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On the Northcott property for infinite extensions

Martin Widmer

We start with a brief survey on the Northcott property for subfields of the algebraic
numbers Q. Then we introduce a new criterion for its validity (refining the
author’s previous criterion), addressing a problem of Bombieri. We show that
Bombieri and Zannier’s theorem, stating that the maximal abelian extension of a
number field K contained in K (d) has the Northcott property, follows very easily
from this refined criterion. Here K (d) denotes the composite field of all extensions
of K of degree at most d.

1. Introduction

Heights are an important tool in Diophantine geometry to study the distribution
of algebraic points on algebraic varieties, and in arithmetic dynamics to study
preperiodic points under endomorphisms of algebraic varieties. There are various
different heights but the most standard one is probably the Weil height on Pn .
However, their common fundamental property is that there are only finitely many
points of bounded height over a given number field. To which fields of infinite
degree does this finiteness property extend? This is the question we are concerned
with in this article.

All algebraic field extensions of Q are considered subfields of some fixed alge-
braic closure Q. Let K be a number field, and for P = (α0 : · · · : αn) ∈ Pn(K ), with
representative (α0, . . . , αn) ∈ K n+1, let

H(P) =

∏
v∈MK

max{|α0|v, . . . , |αn|v}
dv/[K :Q]

be the absolute multiplicative Weil height of P . Here MK denotes the set of places
of K . For each place v we choose the unique representative |·|v that either extends
the usual Archimedean absolute value on Q or a usual p-adic absolute value on Q,
and dv = [Kv : Qv] denotes the local degree at v. A standard reference for heights
is [Bombieri and Gubler 2006]. We use N = {1, 2, 3, . . . } for the set of positive
natural numbers.

MSC2020: primary 11G50, 11R04; secondary 11R06, 11R20, 37P30.
Keywords: Weil height, Northcott property, property (N), Northcott’s theorem, abelian extensions,

Silverman’s inequality.
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2 MARTIN WIDMER

The unique prime factorization of Z implies that
∏

MQ
|α|

dv
v = 1 for every nonzero

α ∈Q. This identity is known as the product formula and extends to arbitrary number
fields K [Bombieri and Gubler 2006, Proposition 1.4.4]. Consequently, the value
of the height is independent of the representative (α0, . . . , αn) and thus defines
a genuine function on Pn(K ). Choosing a representative of P with a coordinate
equal to 1 shows that H(P) ≥ 1. The fundamental identity

∑
MK

dv = [K : Q],
valid for every number field (see [Bombieri and Gubler 2006, Corollary 1.3.2]),
shows that the height H(P) is also independent from the number field K containing
the coordinates of P . Hence, H( · ) is a well-defined function on Pn(Q). D. G.
Northcott [1950, Theorem 1] proved the following simple but important result.

Theorem 1 [Northcott 1950]. Given a number field K , n ∈ N, and X ≥ 1, there are
only a finite number of points P in Pn(K ) such that H(P) ≤ X.

For P = (1 : α1 : · · · : αn) ∈ Pn(Q) we obviously have H(P) ≥ maxi H((1 : αi )).
Consequently, Theorem 1 holds true for a given field K ⊆ Q if and only if it holds
for n = 1. We define the height H(α) of an algebraic number α to be H((1 : α)),
and so we are led to the following notion, formally introduced by Bombieri and
Zannier [2001].

Definition 2 (Northcott property). A subset S of Q has the Northcott property (or
shorter, Property (N)) if

{α ∈ S; H(α) ≤ X}

is finite for every X ≥ 1.

Theorem 1 was merely an intermediate step in Northcott’s seminal work [1950]
to show that for any morphism f : Pn

→ Pn of algebraic degree at least 2 and
defined over a number field K there are only finitely many preperiodic points in
Pn(K ) under f . His proof also shows that one can replace number field by any
field with Property (N).

Another somewhat surprising application of Property (N) builds on work of
J. Robinson [1962]. It has been observed by Vidaux and Videla [2016] that the
work of Robinson [1962] implies the undecidability of each ring of totally real
algebraic integers with Property (N). This connection was further exploited in
[Martínez-Ranero et al. 2020] and in [Springer 2020].

These two applications extend interesting properties of number fields to fields with
Property (N), suggesting that Property (N) fields behave similarly as number fields.
However, this view was shattered by Fehm’s discovery [2018, Proposition 1.2] that
some fields with Property (N) are pseudoalgebraically closed (PAC).

Next we discuss two arithmetic properties with respect to which all fields of
infinite degree with Property (N) behave radically different from number fields.
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Gaudron and Rémond [2017] introduced the notion of a Siegel field, which is a
subfield of Q over which Siegel’s lemma holds true; see [Gaudron and Rémond
2017, (∗) on page 189]. It is classical that number fields are Siegel fields, and
work of Zhang [1995], and independently of Roy and Thunder [1996], shows
that Q is also a Siegel field. A priori it is not easy to find counterexamples but
Gaudron and Rémond [2017, Corollaire 1.2] proved that a field of infinite degree
with Property (N) cannot be a Siegel field.

A very recent paper of Daans, Kala and Man [Daans et al. 2023] investigates
the existence of universal quadratic forms over totally real fields of infinite degree.
Whereas it is well-known that for totally real number fields such a form always
exists, the existence of a universal quadratic form over a given totally real field of
infinite degree is not clear at all. However, they prove [loc. cit., Theorem 1.2] that
such a form cannot exist if the field has infinite degree and Property (N).

A point P = (α0 : · · · :αn)∈ Pn(Q) defines a number field Q(αi/α j ; α j ̸= 0), and
the degree of P is the degree of this number field. To prove Theorem 1 Northcott
[1950, Lemma 2] proved a stronger result; that for any given d ∈ N and X ≥ 1
there are only finitely many points P ∈ Pn(Q) of degree d and height H(P) at
most X . The latter is a direct consequence of what nowadays is usually understood
as “Northcott’s theorem”; see [Bombieri and Gubler 2006, Theorem 1.6.8].

Theorem 3 (Northcott’s theorem). Let d ∈ N, then the set {α ∈ Q; [Q(α) : Q] ≤ d}

has Property (N).

Northcott’s theorem already implies the existence of fields of infinite degree with
Property (N). Indeed, let K be a number field and let X ≥ 1 be given. Any two
distinct quadratic extensions of K only intersect in K , and there are infinitely many
such extensions. Hence, there must be one whose elements outside of K all have
height bigger than X . Constructing an infinite tower Q = K0 ⊂ K1 ⊂ K2 ⊂ · · ·

where we choose a quadratic extension Ki+1 of Ki whose elements outside of
Ki all have height larger than i say, yields an infinite extension L = ∪i Ki with
Property (N).

Dvornicich and Zannier [2008] observed that Northcott’s theorem remains true
when replacing the ground field Q by any field with Northcott property, i.e., if L is
a field with Property (N) and d ∈ N, then the set

{α ∈ Q; [L(α) : L] ≤ d}

also has Property (N). In particular, Property (N) is preserved under finite field
extensions. However, it is not always preserved under taking Galois closure over Q,
or taking compositum of two fields; see [Widmer 2011, Theorem 5 ].
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Bombieri and Zannier [2001] were the first authors that studied the Northcott
property for infinite field extensions of Q.1 In view of Northcott’s theorem it is
very appealing to consider the field Q(d) generated over Q by all algebraic numbers
of degree at most d . Bombieri and Zannier [2001] raised the following question.

Question 4 [Bombieri and Zannier 2001]. Let d ∈ N. Does Q(d) have Property (N)?

There is a whole zoo of properties for subfields of Q (including the properties
(P), (SP), (P), (R), (R), (K), see [Narkiewicz 1995; Liardet 1972]; and (SB),
(USB), see [Fili and Miner 2015; Pottmeyer 2015]) in arithmetic dynamics, that
are all implied by Property (N); see [Checcoli and Widmer 2013; Pottmeyer 2015].
For some of these properties the analogue of Question 4 was posed, explicitly or
implicitly.2 We will not discuss any of these more exotic properties but let us
mention that Pottmeyer [2015, Theorem 4.3] showed that Q(d) has the properties
(USB) and (P) (solving a conjecture of Narkiewicz from 1963). However, (USB)
and (P) are both strictly weaker than (N), as shown in [Fehm 2018, Proposition 1.3]
and in [Dvornicich and Zannier 2008, Theorem 3.3] respectively.

Question 4 is still open but a remarkable step was already made in [Bombieri and
Zannier 2001]. For d ∈ N and K a number field we write K (d) for the composite
field of all extensions of K of degree at most d . Then K (d)/K is a Galois extension,
generated over K by all algebraic numbers of relative degree [K (α) : K ] at most d .
Let K (d)

ab be the composite field of all abelian extensions F/K with F ⊂ K (d). Then
K (d)

ab is the maximal abelian subextension of K (d)/K . If d ≥ 2 then Q(
√

n; n ∈ Z)

⊂ K (d)
ab ⊂ K (d), and so K (d)

ab and K (d) both have infinite degree over Q, and thus
also over K .

Theorem 5 [Bombieri and Zannier 2001]. Let K be a number field and let d ∈ N.
The field K (d)

ab has the Northcott property. In particular, K (2) has the Northcott
property.

Taking K = Q(ζd) for a primitive d-the root of unity, and applying Theorem 5
proves that the field

Q(11/d , 21/d , 31/d , 41/d , . . .) (1.1)

has the Northcott property.

1It is worthwhile mentioning that Julia Robinson [1962] proved that the ring of integers of
Q(

√
n; n ∈ N) has the “Northcott property” with respect to the house (instead of Weil height), and

deduced from this that N is first order definable in this ring.
2Narkiewicz [1971; 1963, Problem 10(i)] conjectured that K (d) has (P) for all d. Further, for

various pairs of these properties it was asked whether they are equivalent to each other; see [Narkiewicz
1995; Checcoli and Widmer 2013].
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Theorem 5 is a very interesting result for its own sake but it also has interesting
applications. Specifically, to list some of the recent applications, Theorem 5 was
used:

• In [Vidaux and Videla 2016] to show that the maximal totally real subfield of
K (d)

ab is undecidable, in [Springer 2020] to show that Q
(d)
ab is undecidable, and

in [Martínez-Ranero et al. 2020] as one of the ingredients that led the authors
to conjecture that K (d) is undecidable (proved for Q(2) in the same paper).

• In [Daans et al. 2023] to deduce that if L is a totally real subfield of K (d)
ab of

infinite degree, then no universal quadratic form exists over L . In particular,
this holds if L ⊂ Q[d] and d is a prime or a prime square, where Q[d] denotes
the compositum of all totally real Galois fields of degree exactly d over Q.

• In [Checcoli and Dill 2023, Corollary 1] to prove that if K is a number field, A
is an abelian variety defined over K , and K (Ators) is the minimal field extension
of K over which all torsion points of A are defined, then each subfield of
K (Ators) which is Galois over K , and whose Galois group has finite exponent,
has the Northcott property.

An abelian extension L/Q lies in Q(d) for some d if and only if its Galois group
has finite exponent; see [Checcoli 2013, Theorem 1]. As pointed out in [Checcoli
and Dill 2023, Section 5] this remains true when replacing the ground field Q with
an arbitrary number field K . Therefore Theorem 5 gives a purely Galois theoretic
criterion for the Northcott property of a field, i.e., every abelian extension of a
number field K with finite exponent has the Northcott property.

However, the restriction to abelian extensions (and finite exponent) in Theorem 5
is very rigid and rules out many interesting examples. In a survey article Bombieri
[2009, page 52] states:

“It remains an open problem to determine whether the Northcott property
holds for K (d) if d ≥ 3 and, more generally, to determine workable
conditions for its validity.”

In this paper we are particularly concerned with the second part of Bombieri’s
statement.

Problem 6 [Bombieri 2009]. Determine workable conditions for the validity of the
Northcott property for subfields of Q.

The author [Widmer 2011] gave a criterion which is robust and often easy to
apply. For an extension M/K of number fields we write DM/K for the relative
discriminant, and we write NK/F ( · ) for the norm from K to F . If F = Q and A is
a nonzero ideal in the ring of integers OK of K then we interpret NK/F (A) as the
unique positive rational integer that generates the principle ideal NK/F (A).
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Theorem 7 [Widmer 2011, Theorem 3]. Let K be a number field, let K = K0 ⊊
K1 ⊊ K2 ⊊ · · · be a nested sequence of finite extensions and set L =

⋃
i Ki . Suppose

that
inf

Ki−1⊊M⊂Ki
(NKi−1/Q(DM/Ki−1))

1/([M :K0][M :Ki−1]) → ∞ (1.2)

as i tends to infinity where the infimum is taken over all intermediate fields M
strictly larger than Ki−1. Then the field L has the Northcott property.

Theorem 7 implies the following refinement of (1.1). Let K be a number field,
let p1 < p2 < p3 < · · · be a sequence of positive primes and let d1, d2, d3, . . . be a
sequence of positive integers. Then the field

K (p1/d1
1 , p1/d2

2 , p1/d3
3 , . . . )

has the Northcott property if and only if log pi/di → ∞ as i tends to infinity. The
fact that every direct product of finite solvable groups can be realized over Q by a
Galois extension with Property (N) can also easily be deduced from Theorem 7;
see [Checcoli and Widmer 2013, Theorem 4]. Fehm’s aforementioned construction
of PAC fields with Property (N) also used Theorem 7. And finally, Theorem 7
allows to construct fairly large nonabelian subfields of Q(d) with Property (N) (see
[Widmer 2011, Corollaries 3, 4, and 5]), providing another result on Question 4.

Theorem 7 is based on a fundamental height lower bound of Silverman [1984,
Theorem 2]. Here we give only a simplified version sufficient for our purposes. Let
α ∈ Q, let F be a number field, let K = F(α), m = [F : Q], and d = [K : F]. Then

H(α) ≥
1
2 NF/Q(DK/F )1/(2md2). (1.3)

Using the optimal choice of F for given α to maximize the right hand-side in (1.3)
plays an important role in our results. For the convenience of the reader we will
give a proof of inequality (1.3) in Section 2.

Obviously Theorem 7 does not follow from Theorem 5. How does one prove
Theorem 7? Let α ∈ L be of height at most X , and let Ki0 be the maximal field
not containing α. Applying (1.3) with F = Ki0 , and using (1.2), shows that i0 is
bounded from above in terms of X and L , and thus, by Northcott’s theorem, the
field L has the Northcott property.

However, the choice Ki0 for the ground field F can be far from optimal, and so
we do not use the full force of (1.3). Therefore, Theorem 7 does not seem strong
enough to deduce Theorem 5 either.

The aim of this short note is to provide a refined criterion, using the full force of
(1.3), that easily implies Theorem 7 and Theorem 5. To this end we introduce the
following invariant for an extension of number fields M/K :

γ (M/K ) = sup
K⊂F

(NF/Q(DM F/F ))1/([M F :Q][M F :F]), (1.4)
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where the supremum runs over all number fields F containing K , and M F denotes
the composite field of M and F . We can now state a more powerful version of the
criterion given in Theorem 7.

Theorem 8. Let K be a number field, and let L be an infinite algebraic field
extension of K . Suppose that

lim inf
K⊂M⊂L

γ (M/K ) = ∞,

where M runs over all number fields in L containing K . Then L has the Northcott
property.

Proof. Suppose that L does not have the Northcott property. Thus there exists
X ≥ 1 and a sequence (αi )i of pairwise distinct elements in L with H(αi ) ≤ X
for all i . By Northcott’s theorem the degrees of Mi = K (αi ) must tend to infinity.
After passing to a subsequence we can assume all the Mi are distinct. Note that
Mi F = F(αi ) for each F that contains K . We apply inequality (1.3) to get

4X2
≥ lim inf

i
(2H(αi ))

2

≥ lim inf
i

( sup
K⊂F

NF/Q(DMi F/F )1/([Mi F :Q][Mi F :F]))

≥ lim inf
K⊂M⊂L

( sup
K⊂F

NF/Q(DM F/F )1/([M F :Q][M F :F]))

= lim inf
K⊂M⊂L

γ (M/K ). □

Theorem 8 implies Theorem 7,3 but why does it also imply Theorem 5, and how
does this proof differ from the original one in [Bombieri and Zannier 2001]? We
will discuss these questions in detail in Section 3.

Are there any known criteria for Property (N) for field extensions of infinite
degree that we have not mentioned so far? The author is only aware of one such
criterion. Let L/Q be a Galois extension and let S(L) be the set of rational primes
for which L can be embedded in a finite extension of Qp. For p ∈ S(L) let ep and
f p be the ramification index and the inertia degree above p. Bombieri and Zannier
[2001, Theorem 2] proved that

lim inf
α∈L

H(α) ≥ exp
(

1
2

∑
p∈S(L)

log p
ep(p f p + 1)

)
. (1.5)

In particular, L has the Northcott property whenever the sum on the right hand-side
of (1.5) diverges. The above criterion does not seem very workable. Bombieri and

3Let (M j ) be a sequence of distinct fields with K ⊂ M j ⊂ L and γ (M j /K ) < X , and let i = i( j)
be minimal with M j ⊂ Ki . Set M ′

j = Ki−1 M j so that Ki−1 ⊊ M ′
j ⊂ Ki . The choice F = Ki−1 on

the right-hand side of (1.4) shows that (1.2) has a bounded subsequence.
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Zannier asked whether this sum can diverge for infinite extensions but considered
this unlikely. However, it was shown by Checcoli and Fehm [2021] that there are
Galois extensions L/Q of infinite degree for which the above sum diverges, and
even such extensions for which neither Theorem 5 nor 7 applies, so it constitutes
an independent criterion for the Northcott property, albeit one for which natural
examples still need to be found.

2. Silverman’s inequality

In this section we give a proof of Silverman’s inequality (1.3). For the special
case F = Q a very simple proof was given by Roy and Thunder [1995, Lemmas 1
and 2]. We extend the argument in [loc. cit.] to arbitrary ground fields F , providing
a slightly different proof from Silverman’s original one [Silverman 1984]. Yet
another proof of Silverman’s inequality was given by Ellenberg and Venkatesh
[2007, Lemma 2.2].

We first fix the notation and recall some basic facts. Let F be a number field of
degree m, let K/F be a field extension of degree d , and let σ1, . . . , σd : K → K (G)

be the d distinct field homomorphisms of K to the Galois closure K (G) of K/F ,
fixing F . Let (z1, . . . , zd) be a d-tuple of elements in K . Then DK/F (z1, . . . , zd)=

det[σi (z j )]
2, and for a nonzero ideal A in OK the discriminant DK/F (A) is the

ideal in OF generated by the numbers DK/F (z1, . . . , zd) as the tuples (z1, . . . , zd)

run over all F-bases of K and each basis element is contained in A. In particular,
DK/F (A) divides the principle ideal in OF generated by DK/F (z1, . . . , zd) for each
such tuple (z1, . . . , zd); see [Lang 1994, III, Section 3]. Recall that we write DK/F

for DK/F (OK ). We will use the basic identity (see [Lang 1994, III, Section 3,
Proposition 13])

DK/F (A) = DK/F NK/F (A)2. (2.1)

Lemma 9 [Silverman 1984]. Let F be a number field of degree m. Let α ∈ Q\F ,
set K = F(α), and d = [K : F]. Then

H(α) ≥ d−1/(2(d−1))NF/Q(DK/F )1/(2md(d−1)).

Proof. Choose ω0, ω1 ∈ OK such that ω0 ̸= 0 and α = ω1/ω0. For 1 ≤ j ≤ d let
z j = ω

d− j
0 ω

j−1
1 , so that P = (1 : α : · · · : αd−1) = (z1 : · · · : zd) ∈ Pd−1(K ) and

H(α)d−1
= H(P). We will bound

H(P)2md
=

∏
v ∤∞

max
j

{|z j |v}
2dv

∏
v | ∞

max
j

{|z j |v}
2dv

from below. Note that z1, . . . , zd is an integral F-basis of K . Let A =
∑

j z jOK

be the ideal in OK generated by the z j . For the non-Archimedean places of K we
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have ∏
v ∤∞

max
j

{|z j |v}
2dv = NK/Q(A)−2.

For each embedding τ : F → C we choose an extension τ̃ : K (G)
→ C of τ to K (G).

Then the d distinct maps τ̃ ◦ σi : K → C are precisely the d embeddings of K that
extend τ . Ranging over all embeddings τ of F gives the full set of embeddings
of K . Hence, for the Archimedean places of K we get

∏
v | ∞

max
j

{|z j |v}
2dv =

∏
τ

d∏
i=1

max{|τ̃ ◦ σi (z1)|, . . . , |τ̃ ◦ σi (zd)|}2.

Writing zτ,i for the complex row vector (τ̃ ◦ σi (z1), . . . , τ̃ ◦ σi (zd)), and applying
Hadamard’s inequality yields

d∏
i=1

max{|τ̃ ◦ σi (z1)|, . . . , |τ̃ ◦ σi (zd)|}2
≥ d−d

d∏
i=1

|zτ,i |
2

≥ d−d
|det[τ̃ ◦ σi (z j )]

2
|

= d−d
|τ̃ (det[σi (z j )]

2)|

= d−d
|τ(det[σi (z j )]

2)|,

where in the last step we used that det[σi (z j )]
2

= DK/F (z1, . . . , zd) lies in F .
Taking the product over all τ , and using that DK/F (A) divides the ideal generated
by det[σi (z j )]

2 in OF , yields∏
v | ∞

max
j

{|z j |v}
2dv ≥ d−md NF/Q(DK/F (A)).

Now we use (2.1), and that NF/Q(DK/F NK/F (A))2) = NF/Q(DK/F )NK/Q(A)2 to
get

H(α)2md(d−1)
= H(P)2md

≥ d−md NF/Q(DK/F ),

which proves the claim. □

3. Theorem 8 implies Bombieri and Zannier’s Theorem 5

In this section we show that Theorem 8 gives a short and straightforward proof of
Theorem 5. We also compare this new proof with the original one from [Bombieri
and Zannier 2001]. Both proofs have a common part which we extract and formulate
below as a separate lemma.
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Lemma 10 [Bombieri and Zannier 2001]. Let d ∈ N, let K be a number field,
and let M be a number field with K ⊂ M ⊂ K (d)

ab . Then pM , the largest prime
that ramifies in M , tends to infinity as M runs over all such intermediate fields M.
Further, if p > d is prime and B is a prime ideal in OM above p and p = B∩ K ,
then the ramification index e(B/p) divides d!.

Proof. We follow Bombieri and Zannier’s argument [2001]. Let M be a number field
with K ⊂ M ⊂ K (d)

ab . Then M/K is an abelian extension of exponent dividing d!,4

and thus Gal(M/K ) is isomorphic to a direct product A1×· · ·× Ar of cyclic groups
of order dividing d!. Therefore M can be written as composite field of extensions
E of K of degree at most d!. Indeed, let ϕ : A1 × · · · × Ar → Gal(M/K ) be an
isomorphism and let Ei = Fix(ϕ(Hi )) where Hi is the subgroup that picks the
trivial group in the i-th component and the full A j in all other components. By the
Galois-correspondence we have Gal(M/E1 · · · Er ) = ∩iϕ(Hi ) = ϕ(∩i Hi ) = {id}.
Hence, M = E1 · · · Er . Now the largest power of a prime dividing the discriminant
of E can be bounded solely in terms of K and d; see [Bombieri and Gubler 2006,
Theorem B.2.12]. Thus, by Hermite’s theorem, pM , the largest prime that ramifies
in M , tends to infinity as M runs over all such intermediate fields M .

For the second claim note that the inertia group I (B/p) is a subgroup of
Gal(M/K ), and so its order is not divisible by p, whenever p > d is prime. Since
the ramification index e(B/p) is equal to the order of I (B/p) it follows that p is
tamely ramified in M . Hence (see [Bombieri and Gubler 2006, B.2.18(e)]), I (B/p)

is cyclic, and thus e(B/p) divides d!. □

Now let us show that Theorem 8 together with Lemma 10 implies Theorem 5.

Proof of Theorem 5. Let M be a number field with K ⊂ M ⊂ K (d)
ab . Then M is

abelian over K . By Lemma 10 pM > |DK/Q| + d for all but finitely many M , and
thus we can assume pM is unramified in K and pM > d . Therefore, one of the prime
ideal divisors of pMOK , say p, must ramify in M . Let pOM = (B1 · · ·Bg)

e be the
decomposition in OM with B1, . . . ,Bg distinct prime ideals. Let Ti be the fixed
field for the inertia group I (Bi/p), and let pi = Bi ∩ Ti . Then e(pi/p) = 1, and
e = e(Bi/pi ) = [M : Ti ]. It follows that pe−1

i | DM/Ti , and that f (Bi/p) = f (pi/p)

for the residue degree. Now the I (Bi/p) are conjugated to each other and since
M/K is abelian they are all equal, and thus all the fixed fields Ti are equal to
T , say. Therefore (p1 · · · pg)

e−1
| DM/T , which implies p[M :K ]/2

M ≤ NT/Q(DM/T ).
Choosing F = T in (1.4) shows that γ (M/K ) ≥ p1/(2e[K :Q])

M which, by Lemma 10,

4If K1, K2 are two finite Galois extensions of K then σ → (σ|K1
, σ|K2

) induces an injective group
homomorphism from Gal(K1 K2/K ) to Gal(K1/K )× Gal(K2/K ). This implies that for each Galois
extension M/K with M ⊂ K (d) the Galois group Gal(M/K ) has exponent dividing d!, and no prime
p > d divides the order of Gal(M/K ).
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tends to infinity as M runs over all number fields with K ⊂ M ⊂ K (d)
ab . Applying

Theorem 8 completes the proof. □

Remark 11. Alternatively, one can use the decomposition of M as compositum
of extensions E of K of degree at most d! as in the proof of Lemma 10. Hence,
p ramifies in at least one of the fields E , and thus p | DE/K . Since DM/K =

D[M :E]

E/K NE/K (DM/E) we conclude p[M :E]
| DM/K . Since p is unramified in T , and

DM/K = D[M :T ]

T/K NT/K (DM/T ) we get p[M :E]
| NT/K (DM/T ). Taking norms and

using [M : T ] = e gives γ (M/K ) ≥ p1/([K :Q]d!e).

To compare we now discuss Bombieri and Zannier’s original proof of Theorem 5.
We leave out some of the more technical details but the basic argument is as follows.
We mostly use the notation of [Bombieri and Zannier 2001]; see also [Bombieri
and Gubler 2006, Theorem 4.5.4] for a slightly more detailed approach.

Proof of Theorem 5 (after Bombieri and Zannier). By enlarging K we can assume
K contains a primitive d!-th root of unity. Let α ∈ K (d)

ab be of height at most X ,
and set L = K (α). Then L is abelian over K . Let p > d be a prime unramified
in K , let v be a place in K above p, and write e for the ramification index of v

in L . Then e divides d! by Lemma 10.
Now set θ = p1/e. Then L(θ) is again an abelian extension of K . Since

xe
− p ∈ K [x] is a v-Eisenstein polynomial it follows that [K (θ) : K ] = e and v is

totally ramified in K (θ). By Abhyankar’s Lemma the ramification indices of the
places in L(θ) above v are again e. As Gal(L(θ)/K ) is abelian the inertia groups
of each place in L(θ) above v are equal, and of size e. Let U be their common
fixed field, so that [L(θ) : U ] = e. Now v is unramified in U and totally ramified in
K (θ) and thus [U (θ) : U ] = e. Hence, L(θ) = U (θ), and thus

α = β0 + β1θ + · · · +βe−1θ
e−1

for certain coefficients βi ∈ U . Now the trace from U (θ) to U of αθ− j is the sum
of the conjugates of αθ− j over U . It is not hard to see that this trace is also just
eβ j . Combining both, and using standard height inequalities, gives an upper bound
for the height of γ j := β j p j/e in terms of d and X .

Let us now assume that 1 ≤ j ≤ e − 1 and b j ̸= 0. Let u be a place in U (θ)

above v, and let q = qu be the corresponding prime ideal in the ring of integers of
U (θ). Then the exact order to which q divides b j is a (possibly negative) multiple
of e, whereas the exact order to which it divides p j/e is j . This implies that the
exact order to which q divides γ j is nonzero. Using this fact for all places in U (θ)

above v yields a lower bound for the height of γ j of the form H(γ j ) ≥ p1/(2e[K :Q]),
provided 1 ≤ j ≤ e − 1 and b j ̸= 0.
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Combining the upper and lower bounds for the height of γ j , and using that e
is bounded in terms of d, gives an upper bound B(K , d, X) for p in terms of d,
[K : Q], and X , whenever one among b1, . . . , be−1 is nonzero.

This means that for each place v of K lying above a prime p > B(K , d, X) we
have α ∈ U , and v is unramified in U . Therefore, K (α) is unramified at each prime
p whenever p > B(K , d, X) (assuming, as we can, B(K , d, X) > |DK/Q|). But,
by Lemma 10, the largest prime p ramifying in K (α) tends to infinity when K (α)

runs over an infinite set of subfields of K (d)
ab . Hence, we conclude that α lies in a

number field, depending only on K , d and X , and thus, by Northcott’s theorem,
there are only finitely many possibilities for α. This completes the proof. □

The first proof of Theorem 5 (using Theorem 8) only requires e to be bounded
in terms of d , whereas the second proof above requires the ramification index e to
divide d! to conclude that L(θ)/K is Galois (and abelian).

The fact that K (d)
ab /K is abelian is used in both proofs in three different ways,

namely to ensure that:

(i) pM in Lemma 10 tends to infinity.

(ii) M/K is Galois for every number field K ⊂ M ⊂ K (d)
ab .

(iii) The inertia groups I (B/p) for the different prime ideals B ⊂ OM above
p ⊂ OK are all equal.

The second claim of Lemma 10 remains true for K (d)/K (replace M by its
Galois closure over K in the proof) but the proof of the first claim falls apart for
K (d) when d ≥ 3. This is because not all finite extensions of K in K (d) can be
written as compositum of number fields of uniformly bounded degree over K as
was shown by Checcoli [2013, Theorem 1], at least if d ≥ 27. Gal and Grizzard
[2014, Corollary 1.2] showed that d ≥ 3 suffices.

However, Gal and Grizzard also showed [2014, Theorem 1.3] that every number
field in K (3) that is Galois over K can be written as a compositum of extensions
of K of degree at most 3. This means that if we only consider α in the set
K (3)

G = {α ∈ K (3)
; K (α)/K is Galois} then (i) and (ii) are automatically satisfied

for each M = K (α). This raises the question whether K (3)
G has the Northcott

property. An affirmative answer would be a significant extension of the case d = 3
in Theorem 5.
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The Kelley–Meka bounds for sets free of three-term
arithmetic progressions

Thomas F. Bloom and Olof Sisask

We give a self-contained exposition of the recent remarkable result of Kelley and
Meka: if A ⊆ {1, . . . , N } has no nontrivial three-term arithmetic progressions
then |A| ≤ exp(−c(log N )1/12)N , where c > 0 is a constant.

Although our proof is identical to that of Kelley and Meka in all of the main
ideas, we also incorporate some minor simplifications relating to Bohr sets. This
eases some of the technical difficulties tackled by Kelley and Meka and widens
the scope of their method. As a consequence, we improve the lower bounds
for the problem of finding long arithmetic progressions in A + A + A, where
A ⊆ {1, . . . , N }.

How large can a subset of {1, . . . , N } be without containing a nontrivial three-
term arithmetic progression {a, a +d, a + 2d}? (Nontrivial here means that d ̸= 0.)
This seemingly innocuous question, asked by Erdős and Turán [1936], has led to
a wealth of interesting mathematics, and has become one of the central questions
in additive combinatorics. A large part of the reason for this is that the tools and
techniques that have been developed to tackle it, starting with the argument of
Roth [1953], have turned out to be very influential, not only in dealing with other
problems in additive number theory, but also in motivating the development of tools
in other areas of mathematics — particularly in harmonic analysis.

This note gives an exposition of a recent remarkable breakthrough result of
Kelley and Meka [2023] concerning this question: they prove a very strong upper
bound for the maximal size of sets free of three-term progressions, far smaller than
any previously available.

Let A ⊆ {1, . . . , N } be a set which does not contain any (nontrivial) three-term
arithmetic progressions. Even establishing that |A|=o(N ) is a difficult problem, this
being Roth’s landmark result [1953]. Since Roth’s work there has been a sequence
of quantitative improvements to the upper bound, all of the form |A| ≤ N/(log N )C

for some constant C > 0, culminating in recent work of the authors [Bloom and
Sisask 2020], who showed that C = 1 + c is permissible, where c > 0 is some tiny
constant (we refer to the introduction of [loc. cit.] for further history).
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Kelley and Meka’s new upper bound is of a whole new order of magnitude.

Theorem 1 (Kelley–Meka). If A ⊆ {1, . . . , N } contains no nontrivial three-term
arithmetic progressions, then

|A| ≤
N

exp(c(log N )1/12)

for some absolute constant c > 0.

The Kelley–Meka bound is a huge leap forward, and tantalisingly close to the
best possible such bound. Indeed, we know that there are subsets of {1, . . . , N }

of size at least exp(−c(log N )1/2)N , where c > 0 is some universal constant, that
contain no nontrivial three-term progressions. This was first proved by Behrend
[1946] using a beautiful construction that uses lattice points on high-dimensional
spheres; small improvements have also been established by Elkin [2011] and Green
and Wolf [2010]. Getting anywhere near Behrend-style bounds for this problem
has been a long-standing goal in the area, and the argument of Kelley and Meka
achieves this in a beautiful and elegant way.

Our reasons for writing this note are:

(1) To explain the Kelley–Meka approach using terminology and a perspective
perhaps more familiar to researchers in additive combinatorics.

(2) To provide some minor technical refinements which allow for a proof of the
full Theorem 1 which involves only “classical” Bohr set techniques, rather
than the ad hoc method employed in [Kelley and Meka 2023] (in particular we
answer [loc. cit., Question 6.2] of whether such an approach is possible in the
affirmative). This widens the scope of potential applications over the integers,
and allows for integer analogues of the other main results in [loc. cit.].

It must be made clear, however, that our sole contribution is at the technical level,
allowing the Bohr set machinery to run a little more smoothly; all of the main ideas
are the same as in [loc. cit.].

The finite field case. As usual in this area, a simpler model case is provided by
replacing {1, . . . , N } with the vector space Fn

q . We will present Kelley and Meka’s
ideas in this model setting before the general case, since the former is technically
much simpler, while still containing all of the important new ideas. Kelley and
Meka’s argument in Fn

q establishes the following.

Theorem 2 (Kelley–Meka). If q is an odd prime and A ⊆ Fn
q has no nontrivial

three-term progressions, then |A| ≤ qn−cn1/9
for some constant c > 0.

The utility of Theorem 2 is as a demonstration of the proof techniques, since
for the result itself a stronger bound of |A| ≤ qn−cn is available via the polynomial
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method, as shown by Ellenberg and Gijswijt [2017]. Unfortunately, however, there is
no known analogue of the polynomial method for the integer problem, so achieving
strong bounds for the integer problem via this method is out of reach. Kelley
and Meka’s proof of Theorem 2 uses no polynomial methods, and instead uses
techniques from probability and Fourier analysis, which can be generalised (using
classical Bohr set machinery) to the integer setting.

After presenting the Kelley–Meka argument for Fn
q we will generalise this,

using the language of Bohr sets, to prove Theorem 1. Kelley and Meka take a
different, more ad hoc route, iterating over high-dimensional progressions. This is
an ingenious alternative, that may itself have further applications, but our aim here
is to show that more classical existing techniques also suffice. As a consequence,
we can also establish the following integer analogue of [Kelley and Meka 2023,
Corollary 1.12], which finds large subspaces in A + A + A for A ⊆ Fn

q .

Theorem 3. If A ⊆ {1, . . . , N } has size αN , then A+ A+ A contains an arithmetic
progression of length

≥ exp(−C log(2/α)3)N c/ log(2/α)9
,

where C, c > 0 are constants.

For comparison, the previously best bound known was Nα1+o(1)

, originally due to
Sanders [2008]. A construction due to Freiman, Halberstam, and Ruzsa [Freiman
et al. 1992] shows that no exponent better than c/ log(2/α) is possible.

Kelley and Meka deduce the above bounds for sets without three-term arithmetic
progressions, and more besides, from a more general type of structure result. This
says, roughly speaking, that for any reasonably large set A inside a finite abelian
group there exists some structured set V (e.g., an affine subspace in the Fn

q case)
such that A restricted to V is very “regular” in its additive behaviour — that is, for
“most” x the number of solutions to x = a + b with a, b ∈ A ∩ V is very close to
the average number of solutions.

We will first state a precise version of this structural result for Fn
q . It is convenient

to introduce the notion of a normalised indicator function: if A ⊆ G is nonempty
with size |A| = α|G| then we write µA = α−11A. (For a set A, we write 1A for the
indicator function of A, taking the value 1 on A and 0 elsewhere.) If V ⊆ G and
1 ≤ p < ∞, then we denote the L p(V ) norm of f : G → C by

∥ f ∥p(µV ) =

(
1

|V |

∑
x∈V

| f (x)|p
)1/p

.

Note, for example, that our choice of normalisation is chosen to ensure ∥µA∥1(µG)=1.
We will measure the aforementioned regularity of A ⊆ V by bounding the L p(V )
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norm of the difference between the convolution

µA ∗ µA(x) =
1

|G|

∑
a,b∈G

1a+b=xµA(a)µA(b) =
|G|

|A|2

∑
a,b∈A

1a+b=x

and its expected value. An elementary calculation shows that, when V ≤ G is a
subgroup and A ⊆ V ,

∥µA ∗ µA∥1(µV ) =
|G|

|V |
= ∥µV ∥1(µV ).

That is, the average of µA ∗ µA over V agrees with the average of µV itself.
Note carefully that, even though we are taking a local L p norm restricted to V

we are keeping µA and ∗ normalised relative to the global group G. This is a little
confusing at first, but when we move from Fn

q to general groups it is much more
convenient to keep as many definitions as possible global, rather than relativising to
the local V , since in general (e.g., when we move from Fn

q to Z/NZ) the subgroup
V will be replaced with a set that is only approximately structured.

