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Invariance of the tame fundamental group
under base change between algebraically closed fields

Aaron Landesman

We show that the tame étale fundamental group of a connected normal finite
type separated scheme remains invariant upon base change between algebraically
closed fields of characteristic p ≥ 0.

1. Statement of theorem

In a wide range of number theoretic situations, one may want to compare local
systems on a variety over one algebraically closed field to local systems on the
base change of the variety to a larger algebraically closed field. At least when these
local systems are tame, the two notions should be equivalent. Our main result,
Theorem 1.1, states that this is indeed true. See Remark 1.6 for some sample uses
of this result in number theory.

We now introduce notation to precisely state our main result. Let U be a
connected normal finite type separated scheme over an algebraically closed base
field k of characteristic p, allowing the possibility p = 0. Let π1(U ) denote the
étale fundamental group of U , where we leave the base point implicit. If U is
a proper normal scheme containing U as a dense open subscheme, we call U a
normal compactification of U . If moreover U is projective, we call U a projective
normal compactification of U . Normal compactifications of normal separated finite
type schemes always exist, and projective normal compactifications of normal
quasiprojective schemes always exist, as described in Remark 1.8.

We next introduce notation to define the numerically tame fundamental group
with respect to the above normal compactification U → U . We denote this by
π tame

1 (U ), which implicitly depends on the normal compactification U ⊂ U . See
[Kerz and Schmidt 2010, Appendix, Example 2] for an example demonstrating
this dependence on the choice of compactification. Also see Remark 1.9. This
numerically tame fundamental group is a quotient of the usual étale fundamental
group. Moreover, the prime-to-p étale fundamental group, whose finite quotients
correspond to covers of degree relatively prime to p, is a quotient of the tame

MSC2020: 14F35.
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2 AARON LANDESMAN

fundamental group. Here and elsewhere, when p = 0, we consider every integer to
be relatively prime to p so that the prime-to-p étale fundamental group is the same
as the usual étale fundamental group.

First, we introduce the notion of tameness. In order to define tameness, we first
recall the definition of the inertia group. Let E → U be a finite étale Galois G-cover.
By convention, we assume Galois covers are connected. Let s ∈ U be a point, let
E denote the normalization of U in the function field of E . Let t ∈ E map to s and
define the decomposition group of E → U at t to be

Dt,E/U := {g ∈ G : gt = t}.

Then, the inertia group of E →U at t is It,E/U :=ker(Dt,E/U →Auts(t)). Changing
our choice of t results in a conjugate inertia group, and so we use Is,E/U to denote
the inertia group of E → U at s which is the conjugacy class of the subgroup It,E/U
for any t over s. Note that in the case that the residue fields of s and t agree, the
inertia group agrees with the decomposition group. In particular, this automatically
holds when the residue field of s is algebraically closed.

We next define tameness. We say E → U is tame along s if the inertia group of
E → U at s has order prime to p. In the case E → U is not Galois, we say E → U
is tame along s if the Galois closure of E → U is tame along s. We say E → U is
tame if it is tame at every point s ∈ U − U .

Finally, we come to the definition of the numerically tame fundamental group.
Let b̄ ∈ U denote a geometric point, which we use as a basepoint. For E → U
a finite étale Galois cover, let HomU (b̄, E) denote the set of maps b̄ → E whose
composition with E → U is the given map b̄ → U . Following [Kerz and Schmidt
2010, Section 7, page 17] the numerically tame fundamental group, π tame

1 (U, b̄),
is by definition the automorphism group of the fiber functor which sends a tame
finite étale cover E → U to HomU (b̄, E). Since every connected finite étale cover
is dominated by a Galois finite étale cover, this profinite group is noncanonically
in bijection with the profinite set limE→U, finite étale tame Galois covers HomU (b̄, E), and
the latter is a torsor under the former, whose trivialization can be obtained by
choosing a compatible system of basepoints in each HomU (b̄, E). We remind the
reader that π tame

1 (U, b̄) implicitly depends on the choice of normal compactification
U → U because the set of finite étale tame Galois covers implicitly depends on the
compactification. In what follows, we will omit the basepoint b̄ from the notation,
and simply write it as π tame

1 (U ); see [Schmidt 2002; Kerz and Schmidt 2010] for
more background on the numerically tame fundamental group. In particular, when
k has characteristic 0, π1(U ) ≃ π tame

1 (U ).
If X → Y and Z → Y are morphisms, we denote X ×Y Z by X Z . In the case

Z = Spec B, we also denote X ×Y Z by X B .
Our main result is the following theorem.
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Theorem 1.1. Suppose k is an algebraically closed field of characteristic p ≥ 0
and U is a connected normal separated finite type scheme over k. Let L be any
algebraically closed field containing k and U any normal compactification of U.
Then, the natural map π tame

1 (UL) → π tame
1 (U ) is an isomorphism, where tameness

for covers of UL is taken with respect to the normal compactification UL ⊂ (U )L .

Using the fact that the fundamental group of a scheme is unchanged under
inseparable field extensions [Stacks 2005–, Tag 0BQN], we can generalize the
above theorem to the case that k and L are only separably closed.

Corollary 1.2. Suppose k is a separably closed field of characteristic p ≥ 0 and U
is a connected normal separated finite type scheme over k. Let L be any separably
closed field containing k and U any normal compactification of U. Then, the natural
map π tame

1 (UL) → π tame
1 (U ) is an isomorphism, where tameness for covers of UL

is taken with respect to the normal compactification UL ⊂ (U )L .

Remark 1.3. The result Theorem 1.1 for tame fundamental groups described above
implies an analogous result for prime-to-p fundamental groups. Namely, let π ′

1(U )

denote the prime-to-p fundamental group, which is the limit of automorphism groups
of all Galois finite étale covers of U of degree prime to p. Because prime-to-p covers
are all tame, we obtain from Theorem 1.1 that the natural map π ′

1(UL) → π ′

1(U ) is
an isomorphism.

Remark 1.4. Theorem 1.1 is surely a folklore theorem. Nevertheless, in its complete
form, the author was unable to find it in the literature. The proof written here is
primarily a combination of ideas presented to me by Brian Conrad and Jason Starr.
In particular, Jason Starr [2016] has written up a separate proof on mathoverflow.
The proof in this note is a reorganization of the ideas presented in that post.

Remark 1.5. Many special cases of Theorem 1.1 already exist in the literature.
The prime-to-p version of Theorem 1.1 as in Remark 1.3 was previously verified
in [Lieblich and Olsson 2010, Corollary A.12] via a proof heavily involving stacks.
Separately, this was also shown in [Orgogozo 2003, Corollaire 4.5]. The important
special case that U is a curve is also mentioned in [Orgogozo and Vidal 2000,
Theorem 6.1], though the proof is omitted there. In characteristic 0, a proof is given
in [SGA 1 1971, Exposé XIII, Proposition 4.6] taking Y = Spec L in the statement
there. However, that proof relies on resolution of singularities.

In the case U is proper, this was proven in [Lang and Serre 1957, Théorème 3],
[Szamuely 2009, Proposition 5.6.7], [SGA 1 1971, Exposé X, Corollaire 1.8] and
also [Stacks 2005–, Tag 0A49].

Remark 1.6. Theorem 1.1 is frequently used in the literature. We provide a few
such instances we have come across, but expect that many more examples exist.
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In the case U is quasiprojective and k has positive characteristic, the prime-
to-p version as in Remark 1.3 is used in [Litt 2021, (4.2.1)] regarding arithmetic
representations of fundamental groups.

In the case k has characteristic 0, this result is useful in transferring properties of
the fundamental group of a variety over Q to the corresponding base change to C.
For example, this was used in the proof of [Zywina 2010, Lemma 5.2] in order to
understand images of Galois representations of abelian varieties. Another sample
use is [Landesman 2021, page 701, paragraph 3, proof of Proposition 4.9], where
the result was used by the author to estimate average sizes of Selmer groups of
elliptic curves over function fields.

As is evident, from the above number theoretic examples, Theorem 1.1 crops up
in a variety of situations relevant to number theorists, and so may prove a useful
fact in the number theorist’s toolkit.

Example 1.7. The tameness hypothesis in the characteristic p > 0 case is crucial.
If k ⊂ L are two algebraically closed fields of characteristic p > 0, then for
U a normal quasiprojective scheme over k, the map π1(UL) → π1(U ) is not in
general an isomorphism. Artin–Schreier covers provide counterexamples in the
case U = A1

k . In more detail, if π1(A
1
L) → π1(A

1
k) were an isomorphism, then

the map H 1(A1
k , Z/(p)) → H 1(A1

L , Z/(p)) would also be an isomorphism. The
Artin–Schreier exact sequence identifies this with the map

k[x]/{ f p
− f : f ∈ k[x]} → L[x]/{ f p

− f : f ∈ L[x]},

and this map is not surjective because ax p−1 for a ∈ L −k does not lie in the image.

Remark 1.8. Note that the standard definition of the tame fundamental group is
more restrictive than our definition in terms of numerical tameness, because the
usual definition as in [SGA 1 1971, Expose XIII, 2.1.3] assumes U has a smooth
compactification whose boundary is a normal crossings divisor. With this notion
from [SGA 1 1971], the tame fundamental group is independent of the choice of
compactification.

In contrast, the notion of tame fundamental group we use here makes sense for
any normal finite type separated scheme U over k, since we can find a normal
compactification of U as follows:

By Nagata compactification, [Stacks 2005–, Tag 0F41] if U is finite type and
separated, there exists a quasicompact open immersion U →U , where U is a proper
scheme. One can then replace U with its normalization to obtain a proper normal
scheme U , containing U as a dense open.

Moreover, in the case U is quasiprojective, we can also assume U is projective
by taking any projective scheme U containing U as a dense open and then replacing
U by its normalization.

https://stacks.math.columbia.edu/tag/0F41
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Remark 1.9. Our notion of the numerically tame fundamental group agrees with
the usual notion described in [SGA 1 1971, Expose XIII, 2.1.3] when the com-
pactification of U is smooth with normal crossings boundary by [Schmidt 2002,
Proposition 1.14]. This tame fundamental group is not in general independent of
the choice of normal compactification; see [Kerz and Schmidt 2010, Appendix,
Example 2].

2. Proof of theorem

2.1. Idea of proof of Theorem 1.1. The proof of Theorem 1.1 is fairly technically
involved, but the idea is not too complicated: The key is to verify injectivity of
π tame

1 (UL) → π tame
1 (U ). As a first step, we reduce from the normal case to the

smooth case using that geometrically normal schemes have a dense open smooth
subscheme. Then, using Chow’s lemma, we reduce to the smooth quasiprojective
case. We therefore assume our variety U is smooth and quasiprojective, and prove
the theorem by reducing it to the curve case. For this reduction, we fiber U over a
variety of one lower dimension, in which case we can apply the curve case to the
geometric generic fiber of the fibration.

It remains to deal with the case that U is a quasiprojective smooth curve, which is
also the most technically involved part. In this case, we can write U as U − D, with
U smooth and projective and D a divisor. To check injectivity, we want to check
every finite étale cover of UL is the base change of some finite étale cover of U . If
E is one such cover, we can use spreading out and specialization to obtain an étale
cover U ′

→ U with the same ramification index over each point of D that E has.
Then, we construct the cover E ′ which is the normalization of E in E ×UL U ′

L , and
verify this is the base change of a cover from k. We do so by applying the projective
version of Theorem 1.1, using that E ′ and U ′

L have projective compactifications E ′

and U ′

L with a finite étale map E ′
→ U ′

L .
We now indicate how we put together the steps described in the above to prove

Theorem 1.1. In Section 2.2 (Lemma 2.3), we prove π tame
1 (UL) → π tame

1 (U ) is
surjective. For injectivity, we first prove the map is injective in the case U is a
smooth, connected, and quasiprojective curve in Section 2.4 (Proposition 2.10).
We prove in Section 2.14 (Proposition 2.17) that Theorem 1.1 holds for smooth,
quasiprojective varieties of all dimensions. We next verify the case that U is smooth,
finite type, and separated in Proposition 2.20. Finally, we complete the proof in the
case that U is normal, connected, finite type, and separated in Section 2.21.

2.2. Surjectivity. We first show π tame
1 (UL) → π tame

1 (U ) is surjective.

Lemma 2.3. The map π1(UL) → π1(U ) is surjective. In particular, π tame
1 (UL) →

π tame
1 (U ) is surjective.
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Proof. It suffices to verify that the pullback of any connected finite étale cover
over U along UL → U is connected, see, for example, [Stacks 2005–, Tag 0BN6].
Since L and k are both algebraically closed, the result follows from the fact that
connectedness is preserved under base change between algebraically closed fields
[EGA IV2 1965, Proposition 4.5.1]. □

2.4. Proof of injectivity in the curve case. We next prove injectivity for smooth
connected quasiprojective curves U . For this, it suffices to show that any tame
Galois finite étale cover E of UL is the base change of some tame Galois finite étale
cover of U . Note that any such cover of U , whose base change is a tame cover E
of UL , is automatically tame, since tameness can be verified after base extension.
To prove such an E exists, it suffices to find a connected finite étale cover F ′

→ U
over k so that F ′

L → UL factors through E .
As a first step, we wish to find a cover U ′ of U with the same ramification indices

as E over points in the normal projective compactification of U .

Notation 2.5. Let k → L be an inclusion of algebraically closed fields, let U be a
smooth curve over k, U its regular projective compactification, and D := U − U .
Let E → UL be a tame Galois finite étale cover. Let E be the normalization of U L

inside E .

Lemma 2.6. With notation as in Notation 2.5, there exists a finite Galois cover
U ′

→ U , étale over U , with the same ramification indices that E has over the
corresponding points of DL .

The idea of this proof is to “spread out and specialize” E . See (2-1) for a diagram.

Proof. To construct U ′, we can find a finitely generated k-subalgebra A ⊂ L and a
finite étale cover E A → UA, over A so that (E A)L ≃ E and E A → UA is finite étale
Galois and tame. Let E A denote the normalization of U A along E A →UA. Note that,
because of the Galois condition, the ramification index of a point of E A over a point
of U A only depends on the image point in U A. We may therefore speak of the ramifi-
cation index over a point of U A. Since k is algebraically closed, for any field K ⊃ k,
the irreducible components of DK arise uniquely from the irreducible components
of D under scalar extension. We freely use the above observations in what follows.

Let K (A) denote the fraction field of A. Note that the ramification index of EK (A)

over each point of DK (A) agrees with that of E over the corresponding point of DL .
Further, we claim that for a general closed point s of Spec A, the ramification index
of s×Spec A E A over a point of s×Spec A DA ≃ D agrees with the ramification index of
EK (A) over the corresponding generic point of DK (A). To see why this ramification
index n is constant over an open set of Spec A, recall that we are assuming the
cover E → U is tame, and so, after possibly shrinking Spec A, we may assume the
same of E A → UA. By the tameness hypothesis, the ramification index over a point

https://stacks.math.columbia.edu/tag/0BN6
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can be identified with one more than the degree of the relative sheaf of differentials
at that point; see, for example, [Vakil 2017, page 592]. (The point here is that if
the map is locally of the form t 7→ usn , for t and s uniformizers and u a unit, then
the derivative is dt = d(usn) = unsn−1ds + sndu, which has order precisely n − 1
if n is not divisible by the characteristic.) So, for p ∈ D a geometric point, under
the identification pA ≃ Spec A, we see that at any point of E A ×U A

pA over the
generic point of Spec A, �E A×U A

pA/pA
has degree n − 1. It follows that there is a

nonempty open subscheme of Spec A where �E A×U A
pA/pA

has degree n−1. Hence,
the morphism has inertia of order n over some open subscheme of Spec A.

Since k is an algebraically closed field, every closed point of Spec A has residue
field k, so we may choose such a closed point t : Spec k → Spec A with the same
ramification indices over D as E has over the corresponding points of DL . Since
the locus of geometric points on the base Spec A where the map E A → UA is a
map of connected schemes is constructible [EGA IV3 1966, Corollaire 9.7.9], we
may also assume the fiber of E A → UA over t : Spec k → Spec A is connected.
Then, U ′

:= E A ×Spec A Spec k is our desired connected finite étale cover. Finally,
we take U ′ to be the normalization of U along U ′

→ U . □

Summarizing the situation of Lemma 2.6, we obtain the commutative diagram:

E E A U ′

UL UA U

Spec L Spec A Spec kt

(2-1)

where the four squares are fiber products.

Notation 2.7. Let U ′
→ U denote the finite Galois cover of Lemma 2.6. Let E ′

denote the normalization of E in E ×U L
U ′

L and let E ′
:= E ′

×U ′

L
U ′

L , as in the
commutative diagram:

E ′ E ′

E E

U ′

L U ′

L

UL U L DL
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Remark 2.8. Observe that the finite map U ′
→ U of Notation 2.7 restricts to

U ′
→ U over U ⊂ U as U is normal. By Abhyankar’s lemma [Freitag and Kiehl

1988, A I.11] (see also [SGA 1 1971, Expose XIII, 5.2]) we obtain that U ′ is regular,
hence smooth, as we are working over an algebraically closed field k.

Although the normalization E → U L of U L in E → UL is not necessarily étale,
we now show the finite surjection E ′

→ U ′

L is étale.

Lemma 2.9. With notation as in Notations 2.5 and 2.7, E ′
→ U ′

L is étale.

Proof. Since E ′
→ U ′

L is étale by construction, it is enough to check E ′
→ U ′

L is
étale over all points of U ′

L lying above a point of DL . Indeed, this is where we
crucially use the assumption that E → U is tame. Since being étale can be checked
in the local ring at each such point, étaleness of E ′

→ U ′

L follows from a version of
Abhyankar’s lemma, using that the ramification orders of U ′

L → U L and E → U L

agree over each point of DL , by Lemma 2.6. For a precise form of Abhyankar’s
lemma applicable in this setting; see, for example, [Stacks 2005–, Tag 0EYH]. □

We are now prepared to complete the curve case of Theorem 1.1.

Proposition 2.10. Theorem 1.1 holds in the case that U is a smooth connected
curve.

Proof. Let U be a smooth connected curve. We use notation from Notation 2.5 and
Notation 2.7. By Lemma 2.3, we only need to check injectivity of π tame

1 (UL) →

π tame
1 (U ). Since E ′

→ UL is a finite étale cover of UL dominating E → UL , to
complete the proof in the case that U is a smooth curve, it suffices to show E ′

→ UL

is the base change of some tame finite étale cover F ′
→ U over k. Note here that

tameness of F ′
→U is automatic once we show it base changes to E ′

→UL , as tame-
ness can be verified after base extension. We showed in Lemma 2.9 that E ′

→ U ′

L
is a finite étale cover. Since U ′ is projective and normal, by [Lang and Serre 1957,
Théorème 3], we obtain that there is some finite étale cover F ′

→U ′ over k with E ′
≃

(F ′)L . (Alternatively, see [Szamuely 2009, Proposition 5.6.7], [SGA 1 1971, Ex-
posé X, Corollaire 1.8], and [Stacks 2005–, Tag 0A49].) We then find F ′

:= F ′
×U ′U ′

is a finite étale cover of U satisfying (F ′)L ≃ E ′, and so this is the desired cover. □

2.11. Dominating compactifications. In order to complete the reduction from the
higher dimensional case to the curve case, we will want to know that Theorem 1.1
holds for one compactification U → Y whenever it holds for another compactifica-
tion U → X with a compatible map X → Y . The next couple lemmas are devoted
to verifying this.

Lemma 2.12. Suppose W is a connected smooth separated finite type scheme over
a field k and β : W ⊂ X and α : W ⊂ Y are two normal compactifications with a
map f : X → Y so that α = f ◦ β. If a finite étale Galois cover E → W is tame
with respect to α, it is also tame with respect to β.
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Proof. Tameness can be checked after field extension, so we will assume k is
algebraically closed. Fix a point s ∈ Y and a preimage t ∈ X with f (t) = s. Let
FY denote the normalization of Y in the function field of E and let FX denote the
normalization of X in the function field of E . We assume FY is tame over s and
wish to show FX is tame over t .

We next claim that there is a map FX → FY . Let F denote the normalization
of FY ×Y X . It is enough to show the natural map F → FX induced by the
universal property of normalization is an isomorphism, as we then obtain a map
FX ≃ F → FY ×Y X → FY . Because the normalization map is finite by [Stacks
2005–, Tag 03GR and Tag 035B], both F and FX are finite over X . Therefore,
the map F → FX is a birational map which is finite (because it is quasifinite and
proper) between normal schemes over k. It follows from a version of Zariski’s main
theorem that F → FX is an isomorphism [Stacks 2005–, Tag 0AB1].

We now conclude the proof. Let v be a point of FX over t and u ∈ FY be the
image of v under the map FX → FY . Since v maps to u, we have an inclusion of
decomposition groups Dv,FX /X ⊂ Du,FY /Y . Since we are assuming k is algebraically
closed, this is identified with an inclusion of inertia groups Iv,FX /X ⊂ Iu,FY /Y . Hence,
up to conjugacy, the inertia group at t is a subgroup of the inertia group at s and so
tameness at s implies tameness at t . □

Lemma 2.13. With the same notation as in Lemma 2.12, if Theorem 1.1 holds with
respect to the normal compactification W ⊂ X , Theorem 1.1 also holds with respect
to the compactification W ⊂ Y .

Proof. By Lemma 2.3, it suffices to verify injectivity for the map π tame
1 (WL) →

π tame
1 (W ) with respect to the compactification W ⊂ Y . Using [Szamuely 2009,

Corollary 5.5.8], we can rephrase this as showing that if k ⊂ L is an extension of
algebraically closed fields and E → WL is any tame (with respect to W → Y ) finite
étale Galois cover, then E arises as the base change of a cover F → W over k. By
Lemma 2.12, this cover is also tame with respect to the normal compactification
W → X . By assumption Theorem 1.1 holds for the compactification W → X , and
so E → WL is the base change of a cover F → W over k, as we wished to show. □

2.14. Proof of injectivity in the smooth and quasiprojective case. In this section,
specifically in Proposition 2.17, we prove Theorem 1.1 in the case that U is a
smooth connected quasiprojective variety. To start, we use Bertini’s theorem to
obtain a fibration away from a codimension 2 subset of U . This fibration will allow
us to run an induction on the dimension.

Proposition 2.15. Let U be a smooth connected quasiprojective variety of di-
mension d > 1. Choose a projective normal compactification U ⊂ U. There is
a closed subscheme Z ⊂ U of codimension at least 2 and a projective normal
compactification U − Z → X satisfying the following three properties:

https://stacks.math.columbia.edu/tag/03GR
https://stacks.math.columbia.edu/tag/035B
https://stacks.math.columbia.edu/tag/0AB1
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(1) The closed subscheme Z lies in the smooth locus of U.

(2) There is a map X → U so that the composition U − Z → X → U agrees with
the composition U − Z → U → U.

(3) There is a dominant generically smooth map α : X → Pd−1
k with geometrically

irreducible generic fiber.

Proof. Let U ⊂ U be the given projective normal compactification. Choose an
embedding U ⊂ U ⊂ Pn

k . Replacing Pn
k by the span of U in Pn

k , we may also
assume U is nondegenerate. Choose a general codimension d plane H ⊂ Pn

k such
that H ∩U is smooth of dimension 0, H ∩ (U −U ) = ∅, and so that, if J ′

⊂ Pn
k is

a general codimension d − 1 plane containing H , we have J ′
∩ U is smooth and

geometrically irreducible of dimension 1. This is possible because U is normal,
hence smooth away from codimension 2, and by Bertini’s theorem, as in [Jouanolou
1983, Theoreme 6.10(2) and (3)].

Define Z := H ∩U = H ∩U for H as in the previous paragraph. For H general
as above, the following three conditions are satisfied: Z ⊂ U has codimension at
least 2, Z does not meet U − U , and, for a general plane J ′ containing H , the
intersection J ′

∩ U is smooth and geometrically irreducible. The second property
verifies condition (1) in the statement because it shows Z ⊂ U ⊂ U and U is
contained in the smooth locus of U . Take X → U to be the blow up of U along
Z ⊂ U . This verifies condition (2) in the statement.

To conclude, we will show condition (3) in the statement holds. Namely, we
will show there is a dominant map X → Pd−1

k whose generic fiber is smooth and
geometrically irreducible. Geometrically, this map is induced by projection of
U away from the plane H , and sends a point x ∈ U − Z to Span(x, H), where
we view Span(x, H) as a point of Pd−1

k parametrizing codimension d − 1 planes
J ′

⊂ Pn
k containing H . The above-described map U − Z → Pd−1

k extends to a map
on the blow up X = BlU∩H U → Pd−1

k , where the fiber over a point [J ′
] ∈ Pd−1

k
(parametrizing codimension d − 1 planes J ′

⊂ Pn
k containing H ) is J ′

∩ U . By
construction of H so that J ′

∩ U is smooth and geometrically irreducible for a
general codimension d − 1 plane J ′

⊂ Pd−1
k containing H , the generic fiber of the

map X → Pd−1
k is smooth and geometrically irreducible. □

Assuming we have a fibration as in Proposition 2.15, we next show that the fiber
of a tame Galois finite étale cover E → UL , when restricted to the generic point
of Pd−1

L , is the base change of a Galois finite étale cover over the generic point of
Pd−1

k .

Proposition 2.16. Assume U is a smooth connected k-variety of dimension d ≥ 1
with a normal projective compactification U → U and a dominant generically
smooth map α : U → Pd−1

k with geometrically irreducible generic fiber. Let ηk
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denote the generic point of Pd−1
k and ηL denote the geometric generic point of Pd−1

L .
Any given tame finite étale Galois cover E → UL restricts to a Galois finite étale
cover EηL → UηL (with respect to the compactification UηL ⊂ U ηL ) which is the
base change of some Galois finite étale cover Fηk → Uηk .

Proof. Let ηk and ηL denote compatible algebraic geometric generic points of
Pd−1

k and Pd−1
L , with corresponding generic points ηk and ηL . By this, we mean

that ηk has residue field which is the algebraic closure of κ(ηk) and similarly for
L . Moreover, they are compatible in the sense that we specify an embedding
κ(ηk) → κ(ηL) restricting to the inclusion κ(ηk) → κ(ηL). Let EηL := E ×Pd−1

L
ηL ,

which we note is smooth and of dimension 1. Because E → UL is tame with respect
to UL → U L , we obtain that EηL → UηL is tame with respect to UηL → U ηL . By
the curve case of Theorem 1.1, shown in Proposition 2.10, EηL arises as the base
change of some cover Fηk → Uηk . That is, (Fηk )ηL ≃ EηL .

To conclude the proof, we only need realize Fηk → Uηk as the base change of a
map over ηk so that the above isomorphism (Fηk )ηL ≃ EηL is the base change of an
isomorphism over ηL . For K a field, we use K s to denote its separable closure. We
can realize ηk → ηk as the composition of a purely inseparable morphism ηk → ηs

k
and a separable morphism ηs

k → ηk by taking ηs
k := Spec κ(ηk)

s . Since ηk → ηs
k

is a universal homeomorphism, the same is true of Uηk → Uηs
k
, and so the map

induces an isomorphism of étale fundamental groups π1(Uηk ) → π1(Uηs
k
) [Stacks

2005–, Tag 0BQN]. It follows that Fηk → Uηk is the base change of a morphism
Fηs

k
→ Uηs

k
over ηs

k . Moreover, by spreading out, there is a finite Galois extension
η′

k → ηk so that Fηs
k
→ Uηs

k
is the base change of a morphism Fη′

k
→ Uη′

k
over η′

k .
We next want to verify this is the base change of a map over ηk , which we will do
by producing descent data along the extension η′

k → ηk .
We next set up notation for descent data. Observe that ηk ≃ Spec k(x1, . . . , xn)

and ηL ≃ Spec L(x1, . . . , xn). Let M := 0(η′

k,Oη′

k
) so that η′

k = Spec M . It follows
that the two maps of schemes η′

k → ηk and ηL → ηk correspond to the extensions
of fields k(x1, . . . , xn) → M and k(x1, . . . , xn) → L(x1, . . . , xn). It is a standard
fact that these are linearly disjoint, see Lemma A.3. Let ML := M ⊗k L . Since M
and L(x1, . . . , xn) are linearly disjoint, base extension defines a bijective map

Gal(M/k(x1, . . . , xn)) ≃ Gal(ML/L(x1, . . . , xn)).

We denote the above Galois group by G. As described in [Bosch et al. 1990,
Section 6.2, Example B], specifying descent data for Fη′

k
→ Uη′

k
along η′

k → ηk ,
is equivalent to specifying an isomorphism φF,k,σ : Fη′

k
→ Fη′

k
for each σ ∈ G,

defining an action of G on Fη′

k
. (We warn the reader that the action is only defined

over ηk and not over η′

k .) Since Uη′

k
is the base change of Uηk , we do have descent

data φU,k,σ : Uη′

k
→ Uη′

k
. The descent data φF,k,σ we wish to produce should live
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over the descent data for φU,k,σ , in the sense the diagram

Fη′

k
Fη′

k

Uη′

k
Uη′

k

φF,k,σ

φU,k,σ

(2-2)

should commute. Let η′

L :=η′

k ×ηk ηL . Since we do have descent data for Fη′

L
→UL ′

along η′

L → ηL , we have φF,L ,σ and φU,L ,σ so that

Fη′

L
Fη′

L

Uη′

L
Uη′

L

φF,L ,σ

φU,L ,σ

(2-3)

commutes.
We wish to show that φF,L ,σ is the base change of a unique map φF,k,σ along

Spec L → Spec k. Indeed, consider the ηk scheme AutφU,k,σ
(Fη′

k
) of automorphisms

of Fη′

k
over the specified automorphism φU,k,σ of Uη′

k
. Note that AutφU,k,σ

(Fη′

k
)×ηk

ηL ≃ AutφU,L ,σ
(Fη′

L
). Moreover, for N ∈ {k, L}, since the automorphisms of Fη′

N

over φU,N ,σ are given by composing any given automorphism over φU,N ,σ with
an automorphisms of Fη′

N
over Uη′

N
, AutφU,k,σ

(Fη′

k
) and AutφU,L ,σ

(Fη′

L
) are both G

torsors. Since the residue field of each point of AutφU,k,σ
(Fη′

k
) over ηk is linearly

disjoint from the field extension κ(ηk) → κ(ηL) by Lemma A.3, there is a bijection
between the points of AutφU,k,σ

(Fη′

k
) and AutφU,L ,σ

(Fη′

L
). Since the latter is the trivial

G torsor, we also obtain AutφU,k,σ
(Fη′

k
) is the trivial G torsor. In other words there is

a unique map φF,k,σ over φU,k,σ whose base change to ηL is φF,L ,σ . Choosing these
φF,k,σ whose base change is φF,L ,σ , we find that the φF,k,σ define descent data
(because the φF,L ,σ do). Hence, Fη′

k
→ Uη′

k
is the base change of a map Fηk → Uηk ,

as desired. □

We now complete the proof of Theorem 1.1 in the case U is smooth quasiprojec-
tive with a projective normal compactification. Since U is quasiprojective, recall
that such a projective normal compactification exists by Remark 1.8.

Proposition 2.17. Theorem 1.1 holds when U → U is a projective normal com-
pactification and U is smooth and quasiprojective.

Proof. The case d = 1 holds by Proposition 2.10, and d = 0 is trivial, so we now
assume d > 1.

By Proposition 2.15, there is a Z ⊂ U ⊂ U and a projective normal compact-
ification U − Z → X satisfying the properties given there. Then, since Z as in
Proposition 2.15 has codimension at least 2, π tame

1 (U − Z) ≃ π tame
1 (U ) because the
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tame fundamental group of a smooth variety is unchanged by removing any set of
codimension at least 2, as shown in Lemma A.2. Above, the tameness conditions
for both schemes U − Z and U are taken with respect to the projective normal
compactification U .

Observe that Z is in the smooth locus of U by Proposition 2.15(1) and U → X is a
normal compactification of U . Using Proposition 2.15(2) to verify the hypotheses of
Lemma 2.13, it suffices to prove Theorem 1.1 for the compactification U − Z → X
in place of U → U .

For the remainder of the proof, we now rename U − Z as U and X as U . In
particular, by Proposition 2.15(3), we may now assume there is a generically smooth
dominant map U → Pd−1

k .
With notation as in Proposition 2.16, any tame Galois finite étale cover EL → UL

restricts to a cover EηL → UηL which is the base change of a tame Galois finite
étale cover Fηk → Uηk .

Define F to be the normalization of U in the function field of Fηk . We claim
that FL ≃ EL as covers of UL . This will complete the proof, as it implies F → U
is tame finite étale and connected, since the same is true of FL → UL .

To see FL ≃ EL as covers of UL , we know EL is the normalization of UL in
K (EL) = K (EηL ). Further, since L/k has a separating transcendence basis (since k
is algebraically closed, hence perfect), it follows that FL is normal and has function
field K (EL). Moreover, the universal property of normalization induces a birational
map FL → E . Since both FL and E are finite over UL , the map FL → E is
finite. It then follows from a version of Zariski’s main theorem that FL → E is an
isomorphism [Stacks 2005–, Tag 0AB1]. □

2.18. Proof of injectivity in the smooth case. Having verified the smooth quasipro-
jective case, we next verify the smooth finite type and separated case. The general
idea is to use Chow’s lemma to reduce to the projective case, but there are a number
of technical details. We start by explaining the geometric consequence that Chow’s
lemma gives us.

Lemma 2.19. Suppose that U is a smooth separated scheme of finite type over
an algebraically closed field k with a normal compactification α : U → U. There
is a closed subscheme Z ⊂ U of codimension at least 2 and a normal projective
compactification β : U − Z → X with a projective map f : X → U so that
α|U−Z = f ◦ β.

Proof. Using Chow’s lemma, we can find a projective scheme X with a birational
projective map f : X → U ; see [Stacks 2005–, Tag 0200 and Tag 0201].

We next construct a subscheme Z ⊂ U of codimension at least 2 and a birational
map β : U − Z → X . Since f is birational, there is a dense open W ⊂ U over which
f is an isomorphism, so we obtain a map g : W → X which is an isomorphism onto

https://stacks.math.columbia.edu/tag/0AB1
https://stacks.math.columbia.edu/tag/0200
https://stacks.math.columbia.edu/tag/0201
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its image. Because U is regular in codimension 1 and X is proper, there is a scheme
Z ⊂ U of codimension at least 2 so that g : W → X extends to a birational map
β : U − Z → X . Now, restricting f , we get a map f ′

: f −1(α(U − Z)) → U − Z .
We claim β factors through f −1(α(U − Z)) and thus defines a section to f ′.

Indeed, consider the composition f ◦ β : U − Z → X → U . This agrees with α

over the dense open W , and hence agrees with the given open immersion U − Z →

U α
−→ U on W . Because U − Z is separated, f ◦β must agree with the above open

immersion on all of U − Z . This implies that β sends U − Z to f −1(α(U − Z)).
Let β ′

: U − Z → f −1(α(U − Z)) denote the map whose composition with
f −1(α(U − Z)) → X is β. We will show next that β ′ is a closed immersion.

We have seen above that β ′ is a section to f ′. Therefore, β ′ is a monomorphism.
Moreover since f ′ is projective, hence proper, β ′ is also proper, as any section to a
proper map is proper via the cancellation theorem [Vakil 2017, 10.1.19] applied
to the composition f ′

◦ β ′. Since β ′ is a proper monomorphism, it is a closed
immersion [Stacks 2005–, Tag 04XV], hence projective.

We now conclude the proof. By the above, the composition U −Z → f −1(α(U −

Z)) → X is the composition of a closed immersion and an open immersion into
a projective scheme. This implies U − Z is quasiprojective, and U − Z → X is a
normal projective compactification, as desired. By construction, α|U−Z = f ◦β. □

We are now ready to reduce the proof of Theorem 1.1 to the general smooth
case over an algebraically closed field, which follows without much difficulty by
applying the above lemma.

Proposition 2.20. Theorem 1.1 holds when U is smooth.

Proof. Recall that U is now smooth, finite type, and separated over k = k̄ but
not necessarily quasiprojective. Using Nagata compactification [Stacks 2005–,
Tag 0F41] as described in Remark 1.8, we can find a normal compactification
α : U → U . By Lemma 2.19, there is a closed subscheme Z ⊂ U of codimension at
least 2 and a projective normal compactification β : U − Z → X with a projective
map f : X → U so that α|U−Z = f ◦ β.

For Z ⊂ U of codimension at least 2 as in Lemma 2.19, we have π tame
1 (U ) ≃

π tame
1 (U − Z) by Lemma A.2. Therefore, it is enough to prove the theorem for the

compactification U − Z → U . By Lemma 2.13, it is enough to prove the theorem
for the compactification U − Z → X in place of U − Z → U . Finally, the theorem
holds for the projective compactification U − Z → X by Proposition 2.17. □

2.21. Proof of injectivity in the general case. We now complete the proof of the
theorem for normal connected quasiprojective schemes, using that we have proven
it for smooth U .

https://stacks.math.columbia.edu/tag/04XV
https://stacks.math.columbia.edu/tag/0F41
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Proof of Theorem 1.1. By Lemma 2.3, the map π tame
1 (UL) → π tame

1 (U ) is sur-
jective. To complete the proof, we wish to show it is injective. To verify the
map π tame

1 (UL) → π tame
1 (U ) is injective, by [Szamuely 2009, Corollary 5.5.8], it

is enough to show that if E → UL is any connected finite étale cover, then E
is isomorphic to F̃L for F̃ → U some connected finite étale cover. To see this,
start with some E → UL . Let W ⊂ U denote the maximal dense smooth open
subscheme of U . Since we have already shown the map π tame

1 (WL) → π tame
1 (W )

is an isomorphism in Proposition 2.20, we know that E ×UL WL is isomorphic to
the base change of some finite étale cover F → W along Spec L → Spec k. Let
F̃ denote the normalization of U in F . Since U is normal, F̃ → U is a finite
morphism. The setup this far is summarized by the commutative diagrams:

E ×UL WL E F F̃

WL UL W U

To complete the proof, we only need to show F̃ → U is tame finite étale and
there is an isomorphism F̃L ≃ E over UL . Indeed, since F̃ is normal and finite over
U , the base change F̃L is also normal and finite over UL . It follows that F̃L is the
normalization of UL in FL ≃ E ×UL WL . But, since E is also the normalization of
UL in E ×UL WL , we obtain that E ≃ F̃L . Since F̃L ≃ E → UL is tame finite étale,
it follows that F̃ → U is also tame finite étale, completing the proof. □

Appendix: Collected lemmas

In this appendix, we collect several lemmas used in the course of the above proof.
These are all quite standard, and we only include them for completeness. We include
them in this appendix and not in the body so as not to distract from the flow of the
proof.

We begin with two standard results on how the tame fundamental group behaves
upon passing to open subschemes. These follow from the usual well-known versions
for the full étale fundamental group, but we spell out the usual proof for the reader’s
convenience.

Lemma A.1. Let Y be a normal quasiprojective connected scheme and W ⊂ Y be a
nonempty open. Then the natural map π1(W ) → π1(Y ) is surjective. In particular,
π tame

1 (W ) → π tame
1 (Y ) is surjective, where tameness for Y is taken with respect to

a projective normal compactification Y → Y and tameness for W is taken with
respect to W → Y → Y .
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Proof. Assuming surjectivity of π1(W ) → π1(Y ), surjectivity of π tame
1 (W ) →

π tame
1 (Y ) follows from commutativity of the square

π1(W ) π1(Y )

π tame
1 (W ) π tame

1 (Y )

(A-1)

and the fact that the vertical maps are surjective.
It remains to verify π1(W ) → π1(Y ) is surjective. We need to check any con-

nected finite étale cover E → Y has pullback E ×Y W which is also connected. First,
we claim E is normal. Indeed, since normality is equivalent to being R1 and S2,
E is normal because the properties of being R1 and S2 are preserved under étale
morphisms. Therefore, E is normal and connected, hence integral. Then, E ×Y W
is a nonempty open subscheme of the integral scheme E , hence connected. □

For a proof of the next lemma in the case of fundamental groups, instead of tame
fundamental groups; see [Szamuely 2009, Corollary 5.2.14].

Lemma A.2. Let U be a connected smooth k-scheme and V ⊂ U a closed sub-
scheme of codimension at least 2. Then the natural map π tame

1 (U − V ) → π tame
1 (U )

is an isomorphism, where tameness for U is taken with respect to a projective
normal compactification U → U , and tameness for U − V is taken with respect to
U − V → U → U.

Proof. The map is surjective by Lemma A.1, so it suffices to verify injectivity.
For this, we have to show that any tame finite étale cover E → U − V extends
uniquely to a tame finite étale cover E ′ of U . If E → U − V is tame, it follows
from the definition of tameness and our compatible choices of compactifications
that any extension will automatically also be tame. Hence, it suffices to show there
is a unique extension. Uniqueness is immediate because E ′ is necessarily normal,
and hence must be the normalization of U in E . So it suffices to check that the
normalization E ′ of U in E is a finite étale cover of U , restricting to E over U − V .
That E ′ restricts to E over U − V is clear and E ′

→ U is finite by finiteness of
normalization. Finally, E ′

→ U is étale by Zariski–Nagata purity as in [SGA 1
1971, Exposé X, Théorème 3.1] because it is étale over all codimension 1 points
and U is smooth. □

Finally, we record a field-theory result on linear disjointness of certain extensions.

Lemma A.3. Suppose k → L are algebraically closed fields. Let k(x1, . . . , xn)→ F
by any finite separable extension. Then k(x1, . . . , xn) → F and k(x1, . . . , xn) →

L(x1, . . . , xn) are linearly disjoint extensions.
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Proof. We want to show the only finite separable extension of k(x1, . . . , xn) in
L(x1, . . . , xn) is k(x1, . . . , xn). To this end, let F be some finite separable extension
of k(x1, . . . , xn) in L(x1, . . . , xn). So, to see F is equal to k(x1, . . . , xn), it suffices
to show F ⊗k(x1,...,xn) F is a domain. We have a containment

F ⊗k(x1,...,xn) F ⊂ L(x1, . . . , xn) ⊗k(x1,...,xn) L(x1, . . . , xn),

so it suffices to show

L(x1, . . . , xn) ⊗k(x1,...,xn) L(x1, . . . , xn)

is a domain. Indeed, this is a localization of

L[x1, . . . , xn] ⊗k[x1,...,xn] L[x1, . . . , xn] ≃ (L ⊗k L)[x1, . . . , xn],

so it suffices to show L ⊗k L is a domain. This then holds because L is a domain,
and a domain over an algebraically closed field is still a domain upon base change
to any larger algebraically closed field, i.e., the property of being geometrically
integral is preserved under base change between algebraically closed fields. □
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Weak transfer from classical groups
to general linear groups

Sug Woo Shin

Following Arthur, we present a trace formula argument proving that discrete
automorphic representations on (possibly non-quasisplit) classical groups weakly
transfer to general linear groups in the sense that the transfer is compatible with
Satake parameters and infinitesimal characters. This result is conditional on the
weighted fundamental lemma but no more. We explain how the weak transfer
leads to the existence of automorphic Galois representations valued in the C-
groups, as formulated by Buzzard and Gee, when the automorphic representations
are C-algebraic and satisfy suitable regularity conditions.
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1. Introduction

Classical groups are the isometry groups of symmetric, symplectic or (skew-)
Hermitian forms. They play vital roles in many areas of mathematics. In number
theory they are prominent in the theory of automorphic forms and the Langlands
program. One of the key questions is how to transfer automorphic representations on
classical groups to general linear groups as predicted by the Langlands functoriality
conjecture. There are two main approaches: the converse theorem and the trace
formula.

