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The Kelley–Meka bounds for sets free of three-term
arithmetic progressions

Thomas F. Bloom and Olof Sisask

We give a self-contained exposition of the recent remarkable result of Kelley and
Meka: if A ⊆ {1, . . . , N } has no nontrivial three-term arithmetic progressions
then |A| ≤ exp(−c(log N )1/12)N , where c > 0 is a constant.

Although our proof is identical to that of Kelley and Meka in all of the main
ideas, we also incorporate some minor simplifications relating to Bohr sets. This
eases some of the technical difficulties tackled by Kelley and Meka and widens
the scope of their method. As a consequence, we improve the lower bounds
for the problem of finding long arithmetic progressions in A + A + A, where
A ⊆ {1, . . . , N }.

How large can a subset of {1, . . . , N } be without containing a nontrivial three-
term arithmetic progression {a, a +d, a + 2d}? (Nontrivial here means that d ̸= 0.)
This seemingly innocuous question, asked by Erdős and Turán [1936], has led to
a wealth of interesting mathematics, and has become one of the central questions
in additive combinatorics. A large part of the reason for this is that the tools and
techniques that have been developed to tackle it, starting with the argument of
Roth [1953], have turned out to be very influential, not only in dealing with other
problems in additive number theory, but also in motivating the development of tools
in other areas of mathematics — particularly in harmonic analysis.

This note gives an exposition of a recent remarkable breakthrough result of
Kelley and Meka [2023] concerning this question: they prove a very strong upper
bound for the maximal size of sets free of three-term progressions, far smaller than
any previously available.

Let A ⊆ {1, . . . , N } be a set which does not contain any (nontrivial) three-term
arithmetic progressions. Even establishing that |A|=o(N ) is a difficult problem, this
being Roth’s landmark result [1953]. Since Roth’s work there has been a sequence
of quantitative improvements to the upper bound, all of the form |A| ≤ N/(log N )C

for some constant C > 0, culminating in recent work of the authors [Bloom and
Sisask 2020], who showed that C = 1 + c is permissible, where c > 0 is some tiny
constant (we refer to the introduction of [loc. cit.] for further history).
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Kelley and Meka’s new upper bound is of a whole new order of magnitude.

Theorem 1 (Kelley–Meka). If A ⊆ {1, . . . , N } contains no nontrivial three-term
arithmetic progressions, then

|A| ≤
N

exp(c(log N )1/12)

for some absolute constant c > 0.

The Kelley–Meka bound is a huge leap forward, and tantalisingly close to the
best possible such bound. Indeed, we know that there are subsets of {1, . . . , N }

of size at least exp(−c(log N )1/2)N , where c > 0 is some universal constant, that
contain no nontrivial three-term progressions. This was first proved by Behrend
[1946] using a beautiful construction that uses lattice points on high-dimensional
spheres; small improvements have also been established by Elkin [2011] and Green
and Wolf [2010]. Getting anywhere near Behrend-style bounds for this problem
has been a long-standing goal in the area, and the argument of Kelley and Meka
achieves this in a beautiful and elegant way.

Our reasons for writing this note are:

(1) To explain the Kelley–Meka approach using terminology and a perspective
perhaps more familiar to researchers in additive combinatorics.

(2) To provide some minor technical refinements which allow for a proof of the
full Theorem 1 which involves only “classical” Bohr set techniques, rather
than the ad hoc method employed in [Kelley and Meka 2023] (in particular we
answer [loc. cit., Question 6.2] of whether such an approach is possible in the
affirmative). This widens the scope of potential applications over the integers,
and allows for integer analogues of the other main results in [loc. cit.].

It must be made clear, however, that our sole contribution is at the technical level,
allowing the Bohr set machinery to run a little more smoothly; all of the main ideas
are the same as in [loc. cit.].

The finite field case. As usual in this area, a simpler model case is provided by
replacing {1, . . . , N } with the vector space Fn

q . We will present Kelley and Meka’s
ideas in this model setting before the general case, since the former is technically
much simpler, while still containing all of the important new ideas. Kelley and
Meka’s argument in Fn

q establishes the following.

Theorem 2 (Kelley–Meka). If q is an odd prime and A ⊆ Fn
q has no nontrivial

three-term progressions, then |A| ≤ qn−cn1/9
for some constant c > 0.

The utility of Theorem 2 is as a demonstration of the proof techniques, since
for the result itself a stronger bound of |A| ≤ qn−cn is available via the polynomial
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method, as shown by Ellenberg and Gijswijt [2017]. Unfortunately, however, there is
no known analogue of the polynomial method for the integer problem, so achieving
strong bounds for the integer problem via this method is out of reach. Kelley
and Meka’s proof of Theorem 2 uses no polynomial methods, and instead uses
techniques from probability and Fourier analysis, which can be generalised (using
classical Bohr set machinery) to the integer setting.

After presenting the Kelley–Meka argument for Fn
q we will generalise this,

using the language of Bohr sets, to prove Theorem 1. Kelley and Meka take a
different, more ad hoc route, iterating over high-dimensional progressions. This is
an ingenious alternative, that may itself have further applications, but our aim here
is to show that more classical existing techniques also suffice. As a consequence,
we can also establish the following integer analogue of [Kelley and Meka 2023,
Corollary 1.12], which finds large subspaces in A + A + A for A ⊆ Fn

q .

Theorem 3. If A ⊆ {1, . . . , N } has size αN , then A+ A+ A contains an arithmetic
progression of length

≥ exp(−C log(2/α)3)N c/ log(2/α)9
,

where C, c > 0 are constants.

For comparison, the previously best bound known was Nα1+o(1)

, originally due to
Sanders [2008]. A construction due to Freiman, Halberstam, and Ruzsa [Freiman
et al. 1992] shows that no exponent better than c/ log(2/α) is possible.

Kelley and Meka deduce the above bounds for sets without three-term arithmetic
progressions, and more besides, from a more general type of structure result. This
says, roughly speaking, that for any reasonably large set A inside a finite abelian
group there exists some structured set V (e.g., an affine subspace in the Fn

q case)
such that A restricted to V is very “regular” in its additive behaviour — that is, for
“most” x the number of solutions to x = a + b with a, b ∈ A ∩ V is very close to
the average number of solutions.

We will first state a precise version of this structural result for Fn
q . It is convenient

to introduce the notion of a normalised indicator function: if A ⊆ G is nonempty
with size |A| = α|G| then we write µA = α−11A. (For a set A, we write 1A for the
indicator function of A, taking the value 1 on A and 0 elsewhere.) If V ⊆ G and
1 ≤ p < ∞, then we denote the L p(V ) norm of f : G → C by

∥ f ∥p(µV ) =

(
1

|V |

∑
x∈V

| f (x)|p
)1/p

.

Note, for example, that our choice of normalisation is chosen to ensure ∥µA∥1(µG)=1.
We will measure the aforementioned regularity of A ⊆ V by bounding the L p(V )
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norm of the difference between the convolution

µA ∗ µA(x) =
1

|G|

∑
a,b∈G

1a+b=xµA(a)µA(b) =
|G|

|A|2

∑
a,b∈A

1a+b=x

and its expected value. An elementary calculation shows that, when V ≤ G is a
subgroup and A ⊆ V ,

∥µA ∗ µA∥1(µV ) =
|G|

|V |
= ∥µV ∥1(µV ).

That is, the average of µA ∗ µA over V agrees with the average of µV itself.
Note carefully that, even though we are taking a local L p norm restricted to V

we are keeping µA and ∗ normalised relative to the global group G. This is a little
confusing at first, but when we move from Fn

q to general groups it is much more
convenient to keep as many definitions as possible global, rather than relativising to
the local V , since in general (e.g., when we move from Fn

q to Z/NZ) the subgroup
V will be replaced with a set that is only approximately structured.

Theorem 4 (Kelley–Meka). Let ϵ > 0. There is a constant C = C(ϵ) > 0 such that
the following holds. Let G = Fn

q for some prime q and n ≥ 1. Let p ≥ 1. For any
nonempty A ⊆ G with |A| = α|G| there exists a subspace V ≤ G with

codim(V ) ≤ Cp4 log(2/α)5

and x ∈ G such that, if A′
= (A − x) ∩ V , then

(1) |A′
| ≥ (1 − ϵ)α|V | and

(2) ∥µA′ ∗ µA′ − µV ∥p(µV ) ≤ ϵ
|G|

|V |
.

