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Let L denote the Q-vector space of logarithms of algebraic numbers. In this
expository work, we provide an introduction to the study of ranks of matrices with
entries in L . We begin by considering a slightly different question; namely, we
present a proof of a weak form of Baker’s theorem. This states that a collection
of elements of L that is linearly independent over Q is in fact linear independent
over Q. Next we recall Schanuel’s conjecture and prove Ax’s analogue of it
over C((t)).

We then consider arbitrary matrices with entries in L and state the structural
rank conjecture, concerning the rank of a general matrix with entries in L . We
prove the theorem of Waldschmidt and Masser, which provides a lower bound,
giving a partial result toward the structural rank conjecture. We conclude by
stating a new conjecture that we call the matrix coefficient conjecture, which
gives a necessary condition for a square matrix with entries in L to be singular.
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1. Introduction

At the 1900 International Congress of Mathematicians, David Hilbert presented
23 open problems that have continued to serve as an inspiration for generations of
mathematicians, including the following question:
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Hilbert’s 7th problem. Let a, b ∈ Q, with a ̸= 0, 1 and b /∈ Q. Is the value ab

necessarily transcendental?

A proof that Hilbert’s question has an affirmative answer was given independently
by Gelfond (1934) and Schneider (1935). The Gelfond–Schneider theorem can be
stated equivalently as follows. Let

L = {x ∈ C | ex
∈ Q}

denote the Q-vector space of logarithms of algebraic numbers.

Theorem 1.1 (Gelfond–Schneider). If two elements of L are linearly dependent
over Q, then they are linearly dependent over Q.

A fantastic breakthrough was achieved by Alan Baker [1966; 1967a; 1967b],
when he generalized from two to an arbitrary number of elements of L .

Theorem 1.2 (Baker). If n ≥ 1 elements of L are linearly dependent over Q, then
they are linearly dependent over Q.

In fact, Baker proved an effective refinement of this result giving a strong lower
bound on the magnitude of any algebraic linear combination of elements of L

that are linearly independent over Q. Here we will present a proof of a version of
Baker’s theorem that is slightly weaker than Theorem 1.2.

We next shift our focus from a single linear form in logarithms to arbitrary
matrices with entries in L . Such matrices appear very naturally in number theory.
For example, the regulator of a number field is the determinant of such a matrix,
and this expression appears in the class number formula for the zeta function of the
number field. Generalizations appear in Stark’s conjectures for the leading terms
of L-functions, and p-adic avatars appear in the study of p-adic L-functions. The
question of the ranks of such matrices is therefore an important question, with
Leopoldt’s conjecture and the Gross–Kuz’min conjecture being important special
cases in Iwasawa theory (these are discussed in Section 4B).

The primary conjecture about the ranks of matrices with entries in L is the
structural rank conjecture. In applications, it is often useful to consider the Q-
vector space spanned by L and Q, which we denote by L + Q. Given an m × n
matrix M with entries in any field of characteristic 0, we define the structural rank
of M as follows. Choose a Q-basis {ℓ1, . . . , ℓr } for the entries of M , and write
M =

∑r
i=1 ℓi Mi , with Mi ∈ Mm×n(Q). Write Mx =

∑r
i=1 xi Mi , where the xi are

indeterminates. Then Mx is an m × n matrix with entries in the field of rational
functions F = Q(x1, . . . , xn). We define the structural rank of M to be the rank
of Mx over F . One checks that this definition is independent of the basis {ℓi } chosen.

Conjecture 1.3 (structural rank conjecture). The rank of any M ∈ Mm×n(L + Q)

is equal to the structural rank of M.
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The “über conjecture” in the transcendence theory of special values of logarithms
and exponentials of algebraic numbers is the following conjecture of Schanuel. We
write trdQ for the transcendence degree over Q.

Conjecture 1.4. Let y1, . . . , yn ∈ C be Q-linearly independent. Then

trdQ Q(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

In particular, if y1, . . . , yn ∈ L are Q-linearly independent, then

trdQ Q(y1, . . . , yn) = n. (1)

It is perhaps not surprising that the special case of Schanuel’s conjecture given
in (1) implies the structural rank conjecture; however, an elegant theorem of Roy
[1995] is that the converse is also true:

Theorem 1.5 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture given in (1).

Theorem 1.5 is proven in Section 4. For more on the structural rank conjecture
and Schanuel’s conjecture, see [Waldschmidt 2023]. The strongest unconditional
evidence toward the structural rank conjecture is the following theorem of Wald-
schmidt [1981] and Masser [1981]:

Theorem 1.6 (Waldschmidt and Masser). Let M ∈ Mm×n(L ). Suppose that

rank(M) <
mn

m+n
.

Then there exist P ∈ GLm(Q) and Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension m′
× n′ with m′/m + n′/n > 1.

Intuitively, Theorem 1.6 states that, if the rank of M = (log(xi j )) is very small,
then the underlying algebraic numbers xi j satisfy a large number of multiplicative
relations. In certain situations we can show that such relations do not exist, and hence
we must have rank(M) ≥ mn/(m +n). The six exponentials theorem (Theorem 4.2)
is an example of a special case of the Waldschmidt–Masser theorem.

Transcendence results have many important applications in algebraic number
theory. Especially in Iwasawa theory, it is the p-adic analogues of these statements
that are most relevant. For example, Leopoldt’s conjecture concerns the rank of the
matrix of p-adic logarithms of a basis of units in a number field F . The p-adic
analogue of the Waldschmidt–Masser theorem provides the strongest evidence for
this conjecture. For instance, for a totally real field F one deduces that the rank of
the Leopoldt matrix is at least half the expected one. We prove the p-adic version
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of the Waldschmidt–Masser theorem in Section 5, since the archimedean case is
studied more often in the literature, and discuss applications in Section 5A.

The paper is organized as follows. In Section 2, we prove Baker’s theorem on
the linear independence of logarithms of algebraic numbers. In Section 3, we prove
Ax’s theorem on the function field analogue of Schanuel’s conjecture. In Section 4,
we discuss the structural rank conjecture, explaining its connection to important
conjectures in Iwasawa theory and proving Roy’s Theorem 1.5. In Section 5, we
prove the Waldschmidt–Masser theorem and give applications. In the concluding
Section 6, we state a new conjecture, called the matrix coefficient conjecture, which
attempts to answer the question: what can be said about a square matrix M with
entries in L when it does not have full rank? Our conjecture is not as strong as
the structural rank conjecture (and hence is perhaps more tractable), but still has
important arithmetic implications.

2. Baker’s theorem

Before giving an outline of the proof of Baker’s theorem, let us discuss how one
could hope to deduce the conclusion of the theorem. We are given algebraic numbers
α1, . . . , αn ∈ Q∗, complex numbers xi such that exi = αi , and a linear dependence

β1x1 + · · · +βnxn = 0 (2)

with βi ∈ Q. We will show that this implies the existence of integers λ1, . . . , λn ,
not all zero, such that

α
λ1
1 α

λ2
2 · · · αλn

n = 1. (3)

This implies that the xi , together with the complex number 2π i , are linearly depen-
dent over Q. Therefore, the mildly weaker version of Baker’s theorem that we will
prove is the following:

Theorem 2.1. If x1, . . . , xn, 2π i ∈ L are linearly independent over Q, then
x1, . . . , xn are linearly independent over Q.

It does not take much work beyond the methods that we will present to remove
2π i and prove the version of Baker’s theorem stated in Theorem 1.2 above (see
[Baker 1967a]). However, to simplify the exposition and highlight the main points,
we have included 2π i in our proof of Theorem 2.1.

Now, how does one deduce the existence of the λi from the existence of the βi ?
It may be enticing to try to prove that the λi can be taken equal to the βi , i.e., that
the βi are rational (or, more generally, that the λi can somehow be extracted from
the βi in a direct way). However, in practice a more indirect approach is effective.

Theorem 2.2. Let α1, . . . , αn ∈ C∗. Suppose there exists a nonzero polynomial

f (t1, . . . , tn) ∈ C[t1, . . . , tn]
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of degree ≤ L in each variable ti such that

f (αz
1, . . . , α

z
n) = 0

for z = 1, 2, . . . , (L + 1)n . Then there exist integers λ1, . . . , λn , not all zero, such
that

α
λ1
1 α

λ2
2 · · · αλn

n = 1.

Proof. Consider the square matrix M whose rows are indexed by the integers

z = 1, . . . , (L + 1)n

and whose columns are indexed by the tuples λ = (λ1, . . . , λn) of integers with
0 ≤ λi ≤ L , with corresponding matrix entry

αλz
:= α

λ1z
1 · · · αλn z

n . (4)

The existence of the polynomial f is equivalent to the existence of a column vector v

such that Mv = 0. Indeed, the components of v are precisely the coefficients of f .
The existence of a nonzero f therefore implies that det(M) = 0. But M is the

Vandermonde matrix associated to the elements αλ
= α

λ1
1 · · · α

λn
n as the tuple λ

ranges over all (L + 1)n possibilities. The vanishing of the determinant therefore
implies the existence of two distinct tuples λ and λ′ such that αλ

=αλ′

. We therefore
have αλ−λ′

= 1, as desired. □

Baker’s theorem therefore amounts to using (2) to construct an auxiliary polyno-
mial f that satisfies the conditions of Theorem 2.2. We first summarize Baker’s
ingenious method to do this:

(1) The Dirichlet box principle is a method of using the pigeonhole principle to
construct a polynomial f with certain prescribed zeroes. One can apply this
to the elements αz appearing in the statement of Theorem 2.2. Of course, the
result will not produce a polynomial with enough zeroes (i.e., we may find
zeroes for z = 1, . . . , A for some A, but A will be less than (L +1)n). Baker’s
clever insight is that the condition (2) allows us to ensure that a certain number
of derivatives of f also have zeroes corresponding to these values of z.

(2) Baker then proves a complex analytic lemma, which is a quantitative strength-
ening of the classical Schwarz’s lemma that shows that the vanishing of f and
many of its derivatives implies a strong upper bound on the size of f and half
as many of its derivatives, but for B times as many integers z (for some B > 1
depending on parameters we will make precise later).

(3) Using the fact that the αi and βi are algebraic, Baker deduces that these bounded
values (i.e., the values of f and many of its derivatives for z = 1, . . . , AB)
must actually be 0. The basic concept is that an integer of absolute value less
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than 1 must vanish; a generalization of this elementary statement to algebraic
numbers of bounded degree and height is applied.

(4) Armed with more vanishing, one may now go back to step (2) and once again
show that half as many derivatives are small for another factor of B times as
many values of z. Baker iterates this procedure N times until AB N > (L +1)n ,
thereby showing that the auxiliary polynomial f has enough zeroes to apply
Theorem 2.2.

In the rest of this section we will describe these steps in detail.

2A. Construction of auxiliary polynomial. For each αi , let ci denote the leading
coefficient of the integral minimal polynomial of αi , and let d denote the maximum
degree of any αi .

Lemma 2.3. There exist integers ai, j,s such that, for each integer j ≥ 0, we have

(ciαi )
j
=

d−1∑
s=0

ai, j,sα
s
i .

Proof. For notational simplicity, we remove the index i . So we consider α ∈ Q with
degree at most d, and let c denote the leading coefficient of the integral minimal
polynomial of α. Then there exist integers b0, . . . , bd−1 such that

cαd
= bd−1α

d−1
+ · · · + b1α + b0. (5)

We prove the result by induction on j . The base cases 0 ≤ j < d are clear. For
j ≥ d we assume by induction that there are integers a j−1,s such that

(cα) j−1
=

d−1∑
s=0

a j−1,sα
s .

Multiplying by cα, we obtain

(cα) j
=

( d−2∑
s=0

c · a j−1,sα
s+1

)
+ a j−1,d−1(cαd). (6)

Plugging in (5) for cαd on the right of (6), we obtain the desired expression

(cα) j
=

d−1∑
s=0

a j,sα
s,

where

a j,s =

{
a j−1,d−1b0 if s = 0,

a j−1,d−1bs + c · a j−1,s−1 if 1 ≤ s ≤ d − 1. □
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Let

f (t) =

∑
λ=(λ1,...,λn)

pλtλ
:=

∑
λ

pλtλ1
1 · · · tλn

n

be a polynomial of degree ≤ L in each variable ti . Let the ci and ai, j,s be as in
Lemma 2.3. Writing c = (c1, . . . , cn) and recalling the notation (4), we calculate

(c1 · · · cn)
Lz f (αz) = (c1 · · · cn)

Lz
∑

λ

pλα
λz

=

∑
λ

pλcLz−λz(cα)λz

=

∑
λ

pλcLz−λz
n∏

i=1

d−1∑
s=0

(αi )
sai,λi z,s

=

d−1∑
s1,s2,...,sn=0

αs
∑

λ

pλcL−λz
n∏

i=1

ai,λi z,s .