The converse theorem was successfully employed to transfer cuspidal generic
automorphic representations on quasisplit classical groups over number fields by
Cogdell, Kim, Krishnamurthy, Piatetski-Shapiro, Shahidi, and others; see [Cogdell
et al. 2011]. Lomeli [2009] proved the analogous result for split classical groups
over global function fields. There is a prospect, arising from the work by Cai,
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Friedberg, Ginzburg and Kaplan [Cai et al. 2019], that the converse theorem method
may extend to all classical groups without any genericity condition.

It is perhaps fair to say that the trace formula method requires more groundwork
to get started, notably the stabilization of the trace formula and the fundamental
lemma as well as their twisted analogues. Since the tools are still developing over
global function fields, see [Labesse and Lemaire 2021], we will concentrate on the
number field case throughout the paper. When it works, the trace formula leads to
extra information beyond the existence of transfer to general linear groups, such
as parametrization of local and global packets of representations characterized by
endoscopic character identities and the Arthur multiplicity formula. This has been
carried out for

• quasisplit symplectic and special orthogonal groups by Arthur [2013];

• quasisplit unitary groups by Mok [2015];

• non-quasisplit unitary groups by Kaletha, Minguez, Shin and White [2014],
under temperedness and pure-inner-twist hypotheses;

• non-quasisplit odd special orthogonal groups by Ishimoto [2023], under a
temperedness hypothesis;

• certain non-quasisplit symplectic and special orthogonal groups under a coho-
mological hypothesis at infinity by Taïbi [2019].

It is worth mentioning that Clozel and Labesse (see [Labesse 2011]) proved uncon-
ditional results on the transfer of cohomological automorphic representations on
unitary groups to those on general linear groups (without full endoscopic classifica-
tions for them). However the results in the bulleted list are conditional on the proof
of the weighted fundamental lemma and some results to be proven. (By “some
results”, we mean the projected papers in [Arthur 2013], which the author cites as
[A25], [A26] and [A27], as well as their analogues for unitary groups, which are
also missing at the time of writing this article.) The weighted fundamental lemma
is known for split groups by Chaudouard and Laumon [2010; 2012] but it is also
needed for nonsplit groups. We also need the “nonstandard weighted fundamental
lemma” formulated by Waldspurger [2009] in the stabilization of the twisted trace
formula. See the paragraph above Theorem 1.1.2 for further remarks.

Apart from the conditionality mentioned above, the trace formula is believed to
yield complete results for all non-quasisplit classical groups as outlined in [Arthur
2013, Chapter 9]. This is a central problem to work out in its own right. It is also
pivotal for arithmetic applications involving Shimura varieties since non-quasisplit
groups appear naturally in that context. A full solution of the problem would take
years to complete.
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The first goal of this paper is to explain that Arthur’s argument [2013, Chapter 3]
is already enough to establish the existence of a weak transfer for all classical
groups. He states the results for quasisplit symplectic and special orthogonal groups
but the argument works generally. Indeed, Arthur himself [2013, Proposition 9.5.2]
made this observation; our intention is merely to bring this part of his work to the
broader audience.

Here a weak transfer means a transfer of automorphic representations between
two reductive groups related via a morphism of their L-groups, such that the Satake
parameters at finite places and the infinitesimal characters at infinite places are trans-
ported via the L-morphism; see Section 1.1 below. Our argument is relatively simple
as long as the stabilization of the twisted (and untwisted) trace formula is accepted.
In particular we do not need [A25], [A26] and [A27] from [Arthur 2013], or their
analogues mentioned above (nor the main theorems of [Arthur 2013; Mok 2015]).
Rather, the weak transfer at hand is conditional only on the weighted fundamental
lemma for nonsplit groups and the nonstandard weighted fundamental lemma.

Our approach to the weak transfer is close to Taïbi’s [2022], see Remark A.5
therein. The difference is that his argument and theorem are optimized for the
intended application. As such, he accepts the main results of [Arthur 2013] and
makes a regularity hypothesis to deal with non-quasisplit symplectic and special
orthogonal groups. By contrast, we keep a minimal hypothesis as mentioned above
and also treat the case of unitary groups in a uniform manner.

As an application and our second goal, we verify Buzzard and Gee’s conjecture
on the existence of automorphic Galois representations, which amounts to one
direction of the global Langlands correspondence, for classical groups. Besides the
weak transfer, a crucial ingredient comes from what is known in the construction
of automorphic Galois representations for general linear groups. Once this is taken
for granted, it is a series of elementary exercises to deduce Buzzard and Gee’s
conjecture for classical groups (modulo some technical hypotheses discussed below).
While we do not claim originality, it may be of interest to see all classical groups
treated side by side in the language of C-groups. Previous works usually considered
these groups separately; e.g., see [Kret and Shin 2020, Section 6; 2023, Section 2]
and the references at the start of Section 3.4 below.

Now we describe the two main goals more precisely in Sections 1.1 and 1.2
below. They correspond to Sections 2 and 3 in the main body of the paper.

1.1. Weak transfer. Let G and G̃ be connected reductive groups over a number field
F , and ξ̃ :

L G →
L G̃ be a morphism of L-groups (either the Galois or Weil form, see

[Arthur 2005, Section 26]). Assume that G̃ is quasisplit over F . Let S be a finite set
of places of F including all infinite places such that G, G̃, and ξ̃ are unramified over
Fv for all places v /∈ S. (For ξ̃ , this means that ξ̃ is inflated from an L-morphism with
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respect to the Galois or Weil group for an extension unramified at v.) At each v /∈ S,
the map ξ̃ induces a map ξ̃∗ from irreducible unramified representations of G(Fv)
to those of G̃(Fv) (on the level of isomorphism classes) by Satake transform, which
amounts to the unramified local Langlands correspondence for each of G and G̃.

A weak form of the Langlands functoriality conjecture is the following, see
[Langlands 1970, Questions 3 and 5] and the commentary in [Arthur 2021, Section 4]
for instance.

Conjecture 1.1.1. Let ξ̃ :
L G →

L G̃ be a morphism of L-groups. For each auto-
morphic representation π of G(AF ), there exists an automorphic representation
5 of G̃(AF ) such that, for every v /∈ S where π is unramified, 5v is unramified
and isomorphic to ξ̃∗(πv). Moreover the infinitesimal characters of archimedean
components of 5 are determined by those of π via ξ̃ .

If 5 as above exists, we say that 5 is a weak transfer (a.k.a. a weak functorial
lift) of π . It is said to be weak because the conjecture does not address what
happens at the places in S nor what the set of all 5 as above looks like. A stronger
conjecture can be best formulated in terms of local Arthur packets at all places as
well as global Arthur packets, as accomplished in the endoscopic classification for
classical groups mentioned above. By focusing on the weak version, we bypass the
subtlety of Arthur packets at the expense of losing precision.

We are particularly interested in Conjecture 1.1.1 where π appears in the discrete
spectrum of the space of L2-automorphic forms on G(AF ). Although the beyond
endoscopy program was proposed by Langlands to attack this conjecture, the
general case is still completely out of reach. Good news is that substantial progress
has been made in the (twisted) endoscopic case, namely when ξ̃ realizes G as a
(twisted) endoscopic group for G̃. A prominent example is Langlands and Arthur
and Clozel’s base change [1989] for general linear groups, where G = GLn and
G̃ = ResF ′/F GLn (Weil restriction of scalars) for a finite solvable extension F ′/F .
See [Cogdell 2003, Section 4] for more on the base change and other examples.

This paper is concerned with a weak transfer for classical groups. In this case G
is a classical group and G̃ is (the restriction of scalars of) a general linear group;
the latter is denoted G̃0(N ) in the main text. We are divided into Cases S and U:

Case S: G is a special orthogonal or a symplectic group, ξ̃ is the standard embedding.

Case U: G is a unitary group and ξ̃ is the base change embedding (up to a twist).

In these two cases the quasisplit inner form G∗ of G may be thought of as a twisted
endoscopic group for G̃; see Sections 2.1 and 2.2 for more details. Henceforth we
make the following hypothesis as our method crucially relies on the stabilization of
the (possibly twisted) trace formula by Arthur and Moeglin and Waldspurger:
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(H1) The weighted fundamental lemma (WFL) is true for nonsplit groups. More-
over its nonstandard version is true.

It is worth elaborating on the hypothesis. The stabilization of the twisted trace
formula [Mœglin and Waldspurger 2016a; 2016b] requires the twisted weighted
fundamental lemma [Mœglin and Waldspurger 2016a, II.4.4], which is reduced
by the main result of [Waldspurger 2009] to the WFL for Lie algebras and the
nonstandard WFL. The latter two, precisely formulated in Sections 3.6 and 3.7 of
[Waldspurger 2009], assert certain identities of weighted orbital integrals on the Lie
algebras of two reductive groups which are related by endoscopic data or nonstan-
dard endoscopic data, respectively. As mentioned above, the WFL for Lie algebras
remains to be verified for nonsplit groups. The nonstandard WFL is open at this time.

With that said, hypothesis (H1) can be black-boxed since we only need the
outcome of the stabilization, namely (2.4.4) and (2.4.6) below. Let us state our first
main theorem.

Theorem 1.1.2. Assuming (H1), Conjecture 1.1.1 is true for Cases S and U above.

Here is the idea of proof in the essential case when G = G∗, i.e., when G is
quasisplit; see the proof of Theorem 2.5.1 for complete details. By induction, we
may assume that the theorem is known for all classical groups of smaller rank, or
finite products thereof. Let π be as in Conjecture 1.1.1. Let cS and ζ denote the
family of Satake parameters of π away from S and the infinitesimal character of
π at ∞, respectively. The L-morphism ξ̃ transfers cS and ζ to a family of Satake
parameters c̃S and an infinitesimal character ζ̃ for G̃. We assume that (ζ̃ , c̃S) does
not appear in the automorphic spectrum for G̃. The goal is to derive a contradiction.

The main input is the stabilized trace formula relating G and G̃, where the
subscript ζ̃ , c̃S indicates the (ζ̃ , c̃S)-isotypic part of each trace formula (reviewed
in Section 2.4 following [Arthur 2013, Chapter 3]; we recommend [Arthur 2005]
for a detailed introduction to the trace formula)

I G̃
disc,ζ̃ ,c̃S ( f )=

∑
G ẽ

ι(ẽ)S ẽ
disc,ζ̃ ,c̃S ( f ẽ), (1.1.1)

where:

• I G̃
disc is an invariant distribution on G̃(AF ), which is the discrete part of the

invariant trace formula for the twisted group G̃.

• G ẽ stands for the twisted endoscopic group in a twisted elliptic endoscopic
datum ẽ for G̃ (up to isomorphism); this includes G ẽ

= G.

• ι(ẽ) ∈ Q is a positive constant.

• S ẽ
disc is a stable distribution on G ẽ(AF ), which is the discrete part of the stable

trace formula for the twisted endoscopic group of ẽ.
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• f is a decomposable test function on G̃(AF ) whose components away from S
belong the unramified Hecke algebras.

• f ẽ is a function on G ẽ(AF ) which is a transfer of f .

Although S ẽ
disc,ζ̃ ,c̃S is very complicated in general, the induction hypothesis can

be used to show that S ẽ
disc,ζ̃ ,c̃S is equal to the trace on the (ζ̃ , c̃S)-isotypic part of

the L2-discrete spectrum of G ẽ. The point is that the “error terms” (the difference
between the two quantities in the preceding sentence) all come from classical groups
of smaller rank, which have to do with automorphic representations of general
linear groups by induction, whereas (ζ̃ , c̃S) is unrelated to such representations by
hypothesis. In particular, for ẽ such that G ẽ

= G, the stable distribution S ẽ
disc,ζ̃ ,c̃S

is not the zero distribution since π appears in the sum. (Recall that (ζ̃ , c̃S) is the
image of (ζ, cS) via ξ̃ .)

The left-hand side of (1.1.1) is trivially zero by the assumption that (ζ̃ , c̃S) does
not appear in the automorphic spectrum of G̃. Hence our preceding observation
about S ẽ

disc,ζ̃ ,c̃S tells us that a certain nonnegative combination of traces of irreducible
representations on different groups on the right-hand side vanishes. We crucially
invoke Arthur’s vanishing result [2013, Section 3.5], exactly designed for these
circumstances and relying on the nonnegativity of coefficients, to show that the
right-hand side is term-by-term trivial, i.e., every nonnegative coefficient is zero.
This is a contradiction since S ẽ

disc,ζ̃ ,c̃S was seen to be nontrivial.

1.2. Automorphic Galois representations. For the moment we go back to a general
connected reductive group G over a number field F . An automorphic representation
π of G(AF ) is called L-algebraic (resp. C-algebraic) if the infinitesimal character
of π at ∞ is algebraic (resp. algebraic after shifting by the half sum of positive
roots), see Definition 3.1.1 below. By C G we denote the C-group of G introduced
by Buzzard and Gee [2014], which is a certain semiproduct of L G with Gm ; see
Section 3.1 below. It can also be thought of as the L-group of a central Gm-extension
of G.

Fix a prime ℓ. Let S denote the finite set of places of F containing all ℓ-adic
and infinite places as well as the finite places v such that either G or π is ramified
at v. When v /∈ S, write

φπv = φL
πv

: WFv →
L G

for the unramified Langlands parameter for πv , with coefficient in C. We also define
a C-normalized parameter

φC
πv

: WFv →
C G

by modifying φπv ; see below Lemma 3.1.5 for more details. In this paper, a
Galois representation 0F →

L G(Qℓ) or 0F →
C G(Qℓ) always means a continuous

semisimple representation which is unramified at all but finitely places and whose
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restriction to the local Galois group at each place above ℓ is de Rham. When the de
Rham condition is satisfied, the Galois representations can be assigned Hodge–Tate
cocharacters (Section 3.1).

Buzzard and Gee [2014] formulated the following, see Conjectures 3.1.2 and 3.1.8
below, generalizing from the case of general linear groups in Clozel’s work [1990].

Conjecture 1.2.1. Let ? ∈ {L ,C}, ℓ a prime, and ι : C ∼= Qℓ an isomorphism. For
each ?-algebraic discrete automorphic representation π of G(AF ), there exists a
Galois representation

r = rℓ,ι(π) : 0F →
?G(Qℓ)

such that:

(i) r |
ss
WFv

∼= ιφ?
πv

at finite places v /∈ S.

(ii) The Hodge–Tate cocharacters of r are explicitly determined by the infinitesimal
characters of π at ∞.

Our interest lies in the conjecture when G is a classical group. We will concentrate
on the C-algebraic case for two reasons. Firstly, it is more directly related to the
geometric Satake equivalence (that is, part (i) of the conjecture is compatible with
geometric Satake in the C-algebraic case, see [Zhu 2020b]) and the cohomology of
Shimura varieties (e.g., as observed in [Johansson 2013]). Secondly, the C-algebraic
case is more general as illustrated by the example of an even unitary group (i.e., of
even rank) over a totally real field relative to a CM quadratic extension. Such a group
does not possess any L-algebraic automorphic representations whose archimedean
components belong to discrete series whereas there are many C-algebraic ones.
(In fact, one can go from the C-algebraic case to the L-algebraic case and vice
versa after pulling back via a central Gm-extension of G, see [Buzzard and Gee
2014, Section 5], but we do not discuss it further.) With that said, it is worth
mentioning that C-algebraicity and L-algebraicity coincide for symplectic, even
special orthogonal, and odd unitary groups.

From now, assume that F is a totally real field. In Case U, assume that G is
a unitary group with respect to a CM quadratic extension E over F , and write
c ∈ Gal(E/F) for the nontrivial element. In Case S, set E := F and c := 1 (trivial
automorphism of F).

We fix π as in Theorem 1.1.2, so the theorem provides us with an automorphic
representation 5 of GLN (AE) for a suitable N . Without loss of generality we
assume that5 is an isobaric sum of cuspidal automorphic representations of smaller
general linear groups: 5=⊞r

i=15i . (In fact we show that 5 can be chosen as such
when proving the theorem.) By the strong multiplicity one theorem, such a 5 is
unique up to isomorphism. (Hence 51, . . . ,5r are unique up to isomorphism and
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permutation.) For each i , we write 5⋆
i for the contragredient of 5i ◦ c, where c

naturally acts on GLN (AE). Consider the following hypotheses:

(H2) The infinitesimal character of 5 is regular at infinity, see Definition 3.2.1
below.

(H3) Each 5i is (conjugate) self-dual, i.e., 5⋆
i
∼=5i for every i .

Condition (H2) is equivalent to regularity of the infinitesimal character of π at
infinity unless G∗ is an even special orthogonal group (Lemma 3.2.2). Hypothesis
(H3) is implied by a full endoscopic classification theorem, which is a conditional
theorem for classical groups as already discussed. Our second main theorem is the
following (Theorem 3.2.7).

Theorem 1.2.2. Assume (H1), (H2), and (H3). Then the C-algebraic version of
Conjecture 1.2.1 holds true in Cases S and U above, except that (i) is true only up
to outer automorphism in the even orthogonal case. If we assume only (H1) and
(H2) then we have the existence of the Galois representation as in the conjecture
satisfying (i) but possibly not (ii).

Let us outline the steps of the proof:

(Step 1) Prove Conjecture 1.2.1 for cuspidal regular automorphic representations
50 of GLN over totally real or CM fields (see Proposition 3.1.11 below
for the precise version).

(Step 2) Combine Step 1 with Theorem 1.1.2 to construct a GLN -valued Galois
representation R(π) corresponding to given π on a classical group.

(Step 3) Factor the Galois representation R(π) through the L or C-group of G. In
Case U, this entails extending the Galois representation along the quadratic
extension E/F .

Step 1 follows by combining the work of many authors as recalled in the proof
of Proposition 3.1.11, if 50 is moreover (conjugate) self-dual up to a character.
Without hypothesis (H3), we need to appeal to more recent work by Harris, Lan,
Taylor and Thorne [Harris et al. 2016] and Scholze [2015]. In this case we lose
control of the Hodge–Tate cocharacter. (See the last paragraph in the proof of
Proposition 3.1.11.) This is why part (ii) of Conjecture 1.1.1 is not verified when
(H3) is not assumed. Other than this, the argument is the same whether (H3) is
assumed or not.

In Step 2 we start from a weak transfer π 7→5= ⊞r
i=15i and apply Step 1 to

construct Galois representations Ri from 5i . The desired Galois representation is
essentially

⊕r
i=1 Ri but this is not literally true. We need to keep a careful track of

L and C-normalizations.
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In Step 3 the main input is Bellaïche and Chenevier’s [2011] result on the sign of
Galois representations. Thanks to this, the argument is relatively simple in Case S.
More work is needed in Case U, but knowing the sign again allows us to factor the
extended Galois representation through the C-group.

Remark 1.2.3. When F is a global function field of characteristic p > 0, if ℓ ̸= p
then Conjecture 1.2.1 can be stated in terms of the L-group of G, without imposing
condition (ii) or algebraicity. (Every automorphic representation is considered
algebraic.) Then Conjecture 1.2.1 is true for every G and every cuspidal π by
V. Lafforgue [2018].

1.3. Complements. We comment on the prospect of removing hypotheses (H1),
(H2), and (H3). The author is cautiously optimistic that the removal of (H1) would
be attainable within the next few years. It may be possible to weaken the regularity
condition (H2) in Theorem 1.2.2 to weak regularity of 5 at infinity in the sense
of [Fakhruddin and Pilloni 2019, Section 9.1]; the weak regularity (and oddness) of
5 is always satisfied if π has regular infinitesimal character at infinity, even when
G is an even special orthogonal group. A crucial input is [Boxer and Pilloni 2021,
Theorem 6.11.2], which relaxes the regularity assumption on π in Proposition 3.1.11
to weak regularity. The proof of Proposition 3.2.4, except the assertions on signs,
goes through with the weakening of (H2) as long as both (H1) and (H3) are assumed.
The only missing ingredient is the analogue of the main results of [Bellaïche and Che-
nevier 2011] when 5 is weakly regular (and odd) but not regular. To remove (H3),
the main problem is to compute the Hodge–Tate weights of the automorphic Galois
representations in [Harris et al. 2016; Scholze 2015] as mentioned above. Partial
results are available in [A’Campo 2024, Theorem 1.0.6; Hevesi 2023, Theorem 1.1].

There are other ways to strengthen Theorems 1.1.2 and 1.2.2. Theorem 1.1.2 is
going to be eventually superseded by a full endoscopic classification; the point of our
theorem lies in the simplicity and uniformity of the argument. Theorem 1.2.2 can
be upgraded by listing more properties satisfied by the Galois representation r . For
instance, we can ask for a description of the image of complex conjugation at real
places of F , see Remark 3.2.8. Another question is to prove local-global compatibil-
ity at all finite places v, namely that the Weil–Deligne representation associated with
r at v corresponds to the v-component of the automorphic representation via the
local Langlands correspondence. This is known in the setting of Proposition 3.1.11
for GLN . (If π is not conjugate self-dual up to a character then the compatibility is
known away from places above ℓ.) From this, our existing arguments should justify
the local-global compatibility for G at all finite places (avoiding places above ℓ if
(H3) is not assumed), at least if G is quasisplit. In fact, such a reasoning already
appears in the proof of [Kret and Shin 2023, Theorem 2.4 (i), (iv)] and [Kret and
Shin 2020, Theorem 6.4(SO-i)] in some special cases. If G is not quasisplit then the
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same should work once the local Langlands correspondence for G becomes available
in a way that is compatible with the local Langlands for its quasisplit inner form.

Finally one can try to characterize those Galois representations which correspond
to automorphic representations in Conjecture 1.2.1. In fact it is fruitful to view the
Galois representations as global L-parameters and extend the Galois representations
to some sort of global A-parameters as in [Johansson and Thorne 2020, Section 4].
Then a natural problem is to formulate local and global A-packet classifications
for algebraic automorphic representations by means of such Galois-theoretic A-
parameters. We hope to address this elsewhere.

1.4. Notation and conventions. Let k be a perfect field. Denote by k̄ an algebraic
closure of k. Write 0k′/k := Gal(k ′/k) for any Galois extension k ′/k and put
0k :=0k̄/k . When T is a torus over k, write X∗(T ) := Homk̄(T,Gm) and X∗(T ) :=
Homk̄(Gm, T ). Put X∗(T )R := X∗(T )⊗Z R for Z-algebras R, which is an R[0k]-
module. Define X∗(T )R likewise. Let T̂ denote the dual torus of T over C equipped
an action of 0k .

From now on, let F be a number field. Write AF for the ring of adèles and AS
F

for the ring of adèles away from S, where S is a finite set of places of F . For each
place v of F , write WFv for the local Weil group. We fix the embeddings ιv : F ↪→ Fv
at each v, which induce the injections 0Fv ↪→0F . If v is a complex place, then there
are two R-isomorphisms ι1, ι2 : Fv ∼= C. For each complex embedding τ : F ↪→ C

inducing the place v, we write ιτ : F ↪→ C for either ι1ιv or ι2ιv , whichever induces
τ via the inclusion F ⊂ F . If τ is a real embedding inducing v then set ιτ := ιv.
Thus we have ιτ : F ↪→ C extending every embedding τ : F ↪→ C.

Let F0 be a subfield of F (allowing F0 = F), and S a finite set of places of
F0 containing all infinite places. Then 0F,S denotes the Galois group Gal(FS/F),
where FS ⊂ F is the maximal extension of F which is unramified at every place of
F which lies above some place of F0 in S.

Let G∗ be a connected quasisplit reductive group over F , with an F-pinning
(B∗, T ∗, {X∗

α}). Let Ĝ∗ denote the Langlands dual group over C equipped with a
0F -action on Ĝ∗ (called an L-action), a 0F -pinning (B̂∗, T̂ ∗, {X̂∗

α∨}), and a 0F -
equivariant bijection between the based root datum of Ĝ∗ and the dual based root
datum of G∗. This allows us to define the Galois form of the L-group

L G∗
:= Ĝ∗ ⋊0F .

It is also convenient to use 0F ′/F in place of 0F , where F ′ is a finite extension of
F over which G∗ splits. Only in Section 2 we will occasionally consider the Weil
form of the L-group, with the Weil group of F in place of 0F . We will often fix
an isomorphism ι : C ∼= Qℓ and also view Ĝ∗ and L G∗ over Qℓ. Write Sbad(G∗)

for the set of places v of F which are either infinite or such that G∗

Fv is ramified.
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At v /∈ Sbad(G∗), the pinning determines a hyperspecial subgroup K ∗
v ⊂ G∗(Fv).

Unramified representations of G∗(Fv) at v /∈ Sbad(G∗) are always meant to be
relative to this K ∗

v .
Let G be a connected reductive group over F with an isomorphism i : G∗

F
≃ G F

such that i−1σ(i) is an inner automorphism of G∗

F
for every σ ∈ 0F . Such a pair

(G, i) is called an inner twist of G∗ over F , and classified up to isomorphism
by the Galois cohomology valued in the adjoint group H 1(F,G∗,ad), whose im-
age in H 1(Fv,G∗,ad) is trivial for v not contained a finite set of places S. Then
H 1(F,G∗,ad(AS

F )) =
⊕

v /∈S H 1(Fv,G∗,ad) is trivial, so i is defined over AS
F after

conjugation by an element of G∗,ad(AS
F ). Thereby we obtain an isomorphism

G∗(AS
F )

∼= G(AS
F ), canonical up to G∗(AS

F )-conjugacy. Put Sbad(G) := Sbad(G∗)∪S.
At each v /∈ Sbad(G), we transport hyperspecial subgroups K ∗

v to Kv ⊂ G(Fv) via
the isomorphism and use them for the notion of unramified representations. We
transfer the F-pinning for G∗ to a pinning for G via i so that the based root data
for G∗ and G are 0F -equivariantly identified. Thereby we may and will identify
the L-group L G with L G∗, and transfer (B̂∗, T̂ ∗, {X̂∗

α∨}) for Ĝ∗ to (B̂, T̂ , {X̂α∨})

for Ĝ.
For a place v of G, we often write Gv to mean G ×F Fv . Write F∞ := F ⊗Q R =∏
v | ∞

Fv, and G∞ := (ResF/Q G)×Q R =
∏
v | ∞

Gv. We fix a maximal compact
subgroup K∞ =

∏
v | ∞

Kv ⊂ G∞(R)=
∏
v | ∞

G(Fv).
By H(G) we denote the space of smooth compactly supported functions on

G(AF ) which are bi-K -finite under some compact subgroup K =
∏
v Kv ⊂ G(AF ),

where Kv is the fixed hyperspecial subgroup (resp. maximal compact subgroup) at
all but finitely many v (resp. all infinite places v). Let H(G∞) denote the space of
smooth compactly supported bi-K∞-finite functions on G∞(R). Let S be a finite
set of finite places of F containing Sbad(G). At v /∈ S, let Hur(Gv) denote the
unramified Hecke algebra of bi-Kv-invariant functions on G(Fv). Take HS

ur(G) to
be the unramified Hecke algebra of compactly supported bi-K S-invariant functions
on G(AS

F ), where K S
=

∏
v /∈S Kv is the product of fixed hyperspecial subgroups.

The analogous definition of H(G), possibly with decorations, makes sense when G
is a nontrivial coset in a twisted group, e.g., G = G(N ) as in Section 2.2 below.

Write AG for the maximal Q-split torus in the center of ResF/Q G. (We have
AG = {1} for the classical groups to be considered.) Put

[G] := G(F)\G(AF )/AG(R)
0.

Let L2
disc([G]) denote the discrete part of the L2-space of functions on [G], viewed

as a G(AF )-module by right translation. Every irreducible G(AF )-subrepresentation
is referred to as a discrete automorphic representation. Denote by L2

disc([G])S−ur the
subspace generated by discrete automorphic representations which are unramified
away from S. Write CS(G) for the set in which each member is a family of
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semisimple Ĝ-conjugacy classes cv ⊂
L Gv over finite places v /∈ S such that cv

maps to the geometric Frobenius element under the projection from L Gv to the
unramified Galois group over Fv . By the Satake isomorphism, each cv corresponds
to a C-algebra morphisms Hur(Gv)→ C at v /∈ S. Thereby CS(G) is identified with
the set of C-algebra morphisms HS

ur(G)→ C.
Write G∞,C := (ResF/Q G)×Q C =

∏
τ :F↪→C Gτ , where Gτ := G ×F,τ C. Let

T∞,C =
∏
τ Tτ be a maximal torus in G∞,C. The Lie algebra of T∞,C is denoted

by t∞,C. Write �∞ =
∏
τ �τ for the Weyl group of T∞,C in G∞,C. We often write

� for �τ for simplicity.
We use Z(G∞) to denote the center of the universal enveloping algebra of

the Lie algebra of G∞,C. By the Harish-Chandra isomorphism, we may identify
Z(G∞)= C[t∞,C]

�. Write C∞(G) for the set of C-algebra morphisms Z(G∞)→ C,
or equivalently

C∞(G)= t∗
∞,C/�= X∗(T∞)C/�∞ = X∗(T̂∞)C/�∞ =

∏
τ

X∗(T̂τ )C/�. (1.4.1)

Let π = ⊗
′
vπv be an irreducible admissible representation of G(AF ) such that

π is unramified outside S. At each v /∈ S, each πv corresponds to a semisimple
Ĝ-conjugacy class c(πv) ⊂

L Gv known as the Satake parameter of πv, and vice
versa. By assigning to π the infinitesimal character at ∞ and the Satake parameters
away from S, we obtain a map

π 7→ (ζπ∞
, (c(πv))v /∈S) ∈ C∞(G)× CS(G).

According to the decomposition (1.4.1), we write

ζπ∞
= (ζπ∞,τ )τ :F↪→C.

For π as above, we have an unramified L-parameter φπv : WFv →
L Gv at each

v /∈ S and an archimedean L-parameter φπv : WFv →
L Gv at v | ∞. The relation to

the above map is as follows. For v /∈ S, φπv sends lifts of the geometric Frobenius
element into c(πv). For v | ∞ and each τ : F ↪→ C inducing v, if we identify
Fv = C via τ thus WFv = C×

⊂ WFv , then φπv |C× is Ĝ-conjugate to a map of the
form

z ∈ C×
7→ λ(z)λ′(z̄) ∈ T̂τ ⊂ Ĝτ = Ĝv

such that λ= ζπ∞,τ .
When v is a place of F , we denote by |·|v the usual norm character on F×

v or WFv
valued in positive real numbers, satisfying the product formula. Our normalization
at finite places v is that a uniformizer in F×

v and a lift of the geometric Frobenius in
WFv both map to the inverse of the residue field cardinality. By detN :GLN →Gm we
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mean the determinant map, and |detN |v : GLN (Fv)→ R>0 the map x 7→ |detN (x)|v .
We often omit N and v and simply write |·|, det, and |det|.

Given a finite dimensional representation r (typically of a local Weil group), r ss

stands for its semisimplification. By an (ℓ-adic) Galois representation of 0F , where
F is a number field, we mean a continuous semisimple representation of 0F on
a finite-dimensional Qℓ-vector space which is unramified at almost all places of
F and de Rham at ℓ. More generally, when G is as above, an L G or C G-valued
Galois representation is a continuous representation

0F →
L G(Qℓ) or R : 0F →

C G(Qℓ)

which:

• Is unramified at almost all places of F .

• Commutes with the projections from 0F and the L or C-groups onto the Galois
group 0F ′/F , where F ′/F is a Galois extension with respect to which L G or
C G is formed.

• i ◦ R is semisimple and de Rham at ℓ for i a faithful algebraic representation
(see [Borel 1979, Section 2.6]) of the L-group or C-group.

For G over F as above, write Eell(G) for a set of representatives for isomorphism
classes of (standard) elliptic endoscopic data (H,H, s, ξ) as in [Kottwitz and
Shelstad 1999, Section 2.1]; see [Langlands and Shelstad 1987, Section 1.2]. We
refer to H as an elliptic endoscopic group for G. We will always be in the case
when H can be taken to be the L-group of H . Our notation for such a datum is
usually e = (Ge, L Ge, se, ξ e). The set Eell(G) always contains a unique element
e0 whose endoscopic group is a quasisplit inner form of G. Write E<ell(G) for the
complement Eell(G)\{e0}. Every endoscopic group in E<ell(G) has strictly lower
semisimple rank than G.

The cyclotomic character has Hodge–Tate weight −1 in our convention.

2. Weak transfer

2.1. Classical groups. Let m, n ∈ Z>0. We introduce the quasisplit classical groups
Sp2n , SO2n+1, SOη

2n , and Un , naturally sitting inside (the restriction of scalars of)
general linear group GLm . (Compare with [Arthur 2013, Chapters 1 and 9] and
[Waldspurger 2010, Section 1].) For unitary groups, we write N instead of m in
anticipation of Section 2.2.
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Define antidiagonal matrices Jm, J ∗
m ∈ GLm(Z) and J ′

2n ∈ GL2n(Z) as follows:

Jm =


1

1
...

1

 , J ∗

m =


1

−1
...

(−1)m−1

 , J ′

2n =

(
−Jn

Jn

)
.

When m = 2n, let η :0Fη/F → {±1} be a faithful character. (So Fη/F is a quadratic
extension if η ̸= 1, and Fη = F if η = 1.) If η = 1 then set J ηm := Jm . If η ̸= 1,
choose α ∈ O×

F whose square roots generate Fη over F . Then define J η2n from J2n

by replacing the 2 × 2-matrix
( 0

1
1
0

)
in the middle with

( 1
0

0
−α

)
.

Case S. We define the OF -group schemes

G ∈ {Spm,Oη
m,Om},

with m = 2n in the first two cases, and m = 2n +1 in the last case, by the following
formula

G := {g ∈ GLm :
t g Jg = J }, J ∈ {J ′

m, J ηm}, respectively,

on OF -algebra valued points. The connected component of the identity in Oη
m (resp.

O2n+1) is denoted by SOη

2n (resp. SO2n+1). By abuse of notation, we still write Sp2n ,
SOη

2n , and SO2n+1 for the F-group schemes obtained by base change. We often
omit η in case η= 1. Each group contains a Borel subgroup B over F : if G is SOm

or Sp2n then B consists of upper triangular matrices in G; if G = SOη

2n with η ̸= 1
then B consists of matrices (gi j ) such that gi j = 0 if i > j and (i, j) ̸= (n + 1, n).
In the following examples, we make an explicit choice of a maximal torus T in B
and describe the character group of T as well as the half sum of positive roots ρ.
When Ai are square matrices for 1 ≤ i ≤ r , let diag(A1, . . . , Ar ) denote the block
diagonal matrix.

G = Sp2n . We take T = {diag(t1, . . . , tn, t−1
n , . . . , t−1

1 ) : t1, . . . , tn ∈ Gm} and use
the coordinates to identify X∗(T )= Zn with trivial 0F -action. We have the Weyl
group � = {±1}

n ⋊ Sn , where (ϵ1, . . . , ϵn) ∈ {±1}
n acts on (ai ) ∈ X∗(T ) by

sending each ai to aϵi
i , and Sn acts by permuting a1, . . . , an . By computation

ρ = (n, n − 1, . . . , 2, 1).

G = SOη

2n (allowing η = 1). Take T = {diag(t1, . . . , tn−1, s, t−1
n−1, . . . , t−1

1 ) :

t1, . . . , tn−1 ∈ Gm, s ∈ SOη

2}. Using b as the last coordinate we identify X∗(T )= Zn ,
with 0F acting through η on the last coordinate as {±1}. The Weyl group � is
the index two subgroup of {±1}

n ⋊ Sn consisting of (ϵ1, . . . , ϵn, σ ) such that∏n
i=1 ϵi = 1. Each element of � acts on Zn in the same way as in the Sp2n-case.

We have ρ = (n − 1, n − 2, . . . , 1, 0).
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G = SO2n+1. Here T = {diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 ) : t1, . . . , tn ∈ Gm} and
X∗(T )= Zn with trivial 0F -action. The Weyl group�= {±1}

n⋊Sn acts on X∗(T )
in the same way as above, and ρ =

1
2(2n − 1, 2n − 3, . . . , 3, 1).

For each G the choice of (B, T ) as above extends to an F-pinning (a.k.a. F-
splitting, see [Kottwitz and Shelstad 1999, Section 1.2]). The Langlands dual groups
Ĝ, as reductive groups over C, are described as Ŝp2n = SO2n+1, ŜOη

2n = SO2n , and
ŜO2n+1 = Sp2n , equipped with pinnings for Ĝ chosen in the same way as for G.
The L-action of 0F on Ĝ is trivial when G is the split group Sp2n , SO2n , or SO2n+1,
whereas the action for G = SOη

2n with η ̸= 1 factors through Gal(Fη/F) with the
nontrivial element acts as the outer automorphism θ̂◦

: g 7→ ϑgϑ−1 on SO2n , where

ϑ = diag
(

In−1,

(
0 1
1 0

)
, In−1

)
∈ SO2n(C).

Set F ′
:= F unless G = SOη

2n , in which case F ′
:= Fη, so that the 0F -action factors

through 0F ′/F . Then the F ′/F-form of the L-group L G F ′/F = Ĝ ⋊0F ′/F is given
as follows; we will often omit the subscript F ′/F :

L Sp2n = SO2n+1,
L SOη

2n =

{
O2n, η ̸= 1,
SO2n, η = 1,

L SO2n+1 = Sp2n,

where L SOη

2n = O2n when η ̸= 1 by sending the nontrivial element of Gal(Fη/F)
to ϑ .

Endoscopic groups Ge in Eell(G) have the following forms, where 0 ≤ n′
≤ n

and η′, η′

1, η
′

2 : 0F → {±1} are continuous characters, understanding that η ̸= 1
(resp. η = 1) in any factor of the form SOη

2 (resp. SOη

0) in the list:

• G = Sp2n: Ge
= SOη′

2n′ × Sp2n−2n′ .

• G = SOη

2n: Ge
= SO

η′

1
2n′ × SO

η′

2
2n−2n′ , η′

1η
′

2 = η.

• G = SO2n+1: Ge
= SO2n′+1 × SO2n+1−2n′ .

There is redundancy in the second and third items, which can be removed by impos-
ing n′

≤ ⌊n/2⌋; see [Arthur 2013, Section 1.2] or [Waldspurger 2010, Section 1.8]
for a description of full endoscopic data.

Case U. In this case, let E be a quadratic extension of F . Write c for the nontrivial
element in Gal(E/F). Define UN as an OF -group scheme by

UN := {g ∈ ResOE/OF GLN :
t g J ∗

N c(g)= J ∗

N }

on OF -algebra valued points. Again we still write UN for UN ×OF F . This group
contains a Borel subgroup B (resp. a maximal torus T ) over F consisting of upper
triangular (resp. diagonal) matrices in UN so that

T = {(t1, . . . , tN ) : ti ∈ ResE/F Gm, ti · c(tN+1−i )= 1, i = 1, . . . , N }.
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By fixing an F-algebra embedding τ0 : E ↪→ F , we obtain a projection (ResE/F Gm)F
→Gm,F induced by E ⊗F F → F , a ⊗b 7→ τ(a)b, thereby TF

∼= GN
m,F

. This leads
to an identification

X∗(T )= X∗(T̂ )= ZN via τ0,

with the 0F -action factoring through 0E/F , and c ∈0E/F acts as (ai ) 7→ (−aN+1−i ).
(If τ0c was used instead of τ0, then the identification changes by (ai ) 7→ (−aN+1−i ).)
We compute ρ =

( 1
2(N −1), 1

2(N −3), . . . , 1
2(1− N )

)
. The above choice of (B, T )

extends to an F-pinning.
The map τ0 induces a projection (ResE/F GLN )F → GLN ,F inducing UN ,F

∼=

GLN ,F and also ÛN ∼= GLN as a complex reductive group. The standard pinning
for GLN is carried over to a pinning for ÛN . The L-action of 0F , factoring through
0E/F , is given by c ∈ 0E/F acting as θ̂ (g) := J ∗

N
t g−1(J ∗

N )
−1 for g ∈ ÛN ∼= GLN .

This determines the structure of the L-group:

ξ̃0 :
L UN ∼= GLN ⋊0F ,

L(UN )E/F ∼= GLN ⋊0E/F via τ0.

We also let ξ̃0 denote either map or the common restriction to the dual group:
ÛN ∼= GLN . If τ0 is replaced with a conjugate embedding τ0c, then the above
isomorphism is composed with g ⋊ γ 7→ θ̂ (g)⋊ γ . Let v be a finite place of F .
Recall that ιv : F ↪→ Fv is fixed (Section 1.4), which gives rise to

τ0,v : E τ0↪−→ F ιv↪−→ Fv.

Write u for the place of E indued by Fv via τ0,v. As we did for ξ̃0, we obtain an
isomorphism

ξ̃u :
L(UN )Fv = GLN ⋊0Fv via τ0,v.

The maps ξ̃0 and ξ̃u fit in a commutative square with the natural embeddings
L(UN )Fv ↪→

L UN and GLN ⋊0Fv ↪→ GLN ⋊0F . Similarly, let σ : F ↪→ C be an
embedding. Write v for the infinite place of F induced by σ . We have chosen
ισ : F ↪→ C to extend σ in Section 1.4. Write τ0,σ := ισ τ0. Then we obtain

ξ̃τ0,σ :
L(UN )Fv = GLN ⋊0Fv via τ0,σ .

For the embedding τ0,σ c conjugate to τ0,σ , we define ξ̃τ0,σ c to be ξ̃τ0,σ followed by
g ⋊ γ 7→ θ̂ (g)⋊ γ . Similarly, if a finite place v splits in E as u and u′ then ξ̃u′ is
set to be ξ̃u composed with g ⋊ γ 7→ θ̂ (g)⋊ γ . To sum up, we defined

ξ̃τ for all embeddings E ↪→ C and ξ̃u for all finite places u of E .

