ESSENTIAL
 NUMBER THEORY

A Diophantine problem about Kummer surfaces
William Duke

2022
vol. 1 no. 1

A Diophantine problem about Kummer surfaces

William Duke

Upper and lower bounds are given for the number of rational points of bounded height on a double cover of projective space ramified over a Kummer surface.

1. Introduction

Let $F(x)=F\left(x_{0}, \ldots, x_{n}\right)$ with $n \geq 2$ be an integral form with $\operatorname{deg} F \geq 2$ and set $N_{F}(T)=\#\left\{x \in \mathbb{Z}^{n+1} \mid F(x)=z^{2}\right.$ for some $z \in \mathbb{Z}, \operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1$ and $\left.\|x\| \leq T\right\}$,
where $\|x\|=\max _{j}\left(\left|x_{j}\right|\right)$. The behavior of $N_{F}(T)$ for large T is of basic Diophantine interest. When $\operatorname{deg} F$ is even, $N_{F}(T)$ counts rational points of bounded height on a double cover of $\mathbb{P}_{\mathbb{Q}}^{n}$ ramified over the hypersurface given by $F(x)=0$.

Assume that $\operatorname{deg} F$ is even and that $z^{2}-F(x)$ is irreducible over \mathbb{C}. It follows from Theorem 3 on page 178 of [Serre 1989] that for any $\epsilon>0$

$$
\begin{equation*}
N_{F}(T) \ll T^{n+1 / 2+\epsilon} \tag{1-2}
\end{equation*}
$$

As discussed after Theorem 3 in [Serre 1989], it is reasonable to expect that

$$
\begin{equation*}
N_{F}(T) \ll T^{n+\epsilon} \tag{1-3}
\end{equation*}
$$

Broberg [2003] improved $\frac{5}{2}$ to $\frac{9}{4}$ in (1-2) when $n=2$. For $n \geq 3$, various improvements and generalizations of (1-2) are given in [Munshi 2009; Heath-Brown and Pierce 2012; Bonolis 2021], assuming that $F(x)=0$ is nonsingular. Certain nonhomogeneous F are treated in [Heath-Brown and Pierce 2012].

In this note I will consider the problem of estimating $N_{F}(T)$ from above and below when $n=3$ for a special class of quartic F, namely those for which $F(x)=0$ define certain Kummer surfaces. These surfaces have singularities (nodes).

For our purpose we will define a Kummer surface in terms of an integral sextic polynomial $P(t)$. For fixed $a, b, c, d, e, f, g \in \mathbb{Z}$ with $a \neq 0$ let

$$
P(t)=a t^{6}+b t^{5}+c t^{4}+d t^{3}+e t^{2}+f t+g
$$

[^0]Suppose that the discriminant of P is not zero. Define the symmetric matrices

$$
S_{0}=\left(\begin{array}{cccc}
a & \frac{b}{2} & 0 & 0 \tag{1-4}\\
\frac{b}{2} & c & \frac{d}{2} & 0 \\
0 & \frac{d}{2} & e & \frac{f}{2} \\
0 & 0 & \frac{f}{2} & g
\end{array}\right)
$$

and

$$
S_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1-5}\\
0 & 0 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & -\frac{1}{2} & 0 & 0
\end{array}\right), \quad S_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0
\end{array}\right), \quad S_{3}=\left(\begin{array}{cccc}
0 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

For $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ define the matrix

$$
S_{x}=x_{0} S_{0}+x_{1} S_{1}+x_{2} S_{2}+x_{3} S_{3}
$$

For a row vector v let $S(v)=v S v^{t}$ denote the quadratic form associated to a symmetric matrix S. It is easy to check that for any x we have the identity

$$
x_{0} P(t)=S_{x}\left(t^{3}, t^{2}, t, 1\right)
$$

Define the associated quartic form F by

$$
\begin{equation*}
F(x):=16 \operatorname{det} S_{x} \tag{1-6}
\end{equation*}
$$