The factor |G|

|V |
here can be thought of as a normalising/scaling factor, correspond-

ing to the fact that the convolution is defined over G rather than over V .
Intuitively, the second item of the conclusion says, as p → ∞, that µA′ ∗ µA′ =

(1 + O(ϵ))µV with high probability, as x ranges uniformly over V . Therefore,
when studying many problems involving the additive behaviour of A′, one can
replace A′ with a random subset of V of the same density. This is, of course, a
very powerful tool. The cost is that we have had to restrict our original set A to an
affine subspace x + V to find this regularity, and so having the codimension of V
be as small as possible is important for quantitative applications. For example, in
the deduction of Theorem 2 from this one may take p to be around log(2/α) and ϵ

a constant. The resulting codimension bound of C log(2/α)9 then corresponds to
the exponent 1

9 in Theorem 2.
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The general group case: Bohr sets. To prove Theorems 1 and 3 we shall use a
more general version of Theorem 4, applicable to any finite abelian group (which
in applications will be Z/NZ). One difficulty in even writing down the appropriate
statement is working out what should play the role of subspaces for general abelian
groups. This is not obvious; fortunately for us, however, this was already done by
Bourgain [1999], who showed that a suitable generalisation of a subspace, for these
purposes, is a Bohr set. A Bohr set is an approximate level set of some characters,
or more precisely, a set of the shape

B = Bohrν(0) = {x ∈ G : |1 − γ (x)| ≤ ν for all γ ∈ 0}

for some ν ≥ 0 (known as the width) and some 0 ⊆ Ĝ (known as the frequency set).
Often the most important thing about the frequency set is its size d = |0|, which is
called the rank of the Bohr set.

Background material on Bohr sets can be found in the Appendix, but the unfamil-
iar reader can for now think of the above Bohr set B of rank d = |0| as roughly like
the embedding in G of the lattice points in a d-dimensional box in Rd of side-length
proportional to ν. Writing Bρ for the same Bohr set but with the “width” ν replaced
by ρ · ν, one then has the approximate closure property that B + Bρ ≈ B provided
ρ is small — in particular, B + Bρ is not much larger than B provided ρ is small
compared to 1/d. It turns out that this approximate additive closure property of
Bohr sets of rank d can, for the purposes of this paper, be used in place of the exact
rigid structure provided by subspaces of codimension d in Fn

q (which are indeed
Bohr sets themselves, of rank d and width ν = 0).

Since Bohr sets only enjoy an approximate closure property, statements involving
them necessarily require more technical conditions and quantitative overhead. This
is why the use of the finite field model of Fn

q is invaluable in this area: an idea can
be tested with subspaces in a relatively clean way, and only once the idea has been
proven to have real quantitative strength does the work of translating the argument
to work over general Bohr sets need to begin.

The following is the generalisation of Theorem 4 required for our applications.
Kelley and Meka did not prove such a statement, but speculated that this should be
possible in [Kelley and Meka 2023, Footnote 9].

The reader should compare the statement to Theorem 4, and at first reading may
wish to pretend that B = B ′

= Bρ is the same subspace V ≤ Fn
q . For comparison to

the conclusion of Theorem 4 it may help to note that, when B is a subspace and
A′

⊆ B, then

µB ∗ µB = µB = µA′ ∗ µB,

and so

(µA′ − µB) ∗ (µA′ − µB) = µA′ ∗ µA′ − µB .
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Theorem 5. There is a constant c > 0 such that the following holds. Let δ, ϵ ∈ (0, 1),
let p ≥ 1 and let k be a positive integer such that (k, |G|) = 1. There is a constant
C = C(ϵ, δ, k) > 0 such that the following holds.

For any finite abelian group G and any subset A ⊆ G with |A| = α|G| there
exists a regular Bohr set B with

rk(B) ≤ Cp4 log(2/α)5

and
|B| ≥ exp(−Cp5 log(2p/α) log(2/α)6)|G|

and A′
⊆ (A − x) ∩ B for some x ∈ G such that

(1) |A′
| ≥ (1 − ϵ)α|B|,

(2) |A′
∩ B ′

| ≥ (1 − ϵ)α|B ′
|, where B ′

= Bρ is a regular Bohr set with ρ ∈( 1
2 , 1

)
· cδα/dk, and

(3) ∥(µA′ − µB) ∗ (µA′ − µB)∥p(µk·B′ ) ≤ ϵ
|G|

|B|
.

In other words, for any dense set A, we can find a low-rank Bohr set B such that
the restriction of (a translate of) A to B has almost the same relative density and
has its convolution extremely balanced: it is close to its average, as measured in
an L p-sense over another large Bohr set. This roughly means that, when studying
additive problems involving this restriction, we can replace A by a random set
of the same density. Part (2) of the conclusion is there for somewhat technical
reasons: since we need to work with both the Bohr set B and a narrowed copy Bρ ,
as described above, we want to know that A′ has large density on Bρ as well as
on B.

To give an idea of the parameters: to deduce Theorem 1, we shall take ϵ and
δ some small constants, k = 2, and p ≍ log(2/α). (The dependence on ϵ, δ, k is
not hard to track explicitly, but is a distraction for the present applications.) An
identical proof gives a statement with the measure µk·B ′ in part (3) replaced by
µk·B ′+t for any t ∈ B, or indeed µB or µB ∗µB , the latter two of which may appear
more natural. These are, however, slightly weaker, and certainly for the application
to three-term arithmetic progressions it is important that the measure over which
the L p norm is taken is supported on some suitably narrowed copy of B.

In Section 1 we provide an informal overview of the main steps of the argument.
In Section 2 we prove what are, in our opinion, the most important steps of the
argument in sufficient generality for the results over both Fn

q and {1, . . . , N }. In
Section 3 we make the overview more precise and provide full proofs for the Fn

q
case. Finally, in Sections 4 and 5 we show how this argument can be directly
adapted for the integers using Bohr sets. We will proceed by proving Theorem 5
first and then deducing Theorems 1 and 3.
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Improvements. Although Kelley and Meka’s breakthrough is close to the best
possible bound, there is still a gap between the exponent 1

12 of Theorem 1 and the
exponent 1

2 in the Behrend example, and it is natural to ask whether further progress
is possible. Indeed, a small modification of the method as presented in this paper
allows for a slight improvement: the 1

12 of Theorem 1 can be replaced by 1
9 with a

relatively clean argument (the only modification required is to the almost-periodicity
part). A further tedious lengthy technical optimisation allows for an exponent of 5

41 .
Since the focus of this paper is an exposition of the method and results of Kelley
and Meka, we will detail these improvements in a separate forthcoming note. The
same modification leads to an improvement of the exponent in Theorem 2 from 1

9
to 1

7 , and an improvement of the exponent in Theorem 3 from 9 to 7.
We believe that an exponent of 1

7 (in the statement of Theorem 1) is the natural
limit of these methods, in that achieving anything better will require significant
new ideas. Of course, the Behrend exponent of 1

2 would be the final target, but
this seems quite far out of reach still; indeed, an exponent of 1

3 (or perhaps even 1
4 )

seems to be the limit of any argument that uses any sort of “density increment”
argument with Bohr sets (whether using Kelley–Meka ideas or a more traditional
Fourier analytic approach).

Notational conventions. Logarithmic factors will appear often, and so in this paper
we use the convenient abbreviation L(α) to denote log(2/α). (The 2 here is just a
convenient device to make sure that L(α) ≥

1
2 , say, whenever α ∈ (0, 1].)

In statements which refer to G, this can be taken to be any finite abelian group
(although for the applications this will always be either Fn

q or Z/NZ). We use the
normalised counting measure on G, so that

⟨ f, g⟩ = E
x∈G

f (x)g(x) and ∥ f ∥p =

(
E

x∈G
| f (x)|p

)1/p

for 1 ≤ p < ∞,

where Ex∈G =
1

|G|

∑
x∈G . For any f, g : G → C we define the convolution and the

difference convolution1 as

f ∗ g(x) = E
y

f (y)g(x − y) and f ◦ g(x) = E
y

f (x + y)g(y).

Note the useful adjoint property

⟨ f, g ∗ h⟩ = ⟨ f ◦ h, g⟩.

We furthermore write f (p) for the p-fold convolution f (p)
= f ∗ f ∗ · · · ∗ f , where

there are p copies of f .

1We caution that, while convolution is commutative and associative, difference convolution is in
general neither.
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For some purposes it is conceptually cleaner to work relative to other nonnegative
functions on G, so that if µ : G → R≥0 has ∥µ∥1 = 1 we write

⟨ f, g⟩µ = E
x∈G

µ(x) f (x)g(x) and ∥ f ∥p(µ) =

(
E

x∈G
µ(x)| f (x)|p

)1/p

for 1 ≤ p < ∞. (The special case above is the case when µ ≡ 1.)
We use the slight abuse of notation that if µ : G → R≥0 with ∥µ∥1 = 1, then

µ(A) = ∥1A∥1(µ) is the density of A relative to µ. Unless specified otherwise, µ

is the uniform measure on G. (So that, for example, µ(A) = α = |A|/|G| is the
density of A within G.) We write µA = α−11A for the normalised indicator function
of A (so that ∥µA∥1 = 1). We will sometimes speak of A ⊆ B with relative density
α = |A|/|B|.