When v is an infinite place, we also fix an isomorphism Fv ∼= C and still write
τ0,v for the composite map E ↪→ Fv ∼= C. This map induces T̂τ0,v

∼= GN
m over C,

thus X∗(T̂τ0,v )= ZN .
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Endoscopic groups in Eell(UN ) have the form UN1 × UN2 for integers N1 ≥ N2 ≥0
and N1 + N2 = N . See [Rogawski 1990, Section 4.6]; compare [Waldspurger 2010,
Section 1.8] or [Mok 2015, Section 2.4]) for more details on full endoscopic data.
We note that the Weil form (rather than the Galois form) of the L-group is needed
to describe the L-morphisms in the endoscopic data.

2.2. Twisted general linear groups. Consider Cases S and U together. Keep the
same E and c as above in Case U; set E = F and c = 1 ∈ Gal(E/F) in Case S for
uniformity. For N ∈ Z≥1 we introduce the groups

G̃0(N ) := ResE/F GLN and G̃(N ) := G̃0(N )⋊ ⟨θ⟩,

where ⟨θ⟩ is an order 2 group with θ acting on G̃0(N ) as θ(g):g 7→ J ∗

N
t c(g)−1(J ∗

N )
−1.

Fix a standard pinning (BN , TN , {X N }) of G̃0(N ), which is stabilized by θ . In
particular, TN is the diagonal maximal torus of G̃0(N ). Write G(N ) := G̃0(N )⋊ θ
for the θ-coset in G̃(N ). We also let G(N ) stand for the datum (G̃(N ), θ) as in
[Arthur 2013, page 125]. For simplicity of notation we will often write L G(N ) and
Ĝ(N ) for L G̃0(N ) and ̂̃G0(N ).

Denote by Ẽell(N ) a set of representatives for isomorphism classes of twisted en-
doscopic data for (G̃(N ), θ). Each element of Ẽell(N ) is represented by a quadruple
ẽ = (G ẽ, L G ẽ, s ẽ, ξ ẽ); see [Kottwitz and Shelstad 1999]. By Ẽsim(N ) we mean the
subset of simple twisted endoscopic data in Ẽell(N ), i.e., the data where G ẽ attains
maximal semisimple rank.

We give an explicit parametrization of Ẽell(N ) by means of the twisted endoscopic
group G ẽ following [Arthur 2013, Section 1.2] and [Rogawski 1990, Section 4.7].
For simple endoscopic data we will write G and ξ̃ for G ẽ and ξ ẽ, and describe ξ̃
explicitly.

Case S. The twisted endoscopic groups are parametrized by triples

(NO , NS, η), NO , NS ∈ Z≥0, NO + NS = N , NS is even, η : 0F → {±1},

where the continuous character η is trivial if NO = 0, nontrivial if NO = 2, and
arbitrary if NO > 2. The corresponding G ẽ is SOη

NO
× SONS+1 if N is even, and

SpNO−1 × SONS+1 if N is odd. In each case, ξ ẽ can be described as in [Arthur 2013,
page 11]. (If N is odd then η only affects ξ ẽ, not G ẽ.)

The triple corresponds to an element of Ẽsim(N ) precisely when NO =0 or NS =0.
If N = 2n, then we have (0, N , 1) and (N , 0, η). In the first case, G = SO2n+1 and

ξ̃ :
L G = Sp2n ↪→ GL2n

is the standard embedding, inducing the map on cocharacter groups

X∗(T̂ )= Zn
→ X∗(T̂2n)= Z2n, (ai )

n
i=1 7→ (a1, . . . , an,−an, . . . ,−a1).
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The triple (N , 0, η) corresponds to G = SOη

2n and

ξ̃ :
L G = O2n ↪→ GL2n

is again the standard embedding, inducing the map on cocharacter groups

X∗(T̂ )= X∗(T )=Zn
→ X∗(T̂2n)=Z2n, (ai )

n
i=1 7→ (a1, . . . , an,−an, . . . ,−a1).

Strictly speaking the codomain of ξ̃ is GL2n ×0Fη/F , but the image of ξ̃ in the
Galois factor is dictated by the fact that ξ̃ is an L-morphism, so we often omit it
from the formula. The same will apply to ξ̃ below when N is odd.

If N = 2n + 1, simple data correspond to (N , 0, η), thus G = Sp2n and

ξ̃ :
L G Fη/F = SO2n+1 ×0Fη/F ↪→ GL2n+1

given by the standard embedding on SO2n+1 and η : 0Fη/F ↪→ {±1} ⊂ GL2n+1 on
the Galois group. The induced map on cocharacters is

X∗(T̂ )= Zn
→ X∗(T̂2n+1)= Z2n+1, (ai )

n
i=1 7→ (a1, . . . , an, 0,−an, . . . ,−a1).

Case U. The twisted endoscopic groups in Ẽell(N ) are parametrized by quadruples

(N1, N2, κ1, κ2), N1, N2 ∈ Z≥0, N1 + N2 = N , κ1, κ2 ∈ {±1},

with (κ1, κ2) either (1,−1) or (−1, 1) if N is even, and (1, 1) or (−1,−1) if N is
odd, modulo the equivalence (N1, N2, κ1, κ2)∼ (N2, N1, κ2, κ1). (Compare with
[Mok 2015, Section 2.4], but beware of a small inaccuracy that the equivalence
between endoscopic data is incorrect there.) For each quadruple we have a twisted
endoscopic group Ge

=UN1 × UN2 , with respect to the same E/F , which is part of a
twisted endoscopic datum. We refer to loc. cit. for a formula for the L-morphism ξ ẽ,
which depends on κ1, κ2.

The subset Ẽsim(N ) corresponds to quadruples (N , 0, κ1, κ2). Set κ := κ1 ∈ {±1}.
We need not keep track of κ2 as it is determined by N and κ1. In both cases the
twisted endoscopic group is G = UN ; let ξ̃+, ξ̃− :

L UN →
L G̃0(N ) denote the

L-morphisms corresponding to κ = 1,−1, respectively. Let τ0 : E ↪→ F be the
embedding fixed in Section 2.1. Then Ĝ(N )= GLN × GLN , where the copies of
GLN are indexed by τ0 and τ0c in the order, and 0E/F acts by permuting the two
factors. The “base change” morphism ξ̃+ is easy to describe

ξ̃+ :
L(UN )E/F

τ0
= GLN ⋊0E/F →

L G̃0(N )= (GLN ×GLN )⋊0E/F ,

g⋊γ 7→ (g, θ̂ (g))⋊γ = (g, J ∗

N
t g−1(J ∗

N )
−1)⋊γ.

(2.2.1)

This map is independent of the choice of τ0: if τ is replaced with τc, then the
first identification is twisted by g ⋊ γ 7→ θ̂ (g)⋊ γ while the second map becomes
g ⋊ γ 7→ (g, θ̂ (g)) (if the first component is still labeled by τ ) so the changes are
canceled out, while the last identification is unchanged.
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The map ξ̃+ induces a map on the cocharacter groups

X∗(T̂ )
τ
= ZN

→ X∗(T̂N )= ZN
⊕ ZN , (ai ) 7→ ((ai ), (−aN+1−i ))

in accordance with (2.2.1). Similarly we can describe the map induced by ξ̃+:

X∗(T̂∞)=

⊕
σ

X∗(T̂ )→ X∗(T̂N ,∞)=

⊕
τ

X∗(T̂N ),

where the first sum is over embeddings σ : F ↪→ C and the second over τ : E ↪→ C.
Namely if (ai )∈ X∗(T̂ ) denotes the σ -component, then the image is supported on the
τ0,σ and τ0,σ c components on the right, and the map is (ai ) 7→ ((ai ), (−aN+1−i )).

We refer to [Mok 2015, Section 2.4] for a description of ξ̃−, which will be needed
only in a minor way, and leaves it as an exercise to describe the induced map on
cocharacter groups. We just remark that ξ̃− is not defined on L-groups relative to a
Galois extension; we need the Weil form of the L-groups.

2.3. Global parameters. Keep the notation from the preceding subsection. We
introduce (conjugate) self-dual parameters for general linear groups, which will
serve as parameters for automorphic representations of classical groups. We are
following [Arthur 2013, Section 1.4] in spirit, but our situation is simpler in that
we do not need the seed theorems of Arthur (namely [Arthur 2013, Theorems 1.4.1
and 1.4.2]) as we will prove only weak transfers.

For m ∈ Z≥1, let 9sim(m) denote the set of (isomorphism classes of) unitary
cuspidal automorphic representations of G(m,AF )= GLm(AE). Write 9(N ) for
the set of formal global parameters

ψ = ⊞i∈Iµi ⊠ νni , µi ∈9sim(mi ),mi , ni ∈ Z≥1, (2.3.1)

where I is a finite index set, νni is an irreducible ni -dimensional algebraic repre-
sentation of SL2(C), and

∑
i∈I mi ni = N . Given ψ is considered equal to another

parameter ψ ′
= ⊞i ′∈I ′µi ′ ⊠ νn′

i
if there exists a bijection f : I → I ′ such that

µi = µ f (i) and ni = n f (i) for all i ∈ I .
Given µ ∈9sim(m), let µ⋆ := µ∨

◦ c ∈9sim(m) denote its conjugate-dual. This
definition extends to 9(N ) by setting ψ⋆ := ⊞i∈Iµ

⋆
i ⊠ νni . Put

9̃(N ) := {ψ ∈9(N ) : ψ⋆ = ψ}.

Let S be a finite set of places of F containing all the places of F ramified in E .
Write 9S(N ) for the subset of ψ ∈9(N ) which are unramified outside S; the latter
means that µi are all unramified outside S in (2.3.1). Put 9̃S(N ) := 9̃(N )∩9S(N ).
We define C∞(N ) and CS(N ) to be the sets of C-algebra characters of Z(G̃0(N )∞)
and HS

ur(G̃
0(N )), respectively. We have a map

ψ ∈9S(N ) 7→ (ζψ,∞, cS(ψ)) ∈ C∞(N )× CS(N )
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defined as follows. Given ψ as in (2.3.1), we have (ζµi,∞, cS(µi )) ∈ C∞(mi )×

CS(mi ). The block diagonal embedding
∏

i∈I
∏ni

j=1 GLmi → GLmi ni induces a map

∏
i∈I

ni∏
j=1

(C∞(mi )× CS(mi ))→ C∞(N )× CS(N ).

We define (ζψ∞
, cS(ψ)) to be the image of(
ζµi,∞ +

ni + 1 − 2 j
2

, q(ni +1−2 j)/2
v cS(µi )

)
i∈I,1≤ j≤ni

,

where the sum ζµi,∞ + a with a ∈ Q means that the sum is taken in X∗(T̂mi )C/�mi ,

and a ∈Q= X∗(Gm)Q embeds into X∗(T̂mi )Q via the inclusion of Gm= Z( ˜̂G0(mi ))
0F

in T̂mi ; the product qb
v cS(ψ) with b ∈ Q is taken in ˜̂G0(mi ), where qb

v ∈ Gm(C)

is viewed as a central element of the dual group of G̃0(mi ). Our definition
of (ζψ,∞, cS(ψ)) is given explicitly such that it is consistent with the local A-
parameters at ∞ and finite places away from S obtained from localizing ψ .

2.4. Stabilized trace formulas. Let G be an inner form of a quasisplit classical
group as in Section 2.1. (In fact the discussion below in the untwisted case works
for general reductive groups as in the relevant parts of [Arthur 2013, Chapter 3].)

Let us begin by introducing the notion of Hecke types following [Arthur 2013,
page 129]. We freely use the notation and the choices made from Section 1.4.
Let S be a finite set of places of F containing Sbad(G). Let κ∞

S be an open
compact subgroup of

∏
v G(Fv), where v runs over finite places in S. Write

K S for the product of hyperspecial subgroups K 0
v over finite places v /∈ S, so

κ∞

S K S is an open compact subgroup of G(A∞

F ). Fix a finite set τ∞ consisting of
irreducible representations of a fixed maximal compact subgroup K∞ of G∞(R)=∏
v | ∞

G(Fv). The pair κ = (τ∞, κ
∞

S K S) arising this way is called a Hecke type.
Write H(G)κ for the subspace generated by f = f ∞ f∞ ∈ H(G) such that f ∞ is
biinvariant under κ∞

S K S and such that f∞ transforms under left and right translations
under K∞ according to representations in τ∞.

Let h ∈ HS
ur(G) and z ∈ Z(G∞). By evaluating cS

∈ CS(G) and ζ ∈ C∞(G) at
h and z respectively (see Section 1.4), we obtain the numbers to be denoted by
ĥ(cS) ∈ C and ζ(z) ∈ C. Moreover h and z act on HS

ur(G) and H(G∞), written as
f S

7→ h ∗ f S and f∞ 7→ z ∗ f∞, such that for irreducible admissible representations
π S of G(AS

F ) and π∞ of G∞(R),

π S(h ∗ f S)= ĥ(cS(π S))π S( f S), π∞(z ∗ f∞)= ζπ∞
(z)π∞( f∞). (2.4.1)
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In particular we have identities by taking the traces of both sides in (2.4.1). The
commuting action of (h, z) on HS

ur(G)×H(G∞), again denoted by ∗, obviously
extends to H(G(AF ), K S).

Let t ∈ R≥0. Write I G
disc,t for the discrete part of the trace formula, which is an

invariant linear form on H(G). The restriction of I G
disc,t to H(G)κ decomposes as a

finite sum of eigen-linear forms of HS
ur(G). Moreover, we can further decompose

as a finite sum of eigen-linear forms for the action of Z(G∞) on H(G∞). Thus we
can write

I G
disc,t( f )=

∑
(ζ,cS)∈C∞(G)×CS(G)

I G
disc,ζ,cS ( f ), f ∈ H(G(AF ), K S), (2.4.2)

where I G
disc,ζ,cS are (ζ, cS)-eigen-linear forms:

I G
disc,ζ,cS ((h, z) ∗ f )= ĥ(cS)ζ(z)I G

disc,ζ,cS ( f ), h ∈ HS
ur(G), z ∈ Z(G∞). (2.4.3)

The ζ and cS appearing in (2.4.2) should be thought of as the infinitesimal characters
at ∞ and the away-from-S Satake parameters for the automorphic representations
contributing to Idisc,t . For a fixed Hecke type κ , the sum (2.4.2) runs over a finite
set depending only on κ and not on f ∈ H(G)κ by Harish-Chandra’s finiteness
theorem.

Note that t is determined by ζ to be the norm of the imaginary part of ζ ; see
[Arthur 2013, page 123]. That is, for a fixed ζ and cS , the linear form I G

disc,ζ,cS in
(2.4.2) is nontrivial for at most one t . Hence the meaning of I G

disc,ζ,cS is unambiguous
even if we do not include t in the notation.

Write RG
disc,t for the regular representation of G(AF) on L2

disc([G]); see Section 1.4.
Just like I G

disc,t the invariant distribution tr RG
disc,t decomposes as

tr RG
disc,t( f )=

∑
(ζ,cs)∈C∞(G)×CS(G)

tr RG
disc,ζ,cS ( f ), f ∈ H(G(AF ), K S).

To discuss stable distributions, we will only consider G with the following
property: for every finite sequence ei = (Ge

i ,G
e
i , sei , ξ

e
i ) indexed by i = 1, . . . , r ,

where ei is an elliptic endoscopic datum for Ge
i−1 over F for 2 ≤ i ≤ r , we can

take Ge
i =

L Ge
i for all 1 ≤ i ≤ r . (That is, ei is isomorphic to an endoscopic datum

whose second entry is given by the L-group of the first entry.) The purpose of the
simplifying hypothesis is to dispense with any discussion of z-extensions. This
suffices for our needs as the classical groups in Section 2.1 satisfy the condition.

Now we consider elliptic endoscopic data e = (Ge,Ge, se, ξ e) for G over F .
Denote by f e ∈H(Ge(AF )) a Langlands–Shelstad transfer of f . Arthur inductively
defined stable linear forms Se

disc,t = SGe

disc,t : H(Ge)→ C for each e satisfying the
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fundamental identity

I G
disc,t( f )=

∑
e∈Eell(G)

ι(e)Se
disc,t( f e), (2.4.4)

where ι(e)∈ Q>0 is an explicit constant. For quasisplit G = Ge0 , the equality should
be viewed as an inductive definition of SG

disc,t ; the inductive procedure is based on
the fact that the semisimple rank of Ge is less than that of G for e ∈ E<ell(G). The
role of the stabilization of the trace formula is to tell us that the inductive definition
of SG

disc,t indeed yields a stable linear form. If G is not quasisplit then both sides of
(2.4.4) are a priori defined, and the content of the stabilization is that the equality
holds in (2.4.4). See the explanation between (3.2.3) and (3.2.4) in [Arthur 2013]
for more details.

The transfer f e has trivial stable orbital integrals unless S ⊃ Sbad(Ge), which we
assume from now. In particular if f ∈H(G(AF ), K S) then f e ∈H(Ge(AF ), K e,S),
where K e,S is the product of fixed hyperspecial subgroups of Ge(Fv) over v /∈ S.
Based on (2.4.2) and (2.4.4), we can adapt the argument from [Arthur 2013,
Lemma 3.3.1] to decompose Se

disc,t into stable linear forms

Se
disc,t( f e)=

∑
(ζ ′,c′,S)∈C∞(Ge)×CS(Ge)

Se
disc,ζ ′,c′,S ( f e), f ∈ H(Ge(AF ), K e,S),

such that each Se
ζ ′,c′,S satisfies the analogue of (2.4.3). If G is quasisplit, then this

applies in particular to Ge
= G, that is, we have a stable linear form SG

disc,ζ,cS :

H(G(AF ), K S)→ C for (ζ, S) as before. Given (ζ, cS) ∈ C∞(G)× CS(G), define

Se
disc,ζ,cS :=

{∑
(ζ ′,c′,S) 7→(ζ,cS) Se

disc,ζ ′,c′,S if S ⊃ Sbad(Ge),

0 otherwise.

where the sum is taken over the pairs such that ζ ′
7→ ζ and c′,S

7→ cS under the
natural maps C∞(Ge) → C∞(G) and CS(Ge) → CS(G) induced by ξ e. Then we
have a refinement of (2.4.4) as in [Arthur 2013, Lemma 3.3.1]:

I G
disc,ζ,cS ( f )=

∑
e∈Eell(G)

ι(e)Se
disc,ζ,cS ( f e). (2.4.5)

More precisely, the refinement by cS is done in [loc. cit.] but not by infinitesimal
characters. The argument of [loc. cit.] based on multipliers works in the same way
to give refinement by ζ as long as the archimedean transfer is compatible with
infinitesimal characters; such compatibility is stated and proved in either of [Mezo
2013, Lemma 24] and [Mœglin and Waldspurger 2016a, I.2.8. Corollary], including
the twisted case. This point is also explained in [Taïbi 2019, page 867].

The discussion so far can be adapted to the twisted case, as this case is covered
in [Arthur 2013, Sections 3.1–3.3]. For the twisted group G̃(N ) introduced in
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Section 2.1, denote by I G(N )
disc,t the twisted invariant trace formula and by Ẽell(N ) a

set of representatives for isomorphism classes of twisted endoscopic data. Each
ẽ ∈ Ẽell(N ) is again represented by a quadruple (G ẽ, L G ẽ, s ẽ, ξ ẽ), where G ẽ is a
product of one or two classical groups as listed in Section 2.2.

Recall that we defined C∞(N ) and CS(N ) in Section 2.3. Put K (N )S
⊂

G̃0(N )(AS
F ) for the product of hyperspecial subgroups coming from the obvious

integral model of G̃0(N ) over OF . We have h ∈ HS
ur(G̃

0(N )) and z ∈ Z(G̃0(N )∞)
act on H(G(N ,AS

F ), K (N )S) and H(G(N )∞), respectively, such that the analogue
of (2.4.1) holds for representations of G̃(N ,AS

F ) and G̃(N )∞. The decomposition
(2.4.2) admits a twisted analogue

I G(N )
disc,t ( f )=

∑
(ζ̃ ,c̃S)∈C∞(N )×CS(N )

I G(N )
disc,ζ̃ ,c̃S ( f ), f ∈ H(G(N ,AF ), K (N )S),

where each I G(N )
disc,ζ̃ ,c̃S is an invariant linear form on H(G(N )) satisfying the eigen-

property analogous to (2.4.3). As before, I G(N )
disc,ζ̃ ,c̃S is nontrivial for at most one t , so

there is no danger if t is omitted in the subscript.
Provided that S ⊃ Sbad(G ẽ), the L-morphism ξ ẽ :

L G ẽ
→

L G̃0(N ) induces maps
C∞(G ẽ) → C∞(N ) and CS(G ẽ) → CS(N ). Thereby we put, for each (ζ̃ , c̃S) ∈

C∞(N )× CS(N ),

S ẽ
disc,ζ̃ ,c̃S :=

∑
(ζ,cS) 7→(ζ̃ ,c̃S)

S ẽ
disc,ζ,cS ,

as a stable linear form on H(G ẽ). If S ̸⊃ Sbad(G ẽ) then set S ẽ
disc,ζ̃ ,c̃S := 0.

The stabilization of the twisted trace formula due to Moeglin and Waldspurger
[2016b, X.8.1] shows that, if f ẽ denotes a Langlands–Shelstad–Kottwitz transfer
of f ∈ H(G(N )) then the twisted analogue of (2.4.4) holds:

I G(N )
disc,t ( f )=

∑
ẽ∈Ẽell(N )

ι(ẽ)S ẽ
disc,t( f ẽ), (2.4.6)

where ι(ẽ) ∈ Q>0 is an explicit constant. For (ζ̃ , c̃S) as above, we refine the
preceding formula again by [Arthur 2013, Lemma 3.3.1] (see the paragraph below
(2.4.5)):

I G(N )
disc,ζ̃ ,c̃S ( f )=

∑
ẽ∈Ẽell(N )

ι(ẽ)S ẽ
disc,ζ̃ ,c̃S ( f ẽ). (2.4.7)

2.5. Weak transfer for classical groups. Let G∗ be a quasisplit classical group as
in Case S or U of Section 2.1. Let ξ̃ :

L G∗
→

L G̃0(N ) be the L-morphism such
that G∗ and ξ̃ constitute a simple twisted endoscopic group for (G̃(N ), θ) as in
Section 2.2. Let (G, i) be an inner twist of G∗ over F (Section 1.4).
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Theorem 2.5.1 (quasisplit case). Assume (H1) in Section 1.1 and let G = G∗. Fix
a finite set S ⊃ Sbad(G):

(1) For (ζ, cS) ∈ C∞(G)× CS(G) write (ζ̃ , c̃S) ∈ C∞(N )× CS(N ) for the image
of (ζ, cS) under ξ̃ . Unless (ζ̃ , c̃S)= (ζψ,∞, cS(ψ)) for some ψ ∈ 9̃S(N ),

tr RG
disc,ζ,cS ( f )= I G

disc,ζ,cS ( f )= SG
disc,ζ,cS ( f )= 0, f ∈ H(G(AF ), K S).

(2) We have a G(AF )-equivariant decomposition

L2
disc([G])S−ur

=

⊕
ψ

⊕
(ζ,cS) 7→(ζψ,∞,cS(ψ))

L2
disc,ζ,cS ([G])

where the first sum runs over ψ ∈ 9̃S(N ), and the second over (ζ, cS) ∈

C∞(G)×CS(G) which map to (ζψ,∞, cS(ψ)) under ξ̃ . (See Section 2.3 for the
notation.)

This theorem corresponds to [Arthur 2013, Proposition 3.4.1, Corollary 3.4.3].
Arthur’s main global theorems (Section 1.5 therein) show that only a proper subset
of 9̃S(N ) contributes in (i) and (ii), consisting of the ones coming from square-
integrable parameters of G. The soft argument here does not narrow down the set
of ψ as much. Theorem 2.5.1 is proven essentially in the same way as [Arthur
2013, Proposition 3.4.1, Corollary 3.4.3]. We give some details for the convenience
of the reader, taking for granted the key input [Arthur 2013, Proposition 3.5.1] on
vanishing.

Proof. Assume that (ζ̃ , c̃S) ̸= (ζψ,∞, cS(ψ)) for any ψ ∈ 9̃S(N ). Let us show (i)
and (ii) by induction on N .

Let us check (i) and (ii) when G is a torus; this serves as the base case. Concretely
G = SOη

2 (allowing η = 1) in Case S, and G = U1 in Case U. Since the two cases
are similar, we only consider the latter case. Then L2

disc([G])S−ur
=

⊕
χ χ , where

χ : U1(AF )\ U1(AF )→ C× is an automorphic character unramified outside S. This
matches the decomposition on the right-hand side of (ii) since each χ determines a
unique conjugate self-dual Hecke character ψ : E×

\A×

E → C× by ψ(x)= χ(x/xc)

and a unique pair (ζ, cS) recording the infinitesimal character and the Satake
parameter of χ . Turning to the displayed formula of (i), we see that the first equality
holds because a torus has no proper parabolic subgroup, and that the second equality
holds because a torus permits no elliptic endoscopic data other than the tautological
one. Now the vanishing of the quantities in (i) follows from the decomposition of (ii).

Now we proceed with the induction hypothesis- suppose that (i) and (ii) are
known for all quasisplit classical groups which are simple twisted endoscopic
groups of G(N ′) for all N ′ < N and that G is a simple twisted endoscopic group
for G(N ). (Here N > 1.)
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Recall that I G
disc,t − tr RG

disc,t is by definition a linear combination of traces of
induced representations from discrete automorphic representations πM on proper
Levi subgroups M of G. So the same is true for I G

disc,ζ,cS − tr RG
disc,ζ,cS . Hence, if the

latter were nonzero, then there exists a proper Levi M of G such that (ζ, c) is the
image of c= (ζM , cS

M)∈C∞(M)×CS(M) associated with some discrete automorphic
representation πM of M(AF ). We can write M = Mh × Ml with Mh a classical
group, where Mh is realized as a twisted endoscopic group for G(N − 2N ′), and
Ml = G(N ′) with N ′< N . According to M = Mh × Ml , we decompose c= (ch, cl).
By induction hypothesis for Mh , we have ch map to (ζψh ,∞, cS(ψh)) for some
ψh ∈ 9̃(N − 2N ′). On the other hand, since the L2-discrete spectrum of Ml is
completely accounted for by 9(N ′) thanks to [Mœglin and Waldspurger 1989] (see
[Arthur 2013, pages 23–25] for explanation), we have cl = (ζψl ,∞, cS(ψl)) for some
ψl ∈9(N ′). Since (ζ, c) is the image of (ch, cl) under parabolic induction, we see
that (ζ̃ , c̃S)= (ζψ,∞, cS(ψ)) for ψ =ψh ⊞ψl ⊞ψ⋆l ∈ 9̃(N ). This is a contradiction.
We conclude that

I G
disc,ζ,cS ( f )= tr RG

disc,ζ,cS ( f ), f ∈ H(G(AF ), K S). (2.5.1)

Now I G
disc,ζ,cS − SG

disc,ζ,cS is a linear combination of Se
disc,ζ,cS over e ∈ E<ell(G). If

the difference were nonzero, then for some e,

Se
disc,ζ,cS =

∑
(ζ ′,c′,S) 7→(ζ,cS)

Se
disc,ζ ′,c′,S

is nontrivial. Since Ge is a product of quasisplit classical groups G1 and G2 of
lower rank (see Section 2.1), by arguing as in the preceding paragraph based on
the induction hypothesis for G1 and G2, we reach a similar contradiction. (The
difference is that there is no general linear factor in G and that the role of parabolic
induction is played by the endoscopic transfer via ξ e.) Hence

I G
disc,ζ,cS ( f )= SG

disc,ζ,cS ( f ), f ∈ H(G(AF ), K S). (2.5.2)

By the initial hypothesis, I G(N )
disc,ζ̃ ,c̃S = 0. Applying (2.4.7), (2.5.1) and (2.5.2), we

obtain
0 = I G(N )

disc,ζ̃ ,c̃S ( f̃ )=

∑
ẽ∈Ẽell(N )

ι(ẽ) tr RG ẽ

disc,ζ̃ ,c̃S ( f̃ ẽ). (2.5.3)

The sum runs over the set of ẽ such that G ẽ is unramified outside S; thus it is a
finite sum. Each tr RG ẽ

disc,ζ̃ ,c̃S is a positive linear combination of traces of finitely
many discrete automorphic representations π ẽ of G ẽ(AF ). If f̃ is chosen from
the Hecke algebra on G(N ) of a fixed Hecke type κ then each f̃ ẽ belongs to
the Hecke algebra on G ẽ of a Hecke type κ ẽ determined by κ . Thus the set of
contributing π ẽ is contained in a finite set depending only on κ , by the condition
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that π ẽ should be unramified outside S and that the components of π ẽ at S should
have finitely many types dictated by κ ẽ. (The discussion of this paragraph is based
on the explanation between (3.4.11) and (3.4.13) of [Arthur 2013]. The two key
facts are that a compatible family therein arises exactly from an element of the
Hecke algebra on G(N ) and that a compatible family always has a Hecke type.)

The preceding paragraph tells us that Arthur’s vanishing result [2013, Proposi-
tion 3.5.1] applies to (2.5.3). As a result, every summand in (2.5.3) is identically
zero. In particular this is true for G ẽ

= G, namely tr RG
disc,ζ̃ ,c̃S is an empty linear

combination. That is, tr RG
disc,ζ̃ ,c̃S ( f )= 0 for all f . This completes the proof of (i)

in light of (2.5.1) and (2.5.2).
Part (ii) follows immediately from (i) since tr RG

disc,ζ,cS = 0, which implies
L2

disc,ζ,cS ([G])= 0, unless (ζ, cS) maps to (ζψ,∞, cS(ψ)) for some ψ ∈ 9̃S(N ). □

Theorem 2.5.2 (general case). Assume (H1). Let (G, i) be an inner twist of G∗

over F. For each ζ ∈ C∞(G) and cS
∈ CS(G),

tr RG
disc,ζ,cS ( f )= I G

disc,ζ,cS ( f )= 0, f ∈ H(G(AF ), K S),

unless ξ sends (ζ, cS) to (ζψ,∞, cS(ψ)) for some ψ ∈ 9̃(N ). There is a G(AF )-
equivariant decomposition

L2
disc([G])S−ur

=

⊕
ψ

⊕
(ζ,cS) 7→(ζψ,∞,cS(ψ))

L2
disc,ζ,cS ([G]),

where the sums run over ψ ∈ 9̃S(N ) and (ζ, cS) ∈ C∞(G) × CS(G) such that
ξ((ζ, cS))= (ζψ,∞, cS(ψ)).

Proof. We induct on N as in the proof of Theorem 2.5.1. The argument there carries
over to show that

I G
disc,ζ,cS ( f )= tr RG

disc,ζ,cS ( f ), f ∈ H(G(AF ), K S),

using the fact that a proper Levi subgroup of G is a product of G ′(N ) with N ′ < N
and a non-quasisplit classical group of lower rank than G; the induction hypothesis
is applied to the latter.

Now we consider (2.4.5). Since the stable distributions on the right-hand vanish
by Theorem 2.5.1 (if e ∈ E<ell(G), we can also argue as in the proof of that theorem),
we deduce that I G

disc,ζ,cS ( f ) = 0. Hence tr RG
disc,ζ,cS vanishes as well, and the

assertion about L2
disc([G]) follows. □

Theorem 2.5.2 can be rephrased as the existence of a weak endoscopic lift
for G as a twisted endoscopic group of (G̃(N ), θ) in the next corollary. Let us
introduce a notion that will be used here and in the next section. Let πi be a cuspidal
automorphic representation of GLNi (AF ) for i = 1, . . . , r . Following [Clozel 1990,
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Definition 1.2], the isobaric sum of π1, . . . , πr , denoted by ⊞r
i=1πi , is defined to

be an automorphic representation 5 of GL∑
i Ni (AF ) such that 5v is isomorphic to

the Langlands subquotient of the normalized parabolic induction from
⊗r

i=1 πi,v

at every place v of F . As remarked in [loc. cit.] an automorphic representation of
GLN (AF ) is written as an isobaric sum in a unique way (up to permutation) by a
result of Jacquet and Shalika.

Corollary 2.5.3. Assume (H1). For every discrete automorphic representation
π of G(AF ) unramified away from S, there exists an automorphic representation
5 of G0(N ,AF ), which is an isobaric sum of cuspidal representations, such that
5∨ ∼=5 ◦ c and (ζπ∞

, cS(π)) maps to (ζ5∞
, cS(5)) via ξ̃ .

Proof. Since π appears in L2
disc([G])S−ur, it appears in L2

disc,ζ,cS ([G]) for some
(ζ, cS) mapping to (ζψ,∞, cS(ψ)) as in Theorem 2.5.2. In particular (ζ, cS) =

(ζπ∞
, cS(π)). Writing ψ in the form (2.3.1), we can take 5 to be the isobaric sum

⊞i∈I (µi |det|(ni −1)/2 ⊞µi |det|(ni −3)/2 ⊞ · · ·⊞µi |det|(1−ni )/2).

By construction (ζψ,∞, cS(ψ)) = (ζ5∞
, cS(5)). Since ψ⋆ = ψ , it follows that

5∨ ∼=5 ◦ c. □

3. Automorphic Galois representations

3.1. The Buzzard–Gee conjecture. Throughout this subsection, let G be a con-
nected reductive group over a number field F (which need not be a classical group).
Let ℓ be a prime number and ι : C ∼

−→ Qℓ an isomorphism. We work with fixed ℓ
and ι at a time, but note that the conjectures below predict the existence of weakly
compatible systems of Galois representations in a suitable sense as ℓ and ι vary.

Let G∞,C =
∏
τ Gτ and T∞,C =

∏
τ Tτ be as in Section 1.4. Fix a Borel subgroup

B∞,C = Bτ containing T∞,C. The half sum of positive roots is denoted by ρ∞ =

(ρτ )τ ∈ X∗(T∞,C)Q. We also view ρ∞ as the half sum of positive coroots of T̂∞,C

relative to B̂∞,C, thus an element of X∗(T̂∞,C)Q. We also have ρ ∈ X∗(T )= X∗(T̂ )
as the half sum of positive roots for T and B as in Section 1.4. The pairs (B, T ) and
(Bτ , Tτ ) determine isomorphisms X∗(T ) ∼= X∗(Tτ ) and X∗(T̂ ) ∼= X∗(T̂τ ), under
which ρ maps to ρτ .

Let π = ⊗
′
vπv be a discrete automorphic representation of G(AF ). We assigned

the infinitesimal character ζπ∞
= (ζπ,τ ) ∈ X∗(T∞,C)C/�∞ =

⊕
τ X∗(T̂ )C/� in

Section 1.4. We introduce two notions of algebraicity for π in terms of ζπ∞
.

Definition 3.1.1. We say that π is L-algebraic if ζπ∞
∈ X∗(T∞,C)/�. If ζπ∞

belongs to the image of X∗(T∞,C)+ ρ∞ in X∗(T∞,C)C/� then π is said to be
C-algebraic. The representation π is regular if ζπ∞

is regular as an �-orbit in
X∗(T∞,C)C, i.e., each element of the orbit has the trivial stabilizer in �.
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The L and C-algebraicity conditions are independent of the choice of T∞,C and
B∞,C; see [Buzzard and Gee 2014, Section 2.3]. An equivalent definition can be
given by imposing similar conditions on ζπ∞,τ

, Tτ , and ρτ for every τ : F ↪→ C.
Write Sram(π) for the set of places v of F such that either v ∈ Sbad(G) or πv

is ramified. Let S(ℓ) denote the set of places of F above ℓ. At a finite place
v /∈ Sram(π) of F , let φπv : WFv →

L G(C) denote the unramified L-parameter for
πv (Section 1.4). Changing coefficients by ι, we obtain

ιφπv : WFv →
L G(Qℓ).

Given a Galois representation r : 0F →
L G(Qℓ) which is de Rham at ℓ and an

embedding σ : F ↪→ Qℓ, we follow [Buzzard and Gee 2014, Section 2.4] to assign
a Hodge–Tate cocharacter µHT(r, σ ) : Gm → ιĜ over Cℓ, whose Ĝ(Cℓ)-conjugacy
class is defined over Qℓ; here ιĜ stands for the base change of Ĝ from C to Qℓ via
ι or its further base extension to Cℓ. (Such a base change is implicit in the notation
L G(Qℓ).) Thereby we obtain a conjugacy class of cocharacters Gm → ιĜ over Qℓ,
which in turn gives an element of X∗(ιT̂ )/�. We denote the resulting element by

µr,σ ∈ X∗(ιT̂ )/�.

Conjecture 3.1.2. Suppose that π is L-algebraic. There exists a Galois representa-
tion

r = rℓ,ι(π) : 0F →
L G(Qℓ)

such that:

(1) r |
ss
WFv

∼= ιφπv at finite places v /∈ Sram(π)∪ S(ℓ).

(2) µr,ιτ = −ιζπ,τ for every embedding τ : F ↪→ C.

Remark 3.1.3. The negative sign in (ii), which does not appear in [Buzzard and
Gee 2014, Section 3.2], is due to the different sign convention. (The cyclotomic
character has Hodge–Tate weight 1 there; see [loc. cit., Section 2.4].) In this
conjecture and the next conjecture, we omit the statement on the image of complex
conjugation as we fell short of proving it in the case of interest, see Remark 3.2.8
below.

Remark 3.1.4. When G = GLN , choosing T to be the diagonal maximal torus, we
can identify each member of X∗(Tι−1σ )/�τ with ordered n integers (ai )

n
i=1 with

a1 ≥ a2 ≥ · · · ≥ an . Similarly, each member of X∗(T∞,C)Q/� can be regarded as
ordered rational numbers (ai )

n
i=1 such that a1 ≥ a2 ≥ · · · ≥ an . In particular, if π is

L-algebraic or C-algebraic, then we can write −ζπ,τ = (ai )
n
i=1 for a suitable set of

ai as such. So condition (ii) above may be understood as an equality of multisets
for G = GLN .
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Following [Zhu 2020b] (which gives a different but equivalent definition of
C-groups as in [Buzzard and Gee 2014]) the C-group of G is defined by taking the
semidirect product

C G :=
L G ⋊Gm, (1⋊ t)(g ⋊ 1)(1⋊ t)−1

= Ad(ρ(t))g ⋊ 1, g ∈
L G, t ∈ Gm .

This is well defined because Ad(ρ) is an algebraic action of Gm on L G (although ρ
need not be an algebraic cocharacter into Ĝ). We can also write C G = Ĝ⋊(Gm×0F )

with Gm and 0F acting on Ĝ via the Ad(ρ)-action and the L-action respectively,
since the Galois action and the Gm-action on Ĝ commute. It is convenient to fix a
finite Galois extension F ′/F over which G splits, and use the finite Galois forms
of the L-group L G F ′/F =

L G ⋊ 0F ′/F and similarly for the C-group C G F ′/F =

L G F ′/F ⋊Gm . From now on, we use the finite Galois form and drop F ′/F from
the subscript unless specified otherwise. We will use the natural Ĝ-conjugation
on C G, with coefficients in Qℓ or C, to define the notion of isomorphism for local
parameters and global Galois representations valued in C G. (It does not make any
difference if we use the conjugation by Ĝ ⋊Gm instead.) For the purpose of this
section Gm , L G, C G, etc. will mean the topological groups of Qℓ or C-valued
points (though they can also be viewed as groups over Qℓ or C); the coefficient
field is suppressed if there is no danger of confusion.

Write T̂ ad for the image of T̂ in the adjoint group of Ĝ.

Lemma 3.1.5. If there exists ρ̃ ∈ X∗(T̂ ) which is 0F -invariant and has the same
image in X∗(T̂ ad) as ρ, then C G ∼=

L G ×Gm via g⋊ t 7→ (gρ̃(t), t) with the inverse
map (g, t) 7→ gρ̃(t)−1⋊ t . These maps are Ĝ-equivariant: the image of h(g⋊ t)h−1

equals (hgρ̃(t)h−1, t) for h ∈ Ĝ.

Proof. This is a straightforward verification. □

Let v be a finite place of F not in Sram(π). We introduce a C-normalization of
the unramified L-parameter for πv (with C-coefficient), which is natural from the
viewpoint of the geometric Satake equivalence, see [Zhu 2020b, Section 1.4]:

φC
πv

: WFv →
C G =

L G ⋊Gm, x 7→ φπv (x)2ρ(|x |
1/2)⋊ |x |

−1. (3.1.1)

It is elementary to check that φC
πv

is well defined up to Ĝ-conjugacy. Indeed, if
φπv is conjugated by an element of Ĝ then the resulting φC

πv
is conjugated by the

same element. When ρ̃ as in Lemma 3.1.5 exists, the isomorphism therein gives an
alternative description of φC

πv
:

φC
πv

: WFv →
L G × Gm, x 7→ (φπv (x)2(ρ− ρ̃)(|x |

1/2), |x |
−1). (3.1.2)

Example 3.1.6. When G is Sp2n or SOη

2n , we take ρ̃ = ρ. In this case F ′
= F

except for the case of SOη

2n with η ̸= 1; then take F ′
= E . For G = SO2n+1, we
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take F ′
= F . In this case no ρ̃ as in the lemma exists. For GLN , we can take

ρ̃ = (N − 1, N − 2, . . . , 1, 0) with F ′
= F . So when G = GLN , (3.1.2) reads

φC
πv
(x)= (φπv (x)|x |

(1−N )/2, |x |
−1). (3.1.3)

For G = UN , we take F ′
= E . For odd N we can take ρ̃ = ρ, but there does not

exist ρ̃ as in Lemma 3.1.5 if N is even. (For instance, (N − 1, N − 2, . . . , 0) is not
0F -invariant.)

Example 3.1.7. For SO2n+1 (with F ′
= F), we have two maps

Sp2n ×Gm → GSp2n, (g, t) 7→ gt,

Sp2n ×Gm →
C SO2n+1 = Sp2n ⋊Gm, (g, t) 7→ g2ρ(t)−1 ⋊ t2.

whose kernels are both generated by (−1,−1). This induces an isomorphism

C SO2n+1 ∼= GSp2n .

Under this isomorphism, (3.1.1) reads

φC
πv

: WFv → GSp2n, x 7→ φπv (x)|x |
−1/2.