Over \mathbb{C} the surface given by $F(x)=0$ is a Kummer surface, a special determinantal quartic surface that is singular with sixteen nodes, including the points $\left(t^{3}, t^{2}, t, 1\right)$ where t is a root of $P(t)=0$. The Jacobian variety of the genus two hyperelliptic curve $y^{2}=P(t)$ is a double cover of the Kummer surface ramified over these nodes. For details on the geometry of Kummer surfaces; see, e.g., [Hudson 1990; Dolgachev 2012]. Some arithmetic aspects of Kummer surfaces are considered in [Cassels and Flynn 1996]. The construction of a Kummer surface using the S_{j} from (1-4) and (1-5) occurs in a slightly different form in [Baker 1907, page 69]; see also [Cassels and Flynn 1996, page 42].

Our main result is the following.
Theorem 1. Suppose that $P(t)=a t^{6}+b t^{5}+c t^{4}+d t^{3}+e t^{2}-2 t$ with integral a, b, c, d, e has nonzero discriminant and $a \neq 0$. Let F be defined in (1-6) and $N_{F}(T)$ in (1-1). Then for any $\epsilon>0$

$$
\begin{equation*}
T^{2} \ll N_{F}(T) \ll T^{3+\epsilon} \tag{1-7}
\end{equation*}
$$

where the first implied constant depends only on P and the second depends only on P and ϵ.

Our approach to these estimates relies on the special form of the Kummer surfaces we consider. In particular, for the upper bound we use that in P we assume that $g=0$. For the lower bound we use that $g=0$ and $f=-2$. The upper bound coincides with that given in (1-3). An example of an equation to which Theorem 1 applies, when $P(t)=t^{6}-2 t$, is

$$
z^{2}=x_{3}^{2}\left(x_{1}^{2}+8 x_{0} x_{2}\right)+x_{3}\left(-16 x_{0}^{3}-2 x_{1} x_{2}^{2}\right)-4 x_{0} x_{1}^{3}-8 x_{0}^{2} x_{1} x_{2}+x_{2}^{4} .
$$

Numerical calculations in this case show that we seem to have $N_{F}(T) \gg T^{3-\epsilon}$. It would be of interest to find the correct order of magnitude of $N_{F}(T)$ for some P.

Remark. Most research on $N_{F}(T)$ in (1-1) has concentrated on giving upper bounds for $N_{F}(T)$ for quite general F, where $F(x)=0$ is usually assumed to be nonsingular. The proofs often make use of intricate estimates of character and exponential sums; for example, see [Heath-Brown and Pierce 2012]. In contrast, the proof of the upper bound of (1-7) is rather straightforward. Although it is likely not sharp, the lower bound of (1-7) is probably more interesting and certainly deeper. Its proof uses a remarkable and not well-known identity of Schottky to explicitly produce solutions to $F(x)=z^{2}$. Along somewhat similar lines, invariant theory was recently applied to asymptotically count integer points on quadratic twists of certain elliptic curves and give a class number formula for binary quartic forms [Duke 2021]. It is reasonable to hope that some other classical identities of algebraic geometry and syzygies of invariant theory, some of which are beautifully presented in [Dolgachev 2012], could have still undiscovered applications to the problem of finding lower bounds for counting functions like $N_{F}(T)$.

2. Proof of the theorem

Upper bound. The mechanism behind the proof of the upper bound in (1-7) is that a quadratic Diophantine equation in two variables has "few" solutions. The argument relies on the fact that for $P(t)$ of the assumed form (so that in particular $g=0$), the associated F has the property that it is quadratic in one of its variables. It will become clear that similar arguments can be applied to other F with this property.