The Fourier transform of f : G → R is f̂ : Ĝ → C defined for γ ∈ Ĝ as

f̂ (γ ) = E
x∈G

f (x)γ (x),

where Ĝ = {γ : G → C×
: γ a homomorphism} is the dual group of G. We

will also use convolution of functions f, g : Ĝ → C, defined as f ∗ g(γ ) =∑
χ∈Ĝ f (χ)g(γ − χ), and denote k-fold convolution again by f (k) for such func-

tions.2 We note the following elementary facts:

• f̂ ∗ g = f̂ · ĝ and f̂ ◦ f = | f̂ |
2 (so in particular the Fourier transform of f ◦ f

is a nonnegative function on Ĝ).

• Ex f (x)k
= f̂ ∗ · · · ∗ f̂ (0Ĝ), where the convolution is k-fold.

• If µ : G → R≥0 has ∥µ∥1 = 1, then the Fourier transform of µ − 1 is µ̂1 ̸=0Ĝ
.

Note that these three facts immediately imply that the Fourier transform of µA ◦

µA − 1 is nonnegative, that E(µA ◦ µA − 1)k
≥ 0 for any integer k, and (coupled

with the triangle inequality) that ∥µA ∗ µA − 1∥p ≤ ∥µA ◦ µA − 1∥p when p is an
even integer. Although easily seen via the Fourier transform, the latter two facts
also have purely “physical” proofs, as we will see later.

Finally, we use the Vinogradov notation X ≪ Y to mean X = O(Y ), that is, there
exists some constant C > 0 such that |X | ≤ CY . We write X ≍ Y to mean X ≪ Y
and Y ≪ X , and X = �(Y ) to mean Y = O(X). An expression like 1 +�(1) thus
means a quantity bounded below by an absolute constant strictly bigger than 1.
The appearance of parameters as subscripts indicates that the implied constant may
depend on these parameters (in some unspecified fashion).

2Note that we are using additive notation for the group operation on Ĝ.
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1. Sketch of the argument

In this section we provide a sketch of the Kelley–Meka proof of the finite field
model case, Theorem 2, along with some personal commentary and context. Kelley
and Meka also include some fascinating comparisons of this approach with earlier
work and speculations about it and alternative approaches, and we encourage the
reader to study Appendices A and B of [Kelley and Meka 2023] and consider the
interesting questions therein (although note that we answer their Question A.4 in
the affirmative below).

Let A ⊆ Fn
q be a set of density α and C ⊆ Fn

q a set of density γ . (Note that a
three-term arithmetic progression is a solution to x + y = 2z, and thus for their
study we will choose

C = 2 · A = {2a : a ∈ A},

in which case γ = α.) How many solutions to a1 + a2 = c with a1, a2 ∈ A and
c ∈ C do we expect? If A, C are random sets, then we expect ≈ α2γ q2n many such
solutions, which is to say

⟨µA ∗ µA, µC⟩ ≈ 1.

The Kelley–Meka approach begins with some constant discrepancy from this
expected count, say ⟨µA ∗ µA, µC⟩ ≤

1
2 , and shows that this leads to a large

density increment of A on some subspace V ≤ Fn
q with codimension O(L(α)O(1))

(that is, shows that there is such a subspace V and a translate A′ of A such that
µV (A′) ≥ (1 + �(1))α, meaning that A′ has significantly larger density in V than
A has in Fn

q). This is done using mostly physical-based methods, rather than the
Fourier-based methods that have dominated the study of three-term progressions
thus far.

Our presentation of the Kelley–Meka strategy breaks it down into five key steps.

Step 1 (Hölder lifting). If ⟨µA ∗ µA, µC⟩ ≤
1
2 , then ∥µA ◦ µA − 1∥p ≥

1
4 for some

p ≪ L(γ ).

This is essentially a one-line application of Hölder’s inequality:

1
2 ≤ |⟨µA ∗ µA − 1, µC⟩| ≤ ∥µA ∗ µA − 1∥p∥µC∥p/(p−1) ≤ 2∥µA ∗ µA − 1∥p

for sufficiently large p, since ∥µC∥p/(p−1) =γ −1/p, and noting that ∥µA∗µA−1∥p ≤

∥µA ◦ µA − 1∥p when p is an even integer. Although trivial, the passage from
few three-term arithmetic progressions to large L p norm of µA ◦ µA − 1 was
rarely used in previous work, most of which begins with the Fourier deduction that∑

γ ̸=0|µ̂A(γ )|2|µ̂C(γ )| ≫ 1.
This physical Hölder step was used (along with almost-periodicity) in [Bloom

and Sisask 2019] to achieve density bounds of α ≤ (log N )−1+o(1). Indeed, in a
sense the approach of [loc. cit.] corresponds to carrying out Steps 1, 4, and 5 of the
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present sketch. The advancement of [Bloom and Sisask 2020] past the logarithmic
density barrier couples this with delicate structural information on the Fourier side
(following seminal ideas of Bateman and Katz [2012]).

It is incredible that the following two steps, which are simple enough to prove
in only a couple of pages, perform far better quantitatively than this elaborate
Fourier-side approach.

Step 2 (unbalancing). For any f : G → R such that f̂ ≥ 0, if ∥ f ∥p ≥
1
4 , then

∥ f + 1∥p′ ≥ 1 +
1
8 for some p′

≪ p. In particular, if ∥µA ◦ µA − 1∥p ≥
1
4 , then

∥µA ◦ µA∥p′ ≥ 1 +
1
8 .

This step is essential to the success of the Kelley–Meka argument, and rests on
the fact that the Fourier transform of f is nonnegative. (Note that it is not true for
an arbitrary function.) While the spectral nonnegativity of µA ◦µA − 1 has played
a role in some arguments before (e.g., in the spectral boosting aspect of [Bloom
and Sisask 2020]), to our knowledge it has not before been so cleanly expressed,
and its potential had not been fully appreciated within additive combinatorics.

We remark that, as pointed out to the authors by Shkredov, an entirely physical
proof of this step is possible, with no mention of the Fourier transform at all, if we
replace the assumption f̂ ≥ 0 with f = g◦g for some function g : R → C (note that
this is indeed satisfied in our application since µA ◦µA − 1 = (µA − 1)◦ (µA − 1)).
We refer to the proof of Lemma 7 for details.

At this point we digress to note that, instead of following Steps 1 and 2 as
Kelley and Meka do, one could obtain the conclusion ∥µA ◦µA∥p ≥ 1 +�(1) for
some p ≪ L(γ ) from the assumption that ⟨µA ∗µA, µC⟩ ≤

1
2 using more classical

Fourier-based methods. (In particular this observation answers [Kelley and Meka
2023, Question A.4] in the affirmative.) By converting the inner product to Fourier
space and applying the triangle inequality we observe that

1
2 ≤

∑
λ ̸=0

|µ̂A(λ)|2|µ̂C(λ)|.

It follows that, for some choice of signs cλ ∈ C, we have

1 +
1
2 ≤

∑
λ

|µ̂A(λ)|2|µ̂C(λ)| = E
x∈C

∑
λ

cλ|µ̂A(λ)|2λ(−x).

Applying Hölder’s inequality to the left-hand side and using orthogonality of
characters yields, for any even integer p,

1 +
1
2 ≤ γ −1/p

( ∑
λ1,...,λp

cλ1 · · · cλp |µ̂A(λ1)|
2
· · · |µ̂A(λp)|

21λ1+···−λp=0

)1/p

.
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We can discard the signs cλ by the triangle inequality, and then by orthogonality
the sum here is in fact equal to ∥µA ◦ µA∥p, and we are done choosing p suitably
large. This sort of step has already played a major role in previous Fourier-based
approaches to Roth’s theorem, although generally with the µ̂A restricted to some
“large spectrum”, where it then yields information about the additive relations within
this large spectrum. A striking feature of the work of Kelley and Meka is that this
information is far more useful on the physical side.

We end our digression here and return to the sketch.

Step 3 (dependent random choice). If ∥µA◦µA∥p ≥1+
1
8 , then there are A1, A2 ⊆ A

of density at least αO(p) such that

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 −
1
32

where S =
{

x : µA ◦ µA(x) > 1 +
1
16

}
.

This is, in our opinion, the most important step (although of course every step is
necessary, and in particular the previous unbalancing step is crucial to obtaining
the information required for this step). In combination with the previous two
steps, we have now converted the original three variable deficiency information of
⟨µA∗µA, µC⟩≤

1
2 into four variable abundancy information ⟨µA1 ◦µA2, µA◦µA⟩≥

1 +�(1). This is very promising, since Schoen and the second author [Schoen and
Sisask 2016] have already shown that almost-periodicity can prove quasipolynomial
bounds (that is, of the same shape as the Kelley–Meka bound) for 4 variable
equations. Another indication of the strength of the conclusion obtained in Step 3
is that Sanders [2012b] has shown (also using almost-periodicity) that S contains a
large proportion of a large subspace with codimension O(L(α)O(1)).

The proof of this step, called sifting in [Kelley and Meka 2023], is completely
elementary, and uses dependent random choice — one takes Ai to be the intersection
of p randomly chosen translates of A. A simple expectation calculation combined
with the L p information then verifies that there must exist some choice of translates
which satisfy both the density conditions and the inner product condition.