We return to a general discussion. Let τ : F ↪→ Qℓ be an embedding. To a Galois
representation rC

: 0F →
C G(Qℓ) which is de Rham at ℓ, we assign a Hodge–Tate

cocharacter µHT(rC , τ ) : Gm → Ĝ ⋊Gm over Cℓ, which gives rise to an element

µrC ,τ ∈ X∗(ιT̂ × Gm)/�,

as in the case of L-group valued representations. Indeed, C G is the L-group of a
Gm-extension of G, see [Buzzard and Gee 2014] and [Zhu 2020b], and T̂ × Gm is
a maximal torus of Ĝ ⋊Gm whose Weyl group is naturally isomorphic to �, the
Weyl group for T̂ in Ĝ. The action of ω ∈� on X∗(T̂ ×Gm)= X∗(T̂ )⊕ X∗(Gm)=

X∗(T̂ )⊕ Z, induced by the Ĝ-conjugation on Ĝ ⋊ Gm , is that ω(a, b) = (ωa +

b(ωρ−ρ), b), where ωa and ωρ are computed using the natural ω-action on X∗(T̂ ).
Define ζC

π,τ by

−ζC
π,τ = (−ζπ,τ − ρ, 1) ∈ X∗(T̂ × Gm)Q/�. (3.1.4)

This is well defined since if ζπ,τ ∈ X∗(T̂ )Q denotes any representative in its �-
orbit (still denoted ζπ,τ ) then ω(−ζπ,τ − ρ, 1)= (−ωζπ,τ − ρ, 1) by the preceding
formula. When ρ̃ as in Lemma 3.1.5 exists, composition with the isomorphism
C G ∼=

L G × Gm gives an alternative description

−ζC
π,τ = (−ζπ,τ − ρ+ ρ̃, 1) ∈ X∗(T̂ × Gm)Q/�. (3.1.5)

The reader is cautioned that even though T̂ × Gm serves as a maximal torus in
both C G and L G ×Gm via the natural inclusions, the isomorphism C G ∼=

L G ×Gm
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does not induce the identity map on T̂ × Gm . Rather the induced map “shifts” by
ρ̃, which explains the difference between (3.1.4) and (3.1.5). While (3.1.4) is for
general C G-valued representations, (3.1.5) is for L G × Gm-valued representations
and requires the existence of ρ̃.

The C-algebraic version of Buzzard and Gee’s conjecture is adapted to our setting
as follows.

Conjecture 3.1.8. Suppose that π is C-algebraic. There exists a Galois representa-
tion

rC
= rC

ℓ,ι(π) : 0F →
C G(Qℓ)

such that:

(1) rC
|
ss
WFv

∼= ιφC
πv

at finite places v /∈ Sram(π)∪ S(ℓ).

(2) µrC ,ιτ = −ιζC
π,τ for every embedding τ : F ↪→ C.

Remark 3.1.9. Condition (i) implies that the composition of rC with the projection
C G(Qℓ)→ Gm(Qℓ) is ω−1

ℓ , the inverse cyclotomic character, in view of (3.1.1).
This convention is consistent with [Zhu 2020a] but opposite to that of [Buzzard and
Gee 2014, Section 5.3, Conjecture 5.40], where the composition is ωℓ.

Remark 3.1.10. When ρ ∈ X∗(T̂ ) (not just ρ ∈ X∗(T̂ )Q), Conjectures 3.1.2
and 3.1.8 are equivalent via the isomorphism C G ∼=

L G × Gm of Lemma 3.1.5
given by ρ̃ = ρ. Indeed, L-algebraicity coincides with C-algebraicity in that case.
Further, r as in the former conjecture gives rise to rC in the latter conjecture by
rC(γ ) := (r(γ ), ωℓ(γ )−1) via the isomorphism. Conversely r can be recovered
from rC by projection.

Conjectures 3.1.2 and 3.1.8 are known for general linear groups under certain
hypotheses as we now recall. The case of classical groups will be eventually derived
from this result.

Proposition 3.1.11. Let F , E be as in Section 2.2 and ⋆ as in Section 2.3. Conjec-
tures 3.1.2 and 3.1.8 are true for every discrete automorphic representation π of
GLN (AE) (in particular E serves as the field F in the conjectures) if the following
hold:

• π is regular (and L or C-algebraic as assumed in the conjectures).

• π⋆ ∼= π ⊗ (χ ◦ NE/F ) for a Hecke character χ : F×
\A×

F → C×.

If π is regular but does not satisfy the second condition, then Conjectures 3.1.2
and 3.1.8 are true except for the assertions on Hodge–Tate cocharacters.

Proof. The last assertion will be addressed at the end of proof. Until then we assume
that π satisfies both conditions. We begin with the case when π is cuspidal and
C-algebraic. Let us represent ζπ,τ by (a1, . . . , an)−

( 1
2(n − 1), . . . , 1

2(n − 1)
)

with
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(ai )
n
i=1 ∈ Zn . By [Barnet-Lamb et al. 2014, Theorem 2.1.1] (which summarizes

a theorem due to many people; the sign condition in that theorem was shown to
be superfluous by [Patrikis 2015]), there exists a semisimple Galois representation
R = Rℓ,ι(π) : 0E → GLN (Qℓ) such that

R|
ss
WEv

∼= ιφπv |·|
(1−N )/2
v , v /∈ Sram(π)∪ S(ℓ), (3.1.6)

µR,ιτ = (a1, . . . , an)= −ζπ,τ +
( 1

2(n − 1), . . . , 1
2(n − 1)

)
. (3.1.7)

After choosing ρ̃ as in Example 3.1.6, we identify C GLN ∼= GLN ×Gm as in
Lemma 3.1.5. Then we define an GLN ×Gm-valued representation

rC
: 0E → GLN (Qℓ)× Gm(Qℓ), γ 7→ (R(γ ), ω−1

ℓ (γ )).

Comparing (3.1.6) with (3.1.3), we verify part (i) of Conjecture 3.1.8. The cochar-
acter ζC

π,τ in part (ii) of the conjecture becomes a GLN ×Gm-valued cocharacter in
view of (3.1.5):

t 7→ ((−ζπ,τ − ρ+ ρ̃)(t), t)=
((

−ζπ,τ +
( 1

2(n − 1), . . . , 1
2(n − 1)

))
(t), t

)
.

This coincides with µrC ,ιτ in view of (3.1.7) and the fact that the Hodge–Tate
cocharacter of ω−1

ℓ is the tautological map t 7→ t on Gm .
We turn to the case of cuspidal L-algebraic π . Then π ′

:= π |det|(N−1)/2 is
cuspidal, regular, and C-algebraic. So there exists R(π ′) such that (3.1.6) and
(3.1.7) hold with π ′ in place of π . We take r = rℓ,ι(π) := R(π ′). Then r |

ss
WEv

∼=

ιφπ ′
v
|·|
(1−N )/2
v

∼= ιφπv at v /∈ Sram(π)∪ S(ℓ), so (i) of Conjecture 3.1.2 is satisfied.
Similarly (ii) follows from (3.1.7) for r = R(π ′).

From now, let π be a noncuspidal discrete automorphic representation. By
[Mœglin and Waldspurger 1989]

π = ⊞r
j=1π0|det|(r+1−2 j)/2

as an isobaric sum, for some N0, r ∈ Z≥1 and π0 a cuspidal automorphic repre-
sentation of GLN0(AE), where N = N0r . If π is regular L-algebraic then π j :=

π0|det|(r+1−2 j)/2 is regular, L-algebraic, and unramified outside Sram(π). By the pre-
ceding argument, we have rℓ,ι(π j ) corresponding to π j satisfying Conjecture 3.1.2.
Then r :=

⊕
j rℓ,ι(π j ) is the Galois representation corresponding to π predicted by

the conjecture. We leave to the reader to verify Conjecture 3.1.8 when π is regular
C-algebraic and noncuspidal as no new idea is needed.

Finally, if the second condition on π is not assumed, we can run the same argu-
ment as above except that we apply the theorems of Harris, Lan, Taylor and Thorne
[2016] and Scholze [2015] instead of [Barnet-Lamb et al. 2014, Theorem 2.1.1] to
obtain Galois representations. The only difference in the outcome is that the Hodge–
Tate weights have not been identified for the Galois representations in [Harris
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et al. 2016; Scholze 2015], so we are unable to verify (ii) in Conjectures 3.1.2
and 3.1.8. □

3.2. Existence of Galois representations for classical groups. From here until the
end of the paper, we use the same notation as in Section 2.5, including G∗, N , and
ξ̃ :

L G ↪→ L G̃0(N ). In Case U, take ξ̃ to be the standard base change morphism ξ̃+

(rather than ξ̃−). In Case S, we recall that ξ̃ |Ĝ∗ is the standard embedding of Ĝ∗

into GLN .
Let ℓ be a prime and choose an isomorphism ι : C ≃ Qℓ. Let S be a finite set of

places of F which contains all places above ℓ and ∞ such that G is unramified at
places outside S.

Definition 3.2.1. A discrete automorphic representation π of G(AF ) is said to be
std-regular if ξ̃ (ζπ∞

) ∈ C∞(N ) is regular.

Lemma 3.2.2. If π is std-regular then it is regular. The two conditions are equiva-
lent unless G is an inner form of SOη

2n .

Proof. As we explicated the map X∗(T̂ )→ X∗(T̂N ) induced by ξ̃ in Section 2.2,
the lemma follows from the definition. □

Example 3.2.3. When G = SOη

2n , a Weyl group orbit in X∗(T̂ )= Zn is uniquely
represented by (ai ) such that a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an|. If ζπ∞

corresponds
to such a tuple (ai ) then π is regular if strict inequalities hold everywhere, and
std-regular if furthermore an ̸= 0.

Let r :0E → GLm(Qℓ) be a Galois representation. Define another representation
r⊥ by

r⊥(γ ) :=
tr(cγ c−1)−1,

which is isomorphic to the dual representation r∨ in Case S. Let χ : 0E → Q×

ℓ be a
Galois character such that χ(cγ c−1)= χ(γ ) for all γ ∈ 0E (which is automatic in
Case S). From now assume that r is irreducible. Provided that r⊥ ∼= rχ , we recall
how to define a sign

sgn(r, χ) ∈ {±1}

following [Bellaïche and Chenevier 2011, Section 1.1]. In Case S, we obtain a
nonzero 0F -equivariant pairing r ⊗ r → χ−1 up to a nonzero scalar. According
to whether the pairing is orthogonal or symplectic (it cannot be both since r is
irreducible), we assign 1 or −1 as the value of sgn(r, χ). When χ is trivial, we
just write sgn(r) and refer to it as the sign of r . Of course if m is odd then always
sgn(r, χ) = 1. In Case U, by assumption there exists h ∈ GLm(Qℓ), unique up
to nonzero scalars, such that r⊥

= hrh−1χ . Then it is elementary to check that
t h = sgn(r, χ)h for sgn(r, χ) ∈ {±1}, which does not depend on the choice of h.
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Henceforth we restrict E and F as follows in order to access Proposition 3.1.11:

(Case S) E = F is a totally real field.

(Case U) F is a totally real field, and E is a CM quadratic extension of F .

Consider the following hypotheses — see the paragraph above Theorem 1.2.2.
The two versions of (H2) are equivalent to each other since ζ5∞

= ξ̃ (ζπ∞
).

(H2) π is std-regular.

(H3) In Corollary 2.5.3, if 5 is written as an isobaric sum 5= ⊞r
i=15i then 5i is

(conjugate) self-dual for every i , i.e., 5⋆
i =5i .

Proposition 3.2.4. Let E and F be as above. Assume (H1). Let π be a discrete
automorphic representation of G(AF ) which is unramified outside S, C-algebraic,
and satisfying (H2) and (H3). Then there exists a continuous semisimple Galois
representation

R = Rℓ,ι(π) : 0E,S → GLN (Qℓ)

with the following property. If G∗
= Sp2n or SOη

2n (Case S), we have:

(i) R|
ss
WFv

∼= ιξ̃φπv for every place v of F not above S.

(ii) µR,ισ = −ιξ(ζπ,σ ) for embeddings σ : F ↪→ C.

(iii) R∨ ∼= R. When G∗
= SOη

2n , every self-dual irreducible constituent of R has
sign 1.

(iv) det R = 1 if G∗
= Sp2n and det R = η if G∗

= SOη

2n .

If G∗
= SO2n+1 (Case S) then:

(i’) R|
ss
WFv

∼= ι(ξ̃φπv |·|
(1−N )/2) for every place v of F not above S.

(ii’) µR,ισ = −ιξ̃ (ζπ,σ )+
( 1

2(N − 1), . . . , 1
2(N − 1)

)
for embeddings σ : F ↪→ C.

(iii’) R⊥ ∼= R ⊗ ωN−1
ℓ . For every irreducible constituent r of R such that r⊥ ∼=

r ⊗ωN−1
ℓ , we have sgn(r, ωN−1

ℓ )= −1.

If G∗
= UN (Case U) then with ξ̃u, ξ̃τ as in Section 2.1:

(i”) R|
ss
WEu

∼= ι(ξ̃uφπv |·|
(1−N )/2
u ) for every place u of E not above S, where v is the

place of F restricted from u.

(ii”) µR,ιτ = −ιξ̃τ (ζπ,τ |F )+ (
N−1

2 , . . . , N−1
2 ) for embeddings τ : E ↪→ C.

(iii”) R⊥ ∼= R ⊗ ωN−1
ℓ . For every irreducible constituent r of R such that r⊥ ∼=

r ⊗ωN−1
ℓ , we have sgn(r, ωN−1

ℓ )= 1.

If (H1) and (H2) are assumed but not (H3), then the above is true except (ii), (ii’),
and (ii”).
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Remark 3.2.5. In fact the proof below shows that every irreducible constituent of
R in (iii) (resp. (iii’) and (iii”)) is self-dual (resp. self-dual up to ωN−1

ℓ ) thanks to
(H3).

Remark 3.2.6. We could have stated the UN -case uniformly with the SO2n+1-case
if we rewrite R as a Galois representation 0F,S →

L G(N )(Qℓ) via a variant of
Shapiro’s lemma. Then (i”) and (ii”) can be merged into (i’) and (ii’). E.g., both
(i’) and (i”) assert R|

ss
WFv

∼= ιξ̃φπv |·|
(1−N )/2
v in this formulation. However the current

formulation for unitary groups is convenient in Section 3.4.

Proof. Let 5 = ⊞r
i=15i be the automorphic representation of G(N ,AF ) =

GLN (AE) which is a functorial lift of π as in Corollary 2.5.3. We are going
to apply Proposition 3.1.11 to each5i . The proof will be presented only when (H1),
(H2), and (H3) are assumed. If (H3) is dropped then we lose track of Hodge–Tate
cocharacters according to Proposition 3.1.11 but the argument is identical other
than that. This explains the last assertion of Proposition 3.2.4.

According to (H3), each5i is a cuspidal automorphic representation of GLmi (AE)

such that 5⋆
i
∼=5i and

∑
i mi = N . Since (ζ5∞

, cS(5))= ξ̃ (ζπ∞
, cS(π)), the std-

regularity of π implies that 5 is regular. Moreover the description of ρ and ξ̃ in
Sections 2.1 and 2.2 tells us that:

• If G∗
= Sp2n then π is also L-algebraic; 5 is both L and C-algebraic.

• If G∗
= SOη

2n then π is also L-algebraic; 5 is L-algebraic but not C-algebraic.

• If G∗
= SO2n+1 then 5 is C-algebraic but not L-algebraic.

• If G∗
= UN then 5 is C-algebraic; it is not L-algebraic if N is even.

Suppose G∗
=SO2n+1. Since5 is regular C-algebraic, we see that5|det|(1−N )/2

is regular L-algebraic, so 5′

i := 5i |det|(1−N )/2 is regular L-algebraic as well.
Moreover (5′

i )
⋆ ∼=5′

i |det|N−1, so Proposition 3.1.11 yields a Galois representation
r ′

i := rℓ,ι(5′

i ). Then R :=
⊕r

i=1 r ′

i satisfies (i’) and (ii’) in light of properties (i)
and (ii) of Conjecture 3.1.2 for r ′

i . Indeed, (i’) is checked as follows:

R|
ss
WFv

∼= ιφ5′
v

∼= ιφ5v |·|
(1−N )/2 ∼= ιξ̃φπv |·|

(1−N )/2, v /∈ S.

As for (ii’), since µr ′

i ,ισ
= ιζ5′

i ,σ
for every i , we have

µR,ισ = −ιζ5|det|(1−N )/2,σ = −ιξ̃ (ζπ,σ )+
( 1

2(N − 1), . . . , 1
2(N − 1)

)
.

Moreover, we have φ∨

5v
∼= φ5v since 5∨ ∼=5, so the displayed formula implies that

R⊥ ∼= R ⊗ωN−1
ℓ . The rest of (iii’) is verified by [Bellaïche and Chenevier 2011,

Corollary 1.3] (their n is our N , which is even; their ηλ is trivial). This finishes the
proof when G∗ is SO2n+1.
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The case G∗
= UN can be treated as in the SO2n+1-case, by defining 5′

i , r ′

i , and
R in the same way. There is only a minor difference in showing (i”):

R|
ss
WEu

∼= ιφ5′
u
∼= ιφ5u |·|

(1−N )/2 ∼= ιξ̃uφπv |·|
(1−N )/2, v /∈ S.

The justification of (ii’) also goes through for (ii”) with a similar change. The proof
of (iii”) is identical to that of (iii’) except that we use the conjugate duality and
invoke [Bellaïche and Chenevier 2011, Theorem 1.2] rather than Corollary 1.3
therein.

Now consider G∗
= Sp2n or SOη

2n . Then 5 is regular L-algebraic so each 5i

is regular L-algebraic, cuspidal, and 5∨

i
∼= 5i . By Proposition 3.1.11, there is

a corresponding Galois representation ri := rℓ,ι(5i ). Taking R :=
⊕r

i=1 ri , we
deduce (i) and (ii) for R from the properties of ri as in the preceding paragraph. It
follows from (i) that R is self-dual. When G∗

= SOη

2n , [Bellaïche and Chenevier
2011, Corollary 1.3] (their n is our N , which is even; their ηλ equals our ω1−N

ℓ in
the case at hand, so ηλ(c)= −1) tells us that the irreducible self-dual constituents of
R are orthogonal, so the proof of (iii) is complete. Finally, to show (iv), it suffices
to check that det R|WFv

equals 1 if G∗
= Sp2n and ηv if G∗

= SOη

2n for v /∈ S. This
follows from part (i). Indeed, this is obvious if G∗

= Sp2n since the image of ξ̃ is
contained in SO2n+1; if G∗

= SOη

2n , it is enough to note that the composite map
det ◦ ξ̃ :

L SOη

2n → GL2n → Gm is given by the projection L SOη

2n ↠ Gal(Fη/F)
followed by η. □

When φ1, φ2 : WFv →
C G(Qℓ) are two parameters, we write φ1

◦
∼= φ2 to mean

• φ1 ∼= φ2 if G∗ ≇ SOη

2n , and

• φ1 ∼= φ2 or θ̂◦(φ1)∼= φ2 if G∗ ∼= SOη

2n .

Similarly if µ1, µ2 ∈ X∗(T̂ )Q/� then µ1
◦
= µ2 means µ1 = µ2 if G∗ ≇ SOη

2n , and
µ1 = µ2 or θ̂◦(µ1)= µ2 if G∗ ≇ SOη

2n .

Theorem 3.2.7. Let E and F be as above and assume (H1). Let π be as in
Proposition 3.2.4 satisfying (H2) and (H3). Then Conjecture 3.1.8 holds true if
G∗ ≇ SOη

2n , and it holds up to outer automorphism if G∗ ∼= SOη

2n . More precisely,
there exists a continuous semisimple Galois representation

rC
= rC

ℓ,ι(π) : 0F,S →
C G(Qℓ)

such that:

(1) rC
|
ss
WFv

◦
∼= ιφC

πv
for every place v of F not above S.

(2) µrC ,ισ
◦
= −ιζC

π,σ for every σ : F ↪→ Qℓ.

If we drop (H3), then the theorem still holds true except for part (ii).
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The proof is the same whether we assume (H3) or not. Without (H3), we lose
property (ii) of the theorem only because we do not know (ii), (ii’), and (ii”) in
Proposition 3.2.4. With this understanding, we will present the proof in Section 3.3
and Section 3.4 below in the case that all of (H1), (H2), and (H3) are assumed.

Remark 3.2.8. Buzzard and Gee also makes a prediction on the image of complex
conjugation at each real place but we do not see how to prove it completely beyond
some partial results. For instance, in the proof of Proposition 3.2.4 in Case S, every
r ′

i is totally odd by [Taylor 2012; Taïbi 2016; Caraiani and Le Hung 2016], but
this alone does not determine the image of complex conjugation (up to conjugacy)
under R. Thus the information is insufficient to pin down the image of complex
conjugation under rC in Theorem 3.2.7. The image is sometimes identified under
additional hypotheses; see [Kret and Shin 2020, Theorem 6.5; 2023, Theorem 2.4].

3.3. Proof of Theorem 3.2.7: Case S. Write R = Rℓ,ι(π) : 0F → GLN (Qℓ) for
the Galois representation as in Proposition 3.2.4. (We are in the E = F case.) We
will divide into three cases according to G∗. When G∗ is either Sp2n or SOη

2n , we
will prove Conjecture 3.1.2 as this is equivalent to Theorem 3.2.7 but notationally
simpler; see Remark 3.1.10.

If G∗
=Sp2n then R∨ ∼= R and every self-dual irreducible constituent is orthogonal

by (iii) of Proposition 3.2.4. Hence, possibly after a GL2n+1-conjugation, R factors
as

0E,S −→ O2n+1(Qℓ)
ξ̃

−→ GL2n+1(Qℓ).

Take rC
ℓ,ι(π) : 0E,S → O2n+1(Qℓ) to be the first map. By Proposition 3.2.4(iv),

the image of rC
ℓ,ι(π) is contained in SO2n+1(Qℓ). Since the natural map T̂ /�→

T̂2n+1/�2n+1 is injective, one deduces (i) and (ii) of Conjecture 3.1.2 from (i)
and (ii) of Proposition 3.2.4.

Next consider G∗
= SOη

2n . As in the Sp2n-case, again from Proposition 3.2.4(iii),
we obtain

rC
ℓ,ι(π) : 0F,S → O2n(Qℓ)

such that ι(η) ◦ rC
ℓ,ι(π)

∼= Rℓ,ι(π). The difference is that T̂ /�→ T̂2n/�2n is not
a bijection but induces a bijection on the set of θ̂◦-orbits on T̂ /� → T̂2n onto
T̂2n/�2n . With this observation, (i) and (ii) of Conjecture 3.1.2 are implied by (i)
and (ii) of Proposition 3.2.4.

In the remaining case G∗
= SO2n+1, we identify C SO2n+1 = GSp2n as in

Example 3.1.7. Let R = Rℓ,ι(π) : 0F → GL2n(Qℓ) be the Galois representation
corresponding to π by Proposition 3.2.4. By (iii’) of the proposition, there is a
symplectic pairing (R ⊗ωn−1

ℓ )⊗ (R ⊗ωn−1
ℓ )→ ω−1

ℓ . After conjugation, R ⊗ωn−1
ℓ

factors through the standard embedding η̃C
: GSp2n → GL2n . Denote the resulting



56 SUG WOO SHIN

representation by

rC
= rC

ℓ,ι(π) : 0F,S → GSp2n(Qℓ).

Write λ : GSp2n → Gm for the similitude character. Since the symplectic pairing is
valued in ω−1

ℓ , we have

λrC
= ω−1

ℓ .

By construction, the properties of R in Proposition 3.2.4 tell us that

η̃C(rC
|
ss
WFv
)∼= ι(η̃φπv · |·|

−1/2)= η̃C(ιφπv · |·|
−1/2),

η̃C(µrC ,ισ )= µη̃CrC ,ισ = −ιη̃(ζπ,σ )+
( 1

2 , . . . ,
1
2

)
= η̃C(

−ιζπ,σ +
( 1

2 , . . . ,
1
2

))
.

On the other hand, we have

λ(ι(η̃φπv · |·|
−1/2))= |·|

−1
= λrC

|WFv
= λ(rC

|
ss
WFv
),

λ
(
−ιζπ,σ +

( 1
2 , . . . ,

1
2

))
= 1 = µω−1

ℓ ,ισ = µλrC ,ισ = λ(µrC ,ισ ).

To deduce the theorem, we need to show that the above relations hold without
taking η̃C and λ at both ends. This is implied by the following facts. Firstly, if
semisimple elements g1, g2 ∈GSp2n(Qℓ) are such that η̃C(g1), η̃

C(g2) are conjugate
and λ(g1)=λ(g2) then g1, g2 are conjugate in GSp2n(Qℓ); see [Kret and Shin 2023,
Lemmas 1.1, 1.3]. Secondly, the analogous injectivity is also true on the level of
conjugacy classes of cocharacters via the isomorphism X∗(TGSp)⊗ZQ×

ℓ
∼= TGSp(Qℓ),

which is equivariant for the Weyl group action, where TGSp is a maximal torus of
GSp2n over Qℓ. The proof in the SO2n+1-case is complete.

3.4. Proof of Theorem 3.2.7: Case U. Recall that E is a CM quadratic extension
of a totally real field F in this case. Throughout this section we set

ρ̃(t) := diag(t N−1, t N−2, . . . , t, 1) ∈ GLN (Qℓ)∼= ÛN (Qℓ), t ∈ Gm,

where the isomorphism is fixed as in Section 2.1. (The same ρ̃ appeared in
Example 3.1.6 for odd unitary groups. Here ρ̃ is also considered for even unitary
groups as Lemma 3.1.5 is irrelevant here.) A key point in the proof is to extend
a GLN -valued representation of 0E,S to a C U-valued representation of 0F,S . We
begin with two lemmas to help address this problem. Similar problems were
considered in related settings; see [Clozel et al. 2008, Section 2.1; Bellaïche and
Chenevier 2009, Appendix A.11; Barnet-Lamb et al. 2014, Section 1] (see [Buzzard
and Gee 2014, Section 8.3] for a comparison with C-groups), and [Kret and Shin
2020, Appendix A] for instance.
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Lemma 3.4.1. Let R : 0E,S → GLN (Qℓ) be a Galois representation. If there exists
h ∈ GLN (Qℓ) such that

t h = h and R⊥(γ )= h R(γ )h−1
·ωℓ(γ )

N−1, γ ∈ 0E,S, (3.4.1)

then there exists a Galois representation

R̃ : 0F,S →
C UN (Qℓ)= GLN (Qℓ)⋊ (Gm × {1, c})

uniquely determined by:

• R̃(γ )= R(γ )ρ̃(ωℓ(γ ))⋊ (ω−1
ℓ (γ ), 1) for all γ ∈ 0E,S .

• R̃(c)= h−1 JN ⋊ (−1, c).

Proof. The uniqueness is clear. The main point is to check that the two conditions
on R̃ define a group homomorphism. This amounts to checking that R̃(c)2 = 1 and
R̃(c)R̃(γ )R̃(c)−1

= R̃(cγ c−1) for γ ∈ 0E,S . Set h0 := h−1 JN = h−1 J−1
N and let

ρ̃ be as in Example 3.1.6. We compute

R̃(c)2 = (h0 ⋊ (−1, c))(h0 ⋊ (−1, c))= (h0 ⋊ (−1, 1))(J ∗

N
t h−1

0 J ∗,−1
N ⋊ (−1, 1))

= h0ρ̃(−1)J ∗

N
t h−1

0 J ∗,−1
N ρ̃(−1)−1

= h0 JN
t h−1

0 J−1
N = h−1t h = 1.

R̃(c)R̃(γ )R̃(c)−1

= (h0 ⋊ (−1, c))(R(γ )ρ̃(ωℓ(γ ))⋊ (ω−1
ℓ (γ ), 1))(h0 ⋊ (−1, c))−1

= (h0 ⋊ (−1, 1))(J ∗

N
t R(γ )−1ρ̃(ωℓ(γ ))

−1 J ∗,−1
N
⋊ (ω−1

ℓ (γ ), 1))(h0 ⋊ (−1, 1))−1

= h0 JN (
t R(γ )−1ρ̃(ωℓ(γ ))

−1 J−1
N ⋊ (ω−1

ℓ (γ ), 1))h−1
0

= h−1t R(γ )−1ρ̃(ωℓ(γ ))
−1 J−1

N ρ̃(ωℓ(γ ))
−1h−1

0 ρ̃(ωℓ(γ ))⋊ (ω−1
ℓ (γ ), 1).

By an explicit computation with ρ̃ and JN , we verify that

J−1
N ρ̃(ωℓ(γ ))

−1
= ρ̃(ωℓ(γ ))J−1

N ωℓ(γ )
1−N .

Substituting in the above formula and using h = J−1
N h−1

0 , we obtain

R̃(c)R̃(γ )R̃(c)−1
= h−1

·
t R(γ )−1hρ̃(ω(γ )) ·ωℓ(γ )1−N ⋊ (ωℓ(γ )−1, 1).

On the other hand, we see from (3.4.1) that

R(cγ c−1)=
t R⊥(γ )−1

= h−1t R(γ )−1h ·ωℓ(γ )
1−N

so R̃(cγ c−1)=h−1t R(γ )−1h ·ωℓ(γ )
1−N ρ̃(ωℓ(γ ))⋊(ω−1

ℓ (γ ), 1). We conclude that
R̃(c)R̃(γ )R̃(c)−1

= R̃(cγ c−1), recalling that ωℓ(γ ) lies in the center of GLN (Qℓ).
□
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Lemma 3.4.2. Let R : 0E,S → GLN (Qℓ) be a semisimple Galois representation
such that:

• R⋆ ∼= R ⊗ωN−1
ℓ .

• Every irreducible subrepresentation R0 ⊂ R such that R⋆0 ∼= R0 ⊗ωN−1
ℓ has

sgn(R0, ω
N−1
ℓ )= 1.

Then there exists a Galois representation

R̃ : 0F,S →
C UN (Qℓ)= GLN (Qℓ)⋊ (Gm × {1, c})

such that:

• R̃(γ )= R(γ )ρ̃(ωℓ(γ ))⋊ (ω−1
ℓ (γ ), 1) for all γ ∈ 0E,S .

• R̃(c)= h−1 JN ⋊ (−1, c) for a symmetric matrix h ∈ GLN (Qℓ).

Proof. Since R⋆ ∼= R ⊗ωN−1
ℓ , we can decompose R into irreducibles

R ∼=

( r⊕
i=1

Ri

)
⊕

( s⊕
j=1

(R j ⊕ (R⊥

j ⊗ω1−N
ℓ ))

)
such that R⋆i ∼= Ri ⊗ω

N−1
ℓ and R⋆j ≇ R j ⊗ω

N−1
ℓ for every i, j . (Recall that R⋆j ∼= R⊥

j .)
Write di := dim Ri and d j := dim R j . For each i , since sgn(Ri , ω

N−1
ℓ )= 1, there

exists hi ∈ GLdi (Qℓ) satisfying (3.4.1) for hi and Ri in place of h and R. For
1 ≤ j ≤ s, take

h j :=

(
0 I
I 0

)
∈ GL2d j (Qℓ),

where 0 and I stand for the zero and identity d j × d j matrices. Then it satisfies
(3.4.1) for h j and R⊥

j ⊗ω1−N
ℓ in place of h and R by construction. Hence if we

form h ∈ GLN (Qℓ) as a block diagonal matrix according to the decomposition of R
by putting together hi and h j , then (3.4.1) holds true for h and R. By Lemma 3.4.1
we obtain the desired R̃. □

Now we put ourselves in the setting of Theorem 3.2.7 for G∗
= UN and let

R : 0E,S → GLN (Qℓ) be the representation coming from Proposition 3.2.4. Since
R satisfies the condition of Lemma 3.4.2, we obtain

rC
: 0F,S →

C UN (Qℓ)
ξ̃0
= GLN (Qℓ)⋊ ({1, c} × Gm)

as in the lemma. (We renamed R̃ as rC .) By construction the following composition
is equal to the representation (R, ω−1

ℓ ):

0E,S
rC
−→ GLN (Qℓ)⋊Gm

ς
−→ GLN (Qℓ)× Gm,

where ς : g ⋊ t 7→ gρ̃(t) is the isomorphism from Lemma 3.1.5.
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Our goal is to verify (i) and (ii) of Theorem 3.2.7 for rC . Since the codomain
of rC is identified with GLN (Qℓ)⋊ ({1, c} × Gm) via ξ̃0 above, we want to do
the same with φC

πv
: WFv →

CUFv via CUFv
∼= GLN (Qℓ)⋊ ({1, c} × Gm) given by

ξ̃u :
LUFv

∼= GLN (Qℓ)⋊ {1, c} (and the identity map on the Gm-factor of the C-
group), which is consistent with ξ̃0. For each σ : F ↪→ C, similarly ζπ,σ ∈ X∗(T̂σ )Q
is viewed as an element of X∗(G

N
m )Q via ξ̃τ0,σ ; see Case U of Section 2.1 for the

discussions on ξ̃0, ξ̃u , and ξ̃τ0,σ . Therefore (i) and (ii) are equivalent to the following
assertions; see Section 2.1 for τ0,v and τ0,σ :

(a) ςrC
|
ss
WFv

∼= ιξ̃u(φ
C
πv
), for each finite place v of F not contained in S, and the

place u of E induced by τ0,v : E ↪→ Fv.

(b) µςrC ,ισ = (−ιξ̃τ0,σ (ζ
C
π,σ ), 1) for every embedding σ : F ↪→ C.

We observed that ςrC
= (R, ω−1

ℓ ). Hence (a) holds after restriction to WEu by
Proposition 3.2.4 (i”). Assertion (a) follows from this because the isomorphism
class on each side is determined by its restriction to WEu ; this is a special case of
[Gan et al. 2012, Theorem 8.1(ii)]. As for (b), let τ0,σ : E ↪→ C be as in Section 2.1,
which extends σ . The Hodge–Tate cocharacters can be computed after taking a
finite base extension, so

µςrC ,ισ = µςrC |0E ,ιτ0,σ = µ(R,ω−1
ℓ ),ιτ0,σ

.

Hence (b) is a consequence of Proposition 3.2.4(ii”) as well as the fact that ωℓ has
Hodge–Tate weight −1. □
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L-values and nonsplit extensions: a simple case

Christopher Skinner

We explain a construction of explicit extensions — of rational Hodge structures
and of p-adic Galois representations — in a simple context: the cohomology of
P1
−{some points} relative to {some other points}. These extensions are naturally

related to Dirichlet characters, and we connect the nonsplitting of these extensions
to the values at s = 0 and s = 1 of associated Dirichlet L-functions L(s, χ).
We highlight the close parallels between the proofs of nonsplitting in both the
Hodge-theoretic and p-adic cases, emphasizing the use of de Rham theory. We
also indicate connections with Euler systems along with variations on these
constructions in the setting of modular curves. This paper is intended as an
introduction to some of the key ideas in forthcoming constructions of Galois
cohomology classes and Euler systems in a range of settings.
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1. Introduction

Beginning with Birch and Swinnerton-Dyer’s formulation of their celebrated con-
jecture, if not earlier, number theorists have sought arithmetic explanations for the
zeros at special values of s of the L-functions L(M, s) that arise in the context of
arithmetic geometry. This encompasses Dirichlet L-series, L-functions of algebraic
Hecke characters, the Hasse–Weil L-functions of elliptic curves and other varieties
over number fields, etc. For example, conjectures of Beilinson essentially express
the order of vanishing at particular s as the dimension of a certain group of extensions
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in a category of mixed Hodge structures, or more ambitiously in a category of
mixed motives [Beilinson 1984; Nekovář 1994]. And conjectures of Bloch and Kato
essentially express the same orders of vanishing as the dimensions of certain groups
of extensions of p-adic Galois representations [Bloch and Kato 1990; Fontaine
and Perrin-Riou 1994]. The latter should be the p-adic realizations of the former
motivic extensions. These conjectures are only proved for some simple cases,
though evidence exists for many interesting L-functions. It is expected that the
Galois extensions related to a given L(M, s) and its twists L(M, χ, s) by Dirichlet
characters (or other finite Hecke characters) should form an Euler system, which
then yield — via the theory of Euler and Kolyvagin systems — upper bounds on
orders of related Selmer groups.

Given an L-function L(M, s) and a special value of s, the expected motivic nature
of the related extensions makes it natural to ask: should the expected extensions be
concretely realized in cohomology by some general construction? A good rule of
thumb here is that if L(M, s) is suitably primitive and indecomposable, then this
should be the case if and only if the order of vanishing equals 1: there is generally
no good reason to distinguish one line in a space of extensions from another when
the space of extensions has dimension greater than 1. Such a guiding principle both
explains and predicts the extensions that comprise many of the known examples of
Euler systems.1

We construct explicit extensions — of rational Hodge structures and of p-adic
Galois representations — in a simple context: the cohomology of P1

−{some points}
relative to {some other points}. These extensions are extensions in the correspond-
ing categories, that is, elements of Ext1-groups. They are naturally related to
Dirichlet characters χ , and for nontrivial χ we demonstrate that they are nonsplit if
and only if χ is even and L(s, χ) vanishes at s = 0 to order 1. Our aim in writing
this is three-fold: (i) to provide some evidence in a very simple case for the rule
of thumb stated above, (ii) to highlight the close parallels between the proofs of
nonsplitting in both the Hodge-theoretic and p-adic cases, and (iii) to give a sense,
in this very simple case, of the ideas underpinning some recent and forthcoming
constructions of new Euler systems (such as [Sangiovanni-Vincentelli and Skinner
≥ 2024a; ≥ 2024b], but see also [Shang et al. ≥ 2024]). We emphasize especially
the aim (ii), though we also provide some elaboration on (iii).

In both the Hodge and p-adic cases, the proof of nonsplitting is reduced to an
analytic calculation. For the Hodge structures this goes via Hodge theory and the real
analytic de Rham isomorphism. For the p-adic Galois representations this goes via
the comparison isomorphisms of p-adic Hodge theory as well as a p-adic analytic
expression for algebraic de Rham classes. In our simple setting we can appeal to

1But like all such ‘rules’, it should also be taken with a grain of salt.
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Monsky–Washnitzer cohomology for the latter, though the final calculation is done
in the context of locally analytic functions via Coleman’s p-adic integration. In
both cases, the crucial input is a simple, explicit description of a cohomology class
and its de Rham realization. In fact, another of the key points to carry away from
this note is that — at least for the purposes of Euler systems — in many instances
such explicit classes can reasonably substitute for motivic constructions of classes
(often realized via, say, units or elements of higher Chow groups).

The constructions in our simple case are carried out in Sections 4 and 5. The aim
in each section is an explanation of the statements (4.6.b) and (5.6.c), respectively,
linking orders of zeros of complex L-functions to the nontriviality of extensions. We
also indicate the connection with Euler systems in Sections 5.7 and 5.8, respectively.
This is followed in Section 6 with brief sketches of similar constructions and
calculations in the cohomology of modular curves, yielding extensions related
to L-values of Dirichlet characters (again) and to Hecke characters of imaginary
quadratic fields.

We suspect that many of the ideas herein, especially in the simple context in
which we work, are known to experts.2 However, extracting them from the more
well-known of the existing literature (such as [Deligne 1989] or [Deligne and
Goncharov 2005]) does not seem straightforward, which hopefully lends some
usefulness to publishing this note. At the end of Section 3 we give some indication
of the relation of this note to other works. Of course, our goal is not so much to
prove new results but to explain old results from a perspective that might not be
widely known.

2. The setting

Let X = P1
/Q = Proj Q[t0, t1]. Let ∞ ∈ X (Q) be the point ∞ = [0 : 1]. Let

A1
= P1

\ {∞}, so A1
= Spec Q[t], t = t1/t0. Let Y = A1

\ {1} = Spec Q
[
t, 1

t−1

]
.

So Y = X \ Z for Z = {∞, 1}. Let N ≥ 2 be an integer and let W = µ◦N =
Spec Q[t]/(8N (t))⊂A1, for 8N (t) the N -th cyclotomic polynomial. In particular,
X (C)= P1(C) is just the Riemann sphere, Z(C)= {∞, 1}, Y (C)= X (C) \ Z(C)
is just the punctured plane C \ {1}, and W (C)= {exp(2π ia/N ) : a ∈ (Z/NZ)×} is
the set of primitive N -th roots of unity. Since N ≥ 2, 1 ̸∈W (C).

3. The basic idea

To construct and analyze the extensions in this paper we will make use of various
cohomology theories for X , Y , Z , and W : the singular and de Rham cohomologies
of the manifolds defined by the C-points of these varieties, the étale and algebraic
de Rham cohomologies of the varieties, and even crystalline cohomology. Each

2Harder’s unpublished manuscript [2023], especially §2, provides clear evidence of this.
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of these cohomology theories admits relative cohomology for the pairs (X, Y ) and
(Y,W ), yielding exact sequences

· · · → H i (X)→ H i (Y )→ H i+1(X, Y )→ H i+1(X)→ · · ·
and

· · · → H i−1(W )→ H i (Y,W )→ H i (Y )→ H i (W )→ · · · .

Here we have written H i (−) to denote any of the cohomology theories and have
suppressed any reference to coefficients (which may depend on the particular theory).
Purity often affords a canonical identification of H i+1(X, Y ) (which is sometimes
written as H i+1

Z (X)) with H i−1(Z)(−1), where the (−1) denotes a twist, whose
nature depends on the cohomology theory (e.g., a Tate twist in the case of étale
cohomology). We also refer to the first of these sequences as the Gysin sequence
for the pair (X, Z).

We will use the first of the above sequences together with purity to define explicit
submodules3 A ⊂ H 1(Y ) and to deduce various properties of A (e.g., the Galois
action on A in the case of étale cohomology). We will also define an explicit quotient
H 0(W )↠ B that factors through H 0(W )/im(H 0(Y )). We will then use the second
of the above sequences to define an extension via pull-back/push-forward:

H0(W )

im(H0(Y )) H 1(Y,W ) H 1(Y )

B E A.

Here the dashed arrow denotes subquotient. The particular category in which the
extension E belongs depends on the cohomology theory (e.g., the category of Galois
modules in the case of étale cohomology). Our aim is to understand when the
extension class E ∈ Ext1(A, B) is nonzero, that is, when the extension E is nonsplit.
This will be achieved by making use of the comparison isomorphisms of the various
cohomology theories, which will ultimately reduce the problem to whether a certain
formula extracted from de Rham cohomology is nonzero.

A quick glance at a select part of the literature. We very briefly indicate the relation
of the construction sketched above to some of the vast body of literature about
mixed motives.