We can therefore force f (αz) = 0 by imposing integer linear conditions on the
coefficients pλ, namely that, for each z, we have

∑
λ

pλcL−λz
n∏

i=1

ai,λi z,s = 0. (7)

This observation allows for the initial construction of an auxiliary polynomial f
using the following lemma of Siegel [1929], often known as “Dirichlet’s box
principle”:

Lemma 2.4 (Siegel). Let N > 2M > 0 be integers, and let A = (ai, j ) be an
M × N matrix of integers such that |ai, j | < H for all i and j . There is a nonzero
vector b ∈ ZN such that Ab = 0 and each coordinate of b has absolute value less
than 2N H.

Proof. Consider all vectors b ∈ ZN with coordinates of absolute value ≤ N H .
There are (2N H + 1)N > (2N H)N such vectors. For each such b, each coordinate
of Ab has size at most (N H)2. The total number of possible vectors Ab is less than
(2(N H)2)M . Since N > 2M , the pigeonhole principle implies that two distinct b
must give the same value of Ab. Their difference gives the desired vector. □

Applying Siegel’s lemma to the system of linear equations in (7) will not produce
enough zeroes for Theorem 2.2. Indeed, we have not yet used the assumption (2)!
A key trick noticed by Baker is that it will suffice to have f and sufficiently many
of its derivatives vanish. The precise statement is given below:
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Theorem 2.5. The following holds for every sufficiently large parameter h. Let

L = ⌈h2−1/(4n)
⌉.

There exists a polynomial

f (t) =

∑
λ

pλtλ
∈ Z[t1, . . . , tn]

of degree ≤ L in each variable ti such that |pλ| < eh3
for each λ and such that the

complex analytic function of one variable z ∈ C defined by

φ(z) =

∑
λ

pλez(λ1x1+···+λn xn) (8)

satisfies
φ(m)(z) = 0 for m = 0, . . . , h2

− 1 and z = 1, . . . , h.

Proof. Note that φ(z) has been defined so that φ(z) = f (αz) = f (αz
1, . . . , α

z
n) for

integers z. After dividing the linear dependence (2) by −βn (reordering if necessary
to ensure this is nonzero) and renaming the coefficients, we can write

xn = β1x1 + · · · +βn−1xn−1

with βi ∈ Q. We then have

φ(z) =

∑
λ

pλez[(λ1+λnβ1)x1+···+(λn−1+λnβn−1)xn−1]. (9)

Note that φ(m)(z) is the same sum as for φ(z), but with the term indexed by λ

multiplied by
((λ1 +λnβ1)x1 +· · ·+(λn−1 +λnβn−1)xn−1)

m .

Expanding this out, it suffices to show that∑
λ

pλα
λz(λ1 + λnβ1)

m1 · · · (λn−1 + λnβn−1)
mn−1 = 0 (10)

for all tuples of nonnegative integers satisfying

m1 + · · · + mn−1 = m.

Let d be the degree of the number field generated by all the αi and βi . Let
ci denote the leading coefficient in the integral minimal polynomial of αi . By
Lemma 2.3, for every nonnegative integer j , there exist integers ai, j,s such that

(ciαi )
j
=

d−1∑
s=0

ai, j,sα
s
i .

Let di and bi, j,s play the same role for the βi .
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The expression (10) will vanish if

m1∑
µ1=0

· · ·

mn−1∑
µn−1=0

L∑
λ1,...,λn=0

pλ

( n∏
i=1

cLz−λi z
i ai,λi z,si

)

×

( n−1∏
j=1

(
m j

µ j

)
(d jλ j )

m j −µ j λ
µ j
n b j,µ j ,t j

)
vanishes for all tuples (s1, . . . , sn) and (t1, . . . , tn−1) with 0 ≤ si , ti < d .

How many linear equations is this in the coefficients pλ we are searching for?
We want vanishing for 0 ≤ m < h2 and 1 ≤ z ≤ h. Hence, the number of such
equations is at most

M = (h2)n−1hd2n−1
= h2n−1d2n−1.

Note that d and n are fixed but we are free to make h as large as we want.
The number of variables pλ is (L + 1)n , so, to ensure this is bigger than 2M

when h is large, we let L = ⌈h2−1/(4n)
⌉, as in the statement of the theorem. Finally,

we bound the size of the coefficients. An easy induction shows that there is a
constant C , depending only on the αi and βi , such that

|ai, j,s | ≤ C j , |bi, j,t | ≤ C j .

Therefore, for some constant K depending only on the αi , βi and n, we have
n∏

i=1

|cLz−λi z
i ai,λi z,si | ≤ K Lz

≤ K Lh

and, similarly,

n−1∏
j=1

∣∣∣∣(m j

µ j

)
(d jλ j )

m j −µ j λ
µ j
n b j,µ j ,t j

∣∣∣∣ ≤ K h2 log(h).

By Siegel’s lemma, there is a nontrivial solution in integers pλ such that

|pλ| ≤ 2K Lh+h2 log(h)(L + 1)n
≪ eh3

. □

2B. Baker’s lemma. In this section we present a complex analytic lemma of Baker,
strengthening the classical Schwarz’ lemma. This will allow us to bound the sizes
of f and many of its derivatives for a multiple B of the A values of z at which we
ensured vanishing of our auxiliary polynomial f .

Lemma 2.6. Let f : C → C be an entire function, let ϵ > 0, and let A, B, C , T
and U be large positive integers such that

1
2ϵC >

2T + U AB
A(log A)1/2 +

U B Aϵ

log A
. (11)
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Suppose that:

• | f (z)| ≤ eT +U |z| for z ∈ C.

• f (t)(z) = 0 for t = 0, . . . , C − 1 and z = 1, 2, . . . , A.

Then
| f (z)| ≤ e−(T +U z)(log A)1/2

for z = 1, . . . , AB.

Proof. The function

h(z) =
f (z)

(z − 1)C · · · (z − A)C

is entire by the second assumption. By the maximum modulus principle on the
circle of radius A1+ϵ B around the origin, we have, for |z| ≤ AB,

|h(z)| ≤ max
|w|=A1+ϵ B

|h(w)|;

hence,

| f (z)| ≤ max
|w|=A1+ϵ B

| f (w)| · max
|w|=A1+ϵ B

∣∣∣∣ (z − 1)(z − 2) · · · (z − A)

(w − 1)(w − 2) · · · (w − A)

∣∣∣∣C

.

Now ∣∣∣∣ (z − 1)(z − 2) · · · (z − A)

(w − 1)(w − 2) · · · (w − A)

∣∣∣∣ ≤
(AB)A

(A1+ϵ/2 B)A = e−(ϵ/2)A log A,

where the inequality holds since

AB + i
A1+ϵ B − i

≤ A−ϵ/2

for all i = 1, . . . , A. Meanwhile,

| f (w)| ≤ eT +U A1+ϵ B .

Our goal is to show that | f (z)| ≤ e−(T +U AB)(log A)1/2
, so it suffices to show that

−
1
2ϵ AC log A + (T + U A1+ϵ B) ≤ −(T + U AB)(log A)1/2.

It is easy to see that this is implied by the assumption of the lemma,

1
2ϵC >

2T + U AB
A(log A)1/2 +

U B Aϵ

log A
. □

Let us now apply Baker’s lemma to our auxiliary polynomial and its derivatives.
With φ(z) as in (8) and (9), we have

φ(m)(z) =

∑
mi

(
m

m1, . . . , mn−1

) n−1∏
i=1

xmi
i fm1,...,mn−1(z),
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where

fm1,...,mn−1(z) =

∑
λ

pλα
λz(λ1 + λnβ1)

m1 · · · (λn−1 + λnβn−1)
mn−1 . (12)

It is clear from this last expression that

| fm1,...,mn−1(z)| < K h3
+L|z| (13)

for a suitable constant K depending only on n, the αi and the βi . Indeed, the pλ are
bounded by eh3

. The mi and λi are bounded by h2. We choose the constant K so
that the inequality (13) holds with the αi or βi replaced by any of their conjugates
as well.

We would like to apply Baker’s lemma on each of the functions fm1,...,mn−1(z)
with

T = h3 log K , U = L log K , C =
1
2 h2, A = h, B = h1/(8n), ϵ =

1
8n

.

We suppose that the constants K and h have been chosen so that the values T , U ,
A, B and C are integers. The first condition on fm1,...,mn−1(z) necessary to apply
Baker’s lemma is precisely the inequality (13). For the second condition, we note
that the t-th derivative of fm1,...,mn−1(z) for m1 +· · ·+mn−1 ≤

1
2 h2 and t ≤

1
2 h2

−1
is a linear combination of fm′

1,...,m
′

n−1
(z) with m′

1 +· · ·+m′

n−1 ≤ h2
−1. This gives

the desired vanishing for z = 1, . . . , h by the construction of the polynomial f in
Theorem 2.5.

Furthermore, with our selection of parameters, the required inequality (11) reads

h2

32n
>

2(log K )h3
+(log K )h2−1/(4n)

·h·h1/(8n)

h(log h)1/2 +
(log K )h2−1/(4n)

·h1/(8n)
·h1/(8n)

log h
,

which is easily seen to hold for h large. We may therefore apply Baker’s lemma to
fm1,...,mn−1(z). This yields

| fm1,...,mn−1(z)| < K −(h3
+Lz)(log h)1/2

(14)

for m1 + · · · + mn−1 ≤
1
2 h2 and z = 1, . . . , h1+1/(8n).

2C. Discreteness of algebraic integers. We apply the following elementary basic
principle:

Lemma 2.7. Suppose that a ∈ Q such that da is an algebraic integer for some
positive integer d. Suppose that |a| < ϵ for some positive real number ϵ and that
every conjugate σ(a) satisfies |σ(a)|< M for some positive real number M. Finally,
suppose that [Q(α) : Q] ≤ n and that ϵMn−1dn < 1. Then a = 0.
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Proof. We bound the norm of the algebraic integer da:

|NQ(a)/Q(da)| =

∏
σ :Q(a)↪→C

|σ(da)| ≤ dn
|a| ·

∏
σ ̸=1

|σ(a)| ≤ dnϵMn−1 < 1.

An integer of absolute value less than 1 must be 0. Hence, NQ(a)/Q(da) = 0, so
a = 0. □

We apply Lemma 2.7 to each of the algebraic numbers fm1,...,mn−1(z) defined
in (12) for

m1 + · · · + mn−1 ≤
1
2 h2, z = 0, 1, . . . , h1+1/(8n).

In (14) we showed that

| fm1,...,mn−1(z)| < ϵ := K −(h3
+Lz)(log h)1/2

. (15)

We also saw in (13) that

|σ( fm1,...,mn−1(z))| < M := K h3
+Lz (16)

for each σ . It is easy to see from its definition that the denominator of fm1,...,mn−1(z)
can be cleared by an integer of size at most

d := K h2
+Lz, (17)

after making K larger if necessary depending only on the αi and βi .
The inequality ϵMn−1dn < 1 is then easily seen to hold for h large because of

the extra factor (log h)1/2 in the exponent of (15), so we conclude that

fm1,...,mn−1(z) = 0

for m1 + · · · + mn−1 ≤
1
2 h2 and z = 0, 1, . . . , h1+1/(8n).

2D. Bootstrapping. We repeat the process described above, in the k-th iteration
using Baker’s lemma on the functions fm1,...,mn−1(z) with m1+· · ·+mn−1 ≤h2/2k+1

with the parameters

T = h3 log K , U = L log K , C =
h2

2k+1 ,

A = h1+k/(8n), B = h1/(8n), ϵ =
1

8n
.

