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A note on Tate’s conjectures for abelian varieties

Chao Li and Wei Zhang

In this mostly expository note, we explain a proof of Tate’s two conjectures for
algebraic cycles of arbitrary codimension on certain products of elliptic curves
and abelian surfaces over number fields.

1. Statement

Let X be a smooth projective variety over a finitely generated field F. Let Chr (X) be
the Chow group of codimension r algebraic cycles of X defined over F modulo ratio-
nal equivalence. Let F be a separable algebraic closure of F and 0F := Gal(F/F).
Tate [1965, Conjecture 1] made the following far-reaching conjecture (often known
as the Tate conjecture), relating algebraic cycles and 0F -invariants of the ℓ-adic
cohomology of X .

Conjecture 1.1 (Tate I). For any 1 ≤ r ≤ dim X and for any prime ℓ ̸= char(F),
the ℓ-adic cycle class map

Chr (X)⊗ Qℓ → H2r (X F ,Qℓ(r))0F

is surjective.

Let Chr
hom(X) be the quotient group of Chr (X) modulo ℓ-adic homological

equivalence. It is further conjectured (and known when char(F)= 0) that Chr
hom(X)

is independent of ℓ, and the ℓ-adic cycle class map is injective on Chr
hom(X)⊗ Qℓ;

see [Tate 1965, page 97]. In particular, when char(F) = 0, Tate I implies an
isomorphism Chr

hom(X)⊗ Qℓ ≃ H2r (X F ,Qℓ(r))0F and thus

rank Chr
hom(X)= dim H2r (X F ,Qℓ(r))0F (1.1.1)

for any prime ℓ.
Tate [1965, Conjecture 2] further made a conjecture relating algebraic cycles

to poles of zeta functions (often known as the strong Tate conjecture). When
F is a number field, we denote by L(H2r (X)(r), s) the (incomplete) L-function
associated to the compatible system {H2r (X F ,Qℓ(r))} of 0F -representations, which
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converges absolutely for ℜ(s) > 1. Then Conjecture 2 of [Tate 1965] specializes to
the following.

Conjecture 1.2 (Tate II). Assume that F is a number field. Then for any 1 ≤ r ≤

dim X ,

rank Chr
hom(X)= − ords=1 L(H2r (X)(r), s).

Tate I for divisors (r = 1) is known for various X , including abelian varieties
over any finitely generated fields [Faltings 1983; Zarhin 1975; Tate 1966]. Much
less is known when r > 1. We refer to the surveys [Totaro 2017; Milne 2007; Tate
1994; Ramakrishnan 1989] for a nice summary of known results. The goal of this
short note is to present some examples of abelian varieties X over number fields
for which Tate’s conjectures hold for algebraic cycles in arbitrary codimension r .

Theorem 1.3 (Tate I). Assume that F is finitely generated with char(F)= 0. Then
Tate I holds for any abelian variety X over F with simple factors all having dimen-
sion ≤ 2.

Theorem 1.4 (Tate II). Assume that F is a number field. Let E1, E2, E3, E4 be
elliptic curves over F. Let A be an abelian surface over F. Then Tate II holds for
the following cases:

(i) F is totally real or imaginary CM and X = En1
1 × En2

2 for any n1 ≥ 1, n2 ≥ 0.

(ii) F is totally real or imaginary CM and X = En1
1 × En2

2 × E3 for any n1 ≥ 1
and 1 ≤ n2 ≤ 2.

(iii) F is totally real or imaginary CM and X = En1
1 × En2

2 × E3 × E4 for any
1 ≤ n1, n2 ≤ 2.

(iv) F is totally real and X = A, X = A2.

Remark 1.5. It is worth mentioning that the special case when X = En is a power
of an elliptic curve was considered by Tate himself [Tate 1965, page 106], and
played an important role in his formulation of the Sato–Tate conjecture.