Theorem 4 (Kelley–Meka). Let ϵ > 0. There is a constant C = C(ϵ) > 0 such that
the following holds. Let G = Fn

q for some prime q and n ≥ 1. Let p ≥ 1. For any
nonempty A ⊆ G with |A| = α|G| there exists a subspace V ≤ G with

codim(V ) ≤ Cp4 log(2/α)5

and x ∈ G such that, if A′
= (A − x) ∩ V , then

(1) |A′
| ≥ (1 − ϵ)α|V | and

(2) ∥µA′ ∗ µA′ − µV ∥p(µV ) ≤ ϵ
|G|

|V |
.

The factor |G|

|V |
here can be thought of as a normalising/scaling factor, correspond-

ing to the fact that the convolution is defined over G rather than over V .
Intuitively, the second item of the conclusion says, as p → ∞, that µA′ ∗ µA′ =

(1 + O(ϵ))µV with high probability, as x ranges uniformly over V . Therefore,
when studying many problems involving the additive behaviour of A′, one can
replace A′ with a random subset of V of the same density. This is, of course, a
very powerful tool. The cost is that we have had to restrict our original set A to an
affine subspace x + V to find this regularity, and so having the codimension of V
be as small as possible is important for quantitative applications. For example, in
the deduction of Theorem 2 from this one may take p to be around log(2/α) and ϵ

a constant. The resulting codimension bound of C log(2/α)9 then corresponds to
the exponent 1

9 in Theorem 2.



KELLEY–MEKA BOUNDS FOR THREE-TERM PROGRESSIONS 19

The general group case: Bohr sets. To prove Theorems 1 and 3 we shall use a
more general version of Theorem 4, applicable to any finite abelian group (which
in applications will be Z/NZ). One difficulty in even writing down the appropriate
statement is working out what should play the role of subspaces for general abelian
groups. This is not obvious; fortunately for us, however, this was already done by
Bourgain [1999], who showed that a suitable generalisation of a subspace, for these
purposes, is a Bohr set. A Bohr set is an approximate level set of some characters,
or more precisely, a set of the shape

B = Bohrν(0) = {x ∈ G : |1 − γ (x)| ≤ ν for all γ ∈ 0}

for some ν ≥ 0 (known as the width) and some 0 ⊆ Ĝ (known as the frequency set).
Often the most important thing about the frequency set is its size d = |0|, which is
called the rank of the Bohr set.

Background material on Bohr sets can be found in the Appendix, but the unfamil-
iar reader can for now think of the above Bohr set B of rank d = |0| as roughly like
the embedding in G of the lattice points in a d-dimensional box in Rd of side-length
proportional to ν. Writing Bρ for the same Bohr set but with the “width” ν replaced
by ρ · ν, one then has the approximate closure property that B + Bρ ≈ B provided
ρ is small — in particular, B + Bρ is not much larger than B provided ρ is small
compared to 1/d. It turns out that this approximate additive closure property of
Bohr sets of rank d can, for the purposes of this paper, be used in place of the exact
rigid structure provided by subspaces of codimension d in Fn

q (which are indeed
Bohr sets themselves, of rank d and width ν = 0).

Since Bohr sets only enjoy an approximate closure property, statements involving
them necessarily require more technical conditions and quantitative overhead. This
is why the use of the finite field model of Fn

q is invaluable in this area: an idea can
be tested with subspaces in a relatively clean way, and only once the idea has been
proven to have real quantitative strength does the work of translating the argument
to work over general Bohr sets need to begin.

The following is the generalisation of Theorem 4 required for our applications.
Kelley and Meka did not prove such a statement, but speculated that this should be
possible in [Kelley and Meka 2023, Footnote 9].

The reader should compare the statement to Theorem 4, and at first reading may
wish to pretend that B = B ′

= Bρ is the same subspace V ≤ Fn
q . For comparison to

the conclusion of Theorem 4 it may help to note that, when B is a subspace and
A′

⊆ B, then

µB ∗ µB = µB = µA′ ∗ µB,

and so

(µA′ − µB) ∗ (µA′ − µB) = µA′ ∗ µA′ − µB .
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Theorem 5. There is a constant c > 0 such that the following holds. Let δ, ϵ ∈ (0, 1),
let p ≥ 1 and let k be a positive integer such that (k, |G|) = 1. There is a constant
C = C(ϵ, δ, k) > 0 such that the following holds.

For any finite abelian group G and any subset A ⊆ G with |A| = α|G| there
exists a regular Bohr set B with

rk(B) ≤ Cp4 log(2/α)5

and
|B| ≥ exp(−Cp5 log(2p/α) log(2/α)6)|G|

and A′
⊆ (A − x) ∩ B for some x ∈ G such that

(1) |A′
| ≥ (1 − ϵ)α|B|,

(2) |A′
∩ B ′

| ≥ (1 − ϵ)α|B ′
|, where B ′

= Bρ is a regular Bohr set with ρ ∈( 1
2 , 1

)
· cδα/dk, and

(3) ∥(µA′ − µB) ∗ (µA′ − µB)∥p(µk·B′ ) ≤ ϵ
|G|

|B|
.

In other words, for any dense set A, we can find a low-rank Bohr set B such that
the restriction of (a translate of) A to B has almost the same relative density and
has its convolution extremely balanced: it is close to its average, as measured in
an L p-sense over another large Bohr set. This roughly means that, when studying
additive problems involving this restriction, we can replace A by a random set
of the same density. Part (2) of the conclusion is there for somewhat technical
reasons: since we need to work with both the Bohr set B and a narrowed copy Bρ ,
as described above, we want to know that A′ has large density on Bρ as well as
on B.

To give an idea of the parameters: to deduce Theorem 1, we shall take ϵ and
δ some small constants, k = 2, and p ≍ log(2/α). (The dependence on ϵ, δ, k is
not hard to track explicitly, but is a distraction for the present applications.) An
identical proof gives a statement with the measure µk·B ′ in part (3) replaced by
µk·B ′+t for any t ∈ B, or indeed µB or µB ∗µB , the latter two of which may appear
more natural. These are, however, slightly weaker, and certainly for the application
to three-term arithmetic progressions it is important that the measure over which
the L p norm is taken is supported on some suitably narrowed copy of B.

In Section 1 we provide an informal overview of the main steps of the argument.
In Section 2 we prove what are, in our opinion, the most important steps of the
argument in sufficient generality for the results over both Fn

q and {1, . . . , N }. In
Section 3 we make the overview more precise and provide full proofs for the Fn

q
case. Finally, in Sections 4 and 5 we show how this argument can be directly
adapted for the integers using Bohr sets. We will proceed by proving Theorem 5
first and then deducing Theorems 1 and 3.
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Improvements. Although Kelley and Meka’s breakthrough is close to the best
possible bound, there is still a gap between the exponent 1

12 of Theorem 1 and the
exponent 1

2 in the Behrend example, and it is natural to ask whether further progress
is possible. Indeed, a small modification of the method as presented in this paper
allows for a slight improvement: the 1

12 of Theorem 1 can be replaced by 1
9 with a

relatively clean argument (the only modification required is to the almost-periodicity
part). A further tedious lengthy technical optimisation allows for an exponent of 5

41 .
Since the focus of this paper is an exposition of the method and results of Kelley
and Meka, we will detail these improvements in a separate forthcoming note. The
same modification leads to an improvement of the exponent in Theorem 2 from 1

9
to 1

7 , and an improvement of the exponent in Theorem 3 from 9 to 7.
We believe that an exponent of 1

7 (in the statement of Theorem 1) is the natural
limit of these methods, in that achieving anything better will require significant
new ideas. Of course, the Behrend exponent of 1

2 would be the final target, but
this seems quite far out of reach still; indeed, an exponent of 1

3 (or perhaps even 1
4 )

seems to be the limit of any argument that uses any sort of “density increment”
argument with Bohr sets (whether using Kelley–Meka ideas or a more traditional
Fourier analytic approach).

Notational conventions. Logarithmic factors will appear often, and so in this paper
we use the convenient abbreviation L(α) to denote log(2/α). (The 2 here is just a
convenient device to make sure that L(α) ≥

1
2 , say, whenever α ∈ (0, 1].)

In statements which refer to G, this can be taken to be any finite abelian group
(although for the applications this will always be either Fn

q or Z/NZ). We use the
normalised counting measure on G, so that

⟨ f, g⟩ = E
x∈G

f (x)g(x) and ∥ f ∥p =

(
E

x∈G
| f (x)|p

)1/p

for 1 ≤ p < ∞,

where Ex∈G =
1

|G|

∑
x∈G . For any f, g : G → C we define the convolution and the

difference convolution1 as

f ∗ g(x) = E
y

f (y)g(x − y) and f ◦ g(x) = E
y

f (x + y)g(y).

Note the useful adjoint property

⟨ f, g ∗ h⟩ = ⟨ f ◦ h, g⟩.

We furthermore write f (p) for the p-fold convolution f (p)
= f ∗ f ∗ · · · ∗ f , where

there are p copies of f .

1We caution that, while convolution is commutative and associative, difference convolution is in
general neither.
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For some purposes it is conceptually cleaner to work relative to other nonnegative
functions on G, so that if µ : G → R≥0 has ∥µ∥1 = 1 we write

⟨ f, g⟩µ = E
x∈G

µ(x) f (x)g(x) and ∥ f ∥p(µ) =

(
E

x∈G
µ(x)| f (x)|p

)1/p

for 1 ≤ p < ∞. (The special case above is the case when µ ≡ 1.)
We use the slight abuse of notation that if µ : G → R≥0 with ∥µ∥1 = 1, then

µ(A) = ∥1A∥1(µ) is the density of A relative to µ. Unless specified otherwise, µ

is the uniform measure on G. (So that, for example, µ(A) = α = |A|/|G| is the
density of A within G.) We write µA = α−11A for the normalised indicator function
of A (so that ∥µA∥1 = 1). We will sometimes speak of A ⊆ B with relative density
α = |A|/|B|.

The Fourier transform of f : G → R is f̂ : Ĝ → C defined for γ ∈ Ĝ as

f̂ (γ ) = E
x∈G

f (x)γ (x),

where Ĝ = {γ : G → C×
: γ a homomorphism} is the dual group of G. We

will also use convolution of functions f, g : Ĝ → C, defined as f ∗ g(γ ) =∑
χ∈Ĝ f (χ)g(γ − χ), and denote k-fold convolution again by f (k) for such func-

tions.2 We note the following elementary facts:

• f̂ ∗ g = f̂ · ĝ and f̂ ◦ f = | f̂ |
2 (so in particular the Fourier transform of f ◦ f

is a nonnegative function on Ĝ).

• Ex f (x)k
= f̂ ∗ · · · ∗ f̂ (0Ĝ), where the convolution is k-fold.

• If µ : G → R≥0 has ∥µ∥1 = 1, then the Fourier transform of µ − 1 is µ̂1̸=0Ĝ
.

Note that these three facts immediately imply that the Fourier transform of µA ◦

µA − 1 is nonnegative, that E(µA ◦ µA − 1)k
≥ 0 for any integer k, and (coupled

with the triangle inequality) that ∥µA ∗ µA − 1∥p ≤ ∥µA ◦ µA − 1∥p when p is an
even integer. Although easily seen via the Fourier transform, the latter two facts
also have purely “physical” proofs, as we will see later.

Finally, we use the Vinogradov notation X ≪ Y to mean X = O(Y ), that is, there
exists some constant C > 0 such that |X | ≤ CY . We write X ≍ Y to mean X ≪ Y
and Y ≪ X , and X = �(Y ) to mean Y = O(X). An expression like 1 +�(1) thus
means a quantity bounded below by an absolute constant strictly bigger than 1.
The appearance of parameters as subscripts indicates that the implied constant may
depend on these parameters (in some unspecified fashion).

2Note that we are using additive notation for the group operation on Ĝ.
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1. Sketch of the argument

In this section we provide a sketch of the Kelley–Meka proof of the finite field
model case, Theorem 2, along with some personal commentary and context. Kelley
and Meka also include some fascinating comparisons of this approach with earlier
work and speculations about it and alternative approaches, and we encourage the
reader to study Appendices A and B of [Kelley and Meka 2023] and consider the
interesting questions therein (although note that we answer their Question A.4 in
the affirmative below).

Let A ⊆ Fn
q be a set of density α and C ⊆ Fn

q a set of density γ . (Note that a
three-term arithmetic progression is a solution to x + y = 2z, and thus for their
study we will choose

C = 2 · A = {2a : a ∈ A},

in which case γ = α.) How many solutions to a1 + a2 = c with a1, a2 ∈ A and
c ∈ C do we expect? If A, C are random sets, then we expect ≈ α2γ q2n many such
solutions, which is to say

⟨µA ∗ µA, µC⟩ ≈ 1.

The Kelley–Meka approach begins with some constant discrepancy from this
expected count, say ⟨µA ∗ µA, µC⟩ ≤

1
2 , and shows that this leads to a large

density increment of A on some subspace V ≤ Fn
q with codimension O(L(α)O(1))

(that is, shows that there is such a subspace V and a translate A′ of A such that
µV (A′) ≥ (1 + �(1))α, meaning that A′ has significantly larger density in V than
A has in Fn

q). This is done using mostly physical-based methods, rather than the
Fourier-based methods that have dominated the study of three-term progressions
thus far.

Our presentation of the Kelley–Meka strategy breaks it down into five key steps.

Step 1 (Hölder lifting). If ⟨µA ∗ µA, µC⟩ ≤
1
2 , then ∥µA ◦ µA − 1∥p ≥

1
4 for some

p ≪ L(γ ).

This is essentially a one-line application of Hölder’s inequality:

1
2 ≤ |⟨µA ∗ µA − 1, µC⟩| ≤ ∥µA ∗ µA − 1∥p∥µC∥p/(p−1) ≤ 2∥µA ∗ µA − 1∥p

for sufficiently large p, since ∥µC∥p/(p−1) =γ −1/p, and noting that ∥µA∗µA−1∥p ≤

∥µA ◦ µA − 1∥p when p is an even integer. Although trivial, the passage from
few three-term arithmetic progressions to large L p norm of µA ◦ µA − 1 was
rarely used in previous work, most of which begins with the Fourier deduction that∑

γ ̸=0|µ̂A(γ )|2|µ̂C(γ )| ≫ 1.
This physical Hölder step was used (along with almost-periodicity) in [Bloom

and Sisask 2019] to achieve density bounds of α ≤ (log N )−1+o(1). Indeed, in a
sense the approach of [loc. cit.] corresponds to carrying out Steps 1, 4, and 5 of the
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present sketch. The advancement of [Bloom and Sisask 2020] past the logarithmic
density barrier couples this with delicate structural information on the Fourier side
(following seminal ideas of Bateman and Katz [2012]).

It is incredible that the following two steps, which are simple enough to prove
in only a couple of pages, perform far better quantitatively than this elaborate
Fourier-side approach.

Step 2 (unbalancing). For any f : G → R such that f̂ ≥ 0, if ∥ f ∥p ≥
1
4 , then

∥ f + 1∥p′ ≥ 1 +
1
8 for some p′

≪ p. In particular, if ∥µA ◦ µA − 1∥p ≥
1
4 , then

∥µA ◦ µA∥p′ ≥ 1 +
1
8 .

This step is essential to the success of the Kelley–Meka argument, and rests on
the fact that the Fourier transform of f is nonnegative. (Note that it is not true for
an arbitrary function.) While the spectral nonnegativity of µA ◦µA − 1 has played
a role in some arguments before (e.g., in the spectral boosting aspect of [Bloom
and Sisask 2020]), to our knowledge it has not before been so cleanly expressed,
and its potential had not been fully appreciated within additive combinatorics.

We remark that, as pointed out to the authors by Shkredov, an entirely physical
proof of this step is possible, with no mention of the Fourier transform at all, if we
replace the assumption f̂ ≥ 0 with f = g◦g for some function g : R → C (note that
this is indeed satisfied in our application since µA ◦µA − 1 = (µA − 1)◦ (µA − 1)).
We refer to the proof of Lemma 7 for details.

At this point we digress to note that, instead of following Steps 1 and 2 as
Kelley and Meka do, one could obtain the conclusion ∥µA ◦µA∥p ≥ 1 +�(1) for
some p ≪ L(γ ) from the assumption that ⟨µA ∗µA, µC⟩ ≤

1
2 using more classical

Fourier-based methods. (In particular this observation answers [Kelley and Meka
2023, Question A.4] in the affirmative.) By converting the inner product to Fourier
space and applying the triangle inequality we observe that

1
2 ≤

∑
λ̸=0

|µ̂A(λ)|2|µ̂C(λ)|.

It follows that, for some choice of signs cλ ∈ C, we have

1 +
1
2 ≤

∑
λ

|µ̂A(λ)|2|µ̂C(λ)| = E
x∈C

∑
λ

cλ|µ̂A(λ)|2λ(−x).

Applying Hölder’s inequality to the left-hand side and using orthogonality of
characters yields, for any even integer p,

1 +
1
2 ≤ γ −1/p

( ∑
λ1,...,λp

cλ1 · · · cλp |µ̂A(λ1)|
2
· · · |µ̂A(λp)|

21λ1+···−λp=0

)1/p

.
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We can discard the signs cλ by the triangle inequality, and then by orthogonality
the sum here is in fact equal to ∥µA ◦ µA∥p, and we are done choosing p suitably
large. This sort of step has already played a major role in previous Fourier-based
approaches to Roth’s theorem, although generally with the µ̂A restricted to some
“large spectrum”, where it then yields information about the additive relations within
this large spectrum. A striking feature of the work of Kelley and Meka is that this
information is far more useful on the physical side.

We end our digression here and return to the sketch.

Step 3 (dependent random choice). If ∥µA◦µA∥p ≥1+
1
8 , then there are A1, A2 ⊆ A

of density at least αO(p) such that

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 −
1

32

where S =
{

x : µA ◦ µA(x) > 1 +
1

16

}
.

This is, in our opinion, the most important step (although of course every step is
necessary, and in particular the previous unbalancing step is crucial to obtaining
the information required for this step). In combination with the previous two
steps, we have now converted the original three variable deficiency information of
⟨µA∗µA, µC⟩≤

1
2 into four variable abundancy information ⟨µA1 ◦µA2, µA◦µA⟩≥

1 +�(1). This is very promising, since Schoen and the second author [Schoen and
Sisask 2016] have already shown that almost-periodicity can prove quasipolynomial
bounds (that is, of the same shape as the Kelley–Meka bound) for 4 variable
equations. Another indication of the strength of the conclusion obtained in Step 3
is that Sanders [2012b] has shown (also using almost-periodicity) that S contains a
large proportion of a large subspace with codimension O(L(α)O(1)).

The proof of this step, called sifting in [Kelley and Meka 2023], is completely
elementary, and uses dependent random choice — one takes Ai to be the intersection
of p randomly chosen translates of A. A simple expectation calculation combined
with the L p information then verifies that there must exist some choice of translates
which satisfy both the density conditions and the inner product condition.

Arguments of this kind have appeared before in additive combinatorics, dating
back in some form to Gowers’ proof [1998] of Szemerédi’s theorem. For example,
when p = 2 this method was used by Schoen [2015] to prove strong bounds for the
Balog–Szemerédi–Gowers theorem, and similar manipulations for larger p have
played an extensive role in work of Schoen and Shkredov; see for example [Schoen
and Shkredov 2013; Shkredov 2013]. A very similar statement also appears in work
of Sanders [2010, Lemma 1.9], itself a generalisation of an argument of Gowers
[1998, Lemma 11].

Despite this previous work, the true potential of this method (when coupled
with the powerful technique of almost-periodicity) in applications to the study
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of three-term progressions and related problems had been overlooked before the
breakthrough of Kelley and Meka.

Step 4 (almost periodicity). For any sets A1, A2, S ⊆ Fn
q , if A1, A2 have density at

least α, then there is a subspace V with codimension O(L(α)4) such that

|⟨µV ∗ µA1 ◦ µA2, 1S⟩ − ⟨µA1 ◦ µA2, 1S⟩| ≤
1

100 .

Almost-periodicity statements of this type have played an important role in
additive combinatorics since their introduction by Croot and the second author
[Croot and Sisask 2010], most notably in the work of Sanders achieving quasipolyno-
mial bounds for inverse sumset theorems [Sanders 2012b; 2013]. The conventional
wisdom was that, despite their success in inverse sumset problems and for translation
invariant equations in four or more variables (see [Schoen and Sisask 2016] and
the earlier [Schoen and Shkredov 2014] for six or more variables), they were not
able to achieve significant results for three-term arithmetic progressions. (Although
the argument of [Bloom and Sisask 2020] did make fundamental use of almost-
periodicity, most of the work in that paper was Fourier-analytic.) Kelley and Meka
have dispelled this illusion completely.

It should be noted, however, that there is no novelty in the actual form of almost-
periodicity used by Kelley and Meka — the new strength is a result of the context
in which they use it.

Step 5 (density increment). If ⟨µA ∗µA, µC⟩ ≤
1
2 , then there is an affine subspace

V of codimension O(L(α)4L(γ )4) on which A has density at least
(
1 +

1
100

)
α.

This is just a trivial combination of the previous 4 steps (noting that the density
increment condition can also be phrased as ∥µA ∗ µV ∥∞ ≥ 1 +

1
100 ). This density

increment condition can now be iteratively applied to eventually obtain a lower
bound for ⟨µA′ ∗ µA′, µC⟩ (with A′ now perhaps some subset of a translate of A).

For example, the deduction of Theorem 2 is routine with C = 2 · A. Indeed,
a density increment such as α 7→ (1 + �(1))α can occur at most O(L(α)) many
times, after which we must halt with many three-term arithmetic progressions found
in the intersection of A with some affine subspace, the codimension of which is
bounded above by O(L(α)9).

Alternatively, carrying through these steps with C being the complement of
A + A leads to the following.

Theorem 6 (Kelley–Meka). If A ⊆ Fn
q has density α and γ ∈ (0, 1], then there is

some affine subspace V ≤ Fn
q of codimension O(L(α)5L(γ )4) such that

|(A + A) ∩ V | ≥ (1 − γ )|V |.

For comparison, the best bound previously available, due to Sanders [2012b],
had codimension O(L(α)4γ −2). The latter is slightly better when γ is constant (as
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was the case of interest in [loc. cit.]) but much weaker when γ ≈ α, which is the
regime of interest for three-term arithmetic progressions.

2. The key new lemmas

In this section we prove general forms of Steps 2 and 3 that will be used for both
the Fn

q and integer case.

2.1. Unbalancing of spectrally nonnegative functions. The following precise form
of Step 2 will suffice for all our applications.

Lemma 7. Let ϵ ∈ (0, 1) and ν : G → R≥0 satisfy ∥ν∥1 = 1 and ν̂ ≥ 0. Let
f : G → R be such that f̂ ≥ 0. (Or, alternatively, assume that f = g ◦ g and
ν = h ◦ h for some g, h : G → C.)

If ∥ f ∥p(ν) ≥ ϵ for some p ≥ 1, then

∥ f + 1∥p′(ν) ≥ 1 +
1
2ϵ

for some p′
≪ϵ p.

We have left the dependence on ϵ unspecified since our applications only use
ϵ ≫ 1. The proof below delivers p′

≪ ϵ−1 log(ϵ−1)p. Kelley and Meka use a
different method (see [Kelley and Meka 2023, Appendix D]) which is more efficient,
giving p′

≪ ϵ−1 p, but requires use of an external (though simple) fact about the
binomial distribution.

Proof. We first establish the important fact that, for any integer k ≥ 1,

⟨ν, f k
⟩ ≥ 0. (1)

We will give two proofs of (1), depending on whether the Fourier assumption
f̂ , ν̂ ≥ 0 or the physical assumption f = g ◦ g and ν = h ◦ h is used. Given (1) no
further use of the Fourier transform is required, and the proofs converge.

The Fourier proof of (1), which is used by Kelley and Meka, is immediate from
Parseval’s identity:

⟨ν, f k
⟩ = ⟨̂ν, f̂ (k)

⟩,

where we recall that f (k)
= f ∗ f ∗ · · · ∗ f denotes the k-fold convolution, and the

right-hand side is nonnegative since f̂ , ν̂ ≥ 0.
We now present the alternative physical proof of (1), assuming f = g ◦ g and

ν = h ◦h. This argument was pointed out to the authors by Shkredov, who has made
extensive use of the following kind of manipulations; for example in [Shkredov
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2013]. We observe that

⟨ν, f k
⟩ = E

x
h ◦ h(x)g ◦ g(x)k

= E
y1,y2

h(y1)h(y2)

(
E
z

g(y1 + z)g(y2 + z)
)k

= E
z1,...,zk

E
y1,y2

h(y1)h(y2)g(y1 + z1) · · · g(y2 + zk)

= E
z1,...,zk

∣∣∣∣E
y

h(y)g(y + z1) · · · g(y + zk)

∣∣∣∣2

,

which is clearly nonnegative as each summand is.
We now show how (1) implies the conclusion. Without loss of generality we

can assume that p ≥ 5 is an odd integer. Using (1), since 2 max(x, 0) = x + |x | for
x ∈ R and f p−1

= | f |
p−1, we have

2⟨max( f, 0), f p−1
⟩ν = ⟨ν, f p

⟩ + ⟨| f |, f p−1
⟩ν ≥ ∥ f ∥

p
p(ν) ≥ ϵ p.

Therefore, if P ={x : f (x)≥0}, then ⟨1P , f p
⟩ν ≥

1
2ϵ p. Furthermore, if T =

{
x ∈ P :

f (x) ≥
3
4ϵ

}
, then ⟨1P\T , f p

⟩ν <
( 3

4ϵ
)p

≤
1
4ϵ p, and hence by the Cauchy–Schwarz

inequality
ν(T )1/2

∥ f ∥
p
2p(ν) ≥ ⟨1T , f p

⟩ν ≥
1
4ϵ p.

On the other hand, by the triangle inequality

∥ f ∥2p(ν) ≤ 1 + ∥ f + 1∥2p(ν) ≤ 3,

or else we are done, with p′
= 2p. Hence ν(T ) ≥ (ϵ/10)2p. It follows that, for any

p′
≥ 1,

∥ f + 1∥p′(ν) ≥ ⟨1T , | f + 1|
p′

⟩
1/p′

ν ≥
(
1 +

3
4ϵ

)
(ϵ/10)2p/p′

.

The desired bound now follows if we choose p′ a sufficiently large multiple (de-
pending on ϵ) of p. □

2.2. An application of dependent random choice. We now use dependent random
choice (or what Kelley and Meka call “sifting”) to prove a general form of Step 3.
This makes use of (a generalisation of) the fact that

∥1A ◦ 1A∥
p
p = E

s1,...,sp∈G
µ((A + s1) ∩ · · · ∩ (A + sp))

2

to convert L p-information about a convolution to information about the nested inter-
sections appearing in the right-hand side. This identity features extensively in some
works of Shkredov (see [Shkredov 2013] for example) and Schoen and Shkredov
[2014], and is already implicitly used in work of Sanders [2010, Lemma 1.9], but its
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strength and utility in the current context was far from apparent before the work of
Kelley and Meka. At a first reading of the following result the reader may wish to
take B1 = B2 = G, in which case µ = µB1 ◦ µB2 is just the usual uniform measure
on G.

Lemma 8. Let p ≥ 1 be an integer and ϵ, δ > 0. Let B1, B2 ⊆ G, and let µ =

µB1 ◦ µB2 . For any finite set A ⊆ G with density α, if

S = {x ∈ G : µA ◦ µA(x) > (1 − ϵ)∥µA ◦ µA∥p(µ)},

then there are A1 ⊆ B1 and A2 ⊆ B2 such that

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − δ

and

min
(

|A1|

|B1|
,
|A2|

|B2|

)
≫ (α∥µA ◦ µA∥p(µ))

2p+Oϵ,δ(1).

Again, since we will apply this only in the case ϵ, δ ≫ 1, we are not concerned
with the behaviour of the Oϵ,δ(1) term, although we record here that the proof (which
is identical to that in [Kelley and Meka 2023]) in fact allows for O(ϵ−1 log(δ−1)).
We furthermore note that Ai will take the form Bi ∩ (A + s1) ∩ · · · ∩ (A + sp) for
some randomly chosen shifts s j ∈ G.

We shall prove Lemma 8 after Lemma 10 below, but first we note the following
immediate special case, which is all we use when studying Fn

q .

Corollary 9. Let p ≥ 1 be an integer and ϵ > 0. If A ⊆ G is such that ∥µA ◦µA∥p ≥

1 + ϵ and S = {x : µA ◦ µA(x) > 1 + ϵ/2}, then there are A1, A2 ⊆ G, both of
density

≫ α2p+Oϵ(1),

such that
⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/8.

We encode the dependent random choice argument underpinning Lemma 8 as
the following general lemma.

Lemma 10. Let p ≥ 2 be an even integer. Let B1, B2 ⊆ G and µ = µB1 ◦ µB2 . For
any finite set A ⊆ G with density α and function f : G → R≥0 there exist A1 ⊆ B1

and A2 ⊆ B2 such that

⟨µA1 ◦ µA2, f ⟩ ≤ 2
⟨(µA ◦ µA)p, f ⟩µ

∥µA ◦ µA∥
p
p(µ)

and

min
(

|A1|

|B1|
,
|A2|

|B2|

)
≥

1
4α2p

∥µA ◦ µA∥
2p
p(µ).
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Proof. For s ∈ G p let A1(s) = B1 ∩ (A + s1) ∩ · · · ∩ (A + sp), and similarly for
A2(s). Note that

⟨(µA ◦ µA)p, f ⟩µ = E
b1∈B1
b2∈B2

µA ◦ µA(b1 − b2)
p f (b1 − b2)

= E
b1∈B1
b2∈B2

(
α−2 E

t∈G
1A+t(b1)1A+t(b2)

)p

f (b1 − b2)

= α−2p E
b1∈B1
b2∈B2

E
s∈G p

1A1(s)(b1)1A2(s)(b2) f (b1 − b2)

=
α−2p

|G|
2

|B1||B2| E
s∈G p

⟨1A1(s) ◦ 1A2(s), f ⟩.

In particular, applying this with f ≡ 1 we see that, if αi (s) = |Ai (s)|/|G|, then

∥µA ◦ µA∥
p
p(µ) =

α−2p
|G|

2

|B1||B2| E
s

α1(s)α2(s)

and
⟨(µA ◦ µA)p, f ⟩µ

∥µA ◦ µA∥
p
p(µ)

=
Es⟨1A1(s) ◦ 1A2(s), f ⟩

Es α1(s)α2(s)
= η,

say. Note that, if

M =
1
2α p(|B1||B2|/|G|

2)1/2
∥µA ◦ µA∥

p
p(µ),

then

E
s

1α1(s)α2(s)<M2α1(s)α2(s) < M
(
E
s

E
x∈G

1A1(s)(x)

)1/2(
E
s

E
x∈G

1A2(s)(x)

)1/2

= Mα p(|B1||B2|/|G|
2)1/2

=
1
2 E

s
α1(s)α2(s)

and so

E
s
⟨1A1(s) ◦ 1A2(s), f ⟩ = ηEα1(s)α2(s) < 2ηE

s
α1(s)α2(s)1α1(s)α2(s)≥M2 .

In particular there must exist some s such that

⟨1A1(s) ◦ 1A2(s), f ⟩ < 2ηα1(s)α2(s)1α1(s)α2(s)≥M2,

and the claim follows (note that the left-hand side is trivially ≥ 0 and hence such
an s must satisfy α1(s)α2(s) ≥ M2). □
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The deduction of Lemma 8 is immediate from Lemma 10 with f = 1G\S . Indeed,
by nesting of L p norms we can assume that p is sufficiently large in terms of ϵ

and δ (this is where the Oϵ,δ(1) term arises in the exponent), and that p is an even
integer. It then suffices to note that

⟨µA1 ◦ µA2, 1S⟩ = 1 − ⟨µA1 ◦ µA2, 1G\S⟩

and by definition of S we have

⟨(µA ◦ µA)p, 1G\S⟩

∥µA ◦ µA∥
p
p

≤ (1 − ϵ)p

which is ≤ δ/2 if p is large enough.

3. The finite field case

In this section we prove Theorem 2, following the sketch of Section 1. Theorem 4
can proved in a very similar way. The following straightforward lemma is a form
of Step 1.

Lemma 11. Let ϵ > 0. If A, C ⊆ G, where C has density at least γ , then either

(1) |⟨µA ∗ µA, µC⟩ − 1| ≤ ϵ or

(2) ∥µA ◦ µA − 1∥p ≥ ϵ/2 for some p ≪ L(γ ).

Proof. If the first alternative fails, then by Hölder’s inequality, for any p ≥ 1

ϵ < |⟨µA ∗ µA − 1, µC⟩| ≤ ∥µA ∗ µA − 1∥pγ
−1/p.

In particular, if we choose p = 2⌈KL(γ )⌉ for some large constant K , then we
deduce that

∥µA ∗ µA − 1∥p ≥
1
2ϵ.

It remains to note that, assuming without loss of generality that p is an even integer,

∥µA ∗ µA − 1∥
p
p = (µ̂A

21 ̸=0Ĝ
)(p)(0Ĝ) ≤ (|µ̂A|

21 ̸=0Ĝ
)(p)(0Ĝ) = ∥µA ◦ µA − 1∥

p
p.

Again, although we have used a one-line Fourier proof here, this can also be seen
using an entirely physical argument, which we sketch here. Note that µA ∗µA −1 =

(µA − 1) ∗ (µA − 1) and similarly for µA ◦ µA − 1. It suffices therefore to show
that, for any function f : G → C, we have

∥ f ∗ f ∥
p
p ≤ ∥ f ◦ f ∥

p
p.
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We can write the left-hand side as

∥ f ∗ f ∥
p
p = E

x,y

(
E
u

f (x + u) f (y − u)

)p

= E
u1,...,u p

(
E
x

f (x + u1) · · · f (x + u p)

)(
E
y

f (y − u1) · · · f (y − u p)

)
and the right-hand side as

∥ f ◦ f ∥
p
p = E

x,y

(
E
u

f (x + u) f (y + u)

)p

= E
u1,...,u p

∣∣∣∣E
x

f (x + u1) · · · f (x + u p)

∣∣∣∣2

,

and the desired inequality now follows from the Cauchy–Schwarz inequality. □

Steps 2 and 3 have already been proved as Lemma 7 and Corollary 9. For Step 4
we can use the following almost-periodicity result, which is [Schoen and Sisask
2016, Theorem 3.2], as a black box.

Theorem 12 (almost-periodicity). If A1, A2, S ⊆ Fn
q are such that A1 and A2 both

have density at least α, then there is a subspace V of codimension

codim(V ) ≪ϵ L(α)4

such that
|⟨µV ∗ µA1 ∗ µA2, 1S⟩ − ⟨µA1 ∗ µA2, 1S⟩| ≤ ϵ.

Importantly, note that no assumption is made on S, and there is no dependency
on the density of S. We now complete the final step by combining everything
thus far into a single density increment statement, which suffices for Theorem 2 as
discussed in Section 1.

Proposition 13. Let ϵ ∈ (0, 1). If A, C ⊆ Fn
q , where C has density at least γ , then

either

(1) |⟨µA ∗ µA, µC⟩ − 1| ≤ ϵ or

(2) there is a subspace V of codimension

≪ϵ L(γ )4L(α)4

such that ∥1A ∗ µV ∥∞ ≥ (1 + �(ϵ))α.

Proof. By Lemma 11, if the first alternative fails, then ∥µA ◦ µA − 1∥p ≥ ϵ/2
for some p ≪ L(γ ). By Lemma 7 (applied to f = µA ◦ µA − 1) we deduce that
∥µA ◦ µA∥p ≥ 1 + ϵ/4 for some p ≪ϵ L(γ ). Hence, by Corollary 9, there are
A1, A2, both of density

≥ αOϵ(L(γ )),
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such that
⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/32,

where S = {x : µA ◦ µA(x) ≥ 1 + ϵ/8}. By Theorem 12 there is a subspace V of
the required codimension such that

⟨µV ∗ µA1 ◦ µA2, 1S⟩ ≥ 1 −
1
16ϵ.

By definition of S, it follows that

1 + �(ϵ) ≤ (1 + ϵ/8)(1 − ϵ/16)

≤ ⟨µV ∗ µA1 ◦ µA2, µA ◦ µA⟩

≤ ∥µV ∗ µA∥∞∥µA ∗ µA2 ◦ µA1∥1

= ∥µV ∗ 1A∥∞α−1,

and the proof is complete. □

4. The integer case

A useful strategy in additive combinatorics is to first prove a result of interest over
Fn

q , making use of the abundancy of subspaces, and then translate this to a result over
the integers, replacing various equalities with approximate equalities and subspaces
with Bohr sets.

Bohr sets of low rank are analogues of subspaces of low codimension, and have
played a central role in additive combinatorics since the work of Bourgain [1999],
with much of the theory further developed by Sanders [2011; 2012a]. We have
recalled the relevant definitions and properties in the Appendix.

In this section we will employ Steps 3, 4, and 5 of the Kelley–Meka approach,
performed relative to Bohr sets, to prove the following technical statement, whose
statement is convenient for the iterative proof. In the following section we will
show how it, together with unbalancing and the regularity of Bohr sets, implies
Theorem 5, and thence Theorems 1 and 3.

