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The cubic case of Vinogradov’s mean value theorem

D. R. Heath-Brown

We present a self-contained proof of the cubic case of Vinogradov’s mean value
theorem, based on Wooley’s “efficient congruencing” approach.

1. Introduction

In a remarkable series of papers, Wooley [2012; 2013; 2015; 2016; 2017], and
in collaboration with Ford [Ford and Wooley 2014], has made dramatic progress
with Vinogradov’s mean value theorem. This culminated in the full proof of the
main conjecture, by Bourgain, Demeter and Guth [Bourgain et al. 2016], using
rather different methods — but see [Wooley 2019] for a subsequent treatment by the
original approach. Wooley’s survey article [2014] gives an excellent introduction
to his results and their applications.

The mean value theorem concerns the integer Js,k(X) defined as the number of
solutions (x1, . . . , x2s) ∈ N2s of the simultaneous equations

x j
1 + · · · + x j

s = x j
s+1 + · · · + x j

2s (1 ≤ j ≤ k) (1)

with x1, . . . , x2s ≤ X . Here X ≥ 1 is an arbitrary real number, and s and k are
positive integers, which one treats as being fixed. The key feature of this system is
that if (x1, . . . , x2s) is a solution, so is any translate (x1 + c, . . . , x2s + c).

The various forms of the Vinogradov mean value theorem give upper bounds
for Js,k(X). It is not hard to see that

Js,k(X) ≫s,k X s
+ X2s−k(k+1)/2,

for X ≥ 1, and the central conjecture is that

Js,k(X) ≪s,k,ε X ε(X s
+ X2s−k(k+1)/2)

for any ε > 0. “Classically” this was known for k = 1 and 2, for s ≤ k + 1, and
for s ≥ s0(k) with a value s0(k) ≪ k2 log k. However Wooley [2012] showed that
one may take s0(k) = k2

+ k. Moreover, in [Wooley 2016], he showed that the full
conjecture holds for k = 3.
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The purpose of this paper is to present a much simplified version of Wooley’s
methods, sufficient to handle the case k = 3.

Theorem. We have
J6,3(X) ≪ε X6+ε

for any fixed ε > 0.

It is trivial from (2) below that if s and t are any positive integers then we will
have Js+t,k(X) ≤ X2t Js,k(X) and Js,k(X) ≤ Js+t,k(X)s/(s+t). Thus for k = 3 we
can deduce the general case of the conjecture immediately from the theorem.

It should be stressed that, while the argument of the present paper appears cleaner
and shorter than that presented by Wooley [2016], the underlying principles are the
same.

2. Outline of the proof

Investigations into the mean value theorem depend crucially on an alternative
interpretation of Js,k(X) in terms of exponential sums. If α ∈ Rk we write

fk(α; X) = f (α) =

∑
x≤X

e(α1x + · · · +αk xk),

whence

Js,k(X) =

∫
(0,1]k

| f (α)|2s dα. (2)

Our version of the efficient congruencing method will also use the exponential sums

fk(α; X, ξ, a) = fa(α; ξ) =

∑
x≤X

x≡ξ (mod pa)

e(α1x + · · · +αk xk),

where p is prime and a is a positive integer exponent. The prime p ≥ 5 will be
chosen to be a small power of X . Since it will not change during the argument we
will not include it explicitly among the parameters for fa(α; ξ). Taking s and k as
fixed we will write

Im(X; ξ, η; a, b) =

∫
(0,1]k

| fa(α; ξ)|2m
| fb(α; η)|2(s−m) dα, (0 ≤ m ≤ s − 1),

which counts solutions of (1) in which

xi ≡ ξ (mod pa) (1 ≤ i ≤ m and s + 1 ≤ i ≤ s + m),

and
xi ≡ η (mod pb) (m + 1 ≤ i ≤ s and s + m + 1 ≤ i ≤ 2s).
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We will use this notation even when pa or pb is larger than X . We observe that
when m = 0 we have

I0(X; ξ, η; a, b) =

∫
(0,1]k

| fb(α; η)|2s dα,

which is independent of ξ and a.
We will also work with Im(X; a, b) defined by

I0(X; a, b) = max
η (mod pb)

I0(X; ξ, η; a, b)

and
Im(X; a, b) = max

ξ ̸≡η (mod p)
Im(X; ξ, η; a, b) (1 ≤ m ≤ s − 1).