Theorem 1.3 (Tate I) can be deduced from recent theorems on the Hodge con-
jecture and the Mumford–Tate conjecture [Ramón Marí 2008; Lombardo 2016],
as mentioned, e.g., in [Moonen 2017, page 284]. Theorem 1.4 (Tate II) can be
deduced from more recent potential automorphy theorems [Allen et al. 2018; Boxer
et al. 2021] and known cases of Langlands functionality, and should also be known
to the experts. All these ingredients are available in more generality, but to illustrate
the ideas we do not aim for maximal generality in the statement of the theorems.
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2. Proof of Theorem 1.3 (Tate I)

Choose an embedding F ↪→ C and view F as a subfield of C. Since all simple
factors of X have dimension ≤ 2, the Hodge conjecture for XC holds (in any
codimension r ) by [Ramón Marí 2008, Theorem 3.15]. In fact in this case all Hodge
classes on XC are generated by products of divisor classes. Also by [Lombardo
2016, Corollary 1.2], the Mumford–Tate conjecture for X holds.

Now the desired result follows due to the well-known general fact (see, e.g.,
[Farfán 2016, Section 6]) that the Mumford–Tate conjecture for the abelian variety
X over F together with the Hodge conjecture for XC (in codimension r) implies
Tate I (Conjecture 1.1) for X (in codimension r ). In particular all Tate classes on X
are also generated by products of divisor classes.

Remark 2.1. We refer to [Ramón Marí 2008; Lombardo 2016] for discussions
about related previous works on the Hodge and Mumford–Tate conjectures. When
X is a product of elliptic curves, the Hodge conjecture was proved in [Murty 1990]
(see also [Gordon 1999, Appendix B, Section 3]) and the same method should also
apply to prove Tate I.

3. Potential automorphy

Let F be a number field. Let V = {Vℓ} and W = {Wℓ} be compatible systems
of semisimple ℓ-adic 0F -representations (e.g., in the sense of strictly compatible
systems of ℓ-adic representations of 0F defined over Q of [Boxer et al. 2021,
Section 2.8]). Recall that V is potentially automorphic if there exists a finite Galois
extension L/F such that the restriction V |0L is automorphic (e.g., in the sense
of [Boxer et al. 2021, Definition 9.1.1]). We introduce the following variants of
potential automorphy.

Definition 3.1. Let S be a nonempty set of rational primes. Let L/F be a finite
Galois extension.

We say that V is S-strongly automorphic over L , if for any subextension L ′/F
of L/F with L/L ′ solvable, the following conditions are satisfied:

(i) V |0L′ is automorphic.

(ii) Let π be an isobaric automorphic representation on GLn(AL ′) associated to
V |0L′ (n = dim V and AL ′ is the ring of adèles of L ′). Write π = ⊞k

i=1πi as
an isobaric direct sum of cuspidal automorphic representations on GLni (AL ′)(
n =

∑k
i=1 ni

)
. Write V |0L′ = ⊕

k
i=1Vi as the corresponding direct sum de-

composition into compatible systems of 0L ′-representations. Then the ℓ-adic
0L ′-representation Vi,ℓ (i = 1, . . . , k) is irreducible for any ℓ ∈ S. (Notice that
the irreducibility of Vi,ℓ is conjectured but not known in general).
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We say that V is S-strongly potentially automorphic, if V is S-strongly auto-
morphic over L for some finite Galois extension L/F. We say that V is strongly
potentially automorphic, if V is S-strongly potentially automorphic for some Dirich-
let density one set S.

We say that V and W are jointly S-strongly potentially automorphic, if V and
W are both S-strongly automorphic over L for some finite Galois extension L/F.
We say that V and W are jointly strongly potentially automorphic, if V and W are
jointly S-strongly potentially automorphic for some Dirichlet density one set S.

Lemma 3.2. Let V = {Vℓ} and W = {Wℓ} be compatible systems of semisimple
ℓ-adic 0F -representations. Let S be a nonempty set of rational primes:

(i) Assume that V is S-strongly potentially automorphic. Then L(V, s) has mero-
morphic continuation to all of C, and for any ℓ ∈ S,

dim V 0F
ℓ = − ords=1 L(V, s).

(ii) Assume that V and W are jointly S-strongly potentially automorphic. Then
L(V ⊗ W, s) has meromorphic continuation to all of C, and for any ℓ ∈ S,

dim(Vℓ ⊗ Wℓ)
0F = − ords=1 L(V ⊗ W, s).

(iii) Assume that V has a finite direct sum decomposition V ≃ ⊕
k
i=1Vi ⊗ Wi into

tensor products of compatible systems of 0F -representations. Assume that Vi

and Wi are jointly S-strongly potentially automorphic for each i . Then L(V, s)
has meromorphic continuation to all of C, and for any ℓ ∈ S,

dim V 0F
ℓ = − ords=1 L(V, s).