We assume that K and h had been chosen initially so that the quantities above are
integers. In the k-th iteration we obtain that

| fm1,...,mn−1(z)| < K −(h3
+Lz)( log(h+k/(8n)))

1/2

for

m1 + · · · + mn−1 ≤
h2

2k+1 , z = 0, 1, . . . , h1+(k+1)/(8n).
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The quantities in (16) and (17) do not change, so again Lemma 2.7 implies that the
values fm1,...,mn−1(z) vanish. We may therefore move on to the next k.

Each iteration multiplies the number of zeroes by B = h1/(8n). After 16n2

iterations we will obtain more than h2n zeroes. Since L = h2−1/(4n) and h is large,
we have

h2n > (L + 1)n,

so the polynomial f = f0,0,...,0 satisfies the conditions of Theorem 2.2. Therefore,
there exist integers λ1, . . . , λn , not all zero, such that

α
λ1
1 · · · αλn

n = 1.

This completes the proof of Baker’s theorem.

3. Ax’s theorem

Moving on from linear forms in elements of L to arbitrary polynomials, we remind
the reader of Schanuel’s conjecture, which was stated in the introduction:

Schanuel’s conjecture. Let y1, . . . , yn ∈ C be Q-linearly independent. Then

trdQ Q(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

While little is known about this conjecture, we have the following function field
analogue, proved by James Ax [1971]:

Theorem 3.1 (Ax). Let y1, . . . , yn ∈ tC[[t]] be Q-linearly independent. Then

trdC(t) C(t)(y1, . . . , yn, ey1, . . . , eyn ) ≥ n.

In this section we prove Ax’s theorem. The section is self-contained and may be
skipped by readers not interested in the function field setting. Before proceeding, we
note simply the tool that is available in the function field setting that is not available
in the classical setting: there is a derivative operator on C((t)), and elements of the
form ey satisfy (ey)′ = y′ey .

3A. Derivations.

Definition 3.2. Let A be a commutative ring and B a commutative A-algebra. An
A-derivation of B into a B-module M is an A-linear map

D : B → M

such that
D(ab) = aD(b) + D(a)b, a, b ∈ B, (18)

where we view M as both a left and right B-module since B is commutative.
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There is a pair (d = dB/A, �B/A) of a B-module �B/A and an A-derivation

d : B → �B/A

that is universal in the sense that any A-derivation D : B → M can be obtained
by composing dB/A with a B-module homomorphism �B/A → M . The module of
Kähler differentials �B/A is defined as the quotient of the free B-module generated
by formal generators db for each b ∈ B by the relations da = 0 for a ∈ A, d(b+b′)=

db +db′, and d(bb′) = b ·db′
+b′

·db. The universal derivation dB/A : B → �B/A

is defined by dB/A(b) = db.

Lemma 3.3. Let F/K be field extension and x ∈ F separable algebraic over K .
Then dx = 0 in �F/K .

Proof. Let f (t) ∈ K [t] be the minimal polynomial of x . Then

0 = d( f (x)) = f ′(x)dx .

Since x is separable, f ′(x) ̸= 0, so dx = 0. □

Meanwhile, if F(t) denotes the function field in one variable over the field F ,
we have that �F(t)/F is the 1-dimensional F(t)-vector space generated by dt , with
d( f (t)) = f ′(t)dt .

Lemma 3.4. Let K ⊂ F ⊂ L be fields of characteristic 0. Let D : F → F be a
K -derivation. Then D can be extended to a K -derivation L → L.

Proof. For f ∈ F[t], let f D denote the polynomial where D has been applied to the
coefficients of f . We show how to extend the derivation d. Let z ∈ L with z /∈ F .
If z is algebraic over F , let p(x) be its minimal polynomial. Define

u = −
pD(z)
p′(z)

, D̃(g(z)) = gD(z) + g′(z)u. (19)

If z is transcendental over F , we define

D̃(g(z)) = gD(z) + g′(z)u (20)

for any u ∈ L . We leave it to the reader to check that setting D̃|F = D and using
(19) or (20) to extend to F(z) yields a derivation D̃. Now one uses Zorn’s lemma
on pairs (D′, F ′), where F ′ is a field such that K ⊂ F ′

⊂ L and D′ is a derivation
extending D, to extend D all the way to L . □

Corollary 3.5. Let K ⊂ L be fields of characteristic 0. Then

dimL �L/K = trdK L .

More generally, if K ⊂ F ⊂ L , then

dimL(L · dL/K (F)) = trdK F.
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Proof. Let { f1, . . . , fn} be a transcendence basis for F/K . Suppose that

n∑
i=1

ai dL/K fi = 0

with ai ∈ L . By the universal property of dL/K , we have

n∑
i=1

ai D( fi ) = 0

for any K -derivation Di : L → L . Therefore, if we show that for each i there exists
a K -derivation Di : L → L such that Di ( f j ) = δi j , then we obtain ai = 0 for all i .
This yields the linear independence of the dL/K fi over L .

The existence of the Di follows from the proof of Lemma 3.4. We can first
extend the 0 derivation on K to K ( fi ) by setting z = fi and u = 1− fi in (20), and
then inductively extend to K ( f1, . . . , fn) by setting z = f j and u = − f j for j ̸= i .
Finally, we extend Di to L using Lemma 3.4 once more. □

3B. Derivation on Kähler differentials. Let A be a commutative ring and B an
A-algebra. Let D : B → B be a derivation such that D(A) ⊂ A. There exists an
A-linear map

D1
: �B/A → �B/A

satisfying

D1( f dg) = (D f )dg + f d(Dg). (21)

We leave the verification of this to the reader, but we note that a more general fact
is true. If we consider the graded algebra of differentials

�∗

B/A =

∞⊕
n=0

∧n
B �B/A,

then the differential D : B → B extends to a graded derivation

D∗
: �∗

B/A → �∗

B/A

satisfying (18), where the 0th graded piece is D and the 1st graded piece is D1. In
our proof of Ax’s theorem, we will only need the map D1, but let us note that the
rule (21) generalizes: for any f ∈ B and ω ∈ �B/A, we have

D1( f ω) = (D f )ω + f D1(ω). (22)

Proofs of these facts may be found in the references given in [Ax 1971, page 255].



108 SAMIT DASGUPTA

Lemma 3.6. Let y ∈ tC[[t]], z = ey , and let D : C((t)) → C((t)) be a C-derivation
of the form D( f (t)) = f ′(t) · g(t) for some fixed g(t) ∈ C((t)). Then

D1(dy − z−1dz) = 0

in �C((t))/C.

Proof. A direct computation with the definition (21) shows that, in general, we have

D1(dy − z−1dz) = d(Dy − z−1 Dz).

Yet, when z = ey , the term Dy − z−1 Dz vanishes for the derivation D( f (t)) =

f ′(t) · g(t). □

Lemma 3.7. Let K ⊂ L be fields and D : L → L a derivation such that ker D = K .
Then the map

L ⊗K ker D1
→ �L/K , f ⊗ ω 7→ f ω,

is injective.

Proof. Suppose there exist

f1, . . . , fn ∈ L∗, ω1, . . . , ωn ∈ ker D1

such that
n∑

i=1

fi ⊗ ωi 7→ 0, i.e.,
n∑

i=1

fiωi = 0. (23)

Scale so that f1 = 1. If all the fi lie in K , then

n∑
i=1

fi ⊗ ωi = 1 ⊗

n∑
i=1

fiωi = 1 ⊗ 0 = 0,

so we are done. Suppose this is not the case and take the minimal such vanish-
ing linear combination. By minimality, we can assume that the ωi are linearly
independent over L . Apply D1 to the expression (23). Using (22), we find

0 =

n∑
i=1

((D fi )ωi + fi D1(ωi )) =

n∑
i=1

(D fi )ωi ,

where the second equality holds since ωi ∈ ker D1. By the linear independence of
the ωi over L , we see that D fi = 0 for all i and hence, by assumption, fi ∈ K for
all i . □

The following is a technical algebraic lemma that will allow us to reduce to the
setting of function fields of curves:
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Lemma 3.8. Let K ⊊ L be an extension of fields with K relatively algebraically
closed in L (i.e., if α ∈ L and α is algebraic over K , then α ∈ K ). Let

W = {F : K ⊂ F ⊂ L , trdF L = 1, F relatively algebraically closed in L}.

Then ⋂
F∈W

F = K .

Proof. Let t ∈ L with t /∈ K . We need to show there exists F ∈ W such that t /∈ F .
Since K is relatively algebraically closed in L , the element t is transcendental
over K .

Choose a transcendence basis for L/K consisting of t and a set B of elements
not in K (t). Let F be the relative algebraic closure of K (B) in L , i.e.,

F = {x ∈ L | x algebraic over K (B)}.

Then F ∈ W , since L is algebraic over F(t). Since t /∈ F , this completes the
proof. □

In some sense, the following lemma is the main engine of Ax’s proof:

Lemma 3.9. Let L/K be fields of characteristic 0. Denote by d L the K -subspace
of �L/K spanned by d f for f ∈ L. Denote by d L/L the Z-submodule of �L/K

spanned by f −1d f for f ∈ L∗. Then the canonical map of K -vector spaces

K ⊗Z d L/L → �L/K /d L , k ⊗
d f
f

7→
k
f

d f, (24)

is injective, where �L/K /d L denotes the quotient of �L/K by the K -subspace
spanned by d f for f ∈ L.

Proof. Choose an element
n∑

i=1

ki ⊗ f −1
i d fi (25)

in the kernel of the map (24), with n minimal. By minimality, the ki are linearly
independent over Q. We will show that each fi lies in KL , the relative algebraic
closure of K in L . By Lemma 3.3, this will imply d fi = 0, giving the desired
injectivity.

If L = KL , there is nothing to prove. Otherwise, let F ∈ W , with W as in
Lemma 3.8. So K ⊂ F ⊂ L , trdF L = 1, and F L = F . Since the element (25) lies
in the kernel of (24), we have

n∑
i=1

ki f −1
i d fi =

m∑
i=1

k ′

i d f ′

i (26)
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for some f ′

i ∈ L∗ and k ′

i ∈ K . Now, we would like to use properties of function
fields of curves, but, unfortunately, we do not know that L is finitely generated
over F . To this end, we consider a field L ′ generated over F by the fi , the f ′

i , and
by any elements used in any relations in �L/K used to obtain (26). The field L ′

then still has transcendence degree 1 over F , and is finitely generated over F . We
may therefore identify L ′ with the function field of a smooth projective algebraic
curve over F . Furthermore, equation (26) still holds in �L ′/K by construction, and
so it holds also in �L ′/F .

Points P on this curve correspond to valuations

ordP : (L ′)∗ → Z.

Associated to P we also have a residue map

resP : �L ′/F → F.

The residue and valuation maps satisfy the following well-known properties. For
all g ∈ (L ′)∗, we have

resP(g−1dg) = ordP(g), resP(dg) = 0.

Applying resP to (26), we get

n∑
i=1

ki ordP( fi ) = 0.

By Q-linear independence of the ki , we obtain ordP( fi ) = 0 for all P and i . But a
function on a smooth projective curve with no zeroes or poles must be constant,
and hence fi ∈ F for all i . Since this holds for all F , we have by Lemma 3.8 that
fi ∈ KL . □

We can now complete the proof of Ax’s theorem.

Proof of Theorem 3.1. Let y1, . . . , yn ∈ tC[[t]] and write zi = eyi ∈ C[[t]]. Let

L = C(y1, . . . , yn, z1, . . . , zn).

It suffices to show that, if trdC L ≤ n, then y1, . . . , yn are Q-linearly dependent.
Suppose trdC L ≤ n. Then, by Corollary 3.5, the differentials

ωi = dyi − z−1
i dzi ∈ �L/C

for i = 1, . . . , n together with dy1 must be linearly dependent over L , so

n∑
i=1

fiωi + gdy1 = 0 (27)
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with fi , g ∈ L not all zero. Note that, if y′

1(t) = 0, then y1 is a constant, and since
y1 ∈ tC[[t]] we would get y1 = 0. Then the yi are trivially linearly dependent; so
we may assume hereafter that y′

1(t) ̸= 0. Define a C-derivation

D : L → L , D( f (t)) =
f ′(t)
y′

1(t)
.