The condition ξ ̸≡η (mod p) is the last remaining vestige of Wooley’s “conditioning”
step. Wooley [2016, page 538] uses functions I m

a,b(X) and K m
a,b(X), both of which

correspond to our function Im(X; a, b). We are able to work with a single (simpler)
function because we have a simpler version of the conditioning process.

Although many of our results can be proved for general s and k we shall now
specialize to the case s =6, k =3, and write J (X)= J6,3(X) for brevity. We proceed
to present a series of estimates relating J (X) and Im(X; a, b) for m = 0, 1, 2, with
various values of a and b. Iterating these will ultimately establish our theorem. The
lemmas below will be proved in the next section. For the time being we content
ourselves with stating the results, and showing how they lead to the theorem.

When m = 0 we can relate I0(X; a, b) to J (X) as follows.

Lemma 1. If pb
≤ X we have

I0(X; a, b) ≤ J (2X/pb).

Our next result shows how to bound J (X) in terms of I2(X; 1, 1).

Lemma 2. If p ≤ X we have

J (X) ≪ pJ (2X/p) + p12 I2(X; 1, 1).

One way to compare values of I1(X; a, b) and I2(X; a, b) is by applying Hölder’s
inequality. We give two such estimates.

Lemma 3. We have

I2(X; a, b) ≤ I2(X; b, a)1/3 I1(X; a, b)2/3

irrespective of the size of p.

Lemma 4. If pb
≤ X we have

I1(X; a, b) ≤ I2(X; b, a)1/4 J (2X/pb)3/4.
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Next we show how successively larger values of a and b arise.

Lemma 5. For any p we have

I1(X; a, b) ≤ p3b−a I1(X; 3b, b)

if 1 ≤ a ≤ 3b.

Lemma 6. For any prime p we have

I2(X; a, b) ≤ 2bp4(b−a) I2(X; 2b − a, b)

whenever 1 ≤ a ≤ b.

We are now ready to assemble all these results to prove the following recursive
estimate for I2.

Lemma 7. If 1 ≤ a ≤ b and pb
≤ X we have

I2(X; a, b) ≤ 2bp−10a/3+14b/3 I2(X; b, 2b − a)1/3 I2(X; b, 3b)1/6 J (2X/pb)1/2.

The reader may note that the above inequality is a neat form of the bound in
Lemma 5.2 of [Wooley 2016].

For the proof we successively apply Lemmas 6, 3, 5 and 4, giving

I2(X; a, b)

≤ 2bp4(b−a) I2(X; 2b − a, b)

≤ 2bp4(b−a) I2(X; b, 2b − a)1/3 I1(X; 2b − a, b)2/3

≤ 2bp4(b−a) I2(X; b, 2b − a)1/3
{p3b−(2b−a) I1(X; 3b, b)}2/3

≤ 2bp4(b−a)+2(a+b)/3 I2(X; b, 2b − a)1/3
{I2(X; b, 3b)1/4 J (2X/pb)3/4

}
2/3

= 2bp−10a/3+14b/3 I2(X; b, 2b − a)1/3 I2(X; b, 3b)1/6 J (2X/pb)1/2.

Here we should observe that, in applying Lemma 5 to I1(X; 2b−a, b), the necessary
condition “a ≤ 3b” is satisfied, since 2b − a ≤ 3b.

Everything is now in place to complete the proof of the theorem. We note the
trivial upper bound J (X) ≪ X12 and the trivial lower bound J (X) ≥ [X ]

6
≫ X6

(coming from the obvious diagonal solutions xi = x6+i for i ≤ 6). Thus we may
define a real number 1 ∈ [0, 6] by setting

1 = inf{δ ∈ R : J (X) ≪ X6+δ for X ≥ 1}. (3)

It follows that we will have J (X) ≪ε X6+1+ε for any ε > 0. Our goal of course is
to show that 1 = 0.