1) (Nori motives). Our use of relative cohomology meshes well with Nori’s program
to construct a general theory of mixed motives using such cohomology groups.
A nice exposition of Nori’s program is given in [Huber and Müller-Stach 2017].
Not surprisingly there is some overlap of the context we work in with some of the

3In the simplest situation considered here, A will be turn out to be all of H1(Y ), but more generally
it will just be a submodule (see 5.8).
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examples in op. cit., especially [Huber and Müller-Stach 2017, §14.1]. However,
the emphasis therein, as in the complementary survey [Huber 2020], is on periods,
while the focus herein is on showing that certain explicit extensions of motives,
and especially of Galois representations, are nonsplit. Of course, the calculations
in Sections 4.6 and 5.6 can be recast in the context of periods and the final results
expressed as: certain periods are nonzero if and only if certain extensions are
nonsplit (the motivated reader might profit from doing so).

2) (P1 minus three points) Deligne’s influential paper [1989] introduced, among
other things, an approach to studying the category of mixed Tate motives (the kind
of extensions we construct in this note) via the unipotent fundamental group of
X = P1

−{0, 1,∞}; this was realized more completely in [Deligne and Goncharov
2005]. This essentially realizes extensions of Tate motives in the cohomology of Xn

relative to certain normal crossing divisors (which, in the cases considered, can be
reinterpreted as being in the cohomology of certain unipotent local systems on X );
see especially [Deligne and Goncharov 2005, §3]. This setting is well-adapted for
expressing associated periods as iterated integrals (hence the relation to multiple zeta
values; see [Brown 2014] for the state of the art). A translation of the construction
we explain herein into the setting of [Deligne 1989; Deligne and Goncharov 2005]
would surely be interesting, but we content ourselves with noting that the duals of
the extensions we construct in Sections 4 and 5 can be extracted from the special
case of X = P1

−µ◦N , {a, b} = {1,∞}, and n = 1 (see [Deligne and Goncharov
2005, Proposition 3.4]).

3) (Harder’s Anderson motives). After preparing the first draft of this note we
became aware of an unpublished manuscript of Harder [2023] in which he proposes
a very similar construction of mixed motives and Hodge structures, which he calls
Anderson motives. Indeed, our construction can be viewed as an elucidation of a
special case of Harder’s construction for curves [2023, §2]. One thing this note
includes that is not in op. cit. is an explanation of the nonsplitting of the p-adic Galois
representations. Indeed, illustrating how the arguments for Galois representations
closely parallel those for the Hodge structures is one of our main points. We
also explain — at least in our simple case, but see also [Shang et al. ≥ 2024] or
[Sangiovanni-Vincentelli and Skinner ≥ 2024a] — how these constructions lead to
Euler systems, which answers questions raised by Harder.

4) (Beilinson’s conjectures) The extensions that we construct — of mixed Hodge
structures and of p-adic Galois representations — are shown to be nontrivial pre-
cisely when the value of some Dirichlet L-series L(s, χ̄) is nonzero at s = 1. By
the functional equation, this can be reinterpreted as saying that ords=0 L(s, χ)= 1.
Very generally, Beilinson conjectured that the order of vanishing of an L-function
L(s,M) of a motive M at the special value s = 0 should (usually) equal the
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rank of the group of extensions Ext1MM(Q(0),M∨(1)), in the category MM of
mixed motives, of the trivial Tate motive Q(0) by the dual motive M∨(1). He also
conjecture an expression for a certain associated regulator map in terms of the
first nonzero coefficient of the Taylor series of L(s,M) at s = 0. The expository
article [Nekovář 1994] is an excellent introduction to these conjectures. In this
paper we essentially construct extensions Qχ̄ ↪→ E ↠ Q(−1) for a motive Qχ̄

associated with χ̄ (what we really construct should be the Hodge and p-adic
étale realizations of such motivic extensions). Then E(1) ∈ Ext1MM(Q(0),Qχ̄ (1)).
Beilinson’s conjectures tell as that the right-hand side should be nonzero if and only
if L(0, χ)= 0 (as Qχ̄ (1) is the dual of Qχ and L(s,Qχ )= L(s, χ)), and we show
that if χ is even and ords=0 L(s, χ)= 1 then E(1) ̸= 0. Of course, Dirichlet’s units
theorem already tells us that the rank of Ext1MM(Q(0),Qχ (1)) is 1 if χ is even (see
[Nekovář 1994, §8, (2)]). Our focus is on showing that a particular construction
yields a nonsplit extension.

4. Nonsplit extensions of rational Hodge structures

We find nonsplit extensions of rational Hodge structures in the relative cohomology
of the pair (Y,W ). We check that these extensions are nonsplit essentially by
integrating an explicit differential representing a class in the cohomology of Y
and recognizing the resulting formulas as expressions for L-values of Dirichlet
characters at s = 1 (or derivatives at s = 0 via the functional equation). The key
input here is the explicit de Rham representative of the cohomology class.

Though the idea is simple — and the integration boils down to dx
x = d log |x |! —

we have included details of the singular and de Rham cohomology of Y and the pair
(Y,W ). We have done this partly for the sake of completeness, partly to illustrate the
general definitions in this simple case, and partly to more clearly set out a template
for other situations (see Section 6). A reader with some familiarity with mixed
Hodge structures should be able to grasp the gist quickly upon reading Section 4.2
and fill in details by scanning the subsequent displayed equations. For readers less
familiar with Hodge theory, we have included a brief discussion and description
of the main players and tried to point to some useful resources, particularly in
Sections 4.1, 4.3, and 4.4.

Conventions. In the following, given a variety V over a subfield of C and a field F
we write H i (V, F) for the singular cohomology group H i (V(C), F), and similarly
for relative cohomology with respect to a subvariety U of V . For nonsingular V
and U these cohomology groups are canonically computed by de Rham cohomol-
ogy (which gives rise to the Hodge filtrations on the former), and the latter is
computed by the real-analytic de Rham complex and by the hypercohomology
of both the holomorphic and algebraic de Rham complexes (we abuse notation
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by not distinguishing our notation for the latter two). We write ιdR for these de
Rham-singular isomorphisms. They are functorial in V and compatible with the
long-exact sequences for relative cohomology, Gysin sequences, etc.

Let Z(1)= 2π iZ and Z(n)=Z(1)⊗n for any integer n. Note that Z(−1) is canon-
ically identified with (2π i)−1Z. We write H i (V, F)(n) to mean H i (V, F)⊗Z(n).
Keeping track of such ‘twists’ makes comparisons with de Rham and étale cohomol-
ogy more clearly functorial. The Hodge filtration on H i (V,C)(n) comes from that
of H i (V,C) with the index shifted by +n, and the weight filtration is also the same
but with index shifted by +2n, and likewise for relative cohomology. Similarly,
our conventions for twists of de Rham cohomology are such that H i

dR(V/F)(n) is
H i

dR(V/F) with the Hodge filtration shifted by+n and the weight filtration by +2n.

4.1. Hodge structures and extensions, briefly. Recall that a rational mixed Hodge
structure is a finite-dimensional Q-space V together with:

• (Hodge filtration) a decreasing filtration · · · ⊇ F pVC ⊇ F p+1VC ⊇ · · · of the
complex vector space VC = V ⊗C such that F pVC = VC if p≪ 0 and F pVC = 0
if p≫ 0, and

• (weight filtration) an increasing filtration · · · ⊆ WnV ⊆ Wn+1V ⊆ · · · of the
rational vector space V such that WnV = V if n≫ 0 and WnV = 0 if n≪ 0,

that satisfy:

• (pure graded pieces) the filtration F pVC induces a filtration on grnVC for grnV =
WnV/Wn−1V ,

F p(grnVC)= (F pVC ∩WnVC+Wn−1VC)/Wn−1VC,

and
grnV p,q

C
:= F p(grnVC)∩ Fq(grnVC)

is such that grnV p,q
C
= 0 if p+ q ̸= n and

grnVC =

⊕
p+q=n

grnV p,q
C
.

Here the overline ( · ) denotes the image under the action of complex conjugation
on the scalars of VC = V ⊗C.

A (mixed) Hodge structure with graded weight filtration supported on exactly
one degree, that is, grnV = V for some (unique) n, is a pure Hodge structure of
weight n. So the third condition above just says that for a mixed Hodge structure,
the induced Hodge structures on the graded pieces of the weight filtration are pure
of the corresponding weight. A morphism of mixed Hodge structures is a Q-linear
map that is compatible with the Hodge and weight filtrations. Let Q−MHS denote
the category of mixed rational Hodge structures. Replacing Q with R in the above,
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we get the category R−MHS of real mixed Hodge structures. A rational mixed
Hodge structure V gives rise to a real mixed Hodge structure VR = V ⊗ R by
extending scalars.

The singular cohomology groups of an algebraic variety (including relative
cohomology) are all equipped with canonical rational mixed Hodge structures, and
all the maps in the associated long exact sequences (e.g., the Gysin sequence and
the sequence for relative cohomology) are morphisms of mixed Hodge structures.
This is a consequence of Hodge theory as developed in [Deligne 1971a; 1971b;
1974]; see also [Peters and Steenbrink 2008]. The article [Kedlaya 2008] contains
a fairly gentle introduction to Hodge theory for varieties.

The simplest examples of nonzero Hodge structures are the pure Hodge structures
Q(m) = (2π iQ)⊗m

= (2π i)mQ, m an integer, with Hodge filtration F pQ(m) =
Q(m) if p≤−m and F pQ(m)=0 if p>−m and weight filtration WnQ(m)=Q(m)
if n ≥ −2m and WnQ(m)= 0 if n <−2m. So Q(m) is pure of weight −2m and
C(m)=Q(m)⊗C=Q(m)C = C(m)−m,−m . If V is a complete, connected variety
over C of dimension d, then H 2d(V,Q) is isomorphic to Q(−d) as a Hodge
structure. Let R(m)=Q(m)⊗R; this is a pure real Hodge structure.

The simplest examples of nontrivial rational mixed Hodge structures are the
nonsplit extensions

0→Q(n)→ E→Q(m)→ 0

of Q(m) by Q(n), m < n, in the category of mixed Hodge structures.4 Let φH :

C(m)→ EC be a C-linear splitting compatible with the Hodge filtrations; φH is
unique in this case. Let φW : Q(m)→ E be a Q-linear splitting respecting the
weight filtrations; in this case, φW is only well-defined up to addition of any element
of HomQ(Q(m),Q(n)). Let φ = φH −φW ∈ HomC(C(m),C(n)). Then the image
of φ in HomC(C(m),C(n))/HomQ(Q(m),Q(n)) depends only on E and not the
choices of φH or φW . This yields an identification Ext1Q−MHS(Q(m),Q(n)) =
HomC(C(m),C(n))/HomQ(Q(m),Q(n))≃ C/Q. Injectivity is a consequence of
the observation that E is split if and only if we can choose φW = φH , so E is
split if and only if φH −φW ∈HomQ(Q(m),Q(n)) in general. Surjectivity follows
by an explicit construction: Let φ : C(m) → C(n) be a C-linear map (which
necessarily preserves the weight filtrations in this case). Consider the vector space
E =Q(n)⊕Q(m) with Hodge and weight filtrations

F p EC =
{
(a+φ(b), b) : a ∈ F pC(n), b ∈ F pC(m)

}
,

Wk E =


E, k ≥−m,
Q(n), −n ≤ k <−m,
0, k <−n.

4If n ≤ m then any such extension is split.
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This is a mixed Hodge structure, and the natural inclusion Q(n) ↪→ E and projection
E ↠Q(m) are clearly morphisms of Hodge structures: E ∈Ext1Q−MHS(Q(m),Q(n)).
The image of this extension in HomC(C(m),C(n))/HomQ(Q(m),Q(n)) is just
the image of φ. Similarly, Ext1R−MHS(R(n),R(n)) is identified with the space
HomC(C(m),C(n))/HomR(R(n),R(m)) ≃ C/R and so is a one-dimensional R-
space. For more on extensions of mixed Hodge structure, the interested reader
should consult [Carlson 1980] or [Carlson and Hain 1989].

In the rest of Section 4 we will find extensions of the Hodge structures Q(−1)
by Q(0) as quotients of the relative singular cohomology groups H 1(Y,W,Q) of
the pairs (Y,W ), and so find extensions in Q−MHS. To decide whether such an
extension E is nontrivial, it suffices to identify a homomorphism φ :C(−1)→C(0)
giving rise to E as above. One way of doing this is as follows: Let 0 ̸= ω ∈Q(−1)
and find elements ωH ∈ F1 EC and ωW ∈ W2 E that both map to ω. Identifying
Q(−1)with a subspace of E viaω 7→ωW , the Hodge structure on E is identified with
the Hodge structure on Q(0)⊕Q(−1) defined by the φ such that φ(ω)=ωH −ωW .
This extension is split if and only if φ ∈ HomQ(Q(m),Q(n))) and so if and only
if ωH −ωW ∈Q(0). If we work instead in R−MHS, then the criteria to be split
becomes ωH −ωW ∈ R(0). In practice (as will be the case below) one can often
find an explicit ωH using Hodge theory, but finding an explicit ωW — especially
one for which the difference ωH −ωW can be identified — can be difficult. We take
a different tack.

To prove nontriviality of the extensions we find, we make use of the fact that all
the Hodge structures involved in our constructions have a particular enrichment.
This enrichment is the action of an involution φ∞ on the underlying Q-space V of
a rational mixed Hodge structure (or R-space of a real mixed Hodge structure) such
that the action of φ∞⊗ τ on VC = V ⊗C induces a C-semilinear involution of each
F pVC. Here τ denote the action of complex conjugation on C and the semilinearity
is with respect to τ . We denote by Q −MHS+ the category of such enriched
rational mixed Hodge structures (morphisms must also respect the action of φ∞).
We similarly write R−MHS+ for the category of such enriched real mixed Hodge
structures. The Hodge structures coming from the singular cohomology of varieties
defined over R or some subfield have a natural enrichment: φ∞ is the involution
induced from the action of complex conjugation on the C-points of the variety. The
Hodge structures Q(m) also have natural enrichments: φ∞ acts as multiplication by
(−1)m . For a complete, geometrically connected variety V of dimension d defined
over a subfield of R, the enriched Hodge structure on H 2d(V,Q) is isomorphic to
that of Q(−d).

Let m < n be integers. Following the description of Ext1Q−MHS(Q(m),Q(n))
above, we find that extensions in Ext1

Q−MHS+(Q(m),Q(n)) are those coming from
homomorphisms φ ∈ HomC(C(m),C(n)) such that φ((2π i)m)= rim−n(2π i)n for
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some r ∈R. In particular, the group of enriched extensions Ext1
Q−MHS+(Q(m),Q(n))

is identified with the image of iR in C/Q if n−m is odd and with R/Q otherwise.
Similarly, Ext1

R−MHS+(R(m),R(n)) is identified with iR ∼
−→ C/R if m− n is odd,

but Ext1
R−MHS+(R(m),R(n))= 0 if m− n is even.

Our strategy for determining whether an extension E of Q(−1) by Q(0) in
Q−MHS+ is nonzero will be to find an explicit element 0 ̸= ω ∈Q(−1) and an
explicit lift ωH ∈ F1 EC. Then E is nonsplit if and only if φ∞(ωH )+ωH ̸= 0. This
is readily seen by using the description of E as an extension associated with some
φ ∈ HomC(C(−1),C(0)) such that φ((2π i)−1) = ir ∈ iR (which is split if and
only if r = 0). For if E is isomorphic to the enriched mixed Hodge structure on
Q(0)⊕Q(−1) for some φ such that φ((2π i)−1)= ir ∈ iR and if ω = (2π i)−1a,
then ω′H = (ira, (2π i)−1a)∈ F1 EC is a lift of ω and φ∞(ω′H )+ω

′

H = 2ira ∈C(0)
is nonzero if and only if r ̸= 0, that is, if and only if φ ̸= 0, which – as we have
already seen – is the condition for E to be nonsplit in Q−MHS+. As φ∞ acts
trivially, on Q(0) and hence on C(0), we see that φ∞(ωH )+ωH = φ∞(ω

′

H )+ω
′

H .
Of course, the ‘if’ part is even easier to see in this special case: ωH is the unique
lift of ω to F1 EC and so the extension being split in Q−MHS+ would then imply
that φ∞ωH =−ωH . In practice, we will be able to use Hodge theory to explicitly
compute φ∞(ωH )+ ωH . In this approach we only make use of an explicit lift
ωH ∈ F1 EC and do not need to also identify a lift ωW ∈W2 E . As is explained in
Section 5, a very similar strategy can be used to show that certain extensions of
p-adic Galois representations are nonsplit (see especially Section 5.1).

4.2. The extension EMH. Let F/Q be any extension. The relative singular coho-
mology H i (Y,W, F) fits into a long exact sequence

· · · → H 0(Y, F)→ H 0(W, F)→ H 1(Y,W, F)

→ H 1(Y, F)→ H 1(W, F)→ · · · . (4.2.a)

In the case F = Q, each of the cohomology groups in this sequence is endowed
with a rational (possibly mixed) Hodge structure, and the maps between groups
are morphisms of mixed Hodge structures. In this case, the Hodge structures on
H 0(W, F) and H 1(Y, F) are pure of weights 0 and 2, respectively (for more details
on the cohomology and Hodge theory of Y and (Y,W ) and associated notation, see
Sections 4.3 and 4.4 below). In particular, the induced extension

0→
H 0(W,Q)

im(H 0(Y,Q))
→ H 1(Y,W,Q)→ H 1(Y,Q)→ 0 (4.2.b)

realizes the mixed Hodge structure on H 1(Y,W,Q) as an extension in the category
Q−MHS of mixed rational Hodge structures: an extension of a pure Hodge structure
of weight 0 by a pure Hodge structure of weight 2. Since each of the varieties X ,
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Y , Z , and W is defined over Q, the singular cohomology groups considered above
all carry the action of an involution, denoted φ∞, induced by the action of complex
conjugation on the C-points of the varieties, and the above maps of cohomology
groups also respect the action of φ∞. The tensor product φ∞⊗ τ of φ∞ with the
action τ of complex conjugation on the coefficients for F = C preserves the Hodge
filtration (but is only semilinear with respect to τ for the action of C). So all of these
Hodge structures, maps, and extensions are actually in the category Q−MHS+ of
enriched mixed Hodge structures.

Let V = H 0(W,Q)/im(H 0(Y,Q)). Since Y (C) = C \ {1}, H 1(Y,Q) ≃Q. As
we will see there is a natural Q-basis c ∈ H 1(Y,Q), which we use to identify
H 1(Y,Q) with the 1-dimensional pure Hodge structure Q(−1) of weight 2 with
φ∞-action being multiplication by −1. Then the extension (4.2.b) together with
the mixed Hodge structure on H 1(Y,W,Q) and the action of φ∞ defines a class
EMH = [H 1(Y,W,Q)] ∈ Ext1

Q−MHS+(Q(−1), V ). It is natural to ask:

is EMH ̸= 0?

That is, is (4.2.b) a nonsplit extension of enriched mixed Hodge structures?
Let λ : V ↠ Q(0) be any surjective map of (enriched) Hodge structures; since V

is pure of weight 0, this is just any surjective linear map from V . Then the push-out
of EMH by λ yields an extension EMH,λ ∈ Ext1

Q−MHS+(Q(−1),Q(0)). It is clear that
EMH ̸= 0 if and only if there exists some λ such that EMH,λ ̸= 0. So it also natural,
and even equivalent, to ask:

does there exists λ such that EMH,λ ̸= 0?

The keys to our answer to these question are

• explicit descriptions of some classes in F1 H 1(Y,C) and F1 H 1(Y,W,C) via
their corresponding classes in H 1

dR(Y/C) and H 1
dR((Y,W )/C), and

• an analytic calculation with the explicit de Rham classes and their images
under φ∞.

These come together as follows: Let 0 ̸= ω ∈ H 0(�1
X/C(log Z)). Via the de Rham

isomorphism ιdR, the differential ω determines classes c = ιdR([ω]) ∈ F1 H 1(Y,C)

and cH = ιdR([ω]) ∈ F1 H 1(Y,W,C) in the Hodge filtrations. Just as explained in
the final paragraph of Section 4.1, EMH,λ ̸=0 if and only if the image of (1+φ∞)cH ∈

VC = H 0(W,C)/im(H 0(Y,C)) is nonzero under λ. In particular, EMH ̸= 0 if and
only if (1+φ∞)cH ̸= 0 in VC= H 0(W,C)/im(H 0(Y,C)). In some instances ω can
be chosen so that (1+φ∞)ω = dη for some explicit real analytic function η on Y .
Then (1+φ∞)cH is just the image of η|W ∈ H 0(W,C). In particular, E ̸= 0 if and
only if λ(η|W ) ̸= 0 for some homomorphism λ : H 0(W,C)→ C (not necessarily
Q-valued) that is trivial on the image of H 0(Y,C). In particular, to show that E ̸= 0
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it will be enough to write down a sufficiently explicit ω so that η can be determined
and seen to satisfy λ(η|W ) ̸= 0 for some such λ. Note that λ(η|W ) is just a linear
combination of the values of η on the points in W .

Arguing this way we will show that EMH ̸= 0 if, for example, there exists a
nontrivial even primitive Dirichlet character χ : (Z/NZ)× → C×. For a more
precise result, see (4.6.a) below.

4.3. The cohomology of Y. As Y (C) is just the Riemann sphere X (C)=P1(C)mi-
nus the two points∞ and 1, the singular cohomology group H 1(Y,Q) is isomorphic
to Q. A somewhat explicit isomorphism is given as follows.

Recall the long exact sequence for relative cohomology for the (open) inclusion
Y (C)⊂ X (C):

· · · → H 1(X, F)→ H 1(Y, F) ∂
−→ H 2(X, Y, F)

→ H 2(X, F)→ H 2(Y, F)→ · · · . (4.3.a)

The group H 2(X, Y, F) is naturally identified with the space H 0(Z , F)(−1) =⊕
z∈Z(C)(2π i)−1 F . Under this identification, the induced map H 0(Z , F) →

H 2(X, F)(1) is just the cycle class map.5 In particular, Poincaré duality canonically
identifies H 2(X, F)(1) with the F-dual of H 0(X, F) and the map H 0(Z , F)→
H 2(X, F)(1) with the dual of the natural map H 0(X, F)→ H 0(Z , F), H 0(Z , F)
being, of course, self-dual in the obvious way. As H 1(X, F)= H 1(P1, F)= 0, it
follows that

∂ : H 1(Y, F) ∼−→
{
((2π i)−1az)z∈Z(C) : az ∈ F,

∑
z∈Z(C)

az = 0
}

⊂ H 0(Z , F)(−1). (4.3.b)

In particular, as Z(C)= {∞, 1},

∂ : H 1(Y, F) ∼−→
{
((2π i)−1a,−(2π i)−1a) : a ∈ F

}
≃ F.

As the Hodge structure on H 0(Z ,Q) is pure of weight 0, H 0(Z ,Q)(−1) is
pure of weight 2, and so the isomorphism (4.3.b) implies that the Hodge structure
on H 1(Y,Q) is pure of weight 2. This can also be seen as follows. The Hodge
filtration F•H 1(Y,C) on H 1(Y,C) = H 1(Y,Q)⊗C is defined via the de Rham
isomorphism ιdR : H 1

dR(Y/C)
∼
−→ H 1(Y,C) and the Hodge filtration on H 1

dR(Y/C).
The de Rham cohomology H∗dR(Y/C) is computed by the hypercohomology of
both the de Rham complex DRY = [OY

d
−→�1

Y ] and the log de Rham complex
DRX (log Z) = [OX

d
−→ �1

X (log Z)]; the natural map DRX (log Z)→ DRY is a
quasi-isomorphism. Here ‘(log Z)’ denotes the complex with log poles along Z

5This is essentially the definition of the cycle class map.
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(for more on the log de Rham complex and its cohomology, see [Kedlaya 2008,
§1.9], [Esnault and Viehweg 1992, §2], or [Peters and Steenbrink 2008, §4]). Let
A =Q

[
t, 1

t−1

]
. Since Y = Spec A is affine, the hypercohomology of the de Rham

complex for Y is the cohomology of the complex itself. The Hodge filtration
F•H 1

dR(Y/C) is just the image of the hypercohomology of the usual filtration on
DRX (log Z). In particular,

F0 H 1
dR(Y/C)= H 1

dR(Y/C)=�
1
A⊗C/d(A⊗C)= C

dt
1− t

,

F1 H 1
dR(Y/C)= im(H 0(�1

X (log Z)))= H 0(�1
X (log Z))= C

dt
1− t

,

F2 H 1
dR(Y/C)= 0.

The weight filtration W•H 1(Y,Q) on H 1(Y,Q) is given by 0 = W0 H 1(Y,Q) =

W1 H 1(Y,Q)= im(H 1(X,Q))⊂W2 H 1(Y,Q)= H 1(Y,Q). Indeed, in this case the
n-th part Wn H 1(Y,C) of the weight filtration is the image of the hypercohomology
of Wn−1 DRX (log Z), where Wn DRX (log Z)=[0] (n<0), W0 DRX (log Z)=DRX ,
and Wm DRX (log Z) = DRX (log Z) (m ≥ 1); see [Peters and Steenbrink 2008,
Theorem 4.2]. It is a fundamental result of Hodge theory that this weight filtration
on H 1(Y,C) is actually rational.

Note that the compatibility of the de Rham isomorphisms with the long exact
sequence (4.3.a) shows that the class ιdR([ωa]) ∈ H 1(Y,C) of the differential
ωa = (2π i)−1a dt

1−t ∈ H 0(�1
X/C(log Z)) satisfies

∂(ιdR([ω])= ((2π i)−1a∞, (2π i)−1a1), a∞ =−a1 = a. (4.3.c)

This is because the corresponding boundary map for de Rham cohomology just
takes the class of ω to (Resz(ω))z∈Z . In particular, the de Rham isomorphism
induces an identification

H 1
dR(Y/C)⊃ (2π i)−1 F

dt
1− t

ιdR
∼
−→ H 1(Y, F) (4.3.d)

for any subfield F ⊂ C.
Let

ω =
dt

1− t
∈ H 0(�1

X (log Z)) and ωan
= (2π i)−1ω.

Let [ωan
] ∈ F1 H 1

dR(Y/C) be the corresponding class. Then

H 1
dR(Y/C)= F1 H 1

dR(Y/C)= C[ωan
].

Let
c = ιdR([ω

an
]) ∈ F1 H 1(Y,C).

Then H 1(Y,C)= F1 H 1(Y,C)= Cc. It follows from (4.3.d) that c ∈ H 1(Y,Q).
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4.4. The cohomology of (Y, W). We can compute the relative singular cohomology
groups H 1(Y,W, F) as the cohomology of the mapping cone Cone(C•(Y, F)→
C•(W, F))[−1] for C•(Y, F), C•(W, F) the singular cochain complexes with F
coefficients and the map being that induced by the inclusion W (C) ↪→ Y (C). Con-
cretely, this mapping cone is C•(Y, F)⊕C•−1(W, F)) with differential d(a, b)=
(d•a,−d•−1b− a|W ); the map to C•(Y ) is just projection onto the first summand.

The de Rham cohomology of the pair is similarly computed but with C•(Y, F)
and C•(W, F) replaced by the de Rham complexes DRY and DRW , respectively, or
even DRX (log Z) and DRW . From the definition of the mapping cone, it is easy to
see that Cone(DRY→DRW )[−1] (resp. Cone(DRX (log Z)→DRW )[−1]) can be
replaced with the quasiisomorphic subcomplex DRY (−W )= [OY (−W )

d
−→�1

Y ]

(resp. DRX (log Z)(−W )= [OX (−W )
d
−→�1

X (log Z)]).
The Hodge filtration on H 1(Y,W,C) is again defined via the de Rham isomor-

phism. In particular, it is given by the images of the hypercohomology of the usual
filtration on DRX (log Z)(−W ). Recall that A=Q

[
t, 1

t−1

]
. Much as for H 1

dR(Y,C),
we have

F0 H 1
dR((Y,W )/C)= H 1

dR((Y,W )/C)=�1
A⊗C/d(8N (t)A⊗C),

F1 H 1
dR((Y,W )/C)= im(H 0(�1

X (log Z)))= H 0(�1
X (log Z))= C

dt
t − 1

,

F2 H 1
dR((Y,W )/C)= 0.

The weight filtration on H 1(Y,W,Q) is W•H 1(Y,W,Q)with W−1 H 1(Y,W,Q)=0,
W0 H 1(Y,W,Q) = W1 H 1(Y,W,Q) = im(H 0(W,Q)), and W2 H 1(Y,W,Q) =

H 1(Y,W,Q). Note that W0 H 1(Y,W,Q)/W−1 H 1(Y,W,Q)= im(H 0(W,Q)) and
the induced Hodge filtration is indeed the unique Hodge structure pure of weight 0.
(For more on the Hodge structures on relative cohomology see [Peters and Steenbrink
2008, §5.5].) Note also that W2 H 1(Y,W,Q)/W1 H 1(Y,W,Q) ∼−→ H 1(Y,Q) and
the induced Hodge filtration is just the one on H 1(Y,Q) described above. This just
makes explicit in this setting the general fact that the extension (4.2.b) realizes the
mixed Hodge structure on H 1(Y,W,Q) as an extension in the category of mixed
Hodge structures.

For ωan as before, let [ωan
]W ∈ F1 H 1

dR((Y,W )/C). Then F1 H 1(Y,W,C) =

CιdR([ω
an
]W ), and the isomorphism F1 H 1(Y,W,C) ∼−→ F1 H 1(Y,C) maps cH =

ιdR([ω
an
]W ) to c = ιdR([ω

an
]).

4.5. The involution φ∞. Since each of the varieties X , Y , Z , and W is defined
over Q, the cohomology groups considered above — singular and de Rham — all
carry the action of an involution, denoted φ∞, induced by the action of complex
conjugation on the C-points of the varieties. The maps in (4.3.a), (4.3.b), and (4.2.a)
are all compatible with the actions of φ∞ as are the de Rham isomorphisms ιdR.
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Moreover, φ∞ interacts well with the Hodge filtrations: φ∞(F p(−))= F p(−). That
is, φ∞ ◦ τ , for τ the action of complex conjugation on the coefficients, preserves
the Hodge filtrations. Since F1 H 1(Y,C)= F1 H 1(Y,C) and F1 H 1(Y,W,C) ∼−→

F1 H 1(Y,C), the extension (4.2.b) is a split extension of Hodge structures enriched
with the involutions φ∞ if and only if F1 H 1(Y,W,C)= F1 H 1(Y,W,C). But this
is often not the case, as we show below.

4.6. The calculation. The class φ∞(ιdR([ω
an
]W )) = ιdR(φ∞([ω

an
]W )) is repre-

sented by the real analytic differential φ∗
∞
ωan
= (2π i)−1 dt̄

1−t̄ via the real-analytic de
Rham isomorphism. Then (1+φ∞)ιdR([ω

an
]W ) is represented by the real analytic

differential

(2π i)−1
(

dt
1− t

+
dt̄

1− t̄

)
=−(2π i)−1d log |t − 1|2 = d(−(2π i)−1 log |t − 1|2).

Let η = −(2π i)−1 log |t − 1|2. This is a real-analytic function on Y . It follows
that (1+φ∞)ιdR([ω

an
]W ) is the image of the class η|W ∈ H 0

dR(W/C)= H 0(W,C),
which is just (η(ζ ))ζ∈W (C) =

⊕
ζ∈W (C) C= H 0(W,C).

Let ζN = exp(2π i/N )∈µ◦N (C)=W (C). Let χ : (Z/NZ)×→C× be a nontrivial
character and let

λχ : H 0(W,C)→ C, λχ ((xζ )ζ∈W (C))=
∑

a∈(Z/NZ)×

χ(a)xζ a
N
.

As χ is nontrivial, λχ is 0 on the image of H 0(Y,C), which is just the image of the
diagonal embedding C ↪→

⊕
ζ∈W (C) C. Then

λχ (η|W )=−2(2π i)−1
∑

a∈(Z/NZ)×

χ(a) log |ζ a
N − 1|.

If χ is odd (so χ(−1)=−1) then the sum is 0 as |ζ a
N − 1| = |ζ−a

N − 1|. But if χ is
even (so χ(a)= χ(−a)), then the sum equals

2(2π i)−1 N0

τ(χ̄0)
L(1, χ̄0)

∏
ℓ prime
ℓ | N
ℓ∤N0

(1−χ0(ℓ))

by a well-known formula for the value of the Dirichlet series L(s, χ̄0) at the point
s = 1 (see [Washington 1997, Theorem 4.9]). Here χ0 is the primitive character
associated with χ , N0 is its conductor, χ̄0 = χ

−1
0 , and τ(χ̄0) is the usual Gauss sum.

By the functional equation for L(s, χ0), the last displayed expression equals

−(2π i)−14L ′(0, χ0)
∏
ℓ prime
ℓ | N
ℓ∤N0

(1−χ0(ℓ))=−(2π i)−14L ′(0, χ).
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As noted before, EMH is a nonsplit extension of enriched Hodge structures if
and only if λ(η|W ) ̸= 0 for some λ : H 0(W,C)→ C that vanishes on the image
of H 0(Y,C). Such λ are exactly the linear combinations of the λχ for χ running
over the nontrivial characters of (Z/NZ)×. So as a consequence of the calculation
above we have:

there is a nontrivial even character χ : (Z/NZ)×→ C×

such that ords=0 L(s, χ)= 1
⇐⇒ EMH ̸= 0. (4.6.a)

The left-hand side is satisfied, of course, if there is a primitive even character
modulo N .

Suppose that χ is quadratic as well as even. Then EMH,χ =H 1(Y,W,Q)/ ker(λχ )
is an extension of enriched Hodge structures that fits into a commutative diagram:

H0(W,Q)
im(H0(Y,Q)) H 1(Y,W,Q) H 1(Y,Q)

Q EMH,χ Qc.

λχ / ker(λχ )

As ker(λχ ) is clearly stable under φ∞,

EMH,χ ∈ Ext1
Q−MHS+(Qc,Q)= Ext1

Q−MHS+(Q(−1),Q(0)).

Note that EMH,χ is just the image of EMH under the map induced by λχ . The
calculation above shows

χ even and nontrivial, ords=0 L(s, χ)= 1 ⇐⇒ EMH,χ ̸= 0. (4.6.b)

4.6.1. Remark. The fact that EMH,χ is split when χ is odd is consistent with the
fact that L(0, χ) ̸= 0 for χ odd and primitive, and so we do not expect extensions.

5. Nonsplit extensions of p-adic Galois representations

We explain how arguments analogous to those in Section 4 yield statements analo-
gous to (4.6.a) and (4.6.b) for certain extensions of p-adic Galois representations
that occur in the relative étale cohomology of the pair (Y,W ). Just as in the case of
the extensions of mixed Hodge structures, we check that these Galois extensions are
nonsplit by integrating an explicit differential representing a class in the cohomology
of Y and recognizing the resulting formulas as expressions for L-values of Dirichlet
characters. Only in this case the integration takes place in the context of p-adic
rigid analysis, and the passage from étale cohomology to rigid geometry goes via
the comparison theorems of p-adic Hodge theory. We explain how this calculation
essentially computes the Bloch–Kato logarithm of these Galois extensions. We
also explain how these extensions are the first layer of an Euler system. A reader
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with some familiarity with p-adic Hodge theory should be able to grasp the gist
quickly upon reading Section 5.2 and fill in details by scanning the subsequent
displayed equations. For readers less familiar with p-adic Hodge theory, we have
included — much as we did in Section 4 — a brief introduction and some useful
resources, particularly in Sections 5.1, 5.3, and 5.4.

Conventions. Let Q be a fixed separable algebraic closure of Q. We fix an embed-
ding ι∞ :Q ↪→ C, which we use to identify Q as a subfield of C. For each prime ℓ
we also fix a separable algebraic closure Qℓ of Qℓ and an embedding ιℓ :Q ↪→Qℓ.
The latter identifies GQℓ

= Gal(Qℓ/Qℓ) with a decomposition group of GQ for the
prime ℓ. We let Iℓ⊂GQℓ

be the inertia subgroup and frobℓ ∈GQℓ
/Iℓ the arithmetic

Frobenius element. In particular, we identify Q with a subfield of Qp via ιp. Let
Qur

p ⊂Qp be the maximal unramified extension of Qp.
Let ϵ : GQ → Z×p be the p-adic Galois character giving the action of GQ on

all p-th-power roots of unity and so on Zp(1) = lim
←−−r µpr . The exponential map

exp : Z(1)→ C× identifies lim
←−−r (Z(1)⊗ Z/pr Z) with lim

←−−r µpr = Zp(1). We let
ζ ∈ Zp(1) be the Zp-basis that is the image of 2π i ∈ Z(1).

Given a variety V defined over Q we let V denote its base change V/Q over Q.
The role of the de Rham-singular isomorphisms in the preceding section will
here be played by the de Rham-étale comparison isomorphisms of p-adic Hodge
theory. This essentially allows us to compare H 1

ét(V,Qp) with H 1
dR(V/Qp) (for

good V), with the additional complication that the comparison is not direct but
passes through the DdR-functor: for a finite-dimensional continuous Qp-linear
GQp -representation M , DdR(M) = (M ⊗Qp BdR)

GQp , where BdR is the usual de
Rham period ring. The de Rham-étale comparison isomorphism is a canonical
functorial isomorphism ιdR,p of H 1

dR(V/Qp) with DdR(H 1
ét(V,Qp)), and similarly

for relative cohomology with respect to a subvariety U ⊂ V (at least for U a normal
crossings divisor or a complement of such). These isomorphisms are functorial in
V and compatible with the long-exact sequences for relative cohomology, Gysin
sequences, etc.

5.1. p-adic Galois representations and their period rings. Let L/Qp be a finite
extension of Qp and let V be a finite-dimensional L-space equipped with a con-
tinuous L-linear action of GQp . Simple examples of such are the one-dimensional
Qp-spaces Qp(n)= (Zp(1)⊗n)⊗Zp Qp, on which GQp acts6 via the n-th-power ϵn

of the p-adic cyclotomic character ϵ. For any V we write V (n) for V ⊗Qp Qp(n)
(the n-th Tate twist of V ) with GQp acting on both factors. If χ : GQp → L× is
any continuous character, then we let L(χ) be the one-dimensional L-space with
σ ∈ GQp acting as multiplication by χ(σ). Unlike for Qp(n), the representation

6Of course, the Galois group GQ also acts on Qp(n). In fact, in subsequent sections we will
largely be interested in GQp -actions that are the restrictions of GQ-actions.
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L(χ) has an implicit L-basis; hence, identifying L(χ)(n) with L(χϵn) requires
choosing a basis of Qp(n). Other important examples of V ’s arise in arithmetic
geometry. For a complete, geometrically connected variety V of dimension d defined
over a subfield of Qp, H 2d

ét (V/Qp
,Qp) is isomorphic to Qp(−d). More generally, if

V is any variety over Qp, then the étale cohomology groups H∗ét(V/Qp
,Qp) (as well

as relative cohomology groups) are finite-dimensional Qp-spaces with Qp-linear
continuous actions of GQp , and all the maps in the associated exact sequences (e.g.,
the Gysin sequences and the sequences for relative cohomology) are maps of such
representations.

There are subclasses of p-adic Galois representations that figure prominently in
arithmetic geometry:

{
crystalline

reps.

}
⊂

{
semistable

reps.

}
⊂

{potentially
semistable

reps.

}
=

{
de Rham

reps.

}
.

Each class is characterized by a period ring B?, ? = crys, st, or dR, respectively.
These period rings are topological Qur

p -algebras (even domains), and even a Qp-
algebra in the case of BdR. Each is equipped with a continuous action of GQp

compatible with the action on Qur
p (on Qp in the case of BdR) and such that B

GQp
? =

Qp. It is always true that the Qp-dimension of D?(V ) := (V ⊗Qp B?)
GQp is at most

that of V , and by definition V belongs to the corresponding class for ? if and only if
the Qp-dimension of D?(V ) equals the Qp-dimension of V . (If GQp were replaced
by G K for a general finite extension K/Qp, the picture would be slightly different.)
If V is an L-space, then so is D?(V ) and one can also check whether V belongs to
the category ? by comparing dimensions over L . The ring Bcrys is a subring of both
BdR and Bst, and if we fix a branch of the p-adic logarithm, then Bst can viewed as
a sub-Bcrys-algebra of BdR. There is a canonical inclusion Zp(1) ↪→ Bcrys and we
let t ∈ Bcrys be the image of ζ . The element t is invertible in Bcrys (hence also in
the other rings) and

D?(Qp(n))=Qp(ζ
⊗n
⊗ t−n).

So the representations Qp(n) are all crystalline. Clearly then, V is crystalline (or
semistable or de Rham) if and only if V (n) is for some integer n. More generally,
each of these classes of representations is stable under direct sums, duals, tensor
products, taking subrepresentations or quotients (and hence subquotients). However,
they are not closed under extensions. For more on p-adic Galois representations
and these period rings the interested reader should consult [Berger 2004; 2013] or
[Conrad and Brinon 2009].

Suppose V is a variety over Qp. The étale cohomology groups H∗ét(V/Qp
,Qp) are

all de Rham (equivalently, potentially semistable), as are the relative cohomology
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groups. If V has a smooth complete model over Zp, then H∗ét(V/Qp
,Qp) is crystalline.

Not at all surprisingly, if V has a semistable model over Zp, then H∗ét(V/Qp
,Qp) is

semistable.
The ring BdR of de Rham periods has a natural decreasing filtration: F i BdR =

t i B+dR for a certain subring B+dR containing t . This induces a finite exhaustive
filtration on DdR(V ) for any V : F i DdR(V )= (V ⊗Qp t i B+dR)

GQp . The rings Bcrys

and Bst are equipped with a semilinear Frobenius φp. That is, φp is a continuous
endomorphism that acts semilinearly with respect to the usual (arithmetic) Frobenius
frobp on the maximal unramified extension Qur

p of Qp (so φ(ax)= frobp(a)φ(x)
for a ∈ Qur

p and x ∈ Bcrys, Bst). The ring Bst also has a nilpotent endomorphism
N (sometimes called a monodromy operator) such satisfying Nφp = pφp N . The
Frobenius φp acts on t as multiplication by p. In particular, in the case of Qp(n) we
have D(n) := DdR(Qp(n)) = Dcrys(Qp(n)) = Qp(ζ

⊗n
⊗ t−n) is a free Qp-space

of rank one with φp acting as multiplication by p−n . The filtration on D(n) is such
that F i D(n)= D(n) if i ≤−n and F i D = 0 otherwise.

Analogously to Section 4, in the rest of Section 5 we will construct an extension
of Qp(−1) by some Qp(χ), for χ a finite character, in the category of crystalline
representations of GQp . We will investigate when this extension is nonsplit. Suppose
then that we have a crystalline extension

0→ V → E→Qp(m)→ 0.