By Lemma 3.6, we have D1(ωi ) = 0. Furthermore, a direct computation shows

D1(dy1) = d(Dy1) = d(1) = 0.

Therefore, we have that∑
fi ⊗ ωi + g ⊗ dy1 ∈ ker((L ⊗C ker D1) → �L/C).

By Lemma 3.7, we may assume fi , g ∈ C.
Rewrite the equation

∑
fiωi + gdy1 = 0 in the form

n∑
i=1

fi · (−z−1
i dzi ) = −

n∑
i=1

fi dyi − gdy1.

Lemma 3.9 implies that either all fi = 0, or the z−1
i dzi are Q-linearly dependent.

In the first case, from (27) and the fact that the fi and g are not all zero, we would
get dy1 = 0. Hence, y1 is a constant, and, as noted earlier, this implies that y1 = 0.
Therefore, we suppose we are in the second case, say∑ mi (dzi )

zi
= 0

with mi ∈ Z not all zero. This implies

d
(∏

zmi
i∏

zmi
i

)
= 0,

so
∏

zmi
i = e

∑
mi yi is a constant. By considering constant terms, this constant must

be 1. Therefore, ∑
mi yi = 0,

giving the desired linear dependence of the yi over Q. □

4. The structural rank conjecture

We now return to the classical setting over C, rather than the function field setting,
and move on to consider matrices of elements of L . The simplest case of 2 × 2
matrices leads to the following four exponentials conjecture:
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Conjecture 4.1. Let M ∈ M2×2(L ). Then det(M) = 0 only if the rows or columns
of M are linearly dependent over Q.

This conjecture was first stated in print by Schneider [1957], though versions
had been considered over the previous two decades by Selberg, Siegel, Alaoglu and
Erdős [1944], and others (precise statements by Selberg and Siegel do not appear in
the literature, but see [Waldschmidt 2023] for a discussion of their consideration of
this problem). The four exponentials conjecture remains wide open. As an example,
Waldschmidt [2023] points out the following elementarily stated open question,
a positive answer for which would follow from the four exponentials conjecture:
let t be a real number such that 2t and 3t are integers; does it follow that t is a
nonnegative integer?

The strongest theoretical evidence for the conjecture is the following six expo-
nentials theorem:

Theorem 4.2. Let M ∈ M2×3(L ). Then rank(M) < 2 only if the rows or columns
of M are linearly dependent over Q.

The six exponentials theorem was proven independently by Lang [1966] and
Ramachandra [1968a; 1968b]. See Waldschmidt’s delightful personal account
[2023] for details and references on the history of the four exponentials conjecture
and the six exponentials theorem.

The six exponentials theorem follows as a special case of the theorem of
Waldschmidt and Masser that we will discuss later (see Section 5A). A naive
generalization of the four exponentials conjecture to matrices of arbitrary dimension
does not hold — in general, matrices may have lower than maximal rank even if the
rows and columns are linearly independent over Q. As an example, note that

det

x z 0
0 y −x
y 0 z

 = 0.

Therefore, if we substitute for x , y and z any elements of L that are linearly
independent, then we obtain a matrix of rank < 3 whose rows and columns are
linearly independent over Q. Examples such as these motivate the structural rank
conjecture, which was stated precisely in the introduction. The matrix above has
structural rank equal to 2.

4A. The p-adic setting. Most statements in transcendence theory have analogues
in the p-adic setting. As we will describe below, these analogues are particularly
important in Iwasawa theory. Let p be a prime number, and let Cp = Q̂p denote
the completion of the algebraic closure of Qp. The statements below work equally
well over Qp, but working with Cp provides extra generality. We normalize the
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p-adic absolute value on Cp in the usual way: |p| = p−1. There exists a p-adic
logarithm and a p-adic exponential function

logp : {x ∈ Cp : |x −1| < 1} → Cp, expp : {x ∈ Cp : |x | < p−1/(p−1)
} → Cp (28)

defined by the usual power series

logp(1 − x) = −

∞∑
n=1

xn

n
, expp(x) =

∞∑
n=1

xn

n!
.

The functions logp and expp are injective group homomorphisms on the domains
given in (28). The p-adic logarithm extends uniquely to a continuous homomor-
phism

logp : {x ∈ Cp : |x | = 1} → Cp

since every x ∈ Cp with |x | = 1 satisfies |xn
− 1| < 1 for an appropriate positive

integer n, and we may define logp(x) = (1/n) logp(xn). Next we extend logp to a
continuous homomorphism

logp : C∗

p → Cp

by fixing Iwasawa’s (noncanonical) choice logp(p) = 0. The kernel of logp on C∗
p

then consists of elements of the form pa
· u, where a ∈ Q and u is a root of unity.

We define the Q-vector space of p-adic logarithms of algebraic numbers,

Lp = {logp(x) | x ∈ Q∗
} ⊂ Cp.

The p-adic version of Baker’s theorem was proved by Brumer [1967] following
Baker’s method.

Theorem 4.3 (Baker and Brumer). Let y1, . . . , yn ∈ Lp be linearly independent
over Q. Then y1, . . . , yn are linearly independent over Q.

Similarly, there are natural analogues of Schanuel’s conjecture and the structural
rank conjecture in the p-adic setting. To be precise we state the latter of these:

Conjecture 4.4 (p-adic structural rank conjecture). Let

M ∈ Mm×n(Lp + Q) ⊂ Mm×n(Cp).

The rank of M is equal to the structural rank of M.

4B. Applications in number theory. Statements in transcendence theory have
important applications in algebraic number theory. In this section, we describe
two important conjectures in Iwasawa theory that are special cases of the p-adic
structural rank conjecture. These conjectures are our personal motivation for this
study.
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4B1. Leopoldt’s conjecture. Fix a prime p and an embedding Q ↪→ Cp.

Conjecture 4.5 (Leopoldt’s conjecture). Let F be a number field of degree n over Q

and let σ1, . . . , σn denote the embeddings F ↪→ Q. Let {u1, . . . , ur } be a Z-basis
for O∗

F/µ(F). Let
M = (logp σ j (ui )) ∈ Mr×n(Lp).

Then rankCp(M) = r .

Proposition 4.6. The p-adic structural rank conjecture implies Leopoldt’s conjec-
ture.

Proof. The important point here is that the archimedean analogue of the statement
of Leopoldt’s conjecture is known to be true; this is the classical nonvanishing of
the regulator of a number field. More precisely, if we fix an embedding Q ↪→ C and
let N =

(
log |σ j (ui )|

)
, where the absolute value denotes the usual absolute value

on C, then we have
rankC(N ) = r.

This is proved using the fact that log | · | takes values in the ordered field R (whereas
logp does not). For this reason, the p-adic statement lies far deeper than the
archimedean one.

The field Q(x1, . . . , xk) appearing in the definition of the structural rank provides
a bridge between the p-adic and complex settings, with the p-adic structural rank
conjecture doing most of the heavy lifting.

Let {c1, . . . , ck} ⊂ {σ j (ui )} be such that {logp(ci )} is a Q-basis for the Q-vector
space spanned by the logp(σ j (ui )). Write

M = (logp σ j (ui )) =

k∑
i=1

Mi logp(ci )

with Mi ∈ Mr×n(Q). The p-adic structural rank conjecture implies that

rankCp M = rankQ(x1,...,xk)

( k∑
i=1

Mi xi

)

≥ rankC

( k∑
i=1

Mi log |ci |

)
= rankC

(
log |σ j (ui )|

)
(29)

= r.

Hence, rankCp M ≥ r , and so we must have equality. Note that in the equality (29),
we are implicitly using the fact that, if ui ∈ Q∗ are p-adic units and mi ∈ Z are
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integers, then∑
mi logp(ui ) = 0 =⇒

∏
umi

i is a root of unity =⇒

∑
mi log |ui | = 0. □

Let us describe two applications of Leopoldt’s conjecture.

Algebraic (Iwasawa theory). By class field theory, Leopoldt’s conjecture implies
that the maximal pro-p abelian extension of F unramified outside p has Zp-rank
equal to r2 + 1, where 2r2 is the number of embeddings F ↪→ C with image not
contained in R. See for example the exercises in [Neukirch 1999, page 394].

Analytic (p-adic L-functions). Let F be a totally real field, so

r = rank O∗

F = [F : Q] − 1.

There is a p-adic analogue of the classical Dedekind zeta function of F , denoted
by ζF,p. A theorem of Colmez [1988] states that

lim
s→1

(s − 1)ζF,p(s) = (∗)Rp(F), (30)

where
Rp(F) = ± det

(
logp(σ j (ui ))i, j=1,...,r

)
(31)

and (∗) denotes a specific nonzero algebraic number, which we do not describe
precisely here. Note that, since there are r + 1 embeddings σ j , the last one has
been excluded in the definition of Rp(F). Which embedding is excluded, as well
as the ordering of the remaining embeddings, only affects the determinant in (31)
up to sign; the unspecified ± in (31) includes an orientation (a sign) that makes the
product independent of choices.

Colmez’s formula (30) is a p-adic “class number formula”. It implies that ζF,p(s)
has a pole at s = 1 if and only if Leopoldt’s conjecture for (F, p) holds.

4B2. The Gross–Kuz’min conjecture. There is an analogue of Leopoldt’s conjecture
due independently to Gross and Kuz’min concerning p-adic L-functions at s = 0
rather than s = 1. Unlike the case of classical L-functions, there is no functional
equation for p-adic L-functions relating the values at 0 and 1.

We refer the reader to [Gross 1981] for details about the Gross–Kuz’min conjec-
ture beyond what we write below. To state the conjecture, let H be a CM field and
H+ its maximal totally real subfield. Let

U−

p = {u ∈ H∗
: |u|w = 1 for all w ∤ p}.

Here w ranges over all places of H that do not divide p, including the archimedean
ones. Then rank(U−

p ) = r , where r is the number of primes of H+ above p that
split completely in H .
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Let X p denote the Cp-vector space with basis indexed by the places of H above p.
Let c denote the nontrivial element of Gal(H/H+), i.e., c is complex conjugation.
Let X−

p denote the largest quotient of X p on which c acts as −1. Then X−
p has

dimension r . We define two maps

ℓp, op : U−

p → X−

p .

The coordinate of op(u) at the component corresponding to a place P of H is
ordP(u), and the coordinate of ℓp(u) is logp(NHP/Qp(u)). We extend ℓp and op to
Cp-linear maps

U−

p ⊗ Cp → X−

p .

It is not hard to show using Dirichlet’s unit theorem that op is an isomorphism, and
we define

R−

p (H) = det(ℓp ◦ o−1
p ).

Conjecture 4.7 (Gross–Kuz’min). We have R−
p (H) ̸= 0.

A proof similar to the proof of Proposition 4.6 shows that the p-adic structural
rank conjecture implies the Gross–Kuz’min conjecture (one uses ordp in place
of log | · |). Once again there are algebraic and analytic interpretations of this
conjecture.

Algebraic (Iwasawa theory). By class field theory, the Gross–Kuz’min conjecture
implies a bound on the growth of the p-parts of class groups of fields in the
cyclotomic Zp-extension of H . See [Federer and Gross 1981, Proposition 3.9] for
details.

Analytic (p-adic L-functions). Let χ denote the nontrivial character of Gal(H/H+).
Then one knows that

ords=0 L p(χω, s) ≥ r.

This follows for odd p by work of Wiles [1990]; an alternative proof using the
Eisenstein cocycle that works for all p was given in [Charollois and Dasgupta 2014;
Spiess 2014] using an argument of Spiess. In joint work with Darmon and Pollack
then with Kakde and Ventullo [Dasgupta et al. 2011; 2018], we proved that

L(r)
p (χω, 0) = (∗)R−

p (H),

where (∗) is a specific nonzero rational number. This is a p-adic class number
formula at s = 0. Therefore, L p(χω, s) has a zero of order exactly r at s = 0 if
and only if the Gross–Kuz’min conjecture is true.

4B3. Representation-theoretic considerations. Retaining the setting of the Gross–
Kuz’min conjecture, suppose now that H contains a totally real field F such that
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H/F is Galois. Let G = Gal(H/F). For any representation M of G over Cp,
and character χ of an irreducible representation V , let Mχ denote the χ-isotypic
component of M (i.e., the span of the subrepresentations of M isomorphic to V ).