We observe that
I2(X; a, b) ≤ J (X) ≪ε X6+1+ε
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for 1 ≤ a ≤ b, and hence that

I2(X; a, b) ≪ε X6+1+ε p−2a−4b p3(3b−a), (4)

since 3(3b − a) ≥ 2a + 4b for a ≤ b. We now proceed to use Lemma 7 to prove,
by induction on n, that

I2(X; a, b) ≪ε,n,a,b X6+1+ε p−2a−4b p(3−n1/6)(3b−a) (5)

for any integer n ≥ 0, provided that

1 ≤ a ≤ b (6)
and

p3nb
≤ X. (7)

The base case n = 0 is exactly the bound (4). The reader may be puzzled by the
choice of the exponent for p in (5). We shall discuss this further in the final section.

Given (5) we have

I2(X; b, 2b − a) ≪ε,n,a,b X6+1+ε p−2b−4(2b−a) p(3−n1/6)(3(2b−a)−b)

= X6+1+ε p4a−10b p(3−n1/6)(5b−3a).

Note that the conditions corresponding to (6) and (7) are satisfied if

p3n+1b
≤ X.

since we will have 1 ≤ b ≤ 2b − a whenever 1 ≤ a ≤ b, and

p3n(2b−a)
≤ p3n+1b

≤ X.

In a similar way, (5) implies that

I2(X; b, 3b) ≪ε,n,b X6+1+ε p−2b−12b p(3−n1/6)(9b−b)

= X6+1+ε p−14b p(3−n1/6)(8b)

the conditions corresponding to (6) and (7) holding whenever b ≥ 1.
Finally we have

J (2X/pb) ≪ε X6+1+ε p−6b−1b

provided that pb
≤ X . Feeding these estimates into Lemma 7 we deduce that

I2(X; a, b) ≪ε,n,a,b p−10a/3+14b/3
{X6+1+ε p4a−10b p(3−n1/6)(5b−3a)

}
1/3

× {X6+1+ε p−14b p(3−n1/6)(8b)
}

1/6
{X6+1+ε p−6b−1b

}
1/2

= X6+1+ε p−2a−4b p(3−n1/6)(3b−a) p−1b/2

≤ X6+1+ε p−2a−4b p(3−(n+1)1/6)(3b−a),

since b/2 ≥ (3b − a)/6. This provides the required induction step.
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Having established (5) we apply it with a = b = 1, and p chosen to lie in the
range

1
2 X1/3n

≤ p ≤ X1/3n
.

There will always be a suitable p ≥ 5 if

X ≥ 103n
.

We then deduce from Lemma 2 that

J (X) ≪ pJ (2X/p) + p12 I2(X; 1, 1) ≪ε,n p(X/p)6+1+ε
+ X6+1+ε p12−n1/3.

If 1 were strictly positive we could choose n sufficiently large that n1 ≥ 39, and
would then conclude that

J (X) ≪ε,n X6+1+ε p−1
≪ε,n X6+1−3−n

+ε,

contradicting the definition (3). We must therefore have 1 = 0, as required for the
theorem.

The reader will probably feel that the final stages of the argument, from (5)
onward, are lacking in motivation. The final section of the paper will offer an
explanation for the route chosen.

3. Proof of the lemmas

We begin by examining Lemma 1. We observe that there is an η ∈ (0, pb
] such that

I0(X; a, b) counts solutions to (1) in which each xi takes the shape η + pb yi , with
integer variables yi . We will have 0 ≤ yi ≤ X/pb. Thus if we set zi = yi + 1 we
find that 1 ≤ zi ≤ 1 + X/pb

≤ 2X/pb, in view of our condition pb
≤ X . Moreover

we know that if the xi satisfy (1) then so too will the yi and the zi . It follows that
I0(X; a, b) ≤ Js,k(2X/pb) as claimed.

