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A Diophantine problem about Kummer surfaces

William Duke

Upper and lower bounds are given for the number of rational points of bounded
height on a double cover of projective space ramified over a Kummer surface.

1. Introduction

Let F(x) = F(x0, . . . , xn) with n ≥ 2 be an integral form with deg F ≥ 2 and set

NF (T )=#{x ∈Zn+1
| F(x)= z2 for some z ∈Z, gcd(x0, . . . , xn)=1 and ∥x∥≤T },

(1-1)
where ∥x∥=max j (|x j |). The behavior of NF (T ) for large T is of basic Diophantine
interest. When deg F is even, NF (T ) counts rational points of bounded height on a
double cover of Pn

Q
ramified over the hypersurface given by F(x) = 0.

Assume that deg F is even and that z2
− F(x) is irreducible over C. It follows

from Theorem 3 on page 178 of [Serre 1989] that for any ϵ > 0

NF (T ) ≪ T n+1/2+ϵ . (1-2)

As discussed after Theorem 3 in [Serre 1989], it is reasonable to expect that

NF (T ) ≪ T n+ϵ . (1-3)

Broberg [2003] improved 5
2 to 9

4 in (1-2) when n = 2. For n ≥ 3, various im-
provements and generalizations of (1-2) are given in [Munshi 2009; Heath-Brown
and Pierce 2012; Bonolis 2021], assuming that F(x) = 0 is nonsingular. Certain
nonhomogeneous F are treated in [Heath-Brown and Pierce 2012].

In this note I will consider the problem of estimating NF (T ) from above and
below when n = 3 for a special class of quartic F , namely those for which F(x) = 0
define certain Kummer surfaces. These surfaces have singularities (nodes).

For our purpose we will define a Kummer surface in terms of an integral sextic
polynomial P(t). For fixed a, b, c, d, e, f, g ∈ Z with a ̸= 0 let

P(t) = at6
+ bt5

+ ct4
+ dt3

+ et2
+ f t + g.
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Suppose that the discriminant of P is not zero. Define the symmetric matrices

S0 =


a b

2 0 0
b
2 c d

2 0
0 d

2 e f
2

0 0 f
2 g

 (1-4)

and

S1 =


0 0 0 0
0 0 0 −

1
2

0 0 1 0
0 −

1
2 0 0

 , S2 =


0 0 0 1

2
0 0 −

1
2 0

0 −
1
2 0 0

1
2 0 0 0

 , S3 =


0 0 −

1
2 0

0 1 0 0
−

1
2 0 0 0

0 0 0 0

 . (1-5)

For x = (x0, x1, x2, x3) define the matrix

Sx = x0S0 + x1S1 + x2S2 + x3S3.

For a row vector v let S(v) = vSvt denote the quadratic form associated to a
symmetric matrix S. It is easy to check that for any x we have the identity

x0 P(t) = Sx(t3, t2, t, 1).

Define the associated quartic form F by

F(x) := 16 det Sx . (1-6)

Over C the surface given by F(x) = 0 is a Kummer surface, a special determinantal
quartic surface that is singular with sixteen nodes, including the points (t3, t2, t, 1)

where t is a root of P(t) = 0. The Jacobian variety of the genus two hyperelliptic
curve y2

= P(t) is a double cover of the Kummer surface ramified over these
nodes. For details on the geometry of Kummer surfaces; see, e.g., [Hudson 1990;
Dolgachev 2012]. Some arithmetic aspects of Kummer surfaces are considered
in [Cassels and Flynn 1996]. The construction of a Kummer surface using the S j

from (1-4) and (1-5) occurs in a slightly different form in [Baker 1907, page 69];
see also [Cassels and Flynn 1996, page 42].

Our main result is the following.

Theorem 1. Suppose that P(t) = at6
+ bt5

+ ct4
+ dt3

+ et2
− 2t with integral

a, b, c, d, e has nonzero discriminant and a ̸= 0. Let F be defined in (1-6) and
NF (T ) in (1-1). Then for any ϵ > 0

T 2
≪ NF (T ) ≪ T 3+ϵ, (1-7)

where the first implied constant depends only on P and the second depends only on
P and ϵ.
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Our approach to these estimates relies on the special form of the Kummer surfaces
we consider. In particular, for the upper bound we use that in P we assume that
g = 0. For the lower bound we use that g = 0 and f = −2. The upper bound
coincides with that given in (1-3). An example of an equation to which Theorem 1
applies, when P(t) = t6

− 2t , is

z2
= x2

3(x2
1 + 8x0x2) + x3(−16x3

0 − 2x1x2
2) − 4x0x3

1 − 8x2
0 x1x2 + x4

2 .