We apologise for the daunting appearance and technicality of the statements in
this and the next section; a certain overhead of notation and caveats is a sad fact of
life when working with Bohr sets. The reader should be reassured, however, that
all the essential ideas are as in the Fn

q case.
The approach taken here should be compared with that in [Kelley and Meka

2023, Section 8] — there Kelley and Meka also follow the Fn
q model, but instead

use mixed analogues over multidimensional progressions and Bohr sets, instead of
just Bohr sets as we do here. The two objects are, in a heuristic sense, identical,
but the need to pass between them adds some complexity to the argument of Kelley
and Meka.
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Theorem 14. There is a constant c>0 such that the following holds. Let ϵ,δ ∈ (0,1)

and p, k ≥ 1 be integers such that (k, |G|) = 1. For any A ⊆ G with density α there
is a regular Bohr set B with

d = rk(B) = Oϵ(L(α)5 p4) and |B| ≥ exp(−Oϵ,δ(L(α)6 p5L(α/p)))|G|

and some A′
⊆ (A − x) ∩ B for some x ∈ G such that

(1) |A′
| ≥ (1 − ϵ)α|B|,

(2) |A′
∩ B ′

| ≥ (1 − ϵ)α|B ′
|, where B ′

= Bρ is a regular Bohr set with
ρ ∈

(1
2 , 1

)
· cδα/d, and

(3) ∥µA′ ◦ µA′∥p(µk·B′′◦µk·B′′∗µk·B′′′◦µk·B′′′ ) < (1 + ϵ)µ(B)−1, for any regular Bohr
sets B ′′

= B ′

ρ′ and B ′′′
= B ′′

ρ′′ satisfying ρ ′, ρ ′′
∈

(1
2 , 1

)
· cδα/d.

The proof of Theorem 14 proceeds by repeated application of the following
statement, which is suitable for iteration.

Proposition 15. There is a constant c > 0 such that the following holds. Let ϵ > 0
and p, k ≥ 1 be integers such that (k, |G|) = 1. Let B, B ′, B ′′

⊆ G be regular Bohr
sets of rank d such that B ′′

⊆ B ′

c/d and A ⊆ B with relative density α. If

∥µA ◦ µA∥p(µk·B′◦µk·B′∗µk·B′′◦µk·B′′ ) ≥ (1 + ϵ)µ(B)−1,

then there is a regular Bohr set B ′′′
⊆ B ′′ of rank at most

rk(B ′′′) ≤ d + Oϵ(L(α)4 p4)

and size
|B ′′′

| ≥ exp(−Oϵ(dpL(α/d) +L(α)5 p5))|B ′′
|

such that
∥µB ′′′ ∗ µA∥∞ ≥ (1 + cϵ)µ(B)−1.

We first explain how Theorem 14 follows by iteration. In doing so we shall
require a regularity “narrowing” trick originally due to Bourgain. The following
form is [Bloom and Sisask 2020, Lemma 12.1].

Lemma 16. There is a constant c > 0 such that the following holds. Let B be a
regular Bohr set of rank d , suppose A ⊆ B has density α, let ϵ > 0, and suppose
B ′, B ′′

⊆ Bρ where ρ ≤ cαϵ/d. Then either

(1) there is some translate A′ of A such that |A′
∩B ′

|≥ (1−ϵ)α|B ′
| and |A′

∩B ′′
|≥

(1 − ϵ)α|B ′′
|, or

(2) ∥1A ∗ µB ′∥∞ ≥ (1 + ϵ/2)α, or

(3) ∥1A ∗ µB ′′∥∞ ≥ (1 + ϵ/2)α.
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Proof of Theorem 14 assuming Proposition 15. Let Cϵ, Dϵ,δ ≥ 1 be parameters to
be specified later, and let c be the smaller of 1

2 and the constant c in Proposition 15.
Let t ≥ 0 be maximal such that there is a sequence of regular Bohr sets, say
B(0), . . . , B(t), and subsets of translates of A, say A0, . . . , At , such that the follow-
ing holds:

(1) B(0)
= G and A0 = A.

(2) Each B(i) is a regular Bohr set of rank di and

di+1 ≤ di + CϵL(α)4 p4

and
|B(i+1)

| ≥ exp(−Dϵ,δ(dpL(α/d) +L(α)5 p5))|B(i)
|.

(3) Each Ai is a subset of B(i) with density αi such that αi+1 ≥ (1 + cϵ/4)αi for
0 ≤ i < t .

Observe from point (3), and the trivial fact that αi ≤ 1, that t ≪ϵ L(α). Note that
this implies dt ≪ϵ L(α)5 p4.

We apply Lemma 16 with cϵ/2 in place of ϵ, and B = B(t), B ′
= Bc′αϵ/dt

and B ′′
= B ′

c′′δα/dt
, where the constants are in particular chosen to ensure that

B ′, B ′′ are both regular. Provided we pick Dϵ,δ large enough in terms of Cϵ , ϵ,
and δ, Lemma A.4 and the maximality of t ensure that we must be in the first
alternative of Lemma 16’s conclusion: there exists a translate At − x such that
|(At − x) ∩ B ′

| ≥ (1 − cϵ/2)α|B ′
| and |(At − x) ∩ B ′′

| ≥ (1 − cϵ/2)α|B ′′
|.

We claim that A′
= (At − x) ∩ B ′, with the B ′ and B ′′ above playing the role of

B and B ′ respectively, satisfies the conclusions of Theorem 14. Indeed, the bounds
on the rank and size of B ′, and the density conditions on A′, are clearly satisfied.

Suppose for a contradiction that

∥µA′ ◦ µA′∥p(µk·B′′′◦µk·B′′′∗µk·B′′′′◦µk·B′′′′ ) ≥ (1 + ϵ)µ(B ′)−1,

for some regular Bohr sets B ′′′
= B ′′

ρ and B ′′′′
= B ′′′

ρ′ satisfying ρ, ρ ′
∈

(1
2 , 1

)
·cδα/dt .

The conditions of Proposition 15 are met, and hence we deduce there is some
B̃ ⊆ B ′′′′ of rank

rk(B̃) ≤ rk(B) + Oϵ(L(α)4 p4)

and
|B̃| ≥ exp(−Oϵ(dt pL(α/dt) +L(α)5 p5))|B ′′

|

and there is a translate of At , say At − y, such that

µB̃(At − y) ≥ (1 + cϵ)(1 − cϵ/2)α ≥ (1 + cϵ/4)α,

say. This a contradiction to the maximality of t , provided Cϵ matches the implicit
constant in the first Oϵ-term, since we can take B(t+1)

= B̃ and At+1 = (At − y)∩ B̃,
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noting that by Lemma A.4

|B ′′′′
| ≥ exp(−Oϵ,δ(dL(α/dt)))|B(t)

|. □

Proposition 15 is a consequence of Steps 3 and 4 (dependent random choice and
almost-periodicity) of the Kelley–Meka approach. We will use the following version
of almost-periodicity, which is essentially [Schoen and Sisask 2016, Theorem 5.4].

Theorem 17 (almost-periodicity). There is a constant c > 0 such that the following
holds. Let ϵ > 0 and B, B ′

⊆ G be regular Bohr sets of rank d. Suppose that
A1 ⊆ B with density α1 and A2 is such that there exists x with A2 ⊆ B ′

− x with
density α2. Let S be any set with |S| ≤ 2|B|. There is a regular Bohr set B ′′

⊆ B ′ of
rank at most

d + Oϵ(L(α1)
3L(α2))

and size

|B ′′
| ≥ exp(−Oϵ(dL(α1α2/d) +L(α1)

3L(α2)L(α1α2/d)))|B ′
|

such that
|⟨µB ′ ∗ µA1 ◦ µA2, 1S⟩ − ⟨µA1 ◦ µA2, 1S⟩| ≤ ϵ.

Proof. We apply [Schoen and Sisask 2016, Theorem 5.4] with the choices (with
apologies for the unfortunate clash in variable naming between papers)

A → −A2, M → A1, L → −S, S → B ′

c/d , B → B ′

c/d

and note that

|−A2 + B ′

c/d | ≤ |B ′
+ B ′

c/d | ≤ 2|B ′
| ≤ 2α−1

2 |A2|

by regularity of B ′. The statement now almost follows from [loc. cit., Theorem 5.4]
after observing that (in that theorem’s language) we have K ≤ 2α−1

2 , σ = 1, and
η ≥ α1/2, except that there the statement has a constraint on the rank and the width
of B ′′, rather than the rank and the size. Nonetheless the width condition can be
immediately converted into a lower bound for the size of B ′′ with Lemma A.4. □

We will now use this almost-periodicity together with Lemma 8 to deduce the
iterative step.

Proof of Proposition 15. By averaging there exists some x ∈ k · B ′
+k · B ′′ such that

∥µA ◦ µA∥p(µk·B′∗µk·B′′−x )
≥ (1 + ϵ)µ(B)−1.

We now apply Lemma 8 with B1 = k · B ′ and B2 = k · B ′′
+ x . This produces some

A1 ⊆k·B ′ and A2 ⊆k·B ′′
−x such that, with S ={x :µA◦µA(x)≥ (1+ϵ/2)µ(B)−1

},

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/4
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and

min
(

|A1|

|B ′|
,
|A2|

|B ′′|

)
≫ α2p+Oϵ(1).

We now apply Theorem 17 (with k · B ′ and k · B ′′ playing the roles of B and B ′

respectively), noting that we can, without loss of generality, take S to be supported
in A1 − A2 ⊆ k · B ′

+ k · B ′′
− x and so by regularity of B ′

|S| ≤ |B ′
+ B ′′

| ≤ 2|B ′
|.

This produces some B ′′′
⊆ k · B ′′ of the required rank and size such that

⟨µB ′′′ ∗µA1 ◦µA2, µA◦µA⟩≥ (1+ϵ/2)(1−ϵ/4)(1−ϵ/8)µ(B)−1
≥ (1+cϵ)µ(B)−1

for some absolute constant c > 0. The result now follows from averaging, since

⟨µB ′′′ ∗ µA1 ◦ µA2, µA ◦ µA⟩ ≤ ∥µB ′′′ ∗ µA∥∞∥µA2 ◦ µA1 ∗ µA∥1

= ∥µB ′′′ ∗ µA∥∞. □

5. Deduction of Theorems 5, 1 and 3

Finally, in this section we deduce Theorem 5 from Theorem 14 (using Step 2) and
show (using Step 1) how it implies Theorems 1 and 3. The following form of
unbalancing relative to Bohr sets is sufficient.

Proposition 18. There is a constant c > 0 such that the following holds. Let ϵ > 0
and p ≥ 2 be an integer. Let B ⊆ G be a regular Bohr set and A ⊆ B with relative
density α. Let ν : G → R≥0 be supported on Bρ , where ρ ≤ cϵα/ rk(B), such that
∥ν∥1 = 1 and ν̂ ≥ 0. If

∥(µA − µB) ◦ (µA − µB)∥p(ν) ≥ ϵµ(B)−1,

then there exists p′
≪ϵ p such that

∥µA ◦ µA∥p′(ν) ≥
(
1 +

1
4ϵ

)
µ(B)−1.

Proof. Let us write

g = µA ◦ µB + µB ◦ µA − µB ◦ µB

and note that for any p′
≥ 1

∥µA◦µA∥p′(ν) = ∥(µA−µB)◦(µA−µB)+µ(B)−1
+g−µ(B)−1

∥p′(ν)

≥ ∥(µA−µB)◦(µA−µB)+µ(B)−1
∥p′(ν)−∥g−µ(B)−1

∥p′(ν).
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To bound the error term, note that µA ◦µB(0) = µ(B)−1 and that by regularity (for
example with Lemma A.5), for x ∈ supp(ν),

|µA ◦ µB(x) − µA ◦ µB(0)| ≤ α−1µ(B)−1
∥µB( · + x) − µB∥1

≪ ρ rk(B)α−1µ(B)−1

≤
1

12ϵµ(B)−1,

say, assuming ρ is sufficiently small, and similarly for the other terms constituting g.
Hence

∥g − µ(B)−1
∥p′(ν) ≤ ∥g − µ(B)−1

∥L∞(supp(ν)) ≤
1
4ϵµ(B)−1.

It therefore suffices to find some p′
≪ϵ p such that

∥(µA − µB) ◦ (µA − µB) + µ(B)−1
∥p′(ν) ≥ (1 +

1
2ϵ)µ(B)−1.

This is immediate from Lemma 7 applied to f = µ(B)(µA −µB) ◦ (µA −µB). □

To deduce Theorem 5 from Theorem 14 we will need to pass from the measure µB

to µB ′ ◦µB ′ ∗µB ′′ ◦µB ′′ . This is a technical issue with Bohr sets that does not arise in
the Fn

q model case (note that these measures are identical when B = B ′
= B ′′

= G).

Proposition 19. There is a constant c > 0 such that the following holds. Let p ≥ 2
be an even integer. Let f : G → R, let B ⊆ G and B ′, B ′′

⊆ Bc/ rk(B) all be regular
Bohr sets. Then

∥ f ◦ f ∥p(µB′◦µB′∗µB′′◦µB′′ ) ≥
1
2∥ f ∗ f ∥p(µB).

Proof. By an application of Lemma A.6 with L = 4, ρ = c/4 rk(B) and ν =

µB ′ ∗ µB ′ ∗ µB ′′ ∗ µB ′′ , we have

µB ≤ 2µB1+4ρ
∗ ν.

Hence
∥ f ∗ f ∥

p
p(µB) = Ex∈GµB(x) f ∗ f (x)p

≤ 2Ex∈G(µB1+4ρ
∗ ν)(x) f ∗ f (x)p

= 2Et∈B1+4ρ
Ex∈Gν(x − t) f ∗ f (x)p.

By averaging there exists some t such that

∥ f ∗ f ∥
p
p(µB) ≤ 2Ex∈Gν(x − t) f ∗ f (x)p

= 2
∑
γ∈Ĝ

ν̂(γ )γ (−t)( f̂ 2)(p)(γ )

≤ 2
∑
γ∈Ĝ

ν̂(γ )(| f̂ |
2)(p)(γ )

= 2∥ f ◦ f ∥
p
p(ν),

where we have used the fact that ν̂ ≥ 0. □
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Proof of Theorem 5. We may, without loss of generality, assume that δ is sufficiently
small in terms of ϵ and k. Let p′

≪ϵ p satisfy the condition in Proposition 18. Let
A′ and B be the regular Bohr sets provided by Theorem 14 applied with p replaced
by p′ and ϵ replaced by ϵ/8. We claim that this choice satisfies the conclusion of
Theorem 5. It suffices to prove

∥(µA′ − µB) ∗ (µA′ − µB)∥p(µk·B′ ) ≤ ϵµ(B)−1.

Suppose not. Let B ′′
= B ′

ρ and B ′′′
= B ′′

ρ′ be regular Bohr sets with ρ = c1/d and
ρ ′

= c2/d for some sufficiently small constants c1, c2 > 0. By Proposition 19 we
have, if we let f = µA′ − µB for brevity,

∥ f ∗ f ∥p(µk·B′ ) ≤ 2∥ f ◦ f ∥p(ν)

where ν = µk·B ′′ ◦ µk·B ′′ ∗ µk·B ′′′ ◦ µk·B ′′′ . In particular, ∥ f ◦ f ∥p(ν) > 1
2ϵµ(B)−1,

and so by Proposition 18 (noting that ν is supported on k(B ′′
+ B ′′

+ B ′′′
+ B ′′′) ⊆

B ′

4kρ ⊆ Bc/d ) we deduce that

∥µA′ ◦ µA′∥p′(ν) ≥ (1 + ϵ/8)µ(B)−1,

which contradicts the conclusion of Theorem 14, and we are done. □

Finally, to apply Theorem 5 to three-term progressions and finding long arithmetic
progressions in A + A + A, we record the following version of the Hölder lifting
Step 1.

Proposition 20. There is a constant c > 0 such that the following holds. Let
ϵ > 0. Let B ⊆ G be a regular Bohr set and A ⊆ B with relative density α, and let
B ′

⊆ Bcϵα/ rk(B) be a regular Bohr set and C ⊆ B ′ with relative density γ . Either

(1) |⟨µA ∗ µA, µC⟩ −µ(B)−1
| ≤ ϵµ(B)−1 or

(2) there is some p ≪L(γ ) such that ∥(µA −µB)∗(µA −µB)∥p(µB′ ) ≥
1
2ϵµ(B)−1.

Proof. We first note that

⟨µA ∗µA, µC⟩ = ⟨(µA −µB)∗(µA −µB), µC⟩+2⟨µA ∗µB, µC⟩−⟨µB ∗µB, µC⟩.

By the regularity of B (more specifically Lemma A.5) and the fact that C ⊆ Bcϵ/ rk(B),
we have

|⟨µB ∗ µB, µC⟩ −µ(B)−1
| ≤ ∥µB∥∞∥µB ∗ µC − µB∥1 ≤

1
8ϵµ(B)−1.

Similarly, the fact that C ⊆ Bcϵα/ rk(B) implies that

|⟨µA ∗ µB, µC⟩ −µ(B)−1
| ≤ ∥µA∥∞∥µB ∗ µC − µB∥1 ≤

1
16ϵµ(B)−1.

It follows that, with f = (µA − µB) ∗ (µA − µB), we have

|⟨µA ∗ µA, µC⟩ −µ(B)−1
− ⟨ f, µC⟩| ≤

1
4ϵµ(B)−1.
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Therefore, if the first possibility fails, then

γ −1
|⟨ f, 1C⟩µB′ | = |⟨ f, µC⟩| ≥

3
4ϵµ(B)−1.

By Hölder’s inequality, for any p ≥ 1,

∥ f ∥p(µB′ )γ
1−1/p

≥ |⟨ f, 1C⟩µB′ |.

We can choose some p ≪ L(γ ) such that γ −1/p
≤

3
2 , and the proof is complete. □

5.1. Three-term arithmetic progressions. Theorem 1 is an immediate consequence
of the following result that gives a lower bound for the number of three-term
arithmetic progressions in an arbitrary set, coupled with the observation that if A
contains only trivial three-term arithmetic progressions then this count is at most N .

Theorem 21 (Kelley–Meka). If A ⊆{1, . . . , N } has size |A|=αN , then A contains
at least

exp(−O(L(α)12))N 2

many three-term arithmetic progressions.

Proof. As usual, we begin by considering A ⊆ {1, . . . , N } as a subset of G =

Z/(2N + 1)Z — the density of this set within G is still ≍ α, and any three-term
arithmetic progression in A ⊆ G yields one in A ⊆ {1, . . . , N }.

We apply Theorem 5 with ϵ =
1
4 , k = 2, and p = ⌈KL(α)⌉ for some large

constant K . Let A′′
= A′

∩ B ′. If

⟨µA′ ∗ µA′, µ2·A′′⟩ ≥
1
2µ(B)−1

we are done, since the left-hand side is at most ≪ α−3µ(B)−2µ(B ′)−1 times the
number of three-term arithmetic progressions in A, and by Lemma A.4 we have

µ(B)µ(B ′) ≥ exp(−Oϵ(L(α)12)).

Otherwise, we are in the second case of Proposition 20, which contradicts the
conclusion of Theorem 5, and we are done. □

5.2. Arithmetic progressions in A+ A+ A. As in the previous section, Theorem 3
follows immediately from the following statement for general groups, by embedding
{1, . . . , N } in a cyclic group Z/MZ for a prime M between 2N and 4N .

Theorem 22. If A ⊆ G has size αN , then A + A + A contains a translate of a Bohr
set B with

rk(B) ≪ L(α)9 and µ(B) ≥ exp(−O(L(α)12).

In particular, if G = Z/NZ for a prime N , then A + A + A contains an arithmetic
progression of length

≥ exp(−O(L(α)3))N�(1/L(α)9).
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Proof. We apply Theorem 5 with ϵ =
1
4 , k = 1, and p = ⌈KL(α)⌉ for some

large constant K . Let B, B ′ be the Bohr sets produced by that conclusion, and
A′

= (A − x) ∩ B the corresponding restricted translate of A.
We first argue that |(A′

+ A′) ∩ B ′
| ≥ (1 − α/4)|B ′

|. Indeed, otherwise if we let
C = B ′

\(A′
+ A′), then the first case of Proposition 20 is violated and the conclusion

of Theorem 5 means the second also cannot hold.
Let B ′′

= B ′

cα/d , where c > 0 is some small constant. We argue that B ′′
⊆

A′
+ A′

+ A′. If not, there is some x ∈ B ′′ such that (A′
+ A′)∩ (x − A′) = ∅, and

so
|A′

∩ (B ′
− x)| = |(x − A′) ∩ B ′

| ≤ |B ′
\(A′

+ A′)| ≤
α
4 |B ′

|.

By regularity, however, the left-hand side is at least

|A′
∩ B ′

| − |B\(B ′
− x)| ≥ |A′

∩ B ′
| −

1
4α|B ′

| ≥
α
2 |B ′

|,

which is a contradiction.
We have found some Bohr set B ′′ of rank O(L(α)9) and density

µ(B ′′) ≥ exp(−O(L(α)12))

such that B ′′
⊆ A′

+ A′
+ A′. It remains to note that A′

+ A′
+ A′ is contained in a

translate of A+ A+ A and to appeal to Lemma A.7 to find an arithmetic progression
in B ′′ of length

≥ exp(−O(L(α)3))N�(1/L(α)9). □

Appendix: Bohr sets

In abelian groups more general than Fn
q , a useful substitute for genuine subgroups

is the class of Bohr sets, introduced to additive combinatorics by Bourgain [1999].
Below we collect some standard facts about Bohr sets.

Definition A.1 (Bohr sets). For a nonempty 0 ⊆ Ĝ and ν ∈ [0, 2] we define the
Bohr set B = Bohrν(0) as

Bohrν(0) = {x ∈ G : |1 − γ (x)| ≤ ν for all γ ∈ 0}.

We call 0 the frequency set of B and ν the width, and define the rank of B to be
the size of 0, denoted by rk(B). We note here that all Bohr sets are symmetric and
contain 0.

In fact, when we speak of a Bohr set we implicitly refer to the triple

(0, ν, Bohrν(0)),

since the set Bohrν(0) alone does not uniquely determine the frequency set nor
the width. When we use subset notation, such as B ′

⊆ B, this refers only to the



42 THOMAS F. BLOOM AND OLOF SISASK

set inclusion (and does not, in particular, imply any particular relation between the
associated frequency sets or width functions). Furthermore, if B = Bohrν(0) and
ρ ∈ (0, 1], then we write Bρ for the same Bohr set with the width dilated by ρ, i.e.,
Bohrρν(0), which is known as a dilate of B.

Bohr sets are, in general, not even approximately group-like, and may grow
exponentially under addition. Bourgain [1999] observed that certain Bohr sets
are approximately closed under addition in a weak sense which is suitable for our
applications.

Definition A.2 (regularity3). A Bohr set B of rank d is regular if for all |κ| ≤
1

100d
we have

(1 − 100d|κ|)|B| ≤ |B1+κ | ≤ (1 + 100d|κ|)|B|.

We record here the useful observation, frequently used in this paper, that if
(k, |G|) = 1 and B is a regular Bohr set of rank d then k · B is also a regular Bohr
set of rank d (and of course the same density), simply by replacing each character
in the frequency set by an appropriate dilate.

For further introductory discussion of Bohr sets see, for example, [Tao and Vu
2006, Chapter 4], in which the following basic lemmas are established.

Lemma A.3. For any Bohr set B there exists ρ ∈
[ 1

2 , 1
]

such that Bρ is regular.

Lemma A.4. If ρ ∈ (0, 1) and B is a Bohr set of rank d, then |Bρ | ≥ (ρ/4)d
|B|.

The following standard lemmas indicate how regularity of Bohr sets will be
exploited. The following is proved as, for example, [Bloom and Sisask 2020,
Lemma 4.5].

Lemma A.5. If B is a regular Bohr set of rank d and µ : G → R≥0 is supported on
Bρ , with ρ ∈ (0, 1), then

∥µB ∗ µ − µB∥1 ≪ ρd∥µ∥1.

The following is a minor generalisation of, for example, [Bloom and Sisask
2020, Lemma 4.7], which is stated with ν = µ

(L)
B ′ for a subset B ′

⊆ Bρ ; the proof is
identical.

Lemma A.6. There is a constant c > 0 such that the following holds. Let B be a
regular Bohr set of rank d and L ≥ 1 be any integer. If ν : G → R≥0 is supported
on L Bρ , where ρ ≤ c/Ld, and ∥ν∥1 = 1, then

µB ≤ 2µB1+Lρ
∗ ν.

Finally, we note the following simple lemma, which is useful for finding arith-
metic progressions.

3The constant 100 here is fairly arbitrary. Smaller constants are permissible.
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Lemma A.7. If N is a prime and B ⊆ Z/NZ is a Bohr set of rank d , then B
contains an arithmetic progression of length

≫ |B|
1/d .

Proof. Let ρ = 4(2/|B|)1/d , and note that by Lemma A.4 we have

|Bρ | ≥ (ρ/4)d
|B| = 2.

In particular there exists some x ∈ Bρ\{0}. By the triangle inequality it is clear
that {x, . . . , ⌊ρ−1

⌋x} ⊆ B, whence B contains an arithmetic progression of length
≫ ρ−1. □
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On gamma factors for representations
of finite general linear groups

David Soudry and Elad Zelingher

We use the Langlands–Shahidi method in order to define the Shahidi gamma
factor for a pair of irreducible generic representations of GLn(Fq) and GLm(Fq).
We prove that the Shahidi gamma factor is multiplicative and show that it is
related to the Jacquet–Piatetski-Shapiro–Shalika gamma factor. As an application,
we prove a converse theorem based on the absolute value of the Shahidi gamma
factor, and improve the converse theorem of Nien. As another application, we
give explicit formulas for special values of the Bessel function of an irreducible
generic representation of GLn(Fq).

1. Introduction

In the representation theory of p-adic groups, one method of studying irreducible
representations is by attaching local factors to the representations. These local
factors are complex valued functions of a complex variable. They encode various
properties of the representations in question. These local factors usually arise from
global integrals representing L-functions attached to automorphic representations.
Studying these local factors is crucial for understanding the global situation. This
has been done successfully in many cases, including the pioneering works of Jacquet,
Piatetski-Shapiro and Shalika [Jacquet et al. 1983] and Shahidi [1984; 1990].

Let F be a finite field with cardinality q. A local theory of local factors often
has a finite field analog. It allows one to attach “local constants” to irreducible
representations of the F-points version of the group in consideration. One famous
example is the book by Piatetski-Shapiro [1983], in which he developed the theory
of gamma factors for the tensor product representation of GL2 × GL1 over finite
fields. We also mention the works [Roditty-Gershon 2010; Nien 2014; Ye and
Zelingher 2020; Liu and Zhang 2022a; 2022b] as examples. These local constants
usually encode properties analogous to their local factors counterparts. Moreover,
these local constant theories often allow one to consider “toy models” for analogous
local problems. For instance, shortly after Nien’s proof [2014] of the analog of
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Jacquet’s conjecture for finite fields, Chai [2019] proved the conjecture for the
p-adic group case where in his proof he used tools analogous to the ones used by
Nien.

In her master’s thesis Roditty-Gershon [2010] defined a finite field analog of the
gamma factor of Jacquet, Piatetski-Shapiro and Shalika [1983]. This gamma factor
represents the tensor product representation, attached to two irreducible generic
representations π and σ of GLn(F) and GLm(F), respectively, and is denoted
γ (π × σ,ψ). Later, Rongqing Ye [2019] showed that γ (π × σ,ψ) is related to
its local field counterpart through level zero supercuspidal representations. Using
this relation and the local Langlands correspondence, Rongqing Ye and the second
author were able to express γ (π × σ,ψ) as a product of Gauss sums [Ye and
Zelingher 2021].

The theory of the finite field version of the gamma factor associated to the tensor
product, as it currently appears in the literature, is in some sense not complete. The
first problem is that the gamma factor γ (π × σ,ψ) is currently not defined for all
irreducible generic representations π and σ . It is only defined when n ≥ m, and
under the assumption that π is cuspidal (and if n = m, σ is also required to be
cuspidal). One can tweak the proofs so they will work for all irreducible generic
representations π and σ , such that π and σ∨ have disjoint cuspidal support, but
that is not enough in order to define γ (π ×σ,ψ) for all pairs π and σ . One can try
to define γ (π × σ,ψ) naively using the expression involving the Bessel functions
of π and σ (see Section 2B1 for the definition of the Bessel function), but this leads
to the second problem. The second problem is that the current theory lacks the
multiplicativity property of the gamma factor. If one naively extends the definition
γ (π × σ,ψ) using the approach suggested above, it is not clear that the gamma
factor would be multiplicative. Both of these difficulties need to be resolved for
applications as in [Zelingher 2023].

The Langlands–Shahidi method provides an alternative approach that solves
both of these problems. In this paper, we use this method to define a finite field
version of the Shahidi gamma factor. We briefly describe the construction now. Let
π and σ be representations of Whittaker type of GLn(F) and GLm(F), respectively.
In Section 3A, we consider an intertwining operator Uσ,π : σ ◦π → π ◦ σ , where
◦ denotes parabolic induction. In Section 3B, given Whittaker vectors vπ,ψ ∈ π

and vσ,ψ ∈ σ , we define Whittaker vectors vπ,σ,ψ ∈ π ◦ σ and vσ,π,ψ ∈ σ ◦ π .
By uniqueness of the Whittaker vectors, we have that there exists a constant
0(π × σ,ψ) ∈ C, such that

Uσ,πvσ,π,ψ = 0(π × σ,ψ) · vπ,σ,ψ .

We call 0(π × σ,ψ) the Shahidi gamma factor associated to π and σ . This is a
finite analog of Shahidi’s local coefficient [1984].
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We prove properties of 0(π × σ,ψ), the most important one is that it is multi-
plicative (Theorem 3.9).

Theorem 1.1. Let π , σ1 and σ2 be representations of Whittaker type of GLn(F),
GLm1(F) and GLm2(F), respectively. Then

0(π × (σ1 ◦ σ2), ψ)= 0(π × σ1, ψ) ·0(π × σ2, ψ).

We also express 0(π × σ,ψ) in terms of the Bessel functions associated with π
and σ when both representations are irreducible. We show that if n ≥ m, then up to
some simple factors, 0(π ×σ,ψ) is given by the naive extension of γ (π ×σ∨, ψ)

discussed above (Theorem 3.14). We deduce a relation between the Shahidi gamma
factor and the Jacquet–Piatetski-Shapiro–Shalika gamma factor (Corollary 3.15).

Theorem 1.2. Let π and σ be irreducible generic representations of GLn(F) and
GLm(F), respectively. Suppose that π is cuspidal and n ≥ m. If n = m, suppose
that σ is also cuspidal. Then

0(π × σ,ψ)= qm(2n−m−1)/2ωσ (−1)γ (π × σ∨, ψ).

The relation between both gamma factors allows us to give a representation
theoretic interpretation for the absolute value of the Shahidi gamma factor. We
show that, in some sense, the absolute value of the Shahidi gamma factor serves as
a good substitute for the order of the pole of the local L-factor associated with the
tensor product representation. Let us stress that the relation to the Jacquet–Piatetski-
Shapiro–Shalika gamma factor is crucial for these results. The following theorem
can be seen as an analog of [Jacquet et al. 1983, Section 8.1].

Theorem 1.3. Let π be an irreducible generic representation of GLn(F) and let σ
be an irreducible cuspidal representation of GLm(F). Then

|q−nm/2
·0(π × σ,ψ)| = q−dπ (σ )m/2,

where dπ (σ ) is the number of times σ appears in the cuspidal support of π .

This allows us to deduce a converse theorem based on the absolute value of the
normalized Shahidi gamma factor. Similar theorems in the local setting were given
by Gan and his collaborators in many works (see [Gan and Savin 2012, Lemma 12.3],
[Gan and Ichino 2016, Lemma A.6] and [Atobe and Gan 2017, Lemma A.6]), but
our proof is done on the “group side” rather than on the “Galois side”.

Theorem 1.4. Let π1 and π2 be two irreducible generic representations of GLn1(F)

and GLn2(F), respectively. Assume that for every m and every irreducible cuspidal
representation σ of GLm(F) we have

|q−n1m/2
·0(π1 × σ,ψ)| = |q−n2m/2

·0(π2 × σ,ψ)|.

Then n1 = n2 and π1 ∼= π2.
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Our results combined with Nien’s converse theorem [2014] allow us to deduce a
converse theorem that holds under weaker assumptions. This is similar to [Jiang
et al. 2015, Section 2.4].

Theorem 1.5. Let π1 and π2 be irreducible generic representations of GLn(F) with
the same central character. Suppose that for any 1 ≤ m ≤

n
2 and any irreducible

cuspidal representation σ of GLm(F) we have

0(π1 × σ,ψ)= 0(π2 × σ,ψ).

Then π1 ∼= π2.

As another application of our results, we find explicit formulas for special values
of the Bessel function of an irreducible generic representation π . The first formula
(Theorem 4.10) expresses Jπ,ψ

(
c

In−1
)

as an exotic Kloosterman sum [Katz 1993,
Page 152]. This formula is already known in the literature by the work of Curtis
and Shinoda [2004], but our proof is based on multiplicativity of the Shahidi
gamma factor, rather than on Deligne–Lusztig theory. The second formula we find
(Theorem 4.14) expresses

Jπ,ψ

 −c′

In−2

c


as a twisted convolution of values of the form Jπ,ψ

(
c

In−1
)

and Jπ,ψ
(

In−1

c′ )
. Such

a formula was given by Chang [1976] for n = 3 and then generalized by Shinoda
and Tulunay [2005] for n = 4. Chang’s method is based on the Gelfand–Graev
algebra, while our method is based on formulas we found for the Shahidi gamma
factor.

This paper is based on a unpublished note by the first author [Soudry 1979].

2. Preliminaries

2A. Parabolic induction. Given a sequence of positive integers n1, . . . , nr , we
denote by Pn1,...,nr the parabolic subgroup of GLn1+···+nr (F) corresponding to the
composition (n1, . . . , nr ). That is,

Pn1,...,nr = Dn1,...,nr ⋉ Nn1,...,nr ,

where
Dn1,...,nr = {diag(g1, . . . , gr ) | ∀1 ≤ j ≤ r, g j ∈ GLn j (F)},

Nn1,...,nr =




In1 ∗ ∗ ∗

In2 ∗ ∗

. . . ∗

Inr


 .
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Given representations π1, . . . , πr of GLn1(F), . . . ,GLnr (F), respectively, we
denote by π1⊗ . . .⊗πr the inflation of π1⊗· · ·⊗πr to Pn1,...,nr . That is, π1⊗ . . .⊗πr

is a representation of Pn1,...,nr , acting on the space of π1 ⊗ · · ·⊗πr , and its action
on pure tensors is given by

(π1⊗ . . .⊗πr )(du)v1 ⊗ · · · ⊗ vr = π1(g1)v1 ⊗ · · · ⊗πr (gr )vr ,

where d = diag(g1, . . . , gr ) ∈ Dn1,...,nr and u ∈ Nn1,...,nr , and for every 1 ≤ j ≤ r ,
v j ∈ π j .

The parabolic induction π1 ◦ . . . ◦πr is defined as the following representation
of GLn1+···+nr (F):

π1 ◦ . . . ◦πr = Ind
GLn1+···+nr (F)

Pn1,...,nr
π1⊗ . . .⊗πr .

A representation π of GLn(F) is called cuspidal if for every composition
(n1, . . . , nr ) ̸= (n) of n, there does not exist 0 ̸= v ∈ π such that v is invariant
under Nn1,...,nr , i.e., if v ∈ π is such that π(u)v = v for every u ∈ Nn1,...,nr then
v = 0. If π is irreducible, π is cuspidal if and only if it is not a subrepresentation
of π1 ◦ . . . ◦πr for some π1, . . . , πr as above, where r > 1.

By [Gel’fand 1970, Theorem 2.4], if π is an irreducible representation of GLn(F),
then there exist n1, . . . , nr > 0 with n1 + · · · + nr = n and irreducible cuspidal
representations π1, . . . , πr , of GLn1(F), . . . ,GLnr (F), such that π is isomorphic
to a subrepresentation of the parabolic induction π1 ◦ . . . ◦ πr . Such π1, . . . , πr

are unique up to ordering. We define the cuspidal support of π to be the multiset
{π1, . . . , πr }.

2B. Generic representations. Let ψ : F → C∗ be a nontrivial additive character.
Let Zn ≤ GLn(F) be the upper triangular unipotent subgroup. We define a character
ψ : Zn → C∗ by the formula

ψ


1 a1 ∗ . . . ∗

1 a2 . . . ∗

. . .
. . .

...

1 an−1

1

 = ψ

( n−1∑
k=1

ak

)
.

Let π be a finite dimensional representation of GLn(F). π is said to be generic if

HomZn (ResZn π,ψ) ̸= 0.

This condition does not depend on the choice of ψ . See Section 3B1. We call a
nonzero element in HomZn (ResZn π,ψ) a ψ-Whittaker functional. The representa-
tion π is generic if and only if there exists 0 ̸= v ∈ π , such that π(u)v = ψ(u)v
for every u ∈ Zn . We call such vector a Whittaker vector with respect to ψ , or a
ψ-Whittaker vector. The dimension of the subspace spanned by the ψ-Whittaker
vectors of π is dim HomZn (ResZn π,ψ).
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Definition 2.1. We say that π is of Whittaker type if π is generic and the subspace
spanned by its ψ-Whittaker vectors is one-dimensional.

By a well known result of Gelfand and Graev, we have that if π is generic and
irreducible, then it is of Whittaker type [Gel’fand 1970, Theorem 0.5; Silberger and
Zink 2000, Corollary 5.6]. It is well known that irreducible cuspidal representations
of GLn(F) are generic [Silberger and Zink 2000, Lemma 5.2]. The following result
is also well known [loc. cit., Theorem 5.5].

Theorem 2.2. Let π1, . . . , πr be representations of Whittaker type of GLn1(F), . . . ,
GLnr (F), respectively. Then the parabolic induction π1 ◦ . . .◦πr is a representation
of Whittaker type.

2B1. Whittaker models and Bessel functions. Let π be an irreducible generic
representation of GLn(F). Since π is of Whittaker type, Frobenius reciprocity
implies that

dim HomGLn(F)(π, IndGLn(F)
Zn

ψ)= 1.

We denote by W(π, ψ) the unique subspace of IndGLn(F)
Zn

ψ that is isomorphic to π .
This is the Whittaker model of π with respect to ψ .

Recall that for an irreducible representation π of GLn(F), we have that its
contragredient π∨ is isomorphic to π ι, where π ι is the representation acting on the
space of π by π ι(g)= π(gι), where for g ∈ GLn(F),

gι = t(g−1).