Then

U−

p =

⊕
χ

Uχ
p , X−

p =

⊕
χ

Xχ
p ,

where the sums range over the characters χ of irreducible representations V of G
on which c acts as −1. The maps ℓp and op also decompose as sums of maps

ℓχ
p, oχ

p : Uχ
p → Xχ

p .

We define

Rχ
p (H) = det(ℓχ

p ◦ (oχ
p)−1).

We then have

R−

p (H) =

∏
χ

Rχ
p (H). (32)

Now, for χ as above,

rχ
p := dimCp Uχ

p = dimCp Xχ
p =

∑
p| p

dimCp V Gp,

where the sum ranges over the primes of F above p, Gp ⊂ G denotes the decompo-
sition group of a prime of H above p, and V Gp denotes the maximal subspace of V
invariant under Gp. When rχ

p = 1, the regulator Rχ
p (H) is a Q-linear combination

of p-adic logarithms of algebraic numbers. As pointed out in Proposition 2.13 of
Gross [1981], the nonvanishing of Rχ

p (H) follows from the theorem of Brumer and
Baker (Theorem 4.3) in this case.

Theorem 4.8. If rχ
p = 1, then Rχ

p (H) ̸= 0.

There is a particular case when every rχ
p ≤ 1. If F contains only one prime

above p (for example F = Q), and G is abelian (so every V has dimension 1), then
clearly rχ

p ≤ 1. Combining Theorem 4.8 with the factorization (32), we obtain:

Corollary 4.9. Let F be a totally real field with exactly one prime above p, and
let H be a CM abelian extension of F. Then the Gross–Kuz’min conjecture holds
for H.

A similar analysis holds for Leopoldt’s conjecture, and one obtains:

Theorem 4.10 [Brumer 1967, Theorem 2]. Leopoldt’s conjecture holds for abelian
extensions of Q.
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4C. A theorem of Roy. Damien Roy has proven a number of beautiful results in
transcendence theory. We prove one of these now.

Theorem 4.11 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture that states that, if y1, . . . , yn ∈ L are Q-linearly
independent, then

trdQ Q(y1, . . . , yn) = n.

Similarly, the p-adic structural rank conjecture is equivalent to the p-adic version
of the special case of Schanuel’s conjecture, but we will content ourselves with the
archimedean setting here. Theorem 4.11 is proven in [Roy 1995].

One direction of Roy’s theorem is relatively elementary.

Lemma 4.12. The special case of Schanuel’s conjecture implies the structural rank
conjecture.

Proof. We assume the special case of Schanuel’s conjecture. We first consider a
matrix M with entries in L . Let M =

∑
Mi ci with Mi ∈ Mm×n(Q) and ci ∈ L

linearly independent over Q. Write

Mx =

∑
Mi xi ∈ Mm×n(Q(x1, . . . , xn))

and let r = rank(Mx). Let Jx be an r × r submatrix of Mx such that

det(Jx) = P(x1, . . . , xn) ̸= 0

in Q[x1, . . . , xn]. The determinant of the corresponding submatrix of M is equal to
P(c1, . . . , cn) and hence cannot vanish since the ci are algebraically independent,
by the special case of Schanuel’s conjecture. Therefore, rank(M) ≥ r . Of course, it
is clear that rank(M) ≤ r , so we get equality.

Now assume M has entries in L + Q, but not in L . There are two cases.

Case 1: 1 is not in the Q-linear span of the entries of M . The Q-basis for this
span can be taken to have the form {1 + c1, c2, . . . , cn}, where ci ∈ L . It is easy to
check that the ci must be Q-linearly independent, and hence, by the special case of
Schanuel’s conjecture, they are algebraically independent. The same is therefore
true of {1 + c1, c2, . . . , cn}. The previous proof then applies to this basis.

Case 2: 1 is in the Q-linear span of the entries of M . We may take a Q-basis of
this span of the form {c0 = 1, c1, . . . , cn}, where ci ∈ L for i ≥ 1. We proceed as
before. Write

M =

n∑
i=0

Mi ci , Mx =

n∑
i=0

Mi xi .

Let r = rank(Mx) and Jx an r × r submatrix of Mx with

det(Jx) = P(x0, . . . , xn) ̸= 0.
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The determinant of the corresponding submatrix J of M is P(1,c1, . . . ,cn). Since P
is a nonzero homogeneous polynomial of degree r , its specialization P(1, x1, . . . , xn)

is also nonzero, so det(J ) = P(1, c1, . . . , cn) ̸= 0 by the algebraic independence of
the ci . Therefore, rank(M) ≥ r , as desired. □

The main content of the converse is in the following lemma:

Lemma 4.13. Let k be a commutative ring and let P ∈ k[x1, . . . , xn]. There exists
a square matrix N with entries in

k + kx1 + · · · + kxn

such that det(N ) = P.

Let us for the moment take the lemma for granted and prove Roy’s theorem.

Proof of Theorem 4.11. Assume the structural rank conjecture. Suppose c1, . . . , cn ∈

L are linearly independent over Q and that P(c1, . . . , cn) = 0 for some nonzero
P ∈ Q[x1, . . . , xn]. As in Lemma 4.13, let N be a square matrix with entries in
Q + Qx1 + · · · + Qxn such that det(N ) = P .

Let M be the matrix N with xi replaced by ci . We then have det(M) = 0. Note
that the matrix Mx in the structural rank conjecture is the homogenization of the
matrix N , with entries in Qx0 +Qx1 +· · ·+Qxn . We are using here that the ci are
Q-linearly independent from 1, since e is transcendental. The conjecture implies
that det(Mx) = 0, whence det(N ) = 0 by specializing x0 = 1, a contradiction. □

It remains now to prove Lemma 4.13. We first remark that this lemma is actually
the starting point of an important avenue of research in theoretical computer science,
where the lemma is usually attributed to Valiant [1979]. There are well-known
efficient algorithms for calculating the determinant of a matrix, so expressing a
general polynomial as a determinant gives an algorithm for efficiently calculating
values of a polynomial. The minimal dimension of a matrix necessary to express a
given polynomial as a determinant is known as the determinantal complexity of the
polynomial. The study of the growth of determinantal complexity in families of
polynomials is a topic with an extensive literature.

We follow Roy’s proof of Lemma 4.13. We will prove the more general statement
that, given any matrix N ∈ Mm×m(Pd), there exists a matrix N ′

∈ Mm′×m′(P1) such
that det(N ) = det(N ′). Lemma 4.13 is the case where we start with an element
N ∈ Pd , which we view as a 1 × 1 matrix. The advantage of the more general
statement is that it may be proven by induction on d. We need to establish two
sublemmas. The first establishes that, given a matrix N ∈ Mm×m(Pd), we may write
it as a product of matrices with entries in spaces Pd ′ with d ′ < d. The matrices
that arise in the proof are not necessarily square, and this is resolved by the second
lemma.
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Lemma 4.14. For a nonnegative integer d , let Pd ⊂ k[x1, . . . , xn] denote the k-
subspace of polynomials of total degree ≤ d. Given N ∈ Mm×m(Pd) with d ≥ 1,
there exists an integer s and matrices

A ∈ Mm×s(Pd−1), B ∈ Ms×m(P1)

such that N = AB.

Proof. Let N = (ai, j ) with ai, j ∈ Pd . We can write

ai, j =

n∑
ℓ=1

ci, j,ℓxℓ + ci, j,n+1

with ci, j,ℓ ∈ Pd−1 for 1 ≤ ℓ ≤ n + 1. Let

ci, j = (ci, j,ℓ) ∈ M1×(n+1)(Pd−1), x =


x1

x2
...

xn

1

 ∈ M(n+1)×1(P1).

Define

A = (ci, j ) ∈ Mm×m(n+1)(Pd−1), B = x ⊗ 1m×m ∈ M(n+1)m×m(P1).

Then one calculates that N = AB. □

The matrices A and B in Lemma 4.14 are not square, so we cannot recursively
apply the lemma. This is resolved by the following observation:

Lemma 4.15. Let A ∈ Mm×s, B ∈ Ms×m . Then

det(AB) = det
(

Is B
−A 0

)
,

where the matrix on the right is square of dimension m + s.

Proof. We simply note that(
Is 0
A Im

) (
Is B

−A 0

) (
Is −B
0 Im

)
=

(
Is 0
0 AB

)
and take determinants of both sides. □

We can now prove our main lemma.

Proof of Lemma 4.13. As indicated above, we will show by induction on d that,
for any matrix N ∈ Mm×m(Pd), there exists a matrix N ′

∈ Mm′×m′(P1) such that
det(N ) = det(N ′).

The base case d =1 is trivial. For d >1 we use Lemma 4.14 to write N = AB with
A ∈ Mm×s(Pd−1) and B ∈ Ms×m(P1). Lemma 4.15 then yields det(N ) = det(N ′)

with N ′
∈ M(m+s)×(m+s)(Pd−1). The induction is now complete.

The lemma is the case where we start with a 1 × 1 matrix in Pd . □
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5. The theorem of Waldschmidt and Masser

To our knowledge, the strongest general unconditional result toward the structural
rank conjecture is Theorem 1.6 of Waldschmidt and Masser, stated in the introduc-
tion. For the sake of variety, we will prove the p-adic version of the conjecture in
this section, though the proof of the archimedean version is essentially the same
(both versions are proven in [Waldschmidt 1981]). The statement of the p-adic
version is exactly the same as the archimedean one, with L replaced by Lp.

Theorem 5.1 (Waldschmidt and Masser). Let m and n be positive integers and let
M ∈ Mm×n(Lp). Suppose that

rank(M) <
mn

m+n
.

Then there exist P ∈ GLm(Q) and Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension m′
× n′ with m′/m + n′/n > 1.

5A. Applications. Let us first state some applications of the complex and p-adic
Waldschmidt–Masser theorems. The six exponentials theorem, which had been
proven earlier in the 1960s, is a corollary of the Waldschmidt–Masser theorem.

Proof of Theorem 4.2. The case where M = 0 is trivial. Therefore suppose
M ∈ M2×3(L ) has rank 1. Since 1 < 6

5 , the Waldschmidt–Masser theorem implies
that, after a rational change of basis on the left and right, the matrix M has the
block matrix form

P M Q =

(
M1 0
M2 M3

)
,

where the 0 block has dimension 1×2 or 2×1. In the first case, our matrix has the
form

P M Q =

(
∗ 0 0
∗ ∗ ∗

)
.

Such a matrix has rank 1 only if it has the form

P M Q =

(
0 0 0
∗ ∗ ∗

)
or P M Q =

(
∗ 0 0
∗ 0 0

)
.

In the first case, we see that P M has the same shape, which says that the rows
of M are linearly dependent over Q. In the second case, we see that M Q has the
same shape, which says that the columns of M are linearly dependent over Q. The
case where the original block of zeroes has dimension 2 × 1 is similar. □
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In the case of a square matrix, the Waldschmidt–Masser theorem simplifies to
the following:

Corollary 5.2. Let M ∈ Mn×n(L ) or Mn×n(Lp). Suppose that rank(M) < 1
2 n.

Then there exist P, Q ∈ GLn(Q) such that

P M Q =

(
M1 0
M2 M3

)
(block matrix)

where the 0 block has dimension m × m′ with m + m′ > n.

Corollary 5.3. The Leopoldt regulator matrix and the Gross–Kuz’min regulator
matrix have rank at least half their expected ranks.

Proof. Let r be the expected rank of the Leopoldt matrix. Let

M ′
=

(
log |σ j (ui )|

)
i, j=1,...,r

be an r × r submatrix of the archimedean regulator with det(M ′) ̸= 0. Let

M = (logp σ j (ui ))i, j=1,...,r

be the corresponding submatrix of the Leopoldt matrix.
If the rank of the Leopoldt matrix is less than 1

2r , the same is true for M . The
Waldschmidt–Masser theorem then implies that there exist P, Q ∈GLr (Q) such that
P M Q has an upper right 0 block with dimension m × m′, where m + m′ > r . But
then P M ′Q has this same property. This implies that det(M ′) = 0, a contradiction.