Numerical calculations in this case show that we seem to have NF (T ) ≫ T 3−ϵ . It
would be of interest to find the correct order of magnitude of NF (T ) for some P .

Remark. Most research on NF (T ) in (1-1) has concentrated on giving upper
bounds for NF (T ) for quite general F , where F(x) = 0 is usually assumed to be
nonsingular. The proofs often make use of intricate estimates of character and
exponential sums; for example, see [Heath-Brown and Pierce 2012]. In contrast, the
proof of the upper bound of (1-7) is rather straightforward. Although it is likely not
sharp, the lower bound of (1-7) is probably more interesting and certainly deeper.
Its proof uses a remarkable and not well-known identity of Schottky to explicitly
produce solutions to F(x) = z2. Along somewhat similar lines, invariant theory was
recently applied to asymptotically count integer points on quadratic twists of certain
elliptic curves and give a class number formula for binary quartic forms [Duke
2021]. It is reasonable to hope that some other classical identities of algebraic
geometry and syzygies of invariant theory, some of which are beautifully presented
in [Dolgachev 2012], could have still undiscovered applications to the problem of
finding lower bounds for counting functions like NF (T ).

2. Proof of the theorem

Upper bound. The mechanism behind the proof of the upper bound in (1-7) is that a
quadratic Diophantine equation in two variables has “few” solutions. The argument
relies on the fact that for P(t) of the assumed form (so that in particular g = 0),
the associated F has the property that it is quadratic in one of its variables. It will
become clear that similar arguments can be applied to other F with this property.

For a general P(t) we have the explicit formula

F(x) = x4
0(16aceg − 4ac f 2

− 4ad2g − 4b2eg + b2 f 2)

− 2x3
0(−8acgx1 + 2ad f x1 − 4adgx2 − 8aegx3 + 2a f 2x3 + 2b2gx1

+ bd f x2 + 2bdgx3)

+ x2
0(−4aex2

1 + 4a f x1x2 + 16agx1x3 − 4agx2
2 − 4bex1x2 − 2b f x1x3

+ 2b f x2
2 + 4bgx2x3 − 4cex2

2 − 4c f x2x3 − 4cgx2
3 + d2x2

2)

−2x0(2ax3
1+2bx2

1 x2+2cx1x2
2+dx1x2x3+dx3

2+2ex2
2 x3+2 f x2x2

3+2gx3
3)

+ (x2
2 − x1x3)

2.
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For P(t) = at6
+ bt5

+ ct4
+ dt3

+ et2
− 2t we have that F has an expansion that

is quadratic in x3:

F(x) = x2
3(x2

1 + 8x2x0)

+ x3(−16ax3
0 + 4bx2

0 x1 + 8cx2
0 x2 − 2dx0x1x2 − 4ex0x2

2 − 2x1x2
2)

+ 4b2x4
0 − 16acx4

0 + 8adx3
0 x1 − 4aex2

0 x2
1 − 4ax0x3

1 + 4bdx3
0 x2

− 8ax2
0 x1x2 − 4bex2

0 x1x2 − 4bx0x2
1 x2 − 4bx2

0 x2
2 + d2x2

0 x2
2

− 4cex2
0 x2

2 − 4cx0x1x2
2 − 2dx0x3

2 + x4
2 . (2-1)

Thus given a solution x of z2
= F(x), upon completing the square we will get a

solution (y, z) of
y2

− (x2
1 + 8x2x0)z2

= k(x0, x1, x2) (2-2)
where

k(x0, x1, x2) = 8x0x5
2 − 64a2x5

0 + · · ·

is a homogeneous integral form of degree 6 that is not identically zero, and where

y = (x2
1 +8x2x0)x3+(8ax3

0 −2bx2
0 x1−4cx2

0 x2+dx0x1x2+2ex0x2
2 +x1x2

2). (2-3)

The number of x0, x1, x2 with |x0|, |x1|, |x2| ≤ T where either

k(x0, x1, x2) = 0 or x2
1 + 8x2x0 = 0

is ≪ T 2. For such x0, x1, x2, by (2-2) and (2-3) the total number of solutions of
F(x) = z2 with |x3| ≤ T is ≪ T 3.