(This follows from the fact that for g ∈ GLn(F), the trace characters of π and
π∨ are related by trπ∨(g)= trπ(g−1), and from the fact that g−1 and t(g−1) are
conjugate.)

Using the isomorphism π∨ ∼= π ι, we get an isomorphism of vector spaces
W(π, ψ)→ W(π∨, ψ−1), given by W 7→ W̃ , where

W̃ (g)= W (wngι),

and where wn ∈ GLn(F) is the long Weyl element

wn =


1

1
...

1

 .

Under the realization of π by its Whittaker model W(π, ψ), the one-dimensional
subspace spanned by theψ-Whittaker vectors of π is realized as the one-dimensional
subspace of W(π, ψ) consisting of functions W ∈ W(π, ψ), such that W (gu) =

ψ(u)W (g), for every u ∈ Zn and every g ∈ GLn(F). By [Gel’fand 1970, Proposi-
tion 4.5], there exists a (unique) element W in this one-dimensional subspace such
that W (In)= 1. We call this W the normalized Bessel function of π with respect
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to ψ , and denote it by Jπ,ψ . To summarize, the Bessel function Jπ,ψ is the unique
element in W(π, ψ), such that:

(1) Jπ,ψ(In)= 1.

(2) Jπ,ψ(gu)= ψ(u)Jπ,ψ(g), for every g ∈ GLn(F) and u ∈ Zn .

The Bessel function enjoys the following identities that relate it to its complex
conjugate and to its contragredient [Nien 2014, Propositions 2.15 and 3.5].

Proposition 2.3. For any irreducible generic representation π of GLn(F) and any
g ∈ GLn(F), we have the following identities:

(1) Jπ,ψ(g−1)= Jπ,ψ(g).

(2) Jπ,ψ(g−1)= Jπ∨,ψ−1(g).

Remark 2.4. Let vπ,ψ be a nonzero ψ-Whittaker vector. If we choose an inner
product ( · , · )π on π which is invariant under the GLn(F)-action, we have that
the assignment ℓπ,ψ : π → C given by vπ 7→ (vπ , vπ,ψ)π defines a Whittaker
functional. The Whittaker model of π can be described using Frobenius reciprocity
as W(π, ψ) = {Wvπ | vπ ∈ π}, where for g ∈ GLn(F) and vπ ∈ π , we define
Wvπ (g)= (π(g)vπ , vπ,ψ)π . The Bessel function is given by

Jπ,ψ(g)=
(π(g)vπ,ψ , vπ,ψ)π
(vπ,ψ , vπ,ψ)π

.

All of the properties of the Bessel function listed above now follow immediately
from the fact that ( · , · )π is an inner product, and that vπ,ψ is a ψ-Whittaker vector.
Moreover, the projection operator to the one-dimensional subspace spanned by the
ψ-Whittaker vectors prCvπ,ψ

can be described in two ways. The first way is by using
the inner product, in which case for vπ ∈ π ,

prCvπ,ψ
(vπ )=

(vπ , vπ,ψ)π

(vπ,ψ , vπ,ψ)π
vπ,ψ .

The second way is by averaging, in which case

prCvπ,ψ
(vπ )=

1
|Zn|

∑
u∈Zn

ψ−1(u)π(u)vπ .

By completing vπ,ψ to an orthogonal basis of π and using the fact that the subspace
spanned by the ψ-Whittaker vectors is one dimensional, we see that

tr(prCvπ,ψ
◦π(g))= Jπ,ψ(g).

This is [Gel’fand 1970, Proposition 4.5].
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2C. Jacquet–Piatetski-Shapiro–Shalika gamma factors. Let π and σ be irre-
ducible generic representations of GLn(F) and GLm(F), respectively. For most π
and σ , one can define a constant attached to π and σ called the Jacquet–Piatetski-
Shapiro–Shalika gamma factor of π and σ . It is also known as the Rankin–Selberg
gamma factor of π and σ . This is a finite field analog of the definition given
by Jacquet, Piatetski-Shapiro and Shalika [1983] for p-adic groups. These were
explained in Piatetski-Shapiro’s lectures in 1976 and studied in an unpublished note
from 1979 by the first author [Soudry 1979]. The case n > m was also studied in
Roddity-Gershon’s master’s thesis under the supervision of the first author.

2C1. The case n >m. In her master’s thesis Edva Roditty-Gershon [2010] defined
the Jacquet–Piatetski-Shapiro–Shalika gamma factor γ (π × σ,ψ), under the as-
sumption that π is cuspidal and that n>m. Roddity-Gershon’s thesis is unpublished,
but her main results are presented by Nien [2014]. We briefly review these results
now.

The first result is a functional equation that defines the Jacquet–Piatetski-Shapiro–
Shalika gamma factor. Suppose that n > m and that π is cuspidal. For any
W ∈ W(π, ψ) and W ′

∈ W(σ, ψ−1), and any 0 ≤ j ≤ n − m − 1, we define

Z j (W,W ′
;ψ)=

∑
h∈Zm\ GLm(F)

∑
x∈M(n−m− j−1)×m(F)

W

h
x In−m− j−1

I j+1

 W ′(h).

We are now ready to state the functional equation.

Theorem 2.5 [Nien 2014, Theorem 2.10]. There exists a nonzero constant
γ (π × σ,ψ) ∈ C, such that for every 0 ≤ j ≤ n − m − 1, every W ∈ W(π, ψ) and
every W ′

∈ W(σ, ψ−1), we have

qmjγ (π × σ,ψ)Z j (W,W ′
;ψ)= Zn−m− j−1

(
π∨

(
Im

wn−m

)
W̃ , W̃ ′

;ψ−1
)
,

where wn−m ∈ GLn−m(F) is the long Weyl element.

The second result expresses the gamma factor γ (π×σ,ψ) in terms of the Bessel
functions of π and σ .

Proposition 2.6 [Nien 2014, Proposition 2.16]. Under the assumptions above, we
have

γ (π × σ,ψ)=

∑
h∈Zm\ GLm(F)

Jπ,ψ
(

In−m

h

)
Jσ,ψ−1(h).

It follows from Propositions 2.6 and 2.3 that

γ (π × σ,ψ)= γ (π∨
× σ∨, ψ−1).
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Moreover, applying Theorem 2.5 twice, we get the following corollary regarding
the absolute value of γ (π × σ,ψ).

Corollary 2.7. We have that

γ (π × σ,ψ)γ (π∨
× σ∨, ψ−1)= q−m(n−m−1),

and therefore
|γ (π × σ,ψ)| = q−m(n−m−1)/2.

2C2. The case n = m. The case n = m was discussed in Piatetski-Shapiro’s lecture
and is explained briefly in Rongqing Ye’s work [2019].

Let S(Fn) be the space of functions φ : Fn
→ C. For a function φ ∈ S(Fn), we

define its Fourier transform Fψφ : Fn
→ C by the formula

Fψφ(y)=

∑
x∈Fn

φ(x)ψ(⟨x, y⟩),

where if x = (x1, . . . , xn)∈ Fn and y = (y1, . . . , yn)∈ Fn , then ⟨x, y⟩ is the standard
pairing

⟨x, y⟩ =

n∑
i=1

xi yi .

Let π and σ be irreducible cuspidal representations of GLn(F). We define for
any W ∈ W(π, ψ), W ′

∈ W(σ, ψ−1) and any φ ∈ S(Fn)

Z(W,W ′, φ;ψ)=

∑
g∈Zn\ GLn(F)

W (g)W ′(g)φ(eng),

where en = (0, . . . , 0, 1)∈Fn . We are now ready to introduce the functional equation
that defines γ (π × σ,ψ).

Theorem 2.8 [Ye 2019, Theorem 2.3]. There exists a nonzero constant γ (π×σ,ψ),
such that for any W ∈W(π, ψ), W ′

∈W(σ, ψ−1), and any φ ∈S(Fn) with φ(0)= 0,
we have

Z(W̃ , W̃ ′,Fψφ;ψ−1)= γ (π × σ,ψ)Z(W,W ′, φ;ψ).

Similarly to the case n > m, we have an expression of γ (π × σ,ψ) in terms of
the Bessel functions of π and σ .

Proposition 2.9 [Ye 2019, Equation (4.4)]. Let π and σ be irreducible cuspidal
representations of GLn(F). Then

γ (π × σ,ψ)=

∑
g∈Zn\ GLn(F)

Jπ,ψ(g)Jσ,ψ−1(g)ψ(⟨eng−1, e1⟩),

where e1 = (1, 0, . . . , 0) ∈ Fn .
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It follows from Propositions 2.9 and 2.3 that

γ (π∨
× σ∨, ψ−1)= γ (π × σ,ψ).

We now move to discuss the absolute value of γ (π × σ,ψ). In order to do
that, we first explain how to extend the functional equation in Theorem 2.8 to all
functions in S(Fn) for most cases. To begin, we notice that for the indicator function
of 0 ∈ Fn , which we denote δ0, we have that Z(W,W ′, δ0;ψ)= 0. We also notice
that if π is not isomorphic to σ∨, then Z(W,W ′, 1;ψ)= 0, where 1 represents the
constant function. This is because

Z(W,W ′, 1;ψ)=

∑
g∈Zn\ GLn(F)

W (g)W ′(g)

defines a GLn(F)-invariant pairing W(π, ψ)⊗W(σ, ψ−1)→ C, but such nontrivial
pairing exists only when π is isomorphic to σ∨. These two observations imply the
following extension of the functional equation, in the special case where π is not
isomorphic to σ∨.

Proposition 2.10. Suppose that π ≇ σ∨. Then for any φ ∈ S(Fn) we have

Z(W̃ , W̃ ′,Fψφ;ψ−1)= γ (π × σ,ψ)Z(W,W ′, φ;ψ).

Proof. Write φ = φ0 + φ1, where φ0 = φ− φ(0) and φ1 = φ(0). Then φ0(0) = 0
and Fψφ1 = qnφ(0)δ0. Since Z is linear in φ, we have from the discussion above
that

Z(W,W ′, φ;ψ)= Z(W,W ′, φ0;ψ)

and that
Z(W̃ , W̃ ′,Fψφ;ψ−1)= Z(W̃ , W̃ ′,Fψφ0;ψ

−1).

The statement now follows from Theorem 2.8. □

As a result, we get the following corollary regarding the absolute value of
γ (π × σ,ψ).

Corollary 2.11. Let π and σ be irreducible cuspidal representations of GLn(F)

such that π ≇ σ∨. Then

γ (π × σ,ψ)γ (π∨
× σ∨, ψ−1)= qn,

and therefore
|γ (π × σ,ψ)| = qn/2.

Proof. This follows by applying Proposition 2.10 twice, and from the fact that the
Fourier transform satisfies

Fψ−1Fψφ = qnφ,

for any φ ∈ S(Fn). □
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We are left to deal with the case π ∼= σ∨. In this case, the gamma factor
γ (π ×π∨, ψ) can be computed explicitly and it equals −1; see the Appendix.

We summarize all cases in the following proposition.

Proposition 2.12. Let π and σ be irreducible cuspidal representations of GLn(F):

• If π ≇ σ∨ then |γ (π × σ,ψ)| = qn/2.

• If π ∼= σ∨ then |γ (π × σ,ψ)| = 1.

3. Shahidi gamma factors (local coefficients)

In this section, we use the Langlands–Shahidi method in order to define a gamma
factor for two representations of Whittaker type of finite general linear groups. This
is the finite field analog of Shahidi’s local coefficient, which uses an intertwining
operator. The treatment in Sections 3A–3C is a finite field analog of Shahidi’s work
on local coefficients over local fields [Shahidi 1984]. Unlike the Jacquet–Piatetski-
Shapiro–Shalika gamma factors discussed in Section 2C, the Shahidi gamma factor
can be defined uniformly for all irreducible generic representations of GLn(F) and
GLm(F), regardless of n > m or whether the representations are cuspidal. We
prove properties of the Shahidi gamma factor, where the most important one is
the multiplicativity property, which explains how this gamma factor behaves under
parabolic induction. We end this section by expressing the Shahidi gamma factor
in terms of the Bessel functions associated with the representations, and showing
its relation to the Jacquet–Piatetski-Shapiro–Shalika gamma factor.

3A. The intertwining operator. Let n and m be positive integers and let π and σ
be representations of GLn(F) and GLm(F), respectively. We define a linear map
σ ⊗π → π ⊗ σ acting on pure tensors by component swap:

swσ,π (vσ ⊗ vπ )= vπ ⊗ vσ .

For a function f : GLn+m(F)→ σ ⊗π , we denote by f̃ : GLn+m(F)→ π ⊗σ the
function f̃ (g)= swσ,π ( f (g)).

We consider the following intertwining operator Tσ,π : σ ◦π → π ◦ σ , defined
for f ∈ σ ◦π and g ∈ GLn+m(F) by the formula

Tσ,π f (g)=

∑
p∈Pn,m

(π⊗σ)(p−1) f̃ (ŵn,m pg),

where ŵn,m is the following Weyl element

ŵn,m =

(
Im

In

)
.
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Using the decomposition Pn,m = Dn,m ⋉Nn,m , we may write every p ∈ Pn,m in a
unique way p = du, where u ∈ Nn,m and d = diag(g1, g2)∈ Dn,m , with g1 ∈ GLn(F)

and g2 ∈ GLm(F). It follows from the identity

diag(g2, g1)ŵn,m = ŵn,m diag(g1, g2),

and from the left Dm,n-equivariance property of f that

Tσ,π f (g)= |Dn,m | · Uσ,π f (g),

where
Uσ,π f (g)=

∑
u∈Nn,m

f̃ (ŵn,mug).

By construction, we have that Tσ,π and Uσ,π are nonzero elements of the space

HomGLn+m(F)(σ ◦π, π ◦ σ).

3B. The Shahidi gamma factor. Suppose now that π and σ are representations
of Whittaker type of GLn(F) and GLm(F), respectively. By Theorem 2.2 we have
that the parabolically induced representations σ ◦π and π ◦σ are also of Whittaker
type. Let vσ,ψ ∈ σ and vπ,ψ ∈ π be nonzero ψ-Whittaker vectors for σ and π ,
respectively. We may define a nonzero ψ-Whittaker vector fvσ,ψ ,vπ,ψ for σ ◦π by
the formula

fvσ,ψ ,vπ,ψ (g)=

{
ψ(u)(σ⊗π)(p)vσ,ψ ⊗ vπ,ψ g = pŵn,mu, p ∈ Pm,n, u ∈ Zn+m,

0 otherwise.

Similarly, we may define fvπ,ψ ,vσ,ψ ∈ π ◦ σ .
Since Uσ,π is an intertwining operator, we have that Uσ,π fvσ,ψ ,vπ,ψ is a ψ-

Whittaker vector of π ◦ σ . Since fvπ,ψ ,vσ,ψ is the unique nonzero ψ-Whittaker
vector of π ◦ σ up to scalar, we must have that

Uσ,π fvσ,ψ ,vπ,ψ = γ · fvπ,ψ ,vσ,ψ ,

where γ ∈ C. It is easy to check that this number γ does not depend on the choice
of ψ-Whittaker vectors vσ,ψ and vπ,ψ .

In order to ease the notation, we denote vσ,π,ψ = fvσ,ψ ,vπ,ψ , where we suppress
vσ,ψ and vπ,ψ from the notation. Similarly, we denote vπ,σ,ψ = fvπ,ψ ,vσ,ψ .

Definition 3.1. The Shahidi gamma factor of π and σ with respect to ψ is the
unique number 0(π × σ,ψ) ∈ C, such that

Uσ,πvσ,π,ψ = 0(π × σ,ψ) · vπ,σ,ψ .

Remark 3.2. If π ◦ σ is irreducible, then so is σ ◦π , and since Uσ,π is a nonzero
intertwining operator, it is an isomorphism and 0(π × σ,ψ) must be nonzero.



GAMMA FACTORS FOR REPRESENTATIONS OF GLn 57

However, in the general case it is not obvious at this point that 0(π × σ,ψ) is
nonzero. We will show this later.

Remark 3.3. As in Remark 2.4, we may choose invariant inner products ( · , · )π and
( · , · )σ on π and σ , respectively. We then have a natural inner product ( · , · )σ⊗π

on σ ⊗π , which defines an inner product on σ ◦π by the formula

( f1, f2)σ◦π =

∑
g∈Pm,n\ GLn+m(F)

( f1(g), f2(g))σ⊗π .

Using this inner product, the Whittaker functional ℓσ◦π,ψ( f ) = ( f, vσ,π,ψ)σ◦π

is related to the Whittaker functionals ℓσ,ψ(vσ ) = (vσ , vσ,ψ)σ and ℓπ,ψ(vπ ) =

(vπ , vπ,ψ)π by the formula

ℓσ◦π,ψ( f )=

∑
u∈Nn,m

ℓσ,ψ ⊗ ℓπ,ψ( f (ŵn,mu))ψ−1(u).

Similarly, by exchanging the roles of π and σ , we have that Whittaker functional
ℓπ◦σ,ψ is given by a similar formula. Using the definitions of the inner products,
and the fact that elements in π ◦σ are left invariant under Nn,m , we see that Uπ,σ is
the adjoint of Uσ,π , with respect to our choice of inner products. Using the relation
between vσ,π,ψ and vπ,σ,ψ , we obtain the following relation

ℓσ◦π,ψ ◦ Uπ,σ = 0(π × σ,ψ) · ℓπ◦σ,ψ .

This is how the Shahidi gamma factor is usually defined in the literature.

3B1. Dependence on ψ . For any a ∈ F∗, let ψa : F → C∗ be the additive character

ψa(x)= ψ(ax).

It is well known that all nontrivial additive characters of F are of the form ψa

for some a ∈ F∗. In this section, we give a relation between 0(π × σ,ψ) and
0(π × σ,ψa).

Let a ∈ F∗. Suppose that τ is a generic representation of GLk(F) with a nonzero
ψ-Whittaker vector vτ,ψ . Let

dk = diag(1, a, a2, . . . , ak−1).

Then we have that τ(dk)vτ,ψ is a nonzero ψa-Whittaker vector of τ . The map
v 7→ τ(dk)v is a linear isomorphism from the subspace spanned by the ψ-Whittaker
vectors of τ to the subspace spanned by the ψa-Whittaker vectors of τ . In particular,
if vτ,ψ is the unique (up to scalar multiplication) ψ-Whittaker vector of τ , then
τ(dk)vτ,ψ is the unique (up to scalar multiplication) ψa-Whittaker vector of τ .

Let π and σ be representations of Whittaker type of GLn(F) and GLm(F), re-
spectively. Let vπ,ψ ∈ π and vσ,ψ ∈ σ be nonzero ψ-Whittaker vectors. Assume
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that π and σ have central characters, and denote them by ωπ and ωσ , respectively.
Let

vσ,π,ψa = fσ(dm)vσ,ψ ,π(dn)vπ,ψ .

Similarly, we define vπ,σ,ψa .
We first express vσ,π,ψa in terms of vσ,π,ψ . We will use this relation later to show

a relation between the gamma factors 0(π × σ,ψa) and 0(π × σ,ψ).

Proposition 3.4. We have

vσ,π,ψa = ωσ (a)−nρ(dn+m)vσ,π,ψ ,

where ρ(dn+m) denotes right translation by dn+m .

Proof. Let f = ωσ (a)−nρ(dn+m)vσ,π,ψ ∈ σ ◦ π . By the discussion above, f is a
ψa-Whittaker vector of σ ◦π .

We have that
f (ŵn,m)= ωσ (a)−nvσ,π,ψ(ŵn,mdn+m).

Writing dn+m = diag(dn, andm), we have ŵn,mdn+m = diag(andm, dn)ŵn,m , and
hence

f (ŵn,m)= (σ (dm)⊗π(dn))vσ,π,ψ(ŵn,m)= σ(dm)vσ,ψ ⊗π(dn)vπ,ψ .

This shows that f = vσ,π,ψa , as both are ψa-Whittaker vectors in σ ◦π , and both
agree at the point ŵn,m . □

Theorem 3.5. We have

0(π × σ,ψa)= ωπ (a)m ·ωσ (a)−n
·0(π × σ,ψ).

Proof. By definition, we have that

0(π × σ,ψa)vπ,σ,ψa = Uσ,πvσ,π,ψa .

By Proposition 3.4,

0(π × σ,ψa)ωπ (a)−mρ(dn+m)vπ,σ,ψ = ωσ (a)−nUσ,πρ(dn+m)vσ,π,ψ .

Therefore, we get that

0(π × σ,ψa)ωσ (a)nωπ (a)−mvπ,σ,ψ = Uσ,πvσ,π,ψ ,

which implies that

0(π × σ,ψa)ωσ (a)nωπ (a)−m
= 0(π × σ,ψ),

as required. □
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3B2. Relation between 0(π × σ,ψ) and 0(σ∨
× π∨, ψ−1). In this section, we

analyze the relation between 0(π × σ,ψ) and 0(σ∨
×π∨, ψ).

Recall that for a finite dimensional representation τ of GLk(F), we have that
τ∨ ∼= τ ι. See Section 2B1. If vτ,ψ is a nonzero ψ-Whittaker vector for τ , then
τ(wk)vτ,ψ is a nonzero ψ−1-Whittaker vector for τ ι.

We have that
π ι ◦ σ ι ∼= (σ ◦π)ι

by the isomorphism Sσ,π : (σ ◦π)ι ∼= π ι ◦σ ι that sends f ∈ (σ ◦π)ι to the function

(Sσ,π f )(g)= f̃ (ŵn,m gι).

Let
vπ ι,σ ι,ψ−1 = fπ(wn)vπ,ψ ,σ (wm)vσ,ψ ∈ π ι ◦ σ ι.

Then vπ ι,σ ι,ψ−1 is a nonzero ψ−1-Whittaker vector of π ι ◦ σ ι. On the other hand,
by the discussion above, a nonzero ψ−1-Whittaker vector of (σ ◦π)ι is given by
ρ(wm+n)vσ,π,ψ , where ρ(wm+n) represents right translation by wm+n . Therefore
Sσ,πρ(wm+n)vσ,π,ψ is another nonzero ψ−1-Whittaker vector of π ι ◦ σ ι.

Proposition 3.6. We have

vπ ι,σ ι,ψ−1 = Sσ,πρ(wm+n)vσ,π,ψ . (3-1)

Proof. We have that

Sσ,πρ(wm+n)vσ,π,ψ(ŵm,n)= swσ,π vσ,π,ψ(wm+n)= π(wn)vπ,ψ ⊗ σ(wm)vσ,ψ ,

where in the last step we used the fact that diag(wm, wn)ŵn,m = wn+m .
Since Sσ,πρ(wm+n)vσ,π,ψ and vπ ι,σ ι,ψ−1 are both ψ−1-Whittaker vectors for the

representation of Whittaker type π ι ◦σ ι, and they both agree at the point ŵm,n , they
are equal. □

Similarly, let

vσ ι,π ι,ψ−1 = fσ(wm)vσ,ψ ,π(wn)vπ,ψ ∈ σ ι ◦π ι.

Using Proposition 3.6 with roles of the representations π and σ exchanged, we
have

vσ ι,π ι,ψ−1 = Sπ,σρ(wm+n)vπ,σ,ψ . (3-2)

Theorem 3.7. Let π and σ be representations of Whittaker type of GLn(F) and
GLm(F), respectively. Then

0(π × σ,ψ)= 0(σ∨
×π∨, ψ−1).
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Proof. By definition,

Uπ ι,σ ιvπ ι,σ ι,ψ−1 = 0(σ ι ×π ι, ψ−1) · vσ ι,π ι,ψ−1 . (3-3)

Substituting (3-1) and (3-2) in (3-3), we get

Uπ ι,σ ιSσ,πρ(wm+n)vσ,π,ψ = 0(σ ι ×π ι, ψ−1) · Sπ,σρ(wm+n)vπ,σ,ψ .

A simple computation shows that

Uπ ι,σ ι ◦ Sσ,π = Sπ,σ ◦ Uσ,π .

Hence, we get that

Sπ,σρ(wm+n)Uσ,πvσ,π,ψ = 0(σ ι ×π ι, ψ−1) · Sπ,σρ(wm+n)vπ,σ,ψ ,

which implies that

Uσ,πvσ,π,ψ = 0(σ ι ×π ι, ψ−1) · vπ,σ,ψ .

Therefore, we must have

0(σ ι ×π ι, ψ−1)= 0(π × σ,ψ),

and the statement in the theorem follows, since σ ι ∼= σ∨ and π ι ∼= π∨. □

Combining Theorem 3.7 with Theorem 3.5, we get the following corollary.

Corollary 3.8. Let π and σ be representations of Whittaker type of GLn(F) and
GLm(F), respectively. Assume that both π and σ have central characters, and
denote them by ωπ and ωσ , respectively. Then

0(π × σ,ψ)= 0(σ∨
×π∨, ψ) ·ωπ (−1)mωσ (−1)n.

3C. Multiplicativity of Gamma factors. In this section, we show that 0(π×σ,ψ)

is multiplicative.
Let π be a representation of Whittaker type of GLn(F). Let m = m1 + m2,

and let σ1 and σ2 be representations of Whittaker type of GLm1(F) and GLm2(F),
respectively. By Theorem 2.2, the parabolic induction σ1◦σ2 is also a representation
of Whittaker type. Hence, the gamma factor 0(π × (σ1 ◦ σ2), ψ) is well defined.
We will show the following theorem.

Theorem 3.9. 0(π × (σ1 ◦ σ2), ψ)= 0(π1 × σ1, ψ) ·0(π2 × σ2, ψ).

The proof of this theorem will occupy the remaining subsections of this section.

Remark 3.10. Let σ ⊂ σ1 ◦ σ2 be the unique irreducible generic subrepresentation
of σ1 ◦ σ2. We have that ψ-Whittaker vectors of σ are the same as ψ-Whittaker
vectors of σ1 ◦ σ2. Hence, Theorem 3.9 implies that

0(π × σ,ψ)= 0(π × σ1, ψ) ·0(π × σ2, ψ).
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Before proving the theorem, we mention two other multiplicative properties that
follow immediately from the theorem.

The first property is that the gamma factor is also multiplicative in the first
variable. This follows from Theorem 3.9 combined with Theorem 3.7.

Corollary 3.11. Let π1 and π2 be representations of Whittaker type of GLn1(F) and
GLn2(F), respectively, and let σ be a representation of Whittaker type of GLm(F).
Then

0((π1 ◦π2)× σ,ψ)= 0(π1 × σ,ψ) ·0(π2 × σ,ψ).

The second corollary allows us to express the gamma factor of two parabolically
induced representations as the product of the gamma factors of the components
of the parabolic induction. It follows by repeatedly using multiplicativity in both
variables.

Corollary 3.12. Let π1, . . . , πr and σ1, . . . , σt be irreducible generic representa-
tions of GLn1(F), . . . ,GLnr (F) and GLm1(F), . . . ,GLmt (F), respectively. Then:

(1) We have

0((π1 ◦ . . . ◦πr )× (σ1 ◦ . . . ◦ σt), ψ)=

r∏
i=1

t∏
j=1

0(πi × σ j , ψ).

(2) If π is the unique irreducible generic subrepresentation of π1 ◦ . . . ◦πr and σ
is the unique irreducible generic subrepresentation of σ1 ◦ . . . ◦ σt , then

0(π × σ,ψ)=

r∏
i=1

t∏
j=1

0(πi × σ j , ψ).

In the next subsections we make preparations for the proof of Theorem 3.9.

3C1. Transitivity of parabolic induction. Let τ1, τ2 and τ3 be finite dimensional
representations of GLn1(F), GLn2(F) and GLn3(F), respectively.

We realize elements in (τ1 ◦ τ2)⊗ τ3 as functions GLn1+n2(F) → τ1 ⊗ τ2 ⊗ τ3

in the obvious way. Similarly, we realize elements in τ1 ⊗ (τ2 ◦ τ3) as functions
GLn2+n3 → τ1 ⊗ τ2 ⊗ τ3 in the obvious way.

Consider the space (τ1◦τ2)◦τ3. We will regard elements of this space as functions

f : GLn1+n2+n3(F)× GLn1+n2(F)→ τ1 ⊗ τ2 ⊗ τ3,

where f (g; h) means evaluating f at g ∈ GLn1+n2+n3(F) and then evaluating the re-
sulting function at h ∈ GLn1+n2(F). We will similarly regard elements of τ1◦(τ2◦τ3)

as functions

f : GLn1+n2+n3(F)× GLn2+n3(F)→ τ1 ⊗ τ2 ⊗ τ3.
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We have an isomorphism of representations

Lτ1,τ2;τ3 : (τ1 ◦ τ2) ◦ τ3 → τ1 ◦ τ2 ◦ τ3,

given by mapping a function f ∈ (τ1 ◦ τ2) ◦ τ3 to

Lτ1,τ2;τ3 f (g)= f (g; In1+n2),

where g ∈ GLn1+n2+n3(F).
Similarly, we have an isomorphism of representations

Lτ1;τ2,τ3 : τ1 ◦ (τ2 ◦ τ3)→ τ1 ◦ τ2 ◦ τ3,

given by mapping a function f ∈ τ1 ◦ (τ2 ◦ τ3) to

Lτ1;τ2,τ3 f (g)= f (g; In2+n3),

where again g ∈ GLn1+n2+n3(F).
Assume now that τ1, τ2 and τ3 have nonzero ψ-Whittaker vectors, vτ1,ψ , vτ2,ψ

and vτ3,ψ , respectively, and assume that up to scalar multiplication, these Whittaker
vectors are unique. We denote, as before, the following nonzeroψ-Whittaker vectors
vτ1,τ2,ψ = fvτ1,ψ ,vτ2,ψ ∈ τ1 ◦ τ2 and vτ2,τ3,ψ = fvτ2,ψ ,vτ3,ψ ∈ τ2 ◦ τ3. We also define the
following nonzero ψ-Whittaker vectors vτ1,τ2◦τ3,ψ = fvτ1,ψ ,vτ2,τ3,ψ ∈ τ1 ◦(τ2 ◦τ3) and
vτ1◦τ2,τ3,ψ = fvτ1,τ2,ψ ,vτ3,ψ ∈ (τ1 ◦ τ2) ◦ τ3. Finally, we define

vτ1,τ2,τ3,ψ = Lτ1;τ2,τ3vτ1,τ2◦τ3,ψ = Lτ1,τ2;τ3vτ1◦τ2,τ3,ψ ∈ τ1 ◦ τ2 ◦ τ3.

Then vτ1,τ2,τ3,ψ is the ψ-Whittaker vector in τ1 ◦ τ2 ◦ τ3 supported on the double
coset Pn1,n2,n3ŵn3,n2,n1 Zn1+n2+n3 , with vτ1,τ2,τ3,ψ(ŵn3,n2,n1)= vτ1,ψ ⊗vτ2,ψ ⊗vτ3,ψ ,
where

ŵn3,n2,n1 =

 In1

In2

In3

 .

3C2. Intertwining operators. We return to the notations of the beginning of this
section. Let π be a representation of Whittaker type of GLn(F). Let m = m1 + m2,
and let σ1 and σ2 be representations of Whittaker type of GLm1(F) and GLm2(F),
respectively.



GAMMA FACTORS FOR REPRESENTATIONS OF GLn 63

Using the isomorphisms from the previous section, we obtain maps such that the
following diagrams are commutative:

σ1 ◦ (σ2 ◦π)
idσ1 ⊗Uσ2,π

//

Lσ1;σ2,π

��

σ1 ◦ (π ◦ σ2)

Lσ1;π,σ2

��
σ1 ◦ σ2 ◦π

Ũσ2,π
// σ1 ◦π ◦ σ2

(3-4)

(σ1 ◦π) ◦ σ2
Uσ1,π⊗idσ2

//

Lσ1,π;σ2

��

(π ◦ σ1) ◦ σ2

Lπ,σ1;σ2

��
σ1 ◦π ◦ σ2

Ũσ1,π
// π ◦ σ1 ◦ σ2

(3-5)

(σ1 ◦ σ2) ◦π

Lσ1,σ2;π

��

Uσ1◦σ2,π
// π ◦ (σ1 ◦ σ2)

Lπ;σ1,σ2

��
σ1 ◦ σ2 ◦π

Ũσ1◦σ2,π
// π ◦ σ1 ◦ σ2

(3-6)

Let us explain these diagrams. We begin with explaining (3-4). The map
idσ1 ⊗Uσ2,π : σ1 ⊗ (σ2 ◦π)→ σ1 ⊗ (π ◦σ2) is a homomorphism of representations.
It defines a homomorphism σ1 ◦(σ2 ◦π)→ σ1 ◦(π ◦σ2), which we keep denoting by
idσ1 ⊗Uσ2,π . By unwrapping the definitions, we see that the map Ũσ2,π : σ1◦σ2◦π→

σ1 ◦π ◦ σ2 is given by the formula

Ũσ2,π ( f )(g)=

∑
un,m2∈Nn,m2

swσ2,π f

Im1

Im2

In

 (
Im1

un,m2

)
g

 . (3-7)

The commutative diagram (3-5) is similar. We get by unwrapping the definitions
that the map Ũσ1,π : σ1 ◦π ◦ σ2 → π ◦ σ1 ◦ σ2 is given by

Ũσ1,π ( f )(g)=

∑
un,m1∈Nn,m1

swσ1,π f

 Im1

In

Im2

 (
un,m1

Im2

)
g

 . (3-8)

Finally, in the diagram (3-6), we have that Ũσ1◦σ2,π : σ1 ◦ σ2 ◦π → π ◦ σ1 ◦ σ2 is
given by

Ũσ1◦σ2,π ( f )(g)=

∑
un,m∈Nn,m

f̃

 Im1

Im2

In

 un,m g

 , (3-9)

where for g ∈ GLn+m(F), we mean f̃ (g)= swσ1,π swσ2,π f (g).
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Proposition 3.13. We have

Ũσ1◦σ2,π = Ũσ1,π ◦ Ũσ2,π .

Proof. Let f ∈ σ1 ◦ σ2 ◦π and g ∈ GLn+m(F). Then by (3-7) and (3-8),

(Ũσ1,π◦Ũσ2,π f )(g)=
∑

X∈Mn×m1 (F)

∑
Y∈Mn×m2 (F)

f̃

Im1

Im2

In

Im1

In Y
Im2


×

 Im1

In

Im2

In X
Im1

Im2

g

 .
A simple computation shows thatIm1

Im2

In

 Im1

In Y
Im2

  Im1

In

Im2

 In X
Im1

Im2


=

 Im1

Im2

In

 In X Y
Im1

Im2

 .

Hence, we get

(Ũσ1,π◦Ũσ2,π f )(g)=
∑

X∈Mn×m1 (F)

∑
Y∈Mn×m2 (F)

f̃

 Im1

Im2

In

In X Y
Im1

Im2

g

 ,
and the last sum is Ũσ1◦σ2,π ( f )(g) by (3-9). □

3C3. Proof of Theorem 3.9. Let vπ,ψ , vσ1,ψ and vσ2,ψ be nonzero ψ-Whittaker
vectors of π , σ1 and σ2, respectively. We keep the notations from the previous
section. We are now ready to prove Theorem 3.9.

Proof. By definition, we have

(idσ1 ⊗Uσ2,π )(vσ1,σ2◦π,ψ)= 0(π × σ2, ψ)vσ1,π◦σ2,ψ .

Since Lσ1;σ2,πvσ1,σ2◦π,ψ =vσ1,σ2,π,ψ and Lσ1;π,σ2vσ1,π◦σ2,ψ =vσ1,π,σ2,ψ , we get from
the commutative diagram (3-4) that

Ũσ2,πvσ1,σ2,π,ψ = 0(π × σ2, ψ)vσ1,π,σ2,ψ .

Similarly, we have that

(Uσ1,π ⊗ idσ2)(vσ1◦π,σ2,ψ)= 0(π × σ1, ψ)vπ◦σ1,σ2,ψ ,
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and we get from the commutative diagram (3-5) that

Ũσ1,πvσ1,π,σ2,ψ = 0(π × σ1, ψ)vπ,σ1,σ2,ψ .

Finally, we have

Uσ1◦σ2,πvσ1◦σ2,π,ψ = 0(π × (σ1 ◦ σ2), ψ)vπ,σ1◦σ2,ψ .

Since Lσ1,σ2;πvσ1◦σ2,π,ψ =vσ1,σ2,π,ψ and Lπ;σ1,σ2vπ,σ1◦σ2,ψ =vπ,σ1,σ2,ψ , we get from
the commutative diagram (3-6)

Ũσ1◦σ2,πvσ1,σ2,π,ψ = 0(π × (σ1 ◦ σ2), ψ)vπ,σ1,σ2,ψ .

Since Ũσ1◦σ2,π = Ũσ1,π ◦ Ũσ2,π , we get that

0(π × (σ1 ◦ σ2), ψ)vπ,σ1,σ2,ψ = 0(π × σ1, ψ)0(π × σ2, ψ)vπ,σ1,σ2,ψ ,

and the theorem follows. □

3D. Expression in terms of Bessel functions. In this section, we express the
Shahidi gamma factor of two irreducible generic representations in terms of their
Bessel functions.

Let π and σ be irreducible generic representations of GLn(F) and GLm(F),
respectively. We assume that π and σ are realized by their Whittaker models
W(π, ψ) and W(σ, ψ), respectively. We choose the Whittaker vectors of π and
σ to be their corresponding Bessel functions, i.e., we choose vπ,ψ = Jπ,ψ and
vσ,ψ = Jσ,ψ . We denote Jσ,π,ψ = vσ,π,ψ = fJσ,ψ ,Jπ,ψ and similarly Jπ,σ,ψ =

vπ,σ,ψ = fJπ,ψ ,Jσ,ψ .
Assume that n ≥ m. By definition, we have that for any g ∈ GLn+m(F),

(Uσ,πJσ,π,ψ)(g)= 0(π × σ,ψ)Jπ,σ,ψ(g).