Applying the Dcrys(−) functor we obtain an extension

0→ D(V )→ D(E)→ D(m)→ 0

of filtered Qp-spaces with a Qp-linear action of φp. The extension E is split if and
only if the extension D(E) is.7 Suppose that F−m D(V )= 0. Let 0 ̸= ω ∈ D(m)
and ωH ∈ F−m D(E) that maps to 0. As F−m D(E) ∩ D(V ) = 0, the Qp-map
φ : D(m) → D(E) that takes ω to ωH is the unique splitting of E as filtered
Qp-spaces. It follows that the extension D(E) is split if and only if φ(φpω) =

φpφ(ω) = φpωH . As φpω = pmω, this holds if and only if φpωH = pmωH , or,
equivalently, (1− p−mφp)ωH = 0.

In practice, we will be able to use Hodge theory to find ωH and to compute
(1− p−mφp)ωH .

5.2. The extension EQ p,ét. Let F/Qp be any finite extension. From the long exact
sequence

· · · → H 0
ét(Y , F)→ H 0

ét(W , F)→ H 1
ét(Y ,W , F)
→ H 1

ét(Y , F)→ H 1
ét(W , F)→ · · · (5.2.a)

7The ‘only if’ direction is clear. The ‘if’ direction is a consequence of the equivalence of crystalline
representations and admissible filtered φp-modules.
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of étale cohomology groups we obtain an extension of F[GQ]-modules

0→
H 0

ét(W , F)

im(H 0
ét(Y , F))

→ H 1
ét(Y ,W , F)→ H 1

ét(Y , F)→ 0. (5.2.b)

Let VF = H 0
ét(W , F)/im(H 0

ét(Y , F)). As we will see, H 1
ét(Y , F) ≃ F(−1) as

F[GQ]-modules, and there is a natural F-basis c ∈ H 1
ét(Y , F), which we will

use to identify H 1
ét(Y , F) with F(−1). Then the extension (5.2.b) yields a class

EF,ét=[H 1
ét(Y ,W , F)] ∈Ext1F[GQ]

(VF , F(−1)). This is just the p-adic étale analog
of the extension class E of rational Hodge structures considered in the preceding
section. As in that case, it is natural to ask:

is EF,ét ̸= 0?

And much as before, the keys to our answer to this question are

• explicit descriptions of some classes in H 1
ét(Y , F) and the action of GQ on

these classes,

• the action of a p-adic Frobenius φp on the de Rham versions of the cohomology
groups in (4.2.b) and its action on the de Rham realizations of the explicit
classes, and

• the reduction, via p-adic Hodge theory, to a p-adic analytic calculation with
the de Rham realizations of the explicit classes and their images under φp.

These combine to provide an answer to the question about the nonvanishing of EF,ét
much in the same way that their real and complex analogs answered the question
about the nonvanishing of EMH.

5.3. The étale cohomology of Y. In the long exact sequence for the relative étale
cohomology for the (open) inclusion Y ⊂ X ,

· · · → H 1
ét(X , F)→ H 1

ét(Y , F) ∂ét
−→ H 2

ét(X , Y , F)

→ H 2
ét(X , F)→ H 2

ét(Y, F)→ · · · , (5.3.a)

the group H 2
ét(X ,Y ,F) is naturally identified with the space H 0

ét(Z ,F(−1)) =⊕
z∈Z(Q)F ⊗ ζ

∨. This identification is such that the induced map H 0
ét(Z , F)→

H 2
ét(X , F(1))= F is just the cycle class map. It follows that

∂ét : H 1
ét(Y , F) ∼−→

{
(az ⊗ ζ

∨)z∈Z(Q) : az ∈ F,
∑

z∈Z(Q)

az = 0
}

⊂ H 0
ét(Z , F(−1)). (5.3.b)

In particular, as Z(Q)={∞, 1}, ∂ét :H 1
ét(Y , F) ∼−→{(a⊗ζ∨,−a⊗ζ∨) :a∈ F}≃ F .

The action of GQ on H 1
ét(Y , F) is easily read off from this: The Galois action on
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H 0
ét(Z , F(−1)) is just given by σ(a)z = ϵ(σ )−1aσ−1(z)⊗ζ

∨ for a= (az⊗ζ
∨)z∈Z(Q)

and σ ∈GQ. Since the points of Z are defined over Q, this shows that H 1
ét(Y , F)≃

F(−1) as an F[GQ]-module.
Let cét ∈ H 1

ét(Y ,Qp) be the class corresponding under ∂ét to

(c∞, c1)= (1⊗ ζ∨,−1⊗ ζ∨).

Then
σcét = ϵ

−1(σ )cét, σ ∈ GQ, (5.3.c)

and H 1
ét(Y ,Qp)=Qpcét ≃Qp(−1).

The singular-étale comparison isomorphisms ιét identify the sequence (4.2.a)
with (5.2.a) and the isomorphism (4.3.b) with (5.3.b) (with (2π i)−1 being identified
with 1⊗ ζ∨). It follows that

ιét(c)= cét.

However, this is not needed in the following.

5.4. DdR and the Frobenius φ p. The étale cohomology groups in (5.2.a) are all
de Rham representations of GQp . In particular, applying the DdR-functor yields a
commutative diagram

H0
dR(W/Qp)

im(H0
dR(Y/Qp))

H 1
dR((Y,W )/Qp) H 1

dR(Y/Qp)

DdR(H0
ét(W ,Qp))

im(DdR(H0
ét(Y ,Qp))

DdR(H 1
ét(Y ,W ,Qp)) DdR(H 1

ét(Y ,Qp)),

ιdR,p

αdR

ιdR,p ιdR,p

αét

(5.4.a)

where the vertical arrows are the de Rham comparison isomorphisms of p-adic
Hodge theory. These spaces are all filtered Qp-spaces: the Hodge filtration on the
top line is identified with the filtration induced from the filtration t i B+dR on BdR on
the bottom line. All the maps are morphisms of filtered Qp-spaces.

A splitting of the extension (5.2.b) would give a splitting of the bottom line
of this diagram, and hence a splitting of the top, as filtered Qp-spaces. We will
show that this does not happen in general, at least if we also take into account the
action of an additional operator on these spaces — a Frobenius operator φp (which
replaces φ∞ in this p-adic context). The splittings would also be splittings for the
action of φp, and we will show that such splittings do not exist when certain values
of p-adic L-functions are nonzero.

To explain what φp is and illustrate its role, we make the simplifying hypothesis
that

p ∤N . (5.4.b)
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The varieties X , Y , and Z have smooth models over Z — just replace Q with
Z — and W has a smooth model over Z

[ 1
N

]
— just replace Q with Z

[ 1
N

]
. Hence

they also all have smooth models X , Y , Z , and W over Zp under (5.4.b). The
inclusions W ↪→ Y ↪→ X and Z ↪→ X extend to these models. This implies that the
cohomology groups in (5.2.b) are all crystalline representations of GQp , and so DdR

can be replaced with the crystalline functor Dcrys in the bottom line of (5.4.a). The
modules Dcrys(−)= (−⊗Qp Bcrys)

GQp inherit a Qp-linear action of the crystalline
Frobenius φp from Bcrys. In particular, if EQp,ét were 0 after restriction to GQp then
the bottom line in (5.4.a) would be simultaneously split as an extension of filtered
Qp-spaces and as an extension of Qp[φp]-modules.

From the Galois action (5.3.c) we see that

ccrys = cét⊗ t ∈ Dcrys(H 1(Y ,Qp))= DdR(H 1(Y ,Qp))

is a Qp-basis of Dcrys(H 1(Y ,Qp))= Dcrys(Qpc). As φp acts on t as multiplication
by p, it follows that

φpccrys = pccrys. (5.4.c)

Noting that ω = dt
1−t ∈ H 0(�1

X/Qp
(log Z)), we let

cdR = [ω] ∈ F1 H 1
dR(Y/Qp) and cdR,H = [ω]W ∈ F1 H 1

dR((Y,W )/Qp).

The de Rham comparison isomorphisms of p-adic Hodge theory are compatible
with the boundary map in the sequence (5.3.a), in the sense that

H 1
dR(Y/Qp)

ιdR,p
= DdR(H 1

ét(Y ,Qp))

∂ét⊗id
−−−→ DdR(H 0

ét(Z ,Qp(−1)))
ιdR,p
= H 0

dR(Z/Qp)(−1)

is just the boundary map (the residue map) in the corresponding sequence for de
Rham cohomology. As ζ∨⊗ t is identified with 1 by ιdR,p, it follows that

ιdR,p(cdR)= ccrys,

and (5.4.c) shows8 that the induced action of φp on cdR is just

φpcdR = pcdR. (5.4.d)

This implies that (1− p−1φp)cdR,H ∈ H 1
dR((Y,W )/Qp) is the image of something

in H 0
dR(W/Qp). As cdR,H ∈ F1 H 1

dR((Y,W )/Qp) and cdR ∈ F1 H 1
dR(Y/Qp) and

since αdR : F1 H 1
dR((Y,W )/Qp)

∼
−→ F1 H 1

dR(Y/Qp), this ‘something’ is nonzero
modulo the image of H 0

dR(Y/Qp) if and only if the bottom of (5.4.a) is a nonsplit
extension of filtered Qp-spaces equipped with a Qp[φp]-module structure.

8This also follows as the spaces being compared are one-dimensional, but this argument works in
more general settings.
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Ideally there would be ω′ ∈ H 0(�1
X/Qp

(log Z)) such that (1− p−1φp)cdR,H =

[ω′]W . As 0 = [ω′] ∈ H 1
dR(Y/Qp), it would have to be that ω′ = dη for some

η ∈ H 0(Y,OY/Qp) and hence that (1− p−1φp)cdR,H is the image of η|W . The
nonvanishing of this image (and so of the class EF,ét|GQp

) would be equivalent
to λ(η|W ) ̸= 0 for some Qp-homomorphism λ : H 0

dR(W/Qp)→Qp that vanishes
on the image of H 0

dR(Y/Qp). Unfortunately, this ideal situation does not hold
in general. However, we can essentially realize it by passing from algebraic de
Rham cohomology to another cohomology theory, one where the whole of the
cohomology group H 1

dR((Y,W )/Qp) can be represented by differentials, much as
H 1

dR((Y,W )/C) can be represented by real analytic differentials.

5.5. Monsky–Washnitzer cohomology. Let W, X, Y, etc., be the special fibers of
W , X , Y , etc. The de Rham cohomology groups on the top line of (5.4.a) are
naturally identified with the corresponding Monsky–Washnitzer (MW) cohomology
of the corresponding special fibers, yielding a commutative diagram

H0
dR(W/Qp)

im(H0
dR(Y/Qp))

H 1
dR((Y,W )/Qp) H 1

dR(Y/Qp)

H0
MW(W,Qp)

im(H0
MW(Y,Qp))

H 1
MW(Y,W,Qp) H 1

MW(Y,Qp).

αdR

αMW

(5.5.a)

The MW cohomology groups are defined as follows. Let

A†
0 = Zp⟨t, x⟩†/((t − 1)x − 1)

be the weak completion of A0 = Zp
[
t, 1

t−1

]
and let

�1
A†

0
= (A†

0dt + A†
0dx)/A†

0(xdt + (t − 1)dx)

be the module of continuous differentials. Here Zp⟨t, x⟩† consists of the power series∑
∞

n,m=0 an,m tnxm , an,m ∈ Zp, for which there exists a constant C > 0 and a real
number 0<ρ < 1 such that |an,m |p≤Cρn+m for all n,m. Let A†

= A†
0⊗Zp Qp and

�1
A† =�

1
A†

0
⊗Zp Qp.

Then the cohomology group H 1
MW(Y,Qp) is canonically computed by the cohomol-

ogy of the complex DR†
Y = [A

† d
−→�1

A†]. Similarly, H 1
MW(Y,W,Qp) is computed

by the cohomology of the complex DR†
Y(−W)= [8N (t)A†

→�1
A†], and so

H 1
MW(Y,Qp)=�

1
A†/d A† and H 1

MW(Y,W,Qp)=�
1
A†/d(8N (t)A†).

The maps between the top and bottom rows of (5.5.a) are induced by the obvious
maps of complexes DRY → DR†

Y and DRY (−W )→ DR†
Y(−W). In particular,
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the map from F1 H 1
dR(Y/Qp) = �

1
A/d A to H 1

MW(Y,Qp) is just the obvious one,
and similarly for F1 H 1

dR((Y,W )/Qp)=�
1
A/d(8N (t)A).

The Monsky–Washnitzer cohomology groups are also equipped with a canonical
Frobenius action induced by any homomorphism Fp : A†

0 → A†
0 that reduces

mod p to the usual Frobenius map on A0/p A0 = A†
0/p A†

0. In this case there
is a unique such Fp that sends t to t p. The canonical Frobenius action on the
Monsky–Washnitzer cohomology groups agrees with the Frobenius action φp on
the de Rham cohomology groups. For more on Monsky–Washnitzer cohomology
and the various objects introduced above, the interested reader should see [van der
Put 1986].

Our problem now becomes one of finding an explicit η ∈ A† such that dη =
(1− p−1 F∗p )ω. To do this we enlarge the class of functions we are working with.

5.6. Coleman integration and the calculation. The ring A† is a subring of the rigid
analytic functions on the affinoid Yan = spm(A) for A=Qp⟨t, x⟩/((t − 1)x − 1)),
where Qp⟨t, x⟩ is the standard Tate algebra. The geometric points of Yan comprise
the set

Yan(Qp)= {t ∈OQp
: |t − 1|p = 1},

for OQp
the ring of integers of Qp. That is, Yan(Qp) is OQp

with the open disc of
radius 1 around 1 removed. The above identification just sends a Qp-homomorphism
A↠A/m ↪→Qp, m ∈ spm(A), to the image of t under this homomorphism. The
ring A† is then identified with a subring of the locally analytic functions Aloc

on Yan over Qp, where Aloc is the ring of Qp-valued functions f (t) on the set
{t ∈OQp

: |t −1|p = 1} such that (i) σ( f (t))= f (σ (t)) for all σ ∈Gal(Qp/L) for
some finite extension L/Qp and (ii) on some open disc {t ∈OQp

: |t − t0|p < ϵ}
around each point t0, f (t) is equal to a convergent power series in t − t0. There
is an obvious notion of locally analytic differentials on Yan(Qp) over Qp and we
denote the Aloc-module of such by �1

Aloc
. There is also an induced embedding

�1
A† ⊗Qp Qp ↪→�1

Aloc
, which is compatible with the differentials

d : A†
⊗Qp Qp→�1

A† and d :Aloc→�1
Aloc
.

We will make use of Coleman integration (see [Besser 2012]), which is a Qp-linear
map

∫
:�1

A† ⊗Qp Qp→Aloc/Qp, to determine η:

η =

∫
(1− p−1 F∗p )ω ∈ Aloc/Qp.

Note that η is only well-defined up to the addition of a constant, an ambiguity that
does not affect the value λ(η|W ).

The Frobenius Fp on A† is the restriction of Fp,loc : Yan(Qp)→ Yan(Qp), t 7→ t p,
in the sense that (Fp f )(t)= f (t p) for f ∈ A†. The theory of Coleman integration
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provides a unique Qp-linear map
∫
:�1

A† ⊗Qp Qp→Aloc/Qp such that (a) d ◦
∫
:

�1
A† ⊗Qp Qp ↪→�1

Aloc
and

∫
◦ d : A†

⊗Qp Qp→Aloc/Qp are the canonical maps,
and (b) F∗p ◦

∫
=

∫
◦ F∗p . The condition (b) actually holds for any lift Fp of the

Frobenius map. Not surprisingly, it is relatively straightforward to show that∫ dt
t−1 = logp(1−t), where logp is the usual Iwasawa branch of the p-adic logarithm

(so logp(p)= 0); see [Besser 2012, §1.2]. It then follows from (b) that

η =−logp(1− t)+ p−1 logp(1− t p) ∈Aloc/Qp.

Let χ : (Z/NZ)×→Q×p be any nontrivial character. Then

λχ,dR : H 0
dR(W/Qp)→Qp, λχ,dR((xζ )ζ∈W (Qp)

)=
1

τ(χ0)

∑
a∈(Z/NZ)×

χ(a)xζ a
N
,

is 0 on the image of H 0
dR(Y/Qp), which is the image of the diagonal embedding

Qp ↪→
⊕

ζ∈W (Qp)
Qp. Here χ0 is the primitive Dirichlet character associated to χ

and τ(χ0)=
∑

a∈(Z/N0Z)× χ0(a)ζ a
N0

is its usual Gauss sum. Then

λχ,dR(η|W )=−
1

τ(χ0)

∑
a∈(Z/NZ)×

χ(a)η(ζ a
N )

=−
1

τ(χ0)
(1− χ̄(p)p−1)

∑
a∈(Z/NZ)×

χ(a) logp(1− ζ
a
N ).

If χ is odd (so χ(−a)=−χ(a)), then the last sum vanishes, as logp(1− ζ
−a
N )=

logp(−ζ
−a
N (1− ζ a

N ))= logp(1− ζ
a
N ). But if χ is even (so χ(a) = χ(−a)), then

the sum equals

L p(1, χ̄0)
∏
ℓ prime
ℓ | N
ℓ ∤N0

(1−χ0(ℓ))

by a well-known formula for the value of the p-adic Dirichlet L-function L p(s, χ̄0)

at the point s= 1 (see [Washington 1997, Theorem 5.18]). Here, as before, N0 is the
conductor of χ0. As L p(1, χ̄0) ̸=0 (see [Washington 1997, Corollary 5.30]) we see —
just as in the complex case — that λχ,dR(η|W ) is nonzero if and only if χ0(ℓ) ̸= 1
for all ℓ | N , ℓ∤N0. And, also as before, this is equivalent to ords=0 L(s, χ) = 1.
Hence the nonvanishing of λχ,dR(η|W ) also agrees with ords=0 L(s, χ)= 1.

As noted before, EQp,ét|GQp
is a nonsplit extension of p-adic Galois represen-

tations if and only if λ(η|W ) ̸= 0 for some nonzero λ : H 0
dR(W/Qp)→Qp that

vanishes on the image of H 0
dR(Y/Qp). Such λ are exactly the nonzero linear

combinations of the λdR,χ for χ running over the nontrivial characters of (Z/NZ)×.
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So as a consequence of the calculation above we have:

there exists a nontrivial even character
χ : (Z/NZ)×→ C×

such that ords=0 L(s, χ)= 1
⇐⇒ EQp,ét|GQp

̸= 0. (5.6.a)

The left-hand side is, of course, satisfied if there is a primitive even character
modulo N .

Just as in the case of extensions of Hodge structures, this can be refined. Suppose
χ is Q×p -valued (which holds, for example, if φ(N ) | (p− 1)). Then

λχ,ét : H 0
ét(W ,Qp)→Qp(χ), λχ,ét((xζ )ζ∈W (Q))=

∑
a∈(Z/NZ)×

χ(a)xζ a
N
,

is a Qp[GQ]-module homomorphism. Here we view Qp(χ) as Qp but with GQ

action via the Galois character χ . So 1∈Qp(χ) is a Qp-basis and σ ·1=χ(σ) ·1=
χ(σ). It follows that Eχ,ét = H 1

ét(Y ,W ,Qp)/ ker(λχ ) is an extension of Qp[GQ]-
modules that fits into a commutative diagram:

H0
ét(W ,Qp)

im(H0
ét(Y ,Qp))

H 1
ét(Y ,W ,Qp) H 1

ét(Y ,Qp)

Qp(χ) Eχ,ét Qpcét =Qp(−1).

λχ,ét / ker(λχ,ét)
(5.6.b)

In particular, Eχ,ét ∈ Ext1Qp[GQ]
(Q(χ),Qcét) = Ext1Qp[GQ]

(Qp(χ),Qp(−1)). The
calculation above shows that

χ even and nontrivial, ords=0 L(s, χ)= 1 ⇐⇒ Eχ,ét|GQp
̸= 0. (5.6.c)

5.6.1. Remark. The fact that Eχ,ét|GQp
= 0 if χ is odd is consistent with the fact

that L(0, χ) ̸= 0 for χ odd and primitive, and so we do not expect extensions.

5.6.2. Remark. A careful reader may have noted that the definitions of λχ,dR

and λχ,ét differ by a factor of τ(χ0). This difference is partly explained by the
commutativity of

H 0
dR(W/Qp) DdR(H 0

ét(W ,Qp))

Qp DdR(Qp(χ)).

ιdR,p

λχ,dR λχ,ét⊗id

a 7→a(1⊗τ(χ0))

Note that DdR(Qp(χ))=Qp(1⊗ τ(χ0))⊂Qp(χ)⊗Qp BdR. This relation figures
into the derivation of the expression for the Bloch–Kato logarithm given in the
supplement below.
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5.6.3. Remark. The careful reader may also have noted that we have not fully
succeeded in avoiding special units: the formula for L p(1, χ̄0) involves p-adic logs
of what are essentially cyclotomic units (and similarly for L(1, χ̄0) in the Hodge
case). But even this can be avoided by working with modular curves in place of the
projective line, as explained in the example from Section 6.1 below.

5.7. Vista: the Bloch–Kato logarithm. The extension Eχ,ét determines a class
zχ ∈ H 1(Q,Qp(χϵ)) as follows: Take the 1-Tate twist of the extension Qp(χ) ↪→

Eχ,ét ↠ Qp(−1) (=Qpcét). This gives an extension

Qp(χϵ) ↪→ Eχ,ét(1)↠ Qp (=Qp(cét⊗ ζ )).

Here we have identified Qp(χ)(1) with Qp(χϵ) using the basis 1⊗ ζ ∈Qp(χ)(1).
Let c̃ ∈ Eχ,ét(1) be any element mapping to cét ⊗ ζ . Then zχ is just the class
of the 1-cocycle σ 7→ σ c̃ − c̃. The class zχ is just the image of cét⊗ ζ under
the boundary map Qp(cét⊗ ζ )→ H 1(Q,Qp(χϵ)) of the long exact cohomology
sequence associated with the short exact sequence displayed above.

Assuming (5.4.b), we showed that the restriction of Eχ,ét to GQp is nontrivial,
provided some value of a p-adic L-function is nonzero. This nontriviality is
equivalent to locp(zχ )∈ H 1(Qp,Qp(χϵ)) being nonzero. As the extension Eχ |GQp

is a crystalline extension, so is its 1-Tate twist. Hence locp(zχ ) belongs to the
Bloch–Kato subspace

H 1
f (Qp,Qp(χϵ))= ker

{
H 1(Qp,Qp(χϵ))→ H 1(Qp,Qp(χϵ)⊗Qp Bcrys)

}
.

This group is computed by the extended Bloch–Kato exponential

ẽxpBK :
Dcrys(Qp(ϵχ))⊕

(
DdR(Qp(χϵ))/F0 DdR(Qp(χϵ))

){(
(1−φp)x, x mod F0 DdR(Qp(χϵ))

)
: x ∈ Dcrys(Qp(χϵ))

}
∼
−→ H 1

f (Qp,Qp(χϵ)),

which is a boundary map in the long-exact sequence of GQp -cohomology for the
tensor product over Qp of Qp(χϵ) with the short exact sequence Qp ↪→ Bcrys ↠
Bcrys⊕ (BdR/B+dR), the last arrow being x 7→ ((1−φpx), x mod B+dR). The inverse
of this is the Bloch–Kato logarithm. As Qp(χϵ) is a crystalline representation
of GQp (assuming (5.4.b)), Dcrys(Qp(χϵ)) = DdR(Qp(χϵ)), so the restriction of
ẽxpBK to the Dcrys(Qp(ϵχ)) summand induces an isomorphism

ẽxpBK :
Dcrys(Qp(ϵχ)){

(1−φp)x : x ∈ F0 Dcrys(Qp(χϵ))
} ∼
−→ H 1

f (Qp,Qp(χϵ)).

In this particular case, F0 Dcrys(Qp(χϵ))= F0 DdR(Qp(χϵ))= 0, so we have

ẽxpBK : Dcrys(Qp(χϵ))
∼
−→ H 1

f (Qp,Qp(χϵ)).
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Let l̃ogBK : H 1
f (Qp,Qp(χϵ))

∼
−→ Dcrys(Qp(χϵ)) be the inverse of ẽxpBK. It is

natural to ask whether we can identify the element λcrys ∈ Dcrys(Qp(ϵχ)) such that
l̃ogBK(locp(zχ ))= λcrys. As it turns out, we have already computed this:

Dcrys(Qp(χϵ))= DdR(Qp(χϵ))= DdR(Qp(χ)(1))=Qp(1⊗ ζ ⊗ t−1)

and

l̃ogBK(locp(zχ ))= L p(1, χ̄0)
∏
ℓ prime
ℓ | N
ℓ∤N0

(1−χ0(ℓ)) · (1⊗ ζ ⊗ t−1). (5.7.a)

So the Bloch–Kato logarithm of locp(zχ ) is naturally identified with the value of a
p-adic L-function.

The equality in (5.7.a) can be seen as follows. For crystalline Qp-representations
V of GQp , the groups H 0(Qp, V ) and H 1

f (Qp, V ) are functorially computed by
the complex Ccrys(V )= [Dcrys(V )→ Dcrys(V )⊕ DdR(V )/F0 DdR(V )], where the
arrow is the map x 7→ ((1− φp)x, x mod F0 DdR(V )). Applying this to the two
sequences in the 1-Tate twist of the commutative diagram (5.6.b), employing the
snake lemma to compute the boundary map

H 0(Ccrys(Qp))= H 0(Ccrys(Qp(cét⊗ ζ )))

→ H 1(Ccrys(λχ,ét(H 0
ét(W )(1)))= H 1(Ccrys(Qp(χϵ))),

and appealing to the relation in Remark 5.6.2 yields the displayed formula for
l̃ogBK(locp(zχ )), which is just the image of cét⊗ζ ⊗ t−1

∈ H 0(Ccrys(Qp(cét⊗ζ )))

under the above boundary map.

5.8. Vista: Euler systems. A variation on the definition of the classes zχ yields an
Euler system. For a reader with some familiarity with Euler systems this should
not be surprising in light of the relation (5.7.a). Recall that we are assuming that χ
is nontrivial and Qp-valued and that p ∤N (all for simplicity).

First we note that we can replace H 1
ét(Y ,Qp) with H 1

ét(Y ,Zp) in the definition
of cét. So in particular, zχ ∈ H 1(Q,Zp(χϵ)) with Zp(χϵ) the free Zp-module of
rank one with σ ∈ GQ acting via multiplication by χϵ(σ ). The other classes of
our Euler system come from slightly modifying the definition of Eχ,ét. For each
integer M such that (N ,M)= 1 we let Z M = µM ∪ {∞} ⊂ X and YM = X \ Z M .
Note that W ⊂ YM . Note also that we recover Y by taking M = 1. Then just as
in Section 5.3 we have H 1

ét(Y M ,Zp) ↪→ H 0(Z M ,Zp(−1)) =
⊕

z∈Z M (Q)
Zp(−1)

with image equal to
{
(az ⊗ ζ

∨)z∈Z M (Q)
:
∑

z az = 0
}
. For ζ ∈ µM we let cét,ζ ∈

H 1
ét(Y M ,Zp) be the class corresponding to a∞ = 1, aζ =−1, and az = 0 otherwise.

The Galois group GQ acts on cét,ζ as σcét,ζ = ϵ(σ )
−1cét,σ (ζ ). In particular, GQ[µM ]
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acts on cét,ζ as multiplication by ϵ−1. That is, Zpcét,ζ ≃ Zp(−1) as a Zp[GQ[µM ]]-
module. Pulling back to H 1

ét(Y M ,W ,Zp) and then pushing out by λχ as before
yields an extension Eχ,ζ ∈ Ext1Zp[GQ[µM ]

](Zp(−1),Zp(χ)) and hence a class zχ,ζ ∈
H 1(Q[µM ],Zp(χϵ)). Note that if ζ ∈ µM ′ for some M ′ |M , then these are just
the restrictions to GQ[µM ] of the extension and class defined with M ′ in place of M .
Furthermore, it follows from the action of GQ on the cét,χ and the action of GQ on
H 1(Q[µM ],Zp(χϵ)) (particularly in terms of cycle representatives) that

σ zχ,ζ = zχ,σ(ζ ). (5.8.a)

As before, let ζM = e2π i/M
∈ µM . We now set

zχ,M = χ̄(M)zχ,ζM ∈ H 1(Q[µM ],Zp(χϵ)).

It should not be surprising that{
zχ,M ∈ H 1(Q[µM ],Zp(χϵ)) : (M, N )= 1

}
is an Euler system.

Here, by an Euler system we mean a collection of cohomology classes as in [Rubin
2000]. In particular, the zχ,M satisfy the norm relations

corQ[µMℓ]/Q[µM ]zχ,Mℓ =
{
(1− χ̄(ℓ)frob−1

ℓ )zχ,M , ℓ∤N Mp,
zχ,M , ℓ |M.

(5.8.b)

We quickly explain how to see these relations.
Since the restriction map H 1(Q[µM ],Zp(χϵ)) ↪→ H 1(Q[µMℓ],Zp(χϵ)) is an

injection, it is enough to check that the equality of the norm relation holds in
H 1(Q[µMℓ],Zp(χϵ)). From (5.8.a) we see that
corQ[µMℓ]/Q[µM ]zχ,Mℓ

= χ̄(Mℓ)
∑

σ∈Gal(Q[µMℓ]/Q[µM ])

zχ,σ(ζMℓ) ∈ H 1(Q[µMℓ],Zp(χϵ)). (5.8.c)

We consider the map f :YMℓ→YM , f (t)= tℓ. This induces a commutative diagram

Zpcχ,ζM

H0
ét(W ,Zp)

im(H0
ét(Y M ,Zp))

H 1
ét(Y M ,W ,Zp) H 1

ét(Y M ,Zp)

H0
ét(W ,Zp)

im(H0
ét(Y Mℓ,Zp))

H 1
ét(Y Mℓ,W ,Zp) H 1

ét(Y Mℓ,Zp)

Zp(χ)

f ∗ f ∗ f ∗

λχ,ét
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It follows that the extension obtained by pulling back cχ,ζM and pushing out by
λχ ◦ f ∗ is the same as that obtained by pulling back f ∗cχ,ζM and pushing out by λχ .
As we have

λχ ◦ f ∗ = χ(ℓ)λχ and f ∗cχ,ζM =

∑
ζ ℓ=ζM

cχ,ζ ,

it follows that

χ(ℓ)zχ,M =
∑
ζ ℓ=ζM

zχ,ζ =
{∑

σ∈Gal(Q[µMℓ]/Q[µM ])
zχ,σ(ζMℓ)+ z

χ,ζ ℓ̄M
, ℓ ∤M,∑

σ∈Gal(Q[µMℓ]/Q[µM ])
zχ,σ(ζMℓ), ℓ |M.

(5.8.d)

Here we have used that ζMℓ = ζ
ℓ̄
Mζ

M̄
ℓ , where ℓ̄ℓ≡ 1 mod M and M M ≡ 1 mod ℓ,

and so σ(ζMℓ)= ζ
ℓ̄
Mσ(ζ

M
ℓ ). Comparing (5.8.d) with (5.8.c) yields

corQ[µMℓ]/Q[µM ]zχ,Mℓ =
{
χ̄(M)zχ,ζM − χ̄(Mℓ)zχ,ζ ℓ̄M

, ℓ∤M,
χ̄(M)zχ,ζM , ℓ |M.

If ℓ ∤M N p, then zχ,ζM is unramified at ℓ and frob−1
ℓ zχ,ζM= zχ,frob−1

ℓ (ζM )
= z

χ,ζ ℓ̄M
.

The norm relations (5.8.b) follow.

5.8.1. Remark. There is nothing in this section that requires χ to be Qp-valued or
N to be prime to p. One can replace Zp with the ring of integers O for any finite
extension of Qp and take χ to be any nontrivial O-valued Dirichlet character. The
arguments carry over immediately. The trivial character can also be handled, albeit
with some additional modification (to ensure that the chosen functional λ is still
trivial on the image of H 0(YM ,O)).

5.8.2. Remark. The proof of the norm relations we have given here — which may
seem much more involved than that for cyclotomic units (see [Rubin 2000, III.2]) —
provides a template for an approach that carries over to many other settings, such
as in [Shang et al. ≥ 2024] and [Sangiovanni-Vincentelli and Skinner ≥ 2024a].

5.8.3. Remark. To obtain special value formulas from this (or any) Euler system
one also needs to relate the restrictions to GQp of the Euler system classes to values
of a p-adic L-function, that is, prove a so-called explicit reciprocity law. This is
essentially the point of the calculation in Section 5.7. The general case can be
handled similarly. The only real obstacle to overcome is that if p |M (or N ) then
the naive integral models YM and X of YM and X are not such that YM is the
complement of a smooth (or even normal crossings) divisor in X . But it is not hard
to establish the existence of such models over Zp[µpr ] for pr

||M . With this in
hand, the arguments presented previously carry over with only slight modification.
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6. Some variations, very briefly

The constructions in Section 5 can be viewed as a very special case of a general
set-up. Indications of this are provided by the variations on the construction and
analysis of Eχ,ét described briefly in this section. These additional special cases can
be used to recover the Euler system for Dirichlet characters and for Hecke characters
of imaginary quadratic fields along with their connection with p-adic L-functions
(see [Shang et al. ≥ 2024]). Though we do not include a discussion here, a simple
variation on these constructions involving products of modular curves can be used
to recover Kato’s Euler system for an eigenform. Examples of new Euler systems
(also with connections to p-adic L-functions) obtained using the same template are
given in [Sangiovanni-Vincentelli and Skinner ≥ 2024a; ≥ 2024b].

6.1. Dirichlet characters (again). Let N ≥ 4. Let Y1(N ) ⊂ X1(N ) be the usual
modular curves for the congruence subgroup 01(N ), and let C1(N ) = X \ Y be
the cusps. These have models as smooth varieties over Q. The cusps C1(N ) =
01(N ) \ P1(Q) of X1(N ) = 01(N ) \ [H ⊔ P1(Q)] are in bijection with the set
{(ā, c̄)∈Z/NZ×Z/NZ : (a, c, N )=1}/∼where (ā1, c̄1)∼ (ā2, c̄2)⇐⇒ (ā2, c̄2)=

±(ā1 + mc̄1, c̄1) for some m ∈ Z. The bijection is given by P1(Q) ∋
[a

c

]
7→

(ā, c̄), a, c ∈ Z, (a, c)= 1. When we write
[a

c

]
for some element in P1(Q) or the

cusp it represents, we will always mean a, c ∈ Z and (a, c)= 1. Let C0 ⊂ C1(N )
be the set of cusps represented by some

[a
c

]
with (c, N ) = 1; there are φ(N )

2 of
them. Similarly, let C∞ ⊂ C1(N ) be the set of cusps represented by some

[a
c

]
with N | c; there are also φ(N )

2 of them. We take the models of X1(N ) and Y1(N )
over Q such that each cusp in C∞ is defined over Q and each cusp

[a
c

]
in C0

is defined over Q[µN ]
+: The action of GQ on the cusps is such that if σ ∈ GQ

maps to m ∈ (Z/NZ)× = Gal(Q[µN ]/Q), then σ ·
[a

c

]
is represented by

[ a
c′
]

with
c ≡ mc′mod N . Note that C0 and C∞ are Q-subvarieties of X = X1(N ).

Let χ : (Z/NZ)× → C× be a nontrivial, primitive, even Dirichlet character.
There exists an Eisenstein series Gχ of weight 2 and level N with q-expansion

Gχ (τ )=

∞∑
n=1

( ∑
d | n

χ̄

(
n
d

)
d
)

qn, q = e2π iτ .

The constant term cP(Gχ ) of Gχ is 0 at any cusp P ̸∈ C0 and at P =
[a

c

]
∈ C0

it is cP(Gχ ) = χ̄(c)τ (χ̄)L(−1, χ)/2N 2. Let ωχ = Gχ (τ )dτ . This defines a
holomorphic differential on Y = X \ C0 with log poles along C0. Let ωan

χ =

τ(χ)ωχ . By considering the residues of the differential ωan
χ at the cusps in C0

(which are essentially the constant terms) and using that the Hecke eigenvalues of
Gχ distinguish it from cuspforms, one can see that cχ = ιdR([ω

an
χ ]) ∈ H 1(Y,Q(χ)),

where Q(χ) is the finite extension of Q obtained by adjoining the values of χ .
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Let L ⊃ Q(χ) be any finite extension of Qp. Then similar considerations show
that GQ acts on the corresponding class cχ,ét = ιét(cχ ) ∈ H 1

ét(Y , L) via χ̄ϵ−1, that
is, Lcχ,ét ≃ L(χ̄ϵ−1) as L[GQ]-modules. We then obtain an extension E mod

χ,ét as a
subquotient of the relative cohomology group H 1

ét(Y ,W , L) analogously to Eχ,ét,
where now W = C∞. Let λmod

χ,ét : H
0
ét(W , L)→ L be the L[GQ]-homomorphism

such that
λmod
χ,ét ((cP)P∈C∞)= c[ 1

N

]− c[ a
N

]
for some fixed a with (a, N )= 1, a ̸≡ ±1 mod N . Note that λmod

χ,ét is trivial on the
image of H 0

ét(Y , L). The extension E mod
χ,ét is the pullback/pushout

H0
ét(W ,L)

imH0
ét(Y ,L)

H 1
ét(Y ,W , L) H 1

ét(Y , L)

L E mod
χ,ét Lcχ,ét,

λmod
χ,ét

with the dashed arrow denoting a subquotient.
We analyze the extension

E mod
χ,ét ∈ Ext1L[GQ]

(L , Lcχ,ét)= Ext1L[GQ]
(L , L(χ̄ϵ−1))

just as we did Eχ,ét in Section 5. Suppose — again for simplicity — that χ is valued
in Qp (so we may take L =Qp) and p ∤N . Then Dcrys(Qpcχ,ét)= DdR(Qpcχ,ét)=

Qp(cχ,ét⊗ τ(χ̄)t), and it is easy to see — by comparing residues at cusps — that
ιdR,p([ω

alg
χ ])= cχ,ét⊗

1
τ(χ)

t , where ωalg
χ = 2π iωχ ∈ H 0(�1

X/Qp
(log C0)). Specif-

ically, φp acts on [ωalg
χ ] as multiplication by χ(p)p and we seek to understand

whether (1− χ̄(p)p−1φp)[ω
alg
χ ]W ∈ H 1

dR((Y,W )/Qp) is the image of something
nontrivial in H 0

dR(W/Qp) that is nonzero under λmod
χ,ét . We now replace the passage

to Monsky–Washnitzer cohomology with restriction to the rigid cohomology of
the ordinary locus of X (the rigid analytic subspace of points corresponding to
elliptic curves with ordinary reduction at p) and also with partial compact support
in W . This moves the calculation into the realm of overconvergent p-adic modular
forms, just as passage to MW cohomology moved the calculation to the realm of
overconvergent functions on the affinoid Yan in Sections 5.5 and 5.6. The action of
φp on a p-adic modular form f (q) ∈Qp[[q]] of weight 2 is just f (q) 7→ p f (q p),
and the differential on p-adic modular functions is just the p-adic Maass–Shimura
operator θ = q d

dq . In particular, we want to find an overconvergent p-adic modular
function η(q) (a form of weight 0) such that θη = Gχ (q)− χ̄(p)Gχ (q p). Then
(1− χ̄(p)p−1φp)[ω

alg
χ ]W is the image of η|W ∈ H 0

dR(W/Qp), and so we want to
know whether λmod

χ,ét (η|W ) ̸= 0. It is easy to identify η from the q-expansion of
Gχ (q)− χ̄(p)Gχ (q p): η = Eord

χ̄ ,0, the p-ordinary weight-0 Eisenstein series with
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q-expansion

Eord
χ̄ ,0(q)=

1
2 L p(1, χ̄)+

∞∑
n=1

( ∑
d mod n

p ∤d

χ̄(d)d−1
)

qn.

The existence of such an Eisenstein series is an easy consequence of Katz’s Eisen-
stein measure (which also provides a proof of the existence of the p-adic L-function
L p(s, χ̄) as a p-adic measure — see [Serre 1973] and [Katz 1975]). It follows that

λmod
χ,ét (η|W )= c[ 1

N

](Eord
χ,0)− c[ a

N

](Eord
χ,0)=

1
2(1−χ(a))L p(1, χ̄).

For a satisfying χ(a) ̸= 1, this shows that E mod
χ,ét |GQp

is nonsplit if L p(1, χ̄) ̸= 0.
One can associate with E mod

χ,ét a cohomology class z mod
χ ∈ H 1

f (Q,Qp(χϵ)) by
tensoring the extension over Qp with Qp(χϵ), just as we associated zχ with Eχ,ét.
Then unwinding the preceding analysis as in Section 5.7 yields

l̃ogBK(locp(z mod
χ ))= 1

2(1−χ(a))L p(1, χ̄) · (1⊗ ζ ⊗ t−1) ∈ Dcrys(Qp(χϵ)).

6.1.1. Remark. We conclude with a few remarks:

(1) Unlike for zχ , which was constructed from the cohomology of P1
\{∞, 1}, this

computation of the Bloch–Kato logarithm of z mod
χ does not rely on a formula for

the special value L p(1, χ̄) in terms of p-adic logs of cyclotomic units, but instead
comes naturally via the value of a constant term of a p-adic Eisenstein series,
and it is via the latter that Serre and Katz (re-)constructed the p-adic L-function
[Serre 1973; Katz 1975]. The construction of z mod

χ (via E mod
χ,ét ) can be viewed as a

cohomological expression of the Serre–Katz construction. Our next construction of
cohomology classes — for Hecke characters of imaginary quadratic fields — lends
itself to a similar interpretation.

(2) The class z mod
χ can be extended to an Euler system{

z mod
χ,M ∈ H 1(Q[µM ],Zp(χϵ)) : (M, N )= 1

}
.

The classes z mod
χ,M are just the cohomology classes associated with extensions con-

structed via pullback/pushforward from simple, natural variations on the Eisenstein
classes ωχ = Gχ (τ )dτ . However, unlike for zχ (and zχ,M ), the construction
described above does not immediately imply that the class z mod

χ (or z mod
χ,M ) belongs

to H 1(Q,Zp(χϵ)). This can be shown, though, via a more careful use of the
comparison isomorphisms of p-adic Hodge theory: Assuming p ∤N , we can work
with smooth integral models of X , Y , Z = X \ Y , and W = C∞ over Zp. Then
ωχ ∈ H 0(�1

X/Zp
(log Z)) and ιdR,p : H 1

dR(Y/Zp)
∼
−→ (H 1

ét(Y ,Zp)⊗Zp Acrys)
GQp ,

where Acrys ⊂ Bcrys is the usual integral crystalline ring. As t is not divisible by
a nonunit of Zur

p in Acrys, the relation ιdR([ω
alg
χ ])= cχ,ét⊗

1
τ(χ)

t then implies that
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cχ,ét ∈ H 1
ét(Y ,Zp). A variation of this argument, similar to [Faltings 2005, §10],

can be used to handle the case when p | N (and also z mod
χ,M when p |M).