The same proof works for Gross’s regulator, using ordp instead of log | · |. □

5B. Auxiliary polynomial. As in the proof of Baker’s theorem, the Waldschmidt–
Masser theorem is proven by constructing, under the assumptions of the theorem, a
suitable auxiliary polynomial whose existence implies the conclusion of the theorem.
Waldschmidt’s result is that the auxiliary polynomial exists, and Masser’s theorem
is that this polynomial gives the desired conclusion. Let us describe this in greater
detail.

We have M = (ai, j ) with ai, j = logp(xi, j ) ∈ Lp. Here xi, j ∈ Q∗. After scaling
M if necessary, we may assume that |xi, j − 1|p < 1. For i = 1, . . . , m, let

xi = (xi, j ) j=1,...,n ∈ (Q∗)n
⊂ (C∗

p)
n.

Let X = ⟨x1, x2, . . . , xm⟩ ⊂ (Q∗)n be the subgroup generated by the xi . For each
positive integer N , define

X (N ) =

{ m∏
i=1

xai
i

∣∣∣ ai ∈ Z, 0 ≤ ai ≤ N
}
.

For a polynomial P in several variables, we write deg(P) for the total degree of P .
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Theorem 5.4 [Waldschmidt 1981]. Suppose r = rank(M) < mn/(m + n). There
exists ϵ > 0 such that, for all N sufficiently large, there exists a nonzero P ∈

Z[t1, . . . , tn] such that deg(P) < N m/n−ϵ and P(x) = 0 for all x ∈ X (N ).

Waldschmidt’s theorem is the “transcendence” part of Theorem 1.6. Masser’s
theorem, which is a purely algebrogeometric statement, takes the existence of
an auxiliary polynomial P as above and deduces the relations necessary to give
the desired result about the original matrix M . We will describe the statement
of Masser’s theorem precisely in a moment, but first let us comment about the
numerology concerning the auxiliary polynomial in the statement of Theorem 5.4.
We can view the existence of a polynomial with prescribed zeroes as a system of
linear equations in the coefficients of the polynomial. Each zero gives one such
linear equation. If the xi, j are generic, the size of X (N ) is (N +1)m . A polynomial
of degree < d has fewer than dn coefficients. Therefore, if the xi, j are generic,
we expect that we would require dn

≥ (N + 1)m for a polynomial to exist, so, in
particular, d > N m/n . For this reason, the existence of the auxiliary polynomial P
in Theorem 5.4 does not hold for generic xi, j .

Let us now state Masser’s theorem precisely. Let k be a field of characteristic 0,
let (xi, j ) ∈ Mm×n(k∗). Define X and X (N ) as above. Define a pairing

Zm
× Zn

→ k∗, ⟨(ai ), (b j )⟩ =

∏
i, j

xai b j
i, j .

Theorem 5.5 [Masser 1981]. Let N > 0 and suppose there exists P ∈ k[t1, . . . , tn]
such that deg(P) < (N/n)m/n and P(x) = 0 for all x ∈ X (N ). Then there exist
subgroups A ⊂ Zm and B ⊂ Zn of ranks m′ and n′, respectively, with ⟨A, B⟩ = 1
and m′/m + n′/n > 1.

Theorems 5.4 and 5.5 combine to give Theorem 5.1. In the remainder of this
section, we prove these two theorems.

5C. Waldschmidt’s theorem. We will give two proofs of Waldschmidt’s theorem.

5C1. Proof 1 of Waldschmidt’s theorem. Our first proof is similar in spirit to
Waldschmidt’s original proof. For simplicity, we will assume xi, j ∈ Z and xi, j ≡

1 (mod p). Standard techniques (scaling by an integer to obtain algebraic integers,
and taking norms to obtain integers) allow one to handle the general case, but we
would like to avoid the extra notation required.

Let r denote the rank of the matrix M ∈ Mm×n(Zp). After reordering columns
if necessary, we can assume that the last n − r columns of M are in the Zp-linear
span of the first r columns. Then, for each i > r , there exist λi,1, . . . , λi,r ∈ Zp

such that, if z = (z1, . . . , zn) ∈ X , we have

zi = zλi,1
1 zλi,2

2 · · · zλi,r
r for i > r. (33)
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To make sense of the right-hand side of this equality, note that, for λ ∈ Zp, the
function

tλ
= (1 + (t − 1))λ =

∞∑
i=0

(
λ

i

)
(t − 1)i (34)

is a convergent power series in t − 1. Hence, if t ∈ 1 + pZp, then (34) converges
in Zp.

Our goal is to find a polynomial P ∈Z[t1, . . . , tn] such that P(z)=0 for z ∈ X (N ).
Define ui = ti − 1 and consider the canonical map

ϕ :Z[t1, . . . , tn]→Zp[[u1, . . . , un]]/(ti−tλi,1
1 · · · tλi,r

r )n
i=r+1

∼=Zp[[u1, . . . , ur ]]. (35)

The elements in the quotient in (35) are interpreted as power series in the ui via (34).
Fix a positive integer c. Define ϕc to be the composition of ϕ with the canonical

reduction

Zp[[u1, . . . , ur ]] → (Z/pcZ)[[u1, . . . , ur ]]/(uc
1, . . . , uc

r ). (36)

If a polynomial P ∈ Z[t1, . . . , tn] satisfies ϕc(P) = 0, then P(z) will be divisible
by pc for any z ∈ X . Indeed, ϕ(P)(z) = P(z) is well defined for z ∈ X , since the
kernel of ϕ vanishes on X . Next, it is clear that ϕ(P)(z) (mod pc) depends only
on the coefficients of ϕ(P) modulo pc. Finally, we note that

zi ≡ 1 (mod p) =⇒ ui ≡ 0 (mod p) =⇒ uc
i ≡ 0 (mod pc).

Now, the ring on the right in (36) is finite. The total number of monomials in
u1, . . . , ur modulo (uc

1, . . . , uc
r ) is cr , so the total number of possible values of

these coefficients mod pc is
(pc)cr

= pcr+1
.

Therefore, by the pigeonhole principle, if we have a subset of Z[t1, . . . , tn] of size
greater than pcr+1

, then some two elements of the subset, say P1 and P2, will have
equal image under ϕc, and the difference P = P1−P2 will satisfy P(z)≡0 (mod pc)

for all z ∈ X .
We will take the subset of all polynomials with degree in each variable less than

some constant d with coefficients that are nonnegative integers less than ph for
some constant h. The size of this subset is phdn

, and hence the condition that we
want is

hdn > cr+1. (37)

Now, we also want to use the principle of “discreteness of the integers” discussed
in the proof of Baker’s theorem to ensure that the condition P(z) ≡ 0 (mod pc) for
z ∈ X (N ) implies that P(z) = 0. For this, we need a crude bound on |P(z)| (the
archimedean absolute value). Suppose that A is an upper bound on |xi, j |. Then, for
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each z = (z1, . . . , zn) ∈ X (N ), we have |zi | < ANm . Therefore, each monomial in
the evaluation of P(z) has absolute value at most ph ANdmn , and in total we obtain

|P(z)| < dn ph ANdmn.

Therefore, if
dn ph ANdmn < pc, (38)

then we indeed have the implication

P(z) ≡ 0 (mod pc) =⇒ P(z) = 0.

To prove the theorem, we set d =⌊N m/n−ϵ/n⌋, so that the constructed polynomial
P will have degree less than N m/n−ϵ , as required. We search for parameters h and c
such that both (37) and (38) hold. Not surprisingly, these inequalities are pulling in
the opposite direction — the first says that h is large relative to c, and the second
says that h is small relative to c. For N large, the two inequalities will be satisfied if

h · N m−nϵ
≫ cr+1, c > k log N + h + k ′N (m+n)/n−ϵ

for the appropriate constants k and k ′.
If we set c = N (m+n)/n+ϵ and h = cN−δ for a small δ > 0, then it is clear that

the second inequality will hold for N sufficiently large. Plugging these parameters
into the first inequality yields

m − δ >
(m

n
+ 1 + ϵ

)
r.

It is clear that we can choose small positive δ and ϵ satisfying this inequality if

m >
(m

n
+ 1

)
r, i.e., r <

mn
m+n

.

This completes the proof.

5C2. Proof 2 of Waldschmidt’s theorem. For our second proof, we will return to
the completely general case, i.e., we do not assume that xi, j ∈ Z, only that xi, j ∈ Q∗.
Our motivation in giving the second proof is that it introduces an important topic
in transcendence theory not discussed earlier, namely the theory of interpolation
determinants pioneered by Michel Laurent. Laurent [1991] gave a new proof of
the six exponentials theorem using his new theory. The basic idea is that we will
view the existence of the desired polynomial P as the solution of a linear system
of equations in the coefficients of the polynomial, and show that the associated
determinant vanishes.

Again we will construct a polynomial P such that the degree in each variable is
less than d = ⌊N m/n−ϵ/n⌋ and such that P(z) = 0 for all z ∈ X (N ). Consider the
matrix whose rows are indexed by our desired zeroes z ∈ X (N ), and columns are
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indexed by the exponents

y ∈ Zn(d − 1) = {(y1, . . . , yn) | 0 ≤ yi ≤ d − 1}

of the monomials of our desired polynomial,

L = (zy) ∈ M(N+1)m×dn (Cp).

It suffices to show that rank(L) < N m−nϵ/nm < dn , as then any nonzero vector in
its kernel will be the coefficients of our desired polynomial. Of course, by making
ϵ smaller, we can ignore the constant nm , since N ϵ

≫ nm for N large.
We state without proof the following elementary interpretation of the rank of a

matrix:

Lemma 5.6. Let k be a field and suppose that a matrix

(ai, j ) ∈ Mm×n(k)

has rank equal to r . Then there exist vectors

β1, . . . , βm, γ1, . . . , γn ∈ kr

such that ai, j = ⟨βi , γ j ⟩.

In our situation, we have M = logp(xi, j ) ∈ Mm×n(Cp) with rank r . We write

logp(xi, j ) = ⟨βi , γ j ⟩ for βi , γ j ∈ Cr
p.

Without loss of generality, we can scale all the βi and γ j to assume all their
coordinates have absolute value < p−1. (This just scales the matrix M , which
affects neither the assumptions nor conclusions of the theorem.)

If z =
∏m

i=1 xℓi
i for ℓ ∈ Zm , then, for y ∈ Zn , we have

zy
= exp

〈∑
βiℓi ,

∑
γ j y j

〉
.

Next we will require a p-adic Schwarz’ lemma. For a positive integer d and real
R > 0, define

Bd(R) = {(z1, . . . , zd) : |zi | ≤ R for all i} ⊂ Cd
p.

For analytic f : Bd(R) → Cp, define

| f |R = max
z∈Bd (R)

| f (z)|. (39)

Lemma 5.7. Suppose that f : B1(R) → Cp is analytic and has a zero of order at
least n at z = 0. Then, for any 0 < R′ < R, we have

| f |R′ ≤

(
R
R′

)−n

| f |R.
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Proof. Let g(z) = f (z)/zn . This is analytic on B1(R) since f has a zero of order
at least n at z = 0. For any z ∈ B1(R′), we have

| f (z)| ≤ (R′)n
|g(z)| ≤ (R′)n

|g|R =

( R′

R

)n
| f |R.

The last equality uses the p-adic maximal modulus principle, which states that
the maximum in (39) is achieved on the boundary |z| = R. See [Cherry 2009,
Theorem 1.4.1] or [Stansifer 2012, Theorem 7] for a proof of this analytic fact. □

Now we present Laurent’s main theorem on interpolation determinants.

Theorem 5.8 (Laurent). Let 0 < R′ < R and let f1, . . . , fd be analytic functions

Br (R) → Cp.

Let z1, . . . , zd ∈ Br (R′). Then L = det( f j (zi )) satisfies

|L| ≤

(
R
R′

)−2r (d) d∏
i=1

| fi |R,

where, for d sufficiently large relative to r ,

2r (d) >
r
6e

d(r+1)/r . (40)

Proof. Define 1(z) = det( f j (zi z)), which is analytic on |z| ≤ R/R′. We will show
that 1(z) has a zero of order at least 2r (d) at z = 0 for some combinatorial function
2r satisfying (40), which we will define in a moment. The result then follows from
Schwarz’ lemma:

|L| = |1(1)| ≤

(
R
R′

)−2r (d)

|1|R/R′

using the trivial upper bound

|1|R/R′ ≤

d∏
i=1

| fi |R.