Substituting g = ŵm,n , we get

0(π × σ,ψ)Jπ,σ,ψ(ŵm,n)=

∑
u∈Nn,m

swσ,π Jσ,π,ψ(ŵn,muŵm,n),

and therefore

0(π × σ,ψ)Jπ,ψ ⊗Jσ,ψ =

∑
A∈Mn×m(F)

swσ,π Jσ,π,ψ
(

Im

A In

)
. (3-10)

In order for Jσ,π,ψ
( Im

A In

)
not to vanish, we must have

( Im
A In

)
∈ Pm,nŵn,m Zn+m ,

so there must exist
( p1 x

p2

)
∈ Pm,n and

( u1 y
u2

)
∈ Zn+m , where u1 ∈ Zn and u2 ∈ Zm ,

such that (
p1 x

p2

) (
Im

A In

)
=

(
Im

In

) (
u1 y

u2

)
,
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i.e., (
p1 + x A x

p2 A p2

)
=

(
u2

u1 y

)
.

Therefore, we have p1 + x A = 0 and x = (0m×(n−m), u2).
In order to proceed, we will separate two cases, the case where n > m and the

case where n = m.

3D1. The case n > m. In this case, we write A =
( A1

A2

)
, where A1 ∈ M(n−m)×m(F)

and A2 ∈ Mm×m(F) and x = (0m×(n−m), u2). Then p1+x A = 0 implies p1+u2 A2 =

0, and therefore A2 is invertible.
Write

(
In

A Im

)
=

 Im

A1 In−m

A2 Im


=

 Im −A−1
2

A1 In−m

A2

 Im A−1
2

In−m −A1 A−1
2

Im


=

−A−1
2 Im

A1 In−m

A2

 ŵn,m

Im A−1
2

In−m −A1 A−1
2

Im

 .

Therefore, we have

Jσ,π,ψ
(

Im

A In

)
= ψ

(
In−m −A1 A−1

2
Im

)
σ(−A−1

2 )⊗π

(
A1 In−m

A2

)
Jσ,ψ ⊗Jπ,ψ . (3-11)

Substituting (3-11) back in (3-10), we get

0(π×σ,ψ)Jπ,ψ⊗Jσ,ψ

=

∑
A1∈M(n−m)×m(F)

A2∈GLm(F)

ψ

(
In−m −A1 A−1

2
Im

)
π

(
A1 In−m

A2

)
⊗σ(−A−1

2 )Jπ,ψ⊗Jσ,ψ . (3-12)

We evaluate both sides of (3-12) at (In, Im) to get

0(π×σ,ψ)=
∑

A1∈M(n−m)×m(F)
A2∈GLm(F)

ψ

(
In−m −A1 A−1

2
Im

)
Jπ,ψ

(
A1 In−m

A2

)
Jσ,ψ(−A−1

2 ).
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Writing (
A1 In−m

A2

)
=

(
In−m A1 A−1

2
Im

) (
In−m

A2

)
,

we get

Jπ,ψ
(

A1 In−m

A2

)
= ψ

(
In−m A1 A−1

2
Im

)
Jπ,ψ

(
In−m

A2

)
,

and therefore

0(π × σ,ψ)=

∑
A1∈M(n−m)×m(F)

A2∈GLm(F)

Jπ,ψ
(

In−m

A2

)
Jσ,ψ(−A−1

2 ).

The summand is independent of A1. Using the equivariance properties of the Bessel
function, we get that the summand is invariant under Zm left translations of A2.
Finally, using the properties of the Bessel function discussed in Section 2B1, we get

0(π × σ,ψ)= qm(2n−m−1)/2ωσ (−1)
∑

x∈Zm\ GLm(F)

Jπ,ψ
(

In−m

x

)
Jσ∨,ψ−1(x),

where qm(2n−m−1)/2
= |M(n−m)×m(F)| · |Zm |.

3D2. The case n =m. In this case, we have −p1 = x A, and therefore A is invertible.
We write(

In

A In

)
=

(
In −A−1

A

) (
In A−1

In

)
=

(
−A−1 In

A

)
ŵn,n

(
In A−1

In

)
.

Therefore, we have

Jσ,π,ψ
(

Im

A In

)
= ψ

(
In A−1

In

)
σ(−A−1)⊗π(A)Jσ,ψ ⊗Jπ,ψ . (3-13)

Substituting (3-13) in (3-10), we get

0(π × σ,ψ)Jπ,ψ ⊗Jσ,ψ

=

∑
A∈GLn(F)

ψ

(
In A−1

In

)
π(A)⊗ σ(−A−1)Jπ,ψ ⊗Jσ,ψ . (3-14)

Evaluating both sides of (3-14) at (In, In), we get

0(π × σ,ψ)=

∑
A∈GLn(F)

ψ

(
In A−1

In

)
Jπ,ψ(A)Jσ,ψ(−A−1).
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The summand is invariant under Zn left translations. Using the properties of the
Bessel function discussed in Section 2B1, we get

0(π × σ,ψ)= qn(n−1)/2ωσ (−1)
∑

x∈Zn\ GLn(F)

ψ

(
In x−1

In

)
Jπ,ψ(x)Jσ∨,ψ−1(x).

3D3. Summary of cases. We conclude this section by writing down formulas for
the Shahidi gamma factor for a pair of irreducible generic representations, in terms
of their Bessel functions for all cases. In order to do that, we use Theorem 3.7 and
the formulas from Sections 3D1 and 3D2.

Theorem 3.14. Let π and σ be irreducible generic representations of GLn(F) and
GLm(F), respectively:

(1) If n > m, then

0(π × σ,ψ)= qm(2n−m−1)/2ωσ (−1)
∑

x∈Zm\ GLm(F)

Jπ,ψ
(

In−m

x

)
Jσ∨,ψ−1(x).

(2) If n = m, then

0(π × σ,ψ)= qn(n−1)/2ωσ (−1)
∑

x∈Zn\ GLn(F)

ψ

(
In x−1

In

)
Jπ,ψ(x)Jσ∨,ψ−1(x).

(3) If n < m, then

0(π × σ,ψ)= qn(2m−n−1)/2ωπ (−1)
∑

x∈Zn\ GLn(F)

Jπ,ψ(x)Jσ∨,ψ−1

(
Im−n

x

)
.

Theorem 3.14 allows us to give a relation between the Jacquet–Piatetski-Shapiro–
Shalika gamma factors defined in Section 2C and the Shahidi gamma factor. By
Propositions 2.6 and 2.9, we get the following corollary.

Corollary 3.15. Let π be an irreducible cuspidal representation of GLn(F) and let
σ be an irreducible generic representation of GLm(F). Then we have the equality

0(π × σ,ψ)= qm(2n−m−1)/2ωσ (−1)γ (π × σ∨, ψ)

in either of the following cases:

(1) n > m.

(2) n = m and σ is cuspidal.
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4. Applications

4A. Quantitative interpretation of gamma factors. In this section, we give a
representation theoretic interpretation of the absolute value of the Shahidi gamma
factor. Our results relate the absolute value of a normalized version of the Shahidi
gamma factor with the cuspidal support of the representations.

For irreducible generic representations π and σ of GLn(F) and GLm(F), respec-
tively, we define the normalized Shahidi gamma factor by

0∗(π × σ,ψ)= q−nm/20(π × σ,ψ).

It follows from Corollary 3.12 that under this normalization, the gamma factor
is still multiplicative, i.e., the following proposition holds.

Proposition 4.1. Let π1, . . . , πr and σ1, . . . , σt be irreducible generic representa-
tions of GLn1(F), . . . ,GLnr (F) and GLm1(F), . . . ,GLmt (F). Suppose that π is the
unique irreducible generic subrepresentation of π1 ◦ . . .◦πr and that σ is the unique
irreducible generic subrepresentation of σ1 ◦ . . . ◦ σt . Then

0∗(π × σ,ψ)=

r∏
i=1

t∏
j=1

0∗(πi × σ j , ψ).

By Corollaries 3.15 and 2.7 and Proposition 2.12, we have the following propo-
sition, which allows us to express the size of the absolute value of 0(π × σ,ψ)

where π and σ are cuspidal.

Proposition 4.2. Let π and σ be irreducible cuspidal representations of GLn(F)

and GLm(F), respectively. Then

|0∗(π × σ,ψ)| =

{
q−n/2 n = m and π ∼= σ,

1 otherwise.

Proposition 4.2 tells us that the size of the normalized Shahidi gamma factor
serves as a “Kronecker delta function” for cuspidal representations. It could be
thought of an analog of [Jacquet et al. 1983, Section 8.1]. Combining this with the
multiplicativity property, we get the following theorem, that allows us to recover
the cuspidal support of an irreducible generic representation π by computing
|0∗(π × σ,ψ)| for any irreducible cuspidal σ .

Theorem 4.3. Let π be an irreducible generic representation of GLn(F) and let σ
be an irreducible cuspidal representation of GLm(F). Then

|0∗(π × σ,ψ)| = q−dπ (σ )m/2,

where dπ (σ ) is the number of times that σ appears in the cuspidal support of π .
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Proof. Suppose that the cuspidal support of π is {π1, . . . , πr }. Then π is the
unique irreducible generic subrepresentation of π1 ◦ . . .◦πr . The result now follows
immediately from Propositions 4.1 and 4.2. □

As a corollary, we get the following converse theorem, which allows us to
determine whether generic representations of GLn(F) and GLm(F) are isomorphic
based on the absolute value of their normalized gamma factors. It is an analog of
[Atobe and Gan 2017, Lemma A.6], but our proof is on the “group side” rather
than on the “Galois side”.

Theorem 4.4. Let π1 and π2 be irreducible generic representations of GLn1(F) and
GLn2(F), respectively. Suppose that for every m > 0 and every irreducible cuspidal
representation σ of GLm(F) we have

|0∗(π1 × σ,ψ)| = |0∗(π2 × σ,ψ)|.

Then n1 = n2 and π1 ∼= π2.

Proof. By Theorem 4.3, π1 and π2 have the same cuspidal support. By Theorem 2.2,
there exists a unique irreducible generic representation with a given cuspidal support.

□

As another corollary, we explain that the functional equations in Theorem 2.5
and Proposition 2.10 fail for π and σ , whenever the cuspidal support of π has a
nonempty intersection with the cuspidal support of σ∨.

Corollary 4.5. Suppose that π and σ are irreducible generic representations of
GLn(F) and GLm(F), respectively, and that n > m (respectively, n = m). Suppose
that the cuspidal support of π has a nonempty intersection with the cuspidal support
of σ∨. Then the functional equation in Theorem 2.5 (respectively, Theorem 2.8)
does not hold for π and σ .

Proof. If the functional equation holds for π and σ , then it also holds for π∨

and σ∨. This can be seen by applying complex conjugation to the functional
equation, which sends the ψ-Whittaker functions to ψ−1-Whittaker functions of
the contragredient. As in Corollary 2.7 (respectively, Corollary 2.11), we get that
|γ (π × σ,ψ)| = q−m(n−m−1)/2. Whenever γ (π × σ,ψ) is defined, it is given by
the formula in Proposition 2.6 (respectively, Proposition 2.9), and therefore the
formula in Corollary 3.15 holds. This implies that |0∗(π × σ∨, ψ)| = 1.

On the other hand, because π and σ∨ have common elements in their cuspidal
support, we have that |0∗(π × σ∨, ψ)|< 1. □

Remark 4.6. In his unpublished manuscript [Soudry 1979], the first author showed
that whenever the cuspidal support of π does not intersect the cuspidal support of
σ∨, the relevant functional equation holds. Due to length considerations, we do not
include the proofs here.



GAMMA FACTORS FOR REPRESENTATIONS OF GLn 71

4B. Consequences for the converse theorem. Our results from Section 4A allow
us to improve Nien’s results regarding the converse theorem for irreducible generic
representations of finite general linear groups.

Nien [2014] showed the following theorem.

Theorem 4.7. Let π1 and π2 be two irreducible cuspidal representations of GLn(F)

with the same central character. Suppose that for every 1 ≤ m ≤
n
2 , and every

irreducible generic representation σ of GLm(F) we have

γ (π1 × σ,ψ)= γ (π2 × σ,ψ). (4-1)

Then π1 ∼= π2.

Using our results and Theorem 4.7, we are able to deduce the following converse
theorem, where π1 and π2 can be arbitrary generic representations (rather than
just cuspidal representations), and (4-1) needs to be verified only for cuspidal
representations σ (rather than for all generic representations). This is similar to
[Jiang et al. 2015, Section 2.4].

Theorem 4.8. Let π1 and π2 be two irreducible generic representations of GLn(F)

with the same central character. Suppose that for every 1 ≤ m ≤
n
2 , and every

irreducible cuspidal representation σ of GLm(F) we have

0∗(π1 × σ,ψ)= 0∗(π2 × σ,ψ). (4-2)

Then π1 ∼= π2.

Proof. Our proof is by induction on the cardinality of the cuspidal support of π1.
We first notice that by Proposition 4.1, we have that for any 1 ≤ m ≤

n
2 and any

irreducible generic representation σ of GLm(F),

0∗(π1 × σ,ψ)= 0∗(π2 × σ,ψ).

Suppose that π1 is cuspidal, then its cuspidal support is of cardinality 1. If π2

is not cuspidal, then its cuspidal support contains an irreducible cuspidal repre-
sentation τ of GLk(F), where k ≤

n
2 . Since k < n, we have by Theorem 4.3 that

|0∗(π1 × σ,ψ)| = 1. We also have by Theorem 4.3 that |0∗(π2 × σ,ψ)| < 1,
which is a contraction. Therefore, π2 is also cuspidal, and by Corollary 3.15 and
Theorem 4.7, we have that π1 and π2 are isomorphic.

Suppose now that π1 is not cuspidal. Let {τ1, . . . , τr } the cuspidal support of
π1 and let {τ ′

1, . . . , τ
′

r ′} be the cuspidal support of π2. Without loss of generality,
we have that τ1 is an irreducible cuspidal representation of GLn1(F), where n1 ≤

n
2 .

Then by Theorem 4.3 we have that |0∗(π1 × τ1, ψ)|< 1. Since n1 ≤
n
2 , we have

that 0∗(π1 × τ1, ψ) = 0∗(π2 × τ1, ψ), and therefore |0∗(π2 × τ1, ψ)| < 1. By
Theorem 4.3, this implies that τ1 is in the cuspidal support of π2. Without loss of
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generality, we may assume that τ ′

1 = τ1. By Proposition 4.1, we deduce that for any
irreducible generic representation σ of GLm(F) where m ≤

n
2 ,

r∏
j=2

0∗(τ j × σ,ψ)=

r ′∏
j=2

0∗(τ ′

j × σ,ψ). (4-3)

Let π ′

1 be the unique irreducible generic representation of GLn−n1(F) with cuspidal
support {τ2, . . . , τr }, and let π ′

2 be the unique irreducible generic representation of
GLn−n1(F) with cuspidal support {τ ′

2, . . . , τ
′

r ′}. For i = 1, 2, the central characters
of πi and π ′

i are related by ωπi = ωπ ′

i
·ωτ1 . Therefore, we have that π ′

1 and π ′

2 also
have the same central character. By Proposition 4.1, we have that (4-3) implies that
for every m ≤

n
2 and every irreducible generic representation σ of GLm(F),

0∗(π ′

1 × σ,ψ)= 0∗(π ′

2 × σ,ψ).

By induction π ′

1
∼= π ′

2, and therefore {τ2, . . . , τr } = {τ ′

2, . . . , τ
′

r ′}. Hence, π1 ∼= π2,
as required. □

4C. Special values of the Bessel function. In this section, we use our results
regarding multiplicativity of the Shahidi gamma factor, and its relation to the
Jacquet–Piatetski-Shapiro–Shalika gamma factor in order to find an explicit formula
for special values of the Bessel function of irreducible generic representations of
GLn(F). For two blocks, such a formula was given by Curtis and Shinoda [2004,
Lemma 3.5]. However, their proof uses Deligne–Lusztig theory, while our proof
only uses Green’s character values for irreducible cuspidal representation of GLn(F);
see [Gel’fand 1970, Section 6] and [Nien 2017, Section 3.1]. We also provide a
formula for a simple value consisting of three blocks. This generalizes a formula
of Chang [1976] for irreducible generic representations of GL3(F).

4C1. Special value formula for two blocks. Fix an algebraic closure F of F. For
every positive integer n, let Fn be the unique extension of degree n in F. Let
NFn/F : F∗

n → F∗ and TrFn/F : Fn → F be the norm and the trace maps, respectively.
Let F̂∗

n be the character group consisting of all multiplicative characters α : F∗
n → C∗.

It is known that irreducible cuspidal representations of GLn(F) are in a bijection
with Frobenius orbits of size n of F̂∗

n , that is, every irreducible cuspidal representation
π of GLn(F) corresponds to a set of size n of the form {α, αq , . . . , αqn−1

}, where
α ∈ F̂∗

n .
We first recall Nien’s result regarding the computation of the Jacquet–Piatetski-

Shapiro–Shalika gamma factor γ (π × χ,ψ) where π is an irreducible cuspidal
representation of GLn(F) and χ is a representation of GL1(F), that is, χ : F∗

→ C∗

is a multiplicative character. Nien’s result expresses γ (π ×χ,ψ) as a Gauss sum.
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Proposition 4.9 [Nien 2014, Theorem 1.1]. Let π be an irreducible cuspidal
representation of GLn(F) associated with the Frobenius orbit {α, αq , . . . , αqn−1

},
where α ∈ F̂∗

n . Let χ : F∗
→ C∗ be a multiplicative character. Then

γ (π ×χ,ψ)= (−1)n+1χ(−1)n+1q−n+1
∑
ξ∈F∗

n

α−1(ξ)χ−1(NFn/F(ξ))ψ(TrFn/F(ξ)).

Nien’s proof only uses Green’s character formula for irreducible cuspidal repre-
sentations, and does not use Deligne–Lusztig theory.

We are ready to state our result regarding special two blocks values of the Bessel
function.

Theorem 4.10. Let n > 1, and let π be an irreducible generic representation of
GLn(F) with cuspidal support {π1, . . . , πr }, where for every 1 ≤ j ≤ r , π j is an
irreducible cuspidal representation of GLn j (F) corresponding to the Frobenius orbit
{α j , α

q
j , . . . , α

qn j −1

j }, where α j ∈ F̂∗
n j

is a multiplicative character. Then for any
c ∈ F∗,

Jπ,ψ
(

In−1

c

)
= (−1)n+r q−n+1

∑
ξ1∈F∗

n1
,...,ξr ∈F∗

nr∏r
j=1 NFn j /F

(ξ j )=(−1)n−1c−1

r∏
j=1

(
α−1

j (ξ j )ψ(TrFn j /F
(ξ j ))

)
.

Proof. By Theorem 3.14, we have that

0(π ×χ,ψ)= qn−1
∑
x∈F∗

Jπ,ψ
(

In−1

x

)
χ−1(−x).

Multiplying by χ(−c) and averaging over all χ ∈ F̂∗, and using the fact that a sum
of a nontrivial character on a group is zero, we get

1
|F∗|

∑
χ∈F̂∗

0(π ×χ,ψ)χ(−c)= qn−1Jπ,ψ
(

In−1

c

)
. (4-4)

By Corollary 3.12, we have that

0(π ×χ,ψ)=

r∏
j=1

0(π j ×χ,ψ).

By Corollary 3.15 and Proposition 4.9, we have that

0(π j ×χ,ψ)= (−1)n j +1χ(−1)n j
∑
ξ∈F∗

n j

α−1
j (ξ)χ(NFn j /F

(ξ))ψ(TrFn j /F
(ξ)).
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Therefore, we get that 0(π ×χ,ψ) is given by

(−1)n+r
∑

ξ1∈F∗
n1
,...,ξr ∈F∗

nr

( r∏
j=1

α−1
j (ξ j )ψ(TrFn j /F

(ξ j ))

)
χ

(
(−1)n

r∏
j=1

NFn j /F
(ξ j )

)
.

(4-5)
Substituting the expression (4-5) for 0(π ×χ,ψ) in (4-4), and using the fact that a
sum of a nontrivial of character over a group is zero, we get the desired result. □

Remark 4.11. The expression for 0(π ×χ,ψ) in (4-5) is originally due to Kondo
[1963]. He computed it for the Godement–Jacquet gamma factor. One can show
directly that the Godement–Jacquet gamma factor coincides with the Shahidi gamma
factor for representations for which both factors are defined. Our proof, which is
based on Nien’s result and on multiplicativity of gamma factors, is different than
the one given by Kondo. See also another proof in [Macdonald 1998, Chapter IV,
Section 6, Example 4].

Remark 4.12. In [Zelingher 2023], a vast generalization of the method in the proof
of Theorem 4.10 is used in order to find formulas for

Jπ,ψ
(

In−m

cIm

)
.

However, [Zelingher 2023] relies on the results of [Ye and Zelingher 2021], which
in turn rely on the local Langlands correspondence. The proof given here does not
rely on such results.

4C2. Special value formula for three blocks. In this subsection, we use our results
to prove a formula for special values of the Bessel function, for a simple value
consisting of three blocks. This generalizes a formula given by Chang [1976] for
GL3(F), generalized later by Shinoda and Tulunay [2005] to GL4(F). Our proof is
different from Chang’s proof, which is based on the Gelfand–Graev algebra.

We start with the following proposition.

Proposition 4.13. Let π be an irreducible generic representation of GLn(F). Then
for any c ∈ F∗, and any g ∈ GLn(F), we have

Jπ,ψ(g)Jπ,ψ
(

In−1

c

)
= q−(n−1)

∑
t x=(x1,...,xn−1)∈Fn−1

ψ(−xn−1)Jπ,ψ
(

g
(

In−1 x
1

) (
In−1

c

))
.
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Proof. Let m = 1 and let σ = χ : F∗
→ C∗ be a multiplicative character. By (3-12),

we have

0(π ×χ,ψ)Jπ,ψ =

∑
t x∈Fn−1

a∈F∗

χ(−a−1)ψ

(
In−1 −a−1x

1

)
π

(
x In−1

a

)
Jπ,ψ .

We multiply by χ(−c) and average over χ ∈ F̂∗. Using the fact that a sum of a
nontrivial character over a group is zero, and using (4-4), we get

qn−1Jπ,ψ
(

In−1

c

)
Jπ,ψ =

∑
t x=(x1,...,xn−1)∈Fn−1

ψ(−c−1xn−1)π

(
x In−1

c

)
Jπ,ψ .

Using the decomposition(
x In−1

c

)
=

(
In−1 c−1x

1

) (
In−1

c

)
,

and changing the summation variable x to c · x , we get the desired result. □

Theorem 4.14. Suppose n ≥ 3. Then for any irreducible generic representation π
of GLn(F) and any c, c′

∈ F∗, we have

Jπ,ψ

 −c′

In−2

c


=

∑
s∈F∗

Jπ,ψ
(

In−1

s−1c

)
Jπ,ψ

(
sc′

In−1

)
(ψ(s)− 1)+

δcc′,1

qn−2 ,

where

δcc′,1 =

{
1 cc′

= 1,
0 otherwise.

Proof. We substitute g =
(

In−1

c′ )
in Proposition 4.13 to get

Jπ,ψ
(

In−1

c

)
Jπ,ψ

(
c′

In−1

)
= q−(n−1)

∑
t x=(x1,...,xn−1)∈Fn−1

ψ(−xn−1)Jπ,ψ
(

cc′

cx In−1

)
.

If xn−1 = 0, then
( cc′

cx In−1

)
lies in the mirabolic subgroup. By [Nien 2014,

Lemma 2.14], we have that the Bessel function is zero for elements in the mirabolic
subgroup that do not lie in the upper unipotent subgroup Zn . Therefore, we get that
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if xn−1 = 0, then x = 0 and

ψ(xn−1)Jπ,ψ
(

cc′

cx In−1

)
= δcc′,1.

Suppose now that xn−1 = t ̸= 0. Denote

t x ′
= (x1, . . . , xn−2) ∈ Fn−2.

Then we have

(
cc′

cx In−1

)
=

1 0 t−1c′

In−2 t−1x ′

1

  −t−1c′

In−2

tc

 1 0 (tc)−1

In−2 −t−1x ′

1

 .

Since we have qn−2 elements in Fn−1 with xn−1 = t , we get that

Jπ,ψ
(

In−1

c

)
Jπ,ψ

(
c′

In−1

)
=
δcc′,1

qn−1 +q−1
∑
t∈F∗

ψ(−t)Jπ,ψ

 −t−1c′

In−2

tc

 .
We proceed as in [Chang 1976, Page 379; Shinoda and Tulunay 2005, Lemma 4.2].
We replace c with s−1c and c′ with sc′, where s ∈ F∗, to get

Jπ,ψ
(

In−1

s−1c

)
Jπ,ψ

(
sc′

In−1

)

=
δcc′,1

qn−1 + q−1
∑
t∈F∗

ψ(−st)Jπ,ψ

 −t−1c′

In−2

tc

 . (4-6)

Summing (4-6) over s ∈ F∗, we get

∑
s∈F∗

Jπ,ψ
(

In−1

s−1c

)
Jπ,ψ

(
sc′

In−1

)

=
q − 1
qn−1 δcc′,1 − q−1

∑
t∈F∗

Jπ,ψ

 −t−1c′

In−2

tc

 . (4-7)
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Multiplying (4-6) by ψ(s) and summing over s ∈ F∗, we get∑
s∈F∗

Jπ,ψ
(

In−1

s−1c

)
Jπ,ψ

(
sc′

In−1

)
ψ(s)

= −
δcc′,1

qn−1 +
q − 1

q
Jπ,ψ

 −c′

In−2

c


− q−1

∑
1̸=t∈F∗

Jπ,ψ

 −t−1c′

In−2

tc

 . (4-8)

Subtracting (4-7) from (4-8), we get the desired result. □

Remark 4.15. Using the formulas in Theorem 4.10 and its proof, one can show
that if the cuspidal support of π does not contain any irreducible representation of
GL1(F), then we have a simpler formula:

Jπ,ψ

 −c′

In−2

c

 =

∑
s∈F∗

Jπ,ψ
(

In−1

s−1c

)
Jπ,ψ

(
sc′

In−1

)
ψ(s). (4-9)

However, if the cuspidal support of π contains irreducible representations of GL1(F),
this simpler formula does not hold.

Remark 4.16. Using the expression in Theorem 4.10, we have that the expres-
sion on the right hand side of (4-9) is an exponential sum that generalizes the
Friedlander–Iwaniec character sum; see [Kowalski 2015, Theorem 7.3, formula (27)
and Remark 7.4]. The Friedlander–Iwaniec character sum played a role in Zhang’s
work on the twin prime conjecture [2014].

Appendix: Computation of γ (π ×π∨, ψ) when π is cuspidal

In this appendix, we compute the Jacquet–Piatetski-Shapiro–Shalika gamma factor
γ (π × σ,ψ) in the special case where π and σ are irreducible cuspidal representa-
tions of GLn(F) and π ∼= σ∨. We will prove the following theorem.

Theorem A.1. Let π be an irreducible cuspidal representation of GLn(F). Then

γ (π ×π∨, ψ)= −1.

This was done in [Ye 2019, Corollary 4.3]. We provide another proof, since the
proof in [loc. cit.] relies on results of representations of p-adic groups.

For future purposes, we will prove the following general lemma. We will show
that Theorem A.1 follows from it.

We denote by Pn ≤ GLn(F) the mirabolic subgroup.
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Lemma A.2. Let G be a finite group and let H ≤ G be a subgroup. Suppose that
H is a semidirect product of the form H = N ⋊ GLn(F). Let 9 : H → C∗ be a
character which is trivial on GLn(F). Let τ be an irreducible representation of G,
such that:

(1) dim HomH (ResH τ,9)= 1.

(2) dim HomN⋊Pn (ResN⋊Pn τ,ResN⋊Pn 9)= 1.

(3) There exists a functional ℓ∈ HomZn (ResZn τ,C) and a vector v0 ∈ τ , such that∑
p∈Zn\Pn

∑
n∈N

ℓ(τ (np)v0)9
−1(n)= 1.

Then ∑
g∈Zn\ GLn(F)

∑
n∈N

ℓ(τ (ng)v0)9
−1(n)ψ(⟨eng, e1⟩)= −1.

Remark A.3. If F∗
≤ H lies in the center of G, then (1) implies that the restriction

of the central character of τ to F∗
≤ H is trivial.

Proof. Notice that we have a containment

HomH (ResH τ,9)⊂ HomN⋊Pn (ResN⋊Pn τ,ResN⋊Pn 9).

Since both spaces are one dimensional, we have that they are equal. Denote for
v ∈ τ ,

L(v)=

∑
p∈Zn\Pn

∑
n∈N

ℓ(τ (np)v)9−1(n).

Then L ∈ HomN⋊Pn (ResN⋊Pn τ,ResN⋊Pn 9) and L ̸= 0 because L(v0)= 1. There-
fore, L ∈ HomH (ResH τ,9), which implies that L(τ (g)v)= L(v) for any v ∈ τ ,
and any g ∈ GLn(F).

Denote

S =

∑
g∈Zn\ GLn(F)

∑
n∈N

ℓ(τ (ng)v0)9
−1(n)ψ(⟨eng, e1⟩).

We have

S =

∑
g∈Pn\ GLn(F)

L(τ (g)v0)ψ(⟨eng, e1⟩)=

∑
g∈Pn\ GLn(F)

ψ(⟨eng, e1⟩).

We decompose this sum through the center of GLn(F)

S =

∑
g∈(F∗·Pn)\ GLn(F)

∑
a∈F∗

ψ(⟨enag, e1⟩).
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We have that for t ∈ F, ∑
a∈F∗

ψ(at)=

{
−1 t ̸= 0,
q − 1 t = 0.

Therefore, we get

S =(q − 1)
∑

g∈(F∗
·Pn)\ GLn(F)

⟨en g,e1⟩=0

1 −

∑
g∈(F∗

·Pn)\ GLn(F)
⟨en g,e1⟩̸=0

1,

which we rewrite as

S =

∑
g∈Pn\ GLn(F)
⟨en g,e1⟩=0

1 −
1

|F∗|

∑
g∈Pn\ GLn(F)
⟨en g,e1⟩̸=0

1.

Consider the right action of GLn(F) on Fn
\ {0}. This action is transitive. The

stabilizer of en is the mirabolic subgroup Pn . Therefore, for x = (x1, . . . , xn) ∈

Fn
\ {0}, we have that

Sx =

∑
g∈Pn\ GLn(F)

en g=x

1 = 1.

This implies that

S =

∑
x∈Fn

\{0}

x1=0

Sx −
1

|F∗|

∑
x∈Fn

\{0}

x1 ̸=0

Sx = (qn−1
− 1)− qn−1

= −1,

as required. □

We move to prove Theorem A.1.

Proof. We will use Lemma A.2 in the following setup. Let G = GLn(F)× GLn(F),
and let H = GLn(F) embedded diagonally. Let N = {In} and 9 = 1.

Let π be an irreducible cuspidal representation of GLn(F), then by Schur’s
lemma, the space

HomGLn(F)(π ⊗π∨,C)

is one-dimensional. Since π is cuspidal, By [Gel’fand 1970, Theorem 2.2], the
restriction of π to the mirabolic subgroup Pn is irreducible. Therefore, by Schur’s
lemma the space

HomPn (ResPn π ⊗ ResPn π
∨,C)

is also one-dimensional.



80 DAVID SOUDRY AND ELAD ZELINGHER

We take τ =W(π, ψ)⊗W(π∨, ψ−1), and ℓ : W(π, ψ)⊗W(π∨, ψ−1)→ C to
be the functional defined on pure tensors by

ℓ(W ⊗ W ′)= W (In) · W ′(In).

We have that ℓ ∈ HomZn (ResZn τ, 1). Let v0 = Jπ,ψ ⊗Jπ∨,ψ−1 .
Consider∑

p∈Zn\Pn

∑
n∈N

ℓ(τ (np)v0)9
−1(n)=

∑
p∈Zn\Pn

Jπ,ψ(p)Jπ∨,ψ−1(p).

By [Nien 2014, Lemma 2.14], we have that if Jπ,ψ(p) ̸= 0 for p ∈ Pn , then p ∈ Zn .
Therefore, ∑

p∈Zn\Pn

Jπ,ψ(p)Jπ∨,ψ−1(p)=

∑
p∈Zn\Zn

Jπ,ψ(p)Jπ∨,ψ−1(p)= 1.

Thus, we showed that the required properties for Lemma A.2 are satisfied.
Using Proposition 2.9, we have

γ (π ×π∨, ψ)=

∑
g∈Zn\ GLn(F)

Jπ,ψ(g)Jπ∨,ψ−1(g)ψ(⟨eng−1, e1⟩).

Replacing g with g−1 and using Proposition 2.3, we have

γ (π ×π∨, ψ)=

∑
g∈Zn\ GLn(F)

Jπ,ψ(g)Jπ∨,ψ−1(g)ψ(⟨eng, e1⟩),

and therefore by Lemma A.2

γ (π ×π∨, ψ)=

∑
g∈Zn\ GLn(F)

∑
n∈N

ℓ(τ (ng)v)9−1(n)ψ(⟨eng, e1⟩)= −1,

as required. □
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Sur la conjecture de Tate pour les diviseurs

Bruno Kahn

On montre que la conjecture de Tate en codimension 1 sur un corps de type
fini résulte de la même conjecture pour les surfaces sur son sous-corps premier.
En caractéristique positive, ceci est dû à de Jong–Morrow sur Fp et à Ambrosi
pour la réduction à Fp. Nous montrons cette dernière réduction d’une manière
différente, qui fonctionne aussi en caractéristique zéro. Sur Q, la réduction
aux surfaces se fait par un argument facile reposant sur le théorème (1, 1) de
Lefschetz.

We prove that the Tate conjecture in codimension 1 over a finitely generated
field follows from the same conjecture for surfaces over its prime subfield. In
positive characteristic, this is due to de Jong–Morrow over Fp and to Ambrosi
for the reduction to Fp. We give a different proof than Ambrosi’s, which also
works in characteristic 0; over Q, the reduction to surfaces follows from a simple
argument using Lefschetz’s (1, 1) theorem.

Introduction

La conjecture de Tate est l’une des plus célèbres en géométrie arithmétique :
formulée dans [Tate 1965], elle prédit que l’application classe de cycle l-adique

cliX : CH i (X) ⊗ Ql → H 2i (Xks , Ql(i))Gal(ks/k) (1)

(voir [SGA 41/2 1977]) est surjective pour tout entier i ≥ 0 et toute variété projective
lisse X sur un corps k de type fini, de caractéristique différente de l et de clôture
séparable ks . Elle a été démontrée dans de nombreux cas particuliers, mais reste
ouverte en général même pour i = 1. Pour un exposé détaillé qui reste largement
d’actualité, je renvoie à [Tate 1994] (voir aussi [Li et Zhang 2022]).

Il est connu que pour i = 1, la conjecture de Tate pour les corps premiers
implique cette même conjecture en général : en caractéristique zéro cela se déduit
du théorème de spécialisation des groupes de Néron–Severi dû à Yves André [1996,
théorème 5.2 (3); Ambrosi 2018, §1.3.3], et en caractéristique positive cela résulte
d’un théorème d’Emiliano Ambrosi [2018, Theorem 1.2.1]. Ambrosi démontre
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Mots-clefs : Tate conjecture, divisors.
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plus : la conjecture de Tate en codimension i sur les corps finis l’implique pour
tous les corps de type fini de caractéristique positive, sous une hypothèse de semi-
simplicité qui résulte de la conjecture de Tate quand i = 1. Sa preuve, étendant
au cas d’un corps fini un argument d’André en caractéristique zéro [1996, §5.1],
utilise le théorème global des cycles invariants de Deligne et la cyclicité du groupe
de Galois absolu de Fp.

L’objet de cette note est d’offrir une démonstration plus élémentaire de cette
réduction (uniquement pour i = 1), qui fonctionne uniformément en toute carac-
téristique : inspirée de la preuve de [Kahn 1998, Theorem 8.32 (a)], elle consiste
à étendre la conjecture de Tate aux variétés lisses ouvertes (théorème 6). Cette
idée, due originellement à Jannsen [1990], permet de remplacer avantageusement
le recours au théorème global des cycles invariants par une simple utilisation
du critère de dégénérescence des suites spectrales de Deligne [1968; 1994]. Un
argument élémentaire de correspondances permet par ailleurs de se débarrasser
aisément du problème de semi-simplicité qui apparaît aussi chez Jannsen (lemme 2
et proposition 3).

D’après de Jong (non publié) et Morrow [2019], la conjecture de Tate pour i = 1
en caractéristique positive se réduit même au cas des surfaces sur un corps fini
(cette dernière conjecture étant par ailleurs équivalente à la conjecture de Birch
et Swinnerton-Dyer pour les variétés abéliennes sur les corps de fonctions d’une
variable sur k, voir remarque 9). La même chose est vraie en caractéristique zéro
(théorème 8), en utilisant le théorème (1,1) de Lefschetz via les théorèmes de
comparaison cohomologiques.

English introduction

The famous Tate conjecture, which predicts that the l-adic cycle class map (1)
is surjective for smooth projective varieties X over finitely generated fields k, was
formulated in [Tate 1965], but remains open up to now, even though it has been
proven in important special cases [Tate 1994; Li et Zhang 2022]. This is so even
for i = 1.

In this case, the Tate conjecture over prime fields implies the conjecture over
any finitely generated field by work of Emiliano Ambrosi [2018, Theorem 1.2.1
and §1.3.3]. In characteristic 0, the argument uses Yves André’s specialisation
theorem [1996, théorème 5.2 (3)] for the Néron–Severi group, while in positive
characteristic, Ambrosi’s proof relies in particular on the cyclicity of Gal(Fp/Fp).

The aim of this note is to offer a simple proof of this reduction, which works uni-
formly in all characteristics (proposition 7). It is however special to codimension 1,
while Ambrosi’s argument also works (in positive characteristic) in any codimension
i under a semisimplicity hypothesis which follows from Tate’s conjecture if i = 1.
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There are two ideas: the first is to get rid of the semisimplicity issue by a
simple argument of correspondences (lemme 2), and the second is to extend the Tate
conjecture for divisors from smooth projective to (all) smooth varieties (théorème 6).
This idea goes back to Jannsen [1990]; its point is that it allows us to replace
Ambrosi’s use of Deligne’s global invariant cycles theorem (an argument going
back to André in characteristic 0 [1996, §5.1]) by the degeneracy of the l-adic Leray
spectral sequence, also due to Deligne. This is a reformulation of the arguments
given in [Kahn 1998, proof of Theorem 8.32 (a)], specialised to codimension 1 (see
also [Kahn 2002, Theorem 3.4]); the first idea is new.