For a general $P(t)$ we have the explicit formula

$$
\begin{aligned}
F(x)= & x_{0}^{4}\left(16 a c e g-4 a c f^{2}-4 a d^{2} g-4 b^{2} e g+b^{2} f^{2}\right) \\
& -2 x_{0}^{3}\left(-8 a c g x_{1}+2 a d f x_{1}-4 a d g x_{2}-8 a e g x_{3}+2 a f^{2} x_{3}+2 b^{2} g x_{1}\right. \\
& \left.+b d f x_{2}+2 b d g x_{3}\right) \\
& +x_{0}^{2}\left(-4 a e x_{1}^{2}+4 a f x_{1} x_{2}+16 a g x_{1} x_{3}-4 a g x_{2}^{2}-4 b e x_{1} x_{2}-2 b f x_{1} x_{3}\right. \\
& \left.+2 b f x_{2}^{2}+4 b g x_{2} x_{3}-4 c e x_{2}^{2}-4 c f x_{2} x_{3}-4 c g x_{3}^{2}+d^{2} x_{2}^{2}\right) \\
& -2 x_{0}\left(2 a x_{1}^{3}+2 b x_{1}^{2} x_{2}+2 c x_{1} x_{2}^{2}+d x_{1} x_{2} x_{3}+d x_{2}^{3}+2 e x_{2}^{2} x_{3}+2 f x_{2} x_{3}^{2}+2 g x_{3}^{3}\right) \\
& +\left(x_{2}^{2}-x_{1} x_{3}\right)^{2} .
\end{aligned}
$$

For $P(t)=a t^{6}+b t^{5}+c t^{4}+d t^{3}+e t^{2}-2 t$ we have that F has an expansion that is quadratic in x_{3} :

$$
\begin{align*}
F(x)=x_{3}^{2} & \left(x_{1}^{2}+8 x_{2} x_{0}\right) \\
& +x_{3}\left(-16 a x_{0}^{3}+4 b x_{0}^{2} x_{1}+8 c x_{0}^{2} x_{2}-2 d x_{0} x_{1} x_{2}-4 e x_{0} x_{2}^{2}-2 x_{1} x_{2}^{2}\right) \\
& +4 b^{2} x_{0}^{4}-16 a c x_{0}^{4}+8 a d x_{0}^{3} x_{1}-4 a e x_{0}^{2} x_{1}^{2}-4 a x_{0} x_{1}^{3}+4 b d x_{0}^{3} x_{2} \\
& -8 a x_{0}^{2} x_{1} x_{2}-4 b e x_{0}^{2} x_{1} x_{2}-4 b x_{0} x_{1}^{2} x_{2}-4 b x_{0}^{2} x_{2}^{2}+d^{2} x_{0}^{2} x_{2}^{2} \\
& -4 c e x_{0}^{2} x_{2}^{2}-4 c x_{0} x_{1} x_{2}^{2}-2 d x_{0} x_{2}^{3}+x_{2}^{4} \tag{2-1}
\end{align*}
$$

Thus given a solution x of $z^{2}=F(x)$, upon completing the square we will get a solution (y, z) of

$$
\begin{equation*}
y^{2}-\left(x_{1}^{2}+8 x_{2} x_{0}\right) z^{2}=k\left(x_{0}, x_{1}, x_{2}\right) \tag{2-2}
\end{equation*}
$$

where

$$
k\left(x_{0}, x_{1}, x_{2}\right)=8 x_{0} x_{2}^{5}-64 a^{2} x_{0}^{5}+\cdots
$$

is a homogeneous integral form of degree 6 that is not identically zero, and where

$$
\begin{equation*}
y=\left(x_{1}^{2}+8 x_{2} x_{0}\right) x_{3}+\left(8 a x_{0}^{3}-2 b x_{0}^{2} x_{1}-4 c x_{0}^{2} x_{2}+d x_{0} x_{1} x_{2}+2 e x_{0} x_{2}^{2}+x_{1} x_{2}^{2}\right) . \tag{2-3}
\end{equation*}
$$

The number of x_{0}, x_{1}, x_{2} with $\left|x_{0}\right|,\left|x_{1}\right|,\left|x_{2}\right| \leq T$ where either

$$
k\left(x_{0}, x_{1}, x_{2}\right)=0 \quad \text { or } \quad x_{1}^{2}+8 x_{2} x_{0}=0
$$

is $\ll T^{2}$. For such x_{0}, x_{1}, x_{2}, by (2-2) and (2-3) the total number of solutions of $F(x)=z^{2}$ with $\left|x_{3}\right| \leq T$ is $\ll T^{3}$.