Arguments of this kind have appeared before in additive combinatorics, dating
back in some form to Gowers’ proof [1998] of Szemerédi’s theorem. For example,
when p = 2 this method was used by Schoen [2015] to prove strong bounds for the
Balog–Szemerédi–Gowers theorem, and similar manipulations for larger p have
played an extensive role in work of Schoen and Shkredov; see for example [Schoen
and Shkredov 2013; Shkredov 2013]. A very similar statement also appears in work
of Sanders [2010, Lemma 1.9], itself a generalisation of an argument of Gowers
[1998, Lemma 11].

Despite this previous work, the true potential of this method (when coupled
with the powerful technique of almost-periodicity) in applications to the study
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of three-term progressions and related problems had been overlooked before the
breakthrough of Kelley and Meka.

Step 4 (almost periodicity). For any sets A1, A2, S ⊆ Fn
q , if A1, A2 have density at

least α, then there is a subspace V with codimension O(L(α)4) such that

|⟨µV ∗ µA1 ◦ µA2, 1S⟩ − ⟨µA1 ◦ µA2, 1S⟩| ≤
1

100 .

Almost-periodicity statements of this type have played an important role in
additive combinatorics since their introduction by Croot and the second author
[Croot and Sisask 2010], most notably in the work of Sanders achieving quasipolyno-
mial bounds for inverse sumset theorems [Sanders 2012b; 2013]. The conventional
wisdom was that, despite their success in inverse sumset problems and for translation
invariant equations in four or more variables (see [Schoen and Sisask 2016] and
the earlier [Schoen and Shkredov 2014] for six or more variables), they were not
able to achieve significant results for three-term arithmetic progressions. (Although
the argument of [Bloom and Sisask 2020] did make fundamental use of almost-
periodicity, most of the work in that paper was Fourier-analytic.) Kelley and Meka
have dispelled this illusion completely.

It should be noted, however, that there is no novelty in the actual form of almost-
periodicity used by Kelley and Meka — the new strength is a result of the context
in which they use it.

Step 5 (density increment). If ⟨µA ∗µA, µC⟩ ≤
1
2 , then there is an affine subspace

V of codimension O(L(α)4L(γ )4) on which A has density at least
(
1 +

1
100

)
α.

This is just a trivial combination of the previous 4 steps (noting that the density
increment condition can also be phrased as ∥µA ∗ µV ∥∞ ≥ 1 +

1
100 ). This density

increment condition can now be iteratively applied to eventually obtain a lower
bound for ⟨µA′ ∗ µA′, µC⟩ (with A′ now perhaps some subset of a translate of A).

For example, the deduction of Theorem 2 is routine with C = 2 · A. Indeed,
a density increment such as α 7→ (1 + �(1))α can occur at most O(L(α)) many
times, after which we must halt with many three-term arithmetic progressions found
in the intersection of A with some affine subspace, the codimension of which is
bounded above by O(L(α)9).

Alternatively, carrying through these steps with C being the complement of
A + A leads to the following.

Theorem 6 (Kelley–Meka). If A ⊆ Fn
q has density α and γ ∈ (0, 1], then there is

some affine subspace V ≤ Fn
q of codimension O(L(α)5L(γ )4) such that

|(A + A) ∩ V | ≥ (1 − γ )|V |.

For comparison, the best bound previously available, due to Sanders [2012b],
had codimension O(L(α)4γ −2). The latter is slightly better when γ is constant (as
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was the case of interest in [loc. cit.]) but much weaker when γ ≈ α, which is the
regime of interest for three-term arithmetic progressions.

2. The key new lemmas

In this section we prove general forms of Steps 2 and 3 that will be used for both
the Fn

q and integer case.

2.1. Unbalancing of spectrally nonnegative functions. The following precise form
of Step 2 will suffice for all our applications.

Lemma 7. Let ϵ ∈ (0, 1) and ν : G → R≥0 satisfy ∥ν∥1 = 1 and ν̂ ≥ 0. Let
f : G → R be such that f̂ ≥ 0. (Or, alternatively, assume that f = g ◦ g and
ν = h ◦ h for some g, h : G → C.)

If ∥ f ∥p(ν) ≥ ϵ for some p ≥ 1, then

∥ f + 1∥p′(ν) ≥ 1 +
1
2ϵ

for some p′
≪ϵ p.

We have left the dependence on ϵ unspecified since our applications only use
ϵ ≫ 1. The proof below delivers p′

≪ ϵ−1 log(ϵ−1)p. Kelley and Meka use a
different method (see [Kelley and Meka 2023, Appendix D]) which is more efficient,
giving p′

≪ ϵ−1 p, but requires use of an external (though simple) fact about the
binomial distribution.

Proof. We first establish the important fact that, for any integer k ≥ 1,

⟨ν, f k
⟩ ≥ 0. (1)

We will give two proofs of (1), depending on whether the Fourier assumption
f̂ , ν̂ ≥ 0 or the physical assumption f = g ◦ g and ν = h ◦ h is used. Given (1) no
further use of the Fourier transform is required, and the proofs converge.

The Fourier proof of (1), which is used by Kelley and Meka, is immediate from
Parseval’s identity:

⟨ν, f k
⟩ = ⟨̂ν, f̂ (k)

⟩,

where we recall that f (k)
= f ∗ f ∗ · · · ∗ f denotes the k-fold convolution, and the

right-hand side is nonnegative since f̂ , ν̂ ≥ 0.
We now present the alternative physical proof of (1), assuming f = g ◦ g and

ν = h ◦h. This argument was pointed out to the authors by Shkredov, who has made
extensive use of the following kind of manipulations; for example in [Shkredov
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2013]. We observe that

⟨ν, f k
⟩ = E

x
h ◦ h(x)g ◦ g(x)k

= E
y1,y2

h(y1)h(y2)

(
E
z

g(y1 + z)g(y2 + z)
)k

= E
z1,...,zk

E
y1,y2

h(y1)h(y2)g(y1 + z1) · · · g(y2 + zk)

= E
z1,...,zk

∣∣∣∣E
y

h(y)g(y + z1) · · · g(y + zk)

∣∣∣∣2

,

which is clearly nonnegative as each summand is.
We now show how (1) implies the conclusion. Without loss of generality we

can assume that p ≥ 5 is an odd integer. Using (1), since 2 max(x, 0) = x + |x | for
x ∈ R and f p−1

= | f |
p−1, we have

2⟨max( f, 0), f p−1
⟩ν = ⟨ν, f p

⟩ + ⟨| f |, f p−1
⟩ν ≥ ∥ f ∥

p
p(ν) ≥ ϵ p.

Therefore, if P ={x : f (x)≥0}, then ⟨1P , f p
⟩ν ≥

1
2ϵ p. Furthermore, if T =

{
x ∈ P :

f (x) ≥
3
4ϵ

}
, then ⟨1P\T , f p

⟩ν <
( 3

4ϵ
)p

≤
1
4ϵ p, and hence by the Cauchy–Schwarz

inequality
ν(T )1/2

∥ f ∥
p
2p(ν) ≥ ⟨1T , f p

⟩ν ≥
1
4ϵ p.

On the other hand, by the triangle inequality

∥ f ∥2p(ν) ≤ 1 + ∥ f + 1∥2p(ν) ≤ 3,

or else we are done, with p′
= 2p. Hence ν(T ) ≥ (ϵ/10)2p. It follows that, for any

p′
≥ 1,

∥ f + 1∥p′(ν) ≥ ⟨1T , | f + 1|
p′

⟩
1/p′

ν ≥
(
1 +

3
4ϵ

)
(ϵ/10)2p/p′

.

The desired bound now follows if we choose p′ a sufficiently large multiple (de-
pending on ϵ) of p. □

2.2. An application of dependent random choice. We now use dependent random
choice (or what Kelley and Meka call “sifting”) to prove a general form of Step 3.
This makes use of (a generalisation of) the fact that

∥1A ◦ 1A∥
p
p = E

s1,...,sp∈G
µ((A + s1) ∩ · · · ∩ (A + sp))

2

to convert L p-information about a convolution to information about the nested inter-
sections appearing in the right-hand side. This identity features extensively in some
works of Shkredov (see [Shkredov 2013] for example) and Schoen and Shkredov
[2014], and is already implicitly used in work of Sanders [2010, Lemma 1.9], but its
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strength and utility in the current context was far from apparent before the work of
Kelley and Meka. At a first reading of the following result the reader may wish to
take B1 = B2 = G, in which case µ = µB1 ◦ µB2 is just the usual uniform measure
on G.

Lemma 8. Let p ≥ 1 be an integer and ϵ, δ > 0. Let B1, B2 ⊆ G, and let µ =

µB1 ◦ µB2 . For any finite set A ⊆ G with density α, if

S = {x ∈ G : µA ◦ µA(x) > (1 − ϵ)∥µA ◦ µA∥p(µ)},

then there are A1 ⊆ B1 and A2 ⊆ B2 such that

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − δ

and

min
(

|A1|

|B1|
,
|A2|

|B2|

)
≫ (α∥µA ◦ µA∥p(µ))

2p+Oϵ,δ(1).