When k = Fp, a theorem of de Jong (unpublished) and Morrow [2019] even
reduces the Tate conjecture for divisors to surfaces. (This case is in turn equivalent
to the Birch and Swinnerton-Dyer conjecture for abelian varieties over global
fields of positive characteristic, see remarque 9.) Over Q, the same reduction holds
(théorème 8): the proof involves the Lefschetz (1,1) theorem via the cohomological
comparison theorems.

1. Notations

Soient k un corps et X une k-variété lisse. Soient ks une clôture séparable de k et
l un nombre premier différent de car k. On note H j (X, i) := H j (Xks , Ql(i)) ; de
même pour la cohomologie à supports. On note cliX : CH i (X)⊗ Ql → H 2i (X, i)
la classe de cycle, et simplement clX pour cl1X .

2. Une rétraction

Supposons X projective de dimension d. Pour i ≤ d, choisissons une base
(Z1, . . . , Z r ) du groupe N i (X)Q des cycles de codimension i à coefficients ration-
nels sur X modulo l’équivalence numérique, et notons (Z1, . . . , Z r ) la base duale
dans Ni (X)Q, de sorte que ⟨Z i , Z j ⟩ = δi j

1. Relevons les Z i et Z i en des classes
de cycle Z i

∈ CH i (X)Q, Zi ∈ CHi (X)Q. Soit

e =

∑
a

Za
× Za ∈ CH d(X × X)Q,

vu comme correspondance algébrique, où × est le cross-produit des cycles (cf. la
démonstration de [Kahn et al. 2007, Proposition 7.2.3]).

Lemme 1. On a e2
= e.

Démonstration. Pour Z , Z ′
∈ CH i (X) et T, T ′

∈ CHi (X), on a l’identité

(Z × T ) ◦ (Z ′
× T ′) = ⟨Z ′, T ⟩Z × T ′

1. Rappelons que N i (X)Q et Ni (X)Q sont des Q-espaces vectoriels de dimension finie [Fulton
1998, Example 19.1.4, p. 375], mis en dualité par l’accouplement d’intersection.
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dans l’anneau des correspondances de Chow CH d(X × X), où ⟨ , ⟩ est le produit
d’intersection : cela résulte immédiatement de la définition de la composition des
correspondances [Fulton 1998, Definition 16.1.1, p. 305]. □

Lemme 2. Soit V le sous-espace vectoriel de Im cliX engendré par les Za . L’ac-
tion de e sur H 2i (X, i) définit une rétraction G-équivariante de l’inclusion V ↪→

H 2i (X, i). En particulier, si i = 1, elle définit une rétraction de clX .

Démonstration. Soit x ∈ H 2i (X, i). Pour (Z , T ) ∈ CH i (X) × CHi (X), on a

(Z × T )∗x = <x, cli (T )> cli (Z)

où < , > est l’accouplement de Poincaré, cf. [Fulton 1998, Definition 16.1.2, p. 307].
Cela montre que e(H 2i (X, i)) ⊂ V , et aussi que sa restriction à ce sous-espace est
l’identité.

Le cas i =1 résulte du théorème de Matsusaka [1957] (équivalences homologique
et numérique coïncident en codimension 1). □

3. Passage aux variétés lisses ouvertes

Supposons k de type fini, et X seulement lisse. On s’intéresse à l’extension
suivante de la conjecture de Tate :

• T (X) : l’homomorphisme « classe de diviseur » clX : Pic(X)⊗Ql → H 2(X, 1)G ,
où G = Gal(ks/k), est surjectif.

• T (k) : T (X) pour toutes les k-variétés lisses X .

Aux notations près, cette conjecture est due à Jannsen [1990, Conjecture 7.3,
p. 109], qui l’étend même aux variétés singulières (avec l’homologie de Borel–
Moore). Dans [Jannsen 1990, Theorem 7.10 (b), p. 114], il la réduit au cas des
variétés projectives lisses sous une hypothèse de semi-simplicité (b), en bas de
[Jannsen 1990, p. 113]) qui n’est pas connue en général même pour H 2. Le but
de cette section est de faire cette réduction (théorème 6) en évitant l’hypothèse de
semi-simplicité grâce à la proposition 3 ci-dessous. Bien sûr, ceci ne marche que
pour les cycles de codimension 1!

Dans la suite, on note

H 2
tr(X, 1) = Coker clX .

Proposition 3. Pour X projective lisse, T (X) équivaut à H 2
tr(X, 1)G

= 0.

Démonstration. L’implication H 2
tr(X, 1)G

= 0 =⇒ T (X) est évidente. L’autre résulte
du lemme 2. □

Lemme 4. Soit f : X ′
→ X un morphisme fini et plat de k-variétés lisses. Alors

T (X ′) =⇒ T (X).
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Démonstration. En effet, f ∗
: H 2(X, 1) → H 2(X ′, 1) admet la rétraction G-

équivariante (1/ deg( f )) f∗, et ces deux homomorphismes commutent avec les
homomorphismes correspondants entre Pic(X) ⊗ Ql et Pic(X ′) ⊗ Ql via clX et
clX ′ . □

Proposition 5. (a) Soit U un ouvert de X. Alors T (U ) =⇒ T (X).

(b) La réciproque est vraie si X est projective.

Démonstration. (a) Notons que clX se factorise par NS(X) ⊗ Ql où NS(X) est
le groupe de Néron–Severi de X . Soit Z = X − U (structure réduite). On a un
diagramme commutatif aux lignes exactes⊕

x∈Z∩X (1)

Ql //

��

NS(X) ⊗ Ql //

clX

��

NS(U ) ⊗ Ql //

clU
��

0

H 2
Z (X, 1)

δ // H 2(X, 1) // H 2(U, 1) // H 3
Z (X, 1)

(2)

où la ligne du bas est la suite exacte de cohomologie à supports et la flèche ver-
ticale de gauche est surjective (en fait bijective) par semi-pureté [SGA 41/2 1977,
proposition 2.2.6 et rappel 2.2.8]. On en déduit un nouveau diagramme commutatif
aux lignes exactes⊕

x∈Z∩X (1)

Ql //

��

NS(X) ⊗ Ql //

clX

��

NS(U ) ⊗ Ql //

clU
��

0

0 // Im δ // H 2(X, 1)G // H 2(U, 1)G

(3)

où la flèche verticale de gauche est surjective. L’assertion résulte alors d’une petite
chasse aux diagrammes.

(b) Supposons d’abord k parfait. D’après (a), on peut choisir U aussi petit qu’on
veut. Prenons Z = X −U assez gros pour contenir des diviseurs D1, . . . , Dr dont les
classes engendrent NS(X). Alors NS(U ) = 0 et il faut montrer que H 2(U, 1)G

= 0.
Or le diagramme (2) montre que la suite

NS(X) ⊗ Ql
clX
−→ H 2(X, 1) → H 2(U, 1) → H 3

Z (X, 1)

est exacte. Avec la notation de la proposition 3, on a donc une suite exacte

0 → H 2
tr(X, 1)G

→ H 2(U, 1)G
→ H 3

Z (X, 1)G .

Si T (X) est vrai, le terme de gauche est nul par cette proposition. Il reste à voir
que le terme de droite l’est également. Soit Z ′ la réunion du lieu singulier de Z et
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de ses composantes irréductibles de codimension supérieure ou égale à 2 dans X :
la suite exacte de cohomologie à supports

0 ≃ H 3
Z ′(X, 1) → H 3

Z (X, 1) → H 3
Z−Z ′(X − Z ′, 1) ≃ H 1(Z − Z ′, 0),

où le premier isomorphisme est par semi-pureté et le second par pureté [SGA 41/2

1977, rappel 2.2.8], montre que H 3
Z (X, 1)G s’injecte dans H 1(Z − Z ′, 0)G . Mais ce

dernier groupe est trivial, car H 1(Z − Z ′, 0) est mixte de poids supérieur ou égal
à 1 [Deligne 1980, corollaire 3.3.5] 2.

L’argument ci-dessus utilise implicitement le fait que les composantes irréduc-
tibles de codimension 1 de Z sont génériquement lisses. Pour obtenir ceci quand k
est imparfait, il suffit de passer à une extension radicielle finie convenable de k, ce
qui ne change ni H 2(X, 1), ni Pic(X) ⊗ Ql , ni G. □

Théorème 6. T (X) est vrai pour les k-variétés lisses de dimension d si et seulement
s’il est vrai pour les k-variétés projectives lisses de dimension d.

Démonstration. Soit X lisse de dimension d. Choisissons une immersion ouverte
dense X ↪→ X0 où X0 est propre. D’après [de Jong 1996, Theorem 4.1], on peut
trouver une altération π : X̃ → X0 avec X̃ projective lisse et π génériquement fini.
Soit U ⊂ X un ouvert tel que π|π−1(U ) soit fini et plat.

Supposons T (X̃) vrai. Par la proposition 5(b), T (π−1(U )) est vrai. D’après le
lemme 4, T (U ) est donc vrai, et enfin T (X) est vrai par la proposition 5(a). □

4. Changement de corps de base

Proposition 7. Soit K/k une extension de corps de type fini. Alors T (k) ⇐⇒ T (K ).

Démonstration. En quatre étapes ; les deux premières et la dernière sont bien
connues et valables en toute codimension ; elles sont rappelées pour la clarté de
l’exposition. Pour plus de précision, on note ici GK = Gal(Ks/K ).

(1) Soit X lisse sur K , connexe et de corps des constantes L . Comme X est lisse,
L/K est séparable. Je dis que, avec des notations évidentes, T (X/K ) ⇐⇒ T (X/L).
En effet, le GK -module H 2(X/K , 1) est induit du GL -module H 2(X/L , 1), donc
H 2(X/K , 1)GK ∼

−→ H 2(X/L , 1)GL .

(2) L’énoncé est vrai si K/k est finie séparable. En effet, =⇒ résulte immédiatement
de (1). Pour ⇐=, on se ramène à K/k galoisienne en considérant sa clôture galoi-
sienne ; si X est lisse sur k, T (XK ) implique alors T (X) en prenant les invariants
sous Gal(K/k).

2. Au moins sur un corps fini, ce dernier point peut se déduire plus élémentairement du théorème
antérieur de A. Weil pour les courbes [1948, n° 48], en utilisant le fait que H1(Z−Z ′, 0) est isomorphe
au module de Tate rationnel de la variété d’Albanese de Z − Z ′ via un morphisme d’Albanese.
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(3) Soit k0 le sous-corps premier de K ; montrons que T (k0) =⇒ T (K ). Il suffit
grâce au théorème 6 de montrer que T (k0) implique T (X) pour toute K -variété
projective lisse X . L’argument est une version simplifiée de celle de [Kahn 1998,
Theorem 8.32 (a)].

On peut supposer X connexe. Soit L son corps des constantes, et soit k1 la
fermeture algébrique de k0 dans L . Puisque k1 est parfait, l’extension L/k1 est
régulière ; choisissons-en un k1-modèle lisse S. Quitte à remplacer S par un ouvert,
étendons X en un S-schéma projectif lisse f : X → S. Notant S = S ⊗k1 ks , on a la
suite spectrale de Leray (de Ql[[Gk1]]-modules)

E p,q
2 = H p(S, Rq f∗Ql(1)) =⇒ H p+q(X , 1).

D’après [Deligne 1968] (voir aussi [Deligne 1994]), le choix d’une section
hyperplane lisse Y/S de X/S et le théorème de Lefschetz difficile [Deligne 1980,
théorème 4.1.1] font dégénérer cette suite spectrale, montrant aussi que la filtra-
tion sur l’aboutissement est scindée 3. En particulier, l’homomorphisme « edge »
H 2(X , 1) → E0,2

2 = H 2(X, 1)π1(S) admet une section Gk1-équivariante ; par consé-
quent, H 2(X , 1)Gk1 → H 2(X, 1)GL est surjectif ; en effet, GL →π1(S) est surjectif
puisque S est géométriquement connexe. Avec les notations de (1), on a donc
T (X/k0) =⇒ T (X/k1) =⇒ T (X/L) =⇒ T (X/K ). (Noter que k1/k0 est séparable
puisque k0 est parfait.)

(4) Finalement, montrons que T (K ) =⇒ T (k0), ce qui terminera la démonstration.
Soit, comme ci-dessus, k1 la fermeture algébrique de k0 dans K . Donnons-nous
une k0-variété projective lisse X ; rappelons que NS(Xk1) ⊗ Ql → NS(XK ) ⊗ Ql

est bijectif (c’est vrai en général pour les classes de cycles modulo l’équivalence
algébrique, voir par exemple [Kahn 2018, proposition 5.5] et sa preuve). Ceci
montre que T (XK ) =⇒ T (Xk1) ; mais d’autre part T (Xk1) =⇒ T (X) par (2). □

Théorème 8. Soit k0 le sous-corps premier de k. Alors T (S) pour toutes les surfaces
projectives lisses S sur k0 implique T (k).

Démonstration. D’après la proposition 7, on se ramène à k = k0. Si k = Q, soit X
une variété projective lisse connexe de dimension d ≥ 2, de corps des constantes k1.
D’après le point (1) de la preuve de la proposition 7, on peut remplacer Q par k1.
Choisissons un plongement complexe k1 ↪→ C. Par les théorèmes de comparaison,
l’équivalence homologique l-adique pour X ⊗k1 Q coïncide avec la même pour
X ⊗k1 C, qui coïncide avec l’équivalence homologique pour la cohomologie de
Betti ; notons Ai

hom(X) les quotients correspondants. Choisissons un k1-plongement
projectif X ↪→ PN , d’où un faisceau très ample L ; le théorème de Lefschetz fort
(pour la cohomologie de Betti) implique que

⋃
c1(L)d−2

: A1
hom(X) → Ad−1

hom(X)

3. Le résultat précis de [Deligne 1968, proposition 2.4] ou de [Deligne 1994, §2 ou §3] est que
R f∗Ql est isomorphe à

⊕
i≥0 Ri f∗Ql [−i] dans la catégorie dérivée.
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est injectif, et même bijectif grâce au théorème (1,1) de Lefschetz [Lieberman
1968, preuve de Corollary 1]. Comme A∗

hom(X) ∼
−→ A∗

hom(X)Gal(Q/k1), on a aussi
un isomorphisme

⋃
c1(L)d−2

: A1
hom(X) ∼

−→ Ad−1
hom(X). Mais, si i : S ↪→ X est une

surface (lisse, connexe) ample donnée par le théorème de Bertini, cet isomorphisme
se factorise en

A1
hom(X)

i∗

−→ A1
hom(S)

i∗
−→ Ad−1

hom(X)

et de même pour l’isomorphisme correspondant H 2(X, 1) ∼
−→ H 2d−2(X, d − 1),

de manière compatible aux classes de cycles. Une petite chasse aux diagrammes
montre alors que T (S) =⇒ T (X).

Si k = Fp, Morrow se ramène d’abord au cas dim X ≤ 3 par le théorème de
Lefschetz faible pour la cohomologie l-adique [Freitag et Kiehl 1988, Corollary I.9.4,
p. 106] et pour le groupe de Picard [SGA 2 2005, corollaire 4.9 (b)], puis au cas
d’une surface dans [Morrow 2019, Theorem 4.3]. Le premier point est un peu
délicat, comme me l’a fait remarquer Juan Felipe Castro Cárdenas : il n’est pas clair
que, pour le groupe de Picard, Lefschetz faible soit vrai pour les diviseurs réduits, en
l’absence du théorème d’annulation de Kodaira (cf. [SGA 2 2005, remarque 4.10] 4).
Néanmoins, l’argument de la preuve de [Morrow 2019, Theorem 4.3] pour réduire
le cas de la dimension 3 à celui de la dimension 2 marche aussi bien, et même
mieux, pour réduire le cas de la dimension d + 1 à celui de la dimension d quand
d ≥ 3 : dans ce cas, toutes les inclusions horizontales du diagramme de la page
3495 sont des égalités. □

Remarque 9. D’après [Lichtenbaum et al. 2022], la conjecture T (S) pour les
surfaces S sur un corps fini k est équivalente à la conjecture de Birch et Swinnerton-
Dyer pour les jacobiennes de courbes sur les corps de fonctions d’une variable K/k.
Cette dernière implique la même conjecture pour toute variété abélienne A définie
sur K : en effet, ladite conjecture est équivalente à la finitude de la composante l-
primaire X(K , A){l} du groupe de Tate–Chafarevitch X(K , A) [Schneider 1982;
Kato et Trihan 2003]. Si i : C ↪→ A est une courbe ample, l’homomorphisme
i∗ : J (C) → A est surjectif (Weil, voir [Murre 1990, Lemma 2.3]), donc il existe
σ : A → J (C) tel que i∗ ◦ σ soit la multiplication par un entier n > 0, d’où
nX(K , A) ⊂ i∗X(K , J (C)). Mais on sait que X(K , A){l} est de cotype fini,
donc la finitude de X(K , J (C)){l} implique celle de X(K , A){l}.

À ce stade, il est obligatoire de terminer avec la question évidente :

Question A. Peut-on réduire le cas de caractéristique zéro à celui de la caractéris-
tique positive?

4. Note ajoutée pendant la correction des épreuves : ce problème a maintenant été résolu dans la
preuve du lemme 3 de [Kahn 2023].
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Par changement de base propre et lisse et par le théorème de Tchebotariov, cette
question est équivalente à la suivante :

Question B. Soit S une Q-surface projective lisse, et soit α ∈ H 2(S, 1). Supposons
que, pour (presque) tout nombre premier p de bonne réduction, la spécialisation de
α en p soit algébrique. Est-ce que α est algébrique?
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Ranks of matrices of logarithms of algebraic numbers, I
The theorems of Baker and Waldschmidt–Masser

Samit Dasgupta

Let L denote the Q-vector space of logarithms of algebraic numbers. In this
expository work, we provide an introduction to the study of ranks of matrices with
entries in L . We begin by considering a slightly different question; namely, we
present a proof of a weak form of Baker’s theorem. This states that a collection
of elements of L that is linearly independent over Q is in fact linear independent
over Q. Next we recall Schanuel’s conjecture and prove Ax’s analogue of it
over C((t)).

We then consider arbitrary matrices with entries in L and state the structural
rank conjecture, concerning the rank of a general matrix with entries in L . We
prove the theorem of Waldschmidt and Masser, which provides a lower bound,
giving a partial result toward the structural rank conjecture. We conclude by
stating a new conjecture that we call the matrix coefficient conjecture, which
gives a necessary condition for a square matrix with entries in L to be singular.

1. Introduction 93
2. Baker’s theorem 96
3. Ax’s theorem 105
4. The structural rank conjecture 111
5. The theorem of Waldschmidt and Masser 121
6. The matrix coefficient conjecture 136
Acknowledgements 137
References 137

1. Introduction

At the 1900 International Congress of Mathematicians, David Hilbert presented
23 open problems that have continued to serve as an inspiration for generations of
mathematicians, including the following question:
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Hilbert’s 7th problem. Let a, b ∈ Q, with a ̸= 0, 1 and b /∈ Q. Is the value ab

necessarily transcendental?

A proof that Hilbert’s question has an affirmative answer was given independently
by Gelfond (1934) and Schneider (1935). The Gelfond–Schneider theorem can be
stated equivalently as follows. Let

L = {x ∈ C | ex
∈ Q}

denote the Q-vector space of logarithms of algebraic numbers.

Theorem 1.1 (Gelfond–Schneider). If two elements of L are linearly dependent
over Q, then they are linearly dependent over Q.

A fantastic breakthrough was achieved by Alan Baker [1966; 1967a; 1967b],
when he generalized from two to an arbitrary number of elements of L .

Theorem 1.2 (Baker). If n ≥ 1 elements of L are linearly dependent over Q, then
they are linearly dependent over Q.

In fact, Baker proved an effective refinement of this result giving a strong lower
bound on the magnitude of any algebraic linear combination of elements of L

that are linearly independent over Q. Here we will present a proof of a version of
Baker’s theorem that is slightly weaker than Theorem 1.2.

We next shift our focus from a single linear form in logarithms to arbitrary
matrices with entries in L . Such matrices appear very naturally in number theory.
For example, the regulator of a number field is the determinant of such a matrix,
and this expression appears in the class number formula for the zeta function of the
number field. Generalizations appear in Stark’s conjectures for the leading terms
of L-functions, and p-adic avatars appear in the study of p-adic L-functions. The
question of the ranks of such matrices is therefore an important question, with
Leopoldt’s conjecture and the Gross–Kuz’min conjecture being important special
cases in Iwasawa theory (these are discussed in Section 4B).

The primary conjecture about the ranks of matrices with entries in L is the
structural rank conjecture. In applications, it is often useful to consider the Q-
vector space spanned by L and Q, which we denote by L + Q. Given an m × n
matrix M with entries in any field of characteristic 0, we define the structural rank
of M as follows. Choose a Q-basis {ℓ1, . . . , ℓr } for the entries of M , and write
M =

∑r
i=1 ℓi Mi , with Mi ∈ Mm×n(Q). Write Mx =

∑r
i=1 xi Mi , where the xi are

indeterminates. Then Mx is an m × n matrix with entries in the field of rational
functions F = Q(x1, . . . , xn). We define the structural rank of M to be the rank
of Mx over F . One checks that this definition is independent of the basis {ℓi } chosen.

Conjecture 1.3 (structural rank conjecture). The rank of any M ∈ Mm×n(L + Q)

is equal to the structural rank of M.
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The “über conjecture” in the transcendence theory of special values of logarithms
and exponentials of algebraic numbers is the following conjecture of Schanuel. We
write trdQ for the transcendence degree over Q.

Conjecture 1.4. Let y1, . . . , yn ∈ C be Q-linearly independent. Then

trdQ Q(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

In particular, if y1, . . . , yn ∈ L are Q-linearly independent, then

trdQ Q(y1, . . . , yn) = n. (1)

It is perhaps not surprising that the special case of Schanuel’s conjecture given
in (1) implies the structural rank conjecture; however, an elegant theorem of Roy
[1995] is that the converse is also true:

Theorem 1.5 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture given in (1).

Theorem 1.5 is proven in Section 4. For more on the structural rank conjecture
and Schanuel’s conjecture, see [Waldschmidt 2023]. The strongest unconditional
evidence toward the structural rank conjecture is the following theorem of Wald-
schmidt [1981] and Masser [1981]:

Theorem 1.6 (Waldschmidt and Masser). Let M ∈ Mm×n(L ). Suppose that

rank(M) <
mn

m+n
.

Then there exist P ∈ GLm(Q) and Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension m′
× n′ with m′/m + n′/n > 1.

Intuitively, Theorem 1.6 states that, if the rank of M = (log(xi j )) is very small,
then the underlying algebraic numbers xi j satisfy a large number of multiplicative
relations. In certain situations we can show that such relations do not exist, and hence
we must have rank(M) ≥ mn/(m +n). The six exponentials theorem (Theorem 4.2)
is an example of a special case of the Waldschmidt–Masser theorem.

Transcendence results have many important applications in algebraic number
theory. Especially in Iwasawa theory, it is the p-adic analogues of these statements
that are most relevant. For example, Leopoldt’s conjecture concerns the rank of the
matrix of p-adic logarithms of a basis of units in a number field F . The p-adic
analogue of the Waldschmidt–Masser theorem provides the strongest evidence for
this conjecture. For instance, for a totally real field F one deduces that the rank of
the Leopoldt matrix is at least half the expected one. We prove the p-adic version
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of the Waldschmidt–Masser theorem in Section 5, since the archimedean case is
studied more often in the literature, and discuss applications in Section 5A.

The paper is organized as follows. In Section 2, we prove Baker’s theorem on
the linear independence of logarithms of algebraic numbers. In Section 3, we prove
Ax’s theorem on the function field analogue of Schanuel’s conjecture. In Section 4,
we discuss the structural rank conjecture, explaining its connection to important
conjectures in Iwasawa theory and proving Roy’s Theorem 1.5. In Section 5, we
prove the Waldschmidt–Masser theorem and give applications. In the concluding
Section 6, we state a new conjecture, called the matrix coefficient conjecture, which
attempts to answer the question: what can be said about a square matrix M with
entries in L when it does not have full rank? Our conjecture is not as strong as
the structural rank conjecture (and hence is perhaps more tractable), but still has
important arithmetic implications.

2. Baker’s theorem

Before giving an outline of the proof of Baker’s theorem, let us discuss how one
could hope to deduce the conclusion of the theorem. We are given algebraic numbers
α1, . . . , αn ∈ Q∗, complex numbers xi such that exi = αi , and a linear dependence

β1x1 + · · · +βnxn = 0 (2)

with βi ∈ Q. We will show that this implies the existence of integers λ1, . . . , λn ,
not all zero, such that

α
λ1
1 α

λ2
2 · · · αλn

n = 1. (3)

This implies that the xi , together with the complex number 2π i , are linearly depen-
dent over Q. Therefore, the mildly weaker version of Baker’s theorem that we will
prove is the following:

Theorem 2.1. If x1, . . . , xn, 2π i ∈ L are linearly independent over Q, then
x1, . . . , xn are linearly independent over Q.

It does not take much work beyond the methods that we will present to remove
2π i and prove the version of Baker’s theorem stated in Theorem 1.2 above (see
[Baker 1967a]). However, to simplify the exposition and highlight the main points,
we have included 2π i in our proof of Theorem 2.1.

Now, how does one deduce the existence of the λi from the existence of the βi ?
It may be enticing to try to prove that the λi can be taken equal to the βi , i.e., that
the βi are rational (or, more generally, that the λi can somehow be extracted from
the βi in a direct way). However, in practice a more indirect approach is effective.

Theorem 2.2. Let α1, . . . , αn ∈ C∗. Suppose there exists a nonzero polynomial

f (t1, . . . , tn) ∈ C[t1, . . . , tn]
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of degree ≤ L in each variable ti such that

f (αz
1, . . . , α

z
n) = 0

for z = 1, 2, . . . , (L + 1)n . Then there exist integers λ1, . . . , λn , not all zero, such
that

α
λ1
1 α

λ2
2 · · · αλn

n = 1.

Proof. Consider the square matrix M whose rows are indexed by the integers

z = 1, . . . , (L + 1)n

and whose columns are indexed by the tuples λ = (λ1, . . . , λn) of integers with
0 ≤ λi ≤ L , with corresponding matrix entry

αλz
:= α

λ1z
1 · · · αλn z

n . (4)

The existence of the polynomial f is equivalent to the existence of a column vector v

such that Mv = 0. Indeed, the components of v are precisely the coefficients of f .
The existence of a nonzero f therefore implies that det(M) = 0. But M is the

Vandermonde matrix associated to the elements αλ
= α

λ1
1 · · · α

λn
n as the tuple λ

ranges over all (L + 1)n possibilities. The vanishing of the determinant therefore
implies the existence of two distinct tuples λ and λ′ such that αλ

=αλ′

. We therefore
have αλ−λ′

= 1, as desired. □

Baker’s theorem therefore amounts to using (2) to construct an auxiliary polyno-
mial f that satisfies the conditions of Theorem 2.2. We first summarize Baker’s
ingenious method to do this:

(1) The Dirichlet box principle is a method of using the pigeonhole principle to
construct a polynomial f with certain prescribed zeroes. One can apply this
to the elements αz appearing in the statement of Theorem 2.2. Of course, the
result will not produce a polynomial with enough zeroes (i.e., we may find
zeroes for z = 1, . . . , A for some A, but A will be less than (L +1)n). Baker’s
clever insight is that the condition (2) allows us to ensure that a certain number
of derivatives of f also have zeroes corresponding to these values of z.

(2) Baker then proves a complex analytic lemma, which is a quantitative strength-
ening of the classical Schwarz’s lemma that shows that the vanishing of f and
many of its derivatives implies a strong upper bound on the size of f and half
as many of its derivatives, but for B times as many integers z (for some B > 1
depending on parameters we will make precise later).

(3) Using the fact that the αi and βi are algebraic, Baker deduces that these bounded
values (i.e., the values of f and many of its derivatives for z = 1, . . . , AB)
must actually be 0. The basic concept is that an integer of absolute value less
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than 1 must vanish; a generalization of this elementary statement to algebraic
numbers of bounded degree and height is applied.

(4) Armed with more vanishing, one may now go back to step (2) and once again
show that half as many derivatives are small for another factor of B times as
many values of z. Baker iterates this procedure N times until AB N > (L +1)n ,
thereby showing that the auxiliary polynomial f has enough zeroes to apply
Theorem 2.2.

In the rest of this section we will describe these steps in detail.

2A. Construction of auxiliary polynomial. For each αi , let ci denote the leading
coefficient of the integral minimal polynomial of αi , and let d denote the maximum
degree of any αi .

Lemma 2.3. There exist integers ai, j,s such that, for each integer j ≥ 0, we have

(ciαi )
j
=

d−1∑
s=0

ai, j,sα
s
i .

Proof. For notational simplicity, we remove the index i . So we consider α ∈ Q with
degree at most d, and let c denote the leading coefficient of the integral minimal
polynomial of α. Then there exist integers b0, . . . , bd−1 such that

cαd
= bd−1α

d−1
+ · · · + b1α + b0. (5)

We prove the result by induction on j . The base cases 0 ≤ j < d are clear. For
j ≥ d we assume by induction that there are integers a j−1,s such that

(cα) j−1
=

d−1∑
s=0

a j−1,sα
s .

Multiplying by cα, we obtain

(cα) j
=

( d−2∑
s=0

c · a j−1,sα
s+1

)
+ a j−1,d−1(cαd). (6)

Plugging in (5) for cαd on the right of (6), we obtain the desired expression

(cα) j
=

d−1∑
s=0

a j,sα
s,

where

a j,s =

{
a j−1,d−1b0 if s = 0,

a j−1,d−1bs + c · a j−1,s−1 if 1 ≤ s ≤ d − 1. □
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Let

f (t) =

∑
λ=(λ1,...,λn)

pλtλ
:=

∑
λ

pλtλ1
1 · · · tλn

n

be a polynomial of degree ≤ L in each variable ti . Let the ci and ai, j,s be as in
Lemma 2.3. Writing c = (c1, . . . , cn) and recalling the notation (4), we calculate

(c1 · · · cn)
Lz f (αz) = (c1 · · · cn)

Lz
∑

λ

pλα
λz

=

∑
λ

pλcLz−λz(cα)λz

=

∑
λ

pλcLz−λz
n∏

i=1

d−1∑
s=0

(αi )
sai,λi z,s

=

d−1∑
s1,s2,...,sn=0

αs
∑

λ

pλcL−λz
n∏

i=1

ai,λi z,s .

We can therefore force f (αz) = 0 by imposing integer linear conditions on the
coefficients pλ, namely that, for each z, we have

∑
λ

pλcL−λz
n∏

i=1

ai,λi z,s = 0. (7)

This observation allows for the initial construction of an auxiliary polynomial f
using the following lemma of Siegel [1929], often known as “Dirichlet’s box
principle”:

Lemma 2.4 (Siegel). Let N > 2M > 0 be integers, and let A = (ai, j ) be an
M × N matrix of integers such that |ai, j | < H for all i and j . There is a nonzero
vector b ∈ ZN such that Ab = 0 and each coordinate of b has absolute value less
than 2N H.

Proof. Consider all vectors b ∈ ZN with coordinates of absolute value ≤ N H .
There are (2N H + 1)N > (2N H)N such vectors. For each such b, each coordinate
of Ab has size at most (N H)2. The total number of possible vectors Ab is less than
(2(N H)2)M . Since N > 2M , the pigeonhole principle implies that two distinct b
must give the same value of Ab. Their difference gives the desired vector. □

Applying Siegel’s lemma to the system of linear equations in (7) will not produce
enough zeroes for Theorem 2.2. Indeed, we have not yet used the assumption (2)!
A key trick noticed by Baker is that it will suffice to have f and sufficiently many
of its derivatives vanish. The precise statement is given below:
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Theorem 2.5. The following holds for every sufficiently large parameter h. Let

L = ⌈h2−1/(4n)
⌉.

There exists a polynomial

f (t) =

∑
λ

pλtλ
∈ Z[t1, . . . , tn]

of degree ≤ L in each variable ti such that |pλ| < eh3
for each λ and such that the

complex analytic function of one variable z ∈ C defined by

φ(z) =

∑
λ

pλez(λ1x1+···+λn xn) (8)

satisfies
φ(m)(z) = 0 for m = 0, . . . , h2

− 1 and z = 1, . . . , h.

Proof. Note that φ(z) has been defined so that φ(z) = f (αz) = f (αz
1, . . . , α

z
n) for

integers z. After dividing the linear dependence (2) by −βn (reordering if necessary
to ensure this is nonzero) and renaming the coefficients, we can write

xn = β1x1 + · · · +βn−1xn−1

with βi ∈ Q. We then have

φ(z) =

∑
λ

pλez[(λ1+λnβ1)x1+···+(λn−1+λnβn−1)xn−1]. (9)

Note that φ(m)(z) is the same sum as for φ(z), but with the term indexed by λ

multiplied by
((λ1 +λnβ1)x1 +· · ·+(λn−1 +λnβn−1)xn−1)

m .

Expanding this out, it suffices to show that∑
λ

pλα
λz(λ1 + λnβ1)

m1 · · · (λn−1 + λnβn−1)
mn−1 = 0 (10)

for all tuples of nonnegative integers satisfying

m1 + · · · + mn−1 = m.

Let d be the degree of the number field generated by all the αi and βi . Let
ci denote the leading coefficient in the integral minimal polynomial of αi . By
Lemma 2.3, for every nonnegative integer j , there exist integers ai, j,s such that

(ciαi )
j
=

d−1∑
s=0

ai, j,sα
s
i .

Let di and bi, j,s play the same role for the βi .
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The expression (10) will vanish if

m1∑
µ1=0

· · ·

mn−1∑
µn−1=0

L∑
λ1,...,λn=0

pλ

( n∏
i=1

cLz−λi z
i ai,λi z,si

)

×

( n−1∏
j=1

(
m j

µ j

)
(d jλ j )

m j −µ j λ
µ j
n b j,µ j ,t j

)
vanishes for all tuples (s1, . . . , sn) and (t1, . . . , tn−1) with 0 ≤ si , ti < d .

How many linear equations is this in the coefficients pλ we are searching for?
We want vanishing for 0 ≤ m < h2 and 1 ≤ z ≤ h. Hence, the number of such
equations is at most

M = (h2)n−1hd2n−1
= h2n−1d2n−1.

Note that d and n are fixed but we are free to make h as large as we want.
The number of variables pλ is (L + 1)n , so, to ensure this is bigger than 2M

when h is large, we let L = ⌈h2−1/(4n)
⌉, as in the statement of the theorem. Finally,

we bound the size of the coefficients. An easy induction shows that there is a
constant C , depending only on the αi and βi , such that

|ai, j,s | ≤ C j , |bi, j,t | ≤ C j .

Therefore, for some constant K depending only on the αi , βi and n, we have
n∏

i=1

|cLz−λi z
i ai,λi z,si | ≤ K Lz

≤ K Lh

and, similarly,

n−1∏
j=1

∣∣∣∣(m j

µ j

)
(d jλ j )

m j −µ j λ
µ j
n b j,µ j ,t j

∣∣∣∣ ≤ K h2 log(h).

By Siegel’s lemma, there is a nontrivial solution in integers pλ such that

|pλ| ≤ 2K Lh+h2 log(h)(L + 1)n
≪ eh3

. □

2B. Baker’s lemma. In this section we present a complex analytic lemma of Baker,
strengthening the classical Schwarz’ lemma. This will allow us to bound the sizes
of f and many of its derivatives for a multiple B of the A values of z at which we
ensured vanishing of our auxiliary polynomial f .

Lemma 2.6. Let f : C → C be an entire function, let ϵ > 0, and let A, B, C , T
and U be large positive integers such that

1
2ϵC >

2T + U AB
A(log A)1/2 +

U B Aϵ

log A
. (11)
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Suppose that:

• | f (z)| ≤ eT +U |z| for z ∈ C.

• f (t)(z) = 0 for t = 0, . . . , C − 1 and z = 1, 2, . . . , A.

Then
| f (z)| ≤ e−(T +U z)(log A)1/2

for z = 1, . . . , AB.

Proof. The function

h(z) =
f (z)

(z − 1)C · · · (z − A)C

is entire by the second assumption. By the maximum modulus principle on the
circle of radius A1+ϵ B around the origin, we have, for |z| ≤ AB,

|h(z)| ≤ max
|w|=A1+ϵ B

|h(w)|;

hence,

| f (z)| ≤ max
|w|=A1+ϵ B

| f (w)| · max
|w|=A1+ϵ B

∣∣∣∣ (z − 1)(z − 2) · · · (z − A)

(w − 1)(w − 2) · · · (w − A)

∣∣∣∣C

.

Now ∣∣∣∣ (z − 1)(z − 2) · · · (z − A)

(w − 1)(w − 2) · · · (w − A)

∣∣∣∣ ≤
(AB)A

(A1+ϵ/2 B)A = e−(ϵ/2)A log A,

where the inequality holds since

AB + i
A1+ϵ B − i

≤ A−ϵ/2

for all i = 1, . . . , A. Meanwhile,

| f (w)| ≤ eT +U A1+ϵ B .

Our goal is to show that | f (z)| ≤ e−(T +U AB)(log A)1/2
, so it suffices to show that

−
1
2ϵ AC log A + (T + U A1+ϵ B) ≤ −(T + U AB)(log A)1/2.