Remark 3.3. Lemma 3.2 should be known to the experts and the proof idea, using
Brauer’s induction theorem and known properties of automorphic L-functions, is
an old one; see, e.g., [Taylor 2002; Harris et al. 2010; Harris 2009]. Notice that (i)
also follows as a special case of (iii). We keep (i) to illustrate the ideas.

Proof. (i) Let L/F be a finite Galois extension such that V is S-strongly automorphic
over L . By Brauer’s induction theorem, we may find a virtual decomposition

10F =

k∑
j=1

c j Ind0F
0L j

ψi ,

where c j ∈ Z, F ⊆ L j ⊆ L with L/L j solvable, and ψ j is a 1-dimensional repre-
sentation of Gal(L/L j ) ( j = 1, . . . , k). Since V is S-strongly automorphic over L ,
we know that for each j there exists an isobaric direct sum of cuspidal automorphic
representations πL j = ⊞mi

i=1πL j ,i of GLn(AL j ) and a direct sum decomposition
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V |0L j
= ⊕

m j
i=1VL j ,i into 0L j -representations such that

L(V |0L j
, s)= L(s, πL j ) L(VL j ,i , s)= L(s, πL j ,i ),

and each ℓ-adic representation VL j ,i,ℓ is irreducible for any ℓ ∈ S. Here L(s, πL j )

is the (incomplete) standard L-function as in [Godement and Jacquet 1972] and
has meromorphic continuation to all of C. Hence

L(V ⊗Ind0F
0L j

ψ j , s)= L(V |0L j
⊗ψ j , s)=

m j∏
i=1

L(VL j ,i⊗ψ j , s)=
m j∏
i=1

L(s, πL j ,i⊗χ j ),

where χ j is the automorphic character on GL1(AL j ) associated to ψ j . It follows
that

L(V, s)= L(V ⊗ 10F , s)=

k∏
j=1

m j∏
i=1

L(s, πL j ,i ⊗χ j )
c j

and thus L(V, s) has meromorphic continuation to all of C.
Since πL j ,i ⊗ χ j is cuspidal, by [Jacquet and Shalika 1976] we know that

L(s, πL j ,i ⊗ χ j ) has no zero or pole at s = 1, unless πL j ,i ⊗ χ j is the trivial
representation in which case it has a simple pole at s = 1. Hence − ords=1 L(V, s)
equals the number of trivial representations among πL j ,i ⊗χ j weighted by c j , and
so we obtain

− ords=1 L(V, s)=

k∑
j=1

m j∑
i=1

c j dim Hom0L j
(10L j

, VL j ,i,ℓ ⊗ψ j,ℓ),

for any ℓ ∈ S by the irreducibility of VL j ,i,ℓ. This evaluates to

k∑
j=1

c j dim Hom0L j
(10L j

, Vℓ|0L j
⊗ψ j,ℓ),

which by the Frobenius reciprocity equals

dim Hom0F (10F , Vℓ)= dim V 0F
ℓ .

(ii) Let L/F be a finite Galois extension such that both V and W are S-strongly
automorphic over L . By the same notation and argument in the proof of (i), we know
that for each j there exists an isobaric direct sum of cuspidal representations πL j =

⊞
m j
i=1πL j ,i (resp. 5L j =⊞

m′

j
i ′=15L j ,i ′), together with a corresponding decomposition

into 0L j -representations V |0L j
≃ ⊕

m j
i=1VL j ,i

(
resp. W |0L j

≃
⊕m′

j
i ′=1 WL j ,i ′

)
such

that each ℓ-adic representation VL j ,i,ℓ (resp. WL j ,i ′,ℓ) is irreducible for any ℓ ∈ S.
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It follows that

L(V ⊗ W, s)=
k∏

j=1

L(V ⊗ W ⊗10F , s)=
k∏

j=1

m j∏
i=1

m′

j∏
i ′=1

L(s, πL j ,i × (5L j ,i ′ ⊗χ j ))
c j ,

where L(s, πL j ,i × (5L j ,i ′ ⊗χ j )) is the (incomplete) Rankin–Selberg L-function
as in [Jacquet et al. 1983], and thus L(V ⊗ W, s) has meromorphic continuation to
all of C.

