Download this article
 Download this article For screen
For printing
Recent Issues
Volume 14, Issue 2
Volume 14, Issue 1
Volume 13, Issue 4
Volume 13, Issue 3
Volume 13, Issue 2
Volume 13, Issue 1
Volume 12, Issue 4
Volume 12, Issue 3
Volume 12, Issue 2
Volume 12, Issue 1
Volume 11, Issue 4
Volume 11, Issue 3
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 4
Volume 10, Issue 3
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Older Issues
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 2-3
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 1-2
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 3-4
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
founded and published with the
scientific support and advice of
mathematicians from the
Moscow Institute of
Physics and Technology
Subscriptions
 
ISSN 2996-220X (online)
ISSN 2996-2196 (print)
Author Index
To Appear
 
Other MSP Journals
Sous-espaces, angles et approximation diophantienne

Nicolas de Saxcé

Vol. 13 (2024), No. 4, 413–423
DOI: 10.2140/cnt.2024.13.413
Abstract

Suivant un programme suggéré par Schmidt, on étudie l’approximation diophantienne pour les sous-espaces de l’espace euclidien n. Si A et B sont deux sous-espaces de dimensions respectives d et e, on interprète le j-ème angle entre A et B en termes de pinceaux dans la grassmannienne. Cela nous permet de majorer l’exposant diophantien presque sûr pour l’approximation diophantienne au j-ème angle d’un sous-espace A choisi aléatoirement suivant la mesure de Lebesgue sur la variété grassmannienne. On conjecture que la borne obtenue, qui généralise celle de Moshchevitin, est optimale.

Following a suggestion of Schmidt, we study rational approximations to linear subspaces of the Euclidean space n. Given two subspaces A and B with dim A = d and dim B = e, we interpret the j-th angle between A and B in terms of pencils in the Grassmann variety. Using this, we derive an upper bound for the almost sure Diophantine exponent with respect to the j-th angle of a subspace A chosen randomly with respect to the Lebesgue measure on the Grassmann variety. Our bound generalizes a result of Moshchevitin, and we conjecture that equality holds almost surely.

Keywords
lattices, geometry of numbers, heights, pencils
Mathematical Subject Classification
Primary: 11J83
Milestones
Received: 11 December 2024
Revised: 6 January 2025
Accepted: 20 January 2025
Published: 11 February 2025
Authors
Nicolas de Saxcé
Laboratoire Analyse, Géométrie et Applications
CNRS-Université Sorbonne Paris Nord
93430 Villetaneuse
France