For any other x_{0}, x_{1}, x_{2} with $\left|x_{0}\right|,\left|x_{1}\right|,\left|x_{2}\right| \leq T$ we can apply the well-known estimate

$$
d(k) \ll k^{\epsilon}
$$

for the divisor function and [Hooley 1986, Lemma 1], which follows from [Hooley 1967, Lemma 5], to conclude that the total number of solutions of $F(x)=z^{2}$ with $\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|,\left|x_{0}\right| \leq T$ is $\ll T^{3+\epsilon}$.

Lower bound. The tool used to obtain the lower bound of (1-7) is an explicit parametrization of solutions given by an identity of Schottky. This identity has a form that is similar to many of those coming from syzygies connecting covariants and invariants of forms. However, Schottky's identity has a different origin and does not appear to come from invariant theory.

The Jacobian of $S_{0}, S_{1}, S_{2}, S_{3}$ as given in (1-4) and (1-5) is

$$
J(x)=J_{S_{0}, S_{1}, S_{2}, S_{3}}(x)=\operatorname{det}\left(\begin{array}{llll}
\partial_{1} S_{0} & \partial_{2} S_{0} & \partial_{3} S_{0} & \partial_{4} S_{0} \\
\partial_{1} S_{1} & \partial_{2} S_{1} & \partial_{3} S_{1} & \partial_{4} S_{1} \\
\partial_{1} S_{2} & \partial_{2} S_{2} & \partial_{3} S_{2} & \partial_{4} S_{2} \\
\partial_{1} S_{3} & \partial_{2} S_{3} & \partial_{3} S_{3} & \partial_{4} S_{3}
\end{array}\right)=2 g x_{3}^{3} x_{0}-2 a x_{3} x_{0}^{3}+\cdots .
$$

In case $f=-2$ and $g=0$ this is given in full by

$$
\begin{align*}
J(x)=2(& -a x_{3} x_{0}^{3}+3 a x_{0}^{2} x_{1} x_{2}-2 a x_{0} x_{1}^{3}-b x_{3} x_{0}^{2} x_{1}+b x_{0}^{2} x_{2}^{2}+b x_{0} x_{1}^{2} x_{2}-b x_{1}^{4} \\
& -c x_{3} x_{0} x_{1}^{2}+2 c x_{0} x_{1} x_{2}^{2}-c x_{1}^{3} x_{2}-d x_{3} x_{1}^{3}+d x_{0} x_{2}^{3}+e x_{3} x_{0} x_{2}^{2} \\
& \left.-2 e x_{3} x_{1}^{2} x_{2}+e x_{1} x_{2}^{3}-2 x_{3}^{2} x_{0} x_{2}+2 x_{3}^{2} x_{1}^{2}+2 x_{3} x_{1} x_{2}^{2}-2 x_{2}^{4}\right) . \tag{2-4}
\end{align*}
$$

The surface defined by $J(x)=0$ is a Weddle surface. A variant of the following identity connecting the Weddle and Kummer surfaces, which can be checked directly, is apparently due to Schottky [1889, page 241]. He obtained it via theta functions and used it to show that the Kummer and Weddle surfaces are birationally equivalent over \mathbb{C}. It is stated (in a somewhat different form) in [Baker 1907, page 152, Example 8].
Proposition 2. For F in (1-6) (and in (2-1)) when $P(t)=a t^{6}+b t^{5}+c t^{4}+d t^{3}+$ $e t^{2}-2 t$, we have identically