Since πL j ,i and5L j ,i ⊗χ j are cuspidal, we know that L(s, πL j ,i ×(5L j ,i ⊗χ j ))

has no zero at s = 1 by [Shahidi 1980]; see also [Moreno 1985, Lemma 3.1; Sarnak
2004, page 721]. Also by [Jacquet and Shalika 1981, (4.6) and (4.11)] (see also
[Mœglin and Waldspurger 1989, Appendice; Cogdell and Piatetski-Shapiro 2004,
Theorem 2.4]), it has no pole at s = 1, unless πL j ,i ≃ (5L j ,i ′ ⊗χ j )

∨ in which case it
has a simple pole at s = 1. The latter happens if and only if VL j ,i ≃ (WL j ,i ′ ⊗ψ j )

∨.
Hence

− ords=1 L(V, s)=

k∑
j=1

m j∑
i=1

m′

j∑
i ′=1

c j dim Hom0L j
(10L j

, VL j ,i,ℓ ⊗ WL j ,i ′,ℓ ⊗ψ j,ℓ)

for any ℓ ∈ S by the irreducibility of VL j ,i,ℓ and WL j ,i ′,ℓ. This evaluates to

k∑
j=1

c j dim Hom0L j
(10L j

, (Vℓ ⊗ Wℓ)|0L j
⊗ψ j,ℓ),

which by the Frobenius reciprocity equals

dim Hom0F (10F , Vℓ ⊗ Wℓ)= dim(Vℓ ⊗ Wℓ)
0F .

(iii) It follows directly from (ii) and the factorization L(V, s)=
∏k

i=1 L(Vi ⊗Wi , s).
□

Lemma 3.4. Assume that F is a number field. Let E1, E2, E3, E4 be elliptic curves
over F. Let A be an abelian surface over F :

(i) If F is totally real or imaginary CM, then {Symk1 H1(E1,F ,Qℓ)} and
{Symk2 H1(E2,F ,Qℓ)} are jointly strongly potentially automorphic for any
k1, k2 ≥ 0.

(ii) If F is totally real or imaginary CM, then {Symk1 H1(E1,F ,Qℓ)} and
{Symk2 H1(E2,F ,Qℓ)⊗ Symk3 H1(E3,F ,Qℓ)} are jointly strongly potentially
automorphic for any k1 ≥ 0, 0 ≤ k2 ≤ 2, and 0 ≤ k3 ≤ 1.

(iii) If F is totally real or imaginary CM, then

{Symk1 H1(E1,F ,Qℓ)⊗ Symk3 H1(E3,F ,Qℓ)}
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and
{Symk2 H1(E2,F ,Qℓ)⊗ Symk4 H1(E4,F ,Qℓ)}

are jointly strongly potentially automorphic for any 0 ≤ k1, k2 ≤ 2 and
0 ≤ k3, k4 ≤ 1.

(iv) If F is totally real, then {Hk1(AF ,Qℓ)} and {Hk2(AF ,Qℓ)} are jointly strongly
potentially automorphic for any 0 ≤ k1, k2 ≤ 4.

Proof. (i) If one of E1 or E2 has CM, say E1 has CM, then {Symk1 H1(E1,F ,Qℓ)}

is automorphic, as an isobaric direct sum of automorphic characters on GL1(AF ),
and possibly automorphic inductions of automorphic characters on GL1(AK ) for a
quadratic extension K/F. In particular, we know that {Symk1 H1(E1,F ,Qℓ)}|0L is
S-strongly automorphic over any finite Galois extension L/F and any nonempty
set S of primes. The result follows if E2 also has CM. If E2 has no CM, then
{H1(E2,F ,Qℓ)} is strongly irreducible in the sense defined before [Allen et al. 2018,
Lemma 7.1.1] (i.e., for any finite extension F ′/F , the representation H1(E2,F ,Qℓ)|0F ′

is irreducible for ℓ in a Dirichlet density one set of primes), and we can apply
[loc. cit., Corollary 7.1.11] to {Symk2 H1(E2,F ,Qℓ)} together with [loc. cit., Propo-
sition 6.5.13] to obtain the desired joint S-strong potential automorphy for a Dirichlet
density one set S of primes. If neither of E1 and E2 has CM, then the desired result
follows from the more general [loc. cit., Theorem 7.1.10] together with [loc. cit.,
Proposition 6.5.13]. (In the case F = Q, we may also directly apply [Newton and
Thorne 2021, Theorem A (non-CM case) and Theorem A.1 (CM case)]).