It is easy to see that this is implied by the assumption of the lemma,

1
2ϵC >

2T + U AB
A(log A)1/2 +

U B Aϵ

log A
. □

Let us now apply Baker’s lemma to our auxiliary polynomial and its derivatives.
With φ(z) as in (8) and (9), we have

φ(m)(z) =

∑
mi

(
m

m1, . . . , mn−1

) n−1∏
i=1

xmi
i fm1,...,mn−1(z),
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where

fm1,...,mn−1(z) =

∑
λ

pλα
λz(λ1 + λnβ1)

m1 · · · (λn−1 + λnβn−1)
mn−1 . (12)

It is clear from this last expression that

| fm1,...,mn−1(z)| < K h3
+L|z| (13)

for a suitable constant K depending only on n, the αi and the βi . Indeed, the pλ are
bounded by eh3

. The mi and λi are bounded by h2. We choose the constant K so
that the inequality (13) holds with the αi or βi replaced by any of their conjugates
as well.

We would like to apply Baker’s lemma on each of the functions fm1,...,mn−1(z)
with

T = h3 log K , U = L log K , C =
1
2 h2, A = h, B = h1/(8n), ϵ =

1
8n

.

We suppose that the constants K and h have been chosen so that the values T , U ,
A, B and C are integers. The first condition on fm1,...,mn−1(z) necessary to apply
Baker’s lemma is precisely the inequality (13). For the second condition, we note
that the t-th derivative of fm1,...,mn−1(z) for m1 +· · ·+mn−1 ≤

1
2 h2 and t ≤

1
2 h2

−1
is a linear combination of fm′

1,...,m
′

n−1
(z) with m′

1 +· · ·+m′

n−1 ≤ h2
−1. This gives

the desired vanishing for z = 1, . . . , h by the construction of the polynomial f in
Theorem 2.5.

Furthermore, with our selection of parameters, the required inequality (11) reads

h2

32n
>

2(log K )h3
+(log K )h2−1/(4n)

·h·h1/(8n)

h(log h)1/2 +
(log K )h2−1/(4n)

·h1/(8n)
·h1/(8n)

log h
,

which is easily seen to hold for h large. We may therefore apply Baker’s lemma to
fm1,...,mn−1(z). This yields

| fm1,...,mn−1(z)| < K −(h3
+Lz)(log h)1/2

(14)

for m1 + · · · + mn−1 ≤
1
2 h2 and z = 1, . . . , h1+1/(8n).

2C. Discreteness of algebraic integers. We apply the following elementary basic
principle:

Lemma 2.7. Suppose that a ∈ Q such that da is an algebraic integer for some
positive integer d. Suppose that |a| < ϵ for some positive real number ϵ and that
every conjugate σ(a) satisfies |σ(a)|< M for some positive real number M. Finally,
suppose that [Q(α) : Q] ≤ n and that ϵMn−1dn < 1. Then a = 0.
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Proof. We bound the norm of the algebraic integer da:

|NQ(a)/Q(da)| =

∏
σ :Q(a)↪→C

|σ(da)| ≤ dn
|a| ·

∏
σ ̸=1

|σ(a)| ≤ dnϵMn−1 < 1.

An integer of absolute value less than 1 must be 0. Hence, NQ(a)/Q(da) = 0, so
a = 0. □

We apply Lemma 2.7 to each of the algebraic numbers fm1,...,mn−1(z) defined
in (12) for

m1 + · · · + mn−1 ≤
1
2 h2, z = 0, 1, . . . , h1+1/(8n).

In (14) we showed that

| fm1,...,mn−1(z)| < ϵ := K −(h3
+Lz)(log h)1/2

. (15)

We also saw in (13) that

|σ( fm1,...,mn−1(z))| < M := K h3
+Lz (16)

for each σ . It is easy to see from its definition that the denominator of fm1,...,mn−1(z)
can be cleared by an integer of size at most

d := K h2
+Lz, (17)

after making K larger if necessary depending only on the αi and βi .
The inequality ϵMn−1dn < 1 is then easily seen to hold for h large because of

the extra factor (log h)1/2 in the exponent of (15), so we conclude that

fm1,...,mn−1(z) = 0

for m1 + · · · + mn−1 ≤
1
2 h2 and z = 0, 1, . . . , h1+1/(8n).

2D. Bootstrapping. We repeat the process described above, in the k-th iteration
using Baker’s lemma on the functions fm1,...,mn−1(z) with m1+· · ·+mn−1 ≤h2/2k+1

with the parameters

T = h3 log K , U = L log K , C =
h2

2k+1 ,

A = h1+k/(8n), B = h1/(8n), ϵ =
1

8n
.

We assume that K and h had been chosen initially so that the quantities above are
integers. In the k-th iteration we obtain that

| fm1,...,mn−1(z)| < K −(h3
+Lz)( log(h+k/(8n)))

1/2

for

m1 + · · · + mn−1 ≤
h2

2k+1 , z = 0, 1, . . . , h1+(k+1)/(8n).
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The quantities in (16) and (17) do not change, so again Lemma 2.7 implies that the
values fm1,...,mn−1(z) vanish. We may therefore move on to the next k.

Each iteration multiplies the number of zeroes by B = h1/(8n). After 16n2

iterations we will obtain more than h2n zeroes. Since L = h2−1/(4n) and h is large,
we have

h2n > (L + 1)n,

so the polynomial f = f0,0,...,0 satisfies the conditions of Theorem 2.2. Therefore,
there exist integers λ1, . . . , λn , not all zero, such that

α
λ1
1 · · · αλn

n = 1.

This completes the proof of Baker’s theorem.

3. Ax’s theorem

Moving on from linear forms in elements of L to arbitrary polynomials, we remind
the reader of Schanuel’s conjecture, which was stated in the introduction:

Schanuel’s conjecture. Let y1, . . . , yn ∈ C be Q-linearly independent. Then

trdQ Q(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

While little is known about this conjecture, we have the following function field
analogue, proved by James Ax [1971]:

Theorem 3.1 (Ax). Let y1, . . . , yn ∈ tC[[t]] be Q-linearly independent. Then

trdC(t) C(t)(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

In this section we prove Ax’s theorem. The section is self-contained and may be
skipped by readers not interested in the function field setting. Before proceeding, we
note simply the tool that is available in the function field setting that is not available
in the classical setting: there is a derivative operator on C((t)), and elements of the
form ey satisfy (ey)′ = y′ey .

3A. Derivations.

Definition 3.2. Let A be a commutative ring and B a commutative A-algebra. An
A-derivation of B into a B-module M is an A-linear map

D : B → M

such that
D(ab) = aD(b) + D(a)b, a, b ∈ B, (18)

where we view M as both a left and right B-module since B is commutative.
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There is a pair (d = dB/A, �B/A) of a B-module �B/A and an A-derivation

d : B → �B/A

that is universal in the sense that any A-derivation D : B → M can be obtained
by composing dB/A with a B-module homomorphism �B/A → M . The module of
Kähler differentials �B/A is defined as the quotient of the free B-module generated
by formal generators db for each b ∈ B by the relations da = 0 for a ∈ A, d(b+b′)=

db +db′, and d(bb′) = b ·db′
+b′

·db. The universal derivation dB/A : B → �B/A

is defined by dB/A(b) = db.

Lemma 3.3. Let F/K be field extension and x ∈ F separable algebraic over K .
Then dx = 0 in �F/K .

Proof. Let f (t) ∈ K [t] be the minimal polynomial of x . Then

0 = d( f (x)) = f ′(x)dx .

Since x is separable, f ′(x) ̸= 0, so dx = 0. □

Meanwhile, if F(t) denotes the function field in one variable over the field F ,
we have that �F(t)/F is the 1-dimensional F(t)-vector space generated by dt , with
d( f (t)) = f ′(t)dt .

Lemma 3.4. Let K ⊂ F ⊂ L be fields of characteristic 0. Let D : F → F be a
K -derivation. Then D can be extended to a K -derivation L → L.

Proof. For f ∈ F[t], let f D denote the polynomial where D has been applied to the
coefficients of f . We show how to extend the derivation d. Let z ∈ L with z /∈ F .
If z is algebraic over F , let p(x) be its minimal polynomial. Define

u = −
pD(z)
p′(z)

, D̃(g(z)) = gD(z) + g′(z)u. (19)

If z is transcendental over F , we define

D̃(g(z)) = gD(z) + g′(z)u (20)

for any u ∈ L . We leave it to the reader to check that setting D̃|F = D and using
(19) or (20) to extend to F(z) yields a derivation D̃. Now one uses Zorn’s lemma
on pairs (D′, F ′), where F ′ is a field such that K ⊂ F ′

⊂ L and D′ is a derivation
extending D, to extend D all the way to L . □

Corollary 3.5. Let K ⊂ L be fields of characteristic 0. Then

dimL �L/K = trdK L .

More generally, if K ⊂ F ⊂ L , then

dimL(L · dL/K (F)) = trdK F.
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Proof. Let { f1, . . . , fn} be a transcendence basis for F/K . Suppose that

n∑
i=1

ai dL/K fi = 0

with ai ∈ L . By the universal property of dL/K , we have

n∑
i=1

ai D( fi ) = 0

for any K -derivation Di : L → L . Therefore, if we show that for each i there exists
a K -derivation Di : L → L such that Di ( f j ) = δi j , then we obtain ai = 0 for all i .
This yields the linear independence of the dL/K fi over L .

The existence of the Di follows from the proof of Lemma 3.4. We can first
extend the 0 derivation on K to K ( fi ) by setting z = fi and u = 1− fi in (20), and
then inductively extend to K ( f1, . . . , fn) by setting z = f j and u = − f j for j ̸= i .
Finally, we extend Di to L using Lemma 3.4 once more. □

3B. Derivation on Kähler differentials. Let A be a commutative ring and B an
A-algebra. Let D : B → B be a derivation such that D(A) ⊂ A. There exists an
A-linear map

D1
: �B/A → �B/A

satisfying

D1( f dg) = (D f )dg + f d(Dg). (21)

We leave the verification of this to the reader, but we note that a more general fact
is true. If we consider the graded algebra of differentials

�∗

B/A =

∞⊕
n=0

∧n
B �B/A,

then the differential D : B → B extends to a graded derivation

D∗
: �∗

B/A → �∗

B/A

satisfying (18), where the 0th graded piece is D and the 1st graded piece is D1. In
our proof of Ax’s theorem, we will only need the map D1, but let us note that the
rule (21) generalizes: for any f ∈ B and ω ∈ �B/A, we have

D1( f ω) = (D f )ω + f D1(ω). (22)

Proofs of these facts may be found in the references given in [Ax 1971, page 255].
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Lemma 3.6. Let y ∈ tC[[t]], z = ey , and let D : C((t)) → C((t)) be a C-derivation
of the form D( f (t)) = f ′(t) · g(t) for some fixed g(t) ∈ C((t)). Then

D1(dy − z−1dz) = 0

in �C((t))/C.

Proof. A direct computation with the definition (21) shows that, in general, we have

D1(dy − z−1dz) = d(Dy − z−1 Dz).

Yet, when z = ey , the term Dy − z−1 Dz vanishes for the derivation D( f (t)) =

f ′(t) · g(t). □

Lemma 3.7. Let K ⊂ L be fields and D : L → L a derivation such that ker D = K .
Then the map

L ⊗K ker D1
→ �L/K , f ⊗ ω 7→ f ω,

is injective.

Proof. Suppose there exist

f1, . . . , fn ∈ L∗, ω1, . . . , ωn ∈ ker D1

such that
n∑

i=1

fi ⊗ ωi 7→ 0, i.e.,
n∑

i=1

fiωi = 0. (23)

Scale so that f1 = 1. If all the fi lie in K , then

n∑
i=1

fi ⊗ ωi = 1 ⊗

n∑
i=1

fiωi = 1 ⊗ 0 = 0,

so we are done. Suppose this is not the case and take the minimal such vanish-
ing linear combination. By minimality, we can assume that the ωi are linearly
independent over L . Apply D1 to the expression (23). Using (22), we find

0 =

n∑
i=1

((D fi )ωi + fi D1(ωi )) =

n∑
i=1

(D fi )ωi ,

where the second equality holds since ωi ∈ ker D1. By the linear independence of
the ωi over L , we see that D fi = 0 for all i and hence, by assumption, fi ∈ K for
all i . □

The following is a technical algebraic lemma that will allow us to reduce to the
setting of function fields of curves:
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Lemma 3.8. Let K ⊊ L be an extension of fields with K relatively algebraically
closed in L (i.e., if α ∈ L and α is algebraic over K , then α ∈ K ). Let

W = {F : K ⊂ F ⊂ L , trdF L = 1, F relatively algebraically closed in L}.

Then ⋂
F∈W

F = K .

Proof. Let t ∈ L with t /∈ K . We need to show there exists F ∈ W such that t /∈ F .
Since K is relatively algebraically closed in L , the element t is transcendental
over K .

Choose a transcendence basis for L/K consisting of t and a set B of elements
not in K (t). Let F be the relative algebraic closure of K (B) in L , i.e.,

F = {x ∈ L | x algebraic over K (B)}.

Then F ∈ W , since L is algebraic over F(t). Since t /∈ F , this completes the
proof. □

In some sense, the following lemma is the main engine of Ax’s proof:

Lemma 3.9. Let L/K be fields of characteristic 0. Denote by d L the K -subspace
of �L/K spanned by d f for f ∈ L. Denote by d L/L the Z-submodule of �L/K

spanned by f −1d f for f ∈ L∗. Then the canonical map of K -vector spaces

K ⊗Z d L/L → �L/K /d L , k ⊗
d f
f

7→
k
f

d f, (24)

is injective, where �L/K /d L denotes the quotient of �L/K by the K -subspace
spanned by d f for f ∈ L.

Proof. Choose an element
n∑

i=1

ki ⊗ f −1
i d fi (25)

in the kernel of the map (24), with n minimal. By minimality, the ki are linearly
independent over Q. We will show that each fi lies in KL , the relative algebraic
closure of K in L . By Lemma 3.3, this will imply d fi = 0, giving the desired
injectivity.

If L = KL , there is nothing to prove. Otherwise, let F ∈ W , with W as in
Lemma 3.8. So K ⊂ F ⊂ L , trdF L = 1, and F L = F . Since the element (25) lies
in the kernel of (24), we have

n∑
i=1

ki f −1
i d fi =

m∑
i=1

k ′

i d f ′

i (26)
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for some f ′

i ∈ L∗ and k ′

i ∈ K . Now, we would like to use properties of function
fields of curves, but, unfortunately, we do not know that L is finitely generated
over F . To this end, we consider a field L ′ generated over F by the fi , the f ′

i , and
by any elements used in any relations in �L/K used to obtain (26). The field L ′

then still has transcendence degree 1 over F , and is finitely generated over F . We
may therefore identify L ′ with the function field of a smooth projective algebraic
curve over F . Furthermore, equation (26) still holds in �L ′/K by construction, and
so it holds also in �L ′/F .

Points P on this curve correspond to valuations

ordP : (L ′)∗ → Z.

Associated to P we also have a residue map

resP : �L ′/F → F.

The residue and valuation maps satisfy the following well-known properties. For
all g ∈ (L ′)∗, we have

resP(g−1dg) = ordP(g), resP(dg) = 0.

Applying resP to (26), we get

n∑
i=1

ki ordP( fi ) = 0.

By Q-linear independence of the ki , we obtain ordP( fi ) = 0 for all P and i . But a
function on a smooth projective curve with no zeroes or poles must be constant,
and hence fi ∈ F for all i . Since this holds for all F , we have by Lemma 3.8 that
fi ∈ KL . □

We can now complete the proof of Ax’s theorem.

Proof of Theorem 3.1. Let y1, . . . , yn ∈ tC[[t]] and write zi = eyi ∈ C[[t]]. Let

L = C(y1, . . . , yn, z1, . . . , zn).

It suffices to show that, if trdC L ≤ n, then y1, . . . , yn are Q-linearly dependent.
Suppose trdC L ≤ n. Then, by Corollary 3.5, the differentials

ωi = dyi − z−1
i dzi ∈ �L/C

for i = 1, . . . , n together with dy1 must be linearly dependent over L , so

n∑
i=1

fiωi + gdy1 = 0 (27)
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with fi , g ∈ L not all zero. Note that, if y′

1(t) = 0, then y1 is a constant, and since
y1 ∈ tC[[t]] we would get y1 = 0. Then the yi are trivially linearly dependent; so
we may assume hereafter that y′

1(t) ̸= 0. Define a C-derivation

D : L → L , D( f (t)) =
f ′(t)
y′

1(t)
.

By Lemma 3.6, we have D1(ωi ) = 0. Furthermore, a direct computation shows

D1(dy1) = d(Dy1) = d(1) = 0.

Therefore, we have that∑
fi ⊗ ωi + g ⊗ dy1 ∈ ker((L ⊗C ker D1) → �L/C).

By Lemma 3.7, we may assume fi , g ∈ C.
Rewrite the equation

∑
fiωi + gdy1 = 0 in the form

n∑
i=1

fi · (−z−1
i dzi ) = −

n∑
i=1

fi dyi − gdy1.

Lemma 3.9 implies that either all fi = 0, or the z−1
i dzi are Q-linearly dependent.

In the first case, from (27) and the fact that the fi and g are not all zero, we would
get dy1 = 0. Hence, y1 is a constant, and, as noted earlier, this implies that y1 = 0.
Therefore, we suppose we are in the second case, say∑ mi (dzi )

zi
= 0

with mi ∈ Z not all zero. This implies

d
(∏

zmi
i∏

zmi
i

)
= 0,

so
∏

zmi
i = e

∑
mi yi is a constant. By considering constant terms, this constant must

be 1. Therefore, ∑
mi yi = 0,

giving the desired linear dependence of the yi over Q. □

4. The structural rank conjecture

We now return to the classical setting over C, rather than the function field setting,
and move on to consider matrices of elements of L . The simplest case of 2 × 2
matrices leads to the following four exponentials conjecture:
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Conjecture 4.1. Let M ∈ M2×2(L ). Then det(M) = 0 only if the rows or columns
of M are linearly dependent over Q.

This conjecture was first stated in print by Schneider [1957], though versions
had been considered over the previous two decades by Selberg, Siegel, Alaoglu and
Erdős [1944], and others (precise statements by Selberg and Siegel do not appear in
the literature, but see [Waldschmidt 2023] for a discussion of their consideration of
this problem). The four exponentials conjecture remains wide open. As an example,
Waldschmidt [2023] points out the following elementarily stated open question,
a positive answer for which would follow from the four exponentials conjecture:
let t be a real number such that 2t and 3t are integers; does it follow that t is a
nonnegative integer?

The strongest theoretical evidence for the conjecture is the following six expo-
nentials theorem:

Theorem 4.2. Let M ∈ M2×3(L ). Then rank(M) < 2 only if the rows or columns
of M are linearly dependent over Q.

The six exponentials theorem was proven independently by Lang [1966] and
Ramachandra [1968a; 1968b]. See Waldschmidt’s delightful personal account
[2023] for details and references on the history of the four exponentials conjecture
and the six exponentials theorem.

The six exponentials theorem follows as a special case of the theorem of
Waldschmidt and Masser that we will discuss later (see Section 5A). A naive
generalization of the four exponentials conjecture to matrices of arbitrary dimension
does not hold — in general, matrices may have lower than maximal rank even if the
rows and columns are linearly independent over Q. As an example, note that

det

x z 0
0 y −x
y 0 z

 = 0.

Therefore, if we substitute for x , y and z any elements of L that are linearly
independent, then we obtain a matrix of rank < 3 whose rows and columns are
linearly independent over Q. Examples such as these motivate the structural rank
conjecture, which was stated precisely in the introduction. The matrix above has
structural rank equal to 2.

4A. The p-adic setting. Most statements in transcendence theory have analogues
in the p-adic setting. As we will describe below, these analogues are particularly
important in Iwasawa theory. Let p be a prime number, and let Cp = Q̂p denote
the completion of the algebraic closure of Qp. The statements below work equally
well over Qp, but working with Cp provides extra generality. We normalize the
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p-adic absolute value on Cp in the usual way: |p| = p−1. There exists a p-adic
logarithm and a p-adic exponential function

logp : {x ∈ Cp : |x −1| < 1} → Cp, expp : {x ∈ Cp : |x | < p−1/(p−1)
} → Cp (28)

defined by the usual power series

logp(1 − x) = −

∞∑
n=1

xn

n
, expp(x) =

∞∑
n=1

xn

n!
.

The functions logp and expp are injective group homomorphisms on the domains
given in (28). The p-adic logarithm extends uniquely to a continuous homomor-
phism

logp : {x ∈ Cp : |x | = 1} → Cp

since every x ∈ Cp with |x | = 1 satisfies |xn
− 1| < 1 for an appropriate positive

integer n, and we may define logp(x) = (1/n) logp(xn). Next we extend logp to a
continuous homomorphism

logp : C∗

p → Cp

by fixing Iwasawa’s (noncanonical) choice logp(p) = 0. The kernel of logp on C∗
p

then consists of elements of the form pa
· u, where a ∈ Q and u is a root of unity.

We define the Q-vector space of p-adic logarithms of algebraic numbers,

Lp = {logp(x) | x ∈ Q∗
} ⊂ Cp.

The p-adic version of Baker’s theorem was proved by Brumer [1967] following
Baker’s method.

Theorem 4.3 (Baker and Brumer). Let y1, . . . , yn ∈ Lp be linearly independent
over Q. Then y1, . . . , yn are linearly independent over Q.

Similarly, there are natural analogues of Schanuel’s conjecture and the structural
rank conjecture in the p-adic setting. To be precise we state the latter of these:

Conjecture 4.4 (p-adic structural rank conjecture). Let

M ∈ Mm×n(Lp + Q) ⊂ Mm×n(Cp).

The rank of M is equal to the structural rank of M.

4B. Applications in number theory. Statements in transcendence theory have
important applications in algebraic number theory. In this section, we describe
two important conjectures in Iwasawa theory that are special cases of the p-adic
structural rank conjecture. These conjectures are our personal motivation for this
study.
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4B1. Leopoldt’s conjecture. Fix a prime p and an embedding Q ↪→ Cp.

Conjecture 4.5 (Leopoldt’s conjecture). Let F be a number field of degree n over Q

and let σ1, . . . , σn denote the embeddings F ↪→ Q. Let {u1, . . . , ur } be a Z-basis
for O∗

F/µ(F). Let
M = (logp σ j (ui )) ∈ Mr×n(Lp).

Then rankCp(M) = r .

Proposition 4.6. The p-adic structural rank conjecture implies Leopoldt’s conjec-
ture.

Proof. The important point here is that the archimedean analogue of the statement
of Leopoldt’s conjecture is known to be true; this is the classical nonvanishing of
the regulator of a number field. More precisely, if we fix an embedding Q ↪→ C and
let N =

(
log |σ j (ui )|

)
, where the absolute value denotes the usual absolute value

on C, then we have
rankC(N ) = r.

This is proved using the fact that log | · | takes values in the ordered field R (whereas
logp does not). For this reason, the p-adic statement lies far deeper than the
archimedean one.

The field Q(x1, . . . , xk) appearing in the definition of the structural rank provides
a bridge between the p-adic and complex settings, with the p-adic structural rank
conjecture doing most of the heavy lifting.

Let {c1, . . . , ck} ⊂ {σ j (ui )} be such that {logp(ci )} is a Q-basis for the Q-vector
space spanned by the logp(σ j (ui )). Write

M = (logp σ j (ui )) =

k∑
i=1

Mi logp(ci )

with Mi ∈ Mr×n(Q). The p-adic structural rank conjecture implies that

rankCp M = rankQ(x1,...,xk)

( k∑
i=1

Mi xi

)

≥ rankC

( k∑
i=1

Mi log |ci |

)
= rankC

(
log |σ j (ui )|

)
(29)

= r.

Hence, rankCp M ≥ r , and so we must have equality. Note that in the equality (29),
we are implicitly using the fact that, if ui ∈ Q∗ are p-adic units and mi ∈ Z are



RANKS OF MATRICES OF LOGARITHMS OF ALGEBRAIC NUMBERS, I 115

integers, then∑
mi logp(ui ) = 0 =⇒

∏
umi

i is a root of unity =⇒

∑
mi log |ui | = 0. □

Let us describe two applications of Leopoldt’s conjecture.

Algebraic (Iwasawa theory). By class field theory, Leopoldt’s conjecture implies
that the maximal pro-p abelian extension of F unramified outside p has Zp-rank
equal to r2 + 1, where 2r2 is the number of embeddings F ↪→ C with image not
contained in R. See for example the exercises in [Neukirch 1999, page 394].

Analytic (p-adic L-functions). Let F be a totally real field, so

r = rank O∗

F = [F : Q] − 1.

There is a p-adic analogue of the classical Dedekind zeta function of F , denoted
by ζF,p. A theorem of Colmez [1988] states that

lim
s→1

(s − 1)ζF,p(s) = (∗)Rp(F), (30)

where
Rp(F) = ± det

(
logp(σ j (ui ))i, j=1,...,r

)
(31)

and (∗) denotes a specific nonzero algebraic number, which we do not describe
precisely here. Note that, since there are r + 1 embeddings σ j , the last one has
been excluded in the definition of Rp(F). Which embedding is excluded, as well
as the ordering of the remaining embeddings, only affects the determinant in (31)
up to sign; the unspecified ± in (31) includes an orientation (a sign) that makes the
product independent of choices.

Colmez’s formula (30) is a p-adic “class number formula”. It implies that ζF,p(s)
has a pole at s = 1 if and only if Leopoldt’s conjecture for (F, p) holds.

4B2. The Gross–Kuz’min conjecture. There is an analogue of Leopoldt’s conjecture
due independently to Gross and Kuz’min concerning p-adic L-functions at s = 0
rather than s = 1. Unlike the case of classical L-functions, there is no functional
equation for p-adic L-functions relating the values at 0 and 1.

We refer the reader to [Gross 1981] for details about the Gross–Kuz’min conjec-
ture beyond what we write below. To state the conjecture, let H be a CM field and
H+ its maximal totally real subfield. Let

U−

p = {u ∈ H∗
: |u|w = 1 for all w ∤ p}.

Here w ranges over all places of H that do not divide p, including the archimedean
ones. Then rank(U−

p ) = r , where r is the number of primes of H+ above p that
split completely in H .
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Let X p denote the Cp-vector space with basis indexed by the places of H above p.
Let c denote the nontrivial element of Gal(H/H+), i.e., c is complex conjugation.
Let X−

p denote the largest quotient of X p on which c acts as −1. Then X−
p has

dimension r . We define two maps

ℓp, op : U−

p → X−

p .

The coordinate of op(u) at the component corresponding to a place P of H is
ordP(u), and the coordinate of ℓp(u) is logp(NHP/Qp(u)). We extend ℓp and op to
Cp-linear maps

U−

p ⊗ Cp → X−

p .

It is not hard to show using Dirichlet’s unit theorem that op is an isomorphism, and
we define

R−

p (H) = det(ℓp ◦ o−1
p ).

Conjecture 4.7 (Gross–Kuz’min). We have R−
p (H) ̸= 0.

A proof similar to the proof of Proposition 4.6 shows that the p-adic structural
rank conjecture implies the Gross–Kuz’min conjecture (one uses ordp in place
of log | · |). Once again there are algebraic and analytic interpretations of this
conjecture.

Algebraic (Iwasawa theory). By class field theory, the Gross–Kuz’min conjecture
implies a bound on the growth of the p-parts of class groups of fields in the
cyclotomic Zp-extension of H . See [Federer and Gross 1981, Proposition 3.9] for
details.

Analytic (p-adic L-functions). Let χ denote the nontrivial character of Gal(H/H+).
Then one knows that

ords=0 L p(χω, s) ≥ r.

This follows for odd p by work of Wiles [1990]; an alternative proof using the
Eisenstein cocycle that works for all p was given in [Charollois and Dasgupta 2014;
Spiess 2014] using an argument of Spiess. In joint work with Darmon and Pollack
then with Kakde and Ventullo [Dasgupta et al. 2011; 2018], we proved that

L(r)
p (χω, 0) = (∗)R−

p (H),

where (∗) is a specific nonzero rational number. This is a p-adic class number
formula at s = 0. Therefore, L p(χω, s) has a zero of order exactly r at s = 0 if
and only if the Gross–Kuz’min conjecture is true.

4B3. Representation-theoretic considerations. Retaining the setting of the Gross–
Kuz’min conjecture, suppose now that H contains a totally real field F such that
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H/F is Galois. Let G = Gal(H/F). For any representation M of G over Cp,
and character χ of an irreducible representation V , let Mχ denote the χ-isotypic
component of M (i.e., the span of the subrepresentations of M isomorphic to V ).

Then

U−

p =

⊕
χ

Uχ
p , X−

p =

⊕
χ

Xχ
p ,

where the sums range over the characters χ of irreducible representations V of G
on which c acts as −1. The maps ℓp and op also decompose as sums of maps

ℓχ
p, oχ

p : Uχ
p → Xχ

p .

We define

Rχ
p (H) = det(ℓχ

p ◦ (oχ
p)−1).

We then have

R−

p (H) =

∏
χ

Rχ
p (H). (32)

Now, for χ as above,

rχ
p := dimCp Uχ

p = dimCp Xχ
p =

∑
p| p

dimCp V Gp,

where the sum ranges over the primes of F above p, Gp ⊂ G denotes the decompo-
sition group of a prime of H above p, and V Gp denotes the maximal subspace of V
invariant under Gp. When rχ

p = 1, the regulator Rχ
p (H) is a Q-linear combination

of p-adic logarithms of algebraic numbers. As pointed out in Proposition 2.13 of
Gross [1981], the nonvanishing of Rχ

p (H) follows from the theorem of Brumer and
Baker (Theorem 4.3) in this case.

Theorem 4.8. If rχ
p = 1, then Rχ

p (H) ̸= 0.

There is a particular case when every rχ
p ≤ 1. If F contains only one prime

above p (for example F = Q), and G is abelian (so every V has dimension 1), then
clearly rχ

p ≤ 1. Combining Theorem 4.8 with the factorization (32), we obtain:

Corollary 4.9. Let F be a totally real field with exactly one prime above p, and
let H be a CM abelian extension of F. Then the Gross–Kuz’min conjecture holds
for H.

A similar analysis holds for Leopoldt’s conjecture, and one obtains:

Theorem 4.10 [Brumer 1967, Theorem 2]. Leopoldt’s conjecture holds for abelian
extensions of Q.
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4C. A theorem of Roy. Damien Roy has proven a number of beautiful results in
transcendence theory. We prove one of these now.

Theorem 4.11 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture that states that, if y1, . . . , yn ∈ L are Q-linearly
independent, then

trdQ Q(y1, . . . , yn) = n.

Similarly, the p-adic structural rank conjecture is equivalent to the p-adic version
of the special case of Schanuel’s conjecture, but we will content ourselves with the
archimedean setting here. Theorem 4.11 is proven in [Roy 1995].

One direction of Roy’s theorem is relatively elementary.

Lemma 4.12. The special case of Schanuel’s conjecture implies the structural rank
conjecture.

Proof. We assume the special case of Schanuel’s conjecture. We first consider a
matrix M with entries in L . Let M =

∑
Mi ci with Mi ∈ Mm×n(Q) and ci ∈ L

linearly independent over Q. Write

Mx =

∑
Mi xi ∈ Mm×n(Q(x1, . . . , xn))

and let r = rank(Mx). Let Jx be an r × r submatrix of Mx such that

det(Jx) = P(x1, . . . , xn) ̸= 0

in Q[x1, . . . , xn]. The determinant of the corresponding submatrix of M is equal to
P(c1, . . . , cn) and hence cannot vanish since the ci are algebraically independent,
by the special case of Schanuel’s conjecture. Therefore, rank(M) ≥ r . Of course, it
is clear that rank(M) ≤ r , so we get equality.

Now assume M has entries in L + Q, but not in L . There are two cases.

Case 1: 1 is not in the Q-linear span of the entries of M . The Q-basis for this
span can be taken to have the form {1 + c1, c2, . . . , cn}, where ci ∈ L . It is easy to
check that the ci must be Q-linearly independent, and hence, by the special case of
Schanuel’s conjecture, they are algebraically independent. The same is therefore
true of {1 + c1, c2, . . . , cn}. The previous proof then applies to this basis.

Case 2: 1 is in the Q-linear span of the entries of M . We may take a Q-basis of
this span of the form {c0 = 1, c1, . . . , cn}, where ci ∈ L for i ≥ 1. We proceed as
before. Write

M =

n∑
i=0

Mi ci , Mx =

n∑
i=0

Mi xi .

Let r = rank(Mx) and Jx an r × r submatrix of Mx with

det(Jx) = P(x0, . . . , xn) ̸= 0.
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The determinant of the corresponding submatrix J of M is P(1,c1, . . . ,cn). Since P
is a nonzero homogeneous polynomial of degree r , its specialization P(1, x1, . . . , xn)

is also nonzero, so det(J ) = P(1, c1, . . . , cn) ̸= 0 by the algebraic independence of
the ci . Therefore, rank(M) ≥ r , as desired. □

The main content of the converse is in the following lemma:

Lemma 4.13. Let k be a commutative ring and let P ∈ k[x1, . . . , xn]. There exists
a square matrix N with entries in

k + kx1 + · · · + kxn

such that det(N ) = P.

Let us for the moment take the lemma for granted and prove Roy’s theorem.

Proof of Theorem 4.11. Assume the structural rank conjecture. Suppose c1, . . . , cn ∈

L are linearly independent over Q and that P(c1, . . . , cn) = 0 for some nonzero
P ∈ Q[x1, . . . , xn]. As in Lemma 4.13, let N be a square matrix with entries in
Q + Qx1 + · · · + Qxn such that det(N ) = P .

Let M be the matrix N with xi replaced by ci . We then have det(M) = 0. Note
that the matrix Mx in the structural rank conjecture is the homogenization of the
matrix N , with entries in Qx0 +Qx1 +· · ·+Qxn . We are using here that the ci are
Q-linearly independent from 1, since e is transcendental. The conjecture implies
that det(Mx) = 0, whence det(N ) = 0 by specializing x0 = 1, a contradiction. □

It remains now to prove Lemma 4.13. We first remark that this lemma is actually
the starting point of an important avenue of research in theoretical computer science,
where the lemma is usually attributed to Valiant [1979]. There are well-known
efficient algorithms for calculating the determinant of a matrix, so expressing a
general polynomial as a determinant gives an algorithm for efficiently calculating
values of a polynomial. The minimal dimension of a matrix necessary to express a
given polynomial as a determinant is known as the determinantal complexity of the
polynomial. The study of the growth of determinantal complexity in families of
polynomials is a topic with an extensive literature.

We follow Roy’s proof of Lemma 4.13. We will prove the more general statement
that, given any matrix N ∈ Mm×m(Pd), there exists a matrix N ′

∈ Mm′×m′(P1) such
that det(N ) = det(N ′). Lemma 4.13 is the case where we start with an element
N ∈ Pd , which we view as a 1 × 1 matrix. The advantage of the more general
statement is that it may be proven by induction on d. We need to establish two
sublemmas. The first establishes that, given a matrix N ∈ Mm×m(Pd), we may write
it as a product of matrices with entries in spaces Pd ′ with d ′ < d. The matrices
that arise in the proof are not necessarily square, and this is resolved by the second
lemma.
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Lemma 4.14. For a nonnegative integer d, let Pd ⊂ k[x1, . . . , xn] denote the k-
subspace of polynomials of total degree ≤ d. Given N ∈ Mm×m(Pd) with d ≥ 1,
there exists an integer s and matrices

A ∈ Mm×s(Pd−1), B ∈ Ms×m(P1)

such that N = AB.

Proof. Let N = (ai, j ) with ai, j ∈ Pd . We can write

ai, j =

n∑
ℓ=1

ci, j,ℓxℓ + ci, j,n+1

with ci, j,ℓ ∈ Pd−1 for 1 ≤ ℓ ≤ n + 1. Let

ci, j = (ci, j,ℓ) ∈ M1×(n+1)(Pd−1), x =


x1

x2
...

xn

1

 ∈ M(n+1)×1(P1).

Define

A = (ci, j ) ∈ Mm×m(n+1)(Pd−1), B = x ⊗ 1m×m ∈ M(n+1)m×m(P1).

Then one calculates that N = AB. □

The matrices A and B in Lemma 4.14 are not square, so we cannot recursively
apply the lemma. This is resolved by the following observation:

Lemma 4.15. Let A ∈ Mm×s, B ∈ Ms×m . Then

det(AB) = det
(

Is B
−A 0

)
,

where the matrix on the right is square of dimension m + s.

Proof. We simply note that(
Is 0
A Im

) (
Is B

−A 0

) (
Is −B
0 Im

)
=

(
Is 0
0 AB

)
and take determinants of both sides. □

We can now prove our main lemma.

Proof of Lemma 4.13. As indicated above, we will show by induction on d that,
for any matrix N ∈ Mm×m(Pd), there exists a matrix N ′

∈ Mm′×m′(P1) such that
det(N ) = det(N ′).

The base case d =1 is trivial. For d >1 we use Lemma 4.14 to write N = AB with
A ∈ Mm×s(Pd−1) and B ∈ Ms×m(P1). Lemma 4.15 then yields det(N ) = det(N ′)

with N ′
∈ M(m+s)×(m+s)(Pd−1). The induction is now complete.

The lemma is the case where we start with a 1 × 1 matrix in Pd . □
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5. The theorem of Waldschmidt and Masser

To our knowledge, the strongest general unconditional result toward the structural
rank conjecture is Theorem 1.6 of Waldschmidt and Masser, stated in the introduc-
tion. For the sake of variety, we will prove the p-adic version of the conjecture in
this section, though the proof of the archimedean version is essentially the same
(both versions are proven in [Waldschmidt 1981]). The statement of the p-adic
version is exactly the same as the archimedean one, with L replaced by Lp.

Theorem 5.1 (Waldschmidt and Masser). Let m and n be positive integers and let
M ∈ Mm×n(Lp). Suppose that

rank(M) <
mn

m+n
.

Then there exist P ∈ GLm(Q) and Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension m′
× n′ with m′/m + n′/n > 1.

5A. Applications. Let us first state some applications of the complex and p-adic
Waldschmidt–Masser theorems. The six exponentials theorem, which had been
proven earlier in the 1960s, is a corollary of the Waldschmidt–Masser theorem.

