,
x*=10 if x =0, (34)

xIn(—x) ifx <O.
Obviously, the function x* is odd.

Lemma 10 [Luchin and Salikhov 2018, Lemma 13]. Letn e N, n — +o0o, b=bon+0O(1),r =rogn+0(1),
by, rp € R, reZ*and()#O Then one has

. 1 b % k *
nlin;o;m’()):bo—ro—(bo—ro) . (35)

Now we apply the results obtained above to the linear form (22).
Relation (33) for the family of parameters (4) can be rewritten as

— ( 1)v+1
3 2%, 36
22:0 o — oy —1 = v T 222 (36)
where
37 x5n+v
210 = Dagy (X " D3 (m) ), (37)
lln—— 1—x
%y = Dagy | °" D3gy | ———— arctan : (38)
(1—x)%+3 x
For example, we calculate a simpler function (37). Applying Lemma 8 for v=0,1,...,6n — 1, we
obtain
KSntv _5"+V 5n+4v 27n xSn—v=r
D3on (1 —x)v+! - 25: ( r )(32n—r> (1 —x)32n+14v”
In a similar way we get
b - x5n+v—r _b x42n+u—r B 42n n+v—r 32n4r x42n+v—r—p
42n \ X (1 — x)32ntv+l ) = 24\ (3o ) = ZO ( 0 )(42n—p) (1 — x)Tantv+l
10:
For x = M we obtain
X QAN ot g 4 SRyt
(1 _x)74n+v+1 - 442n+v—r—p

— 432n+r+p+1 X (2+ \/5)116n+2v7r7p+1
—A- 4r+,0+1(2 _ \/5)1211721171+r+p

where
A= 432n(2+ \/5)128n. (39)
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Moreover our parameters should necessarily satisfy p <42n+v —r and 42n — p < 32n +r, i.e.,
p > 10n —r. Thus, forv=0,1,...,6n—1, we have ¥, = A- X  and

S, = Z <5nr+v>(322n7ir><42n—;v—r)(ii}lﬁ-;) L (0 _f3) 121k (40
(r,p)eB

where B = {(r, p)|r € [5n; 5n+v], p € [max (0; 10n —r); min (42n; 42n +v —r)]}.
Let us calculate the function X, from (38), applying Lemma 9 for

xlln—O.S 1—x . 1
N=32n, u=———-, o =arctan , V=———.
(1 _x)6n+05 X Zﬁm
We have
ln—3 I—x I—x xlin—3
D3y, (— arctan —): arctan,/ —— - D3, (—1)
(1 x>6n X X (1_x)6n+§

13%‘:‘ M@ 1) (D< xlin=3 ) 1 )
- A 32n—1—x A : .
2 &~ (32n)! ! (1—x)0m+32 ) Jx/T—x

Applying Lemma 9 to the first summand of this sum again, we obtain from (38) (when N = 42n,
u=x3"Ds, (x“”*%/(l - x)6”+%) and ¢ = arctan /(1 — x)/x) the equality

1—x o K lin=3
Yy =arctan | —— Dao, | 7" D3y | ——
X (1 _x)6l’l+§

42n—1

i@ —1-2)! o (7D x!1n=3 1
~ @2n)! 2n—1—x | P | X 32n (l—x)(’"*% Jx T

gk

1
2

>

1

32n—1 11n—=4
1 M@32n—1-21)! 37 X ) 1
- — D "Dss,_1-51 D . 41
22 Gayr O & (oot ) Vidix @
We note that for x = 2+[ one has

1 11—
«/)7-«/1—)6:1 arctan,/—x=arctan(2—«/§)=—
x

Let us write

xl]n—%
Daop (x37"D32n (—1>) =A%), (42)
(l_x)6n+§
lln—% 1
Day—1-3,| Dy, [ ¥*™D ( )) )::A-E A1), (43)
4201 M( ;\1( 32n 0 6n+2 NV 2,1(A1

lln—2 1
Doy ("D n__(D< ol ) >)::A-Z ). 44
42 (x 32n—1-2 | D - 6n+2 N 2,2(X) (44)
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Functions (42)—(44) are calculated using Lemma 8 in a standard way (see (40), for example).
We thus restrict ourselves to presenting the final results, namely

; lln—% 27n 48n—r—% 32n+r rbptl r4p
22_(;3( r )(32n—r)( p )(42n—p)'4 Q=Y )
r,0)E

where B = {(r, p)| r € [5n; 32n], p € [max (0; 10n —r); 42n]};

, _ 11n—% 27n 42n—r1—% ri+i;—10n
X2 () = Z < r ><32n—r1)( r >( Al—r2 )

(r1,r2,p)EBy

48n—ri—ry—1 32n+ri+r Pt ptl iAot
(T ) 5 5,) 2=y , 19)
where B} = {(rl,rz,,o) € (ZJF)3 | ry € [5n;32n],ry < Ay; if ri + A1 > 10n, then r{ +r, > 10n;
p<2n—-1—A, M +rn+rmn+p>10n—-1;ifri+r <48n —1, thenp§48n—r1—r2—1};
and

A=M'IA'(B2n—1-1)!

(32n)!
1 1

ln—5\/6n+A—ri—5 lln—rl—% A—5n 1ln—ri—nr 2Tn+r;
Z ( r )( A—ry )( r )(k—A—r2>< r3 )(32n—r3—k—1)

(r1,r2,r3,p)EB>

. (48n_r1 —r2—r3—1 ) (32n—|—r2—|—r3) . 4r2+r3+p+1 . (2 _ ﬁ)2r1+r2+r3+p+l (47)
Jo 42n—p ’
where 1 € [0;32n — 1], A € [0; A, By = {(r1, r2, 13, p) € @1)* | 1 € [0; Al, 12 € [0; A — Al if A > 5n,
then also r, > 5n — A; r3 € [max (0,5n — A —rp—1);32n—1—A], if ri +r, < 11n — 1, then also
r3s<lln—ri—ry—1; p€[0;min(42n,48n — 1 —ri —nry —r3)]}.
Finally from (36)—(44) we obtain J, = A - J*, where

6n—1 42n—1 32n—1

2(—1)vH! Al@2n —1—1p)! Al(32n—1—2)!
* __ / I ! _ /
i I B e TR LA LD Dl o SO
v=0 =0 =0 (48)
Then from (22) and (39) it follows that (2 — /3)12874=32" 4 = . Thus,
qaon 4
L,= JE
n An n

All the summands in (48) were calculated in (40) and (45)—(47). The asymptotic g4,/ A, was calcu-
lated in the proof of Lemma 5, so
1 q42n

lim —
n—-oon

= M; =~ 11.313066.

n

The final step of calculating y, for the linear form (22) is similar to the proof from §3 in [Luchin
and Salikhov 2018]. In particular, it is necessary to replace (2—\/§) by (2+«/§) in the sums (40) and
(45)—(47). The asymptotic behavior of the binomial coefficients included in the summands of these sums
is calculated using Lemma 10. Computer calculations show that the corresponding maximal summand
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is attained in the sum X/ for the values of parameters r ~ 10.256n, p ~ 31.431n. The corresponding
value of y, is y, = 169.531 4 11.313066 = 180.844066.
Then, by Lemma 3, the inequality (1) holds for

2
=20 69000,
V3=V
This completes the proof of Theorem 1.
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