(ii) By the same argument in (i), there are a finite Galois extension L/F and a
Dirichlet density one set S of primes such that {Symki H1(Ei,F ,Qℓ)} is S-strongly
automorphic over L for any 1 ≤ i ≤ 3. Hence by the functorial products for
GL(2)×GL(2)→GL(4) [Ramakrishnan 2000, Theorem M] and GL(2)×GL(3)→
GL(6) [Kim and Shahidi 2002, Theorem A], we know that {Symk2 H1(E2,F ,Qℓ)⊗

Symk3 H1(E3,F ,Qℓ)} is also S-strongly automorphic over L for any 0 ≤ k2 ≤ 2 and
0 ≤ k3 ≤ 1. The result then follows.

(iii) By the same argument in (ii), there are a finite Galois extension L/F
and a Dirichlet density one set S of primes such that {Symki H1(Ei,F ,Qℓ) ⊗

Symk j H1(E j,F ,Qℓ)} is S-strongly automorphic over L for any 0 ≤ ki ≤ 2 and
0 ≤ k j ≤ 1, which gives the result.

(iv) The result follows from [Boxer et al. 2021, Theorem 9.3.1] and its proof. □

Remark 3.5. For each item of Lemma 3.4, the proof supplies a Dirichlet density
one set S of primes such that the joint S-strong potential automorphy holds. Since
compatible systems in Lemma 3.4 come from elliptic curves and abelian surfaces,
one should also be able to prove directly that the irreducible conditions required
in Definition 3.1(ii) hold for all primes ℓ, and hence the joint S-strong potential
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automorphy holds for the set S of all primes. For the purpose of the proof of
Theorem 1.4 (Tate II) below, any nonempty S suffices.

4. Proof of Theorem 1.4 (Tate II)

Let 1 ≤ r ≤ dim X . Let V = {H2r (X F ,Qℓ(r))}. By Theorem 1.3 (Tate I), we know
from (1.1.1) that rank Chr

hom(X) = dim V 0F
ℓ for any prime ℓ. Thus it remains to

show that dim V 0F
ℓ = − ords=1 L(V, s) for some prime ℓ:

(i) By the Künneth formula and the decomposition of H1(Ei,F ,Qℓ)
⊗ki into sym-

metric powers of H1(Ei,F ,Qℓ) (i = 1, 2), we have an isomorphism of semisimple
0F -representations

H2r (X F ,Qℓ(r))

≃

⊕
0≤ki ≤ni

i=1,2

mk1,k2(Symk1 H1(E1,F ,Qℓ)⊗ Symk2 H1(E2,F ,Qℓ))
1
2(k1 + k2),

where mk1,k2 ≥ 0 are certain multiplicities (nonzero only if k1 + k2 ≤ 2r is even).
The result then follows from Lemma 3.2 (iii) and Lemma 3.4 (i).

(ii) Similarly, if we set n3 = 1 then we have an isomorphism of semisimple
0F -representations

H2r (X F ,Qℓ(r))≃

⊕
0≤ki ≤ni

1≤i≤3

mk1,k2,k3(⊗1≤i≤3 Symki H1(Ei,F ,Qℓ))
1
2(k1 + k2 + k3),

where mk1,k2,k3 ≥ 0 are certain multiplicities (nonzero only if k1 + k2 + k3 ≤ 2r is
even). The result then follows from Lemma 3.2(iii) and Lemma 3.4(ii).

(iii) Similarly, the result follows from Lemma 3.2(iii) and Lemma 3.4(iii).

(iv) For X = A, the result follows from Lemma 3.2(i) and Lemma 3.4(iv). For
X = A2, by the Künneth formula, we have an isomorphism of semisimple 0F -
representations

H2r (X F ,Qℓ(r))≃

⊕
k1+k2=2r
0≤k1,k2≤4

(Hk1(AF ,Qℓ)⊗ Hk2(AF ,Qℓ))(r).

The result then follows from Lemma 3.2(iii) and Lemma 3.4(iv).

Remark 4.1. When X is an abelian surface of the type ResK/F E , where F is
totally real, K/F is a quadratic CM extension and E is an elliptic curve over K ,
Tate II was proved in [Virdol 2015] using a similar argument. We also refer to
[Johansson 2017; Taylor 2020] for more detailed analysis for L-functions of abelian
surfaces.
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