(3) As mention in Section 3, a very similar construction of extensions can be found
in Harder’s unpublished work [2023]. Essentially the same construction can also be
found in unpublished work of Romyar Sharifi and Preston Wake. However, neither
detect nonsplitting without reference to a comparison with the extension classes
defined by modular units.

6.2. Hecke characters. Let ℓ be a prime, and let X = X0(ℓ) and Y0(ℓ) be the usual
modular curves for the congruence subgroup 00(ℓ), which we view as smooth
curves over Q via the usual canonical models. The cusps C = X \Y consists of two
points, usually denoted∞ and 0 and both defined over Q. The unique holomorphic
Eisenstein series E of weight 2, level ℓ, and trivial character, which has q-expansion

E(τ )=
(1− ℓ)ζ(−1)

2
+

∞∑
n=1

( ∑
d | n
ℓ∤d

d
)

qn, q = e2π iτ ,

defines a class ωE = E(τ )dτ ∈ H 0(�1
X/C(log C)) and cE = ιdR[ωE ] ∈ H 1(Y,C)

actually belongs to H 1(Y,Q). So cE,ét = ιét(cE) ∈ H 1
ét(Y ,Qp). The action of GQ

on cE,ét is via ϵ−1. That is, QpcE,ét ≃Qp(−1) as a Qp[GQ]-module.
Let K be an imaginary quadratic field with ring of integers O. Let

R =
{(

a
c

b
d

)
∈ M2(Z) : ℓ | c

}
be the usual Eichler order of level ℓ (so (R ⊗ Ẑ) ∩ GL2(Q)

+
= 00(ℓ)). Fix an

embedding K ↪→M2(Q) such that R∩K =O. Let τ0 ∈H be such that its stabilizer
in GL2(Q)

+ is K×. Then

W =
{
[τ0, x] ∈ Y (C)= GL2(Q)

+
\ [H×GL2(A f )/(R⊗ Ẑ)×] : x ∈ (K ⊗A f )

×
}

is a collection of CM points on Y . It is in bijection with the class group of K .
The set W is defined over K and each point in W is defined over the Hilbert
class field H of K . The action of G K on W is described via CM theory: Let
ArtK : K× \ (K ⊗A f )

×↠ Gab
K be Artin map of class field theory, with geometric

normalizations. If σ ∈ G K is such that the image of σ ∈ Gab
K is ArtK (z) then

σ · [τ0, x] = [τ, zx].
We view W as a K -subvariety of Y . Let ψ : K× \ (K ⊗A f )

×/(O⊗ Ẑ)×→ C×

be a character of the class group of K . We also view this as a character of G K via
the projection to Gal(H/K ) and the Artin map. Suppose — for simplicity — that
ψ takes values in Qp. Then λK

ψ,ét : H 0
ét(W ,Qp) ↠ Qp(ψ), λK

ψ,ét((cw)w∈W ) =∑
w=[τ0,x]∈W ψ(x)cw, is a G K -equivariant map. Here Qp(ψ) is just Qp with
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σ ∈ G K acting via multiplication by ψ(σ). The usual pull-back/push-forward
construction then yields an extension EK

ψ,ét:

H0
ét(W ,Qp)

imH0
ét(Y ,Qp)

H 1
ét(Y ,W ,Qp) H 1

ét(Y ,Qp)

Qp(ψ) EK
ψ,ét QpcE,ét,

λK
ψ,ét

which defines a class in Ext1Qp[G K ]
(Qp(ψ),QpcE,ét)=Ext1Qp[G K ]

(Qp(ψ),Qp(−1)).
And associated with this is a class zK

ψ ∈ H 1(K ,Qp(ψϵ)).
Suppose p splits in K : p = vv̄. The Bloch–Kato logarithm of locv(zψ) ∈

H 1
f (Kv,Qp(ψϵ)) can be computed following the same method employed for

locp(z mod
χ ). The upshot is that l̃ogBK(locv(zK

ψ )) is a multiple of a natural basis of
Dcrys(Qp(ψϵ)), with that multiple being expressed as∑

w=[τ0,x]∈W

ψ(x)Eord
0 (w), (6.2.a)

where Eord
0 is the p-ordinary weight-0 Eisenstein series with q-expansion

Eord
0 (q)= (1− ℓ−1)ζp(1)+

∞∑
n=1

( ∑
d | n
pp ∤d
ℓ∤n/d

d−1
)

qn.

Note that θEord
0 = E(q) − E(q p) which is identified with (1 − p−1φp)[ωE ] in

the rigid cohomology of the ordinary locus of Y , so the expression (6.2.a) is just
λψ,dR(Eord

0 |W ). Via Katz’s construction of the p-adic L-function of ψ̄ relative to
the choice of v [1975], the expression (6.2.a) can be seen to be a simple multiple
of the value at s = 1 of the p-adic L-function. That is, the Bloch–Kato logarithm
of locv(zK

ψ ) is naturally expressed as a value of a p-adic L-function for ψ̄ .

6.2.1. Remark. Just as for z mod
χ , the class zK

ψ can be extended to an Euler system
for Zp(ψϵ) over K in the sense of Rubin [2000]. This involves varying W over
CM points defined over ring (and even ray) class extensions as well as varying
the Eisenstein class. In this way, one can recover/reconstruct the Euler system for
ψ over K previously defined by Rubin [1991] using elliptic units along with its
connection with Katz’s two-variable p-adic L-function.
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Subconvexity implies effective quantum unique ergodicity
for Hecke–Maaß cusp forms on SL2(Z)\ SL2(R)

Ankit Bisain, Peter Humphries,
Andrei Mandelshtam, Noah Walsh and Xun Wang

It is a folklore result in arithmetic quantum chaos that quantum unique ergodic-
ity on the modular surface with an effective rate of convergence follows from
subconvex bounds for certain triple product L-functions. The physical space
manifestation of this result, namely the equidistribution of mass of Hecke–Maaß
cusp forms, was proven to follow from subconvexity by Watson, whereas the
phase space manifestation of quantum unique ergodicity has only previously
appeared in the literature for Eisenstein series via work of Jakobson. We detail
the analogous phase space result for Hecke–Maaß cusp forms. The proof relies
on the Watson–Ichino triple product formula together with a careful analysis of
certain archimedean integrals of Whittaker functions.

1. Introduction

Quantum ergodicity, in its most general sense, originates from the study of quantum
chaos. Loosely speaking, quantum ergodicity for a Riemannian manifold is the
notion that almost all eigenfunctions of the Laplace–Beltrami operator equidistribute
in the large eigenvalue limit. The foundational quantum ergodicity theorem due to
Shnirelman [1974] proves quantum ergodicity for a compact Riemannian manifold
with ergodic geodesic flow. In the language of quantum chaos, this can be seen as
going from chaotic classical mechanics of a system to equidistribution of energy
eigenstates of the system.

We begin with a brief introduction to the general case of quantum ergodicity.
We then introduce arithmetic quantum chaos, which will be the focus for the
remainder of this paper. In the setting of arithmetic quantum chaos, notions such as
quantum ergodicity are studied on manifolds with arithmetic structure, giving the
eigenfunctions additional structure that is not present in the generic case. For surveys
of the generic case of quantum ergodicity, see [Anantharaman 2010; De Bièvre 2001;
Dyatlov 2022; Hassell 2011; Nonnenmacher 2013; Zelditch 2006; 2010; 2019],
while for surveys on arithmetic quantum chaos, see [Marklof 2006; Sarnak 2011].
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1A. Quantum ergodicity.

1A1. Classical dynamics. Let (M, g) be a smooth compact oriented n-dimensional
Riemannian manifold. The cotangent bundle T ∗M of the manifold M consists
of points (x, ξ) with x ∈ M and ξ ∈ T ∗

x M , the space of tangent covectors at x .
Associated to each point x ∈ M and tangent vector v ∈ Tx M is a unique geodesic
γ : R → M for which γ (0)= x and γ ′(0)= v, which gives rise to the geodesic flow
G t(x, v) := (γ (t), γ ′(t)) on the tangent bundle TM and the corresponding geodesic
flow G t(x, ξ) on the cotangent bundle T ∗M by identifying tangent covectors with
the corresponding tangent vectors. Equivalently, the geodesic flow G t(x, ξ) =

(x(t), ξ(t)) is the Hamiltonian flow, obtained as solutions to the Hamiltonian
equations

d
dt

x j (t)=
∂

∂ξ j
H(x(t), ξ(t)),

d
dt
ξ j (t)= −

∂

∂ξ j
H(x(t), ξ(t)), j ∈ {1, . . . , n},

of the Hamiltonian

H(x, ξ) :=

n∑
j,k=1

g jk(x)ξ jξk

on T ∗M , where g jk(x) = g
(
∂
∂x j
, ∂
∂xk

)
denotes the Riemannian metric g, while

g jk(x) denotes the entries of the inverse matrix. This geodesic flow preserves the
cosphere bundle S∗M , which consists of points (x, ξ) ∈ T ∗M with ξ of unit length.

One can think of the manifold M as being physical space that encodes the
position of a point particle on M , while the cosphere bundle S∗M is phase space
and encodes both the position and momentum of a point particle. The geodesic
flow on S∗M then encodes the position and momentum of a point particle over time
and describes the classical dynamics on M .

The metric g induces probability measures µ and ω on M and S∗M respectively.
The latter is called the Liouville measure and is invariant under the geodesic flow.
The geodesic flow on S∗M is said to be ergodic if for almost every (x, ξ) ∈ S∗M ,
the geodesic flow G t(x, ξ) equidistributes on S∗M with respect to the Liouville
measure. Ergodic geodesic flow demonstrates that the classical dynamics on M are
chaotic.

1A2. Quantum dynamics. These notions for classical dynamics on M have quan-
tum dynamical counterparts. Point particles are replaced by quantum particles with
wave functions ψ : M ×R → C. In place of S∗M , the space of states is instead wave
functions ψ that are square-integrable with respect to the volume measure µ on M ;
with ψ L2-normalized, the probability density |ψ(x, t)|2 dµ(x) then encodes the
probability that a quantum particle is located in a region at a given time t .
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The classical dynamics G t are replaced by the quantum dynamics given by the
evolution of a wave function over time as governed by Schrödinger’s equation

i
∂ψ

∂t
= −1ψ.

Here

1 := −
1

√
|det g|

n∑
j,k=1

∂

∂x j
g jk(x)

√
|det g|

∂

∂xk

denotes the Laplace–Beltrami operator on M , which we refer to as the Laplacian for
the sake of brevity. This is a second order scalar linear partial differential operator,
defined from the Riemannian metric g, that commutes with isometries of M ;
moreover, it is, up to scalar multiplication, the unique nontrivial such scalar linear
partial differential operator of minimal order. The quantization of the Hamiltonian
H is the Laplacian 1, while the quantization of the geodesic flow G t acting on
S∗M is the quantum flow acting on L2(M) given by the Schrödinger propagator
U t

:= e−i t1.
Stationary states are L2-normalized wave functions ψ(x, t) that are separable,

so that ψ(x, t) = ϕ(x)ν(t) for some functions ϕ : M → C and ν : R → C, and
are such that the probability densities |ψ(x, t)|2 dµ(x) are independent of time, so
that ϕ ∈ L2(M) and ν(t)= e−iλt for some λ ∈ R. The functions ϕ correspond to
solutions of the eigenvalue problem

1ϕ = λϕ;

that is, they are Laplacian eigenfunctions. For each eigenvalue, the corresponding
eigenspace of Laplacian eigenfunctions is finite-dimensional, so that one can choose
an orthonormal basis of each eigenspace. The union of these orthonormal bases
then forms an orthonormal basis of the whole space L2(M), and the corresponding
collection of eigenvalues forms a countable discrete set of nonnegative real numbers.
We denote the set of Laplacian eigenfunctions by (ϕ j ) j≥1 and the corresponding
Laplacian eigenvalues by (λ j ) j≥1.

Associated to each Laplacian eigenfunction ϕ j is its microlocal lift ω j , alter-
natively known as a Wigner distribution. The microlocal lift is a distribution on
S∗M of the measure corresponding to ϕ j on the cosphere bundle S∗M , as defined
in [Dyatlov 2022, (2)]; it should be thought of as measuring the average value in
phase space S∗M of an observable a ∈ C∞(S∗M) for a quantum particle with wave
function ϕ j . When acting on observables a ∈ C∞(S∗M) that descend to functions
on M , so that a(x, ξ) is constant in ξ the microlocal lift is simply the distribution
a(x, ξ)|ϕ j (x)|2 dµ(x) on M .

1A3. Quantum ergodicity. In [Lazutkin 1993, Addendum], Shnirelman proved
that if the geodesic flow on S∗M is ergodic with respect to the Liouville measure ω,
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there exists a subsequence (ϕ jk )k≥1 of the sequence of Laplacian eigenfunctions
(ϕ j ) j≥1 of density 1 (in the sense that #{λ jk ≤ λ}/#{λk ≤ λ} → 1 as λ→ ∞) such
that for all smooth functions a on M ,

lim
k→∞

∫
M

a(x)|ϕ jk (x)|
2 dµ(x)=

∫
M

a(x) dµ(x).

That is, a density 1 subsequence of the eigenfunctions equidistributes in physical
space. Shnirelman in fact proved the stronger statement that a density 1 subsequence
(ω jk )k≥1 of the sequence of microlocal lifts equidistributes in phase space in the
sense that it approaches the Liouville measure on S∗M . That is, for any smooth
function a on S∗M ,

lim
k→∞

∫
S∗ M

a(x, ξ) dω jk (x, ξ)=

∫
S∗ M

a(x, ξ) dω(x, ξ).

This property is known as quantum ergodicity. An outline of a proof of the quantum
ergodicity theorem similar to Shnirelman’s original proof can be found in [Dyatlov
2022, Section 2]. Shnirelman’s proof was first announced in [Shnirelman 1974]
and independent proofs were obtained by Zelditch [1987] and Colin de Verdière
[1985]. Quantum ergodicity demonstrates that the quantum dynamics on M are
chaotic. The fact that quantum ergodicity follows from the assumption that the
geodesic flow on S∗M is ergodic can be viewed as showing that chaotic classical
dynamics imply chaotic quantum dynamics.

Quantum unique ergodicity (QUE) in physical space is the property that (ϕ j ) j≥1

satisfies
lim

j→∞

∫
M

a(x)|ϕ j (x)|2 dµ(x)=

∫
M

a(x) dµ(x)

for all smooth functions a on M . Equivalently, QUE in physical space is the property
that the whole sequence of eigenfunctions equidistributes in physical space M . The
notion of QUE has a natural generalization to phase space S∗M : quantum unique
ergodicity in phase space refers to the property of (ϕ j ) j≥1 satisfying

lim
j→∞

∫
S∗ M

a(x, ξ) dω j (x, ξ)=

∫
S∗ M

a(x, ξ) dω(x, ξ) (1)

for all smooth functions a on S∗M . Henceforth, QUE will refer to quantum unique
ergodicity on phase space unless otherwise noted.

It was established by Hassell [2010, Theorem 1] that there exist compact Riemann-
ian manifolds for which the geodesic flow is ergodic and yet not all eigenfunctions
equidistribute. Namely, Hassell showed that QUE does not hold for a large family
of stadium domains.1 However, in many cases, it is still believed that QUE should

1For manifolds with boundary, the geodesic flow is replaced by the billiard flow, where trajectories
bounce off of the boundary.
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hold. In particular, it was conjectured by Rudnick and Sarnak [1994, Conjecture]
that QUE holds when (M, g) is a compact hyperbolic surface or more generally a
negatively curved compact manifold.

1B. Quantum unique ergodicity for arithmetic surfaces. For most hyperbolic
surfaces, QUE is far from proven. However, this conjecture is better understood in
the case where (M, g) is an arithmetic hyperbolic surface.

Let H := {z = x + iy ∈ C : y ∈ R+} denote the upper half-plane with area measure
dµ(z) :=

dx dy
y2 and Laplacian 1 := −y2

(
∂2

∂x2 +
∂2

∂y2

)
coming from the standard

hyperbolic metric ds2
:=

dx2
+dy2

y2 . Recall that SL2(R) acts transitively on H via
Möbius transformations, namely

g · z :=
az + b
cz + d

for g =

(
a b
c d

)
∈ SL2(R) and z ∈ H.

If 0 ⊂ SL2(R) is an arithmetic subgroup (in the sense of [Katok 1992, Chapter 5]),
such as a congruence subgroup of SL2(Z), the quotient space 0\H is an arithmetic
hyperbolic surface. These surfaces are not necessarily compact, but have finite
area, allowing the necessary notions to be defined. In particular, 0\H has finite
area (with respect to dµ) given by π

3 [SL2(Z) : 0] when 0 is a finite-index subgroup
of the modular group SL2(Z). Note that in general, the area measure dµ(z) is
not a probability measure on 0\H, which differs from the normalization of the
probability measure µ on M in Section 1A.

The study of QUE on arithmetic surfaces is aided via the presence of Hecke
operators (see (11) below). The Hecke operators on a given arithmetic hyperbolic
surface are a sequence T1, T2, . . . of self-adjoint operators on the space of square-
integrable functions on the surface; they are a nonarchimedean analogue of the
Laplace–Beltrami operator. It is known that Hecke operators commute with each
other and with the hyperbolic Laplacian 1. We may therefore simultaneously
diagonalize the space of Maaß cusp forms (nonconstant Laplacian eigenfunctions
occurring in the discrete spectrum of the Laplacian) with respect to the Hecke
operators, obtaining a basis of Hecke–Maaß cusp forms, which are simultaneous
eigenfunctions of both the Laplacian and of all the Hecke operators. Due to the
additional structure given from the Hecke operators, stronger results regarding QUE
are known for such Hecke eigenbases.

Henceforth, we focus on the case where 0 = SL2(Z) and M = SL2(Z)\H is the
modular surface. This surface is not compact, as it has a cusp at i∞. Its cosphere
bundle S∗M may be identified with the quotient space SL2(Z)\ SL2(R), while
the microlocal lift ω j of a Laplacian eigenfunction can be explicitly expressed in
terms of linear combinations of raised and lowered Laplacian eigenfunctions, as we
explicate further in Section 3B. Its Laplacian eigenfunctions can be split into two
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classes. There is a discrete spectrum, which, besides constant functions, arises from
nonconstant Laplacian eigenfunctions ϕ j called Maaß cusp forms corresponding to
a nondecreasing sequence of positive eigenvalues λ j ; the cuspidality condition is
precisely the condition that ∫ 1

0
ϕ j (x + iy) dx = 0

for all y ∈ R+. Because M is noncompact, there is also a continuous spectrum,
with eigenfunctions coming from real-analytic Eisenstein series E

(
z, 1

2 + i t
)

with
eigenvalues 1

4 + t2. We discuss Hecke–Maaß cusp forms and Eisenstein series in
further detail in Section 3B; see [Duke et al. 2002, Section 4]).

It is a seminal result of Lindenstrauss [2006, Theorem 1.4] that on a (possibly
noncompact) arithmetic hyperbolic surface, for a Hecke eigenbasis, any limit (in the
weak-* topology) of a subsequence of the measures ω j is a nonnegative multiple
of the Liouville measure ω. When the surface is compact, this limit must be the
Liouville measure itself, proving QUE for compact arithmetic hyperbolic surfaces;
see [Sarnak 2011, Section 3] for more discussion of the relevant work and progress
in the arithmetic case.

On the (noncompact) modular surface, equidistribution for the continuous spec-
trum was established in physical space by Luo and Sarnak [1995, Theorem 1.1],
and later in phase space by Jakobson [1994, Theorem 1]. Since the modular surface
is noncompact, the work of Lindenstrauss does not establish QUE for this surface,
as there is possibility of mass escaping to the cusp. This possibility was eliminated
by Soundararajan [2010], establishing QUE for Hecke–Maaß cusp forms on the
modular surface. However, this resolution of QUE for Hecke–Maaß cusp forms
leaves unresolved the problem of determining the rate of equidistribution.

Jakobson [1997, Theorem 2] proves that the measures ω j converge to ω in
an averaged sense with an effective rate of averaged equidistribution. Precisely,
Jakobson proves that if a is an element of the space C∞

c,K (S
∗M) consisting of finite

linear combinations of smooth compactly supported functions of even weight (as
described in (9) below), then∑

λ j ≤λ

∣∣∣∣∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ)

∣∣∣∣2

≪a,ε λ
1/2+ε. (2)

As Weyl’s law implies that the number of eigenvalues below λ is asymptotic to λ
12

[Risager 2004, Theorem 2], this gives an averaged bound of λ−1/2+ε on each
summand. This bound generalized an earlier result of Luo and Sarnak [1995,
Theorem 1.2], which essentially gave the analogous average bound in physical
space. Luo and Sarnak also remark that the best possible individual bound for
each summand in (2) is of size λ−1/2

j . To see why this is true, we recall that it was
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established by Sarnak and Zhao [2019, Theorem 1.1] that∑
λ j ≤λ

∣∣∣∣∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ)

∣∣∣∣2

∼ Q(a, a)λ1/2,

where Q(a, b) is a fixed sesquilinear form on

C∞

c,K (SL2(Z)\ SL2(R))× C∞

c,K (SL2(Z)\ SL2(R)).

It follows that if

max
λ j ≤λ

∣∣∣∣∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ)

∣∣∣∣ ≤ C

for some nonnegative constant C , then∑
λ j ≤λ

∣∣∣∣∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ)

∣∣∣∣2

≤ C2
(
λ

12
+ o(λ)

)
,

which are contradictory statements unless C ≫ λ−1/4.

1C. Results. Our goal is to prove bounds for the individual terms∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ).

These bounds are contingent on bounds for certain L-functions. Watson [2002,
Theorem 3] establishes the following formula for integrals of products of Hecke–
Maaß cusp forms ϕ j , whose precise definitions we give in Section 3B: there exists
a nonnegative absolute constant C such that∣∣∣∣∫

M
ϕ j1(z)ϕ j2(z)ϕ j3(z) dµ(z)

∣∣∣∣2

= C
3

( 1
2 , ϕ j1 ⊗ϕ j2 ⊗ϕ j3

)
3(1, adϕ j1)3(1, adϕ j2)3(1, adϕ j3)

.

Here the terms on the right-hand side are completed L-functions whose definitions
are given in Section 4B. The Lindelöf hypothesis for such L-functions (itself a
consequence of the generalized Riemann hypothesis) would then imply sufficiently
strong upper bounds in order to prove the uniform version of Luo and Sarnak’s
physical space result [1995, Theorem 1.2]. In particular, for any a ∈ C∞

c (M), we
would have that∫

M
a(z)|ϕ j (z)|2 dµ(z)−

∫
M

a(z) dµ(z)≪a,ε λ
−1/4+ε

j

under the assumption of the conjectural bound L
( 1

2 , ϕ j1 ⊗ϕ j1 ⊗ϕ j3
)
≪ϕ j3 ,ε

λεj1 ; see
[Watson 2002, Corollary 1] and [Young 2016, Proposition 1.5]. More generally, any
effective subconvex bound of the form L

( 1
2 , ϕ j1 ⊗ϕ j1 ⊗ϕ j3

)
≪ϕ j3

λ
1/2−2δ
j1 would

provide the above statement with weaker error term of the form Oa(λ
−δ
j log λ j ).
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In this paper, we prove the strengthening of this physical space statement to phase
space.

Theorem 1.1. Suppose that there exist constants δ > 0 and A > 0 such that for any
Hecke–Maaß cusp forms ϕ1, ϕ2 with Laplacian eigenvalues λ1, λ2, any t ∈ R, and
any holomorphic Hecke cusp form F , we have the subconvex bounds

L
( 1

2 , adϕ1 ⊗ϕ2
)
≪ λ

1/2−2δ
1 λA

2 , (3)

L
( 1

2 + i t, adϕ1
)
≪ λ

1/4−δ

1 (1 + |t |)A, (4)

L
( 1

2 , adϕ1 ⊗ F
)
≪F λ

1/2−2δ
1 . (5)

Then for any a ∈ C∞

c,K (S
∗M), we have that∫

S∗ M
a(z, θ) dω j (z, θ)−

∫
S∗ M

a(z, θ) dω(z, θ)≪a λ
−δ
j log λ j . (6)

In particular, assuming the generalized Lindelöf hypothesis, we have that∫
S∗ M

a(z, θ) dω j (z, θ)−
∫

S∗ M
a(z, θ) dω(z, θ)≪a,ε λ

−1/4+ε

j .

Remark 1.2. The method of proof yields explicit dependence on a in these error
terms in terms of Sobolev norms of a; see (64).

The subconvex bounds (3), (4), and (5) are hypotheses in Theorem 1.1: it is not
yet known that these subconvex bounds hold. While subconvex bounds are known
for certain other families of L-functions (see, for example, [Michel and Venkatesh
2010; Nelson 2023]), unconditional proofs of the desired subconvex bounds (3), (4),
and (5) currently remain elusive. A chief obstacle towards proving these bounds is
the so-called conductor dropping phenomenon, as discussed in [Khan and Young
2023].

Theorem 1.1 is folklore (see, for example, [Sarnak and Zhao 2019, page 1156]),
though no detailed proof exists in the literature. The method of proof is known to
experts; the analogue of QUE for Bianchi manifolds (i.e., arithmetic quotients of
H3

= SL2(C)/SU(2)), for example, has been shown by Marshall to follow from
subconvexity for triple product L-functions [Marshall 2014, Theorem 3], and the
proof that we give for the modular surface is by the same general strategy. To
explicate all the details, one needs the full strength of the Watson–Ichino triple
product formula as in [Watson 2002, Theorem 3] and [Ichino 2008, Theorem 1.1].
Coupling this with a lemma of Michel and Venkatesh [Michel and Venkatesh 2010,
Lemma 3.4.2] (compare [Sarnak and Zhao 2019, Lemma 5]), we show that certain
triple products of automorphic forms on SL2(Z)\ SL2(R) can be expressed in terms
of a product of central values of L-functions and certain archimedean integrals



SUBCONVEXITY IMPLIES EFFECTIVE QUANTUM UNIQUE ERGODICITY 109

of Whittaker functions; the latter can in turn be related to gamma functions and
hypergeometric functions.

Finally, we take this opportunity to observe that Jakobson’s treatment of QUE
for Eisenstein series in [Jakobson 1994] is incomplete; in particular, the case where
the test function is a shifted holomorphic or antiholomorphic Hecke cusp form is
missing. We supply the omitted computations in Section 5.

1D. Friedrichs symmetrization. We end the discussion of our results by explaining
how our results are valid not only for the Wigner distribution ω j , which need not
be a positive distribution, but also for the Friedrichs symmetrization ωF

j defined in
(7) below, which is a positive distribution. The microlocal lifts ω j of Hecke–Maaß
cusp forms on the modular surface that we work with in this paper are the Wigner
distributions given by

dω j (z, θ) := ϕ j (z)u j (z, θ) dω(z, θ), u j (z, θ) :=
3
π

∞∑
k=−∞

ϕ j,k(z)e2kiθ ,

as defined in [Zelditch 1991, (1.18)]. Here the convergence is in distribution and dω
is the (unnormalized) Liouville measure, given by dx dy dθ

2πy2 on SL2(Z)\ SL2(R) =

S∗M , where we identify g ∈ SL2(R) with (x, y, θ) ∈ R × R+ × [0, 2π) via the
Iwasawa decomposition (see (8) below). The functions ϕ j,k are the L2-normalized
shifted Hecke–Maaß forms of weight 2k obtained from ϕ j by raising or lowering
operators, as defined in Section 3B; for their Fourier expansions, see Section 4A.

We recall that a positive distribution T on a normed space V over C is a bounded
linear functional T : V → C such that T (v)≥ 0 for all v ∈ V . In general, the Wigner
distribution dω j need not be a positive distribution on C∞

c (SL2(Z)\ SL2(R)). To
convert dω j into a positive distribution, we define for a ∈ C∞

c (SL2(Z)\ SL2(R))

the pairing

⟨a, dω j ⟩ =

∫
S∗ M

a(z, θ) dω j (z, θ)

:= lim
K→∞

∫
SL2(Z)\ SL2(R)

a(z, θ)ϕ j (z)
K∑

k=−K

ϕ j,k(z)e2kiθ dω(z, θ).

We now define a new distribution dωF
j , the Friedrichs symmetrization of dω j , via

⟨a, dωF
j ⟩ := ⟨aF , dω j ⟩, (7)

where the function aF
∈ C∞

c (SL2(Z)\ SL2(R)) is the Friedrichs symmetrization of
a; for its explicit construction, see [Zelditch 1987, Proposition 2.3]. In particular, it
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was established in [loc. cit., Proposition 2.3] that dωF
j is a positive distribution,2

while it was established in [Zelditch 1991, Proposition 3.8] that

⟨a, dωF
j ⟩ − ⟨a, dω j ⟩ ≪a,ε λ

−1/2+ε

j .

Combined with Theorem 1.1, we see that in specific scenarios where one needs to
deal with positive distributions, it suffices to work with the Wigner distribution dω j .

2. Proof outline

On a broad scale, our proof strategy follows the proof of equidistribution of Eisen-
stein series in phase space from [Jakobson 1994], which we now outline. We will
also make reference to a few objects that we have not yet defined; namely, we
use (x, y, θ) coordinates on S∗M given by (8), L-functions that we explain in
Section 4B, and various types of functions on M all defined in Section 3B.

In our paper, we extend the probability measure |ϕ j |
2 dµ to its microlocal lift dω j

on S∗M for a Hecke–Maaß cusp form ϕ j with Laplacian eigenvalue λ j . The work
of Jakobson [1994] solves a similar problem: Jakobson proves the analogous result
for the extension of the Radon measure

∣∣E(
· , 1

2 + i t
)∣∣2 dµ to its microlocal lift dµt .

Jakobson’s method for bounding integrals of the form
∫

a dµt is to consider only
functions a appearing in an orthonormal basis of L2(S∗M). Namely, Jakobson com-
putes the integral for constant functions, shifted Hecke–Maaß cusp forms, shifted
holomorphic or antiholomorphic Hecke cusp forms,3 and weighted Eisenstein series.
He then bounds

∫
a dµt for general smooth, compactly supported a on S∗M by

approximating them using this basis.
To bound

∫
a dµt , Jakobson uses the coordinates (x, y, θ) on S∗M and proceeds

to integrate over θ , which reduces the problem to computing integrals over M . These
integrals can readily be evaluated using the key fact that they involve Eisenstein
series. An Eisenstein series can be written by a sum over 0∞\ SL2(Z), where
0∞ ⊂ SL2(Z) is the stabilizer of the cusp i∞, in such a way that the integral
can be unfolded to one over the fundamental domain {x + iy ∈ H : x ∈ [0, 1]} for
0∞\H. Jakobson then inserts the Fourier–Whittaker expansion of each function
in the integrand and subsequently directly evaluates the integral over x ∈ [0, 1].
One is left with an expression involving central values of L-functions related to the

2Lindenstrauss [Lindenstrauss 2001, Corollary 3.2] constructs an alternate positive distribution
that has a similar effect: for each N ∈ N, Lindenstrauss defines the positive distribution dωN

j (z, θ) :=

3
π

1
2N+1

∣∣∑N
k=−N ϕ j,k(z)e2kiθ ∣∣2 dω(z, θ). For N ∼ λ

1/4
j , this satisfies ⟨a, dωN

j ⟩ − ⟨a, dω j ⟩ ≪a,ε

λ
−1/4+ε
j .

3As mentioned previously, Jakobson only treats unshifted holomorphic Hecke cusp forms and
neglects to deal with the more general case of shifted holomorphic or antiholomorphic Hecke cusp
forms. We complete Jakobson’s proof by dealing with this untreated general case in Section 5.
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test functions and an integral over y ∈ R+ of Whittaker functions. This remaining
integral can be expressed in terms of hypergeometric functions and subsequently
bounded using Stirling’s formula.

Our paper follows a similar reduction of integrals, using the same orthonormal
basis. In particular, we must show that the constant term contributes the main term
in Theorem 1.1, while the contribution from integrating against shifted Hecke–Maaß
cusp forms, shifted holomorphic or antiholomorphic Hecke cusp forms, and shifted
Eisenstein series are O(λ−δ

j log λ j ) as j → ∞. We now outline how we evaluate
each type of integral:

• The constant case is trivial, and contributes to the main term in Theorem 1.1.

• The weighted Eisenstein series case can be computed with an unfolding tech-
nique analogous to the previously discussed computations in [Jakobson 1994].
Computing this integral gives a product of a central value of an L-function
and an expression involving gamma functions and hypergeometric functions.

• For the remaining two cases, namely shifted Hecke–Maaß cusp forms and
shifted holomorphic or antiholomorphic Hecke cusp forms, the unfolding trick
does not apply to the integrals of interest since they do not involve an Eisenstein
series. Instead, we use the Watson–Ichino triple product formula [Ichino 2008;
Watson 2002]. This formula allows us to write the square of the absolute
value of the integral as a product of a central value of an L-function and the
square of the absolute value of an integral of Whittaker functions. The latter
integral can again be explicitly computed to obtain an expression in terms of
hypergeometric functions.

We then bound all hypergeometric functions using Stirling’s formula, while we
invoke our assumption of subconvexity to bound central values of L-functions,
which yields Theorem 1.1.

3. Preliminaries

3A. Differential operators on SL2(Z)\ SL2(R) and SL2(Z)\H. We begin by de-
scribing differential operators acting on SL2(Z)\ SL2(R) and SL2(Z)\ SL2(R). Use-
ful references for these include [Bump 1997, Chapter 2; Iwaniec 2002, Chapter 1;
Lang 1985; Roelcke 1966].

In coordinates z = x + iy ∈ H, the Laplacian on SL2(Z)\H is given by 1 :=

−y2
(
∂2

∂x2 +
∂2

∂y2

)
, and the area measure is given by dµ(z) := dx dy

y2 , giving this space
volume π

3 . The unnormalized Liouville measure on the unit cotangent bundle
S∗M = SL2(Z)\ SL2(R) is given by dω(z, θ) :=

dµ(z) dθ
2π , which also gives this

space volume π
3 . Here we identify points on S∗M with points on SL2(Z)\ SL2(R)
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using the Iwasawa decomposition

g =

(
1 x
0 1

) (
y1/2 0

0 y−1/2

) (
cos θ sin θ

− sin θ cos θ

)
(8)

for elements g ∈ SL2(R), where x ∈ R, y ∈ R+, and θ ∈ [0, 2π).
A function 8 : SL2(Z)\ SL2(R)→ C is of weight 2k for some k ∈ Z if it satisfies

8(z, θ + θ ′)= e2kiθ ′

8(z, θ) (9)

for all z ∈ H and θ, θ ′
∈ R. We have an inner product on SL2(Z)\ SL2(R) defined

by

⟨81,82⟩ :=

∫
SL2(Z)\ SL2(R)

81(z, θ)82(z, θ) dω(z, θ)

for 81,82 ∈ L2(SL2(Z)\ SL2(R)).
Similarly, a function f : H → C satisfying the automorphy condition

f
(

az + b
cz + d

)
=

(
cz + d
|cz + d|

)2k

f (z) (10)

for all
(a

c
b
d

)
∈ SL2(Z) is said to be of weight 2k. A weight 2k function f : H → C

lifts to a weight 2k function 8 : SL2(Z)\ SL2(R)→ C via the map f 7→8 given
by 8(z, θ) := f (z)e2kiθ . Equivalently, we define for g =

(a
c

b
d

)
∈ SL2(R) and z ∈ H

the j-factor

jg(z) :=
cz + d
|cz + d|

,

so that for g ∈ SL2(R) given by (8), we have that 8(z, θ) := jg(i)−k f (g · i). We
have an inner product on weight 2k functions f1, f2 : H → C defined by

⟨ f1, f2⟩ :=

∫
SL2(Z)\H

f1(z) f2(z) dµ(z).

The SL2(R)-invariant extension of1 from functions on H to functions on SL2(R)

is given by the Casimir operator

� := −y2
(
∂2

∂x2 +
∂2

∂y2

)
+ y

∂2

∂x∂θ
.

We also have raising and lowering operators

R := e2iθ iy
(
∂

∂x
− i

∂

∂y

)
− e2iθ i

2
∂

∂θ
, L := −e−2iθ iy

(
∂

∂x
+ i

∂

∂y

)
+ e−2iθ i

2
∂

∂θ
.

The operators �, R, L are initially defined on the space C∞(SL2(Z)\ SL2(R)) of
smooth functions. The raising and lowering operators R and L map weight 2k
eigenfunctions of � to weight 2k + 2 and 2k − 2 eigenfunctions of � respectively.
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On the space C∞(SL2(Z)\ SL2(R)) ∩ L2(SL2(Z)\ SL2(R)), these operators are
such that −L is adjoint to R, while � is self-adjoint, so that for all smooth square-
integrable functions 81,82 : SL2(Z)\ SL2(R)→ C,

⟨R81,82⟩ = −⟨81, L82⟩, ⟨�81,82⟩ = ⟨81, �82⟩.

The Casimir operator � admits a canonical self-adjoint extension, the Friedrichs
extension, to L2(SL2(Z)\ SL2(R)); see [Iwaniec 2002, Theorem A.3].

These operators descend to SL2(Z)\H. Considering the action of � on weight
2k functions on H, we have the corresponding weight 2k Laplacian on H given by

12k :=1+ 2kiy
∂

∂x
,

which preserves the weight of a weight 2k function on H. Similarly, R and L
become the raising and lowering operators

R2k := iy
(
∂

∂x
− i

∂

∂y

)
+ k, L2k := −iy

(
∂

∂x
+ i

∂

∂y

)
− k.

The raising operator R2k maps weight 2k functions to weight 2k + 2 functions,
whereas the lowering operator L2k maps weight 2k functions to weight 2k − 2
functions. In particular, the raising and lowering operators map eigenfunctions
of 12k to eigenfunctions of 12k+2 and 12k−2 respectively. The inner product on
weight 2k functions on H is such that −L2k+2 is adjoint to R2k , so that

⟨R2k f1, f2⟩ = −⟨ f1, L2k+2 f2⟩

for all weight 2k square-integrable functions f1 : H → C and weight 2k + 2 square-
integrable functions f2 : H → C.

3B. Eigenfunctions of the Laplacian. Next, we describe the eigenfunctions of
12k on SL2(Z)\H. Useful references for these include [Bump 1997, Chapter 2;
Duke et al. 2002, Section 4; Roelcke 1966].

For any k ∈ Z, there are up to four classes of eigenfunctions of 12k of weight
2k. Each of these is an eigenfunction of the n-th Hecke operator Tn for each n ∈ N,
where Tn acts on functions f : H → C via

(Tn f )(z) :=
1

√
n

∑
ad=n

d∑
b=1

f
(

az + b
d

)
. (11)

Each of these eigenfunctions of 12k also lifts to a function on SL2(Z)\ SL2(R) that
is an eigenfunction of �:
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• When k = 0, we have constant functions.

• When k ≥ 0, we have shifted Maaß cusp forms of weight 2k given by R2k−2 · · ·

R0ϕ j , where ϕ j is a Hecke–Maaß cusp form of weight 0 with j-th Laplacian
eigenvalue λ j (ordered by size). Similarly, when k ≤ 0 we have forms of weight 2k
given by L2k+2L2k+4 · · · L0ϕ j . Any weight 0 form ϕ j can be written as a sum of
an even part and an odd part with the same Laplacian and Hecke eigenvalues, so
we may additionally assume that ϕ j is either even, so that ϕ j (−z̄)= ϕ j (z), or odd,
so that ϕ j (−z̄)= −ϕ j (z). We let κ j ∈ {0, 1} be such that κ j is 0 if ϕ j is even and
κ j is 1 if ϕ j is odd; the parity of ϕ j is then defined to be ϵ j = (−1)κ j , so that

ϕ j (−z̄)= (−1)κ jϕ j (z)= ϵ jϕ j (z). (12)

The spectral parameter r j ∈ [0,∞) ∪ i(0, 1
2) satisfies λ j =

1
4 + r2

j ; since the
Selberg eigenvalue conjecture is known for SL2(Z)\H, r j must be real and positive
(with the smallest spectral parameter being r1 ≈ 9.534). Once L2-normalized with
respect to the measure dµ on SL2(Z)\H, the eigenfunctions ϕ j yield probability
measures dµ j = |ϕ j |

2 dµ on SL2(Z)\H. The corresponding L2-normalized shifted
Hecke–Maaß cusp forms of weight 2k are given by

ϕ j,k :=


0
(

1
2 +ir j

)
0
(

1
2 +k+ir j

) R2k−2 · · · R2 R0ϕ j for k ≥ 0,

0
(

1
2 +ir j

)
0
(

1
2 −k+ir j

) L2k+2 · · · L−2L0ϕ j for k ≤ 0,

where the L2-normalization of each ϕ j,k follows from the fact that −L2k+2 is adjoint
to R2k ; see [Duke et al. 2002, Corollary 4.4]. The associated lift to SL2(Z)\ SL2(R)

is the function 8 j,k(z, θ) := ϕ j,k(z)e2kiθ , which is an eigenfunction of the Casimir
operator � with eigenvalue λ j .

• When ℓ ≥ 1, let F be a holomorphic Hecke cusp form of weight 2ℓ; there are
finitely many such cusp forms, and we denote the set of such holomorphic Hecke
cusp forms by Hℓ. We define a corresponding weight 2ℓ function f (z)= yℓF(z),
which is automorphic of weight 2ℓ, so that it satisfies the automorphy condition (10)
with k = ℓ. When k ≥ ℓ, we have shifted holomorphic Hecke cusp forms of weight
2k given by R2k−2 R2k−4 · · · R2ℓ f . Similarly, when k ≤ −ℓ we have the shifted
antiholomorphic Hecke cusp form of weight 2k given by L2k+2L2k+4 · · · L−2ℓ f̄ .
Note that L2ℓ f = R−2ℓ f̄ = 0, so that there are no nonzero shifted cusp forms of
weight 2k with −ℓ < k < ℓ. If f is L2-normalized with respect to the measure
dµ on SL2(Z)\H, then the corresponding L2-normalized shifted holomorphic or
antiholomorphic Hecke cusp forms of weight 2k are given by

fk :=

{√
0(2ℓ)

0(k+ℓ)0(k−ℓ+1) R2k−2 · · · R2ℓ f for k ≥ ℓ,√
0(2ℓ)

0(−k+ℓ)0(−k−ℓ+1)L2k+2 · · · L−2ℓ f for k ≤ −ℓ.
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Once more, the L2-normalization of each fk follows from the fact that −L2k+2

is adjoint to R2k ; see [Duke et al. 2002, Corollary 4.4]. The associated lift to
SL2(Z)\ SL2(R) is the function 9F,k(z, θ) := fk(z)e2kiθ , which is an eigenfunction
of the Casimir operator � with eigenvalue ℓ(1 − ℓ).