To prove Lemma 2 we split solutions of (1) into congruence classes for which
xi ≡ ξi (mod p) for 1 ≤ i ≤ 12. The number of solutions in which

x1 ≡ · · · ≡ x12 (mod p)

is at most ∑
η (mod p)

I0(X; 0, η; 1, 1) ≤ pI0(X; 1, 1) ≤ pJ (2X/p),

by Lemma 1. For the remaining solutions to (1) there is always a pair of variables
that are incongruent modulo p, and it follows that there exist ξ ̸≡ η (mod p) such
that

J (X) ≤ pJ (2X/p) +

(12
2

)
p(p − 1)

∫
(0,1]3

| f1(α; ξ) f1(α; η) f (α)10
| dα.
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By Hölder’s inequality we have∫
(0,1]3

| f1(α; ξ) f1(α; η) f (α)10
| dα

≤

{∫
(0,1]3

| f1(α; ξ)|4| f1(α; η)|8 dα

}1/12{∫
(0,1]3

| f1(α; ξ)|8| f1(α; η)|4 dα

}1/12

×

{∫
(0,1]3

| f (α)|12 dα

}5/6

,

whence

J (X) ≪ pJ (2X/p) + p2 I2(X; 1, 1)1/12 I2(X; 1, 1)1/12 J (X)5/6.

We deduce that
J (X) ≪ pJ (2X/p) + p12 I2(X; 1, 1),

as required for the lemma.
Lemma 3 is a trivial application of Hölder’s inequality. We have

I2(X; ξ, η; a, b)

=

∫
(0,1]3

| fa(α; ξ)|4| fb(α; η)|8 dα

≤

{∫
(0,1]3

| fa(α; ξ)|8| fb(α; η)|4 dα

}1/3{∫
(0,1]3

| fa(α; ξ)|2| fb(α; η)|10 dα

}2/3

≤ I2(X; b, a)1/3 I1(X; a, b)2/3,

and the lemma follows.
For Lemma 4 we note that

I1(X; ξ, η; a, b)

=

∫
(0,1]3

| fa(α; ξ)|2| fb(α; η)|10 dα

≤

{∫
(0,1]3

| fb(α; ξ)|4| fa(α; η)|8 dα

}1/4{∫
(0,1]3

| fb(α; η)|12 dα

}3/4

≤ I2(X; b, a)1/4 I0(X; b, b)3/4

≤ I2(X; b, a)1/4 J (2X/pb)3/4,

by Hölder’s inequality and Lemma 1.
Turning next to Lemma 5 we note that I1(X; ξ, η; a, b) counts solutions of (1)

in which xi = ξ + pa yi for i = 1 and i = 7, and xi = η + pb yi for the remaining
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indices i . If we set ν = ξ − η we deduce that the variables

zi =

{
ν + pa yi i = 1 or 7,

pb yi otherwise,

also satisfy (1). In particular, the equation of degree j = 3 yields

(ν + paz1)
3
≡ (ν + paz7)

3 (mod p3b).

Now, crucially, we use the fact that ξ ̸≡ η (mod p), whence p ∤ν. It follows that we
must have ν + paz1 ≡ ν + paz7 (mod p3b), and hence z1 ≡ z7 (mod p3b−a). We
therefore have x1 ≡ x7 ≡ ξ ′ (mod p3b) for one of p3b−a possible values of ξ ′, so
that

I1(X; ξ, η; a, b) ≤ p3b−a I1(X; 3b, b),

which suffices for the lemma.
Finally we must handle Lemma 6. We note that I2(X; ξ, η; a, b) counts solutions

of (1) in which xi = ξ+pa yi for i =1, 2, 7 and 8, and xi =η+pb yi for the remaining
indices i . As in the proof of Lemma 5 we set ν = ξ −η and zi = xi −η, so that the
zi also satisfy (1). We will have pb

| zi for 3 ≤ i ≤ 6 and 9 ≤ i ≤ 12, whence

(ν + pa y1)
j
+ (ν + pa y2)

j
≡ (ν + pa y7)

j
+ (ν + pa y8)

j (mod pbj ) (1 ≤ j ≤ 3)

with ν = ξ − η ̸≡ 0 (mod p). We shall use only the congruences for j = 2 and 3.
On expanding these we find that

2νS1 + pa S2 ≡ 0 (mod p2b−a) (8)
and

3ν2S1 + 3νpa S2 + p2a S3 ≡ 0 (mod p3b−a),

where
S j = y j

1 + y j
2 − y j

7 − y j
8 ( j = 1, 2, 3).