For any other x0, x1, x2 with |x0|, |x1|, |x2| ≤ T we can apply the well-known
estimate

d(k) ≪ kϵ

for the divisor function and [Hooley 1986, Lemma 1], which follows from [Hooley
1967, Lemma 5], to conclude that the total number of solutions of F(x) = z2 with
|x1|, |x2|, |x3|, |x0| ≤ T is ≪ T 3+ϵ .

Lower bound. The tool used to obtain the lower bound of (1-7) is an explicit
parametrization of solutions given by an identity of Schottky. This identity has a
form that is similar to many of those coming from syzygies connecting covariants
and invariants of forms. However, Schottky’s identity has a different origin and
does not appear to come from invariant theory.

The Jacobian of S0, S1, S2, S3 as given in (1-4) and (1-5) is

J (x) = JS0,S1,S2,S3(x) = det


∂1S0 ∂2S0 ∂3S0 ∂4S0

∂1S1 ∂2S1 ∂3S1 ∂4S1

∂1S2 ∂2S2 ∂3S2 ∂4S2

∂1S3 ∂2S3 ∂3S3 ∂4S3

 = 2gx3
3 x0 − 2ax3x3

0 + · · · .
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In case f = −2 and g = 0 this is given in full by

J (x) = 2(−ax3x3
0 + 3ax2

0 x1x2 − 2ax0x3
1 − bx3x2

0 x1 + bx2
0 x2

2 + bx0x2
1 x2−bx4

1

− cx3x0x2
1 + 2cx0x1x2

2 − cx3
1 x2 − dx3x3

1 + dx0x3
2 + ex3x0x2

2

− 2ex3x2
1 x2 + ex1x3

2 − 2x2
3 x0x2 + 2x2

3 x2
1 + 2x3x1x2

2 − 2x4
2). (2-4)

The surface defined by J (x) = 0 is a Weddle surface. A variant of the following
identity connecting the Weddle and Kummer surfaces, which can be checked
directly, is apparently due to Schottky [1889, page 241]. He obtained it via theta
functions and used it to show that the Kummer and Weddle surfaces are birationally
equivalent over C. It is stated (in a somewhat different form) in [Baker 1907,
page 152, Example 8].

Proposition 2. For F in (1-6) (and in (2-1)) when P(t) = at6
+ bt5

+ ct4
+ dt3

+

et2
− 2t , we have identically

F(−S3(x), −2S2(x), 2S1(x), S0(x)) = J 2(x), (2-5)

where J (x) is given in (2-4).

Note the order of the parametrizing quadrics S j . It is not obvious (to me) how to
modify (2-5) so that it holds for a general P(t) or even if that is possible without
changing its basic form.

Proof of Theorem 1. Let S be the set of six points α j ∈ P3
C

represented by
(t3

j , t2
j , t j , 1), where P(t j ) = 0 for j = 1, . . . , 6. Recall from the discussion around

(1-6) that Si (α j ) = 0 for each i, j . In order to apply Proposition 2 to prove the
lower bound of (1-7), we must first examine the map

α 7→ (−S3(α), −2S2(α), 2S1(α), S0(α)) (2-6)

from P3
C

\ S to P3
C

. Let V be the space spanned by {S0, S1, S2, S3}, which is
clearly four dimensional. We need to control the degree of the map (2-6). Suppose
that β1, β2, β3 ∈ P3

C
\S are distinct and all have the same image in P3

C
under the

map (2-6). Then three independent S, S′, S′′
∈ V will vanish at the nine distinct

points {α1, . . . , α6, β1, β2, β3}. This is impossible by Bezout’s theorem and shows
that there are at most two points in P3

C
\ S with the same image in P3

C
under the

map (2-6).
Therefore by Proposition 2, the lower bound of (1-7) will follow from

#{x ∈ Z4
: gcd(x1, x2, x3, x4) = 1, |S j (x)| ≤ T, j = 1, 2, 3, 4} ≫ T 2.

This estimate is easily established since there is a ball in R4 centered at the origin
of positive radius, all of whose points x satisfy |S j (x)| ≤ 1 for j = 1, 2, 3, 4. Thus
a standard lattice point count gives the result. □
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