Again, since we will apply this only in the case ϵ, δ ≫ 1, we are not concerned
with the behaviour of the Oϵ,δ(1) term, although we record here that the proof (which
is identical to that in [Kelley and Meka 2023]) in fact allows for O(ϵ−1 log(δ−1)).
We furthermore note that Ai will take the form Bi ∩ (A + s1) ∩ · · · ∩ (A + sp) for
some randomly chosen shifts s j ∈ G.

We shall prove Lemma 8 after Lemma 10 below, but first we note the following
immediate special case, which is all we use when studying Fn

q .

Corollary 9. Let p ≥ 1 be an integer and ϵ > 0. If A ⊆ G is such that ∥µA ◦µA∥p ≥

1 + ϵ and S = {x : µA ◦ µA(x) > 1 + ϵ/2}, then there are A1, A2 ⊆ G, both of
density

≫ α2p+Oϵ(1),

such that
⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/8.

We encode the dependent random choice argument underpinning Lemma 8 as
the following general lemma.

Lemma 10. Let p ≥ 2 be an even integer. Let B1, B2 ⊆ G and µ = µB1 ◦ µB2 . For
any finite set A ⊆ G with density α and function f : G → R≥0 there exist A1 ⊆ B1

and A2 ⊆ B2 such that

⟨µA1 ◦ µA2, f ⟩ ≤ 2
⟨(µA ◦ µA)p, f ⟩µ

∥µA ◦ µA∥
p
p(µ)

and

min
(

|A1|

|B1|
,
|A2|

|B2|

)
≥

1
4α2p

∥µA ◦ µA∥
2p
p(µ).
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Proof. For s ∈ G p let A1(s) = B1 ∩ (A + s1) ∩ · · · ∩ (A + sp), and similarly for
A2(s). Note that

⟨(µA ◦ µA)p, f ⟩µ = E
b1∈B1
b2∈B2

µA ◦ µA(b1 − b2)
p f (b1 − b2)

= E
b1∈B1
b2∈B2

(
α−2 E

t∈G
1A+t(b1)1A+t(b2)

)p

f (b1 − b2)

= α−2p E
b1∈B1
b2∈B2

E
s∈G p

1A1(s)(b1)1A2(s)(b2) f (b1 − b2)

=
α−2p

|G|
2

|B1||B2| E
s∈G p

⟨1A1(s) ◦ 1A2(s), f ⟩.

In particular, applying this with f ≡ 1 we see that, if αi (s) = |Ai (s)|/|G|, then

∥µA ◦ µA∥
p
p(µ) =

α−2p
|G|

2

|B1||B2| E
s

α1(s)α2(s)

and
⟨(µA ◦ µA)p, f ⟩µ

∥µA ◦ µA∥
p
p(µ)

=
Es⟨1A1(s) ◦ 1A2(s), f ⟩

Es α1(s)α2(s)
= η,

say. Note that, if

M =
1
2α p(|B1||B2|/|G|

2)1/2
∥µA ◦ µA∥

p
p(µ),

then

E
s

1α1(s)α2(s)<M2α1(s)α2(s) < M
(
E
s

E
x∈G

1A1(s)(x)

)1/2(
E
s

E
x∈G

1A2(s)(x)

)1/2

= Mα p(|B1||B2|/|G|
2)1/2

=
1
2 E

s
α1(s)α2(s)

and so

E
s
⟨1A1(s) ◦ 1A2(s), f ⟩ = ηEα1(s)α2(s) < 2ηE

s
α1(s)α2(s)1α1(s)α2(s)≥M2 .

In particular there must exist some s such that

⟨1A1(s) ◦ 1A2(s), f ⟩ < 2ηα1(s)α2(s)1α1(s)α2(s)≥M2,

and the claim follows (note that the left-hand side is trivially ≥ 0 and hence such
an s must satisfy α1(s)α2(s) ≥ M2). □
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The deduction of Lemma 8 is immediate from Lemma 10 with f = 1G\S . Indeed,
by nesting of L p norms we can assume that p is sufficiently large in terms of ϵ

and δ (this is where the Oϵ,δ(1) term arises in the exponent), and that p is an even
integer. It then suffices to note that

⟨µA1 ◦ µA2, 1S⟩ = 1 − ⟨µA1 ◦ µA2, 1G\S⟩

and by definition of S we have

⟨(µA ◦ µA)p, 1G\S⟩

∥µA ◦ µA∥
p
p

≤ (1 − ϵ)p

which is ≤ δ/2 if p is large enough.

3. The finite field case

In this section we prove Theorem 2, following the sketch of Section 1. Theorem 4
can proved in a very similar way. The following straightforward lemma is a form
of Step 1.

Lemma 11. Let ϵ > 0. If A, C ⊆ G, where C has density at least γ , then either

(1) |⟨µA ∗ µA, µC⟩ − 1| ≤ ϵ or

(2) ∥µA ◦ µA − 1∥p ≥ ϵ/2 for some p ≪ L(γ ).

Proof. If the first alternative fails, then by Hölder’s inequality, for any p ≥ 1

ϵ < |⟨µA ∗ µA − 1, µC⟩| ≤ ∥µA ∗ µA − 1∥pγ
−1/p.

In particular, if we choose p = 2⌈KL(γ )⌉ for some large constant K , then we
deduce that

∥µA ∗ µA − 1∥p ≥
1
2ϵ.

It remains to note that, assuming without loss of generality that p is an even integer,

∥µA ∗ µA − 1∥
p
p = (µ̂A

21̸=0Ĝ
)(p)(0Ĝ) ≤ (|µ̂A|

21̸=0Ĝ
)(p)(0Ĝ) = ∥µA ◦ µA − 1∥

p
p.

Again, although we have used a one-line Fourier proof here, this can also be seen
using an entirely physical argument, which we sketch here. Note that µA ∗µA −1 =

(µA − 1) ∗ (µA − 1) and similarly for µA ◦ µA − 1. It suffices therefore to show
that, for any function f : G → C, we have

∥ f ∗ f ∥
p
p ≤ ∥ f ◦ f ∥

p
p.
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We can write the left-hand side as

∥ f ∗ f ∥
p
p = E

x,y

(
E
u

f (x + u) f (y − u)

)p

= E
u1,...,u p

(
E
x

f (x + u1) · · · f (x + u p)

)(
E
y

f (y − u1) · · · f (y − u p)

)
and the right-hand side as

∥ f ◦ f ∥
p
p = E

x,y

(
E
u

f (x + u) f (y + u)

)p

= E
u1,...,u p

∣∣∣∣E
x

f (x + u1) · · · f (x + u p)

∣∣∣∣2

,

and the desired inequality now follows from the Cauchy–Schwarz inequality. □

Steps 2 and 3 have already been proved as Lemma 7 and Corollary 9. For Step 4
we can use the following almost-periodicity result, which is [Schoen and Sisask
2016, Theorem 3.2], as a black box.

Theorem 12 (almost-periodicity). If A1, A2, S ⊆ Fn
q are such that A1 and A2 both

have density at least α, then there is a subspace V of codimension

codim(V ) ≪ϵ L(α)4

such that
|⟨µV ∗ µA1 ∗ µA2, 1S⟩ − ⟨µA1 ∗ µA2, 1S⟩| ≤ ϵ.

Importantly, note that no assumption is made on S, and there is no dependency
on the density of S. We now complete the final step by combining everything
thus far into a single density increment statement, which suffices for Theorem 2 as
discussed in Section 1.

Proposition 13. Let ϵ ∈ (0, 1). If A, C ⊆ Fn
q , where C has density at least γ , then

either

(1) |⟨µA ∗ µA, µC⟩ − 1| ≤ ϵ or

(2) there is a subspace V of codimension

≪ϵ L(γ )4L(α)4

such that ∥1A ∗ µV ∥∞ ≥ (1 + �(ϵ))α.

Proof. By Lemma 11, if the first alternative fails, then ∥µA ◦ µA − 1∥p ≥ ϵ/2
for some p ≪ L(γ ). By Lemma 7 (applied to f = µA ◦ µA − 1) we deduce that
∥µA ◦ µA∥p ≥ 1 + ϵ/4 for some p ≪ϵ L(γ ). Hence, by Corollary 9, there are
A1, A2, both of density

≥ αOϵ(L(γ )),
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such that
⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/32,

where S = {x : µA ◦ µA(x) ≥ 1 + ϵ/8}. By Theorem 12 there is a subspace V of
the required codimension such that

⟨µV ∗ µA1 ◦ µA2, 1S⟩ ≥ 1 −
1

16ϵ.