Eliminating S1 from these yields

3νpa S2 + 2p2a S3 ≡ 0 (mod p2b−a),

whence
3νS2 + 2pa S3 ≡ 0 (mod p2b−2a).

Moreover (8) trivially implies that

2νS1 + pa S2 ≡ 0 (mod p2b−2a).

It appears that we have wasted some information here, but the above congruences
are sufficient.

We now call on the following result, which we shall prove at the end of this
section.
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Lemma 8. With the notations above for S j , let N (p; a, c) denote the number of
solutions (y1, y2, y7, y8) modulo pc of the congruences

2νS1 + pa S2 ≡ 3νS2 + 2pa S3 ≡ 0 (mod pc).

Then if a ≥ 1 and c ≥ 0 we will have N (p; a, c) ≤ (c + 1)p2c.

If yi ≡ yi0 (mod p2(b−a)) for i = 1, 2, 7, 8 then xi ≡ ξi (mod p2b−a), with
ξi = ξ + pa yi0. The number of solutions to (1) counted by I2(X; ξ, η; a, b) for
which yi ≡ yi0 (mod p2(b−a)) is then given by∫

(0,1]3
f2b−a(α; ξ1) f2b−a(α; ξ2) f2b−a(α; ξ7) f2b−a(α; ξ8)| fb(α; η)|8 dα

≤

∫
(0,1]3

∣∣∣∣ ∏
i=1,2,6,7

f2b−a(α; ξi )

∣∣∣∣| fb(α; η)|8 dα

≤

∏
i=1,2,6,7

{∫
(0,1]3

| f2b−a(α; ξi )|
4
| fb(α; η)|8 dα

}1/4

≤

∏
i=1,2,6,7

I2(X; ξi , η; 2b − a, b)1/4

≤ I2(X; 2b − a, b),

by Holder’s inequality. It then follows from Lemma 8 that

I2(X; a, b) ≤ N
(

p; a, 2(b − a)
)
I2(X; 2b − a, b) ≤ 2bp4(b−a) I2(X; 2b − a, b)

as required.
It remains to prove Lemma 8, for which we use induction on c. The base case

c = 0 is trivial. When c = 1 we have p | S1 and p | S2 and the number of solutions
is 2p2

− p, which is also satisfactory. In general we shall say that a solution
(y1, y2, y7, y8) is singular if

y1 ≡ y2 ≡ y7 ≡ y8 (mod p),

and nonsingular otherwise. For a nonsingular solution the vectors

∇(2νS1 + pa S2) and ∇(3νS2 + 2pa S3)

are not proportional modulo p, since a ≥ 1 and p ∤6ν. It follows that a nonsingular
solution (y1, y2, y7, y8) of the congruences modulo pc will lift to exactly p2 solu-
tions modulo pc+1. Thus if we write N0(p; a, c) for the number of nonsingular
solutions modulo pc we will have N0(p; a, c) ≤ 2p2c, by induction.

For a singular solution we have

y1 ≡ y2 ≡ y7 ≡ y8 ≡ β (mod p),
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say. If we write yi = β + pui and

S′

j = u j
1 + u j

2 − u j
7 − u j

8

we find that
2νS1 + pa S2 = 2(ν + βpa)pS′

1 + pa+2S′

2

and

3νS2 + 2pa S3 = 6β(ν + βpa)pS′

1 + 3(ν + 2βpa)p2S′

2 + 2pa+3S′

3.