Proof of Theorem 4.2. The case where M = 0 is trivial. Therefore suppose
M ∈ M2×3(L ) has rank 1. Since 1 < 6

5 , the Waldschmidt–Masser theorem implies
that, after a rational change of basis on the left and right, the matrix M has the
block matrix form

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension 1×2 or 2×1. In the first case, our matrix has the
form

P M Q =

(
∗ 0 0
∗ ∗ ∗

)
.

Such a matrix has rank 1 only if it has the form

P M Q =

(
0 0 0
∗ ∗ ∗

)
or P M Q =

(
∗ 0 0
∗ 0 0

)
.

In the first case, we see that P M has the same shape, which says that the rows
of M are linearly dependent over Q. In the second case, we see that M Q has the
same shape, which says that the columns of M are linearly dependent over Q. The
case where the original block of zeroes has dimension 2 × 1 is similar. □
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In the case of a square matrix, the Waldschmidt–Masser theorem simplifies to
the following:

Corollary 5.2. Let M ∈ Mn×n(L ) or Mn×n(Lp). Suppose that rank(M) < 1
2 n.

Then there exist P, Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
(block matrix)

where the 0 block has dimension m × m′ with m + m′ > n.

Corollary 5.3. The Leopoldt regulator matrix and the Gross–Kuz’min regulator
matrix have rank at least half their expected ranks.

Proof. Let r be the expected rank of the Leopoldt matrix. Let

M ′
=

(
log |σ j (ui )|

)
i, j=1,...,r

be an r × r submatrix of the archimedean regulator with det(M ′) ̸= 0. Let

M = (logp σ j (ui ))i, j=1,...,r

be the corresponding submatrix of the Leopoldt matrix.
If the rank of the Leopoldt matrix is less than 1

2r , the same is true for M . The
Waldschmidt–Masser theorem then implies that there exist P, Q ∈GLr (Q) such that
P M Q has an upper right 0 block with dimension m × m′, where m + m′ > r . But
then P M ′Q has this same property. This implies that det(M ′) = 0, a contradiction.

The same proof works for Gross’s regulator, using ordp instead of log | · |. □

5B. Auxiliary polynomial. As in the proof of Baker’s theorem, the Waldschmidt–
Masser theorem is proven by constructing, under the assumptions of the theorem, a
suitable auxiliary polynomial whose existence implies the conclusion of the theorem.
Waldschmidt’s result is that the auxiliary polynomial exists, and Masser’s theorem
is that this polynomial gives the desired conclusion. Let us describe this in greater
detail.

We have M = (ai, j ) with ai, j = logp(xi, j ) ∈ Lp. Here xi, j ∈ Q∗. After scaling
M if necessary, we may assume that |xi, j − 1|p < 1. For i = 1, . . . , m, let

xi = (xi, j ) j=1,...,n ∈ (Q∗)n
⊂ (C∗

p)
n.

Let X = ⟨x1, x2, . . . , xm⟩ ⊂ (Q∗)n be the subgroup generated by the xi . For each
positive integer N , define

X (N ) =

{ m∏
i=1

xai
i

∣∣∣ ai ∈ Z, 0 ≤ ai ≤ N
}
.

For a polynomial P in several variables, we write deg(P) for the total degree of P .
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Theorem 5.4 [Waldschmidt 1981]. Suppose r = rank(M) < mn/(m + n). There
exists ϵ > 0 such that, for all N sufficiently large, there exists a nonzero P ∈

Z[t1, . . . , tn] such that deg(P) < N m/n−ϵ and P(x) = 0 for all x ∈ X (N ).

Waldschmidt’s theorem is the “transcendence” part of Theorem 1.6. Masser’s
theorem, which is a purely algebrogeometric statement, takes the existence of
an auxiliary polynomial P as above and deduces the relations necessary to give
the desired result about the original matrix M . We will describe the statement
of Masser’s theorem precisely in a moment, but first let us comment about the
numerology concerning the auxiliary polynomial in the statement of Theorem 5.4.
We can view the existence of a polynomial with prescribed zeroes as a system of
linear equations in the coefficients of the polynomial. Each zero gives one such
linear equation. If the xi, j are generic, the size of X (N ) is (N +1)m . A polynomial
of degree < d has fewer than dn coefficients. Therefore, if the xi, j are generic,
we expect that we would require dn

≥ (N + 1)m for a polynomial to exist, so, in
particular, d > N m/n . For this reason, the existence of the auxiliary polynomial P
in Theorem 5.4 does not hold for generic xi, j .

Let us now state Masser’s theorem precisely. Let k be a field of characteristic 0,
let (xi, j ) ∈ Mm×n(k∗). Define X and X (N ) as above. Define a pairing

Zm
× Zn

→ k∗, ⟨(ai ), (b j )⟩ =

∏
i, j

xai b j
i, j .

Theorem 5.5 [Masser 1981]. Let N > 0 and suppose there exists P ∈ k[t1, . . . , tn]
such that deg(P) < (N/n)m/n and P(x) = 0 for all x ∈ X (N ). Then there exist
subgroups A ⊂ Zm and B ⊂ Zn of ranks m′ and n′, respectively, with ⟨A, B⟩ = 1
and m′/m + n′/n > 1.

Theorems 5.4 and 5.5 combine to give Theorem 5.1. In the remainder of this
section, we prove these two theorems.

5C. Waldschmidt’s theorem. We will give two proofs of Waldschmidt’s theorem.

5C1. Proof 1 of Waldschmidt’s theorem. Our first proof is similar in spirit to
Waldschmidt’s original proof. For simplicity, we will assume xi, j ∈ Z and xi, j ≡

1 (mod p). Standard techniques (scaling by an integer to obtain algebraic integers,
and taking norms to obtain integers) allow one to handle the general case, but we
would like to avoid the extra notation required.

Let r denote the rank of the matrix M ∈ Mm×n(Zp). After reordering columns
if necessary, we can assume that the last n − r columns of M are in the Zp-linear
span of the first r columns. Then, for each i > r , there exist λi,1, . . . , λi,r ∈ Zp

such that, if z = (z1, . . . , zn) ∈ X , we have

zi = zλi,1
1 zλi,2

2 · · · zλi,r
r for i > r. (33)
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To make sense of the right-hand side of this equality, note that, for λ ∈ Zp, the
function

tλ
= (1 + (t − 1))λ =

∞∑
i=0

(
λ

i

)
(t − 1)i (34)

is a convergent power series in t − 1. Hence, if t ∈ 1 + pZp, then (34) converges
in Zp.

Our goal is to find a polynomial P ∈Z[t1, . . . , tn] such that P(z)=0 for z ∈ X (N ).
Define ui = ti − 1 and consider the canonical map

ϕ :Z[t1, . . . , tn]→Zp[[u1, . . . , un]]/(ti−tλi,1
1 · · · tλi,r

r )n
i=r+1

∼=Zp[[u1, . . . , ur ]]. (35)

The elements in the quotient in (35) are interpreted as power series in the ui via (34).
Fix a positive integer c. Define ϕc to be the composition of ϕ with the canonical

reduction

Zp[[u1, . . . , ur ]] → (Z/pcZ)[[u1, . . . , ur ]]/(uc
1, . . . , uc

r ). (36)

If a polynomial P ∈ Z[t1, . . . , tn] satisfies ϕc(P) = 0, then P(z) will be divisible
by pc for any z ∈ X . Indeed, ϕ(P)(z) = P(z) is well defined for z ∈ X , since the
kernel of ϕ vanishes on X . Next, it is clear that ϕ(P)(z) (mod pc) depends only
on the coefficients of ϕ(P) modulo pc. Finally, we note that

zi ≡ 1 (mod p) =⇒ ui ≡ 0 (mod p) =⇒ uc
i ≡ 0 (mod pc).

Now, the ring on the right in (36) is finite. The total number of monomials in
u1, . . . , ur modulo (uc

1, . . . , uc
r ) is cr , so the total number of possible values of

these coefficients mod pc is
(pc)cr

= pcr+1
.

Therefore, by the pigeonhole principle, if we have a subset of Z[t1, . . . , tn] of size
greater than pcr+1

, then some two elements of the subset, say P1 and P2, will have
equal image under ϕc, and the difference P = P1−P2 will satisfy P(z)≡0 (mod pc)

for all z ∈ X .
We will take the subset of all polynomials with degree in each variable less than

some constant d with coefficients that are nonnegative integers less than ph for
some constant h. The size of this subset is phdn

, and hence the condition that we
want is

hdn > cr+1. (37)

Now, we also want to use the principle of “discreteness of the integers” discussed
in the proof of Baker’s theorem to ensure that the condition P(z) ≡ 0 (mod pc) for
z ∈ X (N ) implies that P(z) = 0. For this, we need a crude bound on |P(z)| (the
archimedean absolute value). Suppose that A is an upper bound on |xi, j |. Then, for
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each z = (z1, . . . , zn) ∈ X (N ), we have |zi | < ANm . Therefore, each monomial in
the evaluation of P(z) has absolute value at most ph ANdmn , and in total we obtain

|P(z)| < dn ph ANdmn.

Therefore, if
dn ph ANdmn < pc, (38)

then we indeed have the implication

P(z) ≡ 0 (mod pc) =⇒ P(z) = 0.

To prove the theorem, we set d =⌊N m/n−ϵ/n⌋, so that the constructed polynomial
P will have degree less than N m/n−ϵ , as required. We search for parameters h and c
such that both (37) and (38) hold. Not surprisingly, these inequalities are pulling in
the opposite direction — the first says that h is large relative to c, and the second
says that h is small relative to c. For N large, the two inequalities will be satisfied if

h · N m−nϵ
≫ cr+1, c > k log N + h + k ′N (m+n)/n−ϵ

for the appropriate constants k and k ′.
If we set c = N (m+n)/n+ϵ and h = cN−δ for a small δ > 0, then it is clear that

the second inequality will hold for N sufficiently large. Plugging these parameters
into the first inequality yields

m − δ >
(m

n
+ 1 + ϵ

)
r.

It is clear that we can choose small positive δ and ϵ satisfying this inequality if

m >
(m

n
+ 1

)
r, i.e., r <

mn
m+n

.

This completes the proof.

5C2. Proof 2 of Waldschmidt’s theorem. For our second proof, we will return to
the completely general case, i.e., we do not assume that xi, j ∈ Z, only that xi, j ∈ Q∗.
Our motivation in giving the second proof is that it introduces an important topic
in transcendence theory not discussed earlier, namely the theory of interpolation
determinants pioneered by Michel Laurent. Laurent [1991] gave a new proof of
the six exponentials theorem using his new theory. The basic idea is that we will
view the existence of the desired polynomial P as the solution of a linear system
of equations in the coefficients of the polynomial, and show that the associated
determinant vanishes.

Again we will construct a polynomial P such that the degree in each variable is
less than d = ⌊N m/n−ϵ/n⌋ and such that P(z) = 0 for all z ∈ X (N ). Consider the
matrix whose rows are indexed by our desired zeroes z ∈ X (N ), and columns are
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indexed by the exponents

y ∈ Zn(d − 1) = {(y1, . . . , yn) | 0 ≤ yi ≤ d − 1}

of the monomials of our desired polynomial,

L = (zy) ∈ M(N+1)m×dn (Cp).

It suffices to show that rank(L) < N m−nϵ/nm < dn , as then any nonzero vector in
its kernel will be the coefficients of our desired polynomial. Of course, by making
ϵ smaller, we can ignore the constant nm , since N ϵ

≫ nm for N large.
We state without proof the following elementary interpretation of the rank of a

matrix:

Lemma 5.6. Let k be a field and suppose that a matrix

(ai, j ) ∈ Mm×n(k)

has rank equal to r . Then there exist vectors

β1, . . . , βm, γ1, . . . , γn ∈ kr

such that ai, j = ⟨βi , γ j ⟩.

In our situation, we have M = logp(xi, j ) ∈ Mm×n(Cp) with rank r . We write

logp(xi, j ) = ⟨βi , γ j ⟩ for βi , γ j ∈ Cr
p.

Without loss of generality, we can scale all the βi and γ j to assume all their
coordinates have absolute value < p−1. (This just scales the matrix M , which
affects neither the assumptions nor conclusions of the theorem.)

If z =
∏m

i=1 xℓi
i for ℓ ∈ Zm , then, for y ∈ Zn , we have

zy
= exp

〈∑
βiℓi ,

∑
γ j y j

〉
.

Next we will require a p-adic Schwarz’ lemma. For a positive integer d and real
R > 0, define

Bd(R) = {(z1, . . . , zd) : |zi | ≤ R for all i} ⊂ Cd
p.

For analytic f : Bd(R) → Cp, define

| f |R = max
z∈Bd (R)

| f (z)|. (39)

Lemma 5.7. Suppose that f : B1(R) → Cp is analytic and has a zero of order at
least n at z = 0. Then, for any 0 < R′ < R, we have

| f |R′ ≤

(
R
R′

)−n

| f |R.
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Proof. Let g(z) = f (z)/zn . This is analytic on B1(R) since f has a zero of order
at least n at z = 0. For any z ∈ B1(R′), we have

| f (z)| ≤ (R′)n
|g(z)| ≤ (R′)n

|g|R =

( R′

R

)n
| f |R.

The last equality uses the p-adic maximal modulus principle, which states that
the maximum in (39) is achieved on the boundary |z| = R. See [Cherry 2009,
Theorem 1.4.1] or [Stansifer 2012, Theorem 7] for a proof of this analytic fact. □

Now we present Laurent’s main theorem on interpolation determinants.

Theorem 5.8 (Laurent). Let 0 < R′ < R and let f1, . . . , fd be analytic functions

Br (R) → Cp.

Let z1, . . . , zd ∈ Br (R′). Then L = det( f j (zi )) satisfies

|L| ≤

(
R
R′

)−2r (d) d∏
i=1

| fi |R,

where, for d sufficiently large relative to r ,

2r (d) >
r
6e

d(r+1)/r . (40)

Proof. Define 1(z) = det( f j (zi z)), which is analytic on |z| ≤ R/R′. We will show
that 1(z) has a zero of order at least 2r (d) at z = 0 for some combinatorial function
2r satisfying (40), which we will define in a moment. The result then follows from
Schwarz’ lemma:

|L| = |1(1)| ≤

(
R
R′

)−2r (d)

|1|R/R′

using the trivial upper bound

|1|R/R′ ≤

d∏
i=1

| fi |R.

(Note that, in the complex case, we would need a factor of d! on the right, but, in
the nonarchimedean setting, this factor is not required because of the strong triangle
inequality.)

Write each fi as a power series in the variables u1, . . . , ur ∈Cp. By multilinearity
of the determinant, it suffices to consider the case f j (u) = uv j = uv1 j

1 uv2 j
2 · · · uvr j

r

for nonnegative integers vi j . Then

1(z) = z
∑

j ∥v j ∥ det(zv j
i ),
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where ∥v j∥ = v j1 +v j2 +· · ·+v jr . If any two tuples v j are equal, this determinant
vanishes and 1(z) is identically 0. If not, then the order of vanishing is at least

2r (d) := min
{ d∑

j=1

∥v j∥

∣∣∣ v1, . . . , vd ∈ (Z≥0)r with vi ̸= v j if i ̸= j
}
.

For example, 21(d) =
1
2 d(d − 1). For a proof of the combinatorial inequality (40),

see [Waldschmidt 1992, Lemma 4.3]. □

We can now apply Laurent’s theorem to complete the proof of Waldschmidt’s
theorem. We want to show that any square submatrix L ′

= (zy
i ) of L of dimension

dn
≈ N m−nϵ has vanishing determinant, where

z1, . . . , zd ∈ X (N ), y ∈ Zn(d − 1), d = ⌊N m/n−ϵ
⌋.

As explained earlier, the entries of the matrix L ′ can be written in the form
exp

(〈∑
βiℓi ,

∑
γi yi

〉)
with ℓ ∈ Zm(N ) corresponding to z. For each y we have the

function
fy(u1, . . . , ur ) = exp

(〈
u,

∑
γi yi

〉)
We apply Laurent’s theorem on interpolation determinants with R = 1 and R′

= 1/p.
We find

|L ′
| ≤ C−N (m−nϵ)(r+1)/r

,

where C > 1 is a constant.
Now we want to put a bound on the archimedean absolute value of L ′. Let

A = max
i, j

|xi, j |∞.

Then |zy
|∞ ≤ AN ·N (m/n)−ϵn . Therefore,

|L ′
|∞ ≤ (N m−nϵ)! · DN (m/n)+1+m−(n+1)ϵ

.

The factorial is dominated by the other term and can be ignored. Scaling to obtain
integrality just scales D. The same is true for taking norm from the field generated
by the xi, j down to Q in order to obtain an element of Z.

Therefore, we will have L ′
= 0 if

C N (m−nϵ)(r+1)/r
> DN (m/n)+1+m−(n+1)ϵ

.

Of course, for this inequality to hold for large N , the precise values of C and D do
not matter; all that matters is that we have the corresponding inequality of exponents.

It therefore suffices to have

(m − nϵ)
r +1

r
>

m
n

+ 1 + m − (n + 1)ϵ.
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This simplifies to
1
r

>
m+n
mn

+
ϵ

m

(n−r
r

)
.

There exists ϵ > 0 satisfying this inequality if and only if

r <
mn

m+n
.

This gives the desired vanishing of det(L ′) and completes the second proof of
Waldschmidt’s theorem.

5D. Masser’s theorem. We conclude this section by proving Masser’s theorem,
stated in Theorem 5.5 above. This is a purely algebrogeometric statement that does
not involve the logarithm or exponential functions. In particular, we work over an
arbitrary field k of characteristic 0. Recall the notation established in Section 5B.
We let the group X ⊂ (k∗)n act on the polynomial ring R = k[t1, . . . , tn] by

z · f = f (z1t1, z2t2, . . . , zntn).

Recall that the subgroup X is generated by elements x1, . . . , xm . If a ∈ Zm , we
write xa

=
∏m

i=1 xai
i ∈ X . For a prime ideal p ⊂ R, let

StabX (p) = {a ∈ Zm
| xa

· p = p}.

Before delving into the proof, it is instructive to consider the simplest case,
n =m =2. We let N >0 and suppose there exists P ∈ k[t1, t2] such that deg(P)< N
and P(x) = 0 for all x ∈ X (2N ). We want to show that either

(A) there is a nonzero a ∈ Z2 such that xa
= (1, 1) (this corresponds to m′

= 1 and
n′

= 2), or

(B) there exists a nonzero b ∈ Z2 such that zb
= zb1

1 zb2
2 = 1 for all z ∈ X (this

corresponds to m′
= 2 and n′

= 1).

We factor P into a product
∏

Pi of irreducibles of k[t1, t2]. We can assume that
none of the Pi are monomials, since monomials have no zeroes in (k∗)2. We will
first show that, if any Pi satisfies rank

(
StabX ((Pi ))

)
= 2, then we are in the second

case above. This follows from Lemma 5.9 below, but it is relatively easy to see
in this case explicitly. Indeed, if ta1

1 ta2
2 is a monomial occurring in Pi , then the

equation z Pi = λPi for z ∈ X and λ ∈ k∗ yields

za1
1 za2

2 = λ.

Letting t
a′

1
1 t

a′

2
2 be some other monomial occurring in Pi (recall we may assume that

Pi is not a monomial) we get a similar equation; dividing these two cancels λ, so
we obtain

zb1
1 zb2

2 = 1,
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where bi = ai − a′

i for i = 1, 2 are not both zero. If rank
(
StabX ((Pi ))

)
= 2, then

this holds for all z in a finite-index subgroup of X , so, replacing (b1, b2) by an
appropriate multiple, we are in case (B).

Therefore, we are left to consider the case where each irreducible factor Pi of P
satisfies rank

(
StabX ((Pi ))

)
≤ 1. In this case, we will show that there is a polynomial

of the form

Q =

k∑
i=1

ai (zi · P),

where ai ∈ Z and zi ∈ X (N ), such that P and Q are relatively prime. Let us first
explain why this completes the proof. Since P vanishes on X (2N ), each polynomial
z · P with z ∈ X (N ) vanishes on X (N ); hence, the polynomial Q vanishes on X (N ).
Therefore, both P and Q vanish on X (N ). The set X (N ) has size (N + 1)2 unless
we are in case (A) above. But deg Q ≤ deg P < N , and the polynomials are coprime,
so we would obtain a contradiction to Bézout’s theorem if these polynomials had
(N + 1)2 common zeroes. We must therefore be in case (A).

To see the existence of the polynomial Q, we first show that, for each irreducible
polynomial Pi , there exists zi such that z−1

i · Pi does not divide P , or, equivalently,
Pi does not divide zi · P . This is established by counting. Since rankX ((Pi )) ≤ 1,
there are at least N +1 distinct ideals among the set (z−1

· Pi ) as z ranges over X (N ).
See Lemma 5.12 below for a proof. But P has degree less than N , which is a
bound on the number of irreducible factors, so some z−1

· Pi must not be a factor
of P . With these zi in hand, the existence of the linear combination Q is an easy
inductive argument using the pigeonhole principle; see Lemma 5.13 below.

We now return to the general case. Recall that the height ht(p) of a prime ideal p
is the largest integer r such that there exists a chain of distinct prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pr = p.

Lemma 5.9. Let m= (t1 −1, . . . , tn −1). Let p⊂m be a prime of height n′ and let
A = StabX (p). There exists a subgroup B ⊂ Zn of rank ≥ n′ such that ⟨A, B⟩X = 1.

Proof. Let B = {y ∈ Zn
| ⟨A, y⟩X = 1}. Choose Z ⊂ Zn such that

Qn
= QB ⊕ QZ .

We want to show that s := rank(Z) ≤ n − n′. Let {z1, . . . , zs} be a basis for Z .
Write zi = (zi,1, . . . , zi,n).

For i = 1, . . . , s, let ui =
∏n

j=1 t zi, j
j ∈ R′

= k[t±1
1 , . . . , t±1

n ]. Since

trdk Frac(R′/pR′) = n − n′,
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if s > n − n′ then there exists a nonzero polynomial Q with coefficients in k such
that Q(u1, . . . , us) ∈ pR′. Suppose this is the case, and write Q(u1, . . . , us) as a
polynomial Q′(t1, . . . , tn) ∈ pR′.

For any a ∈ A, we have xa
· Q′

∈ pR′, so

Q′(xat) ∈ pR′
⊂ mR′

=⇒ Q′(xa) = 0 =⇒ Q(⟨a, z1⟩X , . . . , ⟨a, zs⟩X ) = 0.

Fix a and apply this with a replaced by da, as d = 0, 1, . . . . Using the Vandermonde
trick from Baker’s theorem, we find that some Z-linear combination of the zi is
orthogonal to a. More precisely, we have ⟨a, w⟩X = 1 for some

w ∈ S =

{ s∑
i=1

wi zi ̸= 0
∣∣∣ |wi | ≤ deg(Q)

}
.

Therefore,
A =

⋃
w∈S

w⊥.

But A is a finitely generated free abelian group and cannot be written as a finite
union of proper subgroups. Therefore, there exists w ∈ S such that ⟨A, w⟩ = 1. But
then w ∈ B, contradicting w ∈ Z . Therefore, s ≤ n − n′, as desired. □

Given Lemma 5.9, our task now is to show the existence of a prime ideal p with
height n′ such that rank(StabX (p)) = m′, where m′/m +n′/n > 1. This is provided
by the following theorem:

Theorem 5.10. Let N > 0 and suppose there exists

P ∈ k[t1, . . . , tn]

such that deg(P) < (N/n)m/n and P(x) = 0 for all x ∈ X (N ). Then there exists a
prime ideal p ⊂ m of height n′ such that

rank(StabX (p)) = m′, where f rm′/m +
n′

n
> 1.

Lemma 5.9 and Theorem 5.10 combine to give Theorem 5.5. We will prove the
contrapositive of Theorem 5.10. For each 1 ≤ n′

≤ n, let m′
= m′

n′ be the maximal
rank of StabX (p) as p ranges over the primes contained in m with height equal
to n′. If any m′

= m, then m′/m +n′/n = 1+n′/n > 1, so we are done. Therefore,
assume that every m′ < m and define

ηn′ =
n′

m − m′
.

Note that
ηn′ >

n
m

⇐⇒
m′

m
+

n′

n
> 1. (41)

Theorem 5.10 will arise as a corollary of the following statement:
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Theorem 5.11. Let f ∈ R have degree D and let

N = Dη1 + Dη2 + · · · + Dηn .

There exists z ∈ X (N ) such that f (z) ̸= 0.

Theorem 5.11 implies Theorem 5.10. Indeed, if each ηn′ for 1 ≤ n′
≤ n satisfies

ηn′ ≤ n/m, then Theorem 5.11 implies that there exists z ∈ X (n deg(P)n/m) such
that P(z) ̸= 0. But, by assumption, n deg(P)n/m < N , yielding a contradiction to
the assumption P(z) = 0 for all z ∈ X (N ). Therefore, some ηn′ is larger than n/m,
giving the desired result by (41).

The proof of Theorem 5.11 requires significant commutative algebra. We first
establish some notation. Let

M =

⋃
z∈X (N )

z ·m, SM = R −M.

The set SM is multiplicatively closed. For an ideal a ⊂ R, define

a∗
= (S−1

M a) ∩ R ⊃ a.

Note that, for a prime ideal p⊂ R, we have p∗
= p if and only if p⊂ z ·m for some

z ∈ X , and p∗
= R otherwise. Indeed, if p∗

̸= p, then there exists t/s ∈ (S−1
M p)∩ R

such that t/s /∈ p. Write t/s = g ∈ R with g /∈ p. Since t = gs ∈ p and p is prime,
this implies that s ∈ p. Since s ∈ SM, we conclude that p ̸⊂M, and hence p ̸⊂ z ·m

for any z ∈ X (N ). Furthermore, in this case, we have s/s = 1 ∈ p∗, so p∗
= R. Now,

all of these steps are clearly reversible, except possibly “p ̸⊂M implies p ̸⊂ z ·m for
all z ∈ X (N )”. The inverse (equivalently, converse) of this statement reads “p ⊂ M

implies p⊂ z ·m for some z ∈ X (N )”. This is precisely the prime avoidance lemma.
This completes the proof of our claim about p∗.

We next recall some definitions from commutative algebra. An associated prime
of an ideal a ⊂ R is a prime ideal p such that there exists an R-module injection
R/p ↪→ R/a. (The associated primes play the role of the irreducible factors in our
simplified proof for n = m = 2.) An ideal a ⊂ R is called unmixed of height r if all
its associated prime ideals have height r .

Next we recall the definitions of dimension and degree of an ideal of R and some
of the basic properties of these functions. Let R0 = k[t0, . . . , tn]. For f ∈ R, let
f0 ∈ R0 denote the homogenization of f , defined by padding each monomial of f

with the correct power of t0 to obtain a homogeneous polynomial of degree deg( f ).
For an ideal a ⊂ R, let a0 denote the homogeneous ideal generated by f0 for f ∈ a.
Then R0/a0 is a graded R0-module.

There is a polynomial

Ha(t) = ad td
+ · · · + a0 ∈ Q[x],
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called the Hilbert polynomial of a, such that

Ha(i) = dimk(i-th graded piece of R0/a0)

for i sufficiently large. We define the dimension and degree of a, respectively, by

d(a) = d, ℓ(a) := ℓ̃(R0/a0) := ad · d!.

These are both integers. They satisfy the following properties:

• ℓ(( f )) is the degree of f in the usual sense.

• If a ⊂ b and ht(a) = ht(b), then ℓ(a) ≥ ℓ(b).

• If a and b are unmixed of height r , then so is a∩ b, and

ℓ(a∩ b) ≤ ℓ(a) + ℓ(b).

Note that from this it follows that, if a is unmixed, then the number of associated
primes of a is ≤ l(a). To see this, we note that there is a primary decomposition
a =

⋂r
i=1 qi , where {

√
qi } is the set of associated primes.

We can now begin the proof of Theorem 5.11. Let f ∈ R have degree D and let

Nr = Dη1 + · · · + Dηr−1 for 1 ≤ r ≤ n + 1.

We will inductively construct fr , a Z-linear combination of elements in X (Nr ) · f
such that ar = ( f1, . . . , fr ) satisfies the following: either a∗

r = R, or a∗
r is unmixed

of height r and degree at most Dr .
This will give the theorem: for r = n +1, a∗

r cannot have height n +1, so a∗
r = R,

which implies ar ̸⊂ M. In particular, fi /∈ m for some i , so, if fi =
∑

d j (z j · f )

with d j ∈ Z and z j ∈ X (Nn+1), then f (z j ) ̸= 0 for some z j , as desired.

Base case: Take f1 = f and a1 = ( f ). Then a∗

1 = ( f ∗), where f ∗ is the quotient
of f by any irreducible factors not lying in M. If f ∗

̸= 1, then ( f ∗) is unmixed of
height 1 by Krull’s principal ideal theorem, and has degree ≤ D = deg( f ).

Inductive step: Suppose r ≥ 2 and that we have constructed f1, . . . , fr−1. If
a∗

r−1 = R, then we can take fr = f . We have a∗
r = R, and we are done. Therefore,

we suppose that a∗

r−1 is unmixed of height r − 1 and degree at most Dr−1. The
construction of fr is slightly elaborate in this case, so let us outline the steps:

(1) For any associated prime p of a∗

r−1, show by counting that there exists a ∈

Zm(Dηr−1) such that x−ap is not associated to a∗

r−1, i.e., that p is not associated
to xaa∗

r−1.

(2) Show that this implies there exists 1 ≤ i ≤ r − 1 such that xa fi /∈ p.

(3) Show that this implies there exists a Z-linear combination fr of these xa fi

that does not lie in any p associated to a∗

r−1.
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(4) Letting ar = (ar−1, fr ), show that a∗
r = R or a∗

r is unmixed of height r .

It is perhaps worth pointing out here that the fourth point above is precisely
the reason that associated primes appear in this proof — the key fact is that, if an
element fr does not lie in any prime associated to a∗

r−1, then the height of a∗
r =

(ar−1, fr )
∗ goes up by one (or a∗

r = R). Let us now carry out the four steps above:

(1) Let p be associated to a∗

r−1. Then p ⊂ M, so p ⊂ z · m for some z ∈ X , so
z−1

·p⊂m. By definition, rank(StabX (z−1
·p)) ≤ m′

r−1, whence rank(StabX (p)) ≤

m′

r−1.

Lemma 5.12. Let T be a positive integer. Let Zm(T ) denote the set of tuples
(a1, . . . , am) ∈ Zm with 0 ≤ ai ≤ T for each i . If H ⊂ Zm is a subgroup of rank h,
then the image of Zm(T ) in Zm/H has size at least (T + 1)m−h .

Before proving the lemma, we first note that it implies that the image of
Zm(Dηr−1) in Zm/ StabX (p) has size at least

(⌊Dηr−1⌋ + 1)m−m′

r−1 > (Dηr−1)m−m′

r−1 = Dr−1.

Now, the number of primes associated to a∗

r−1 is at most its degree ℓ(a∗

r−1) ≤ Dr−1.
Therefore, there exists a ∈ Zm(Dηr−1) such that x−ap is not an associated prime
of a∗

r−1. Equivalently, p is not an associated prime of xaa∗

r−1. This completes the
first step.

Proof of Lemma 5.12. Choose m − h elements of the canonical basis of Zm that
generate a subgroup B such that H ∩ B = {0}. Then the canonical map from Zm

to Zm/H is injective when restricted to B. The result follows since B ∩ Zm(T )

contains exactly (T + 1)m−h elements. □

(2) Since p and xaa∗

r−1 are unmixed of the same height r −1, but p is not associated
to xaa∗

r−1, it follows that xaa∗

r−1 ̸⊂ p. This implies xaar−1 ̸⊂ p since p∗
= p. Since

ar−1 = ( f1, . . . , fr−1),

this implies there exists 1 ≤ i ≤ r − 1 such that xa fi /∈ p.

(3) The third step follows from a general lemma:

Lemma 5.13. Let p1, . . . , ps be prime ideals of R and let

f1, . . . , fs ∈ R

such that fi /∈ pi . Then there exists a Z-linear combination of the fi that does not
lie in any pi .

Proof. Induction on s. In the base case s = 1, there is nothing to prove. For
s > 1, suppose that g is a Z-linear combination of f1, . . . , fs−1 that does not lie in
p1, . . . , ps−1. If g /∈ ps , then we can simply take g and we are done. So suppose
g ∈ ps .
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Consider all linear combinations fs + ag with a ∈ Z. For each a, consider the
set Sa ⊂ {p1, . . . , ps−1} consisting of the pi such that fs + ag ∈ pi . There are 2s−1

possible subsets Sa . By the pigeonhole principle, if we take a = 0, . . . , 2s−1, then
there must exist distinct a and ′ such that Sa = Sa′ . But, if fs +ag and fs +a′g ∈ pi

for 1 ≤ i ≤ s − 1, then (a − a′)g ∈ pi , whence g ∈ pi (since k has characteristic 0),
a contradiction. Therefore, fs + ag /∈ pi for i ≤ s − 1.

Also, fs /∈ ps but g ∈ ps implies fs + ag /∈ ps . Therefore, fs + ag is the desired
linear combination. □

We can now complete step (3): We conclude that there is a Z-linear combination
fr of the xa fi (where 1 ≤ i ≤ r − 1 and a ∈ Zm(Dηr−1)) such that fr does not lie
in any associated prime of a∗

r−1.

(4) The fourth step will follow from the following lemma:

Lemma 5.14. Let a ⊂ R be unmixed of height r − 1 and suppose f ∈ R is not
contained in any of the primes associated to a. Let b = a+ ( f ). Then either b = R
or b has height r . In the latter case, ℓ(b) ≤ ℓ(a) · deg f .

Proof. Let a = q1 ∩ · · · ∩ qm be a minimal primary decomposition and let pi be the
radical of qi . If pi + ( f ) = R for all i , then, for each i , there exists an element of
the form 1−g f ∈ pi , and hence an element of the form (1−g f ) j

∈ qi . The product
of these lies in a. This product is congruent to 1 modulo f , so 1 ∈ b = (a, f ).
Therefore, assume that there exists some p = pi such that p+ ( f ) ̸= R.

By Krull’s principal ideal theorem, the image b̄ of b in R/p has height 1. The
inverse image of any associated prime of b̄ ⊂ R/p in R is a prime of height
(r − 1)+ 1 = r . Therefore, the height of b is at most r and, since b ⊃ a, the height
is at least r − 1.

But, if the height of b is r −1, then it has some associated prime p′ of height r −1.
But p′

⊃ b⊃ a. As a is unmixed of height r −1, this implies that p′ is an associated
prime of a. But f ∈ p′ and we assumed f was not contained in any associated
primes of a. This is a contradiction, so we must have that the height of b is r .

To conclude, we note that (a+ ( f ))0 ⊃ a0 + ( f )0; hence,

ℓ(b) = ℓ̃(R0/b0) ≤ ℓ̃
(
R0/(a0 + ( f )0)

)
= ℓ̃(R0/a0) · deg( f ) = ℓ(a) · deg( f ).

The second-to-last equality requires explanation. Firstly, f0 is not contained in any
of the associated primes of a0 since f is not contained in any of the associated primes
of a. This implies that multiplication by f0 is injective on R0/a0. This multiplication
map has degree equal to deg( f ) and cokernel equal to R0/(a0 + ( f0)), whence

Ha0+( f0)(t + deg( f )) = Ha0(t + deg( f )) − Ha0(t).

This yields ℓ̃
(
R0/(a0 + ( f )0)

)
= ℓ̃(R0/a0) · deg( f ), as desired. □
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We can now complete step (4). We have ar = ar−1 + ( fr ). Let b = a∗

r−1 + ( fr ).
Then a∗

r ⊃ b, and Lemma 5.14 implies that either b = R or b has height r and
ℓ(b) ≤ Dr−1

· D = Dr .
If b = R then of course a∗

r = R, so assume the latter case holds. Let p be
an associated prime of a∗

r . Then ht(p) ≥ ht(a∗
r ) ≥ r . We want to show equality.

We know p ⊂ m′, where m′
= zm for some z ∈ X (N ). We can work in the

localization Rm′ , which is a regular local ring. The ideal ar Rm′ is generated by r
elements, so Krull’s height theorem implies it has height at most r ; hence, it has
height exactly r . Therefore it is unmixed of height r and hence the same is true of
the associated prime p.

Finally, a∗
r ⊃ b and both are unmixed of height r so ℓ(a∗

r ) ≤ ℓ(b) ≤ Dr . This
completes the proof of step (4), and of Theorem 5.11.

6. The matrix coefficient conjecture

Both the assumption and the conclusion of the Waldschmidt–Masser theorem are
quite strong. For instance, in the case of a square matrix of dimension n with
entries in L or Lp, one assumes that the rank of the matrix is less than 1

2 n and one
concludes that, after a rational change of basis on both sides, one can arrange a
large block of zeroes, precisely a block of dimension m′

× n′, where m′
+ n′ > n.

We would like a statement that is more sensitive, and gives a “rational” condition
whenever the rank is not full. Such a statement is necessary if one wants to prove
Leopoldt’s conjecture, rather than the partial result given in Corollary 5.3.

To this end, we have formulated with Mahesh Kakde the following conjecture.
The name matrix coefficient conjecture is inspired by the theory of automorphic
representations, where expressions of the form wt Mv are called matrix coefficients.

Conjecture 6.1 (Dasgupta and Kakde). Let M be a square matrix of dimension n
with entries in L or Lp. If det(M) = 0, then there exist nonzero vectors w, v ∈ Qn

such that wt Mv = 0.

Despite its simplicity, Conjecture 6.1 remains quite deep: in the case n = 2, it is
easily seen to be equivalent to the four exponentials conjecture. We have proven
the following about the matrix coefficient conjecture:

• Conjecture 6.1 is implied by the structural rank conjecture.

• The version of Conjecture 6.1 over Lp implies both Leopoldt’s conjecture and
the Gross–Kuz’min conjecture.

We have also developed a strategy to study Conjecture 6.1 using auxiliary poly-
nomials, but unfortunately the construction of the necessary polynomials remains a
mystery. Our hope is that Conjecture 6.1 may be more tractable than the structural
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rank conjecture. We will prove the results stated above and explore Conjecture 6.1
further in forthcoming work.
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