$$
\begin{equation*}
F\left(-S_{3}(x),-2 S_{2}(x), 2 S_{1}(x), S_{0}(x)\right)=J^{2}(x) \tag{2-5}
\end{equation*}
$$

where $J(x)$ is given in (2-4).
Note the order of the parametrizing quadrics S_{j}. It is not obvious (to me) how to modify (2-5) so that it holds for a general $P(t)$ or even if that is possible without changing its basic form.
Proof of Theorem 1. Let \mathcal{S} be the set of six points $\alpha_{j} \in \mathbb{P}_{\mathbb{C}}^{3}$ represented by $\left(t_{j}^{3}, t_{j}^{2}, t_{j}, 1\right)$, where $P\left(t_{j}\right)=0$ for $j=1, \ldots, 6$. Recall from the discussion around (1-6) that $S_{i}\left(\alpha_{j}\right)=0$ for each i, j. In order to apply Proposition 2 to prove the lower bound of (1-7), we must first examine the map

$$
\begin{equation*}
\alpha \mapsto\left(-S_{3}(\alpha),-2 S_{2}(\alpha), 2 S_{1}(\alpha), S_{0}(\alpha)\right) \tag{2-6}
\end{equation*}
$$

from $\mathbb{P}_{\mathbb{C}}^{3} \backslash \mathcal{S}$ to $\mathbb{P}_{\mathbb{C}}^{3}$. Let V be the space spanned by $\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$, which is clearly four dimensional. We need to control the degree of the map (2-6). Suppose that $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{P}_{\mathbb{C}}^{3} \backslash \mathcal{S}$ are distinct and all have the same image in $\mathbb{P}_{\mathbb{C}}^{3}$ under the map (2-6). Then three independent $S, S^{\prime}, S^{\prime \prime} \in V$ will vanish at the nine distinct points $\left\{\alpha_{1}, \ldots, \alpha_{6}, \beta_{1}, \beta_{2}, \beta_{3}\right\}$. This is impossible by Bezout's theorem and shows that there are at most two points in $\mathbb{P}_{\mathbb{C}}^{3} \backslash \mathcal{S}$ with the same image in $\mathbb{P}_{\mathbb{C}}^{3}$ under the map (2-6).

Therefore by Proposition 2, the lower bound of (1-7) will follow from

$$
\#\left\{x \in \mathbb{Z}^{4}: \operatorname{gcd}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1,\left|S_{j}(x)\right| \leq T, j=1,2,3,4\right\} \gg T^{2} .
$$

This estimate is easily established since there is a ball in \mathbb{R}^{4} centered at the origin of positive radius, all of whose points x satisfy $\left|S_{j}(x)\right| \leq 1$ for $j=1,2,3,4$. Thus a standard lattice point count gives the result.

References

[Baker 1907] H. F. Baker, An introduction to the theory of multiply periodic functions, Cambridge University Press, 1907. Zbl
[Bonolis 2021] D. Bonolis, "A polynomial sieve and sums of Deligne type", Int. Math. Res. Not. 2021:2 (2021), 1096-1137. MR Zbl
[Broberg 2003] N. Broberg, "Rational points on finite covers of \mathbb{P}^{1} and $\mathbb{P}^{2 "}$, J. Number Theory 101:1 (2003), 195-207. MR Zbl
[Cassels and Flynn 1996] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge University Press, 1996. Zbl
[Dolgachev 2012] I. V. Dolgachev, Classical algebraic geometry, Cambridge University Press, 2012. MR Zbl
[Duke 2021] W. Duke, "On elliptic curves and binary quartic forms", International Mathematics Research Notices (2021).
[Heath-Brown and Pierce 2012] D. R. Heath-Brown and L. B. Pierce, "Counting rational points on smooth cyclic covers", J. Number Theory 132:8 (2012), 1741-1757. MR Zbl
[Hooley 1967] C. Hooley, "On binary cubic forms", J. Reine Angew. Math. 226 (1967), 30-87. MR Zbl
[Hooley 1986] C. Hooley, "On binary quartic forms", J. Reine Angew. Math. 366 (1986), 32-52. MR Zbl
[Hudson 1990] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge University Press, 1990. MR Zbl
[Munshi 2009] R. Munshi, "Density of rational points on cyclic covers of \mathbb{P}^{n} ", J. Théor. Nombres Bordeaux 21:2 (2009), 335-341. MR Zbl
[Schottky 1889] F. Schottky, "Ueber die Beziehungen zwischen den sechzehn Thetafunctionen von zwei Variabeln", J. Reine Angew. Math. 105 (1889), 233-249. MR Zbl
[Serre 1989] J.-P. Serre, Lectures on the Mordell-Weil theorem, Aspects Math. E15, Vieweg \& Sohn, Braunschweig, Germany, 1989. MR Zbl