Hence

2ν ′ pS′

1 + pa+2S′

2 ≡ 6βν ′ pS′

1 + 3(ν ′
+ βpa)p2S′

2 + 2pa+3S′

3 ≡ 0 (mod pc)

with ν ′
= ν + βpa

̸≡ 0 (mod p). Eliminating S′

1 from the second expression yields

3ν ′ p2S′

2 + 2p3+a S′

3 ≡ 0 (mod pc)

and we deduce that

2ν ′S′

1 + pa+1S′

2 ≡ 0 (mod pc−1) (9)
and

3ν ′S′

2 + 2pa+1S′

3 ≡ 0 (mod pc−2). (10)

Since we are counting values of yi modulo pc we have to count values of ui modulo
pc−1. However any solution of

2ν ′S′

1 + pa+1S′

2 ≡ 3ν ′S′

2 + 2pa+1S′

3 ≡ 0 (mod pc−2)

modulo pc−2 lifts to exactly p3 solutions of the two congruences (9) and (10)
modulo pc−1, since

∇(2ν ′S′

1 + pa+1S′

2) ≡ 2ν ′(1, 1, −1, −1) ̸≡ 0 (mod p).

It follows that (9) and (10) have p3 N (p; a + 1, c − 2) solutions for each of the p
possible choices of β, provided of course that c ≥ 2.

We are therefore able to conclude that

N (p; a, c) ≤ N0(p; a, c) + p4 N (p; a + 1, c − 2) ≤ 2p2c
+ p4 N (p; a + 1, c − 2)

for c ≥ 2, and the lemma then follows by induction on c.
We conclude this section by remarking that in this final inductive argument, we

have estimates of the same order of magnitude for both the number of singular
solutions and the number of nonsingular solutions. When one tries to generalize the
argument to systems of more congruences the singular solutions can dominate the
count in an unwelcome way. It is for this reason that Wooley’s approach requires a
“conditioning” step in general, in order to remove singular solutions at the outset.
Fortunately we just manage to avoid this in our situation.
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4. Remarks on the conclusion to the proof

This final section is intended to shed some light on the argument that leads from
Lemma 7 to the theorem. In particular the reader may be curious as to how one is
led to formulate the induction hypothesis (5). The issue is that repeated applications
of Lemma 7, starting from I2(X; 1, 1) for example, produce values of I2(X; a, b)

with a large number of different pairs a, b; and one wants an induction hypothesis
that will apply successfully to all of them.

Suppose one assumes that J (X) ≪ε X θ+ε for any ε > 0 and that for any positive
integers a ≤ b one has

I2(X; a, b) ≪ε X θ+ε pαa+βb (11)

for some constants α and β, for a suitable range p ≤ X δ(α,β), say.
Then Lemma 7 yields

I2(X; a, b) ≪b X θ pα′a+β ′b

for a ≤ b, with new constants

α′
= −

10
3 −

1
3β, β ′

=
14
3 +

1
2α +

7
6β −

1
2θ.

We can express this by writing(
α′

β ′

)
= c + M

(
α

β

)
,

with

c =

(
−10/3

14/3−θ/2

)
, M =

(
0 −1/3

1/2 7/6

)
.

Starting with α = β = 0, for example, we obtain inductively a succession of
bounds of the shape (11), with(

α

β

)
=

(
αn
βn

)
= c + Mc + · · · + Mn c.

The matrix M has eigenvalues 1 and 1
6 , and can be diagonalized as P D P−1 with

P =

(
−1 −2
3 1

)
, D =

(
1 0
0 1

6

)
.

It then follows that(
αn
βn

)
= n P

(
1 0
0 0

)
P−1c + O(1) =

(6 − θ)n
5

(
−1
3

)
+ O(1)

as n tends to infinity. For any starting pair a, b we will have 3b −a ≥ 2b ≥ 2. Thus
if θ > 6 we will eventually have αna + βnb < −1, say, for suitably large n.
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We therefore obtain
I2(X; a, b) ≪ε X θ+ε p−1

for p ≤ X δ, for some δ = δn depending on θ . This leads to a contradiction, as in
Section 2.

We therefore see that the crucial feature of Lemma 7 is that it leads to a matrix
M having its largest eigenvalue equal to 1. The corresponding eigenvector is
(α, β) = (−1, 3), and the argument of Section 2 has therefore been expressed in
terms of the linear combination 3b − a.
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