(Note that, in the complex case, we would need a factor of d! on the right, but, in
the nonarchimedean setting, this factor is not required because of the strong triangle
inequality.)

Write each fi as a power series in the variables u1, . . . , ur ∈Cp. By multilinearity
of the determinant, it suffices to consider the case f j (u) = uv j = uv1 j

1 uv2 j
2 · · · uvr j

r

for nonnegative integers vi j . Then

1(z) = z
∑

j ∥v j ∥ det(zv j
i ),
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where ∥v j∥ = v j1 +v j2 +· · ·+v jr . If any two tuples v j are equal, this determinant
vanishes and 1(z) is identically 0. If not, then the order of vanishing is at least

2r (d) := min
{ d∑

j=1

∥v j∥

∣∣∣ v1, . . . , vd ∈ (Z≥0)r with vi ̸= v j if i ̸= j
}
.

For example, 21(d) =
1
2 d(d − 1). For a proof of the combinatorial inequality (40),

see [Waldschmidt 1992, Lemma 4.3]. □

We can now apply Laurent’s theorem to complete the proof of Waldschmidt’s
theorem. We want to show that any square submatrix L ′

= (zy
i ) of L of dimension

dn
≈ N m−nϵ has vanishing determinant, where

z1, . . . , zd ∈ X (N ), y ∈ Zn(d − 1), d = ⌊N m/n−ϵ
⌋.

As explained earlier, the entries of the matrix L ′ can be written in the form
exp

(〈∑
βiℓi ,

∑
γi yi

〉)
with ℓ ∈ Zm(N ) corresponding to z. For each y we have the

function
fy(u1, . . . , ur ) = exp

(〈
u,

∑
γi yi

〉)
We apply Laurent’s theorem on interpolation determinants with R = 1 and R′

= 1/p.
We find

|L ′
| ≤ C−N (m−nϵ)(r+1)/r

,

where C > 1 is a constant.
Now we want to put a bound on the archimedean absolute value of L ′. Let

A = max
i, j

|xi, j |∞.

Then |zy
|∞ ≤ AN ·N (m/n)−ϵn . Therefore,

|L ′
|∞ ≤ (N m−nϵ)! · DN (m/n)+1+m−(n+1)ϵ

.

The factorial is dominated by the other term and can be ignored. Scaling to obtain
integrality just scales D. The same is true for taking norm from the field generated
by the xi, j down to Q in order to obtain an element of Z.

Therefore, we will have L ′
= 0 if

C N (m−nϵ)(r+1)/r
> DN (m/n)+1+m−(n+1)ϵ

.

Of course, for this inequality to hold for large N , the precise values of C and D do
not matter; all that matters is that we have the corresponding inequality of exponents.

It therefore suffices to have

(m − nϵ)
r +1

r
>

m
n

+ 1 + m − (n + 1)ϵ.
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This simplifies to
1
r

>
m+n
mn

+
ϵ

m

(n−r
r

)
.

There exists ϵ > 0 satisfying this inequality if and only if

r <
mn

m+n
.

This gives the desired vanishing of det(L ′) and completes the second proof of
Waldschmidt’s theorem.

5D. Masser’s theorem. We conclude this section by proving Masser’s theorem,
stated in Theorem 5.5 above. This is a purely algebrogeometric statement that does
not involve the logarithm or exponential functions. In particular, we work over an
arbitrary field k of characteristic 0. Recall the notation established in Section 5B.
We let the group X ⊂ (k∗)n act on the polynomial ring R = k[t1, . . . , tn] by

z · f = f (z1t1, z2t2, . . . , zntn).

Recall that the subgroup X is generated by elements x1, . . . , xm . If a ∈ Zm , we
write xa

=
∏m

i=1 xai
i ∈ X . For a prime ideal p ⊂ R, let

StabX (p) = {a ∈ Zm
| xa

· p = p}.

Before delving into the proof, it is instructive to consider the simplest case,
n =m =2. We let N >0 and suppose there exists P ∈ k[t1, t2] such that deg(P)< N
and P(x) = 0 for all x ∈ X (2N ). We want to show that either

(A) there is a nonzero a ∈ Z2 such that xa
= (1, 1) (this corresponds to m′

= 1 and
n′

= 2), or

(B) there exists a nonzero b ∈ Z2 such that zb
= zb1

1 zb2
2 = 1 for all z ∈ X (this

corresponds to m′
= 2 and n′

= 1).

We factor P into a product
∏

Pi of irreducibles of k[t1, t2]. We can assume that
none of the Pi are monomials, since monomials have no zeroes in (k∗)2. We will
first show that, if any Pi satisfies rank

(
StabX ((Pi ))

)
= 2, then we are in the second

case above. This follows from Lemma 5.9 below, but it is relatively easy to see
in this case explicitly. Indeed, if ta1

1 ta2
2 is a monomial occurring in Pi , then the

equation z Pi = λPi for z ∈ X and λ ∈ k∗ yields

za1
1 za2

2 = λ.

Letting t
a′

1
1 t

a′

2
2 be some other monomial occurring in Pi (recall we may assume that

Pi is not a monomial) we get a similar equation; dividing these two cancels λ, so
we obtain

zb1
1 zb2

2 = 1,
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where bi = ai − a′

i for i = 1, 2 are not both zero. If rank
(
StabX ((Pi ))

)
= 2, then

this holds for all z in a finite-index subgroup of X , so, replacing (b1, b2) by an
appropriate multiple, we are in case (B).

Therefore, we are left to consider the case where each irreducible factor Pi of P
satisfies rank

(
StabX ((Pi ))

)
≤ 1. In this case, we will show that there is a polynomial

of the form

Q =

k∑
i=1

ai (zi · P),

where ai ∈ Z and zi ∈ X (N ), such that P and Q are relatively prime. Let us first
explain why this completes the proof. Since P vanishes on X (2N ), each polynomial
z · P with z ∈ X (N ) vanishes on X (N ); hence, the polynomial Q vanishes on X (N ).
Therefore, both P and Q vanish on X (N ). The set X (N ) has size (N + 1)2 unless
we are in case (A) above. But deg Q ≤ deg P < N , and the polynomials are coprime,
so we would obtain a contradiction to Bézout’s theorem if these polynomials had
(N + 1)2 common zeroes. We must therefore be in case (A).

To see the existence of the polynomial Q, we first show that, for each irreducible
polynomial Pi , there exists zi such that z−1

i · Pi does not divide P , or, equivalently,
Pi does not divide zi · P . This is established by counting. Since rankX ((Pi )) ≤ 1,
there are at least N +1 distinct ideals among the set (z−1

· Pi ) as z ranges over X (N ).
See Lemma 5.12 below for a proof. But P has degree less than N , which is a
bound on the number of irreducible factors, so some z−1

· Pi must not be a factor
of P . With these zi in hand, the existence of the linear combination Q is an easy
inductive argument using the pigeonhole principle; see Lemma 5.13 below.

We now return to the general case. Recall that the height ht(p) of a prime ideal p
is the largest integer r such that there exists a chain of distinct prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pr = p.

Lemma 5.9. Let m= (t1 −1, . . . , tn −1). Let p⊂m be a prime of height n′ and let
A = StabX (p). There exists a subgroup B ⊂ Zn of rank ≥ n′ such that ⟨A, B⟩X = 1.

Proof. Let B = {y ∈ Zn
| ⟨A, y⟩X = 1}. Choose Z ⊂ Zn such that

Qn
= QB ⊕ QZ .

We want to show that s := rank(Z) ≤ n − n′. Let {z1, . . . , zs} be a basis for Z .
Write zi = (zi,1, . . . , zi,n).

For i = 1, . . . , s, let ui =
∏n

j=1 t zi, j
j ∈ R′

= k[t±1
1 , . . . , t±1

n ]. Since

trdk Frac(R′/pR′) = n − n′,
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if s > n − n′ then there exists a nonzero polynomial Q with coefficients in k such
that Q(u1, . . . , us) ∈ pR′. Suppose this is the case, and write Q(u1, . . . , us) as a
polynomial Q′(t1, . . . , tn) ∈ pR′.

For any a ∈ A, we have xa
· Q′

∈ pR′, so

Q′(xat) ∈ pR′
⊂ mR′

=⇒ Q′(xa) = 0 =⇒ Q(⟨a, z1⟩X , . . . , ⟨a, zs⟩X ) = 0.

Fix a and apply this with a replaced by da, as d = 0, 1, . . . . Using the Vandermonde
trick from Baker’s theorem, we find that some Z-linear combination of the zi is
orthogonal to a. More precisely, we have ⟨a, w⟩X = 1 for some

w ∈ S =

{ s∑
i=1

wi zi ̸= 0
∣∣∣ |wi | ≤ deg(Q)

}
.

Therefore,
A =

⋃
w∈S

w⊥.

But A is a finitely generated free abelian group and cannot be written as a finite
union of proper subgroups. Therefore, there exists w ∈ S such that ⟨A, w⟩ = 1. But
then w ∈ B, contradicting w ∈ Z . Therefore, s ≤ n − n′, as desired. □

Given Lemma 5.9, our task now is to show the existence of a prime ideal p with
height n′ such that rank(StabX (p)) = m′, where m′/m +n′/n > 1. This is provided
by the following theorem:

Theorem 5.10. Let N > 0 and suppose there exists

P ∈ k[t1, . . . , tn]

such that deg(P) < (N/n)m/n and P(x) = 0 for all x ∈ X (N ). Then there exists a
prime ideal p ⊂ m of height n′ such that

rank(StabX (p)) = m′, where f rm′/m +
n′

n
> 1.

Lemma 5.9 and Theorem 5.10 combine to give Theorem 5.5. We will prove the
contrapositive of Theorem 5.10. For each 1 ≤ n′

≤ n, let m′
= m′

n′ be the maximal
rank of StabX (p) as p ranges over the primes contained in m with height equal
to n′. If any m′

= m, then m′/m +n′/n = 1+n′/n > 1, so we are done. Therefore,
assume that every m′ < m and define

ηn′ =
n′

m − m′
.

Note that
ηn′ >

n
m

⇐⇒
m′

m
+

n′

n
> 1. (41)

Theorem 5.10 will arise as a corollary of the following statement:
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Theorem 5.11. Let f ∈ R have degree D and let

N = Dη1 + Dη2 + · · · + Dηn .

There exists z ∈ X (N ) such that f (z) ̸= 0.

Theorem 5.11 implies Theorem 5.10. Indeed, if each ηn′ for 1 ≤ n′
≤ n satisfies

ηn′ ≤ n/m, then Theorem 5.11 implies that there exists z ∈ X (n deg(P)n/m) such
that P(z) ̸= 0. But, by assumption, n deg(P)n/m < N , yielding a contradiction to
the assumption P(z) = 0 for all z ∈ X (N ). Therefore, some ηn′ is larger than n/m,
giving the desired result by (41).

The proof of Theorem 5.11 requires significant commutative algebra. We first
establish some notation. Let

M =

⋃
z∈X (N )

z ·m, SM = R −M.

The set SM is multiplicatively closed. For an ideal a ⊂ R, define

a∗
= (S−1

M a) ∩ R ⊃ a.

Note that, for a prime ideal p⊂ R, we have p∗
= p if and only if p⊂ z ·m for some

z ∈ X , and p∗
= R otherwise. Indeed, if p∗

̸= p, then there exists t/s ∈ (S−1
M p)∩ R

such that t/s /∈ p. Write t/s = g ∈ R with g /∈ p. Since t = gs ∈ p and p is prime,
this implies that s ∈ p. Since s ∈ SM, we conclude that p ̸⊂M, and hence p ̸⊂ z ·m

for any z ∈ X (N ). Furthermore, in this case, we have s/s = 1 ∈ p∗, so p∗
= R. Now,

all of these steps are clearly reversible, except possibly “p ̸⊂M implies p ̸⊂ z ·m for
all z ∈ X (N )”. The inverse (equivalently, converse) of this statement reads “p ⊂ M

implies p⊂ z ·m for some z ∈ X (N )”. This is precisely the prime avoidance lemma.
This completes the proof of our claim about p∗.