By definition of S, it follows that

1 + �(ϵ) ≤ (1 + ϵ/8)(1 − ϵ/16)

≤ ⟨µV ∗ µA1 ◦ µA2, µA ◦ µA⟩

≤ ∥µV ∗ µA∥∞∥µA ∗ µA2 ◦ µA1∥1

= ∥µV ∗ 1A∥∞α−1,

and the proof is complete. □

4. The integer case

A useful strategy in additive combinatorics is to first prove a result of interest over
Fn

q , making use of the abundancy of subspaces, and then translate this to a result over
the integers, replacing various equalities with approximate equalities and subspaces
with Bohr sets.

Bohr sets of low rank are analogues of subspaces of low codimension, and have
played a central role in additive combinatorics since the work of Bourgain [1999],
with much of the theory further developed by Sanders [2011; 2012a]. We have
recalled the relevant definitions and properties in the Appendix.

In this section we will employ Steps 3, 4, and 5 of the Kelley–Meka approach,
performed relative to Bohr sets, to prove the following technical statement, whose
statement is convenient for the iterative proof. In the following section we will
show how it, together with unbalancing and the regularity of Bohr sets, implies
Theorem 5, and thence Theorems 1 and 3.

We apologise for the daunting appearance and technicality of the statements in
this and the next section; a certain overhead of notation and caveats is a sad fact of
life when working with Bohr sets. The reader should be reassured, however, that
all the essential ideas are as in the Fn

q case.
The approach taken here should be compared with that in [Kelley and Meka

2023, Section 8] — there Kelley and Meka also follow the Fn
q model, but instead

use mixed analogues over multidimensional progressions and Bohr sets, instead of
just Bohr sets as we do here. The two objects are, in a heuristic sense, identical,
but the need to pass between them adds some complexity to the argument of Kelley
and Meka.
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Theorem 14. There is a constant c>0 such that the following holds. Let ϵ,δ ∈ (0,1)

and p, k ≥ 1 be integers such that (k, |G|) = 1. For any A ⊆ G with density α there
is a regular Bohr set B with

d = rk(B) = Oϵ(L(α)5 p4) and |B| ≥ exp(−Oϵ,δ(L(α)6 p5L(α/p)))|G|

and some A′
⊆ (A − x) ∩ B for some x ∈ G such that

(1) |A′
| ≥ (1 − ϵ)α|B|,

(2) |A′
∩ B ′

| ≥ (1 − ϵ)α|B ′
|, where B ′

= Bρ is a regular Bohr set with
ρ ∈

( 1
2 , 1

)
· cδα/d , and

(3) ∥µA′ ◦ µA′∥p(µk·B′′◦µk·B′′∗µk·B′′′◦µk·B′′′ ) < (1 + ϵ)µ(B)−1, for any regular Bohr
sets B ′′

= B ′

ρ′ and B ′′′
= B ′′

ρ′′ satisfying ρ ′, ρ ′′
∈

( 1
2 , 1

)
· cδα/d.

The proof of Theorem 14 proceeds by repeated application of the following
statement, which is suitable for iteration.

Proposition 15. There is a constant c > 0 such that the following holds. Let ϵ > 0
and p, k ≥ 1 be integers such that (k, |G|) = 1. Let B, B ′, B ′′

⊆ G be regular Bohr
sets of rank d such that B ′′

⊆ B ′

c/d and A ⊆ B with relative density α. If

∥µA ◦ µA∥p(µk·B′◦µk·B′∗µk·B′′◦µk·B′′ ) ≥ (1 + ϵ)µ(B)−1,

then there is a regular Bohr set B ′′′
⊆ B ′′ of rank at most

rk(B ′′′) ≤ d + Oϵ(L(α)4 p4)

and size
|B ′′′

| ≥ exp(−Oϵ(dpL(α/d) +L(α)5 p5))|B ′′
|

such that
∥µB ′′′ ∗ µA∥∞ ≥ (1 + cϵ)µ(B)−1.

We first explain how Theorem 14 follows by iteration. In doing so we shall
require a regularity “narrowing” trick originally due to Bourgain. The following
form is [Bloom and Sisask 2020, Lemma 12.1].

Lemma 16. There is a constant c > 0 such that the following holds. Let B be a
regular Bohr set of rank d , suppose A ⊆ B has density α, let ϵ > 0, and suppose
B ′, B ′′

⊆ Bρ where ρ ≤ cαϵ/d. Then either

(1) there is some translate A′ of A such that |A′
∩B ′

|≥ (1−ϵ)α|B ′
| and |A′

∩B ′′
|≥

(1 − ϵ)α|B ′′
|, or

(2) ∥1A ∗ µB ′∥∞ ≥ (1 + ϵ/2)α, or

(3) ∥1A ∗ µB ′′∥∞ ≥ (1 + ϵ/2)α.
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Proof of Theorem 14 assuming Proposition 15. Let Cϵ, Dϵ,δ ≥ 1 be parameters to
be specified later, and let c be the smaller of 1

2 and the constant c in Proposition 15.
Let t ≥ 0 be maximal such that there is a sequence of regular Bohr sets, say
B(0), . . . , B(t), and subsets of translates of A, say A0, . . . , At , such that the follow-
ing holds:

(1) B(0)
= G and A0 = A.

(2) Each B(i) is a regular Bohr set of rank di and

di+1 ≤ di + CϵL(α)4 p4

and
|B(i+1)

| ≥ exp(−Dϵ,δ(dpL(α/d) +L(α)5 p5))|B(i)
|.

(3) Each Ai is a subset of B(i) with density αi such that αi+1 ≥ (1 + cϵ/4)αi for
0 ≤ i < t .

Observe from point (3), and the trivial fact that αi ≤ 1, that t ≪ϵ L(α). Note that
this implies dt ≪ϵ L(α)5 p4.

We apply Lemma 16 with cϵ/2 in place of ϵ, and B = B(t), B ′
= Bc′αϵ/dt

and B ′′
= B ′

c′′δα/dt
, where the constants are in particular chosen to ensure that

B ′, B ′′ are both regular. Provided we pick Dϵ,δ large enough in terms of Cϵ , ϵ,
and δ, Lemma A.4 and the maximality of t ensure that we must be in the first
alternative of Lemma 16’s conclusion: there exists a translate At − x such that
|(At − x) ∩ B ′

| ≥ (1 − cϵ/2)α|B ′
| and |(At − x) ∩ B ′′

| ≥ (1 − cϵ/2)α|B ′′
|.

We claim that A′
= (At − x) ∩ B ′, with the B ′ and B ′′ above playing the role of

B and B ′ respectively, satisfies the conclusions of Theorem 14. Indeed, the bounds
on the rank and size of B ′, and the density conditions on A′, are clearly satisfied.

Suppose for a contradiction that

∥µA′ ◦ µA′∥p(µk·B′′′◦µk·B′′′∗µk·B′′′′◦µk·B′′′′ ) ≥ (1 + ϵ)µ(B ′)−1,

for some regular Bohr sets B ′′′
= B ′′

ρ and B ′′′′
= B ′′′

ρ′ satisfying ρ, ρ ′
∈

( 1
2 , 1

)
·cδα/dt .

The conditions of Proposition 15 are met, and hence we deduce there is some
B̃ ⊆ B ′′′′ of rank

rk(B̃) ≤ rk(B) + Oϵ(L(α)4 p4)

and
|B̃| ≥ exp(−Oϵ(dt pL(α/dt) +L(α)5 p5))|B ′′

|

and there is a translate of At , say At − y, such that

µB̃(At − y) ≥ (1 + cϵ)(1 − cϵ/2)α ≥ (1 + cϵ/4)α,

say. This a contradiction to the maximality of t , provided Cϵ matches the implicit
constant in the first Oϵ-term, since we can take B(t+1)

= B̃ and At+1 = (At − y)∩ B̃,
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noting that by Lemma A.4

|B ′′′′
| ≥ exp(−Oϵ,δ(dL(α/dt)))|B(t)

|. □

Proposition 15 is a consequence of Steps 3 and 4 (dependent random choice and
almost-periodicity) of the Kelley–Meka approach. We will use the following version
of almost-periodicity, which is essentially [Schoen and Sisask 2016, Theorem 5.4].

Theorem 17 (almost-periodicity). There is a constant c > 0 such that the following
holds. Let ϵ > 0 and B, B ′

⊆ G be regular Bohr sets of rank d. Suppose that
A1 ⊆ B with density α1 and A2 is such that there exists x with A2 ⊆ B ′

− x with
density α2. Let S be any set with |S| ≤ 2|B|. There is a regular Bohr set B ′′

⊆ B ′ of
rank at most

d + Oϵ(L(α1)
3L(α2))

and size

|B ′′
| ≥ exp(−Oϵ(dL(α1α2/d) +L(α1)

3L(α2)L(α1α2/d)))|B ′
|

such that
|⟨µB ′ ∗ µA1 ◦ µA2, 1S⟩ − ⟨µA1 ◦ µA2, 1S⟩| ≤ ϵ.