Received 21 Sep 2021. Revised 9 Dec 2021.
William Duke:
wdduke@ucla.edu
Mathematics Department, UCLA, Los Angeles, CA, United States

ESSEEMNTLAL	$\mathbb{N U M} \mathbb{E} \mathbb{E} \mathbb{R}^{T} \mathbb{E} \mathbb{E} O R Y$
	msp.org/ent
EDITOR-IN-CHIEF	
Lillian B. Pierce	Duke University pierce@math.duke.edu
EDITORIAL BOARD	
Adebisi Agboola	UC Santa Barbara agboola@math.ucsb.edu
Valentin Blomer	Universität Bonn ailto:blomer@math.uni-bonn.de
Ana Caraiani	Imperial College a.caraiani@imperial.ac.uk
Laura DeMarco	Harvard University demarco@math.harvard.edu
Ellen Eischen	University of Oregon eeischen@uoregon.edu
Kirsten Eisenträger	Penn State University kxe8@psu.edu
Amanda Folsom	Amherst College afolsom@amherst.edu
Edray Goins	Pomona College edray.goins@pomona.edu
Kaisa Matomäki	University of Turku ksmato@utu.fi
Sophie Morel	ENS de Lyon sophie.morel@ens-lyon.fr
Raman Parimala	Emory University parimala.raman@emory.edu
Jonathan Pila	University of Oxford jonathan.pila@maths.ox.ac.uk
Peter Sarnak	Princeton University/Institute for Advanced Study sarnak@math.princeton.edu
Richard Taylor	Stanford University rltaylor@stanford.edu
Anthony Várilly-Alvarado	Rice University av15@rice.edu
Akshay Venkatesh	Institute for Advanced Study akshay@math.ias.edu
John Voight	Dartmouth College john.voight@dartmouth.edu
Melanie Matchett Wood	Harvard University mmwood@math.harvard.edu
Zhiwei Yun	MIT zyun@mit.edu
Tamar Ziegler	Hebrew University tamar.ziegler@mail.huji.ac.il
PRODUCTION	
Silvio Levy	(Scientific Editor) production@msp.org

See inside back cover or msp.org/ent for submission instructions.
Essential Number Theory (ISSN 2834-4634 electronic, 2834-4626 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ENT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
https://msp.org/
© 2022 Mathematical Sciences Publishers

ESSENTLAL NUMBER THEORY

2022 vol. 1 no. 1

The cubic case of Vinogradov's mean value theorem 1
D. R. HEATH-BROWN
Exceptional zeros, sieve parity, Goldbach 13John B. Friedlander and Henryk Iwaniec
A note on Tate's conjectures for abelian varieties 41
Chao Li and Wei Zhang
A Diophantine problem about Kummer surfaces 51
William Duke
Quartic index form equations and monogenizations of quartic orders 57 Shabnam AKhtari
Modularity lifting theorems 73
Toby Gee

[^0]: Research supported by NSF grant DMS 1701638 and Simons Foundation Award Number 554649.
 MSC2020: 11Dxx, 11E76.
 Keywords: Diophantine equations, Kummer surfaces, rational points.