We next recall some definitions from commutative algebra. An associated prime
of an ideal a ⊂ R is a prime ideal p such that there exists an R-module injection
R/p ↪→ R/a. (The associated primes play the role of the irreducible factors in our
simplified proof for n = m = 2.) An ideal a ⊂ R is called unmixed of height r if all
its associated prime ideals have height r .

Next we recall the definitions of dimension and degree of an ideal of R and some
of the basic properties of these functions. Let R0 = k[t0, . . . , tn]. For f ∈ R, let
f0 ∈ R0 denote the homogenization of f , defined by padding each monomial of f

with the correct power of t0 to obtain a homogeneous polynomial of degree deg( f ).
For an ideal a ⊂ R, let a0 denote the homogeneous ideal generated by f0 for f ∈ a.
Then R0/a0 is a graded R0-module.

There is a polynomial

Ha(t) = ad td
+ · · · + a0 ∈ Q[x],
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called the Hilbert polynomial of a, such that

Ha(i) = dimk(i-th graded piece of R0/a0)

for i sufficiently large. We define the dimension and degree of a, respectively, by

d(a) = d, ℓ(a) := ℓ̃(R0/a0) := ad · d!.

These are both integers. They satisfy the following properties:

• ℓ(( f )) is the degree of f in the usual sense.

• If a ⊂ b and ht(a) = ht(b), then ℓ(a) ≥ ℓ(b).

• If a and b are unmixed of height r , then so is a∩ b, and

ℓ(a∩ b) ≤ ℓ(a) + ℓ(b).

Note that from this it follows that, if a is unmixed, then the number of associated
primes of a is ≤ l(a). To see this, we note that there is a primary decomposition
a =

⋂r
i=1 qi , where {

√
qi } is the set of associated primes.

We can now begin the proof of Theorem 5.11. Let f ∈ R have degree D and let

Nr = Dη1 + · · · + Dηr−1 for 1 ≤ r ≤ n + 1.

We will inductively construct fr , a Z-linear combination of elements in X (Nr ) · f
such that ar = ( f1, . . . , fr ) satisfies the following: either a∗

r = R, or a∗
r is unmixed

of height r and degree at most Dr .
This will give the theorem: for r = n +1, a∗

r cannot have height n +1, so a∗
r = R,

which implies ar ̸⊂ M. In particular, fi /∈ m for some i , so, if fi =
∑

d j (z j · f )

with d j ∈ Z and z j ∈ X (Nn+1), then f (z j ) ̸= 0 for some z j , as desired.

Base case: Take f1 = f and a1 = ( f ). Then a∗

1 = ( f ∗), where f ∗ is the quotient
of f by any irreducible factors not lying in M. If f ∗

̸= 1, then ( f ∗) is unmixed of
height 1 by Krull’s principal ideal theorem, and has degree ≤ D = deg( f ).

Inductive step: Suppose r ≥ 2 and that we have constructed f1, . . . , fr−1. If
a∗

r−1 = R, then we can take fr = f . We have a∗
r = R, and we are done. Therefore,

we suppose that a∗

r−1 is unmixed of height r − 1 and degree at most Dr−1. The
construction of fr is slightly elaborate in this case, so let us outline the steps:

(1) For any associated prime p of a∗

r−1, show by counting that there exists a ∈

Zm(Dηr−1) such that x−ap is not associated to a∗

r−1, i.e., that p is not associated
to xaa∗

r−1.

(2) Show that this implies there exists 1 ≤ i ≤ r − 1 such that xa fi /∈ p.

(3) Show that this implies there exists a Z-linear combination fr of these xa fi

that does not lie in any p associated to a∗

r−1.
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(4) Letting ar = (ar−1, fr ), show that a∗
r = R or a∗

r is unmixed of height r .

It is perhaps worth pointing out here that the fourth point above is precisely
the reason that associated primes appear in this proof — the key fact is that, if an
element fr does not lie in any prime associated to a∗

r−1, then the height of a∗
r =

(ar−1, fr )
∗ goes up by one (or a∗

r = R). Let us now carry out the four steps above:

(1) Let p be associated to a∗

r−1. Then p ⊂ M, so p ⊂ z · m for some z ∈ X , so
z−1

·p⊂m. By definition, rank(StabX (z−1
·p)) ≤ m′

r−1, whence rank(StabX (p)) ≤

m′

r−1.

Lemma 5.12. Let T be a positive integer. Let Zm(T ) denote the set of tuples
(a1, . . . , am) ∈ Zm with 0 ≤ ai ≤ T for each i . If H ⊂ Zm is a subgroup of rank h,
then the image of Zm(T ) in Zm/H has size at least (T + 1)m−h .

Before proving the lemma, we first note that it implies that the image of
Zm(Dηr−1) in Zm/ StabX (p) has size at least

(⌊Dηr−1⌋ + 1)m−m′

r−1 > (Dηr−1)m−m′

r−1 = Dr−1.

Now, the number of primes associated to a∗

r−1 is at most its degree ℓ(a∗

r−1) ≤ Dr−1.
Therefore, there exists a ∈ Zm(Dηr−1) such that x−ap is not an associated prime
of a∗

r−1. Equivalently, p is not an associated prime of xaa∗

r−1. This completes the
first step.

Proof of Lemma 5.12. Choose m − h elements of the canonical basis of Zm that
generate a subgroup B such that H ∩ B = {0}. Then the canonical map from Zm

to Zm/H is injective when restricted to B. The result follows since B ∩ Zm(T )

contains exactly (T + 1)m−h elements. □

(2) Since p and xaa∗

r−1 are unmixed of the same height r −1, but p is not associated
to xaa∗

r−1, it follows that xaa∗

r−1 ̸⊂ p. This implies xaar−1 ̸⊂ p since p∗
= p. Since

ar−1 = ( f1, . . . , fr−1),

this implies there exists 1 ≤ i ≤ r − 1 such that xa fi /∈ p.

(3) The third step follows from a general lemma:

Lemma 5.13. Let p1, . . . , ps be prime ideals of R and let

f1, . . . , fs ∈ R

such that fi /∈ pi . Then there exists a Z-linear combination of the fi that does not
lie in any pi .

Proof. Induction on s. In the base case s = 1, there is nothing to prove. For
s > 1, suppose that g is a Z-linear combination of f1, . . . , fs−1 that does not lie in
p1, . . . , ps−1. If g /∈ ps , then we can simply take g and we are done. So suppose
g ∈ ps .
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Consider all linear combinations fs + ag with a ∈ Z. For each a, consider the
set Sa ⊂ {p1, . . . , ps−1} consisting of the pi such that fs + ag ∈ pi . There are 2s−1

possible subsets Sa . By the pigeonhole principle, if we take a = 0, . . . , 2s−1, then
there must exist distinct a and ′ such that Sa = Sa′ . But, if fs +ag and fs +a′g ∈ pi

for 1 ≤ i ≤ s − 1, then (a − a′)g ∈ pi , whence g ∈ pi (since k has characteristic 0),
a contradiction. Therefore, fs + ag /∈ pi for i ≤ s − 1.

Also, fs /∈ ps but g ∈ ps implies fs + ag /∈ ps . Therefore, fs + ag is the desired
linear combination. □

We can now complete step (3): We conclude that there is a Z-linear combination
fr of the xa fi (where 1 ≤ i ≤ r − 1 and a ∈ Zm(Dηr−1)) such that fr does not lie
in any associated prime of a∗

r−1.

(4) The fourth step will follow from the following lemma:

Lemma 5.14. Let a ⊂ R be unmixed of height r − 1 and suppose f ∈ R is not
contained in any of the primes associated to a. Let b = a+ ( f ). Then either b = R
or b has height r . In the latter case, ℓ(b) ≤ ℓ(a) · deg f .

Proof. Let a = q1 ∩ · · · ∩ qm be a minimal primary decomposition and let pi be the
radical of qi . If pi + ( f ) = R for all i , then, for each i , there exists an element of
the form 1−g f ∈ pi , and hence an element of the form (1−g f ) j

∈ qi . The product
of these lies in a. This product is congruent to 1 modulo f , so 1 ∈ b = (a, f ).
Therefore, assume that there exists some p = pi such that p+ ( f ) ̸= R.

By Krull’s principal ideal theorem, the image b̄ of b in R/p has height 1. The
inverse image of any associated prime of b̄ ⊂ R/p in R is a prime of height
(r − 1)+ 1 = r . Therefore, the height of b is at most r and, since b ⊃ a, the height
is at least r − 1.

But, if the height of b is r −1, then it has some associated prime p′ of height r −1.
But p′

⊃ b⊃ a. As a is unmixed of height r −1, this implies that p′ is an associated
prime of a. But f ∈ p′ and we assumed f was not contained in any associated
primes of a. This is a contradiction, so we must have that the height of b is r .

To conclude, we note that (a+ ( f ))0 ⊃ a0 + ( f )0; hence,

ℓ(b) = ℓ̃(R0/b0) ≤ ℓ̃
(
R0/(a0 + ( f )0)

)
= ℓ̃(R0/a0) · deg( f ) = ℓ(a) · deg( f ).

The second-to-last equality requires explanation. Firstly, f0 is not contained in any
of the associated primes of a0 since f is not contained in any of the associated primes
of a. This implies that multiplication by f0 is injective on R0/a0. This multiplication
map has degree equal to deg( f ) and cokernel equal to R0/(a0 + ( f0)), whence

Ha0+( f0)(t + deg( f )) = Ha0(t + deg( f )) − Ha0(t).

This yields ℓ̃
(
R0/(a0 + ( f )0)

)
= ℓ̃(R0/a0) · deg( f ), as desired. □
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We can now complete step (4). We have ar = ar−1 + ( fr ). Let b = a∗

r−1 + ( fr ).
Then a∗

r ⊃ b, and Lemma 5.14 implies that either b = R or b has height r and
ℓ(b) ≤ Dr−1

· D = Dr .
If b = R then of course a∗

r = R, so assume the latter case holds. Let p be
an associated prime of a∗

r . Then ht(p) ≥ ht(a∗
r ) ≥ r . We want to show equality.

We know p ⊂ m′, where m′
= zm for some z ∈ X (N ). We can work in the

localization Rm′ , which is a regular local ring. The ideal ar Rm′ is generated by r
elements, so Krull’s height theorem implies it has height at most r ; hence, it has
height exactly r . Therefore it is unmixed of height r and hence the same is true of
the associated prime p.

Finally, a∗
r ⊃ b and both are unmixed of height r so ℓ(a∗

r ) ≤ ℓ(b) ≤ Dr . This
completes the proof of step (4), and of Theorem 5.11.

6. The matrix coefficient conjecture

Both the assumption and the conclusion of the Waldschmidt–Masser theorem are
quite strong. For instance, in the case of a square matrix of dimension n with
entries in L or Lp, one assumes that the rank of the matrix is less than 1

2 n and one
concludes that, after a rational change of basis on both sides, one can arrange a
large block of zeroes, precisely a block of dimension m′

× n′, where m′
+ n′ > n.

We would like a statement that is more sensitive, and gives a “rational” condition
whenever the rank is not full. Such a statement is necessary if one wants to prove
Leopoldt’s conjecture, rather than the partial result given in Corollary 5.3.

To this end, we have formulated with Mahesh Kakde the following conjecture.
The name matrix coefficient conjecture is inspired by the theory of automorphic
representations, where expressions of the form wt Mv are called matrix coefficients.

Conjecture 6.1 (Dasgupta and Kakde). Let M be a square matrix of dimension n
with entries in L or Lp. If det(M) = 0, then there exist nonzero vectors w, v ∈ Qn

such that wt Mv = 0.

Despite its simplicity, Conjecture 6.1 remains quite deep: in the case n = 2, it is
easily seen to be equivalent to the four exponentials conjecture. We have proven
the following about the matrix coefficient conjecture:

• Conjecture 6.1 is implied by the structural rank conjecture.

• The version of Conjecture 6.1 over Lp implies both Leopoldt’s conjecture and
the Gross–Kuz’min conjecture.

We have also developed a strategy to study Conjecture 6.1 using auxiliary poly-
nomials, but unfortunately the construction of the necessary polynomials remains a
mystery. Our hope is that Conjecture 6.1 may be more tractable than the structural
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rank conjecture. We will prove the results stated above and explore Conjecture 6.1
further in forthcoming work.
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