Proof. We apply [Schoen and Sisask 2016, Theorem 5.4] with the choices (with
apologies for the unfortunate clash in variable naming between papers)

A → −A2, M → A1, L → −S, S → B ′

c/d , B → B ′

c/d

and note that

|−A2 + B ′

c/d | ≤ |B ′
+ B ′

c/d | ≤ 2|B ′
| ≤ 2α−1

2 |A2|

by regularity of B ′. The statement now almost follows from [loc. cit., Theorem 5.4]
after observing that (in that theorem’s language) we have K ≤ 2α−1

2 , σ = 1, and
η ≥ α1/2, except that there the statement has a constraint on the rank and the width
of B ′′, rather than the rank and the size. Nonetheless the width condition can be
immediately converted into a lower bound for the size of B ′′ with Lemma A.4. □

We will now use this almost-periodicity together with Lemma 8 to deduce the
iterative step.

Proof of Proposition 15. By averaging there exists some x ∈ k · B ′
+k · B ′′ such that

∥µA ◦ µA∥p(µk·B′∗µk·B′′−x )
≥ (1 + ϵ)µ(B)−1.

We now apply Lemma 8 with B1 = k · B ′ and B2 = k · B ′′
+ x . This produces some

A1 ⊆k·B ′ and A2 ⊆k·B ′′
−x such that, with S ={x :µA◦µA(x)≥ (1+ϵ/2)µ(B)−1

},

⟨µA1 ◦ µA2, 1S⟩ ≥ 1 − ϵ/4
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and

min
(

|A1|

|B ′|
,
|A2|

|B ′′|

)
≫ α2p+Oϵ(1).

We now apply Theorem 17 (with k · B ′ and k · B ′′ playing the roles of B and B ′

respectively), noting that we can, without loss of generality, take S to be supported
in A1 − A2 ⊆ k · B ′

+ k · B ′′
− x and so by regularity of B ′

|S| ≤ |B ′
+ B ′′

| ≤ 2|B ′
|.

This produces some B ′′′
⊆ k · B ′′ of the required rank and size such that

⟨µB ′′′ ∗µA1 ◦µA2, µA◦µA⟩≥ (1+ϵ/2)(1−ϵ/4)(1−ϵ/8)µ(B)−1
≥ (1+cϵ)µ(B)−1

for some absolute constant c > 0. The result now follows from averaging, since

⟨µB ′′′ ∗ µA1 ◦ µA2, µA ◦ µA⟩ ≤ ∥µB ′′′ ∗ µA∥∞∥µA2 ◦ µA1 ∗ µA∥1

= ∥µB ′′′ ∗ µA∥∞. □

5. Deduction of Theorems 5, 1 and 3

Finally, in this section we deduce Theorem 5 from Theorem 14 (using Step 2) and
show (using Step 1) how it implies Theorems 1 and 3. The following form of
unbalancing relative to Bohr sets is sufficient.

Proposition 18. There is a constant c > 0 such that the following holds. Let ϵ > 0
and p ≥ 2 be an integer. Let B ⊆ G be a regular Bohr set and A ⊆ B with relative
density α. Let ν : G → R≥0 be supported on Bρ , where ρ ≤ cϵα/ rk(B), such that
∥ν∥1 = 1 and ν̂ ≥ 0. If

∥(µA − µB) ◦ (µA − µB)∥p(ν) ≥ ϵµ(B)−1,

then there exists p′
≪ϵ p such that

∥µA ◦ µA∥p′(ν) ≥
(
1 +

1
4ϵ

)
µ(B)−1.

Proof. Let us write

g = µA ◦ µB + µB ◦ µA − µB ◦ µB

and note that for any p′
≥ 1

∥µA◦µA∥p′(ν) = ∥(µA−µB)◦(µA−µB)+µ(B)−1
+g−µ(B)−1

∥p′(ν)

≥ ∥(µA−µB)◦(µA−µB)+µ(B)−1
∥p′(ν)−∥g−µ(B)−1

∥p′(ν).
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To bound the error term, note that µA ◦µB(0) = µ(B)−1 and that by regularity (for
example with Lemma A.5), for x ∈ supp(ν),

|µA ◦ µB(x) − µA ◦ µB(0)| ≤ α−1µ(B)−1
∥µB( · + x) − µB∥1

≪ ρ rk(B)α−1µ(B)−1

≤
1
12ϵµ(B)−1,

say, assuming ρ is sufficiently small, and similarly for the other terms constituting g.
Hence

∥g − µ(B)−1
∥p′(ν) ≤ ∥g − µ(B)−1

∥L∞(supp(ν)) ≤
1
4ϵµ(B)−1.

It therefore suffices to find some p′
≪ϵ p such that

∥(µA − µB) ◦ (µA − µB) + µ(B)−1
∥p′(ν) ≥ (1 +

1
2ϵ)µ(B)−1.

This is immediate from Lemma 7 applied to f = µ(B)(µA −µB) ◦ (µA −µB). □

To deduce Theorem 5 from Theorem 14 we will need to pass from the measure µB

to µB ′ ◦µB ′ ∗µB ′′ ◦µB ′′ . This is a technical issue with Bohr sets that does not arise in
the Fn

q model case (note that these measures are identical when B = B ′
= B ′′

= G).

Proposition 19. There is a constant c > 0 such that the following holds. Let p ≥ 2
be an even integer. Let f : G → R, let B ⊆ G and B ′, B ′′

⊆ Bc/ rk(B) all be regular
Bohr sets. Then

∥ f ◦ f ∥p(µB′◦µB′∗µB′′◦µB′′ ) ≥
1
2∥ f ∗ f ∥p(µB).

Proof. By an application of Lemma A.6 with L = 4, ρ = c/4 rk(B) and ν =

µB ′ ∗ µB ′ ∗ µB ′′ ∗ µB ′′ , we have

µB ≤ 2µB1+4ρ
∗ ν.

Hence
∥ f ∗ f ∥

p
p(µB) = Ex∈GµB(x) f ∗ f (x)p

≤ 2Ex∈G(µB1+4ρ
∗ ν)(x) f ∗ f (x)p

= 2Et∈B1+4ρ
Ex∈Gν(x − t) f ∗ f (x)p.

By averaging there exists some t such that

∥ f ∗ f ∥
p
p(µB) ≤ 2Ex∈Gν(x − t) f ∗ f (x)p

= 2
∑
γ∈Ĝ

ν̂(γ )γ (−t)( f̂ 2)(p)(γ )

≤ 2
∑
γ∈Ĝ

ν̂(γ )(| f̂ |
2)(p)(γ )

= 2∥ f ◦ f ∥
p
p(ν),

where we have used the fact that ν̂ ≥ 0. □
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Proof of Theorem 5. We may, without loss of generality, assume that δ is sufficiently
small in terms of ϵ and k. Let p′

≪ϵ p satisfy the condition in Proposition 18. Let
A′ and B be the regular Bohr sets provided by Theorem 14 applied with p replaced
by p′ and ϵ replaced by ϵ/8. We claim that this choice satisfies the conclusion of
Theorem 5. It suffices to prove

∥(µA′ − µB) ∗ (µA′ − µB)∥p(µk·B′ ) ≤ ϵµ(B)−1.

Suppose not. Let B ′′
= B ′

ρ and B ′′′
= B ′′

ρ′ be regular Bohr sets with ρ = c1/d and
ρ ′

= c2/d for some sufficiently small constants c1, c2 > 0. By Proposition 19 we
have, if we let f = µA′ − µB for brevity,

∥ f ∗ f ∥p(µk·B′ ) ≤ 2∥ f ◦ f ∥p(ν)

where ν = µk·B ′′ ◦ µk·B ′′ ∗ µk·B ′′′ ◦ µk·B ′′′ . In particular, ∥ f ◦ f ∥p(ν) > 1
2ϵµ(B)−1,

and so by Proposition 18 (noting that ν is supported on k(B ′′
+ B ′′

+ B ′′′
+ B ′′′) ⊆

B ′

4kρ ⊆ Bc/d ) we deduce that

∥µA′ ◦ µA′∥p′(ν) ≥ (1 + ϵ/8)µ(B)−1,

which contradicts the conclusion of Theorem 14, and we are done. □

Finally, to apply Theorem 5 to three-term progressions and finding long arithmetic
progressions in A + A + A, we record the following version of the Hölder lifting
Step 1.

Proposition 20. There is a constant c > 0 such that the following holds. Let
ϵ > 0. Let B ⊆ G be a regular Bohr set and A ⊆ B with relative density α, and let
B ′

⊆ Bcϵα/ rk(B) be a regular Bohr set and C ⊆ B ′ with relative density γ . Either

(1) |⟨µA ∗ µA, µC⟩ −µ(B)−1
| ≤ ϵµ(B)−1 or

(2) there is some p ≪L(γ ) such that ∥(µA −µB)∗(µA −µB)∥p(µB′ ) ≥
1
2ϵµ(B)−1.

Proof. We first note that

⟨µA ∗µA, µC⟩ = ⟨(µA −µB)∗(µA −µB), µC⟩+2⟨µA ∗µB, µC⟩−⟨µB ∗µB, µC⟩.

By the regularity of B (more specifically Lemma A.5) and the fact that C ⊆ Bcϵ/ rk(B),
we have

|⟨µB ∗ µB, µC⟩ −µ(B)−1
| ≤ ∥µB∥∞∥µB ∗ µC − µB∥1 ≤

1
8ϵµ(B)−1.

Similarly, the fact that C ⊆ Bcϵα/ rk(B) implies that

|⟨µA ∗ µB, µC⟩ −µ(B)−1
| ≤ ∥µA∥∞∥µB ∗ µC − µB∥1 ≤

1
16ϵµ(B)−1.

It follows that, with f = (µA − µB) ∗ (µA − µB), we have

|⟨µA ∗ µA, µC⟩ −µ(B)−1
− ⟨ f, µC⟩| ≤

1
4ϵµ(B)−1.
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Therefore, if the first possibility fails, then

γ −1
|⟨ f, 1C⟩µB′ | = |⟨ f, µC⟩| ≥

3
4ϵµ(B)−1.

By Hölder’s inequality, for any p ≥ 1,

∥ f ∥p(µB′ )γ
1−1/p

≥ |⟨ f, 1C⟩µB′ |.

We can choose some p ≪ L(γ ) such that γ −1/p
≤

3
2 , and the proof is complete. □

5.1. Three-term arithmetic progressions. Theorem 1 is an immediate consequence
of the following result that gives a lower bound for the number of three-term
arithmetic progressions in an arbitrary set, coupled with the observation that if A
contains only trivial three-term arithmetic progressions then this count is at most N .

Theorem 21 (Kelley–Meka). If A ⊆{1, . . . , N } has size |A|=αN , then A contains
at least

exp(−O(L(α)12))N 2

many three-term arithmetic progressions.

Proof. As usual, we begin by considering A ⊆ {1, . . . , N } as a subset of G =

Z/(2N + 1)Z — the density of this set within G is still ≍ α, and any three-term
arithmetic progression in A ⊆ G yields one in A ⊆ {1, . . . , N }.

We apply Theorem 5 with ϵ =
1
4 , k = 2, and p = ⌈KL(α)⌉ for some large

constant K . Let A′′
= A′

∩ B ′. If

⟨µA′ ∗ µA′, µ2·A′′⟩ ≥
1
2µ(B)−1

we are done, since the left-hand side is at most ≪ α−3µ(B)−2µ(B ′)−1 times the
number of three-term arithmetic progressions in A, and by Lemma A.4 we have

µ(B)µ(B ′) ≥ exp(−Oϵ(L(α)12)).

Otherwise, we are in the second case of Proposition 20, which contradicts the
conclusion of Theorem 5, and we are done. □

5.2. Arithmetic progressions in A+ A+ A. As in the previous section, Theorem 3
follows immediately from the following statement for general groups, by embedding
{1, . . . , N } in a cyclic group Z/MZ for a prime M between 2N and 4N .

Theorem 22. If A ⊆ G has size αN , then A + A + A contains a translate of a Bohr
set B with

rk(B) ≪ L(α)9 and µ(B) ≥ exp(−O(L(α)12).

In particular, if G = Z/NZ for a prime N , then A + A + A contains an arithmetic
progression of length

≥ exp(−O(L(α)3))N�(1/L(α)9).
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Proof. We apply Theorem 5 with ϵ =
1
4 , k = 1, and p = ⌈KL(α)⌉ for some

large constant K . Let B, B ′ be the Bohr sets produced by that conclusion, and
A′

= (A − x) ∩ B the corresponding restricted translate of A.
We first argue that |(A′

+ A′) ∩ B ′
| ≥ (1 − α/4)|B ′

|. Indeed, otherwise if we let
C = B ′

\(A′
+ A′), then the first case of Proposition 20 is violated and the conclusion

of Theorem 5 means the second also cannot hold.
Let B ′′

= B ′

cα/d , where c > 0 is some small constant. We argue that B ′′
⊆

A′
+ A′

+ A′. If not, there is some x ∈ B ′′ such that (A′
+ A′)∩ (x − A′) = ∅, and

so
|A′

∩ (B ′
− x)| = |(x − A′) ∩ B ′

| ≤ |B ′
\(A′

+ A′)| ≤
α
4 |B ′

|.

By regularity, however, the left-hand side is at least

|A′
∩ B ′

| − |B\(B ′
− x)| ≥ |A′

∩ B ′
| −

1
4α|B ′

| ≥
α
2 |B ′

|,

which is a contradiction.
We have found some Bohr set B ′′ of rank O(L(α)9) and density

µ(B ′′) ≥ exp(−O(L(α)12))

such that B ′′
⊆ A′

+ A′
+ A′. It remains to note that A′

+ A′
+ A′ is contained in a

translate of A+ A+ A and to appeal to Lemma A.7 to find an arithmetic progression
in B ′′ of length

≥ exp(−O(L(α)3))N�(1/L(α)9). □

Appendix: Bohr sets

In abelian groups more general than Fn
q , a useful substitute for genuine subgroups

is the class of Bohr sets, introduced to additive combinatorics by Bourgain [1999].
Below we collect some standard facts about Bohr sets.

Definition A.1 (Bohr sets). For a nonempty 0 ⊆ Ĝ and ν ∈ [0, 2] we define the
Bohr set B = Bohrν(0) as

Bohrν(0) = {x ∈ G : |1 − γ (x)| ≤ ν for all γ ∈ 0}.

We call 0 the frequency set of B and ν the width, and define the rank of B to be
the size of 0, denoted by rk(B). We note here that all Bohr sets are symmetric and
contain 0.

In fact, when we speak of a Bohr set we implicitly refer to the triple

(0, ν, Bohrν(0)),

since the set Bohrν(0) alone does not uniquely determine the frequency set nor
the width. When we use subset notation, such as B ′

⊆ B, this refers only to the
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set inclusion (and does not, in particular, imply any particular relation between the
associated frequency sets or width functions). Furthermore, if B = Bohrν(0) and
ρ ∈ (0, 1], then we write Bρ for the same Bohr set with the width dilated by ρ, i.e.,
Bohrρν(0), which is known as a dilate of B.

Bohr sets are, in general, not even approximately group-like, and may grow
exponentially under addition. Bourgain [1999] observed that certain Bohr sets
are approximately closed under addition in a weak sense which is suitable for our
applications.

Definition A.2 (regularity3). A Bohr set B of rank d is regular if for all |κ| ≤
1

100d
we have

(1 − 100d|κ|)|B| ≤ |B1+κ | ≤ (1 + 100d|κ|)|B|.

We record here the useful observation, frequently used in this paper, that if
(k, |G|) = 1 and B is a regular Bohr set of rank d then k · B is also a regular Bohr
set of rank d (and of course the same density), simply by replacing each character
in the frequency set by an appropriate dilate.

For further introductory discussion of Bohr sets see, for example, [Tao and Vu
2006, Chapter 4], in which the following basic lemmas are established.

Lemma A.3. For any Bohr set B there exists ρ ∈
[ 1

2 , 1
]

such that Bρ is regular.

Lemma A.4. If ρ ∈ (0, 1) and B is a Bohr set of rank d, then |Bρ | ≥ (ρ/4)d
|B|.

The following standard lemmas indicate how regularity of Bohr sets will be
exploited. The following is proved as, for example, [Bloom and Sisask 2020,
Lemma 4.5].

Lemma A.5. If B is a regular Bohr set of rank d and µ : G → R≥0 is supported on
Bρ , with ρ ∈ (0, 1), then

∥µB ∗ µ − µB∥1 ≪ ρd∥µ∥1.

The following is a minor generalisation of, for example, [Bloom and Sisask
2020, Lemma 4.7], which is stated with ν = µ

(L)
B ′ for a subset B ′

⊆ Bρ ; the proof is
identical.

Lemma A.6. There is a constant c > 0 such that the following holds. Let B be a
regular Bohr set of rank d and L ≥ 1 be any integer. If ν : G → R≥0 is supported
on L Bρ , where ρ ≤ c/Ld, and ∥ν∥1 = 1, then

µB ≤ 2µB1+Lρ
∗ ν.

Finally, we note the following simple lemma, which is useful for finding arith-
metic progressions.

3The constant 100 here is fairly arbitrary. Smaller constants are permissible.
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Lemma A.7. If N is a prime and B ⊆ Z/NZ is a Bohr set of rank d, then B
contains an arithmetic progression of length

≫ |B|
1/d .

Proof. Let ρ = 4(2/|B|)1/d , and note that by Lemma A.4 we have

|Bρ | ≥ (ρ/4)d
|B| = 2.

In particular there exists some x ∈ Bρ\{0}. By the triangle inequality it is clear
that {x, . . . , ⌊ρ−1

⌋x} ⊆ B, whence B contains an arithmetic progression of length
≫ ρ−1. □
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