• We have the Eisenstein series of weight 2k, which is defined by

E2k(z, s) :=

∑
γ∈0∞\ SL2(Z)

jγ (z)−2k
ℑ(γ z)s, (13)

where

jγ (z) :=
cz + d
|cz + d|

for γ =

(
a b
c d

)
.

This series converges absolutely when ℜ(s) > 1, and can be holomorphically
extended to the line ℜ(s)= 1

2 . For s =
1
2 + i t , E2k

(
z, 1

2 + i t
)

is an eigenfunction of
12k with eigenvalue 1

4 + t2. Letting E(z, s)= E0(z, s), we note that

E2k
(
z, 1

2 + i t
)
=


0
(

1
2 +i t

)
0
(

1
2 +k+i t

) R2k−2 · · · R2 R0 E
(
z, 1

2 + i t
)

for k ≥ 0,

0
(

1
2 +i t

)
0
(

1
2 −k+i t

) L2k+2 · · · L−2L0 E
(
z, 1

2 + i t
)

for k ≤ 0.

The associated lift to SL2(Z)\ SL2(R) is

Ẽ2k
(
z, θ, 1

2 + i t
)
:= E2k

(
z, 1

2 + i t
)
e2kiθ ,

which is an eigenfunction of the Casimir operator � with eigenvalue 1
4 + t2.

These Laplacian eigenfunctions satisfy orthonormality relations: we have that

⟨8 j,k, 1⟩ = ⟨9F,k, 1⟩ = 0,〈
8 j,k1, Ẽ2k2

(
· , · , 1

2 + i t
)〉

=
〈
9F,k1, Ẽ2k2

(
· , · , 1

2 + i t
)〉

= 0,

⟨8 j,k1, 9F,k2⟩ = 0,

⟨8 j1,k1,8 j2,k2⟩ =

{
1 if j1 = j2 and k1 = k2,

0 otherwise,

⟨9F1,k1, 9F2,k2⟩ =

{
1 if F1 = F2 and k1 = k2,

0 otherwise.

The Fourier–Whittaker expansions of ϕ j,k , fk , and E2k are given in Section 4A.

3C. Spectral decomposition. The spectral decomposition of L2(SL2(Z)\ SL2(R))

is stated below, which follows by combining [Bump 1997, Corollary to Theo-
rem 2.3.4] with [Duke et al. 2002, Propositions 4.1, 4.2, and 4.3]; for a gen-
eral reference in the adèlic setting, see [Wu 2017, Theorem 1.3]. Given a ∈
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L2(SL2(Z)\ SL2(R)), we have the spectral decomposition

a(z, θ)

=
3
π

⟨a, 1⟩ +

∞∑
ℓ=1

∞∑
k=−∞

⟨a,8ℓ,k⟩8ℓ,k(z, θ)+
∞∑
ℓ=1

∑
F∈Hℓ

∞∑
k=−∞
|k|≥ℓ

⟨a, 9F,k⟩9F,k(z, θ)

+
1

4π

∞∑
k=−∞

∫
∞

−∞

〈
a, Ẽ2k

(
· , · , 1

2 + i t
)〉

Ẽ2k
(
z, θ, 1

2 + i t
)

dt.

This converges in the L2-sense. If moreover a is smooth and compactly supported,
then this converges absolutely and uniformly on compact sets.

We additionally have Parseval’s identity: for a1, a2 ∈ L2(SL2(Z)\ SL2(R)), we
have the absolutely convergent spectral expansion

⟨a1,a2⟩ =
3
π

⟨a1,1⟩⟨1,a2⟩+

∞∑
ℓ=1

∞∑
k=−∞

⟨a1,8ℓ,k⟩⟨8ℓ,k,a2⟩

+

∞∑
ℓ=1

∑
F∈Hℓ

∞∑
k=−∞
|k|≥ℓ

⟨a1,9F,k⟩⟨9F,k,a2⟩

+
1

4π

∞∑
k=−∞

∫
∞

−∞

〈
a1, Ẽ2k

(
· , · , 1

2+i t
)〉〈

Ẽ2k
(
· , · , 1

2+i t
)
,a2

〉
dt. (14)

3D. QUE on the modular surface. There is a significantly simpler formula for the
microlocal lift ω j of ϕ j to a measure on SL2(Z)\ SL2(R). We again recall from
[Zelditch 1991, (1.18)] that

dω j (z, θ) := ϕ j (z)u j (z, θ) dω(z, θ), u j (z, θ) :=
3
π

∞∑
k=−∞

ϕ j,k(z)e2kiθ ,

where convergence of the sum defining u j is in distribution (i.e., ϕ j u j dω is the
limit of measures of the partial sums defining u j ).4 In particular, we have that∫

SL2(Z)\ SL2(R)

8ℓ,k(z, θ) dω j (z, θ)=
3
π

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)ϕℓ,k(z) dµ(z), (15)∫
SL2(Z)\ SL2(R)

9F,k(z, θ) dω j (z, θ)=
3
π

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z) fk(z) dµ(z), (16)

4More precisely, the measure is defined by
∫

a dω j = limK→∞
3
π

∫
aϕ j

∑K
k=−K ϕ j,ke2kiθ dω.
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and∫
SL2(Z)\ SL2(R)

Ẽ2k
(
z, θ, 1

2 + i t
)

dω j (z, θ)

=
3
π

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k
(
z, 1

2 + i t
)

dµ(z). (17)

Using the spectral decomposition for L2(SL2(Z)\ SL2(R)) and (15), (16), and
(17), for any a ∈ C∞

c,K (SL2(Z)\ SL2(R)), we may therefore write∫
SL2(Z)\ SL2(R)

a(z, θ) dω j (z, θ)

=

∫
SL2(Z)\ SL2(R)

a(z, θ) dω(z, θ)

+
3
π

∞∑
ℓ=1

∞∑
k=−∞

⟨a,8ℓ,k⟩
∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z)ϕℓ,k(z) dµ(z)

+
3
π

∞∑
ℓ=1

∑
F∈Hℓ

∞∑
k=−∞
|k|≥ℓ

⟨a, 9F,k⟩

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z) fk(z) dµ(z)

+
3

4π2

∞∑
k=−∞

∫
∞

−∞

〈
a, Ẽ2k

(
· , · , 1

2 + i t
)〉

×

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k
(
z, 1

2 + i t
)

dµ(z) dt. (18)

To establish Theorem 1.1, it therefore suffices to bound each of the three integrals
(15), (16), and (17). The next few sections will be dedicated to resolving each
individual case.

4. Relevant tools for computation

4A. Fourier–Whittaker expansions. We explicitly write out the Fourier–Whittaker
expansion for shifted Hecke–Maaß cusp forms, shifted holomorphic or antiholomor-
phic Hecke cusp forms, and weighted Eisenstein series. These involve Whittaker
functions Wα,β(y), which are certain special functions on R+ associated to a pair
of parameters α, β ∈ C that decay exponentially as y tends to infinity in the sense
that limy→∞ y−αey/2Wα,β(y)= 1 (see [Whittaker and Watson 1996, Chapter 16]
and [Gradshteyn and Ryzhik 2015, Sections 9.22–9.23]); they satisfy the second
order linear ordinary differential equation

W ′′

α,β(y)+
(

−
1
4

+
α

y
+

1
4 −β2

y2

)
Wα,β(y)= 0.
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In particular cases, these Whittaker functions are simpler: for α ∈ C, we have that
Wα,α−1/2(y)= yαe−y/2, while for β ∈ C, we have that W0,β(y)=

√
y/πKβ(y/2),

where Kβ(y) denotes the modified Bessel function of the second kind:

• For Hecke–Maaß cusp forms of weight 0, we have by [Goldfeld and Hundley
2011, Theorem 3.11.8] the Fourier expansion

ϕ j (z)=

∞∑
n=−∞

n ̸=0

sgn(n)κ jρ j (1)
λ j (|n|)
√

|n|
W0,ir j (4π |n|y)e(nx). (19)

Here λ j (n) is the n-th Hecke eigenvalue of ϕ j , κ j ∈ {0, 1} is as in (12), and the first
Fourier coefficient ρ j (1) ∈ R+ satisfies

ρ j (1)2 =
coshπr j

2L(1, adϕ j )
=

π

20
( 1

2 + ir j
)
0

(1
2 − ir j

)
L(1, adϕ j )

. (20)

By the Rankin–Selberg method (see [Duke et al. 2002, Section 19]), this ensures
that ϕ j is L2-normalized. The positive constant L(1, adϕ j ) is the value at s = 1 of
the adjoint L-function L(s, adϕ j ) defined in (28) below. One can use the recurrence
relations for Whittaker functions [Gradshteyn and Ryzhik 2015, (9.234)] to establish
that for shifted Maaß cusp forms of weight 2k,

ϕ j,k(z)=

∞∑
n=−∞

n ̸=0

Dsgn(n)
k,r j

sgn(n)κ jρ j (1)
λ j (|n|)
√

|n|
Wsgn(n)k,ir j (4π |n|y)e(nx), (21)

where we define the constants

D±

k,r :=
(−1)k0

( 1
2 + ir

)
0

( 1
2 ± k + ir

) (22)

for r ∈ C and k ∈ Z. One sees from [Duke et al. 2002, Corollary 4.4] that ϕ j,k is
also L2-normalized.

• For shifted holomorphic Hecke cusp forms of positive weight 2k, we may write
the unshifted form as f = yℓF for some holomorphic Hecke cusp form F of weight
2ℓ. Once more by [Goldfeld and Hundley 2011, Theorem 3.11.8], this has the
Fourier expansion

f (z)=

∞∑
n=1

ρF (1)
λF (n)
√

n
(4πny)ℓe(nz)=

∞∑
n=1

ρF (1)
λF (n)
√

n
Wℓ,ℓ−1/2(4πny)e(nx),

where again λF (n) is the n-th Hecke eigenvalue of F and the first Fourier coefficient
ρF (1) ∈ R+ satisfies

ρF (1)2 =
π

20(2ℓ)L(1, ad F)
, (23)
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which ensures that f is L2-normalized by the Rankin–Selberg method. Once more,
the positive constant L(1, ad F) is the value at s = 1 of the adjoint L-function
L(s, ad F) defined in (28) below. Applying raising operators, we have that

(R2k−2 · · · R2ℓ+2 R2ℓ f )(z)= (−1)k−ℓ

∞∑
n=1

ρF (1)
λF (n)
√

n
Wk,ℓ−1/2(4πny)e(nx).

Finally, we see from [Duke et al. 2002, Corollary 4.4 and (4.60)] that in order to
L2-normalize such a form, we have the final Fourier expansion

fk(z)=

∞∑
n=1

Ck,ℓρF (1)
λF (n)
√

n
Wk,ℓ− 1

2
(4πny)e(nx) (24)

with

Ck,ℓ := (−1)k−ℓ

√
0(2ℓ)

0(k + ℓ)0(k − ℓ+ 1)
. (25)

Similarly, for shifted antiholomorphic Hecke cusp forms of negative weight −2k,
we may write the unshifted Hecke cusp form as f̄ = yℓF . One has

f (z)=

∞∑
n=1

ρF (1)
λF (n)
√

n
Wℓ,ℓ−1/2(4πny)e(−nx),

so that

f−k(z)=

∞∑
n=1

Ck,ℓρF (1)
λF (n)
√

n
Wk,ℓ−1/2(4πny)e(−nx). (26)

• Finally we recall the Fourier expansion of Eisenstein series. Define

λ(n, t) :=

∑
ab=n

ai t b−i t .

For weight 0 Eisenstein series, we have from [Jakobson 1994, (1.3)] that

E
(
z, 1

2+i t
)

= y1/2+i t
+
ξ(1−2i t)
ξ(1+2i t)

y1/2−i t
+

∞∑
n=−∞

n ̸=0

1
ξ(1+2i t)

λ(|n|, t)
√

|n|
W0,i t(4π |n|y)e(nx), (27)



120 A. BISAIN, P. HUMPHRIES, A. MANDELSHTAM, N. WALSH AND X. WANG

where ξ(s) := π−s/20
( s

2

)
ζ(s) is the completed Riemann zeta function. For weight

2k Eisenstein series, we then have that

E2k
(
z, 1

2 + i t
)
= y1/2+i t

+
(−1)k0

( 1
2 + i t

)2

0
( 1

2 − k + i t
)
0

( 1
2 + k + i t

) ξ(1 − 2i t)
ξ(1 + 2i t)

y1/2−i t

+

∞∑
n=−∞

n ̸=0

Dsgn(n)
k,t

ξ(1 + 2i t)
λ(|n|, t)
√

|n|
Wsgn(n)k,i t(4π |n|y)e(nx).

4B. L-Functions. We give a quick overview of all the necessary theory surround-
ing L-functions. A general discussion of the theory of L-functions and their bounds
can be found in [Iwaniec and Kowalski 2004, Chapter 5].

Let φ be either a Hecke–Maaß cusp form or a holomorphic Hecke cusp form.
Such a Hecke cusp form φ has an associated L-function L(s, φ). Since the Hecke
operators Tn satisfy the multiplicativity relation

Tm Tn =

∑
d | (m,n)

Tmn/d2,

the Hecke eigenvalues λφ(n) must satisfy the corresponding Hecke relations

λφ(m)λφ(n)=

∑
d | (m,n)

λφ

(
mn
d2

)
.

We may therefore define for ℜ(s) > 1 the degree 2 L-function

L(s, φ) :=

∞∑
n=1

λφ(n)
ns =

∏
p

1
1 − λφ(p)p−s + p−2s .

This can be analytically continued to a holomorphic function on C. We may write
the Euler product as

L(s, φ)=

∏
p

1
(1 −αφ,1(p)p−s)−1(1 −αφ,2(p)p−s)

,

where the Satake parameters αφ,1(p), αφ,2(p) satisfy

αφ,1(p)+αφ,2(p)= λφ(p), αφ,1(p)αφ,2(p)= 1.

We also define relevant higher degree L-functions: for m ≤ 3, we define the
degree 2m L-function

L(s, φ1 ⊗ · · · ⊗φm) :=

∏
p

∏
(b j )∈{1,2}m

1
1 −αφ1,b1(p) · · ·αφm ,bm (p)p−s .
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We additionally define the degree 3 and degree 6 L-functions

L(s, adφ) :=
L(s, φ⊗φ)

ζ(s)
, (28)

L(s, adφ1 ⊗φ2) :=
L(s, φ1 ⊗φ1 ⊗φ2)

L(s, φ2)
, (29)

Each of these L-functions has a meromorphic continuation to C. For later use, we
will also recall the identities

∞∑
n=1

λφ(n)2

ns =
ζ(s)L(s, adφ)

ζ(2s)
, (30)

∞∑
n=1

λφ(n)λ(n, t)
ns =

L(s + i t, φ)L(s − i t, φ)
ζ(2s)

, (31)

which are both valid for ℜ(s) > 1.
For any such L-function L(s,5) of degree d , where 5 is a placeholder for one

of the automorphic objects listed above, we have a corresponding gamma factor of
the form

L∞(s,5)=

d∏
i=1

0R(s +µi )

for some Langlands parameters µi ∈ C, where 0R(s) :=π−s/20
( s

2

)
. The completed

L-function 3(s,5) := L(s,5)L∞(s,5) has a meromorphic continuation to C and
satisfies a functional equation of the form 3(1 − s,5)= ϵ53(s, 5̃), where the ep-
silon factor ϵ5 is a complex number of absolute value 1, while 3(s, 5̃)=3(s̄,5).

4C. Bounds for L-Functions. Various L-functions will appear in the integrals
computed later in the paper. As such, the study of the sizes of our integrals is
connected to the study of the sizes of such L-functions. In particular, estimating
relevant integrals can be reduced to estimating L(1,5) and L

( 1
2 +i t,5

)
for various

values of t and 5. We discuss the specific relevant bounds.
For φ a Hecke–Maaß cusp form with spectral parameter r , combining the work

of [Goldfeld et al. 1994, main theorem] and [Li 2010, Corollary 1] with (20), we
have that

1
log r

≪ L(1, adφ)≪ exp(C(log r)1/4(log log r)1/2) (32)

for some absolute constant C > 0. Similarly, for φ a holomorphic Hecke cusp form
of weight ℓ, we have that

1
log ℓ

≪ L(1, adφ)≪ (log ℓ)3, (33)
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where the lower bound again follows from [Goldfeld et al. 1994, main theorem],
while the upper bound follows from [Lau and Wu 2006, Proposition 3.2(i)]. Finally,
for t ∈ R, we have the classical bounds [Iwaniec and Kowalski 2004, (8.24),
Theorem 8.29]

1
(log(3 + |t |))2/3(log log(9 + |t |))1/3

≪ |ζ(1 + i t)| ≪
log(3 + |t |)

log log(9 + |t |)
. (34)

We shall only make use of the lower bounds in (32), (33), and (34). In particular,
the lower bound in (32) is precisely the cause of the presence of the term log λ j on
the right-hand side of (6).

To discuss values of an L-function L(s,5) on the line ℜ(s)=
1
2 , we define the

analytic conductor

C(s,5) :=

d∏
i=1

(1 + |s +µi |).

The analytic conductor can be thought of as measuring the complexity of the L-
function L(s,5). The convexity bound bound for such an L-function on the line
ℜ(s)=

1
2 is

L(s,5)≪ε C(s,5)1/4+ε.

Such a bound is known for all of the L-functions that we study below; it is a
consequence of the Phragmén–Lindelöf convexity principle, the functional equations
for these L-functions, and upper bounds for these L-functions at the edge of the
critical strip [Li 2010, Theorem 2]. A subconvex bound is a bound of the form

L(s,5)≪ C(s,5)1/4−δ

for some fixed δ > 0; in contrast, for some of the L-functions that we study
below, such a bound is not yet known. The generalized Lindelöf hypothesis is
the conjecture that such a subconvex bound holds with δ =

1
4 − ε for any fixed

ε > 0. The generalized Lindelöf hypothesis would follow as a consequence from
the generalized Riemann hypothesis, which is the conjecture that the only zeroes of
L(s,5) in the critical strip 0< ℜ(s) < 1 lie on the critical line ℜ(s)=

1
2 .

We make this explicit for various L-functions of interest to us by recalling the
values of the Langlands parameters µi in these cases. An elementary example is
the Riemann zeta function, which is of degree 1: the Langlands parameter is simply
µ1 = 0, so that the convexity bound is

ζ
(1

2 + i t
)
≪ε (1 + |t |)1/4+ε. (35)
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Next, from [Iwaniec and Kowalski 2004, Sections 5.11 and 5.12], when ϕ and
ϕ̃ are Maaß cusp forms with spectral parameters r and r̃ and parities ϵ and ϵ̃, we
have that

L∞(s, ϕ)= 0R

(
s +

1−ϵ

2
+ ir

)
0R

(
s +

1−ϵ

2
− ir

)
,

L∞(s, adϕ)= 0R(s + 2ir)0R(s)0R(s − 2ir)

L∞(s, adϕ⊗ ϕ̃)=

∏
±

0R

(
s +

1−ϵ̃

2
+ 2ir ± i r̃

)
0R

(
s +

1−ϵ̃

2
± i r̃

)
×0R

(
s +

1−ϵ̃

2
− 2ir ± i r̃

)
.

In particular, we have the convexity bounds

L
( 1

2 , ϕ
)
≪ε r1/2+ε, (36)

L
(1

2 + i t, adϕ
)
≪ε ((1 + |t |)(1 + |r + t |)(1 + |r − t |))1/4+ε, (37)

L
( 1

2 , adϕ⊗ ϕ̃
)
≪ε (r̃(r + r̃)(1 + |r − r̃ |))1/2+ε. (38)

For our applications regarding QUE, we need to assume hypothetical improve-
ments upon (37) and (38) that imply subconvexity in the r-aspect but allow for
polynomial growth in the t-aspect or r̃ -aspect, namely bounds of the form

L
( 1

2 + i t, adϕ
)
≪ r1/2−2δ(1 + |t |)A,

L
( 1

2 , adϕ⊗ ϕ̃
)
≪ r1−4δr̃2A

for some δ > 0 and A > 0 (see Theorems 6.2 and 8.2).
Finally, when ϕ is again a Maaß cusp form with spectral parameter r and F is a

holomorphic Hecke cusp form of weight 2ℓ > 0, we have that

L∞(s, F)= 0R

(
s + ℓ+

1
2

)
0R

(
s + ℓ−

1
2

)
L∞(s, adϕ⊗ F)=

∏
±

0R

(
s + 2ir + ℓ±

1
2

)
0R

(
s + ℓ±

1
2

)
0R

(
s − 2ir + ℓ±

1
2

)
.

In particular, we have the convexity bounds

L
(1

2 + i t, F
)
≪ε (ℓ+ |t |)1/2+ε, (39)

L
( 1

2 , adϕ⊗ F
)
≪ε (ℓ(r + ℓ)2)1/2+ε. (40)

Good [1982, Corollary] has proven an improvement upon (39) that implies subcon-
vexity in the t-aspect, namely the subconvex bound

L
( 1

2 + i t, F
)
≪ℓ,ε |t |1/3+ε. (41)

For our applications regarding QUE, we also need to assume a hypothetical im-
provement upon (40) that implies subconvexity in the r -aspect, namely a bound of



124 A. BISAIN, P. HUMPHRIES, A. MANDELSHTAM, N. WALSH AND X. WANG

the form
L
( 1

2 , adϕ⊗ F
)
≪ℓ r1−4δ

for some δ > 0 (see Theorem 9.2).

5. Completing the proof of continuous spectrum QUE

We now supply the necessary computation missing from Jakobson’s proof of QUE
for Eisenstein series given in [Jakobson 1994]. This setting shares many similarities
with that of QUE for Hecke–Maaß cusp forms; the chief alteration is that the
microlocal lift

ω j (z, θ) :=
3
π
ϕ j (z)

∞∑
k=−∞

ϕ j,k(z)e2kiθ

of a Hecke–Maaß cusp form ϕ j is replaced by the microlocal lift

µt(z, θ) :=
3
π

E
(
z, 1

2 + i t
) ∞∑

k=−∞

E2k
(
z, 1

2 + i t
)
e2kiθ

of an Eisenstein series E
(
z, 1

2 + i t
)
. Similar to the discussion in Section 3D,

Jakobson’s proof of QUE for Eisenstein series requires one to bound both of the
integrals ∫

SL2(Z)\H

E
(
z, 1

2 + i t
)
E−2k

(
z, 1

2 − i t
)
ϕℓ,k(z) dµ(z), (42)

where ϕℓ,k is a shifted Hecke–Maaß cusp form of weight 2k ≥ 0 arising from a
Hecke–Maaß cusp form ϕℓ of weight 0 and spectral parameter rℓ, and∫

SL2(Z)\H

E
(
z, 1

2 + i t
)
E−2k

(
z, 1

2 − i t
)

fk(z) dµ(z), (43)

where fk is a shifted holomorphic Hecke cusp form of weight 2k > 0 obtained by
raising a holomorphic Hecke cusp form F of weight 2ℓ > 0 with ℓ < k. One must
similarly also bound an integral involving three Eisenstein series, of which two are
shifted; this requires some minor alterations involving incomplete Eisenstein series
(see [Jakobson 1994, Section 3]), since otherwise this integral would diverge.

Jakobson treats this altered Eisenstein integral in [loc. cit., Proposition 3.1],
while he treats the shifted Hecke–Maaß cusp form integral (42) in [loc. cit., Propo-
sition 2.2]. For the shifted holomorphic Hecke cusp form integral (43), Jakobson
only treats the unshifted case in [loc. cit., Proposition 2.1].

To treat the shifted case, we first relate an integral of two Eisenstein series and a
shifted holomorphic Hecke cusp form to the product of a ratio of L-functions and
an integral involving Whittaker functions.
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Lemma 5.1. For any shifted holomorphic Hecke cusp form fk of weight 2k > 0
obtained by raising a holomorphic Hecke cusp form F of weight 2ℓ > 0 with ℓ < k,
we have that∫

SL2(Z)\H

E
(
z, 1

2 + i t
)
E−2k

(
z, 1

2 − i t
)

fk(z) dµ(z)

= (−1)k−ℓ
√
π

2
(2π)1+2i t L

( 1
2 , F

)
L
( 1

2 − 2i t, F
)

ζ(1 − 2i t)ζ(1 + 2i t)
√

L(1, ad F)

×

∫
∞

0

W0,i t(u)

0
( 1

2 + i t
) Wk,ℓ−1/2(u)
√
0(k + ℓ)0(k − ℓ+ 1)

u−1/2−i t du
u
. (44)

Proof. We begin by studying the integral

I1(s) :=

∫
SL2(Z)\H

E
(
z, 1

2 + i t
)
E−2k(z, s) fk(z) dµ(z)

when ℜ(s) > 1, which allows use to make use of the absolutely convergent expres-
sion (13) for E−2k(z, s); we later analytically continue I1(s) to s =

1
2 − i t . We

first apply the unfolding trick, inserting the identity (13) for E−2k(z, s) and turning
the integral over SL2(Z)\H into one over 0∞\H; see [Jakobson 1994, Proof of
Proposition 2.1]. Using the fact that fk has weight 2k, we have that

I1(s)=

∫
0∞\H

E
(
z, 1

2 + i t
)

fk(z)ℑ(z)s dµ(z).

We evaluate this integral by taking a fundamental domain of 0∞\H to be [0, 1]×R+.
We now insert the Fourier–Whittaker expansions (27) of E

(
z, 1

2 + i t
)

and (24) of
fk(z), interchange the order of summation and integration, evaluate the integral
over x ∈ [0, 1], and make the substitution u = 4π |n|y. This leads us to the identity

I1(s)=
(4π)1−sCk,ℓρF (1)

ξ(1 + 2i t)

∞∑
n=1

λF (n)λ(n, t)
ns

∫
∞

0
W0,i t(u)Wk,ℓ−1/2(u)us−1 du

u
.

At this point, we analytically continue this expression to s =
1
2 − i t , as the Dirichlet

series extends holomorphically to the closed half-plane ℜ(s)≥ 1
2 from (31) (recalling

that ζ(2s) ̸= 0 for ℜ(s) ≥
1
2 ), while the integral extends holomorphically to the

open half-plane ℜ(s) > 1
2 − ℓ by [Gradshteyn and Ryzhik 2015, (7.621.11) and

(9.237.3)], since these identities allow us to write the integral as a finite sum of
quotients of gamma functions that have no poles for ℜ(s) > 1

2 − ℓ. Recalling the
identities (25) for Ck,ℓ, (23) for ρF (1)2, and (31) for the Dirichlet series, we obtain
the desired identity. □
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Theorem 5.2. For any shifted holomorphic or antiholomorphic Hecke cusp form
fk of weight 2k obtained by raising or lowering a holomorphic Hecke cusp form F
of weight 2ℓ > 0 with ℓ < |k|, we have that∫

SL2(Z)\H

E
(
z, 1

2 + i t
)
E−2k

(
z, 1

2 − i t
)

fk(z) dµ(z)≪k,ℓ,ε |t |−1/6+ε.

Proof. We consider only the positive weight case; the analogous bounds for the neg-
ative weight case follow by conjugational symmetry. We bound the expression (44).
Via (34) and the subconvex bound (41), the ratio of L-functions is Oℓ,ε(|t |1/3+ε).
It remains to deal with the integral of Whittaker functions. In Corollary A.7, we
show that this integral is Ok,ℓ(|t |−1/2). This yields the desired estimate. □

Remark 5.3. Theorem 5.2 is unconditional due to the fact that the subconvex bound
(41) for L

( 1
2 + i t, F

)
is known unconditionally. A similar such subconvex bound

is known for L
(1

2 + i t, ϕ
)
, where ϕ is a fixed Hecke–Maaß cusp form [Meurman

1990]; finally, an analogous subconvex bound is known for ζ
( 1

2 + i t
)
. These known

subconvex bounds are the key inputs for Jakobson’s unconditional proof of QUE for
Eisenstein series [Jakobson 1994, Theorem 1]. In contrast, the subconvex bounds
(3), (4), and (5) remain hypothetical, which is the reason that Theorem 1.1 is a
conditional result.

6. Eisenstein series computation

We now move on to the proof of our main theorem, first proving the desired bound
for Eisenstein series. We begin by relating an integral of a Hecke–Maaß cusp form,
a shifted Hecke–Maaß cusp form, and a shifted Eisenstein series to the product of a
ratio of L-functions and an integral involving Whittaker functions.

Lemma 6.1. For k ∈ Z and t ∈ R, we have that∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k
(
z, 1

2+i t
)

dµ(z)

=
π

2
(−1)k+κ j (4π)1/2−i t ζ

( 1
2+i t

)
L
(1

2+i t,adϕ j
)

ζ(1+2i t)L(1,adϕ j )

×

∫
∞

0

W0,ir j (u)

0
( 1

2+ir j
)(

Wk,−ir j (u)

0
( 1

2+k−ir j
)+

W−k,−ir j (u)

0
( 1

2−k−ir j
))

u−1/2+i t du
u
. (45)

Proof. We follow the same method as in Lemma 5.1, first evaluating the integral

I2(s) :=

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k(z, s) dµ(z)
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for ℜ(s) > 1, and then analytically continuing this expression to s =
1
2 + i t . We

again apply the unfolding trick by inserting the identity (13) for E2k(z, s), giving

I2(s)=

∫
0∞\H

ϕ j (z)ϕ j,k(z)ℑ(z)s dµ(z).

Inserting the Fourier–Whittaker expansions (19) for ϕ j and (21) for ϕ j,k and inte-
grating over the fundamental domain [0, 1] × R+ of 0∞\H, we find that I2(s) is
equal to

(−1)κ j (4π)1−sρ j (1)2

×

∞∑
n=1

λ j (n)2

ns

∫
∞

0
W0,ir j (u)(D

+

k,−r j
Wk,−ir j (u)+ D−

k,−r j
W−k,−ir j (u))u

s−1 du
u
.

We then analytically continue this to s =
1
2 + i t , as the Dirichlet series extends

meromorphically to the closed half-plane ℜ(s) ≥
1
2 with only a simple pole at

s = 1 from (30) (recalling that ζ(2s) ̸= 0 for ℜ(s)≥
1
2 ), while the integral extends

holomorphically to the open half-plane ℜ(s) > 0 by [Gradshteyn and Ryzhik 2015,
(7.611.7)]. Recalling the identities (22) for D±

k,−r j
(and noting that 0(z)= 0(z̄)),

(20) for ρ j (1)2, and (30) for the Dirichlet series, we obtain the desired identity. □

Theorem 6.2. For any δ > 0 and A > 0, given a subconvex bound of the form

L
( 1

2 + i t, adφ
)
≪ r1/2−2δ(1 + |t |)A, (46)

where φ is an arbitrary Hecke–Maaß cusp form with spectral parameter r , we have
that∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k
(
z, 1

2 + i t
)

dµ(z)

≪k,ε r1/2−2δ
j log r j (1 + |t |)A−1/4+ε(2r j + |t |)−1/4(1 +

∣∣2r j − |t |
∣∣)−1/4

.

Proof. We consider only the positive weight case; the analogous bounds for
the negative weight case follow by conjugational symmetry. We bound the ex-
pression (45). Via the assumption of the subconvex bound (46), the bounds
(32) and (34), and the convexity bound (35), the ratio of L-functions in (45) is
Oε(r

1/2−2δ
j (log r j )(1 + |t |)A+1/4+ε). It remains to deal with the integral of Whit-

taker functions. In Corollary A.7, we show that this integral is Ok((1 + |t |)−1/2

(2r j + |t |)−1/4(1 + |2r j − |t ||)−1/4). This yields the desired estimate. □

7. The Watson–Ichino triple product formula

The remaining integrals we wish to compute are of the form∫
SL2(Z)\H

φ1(z)φ2(z)φ3(z) dµ(z)
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where φi are (shifted Maaß, holomorphic, or antiholomorphic) Hecke cusp forms of
weight 2ki for which k1 +k2 +k3 = 0. We will compute these via the Watson–Ichino
triple product formula, which allows us to express these in terms of products of
L-functions and integrals of Whittaker functions.

The formula given by Ichino [2008, Theorem 1] is extremely general and simpli-
fies greatly when applied to the special case of cusp forms on the modular surface.
We follow the simplification of the general formula done in [Sarnak and Zhao 2019,
Appendix].

Let φ̃i denote the adèlic lift of φi to a function on Z(AQ)GL2(Q)\ GL2(AQ), as
described in [Humphries and Nordentoft 2022, Section 4.3]; see also [Goldfeld and
Hundley 2011, Section 4.12]. We have that

∫
SL2(Z)\H

φ1(z)φ2(z)φ3(z) dµ(z)

=

∫
SL2(Z)\ SL2(R)

φ1(z)e2k1iθφ2(z)e2k2iθφ3(z)e2k3iθ dω(z, θ)

=
π

6

∫
Z(AQ)GL2(Q)\ GL2(AQ)

φ̃1(g)φ̃2(g)φ̃3(g) dg. (47)

Here dg denotes the Tamagawa measure on Z(AQ)GL2(Q)\ GL2(AQ), which is
normalized such that this quotient space has volume 2. The factor π

6 occurs on
the right-hand side of (47) to ensure that the relevant measures are normalized
consistently, which can be checked by replacing the integrands with the constant
function 1.

The Watson–Ichino triple product formula relates the integral (47) to L-functions
and to an integral of matrix coefficients of the local representations of GL2(R)

associated to φ̃1, φ̃2, φ̃3. So long as one of φ1, φ2, φ3 is a shifted Hecke–Maaß cusp
form, this integral of matrix coefficients can in turned be expressed as in terms of
an integral of local Whittaker functions and an element of the induced model, which
we describe below. The reduction to an integral of this form is a local analogue
of the unfolding method used in Lemmas 5.1 and 6.1 and leads to integrals of
Whittaker functions of the same form as those appearing in (44) and (45).

7A. The Whittaker model. Associated to a shifted Maaß, holomorphic, or antiholo-
morphic Hecke cusp form φ of weight 2k is a weight 2k local Whittaker function
Wφ : GL2(R)→ C. This function satisfies

Wφ

((
1 x
0 1

) (
y 0
0 1

) (
z 0
0 z

) (
cos θ sin θ

− sin θ cos θ

))
= e(x)e2kiθWφ

(
y 0
0 1

)
(48)
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for all x ∈ R, y, z ∈ R×, and θ ∈ R; additionally, letting λφ(n) denote the n-th
Hecke eigenvalue of φ, we have that for x ∈ R and y ∈ R+,

φ(x + iy)=

∞∑
n=−∞

n ̸=0

λφ(|n|)
√

|n|
Wφ

(
ny 0
0 1

)
e(nx); (49)

see [Humphries and Nordentoft 2022, Section 4.3.3]. By (21), (24), and (26), this
means that Wφ

( y
0

0
1

)
can be expressed in terms of a constant multiple of a classical

Whittaker function Wα,β .
This local Whittaker function Wφ is an element of the Whittaker model W(π∞)

associated to φ. As explained in [Goldfeld and Hundley 2011, Section 4.8], as-
sociated to φ is an adèlic automorphic form φ̃ : GL2(AQ)→ C. In turn, such an
adèlic automorphic form is associated to a cuspidal automorphic representation π
of GL2(AQ), as discussed in [loc. cit., Section 5.4]. From [loc. cit., Section 10.4],
this automorphic representation is isomorphic to a restricted tensor product of
local representations: we have that π ∼= π∞ ⊗

⊗
′

p πp, where π∞ is an irreducible
representation of GL2(R), while πp is an irreducible representation of GL2(Qp)

for each prime p.
The irreducible representation π∞ of GL2(R) is completed determined by φ as

follows:

• If φ is a shifted Hecke–Maaß cusp form ϕ j,k , then π∞ is a principal series
representation. A model for this representation is the Whittaker model W(π∞),
which consists of certain local Whittaker functions W : GL2(R) → C, with the
irreducible representation π∞ given via the action (π∞(h) · W )(g) := W (gh) of
h ∈ GL2(R). Letting r j ∈ R denote the spectral parameter of φ and ϵ j = (−1)κ j

denote the parity of φ, where κ j ∈ {0, 1}, the Whittaker model W(π∞) is the vector
space of local Whittaker functions W : GL2(R)→ C of the form

W (g) := sgn(det g)κ j |det g|
1/2+ir j

∫
R×

|a|
−2ir j

∫
R

8((a−1, x)g)e(−ax)dx d×a (50)

with8 :R2
→C a Schwartz function [Jacquet and Langlands 1970, Lemma 2.5.13.1].

By taking the Schwartz function to be

8(x1, x2) := π |k|
0

( 1
2 + ir j

)
0

( 1
2 + |k| + ir j

)ρ j (1)(x2 − sgn(k)i x1)
2|k|e−π(x2

1+x2
2 ), (51)

the resulting local Whittaker function given by (50) is Wφ; it satisfies (48) and is
such that

Wφ

(
y 0
0 1

)
= Dsgn(y)

k,r j
sgn(y)κ jρ j (1)Wsgn(y)k,ir j (4π |y|). (52)
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This can be seen directly by taking g =
( y

0
0
1

)
in (50) and making the change of

variables x 7→ a−1xy and a 7→ π1/2
|a|

−1/2(x2
+ 1)1/2|y|, which shows that

Wφ

(
y 0
0 1

)
=π−1/2−ir j

(−1)k0
( 1

2+ir j
)

0
( 1

2+|k|+ir j
) sgn(y)κ jρ j (1)|y|

1/2−ir j

∫
∞

0
a1/2+|k|+ir j e−a da

a

×

∫
R

(1+i x)−1/2+k−ir j (1−i x)−1/2−k−ir j e(−xy)dx .

The integral over R+ ∋ a is 0
( 1

2 + |k| + ir j
)
, while from [Gradshteyn and Ryzhik

2015, 3.384.9],∫
R

(1 + i x)−1/2+k−ir j (1 − i x)−1/2−k−ir j e(−xy) dx

=
π1/2+ir j |y|

−1/2+ir j

0
( 1

2 + sgn(y)k + ir j
)Wsgn(y)k,ir j (4π |y|).

By the definition (22) of D±

k,r , this yields (52).

• If φ is a shifted holomorphic or antiholomorphic Hecke cusp form fk , then π∞ is a
discrete series representation. A model for this representation is the Whittaker model
W(π∞), which consists of certain local Whittaker functions W : GL2(R)→ C, with
the irreducible representation π∞ given via the action (π∞(h) · W )(g) := W (gh)
of h ∈ GL2(R). Letting 2ℓ ∈ 2N denote the weight of the underlying holomorphic
Hecke cusp form F , the Whittaker model W(π∞) of π∞ is the vector space of
local Whittaker functions W : GL2(R)→ C of the form

W (g) := |det g|
ℓ

∫
R×

|y|
1−2ℓ

∫
R

8((y−1, x)g)e(−xy) dx d×y (53)

with 8 : R2
→ C a Schwartz function satisfying∫
R

xm
1

(
∂2ℓ−m−2

∂x2ℓ−m−2
2

∣∣∣
x2=0

∫
R

8(x1, ξ2)e(−x2ξ2) dξ2

)
dx1 = 0

for all m ∈ {0, . . . , 2ℓ− 2} [Jacquet and Langlands 1970, Corollary 2.5.14].
By taking

8(x1, x2) := π |k|(−1)kC|k|,ℓρF (1)(x2 − sgn(k)i x1)
2|k|e−π(x2

1+x2
2 ),

the resulting local Whittaker function given by (53) is Wφ; it satisfies (48) and is
such that

Wφ

(
y 0
0 1

)
=

{
C|k|,ℓρF (1)W|k|,ℓ− 1

2
(4π |y|) if sgn(y)= sgn(k),

0 if sgn(y)= − sgn(k).
(54)



SUBCONVEXITY IMPLIES EFFECTIVE QUANTUM UNIQUE ERGODICITY 131

This can again be seen directly by taking g =
( y

0
0
1

)
in (53) and making the change

of variables x 7→ a−1xy and a 7→ π1/2
|a|

−1/2(x2
+ 1)1/2|y|, which shows that

Wφ

(
y 0
0 1

)
= π−ℓC|k|,ℓρF (1)|y|

1−ℓ

∫
∞

0
a|k|+ℓe−a da

a

∫
R

(1+ i x)−ℓ+k(1− i x)−ℓ−ke(−xy) dx .

The integral over R+ ∋ a is 0(|k| + ℓ), while from [Gradshteyn and Ryzhik 2015,
3.384.9],∫

R

(1 + i x)−ℓ+k(1 − i x)−ℓ−ke(−xy) dx

=

{ πℓ|y|
ℓ−1

0(|k|+ℓ)
W|k|,ℓ−1/2(4π |y|) if sgn(y)= sgn(k),

0 if sgn(y)= − sgn(k).

This yields (54).

7B. The induced model. When φ is a shifted Hecke–Maaß cusp form ϕ j,k , so
that the associated irreducible representation π∞ of GL2(R) is a principal series
representation, there is another natural model for π∞ other than the Whittaker model
W(π∞). This is the induced model of π∞, which consists of smooth functions
f : GL2(R)→ C that satisfy

f
((

1 x
0 1

) (
y 0
0 1

) (
z 0
0 z

)
g
)

= sgn(y)κ j |y|
1/2+ir j f (g)

for all x ∈ R, y, z ∈ R×, and g ∈ GL2(R). Equivalently, the induced model consists
of functions of the form

f (g)= sgn(det g)κ j |det g|
1/2+ir j

∫
R×

8((0, a)g)|a|
1+2ir j d×a (55)

with 8 : R2
→ C a Schwartz function. There is a bijection between the induced

model and the Whittaker model via the map f 7→ W given by

W (g)= lim
N→∞

∫ N

−N
f
((

0 −1
1 0

) (
1 x
0 1

)
g
)

e(−x) dx

[Jacquet and Langlands 1970, Lemma 2.5.13.1].
Taking 8 as in (51), we see that the element of the induced model fφ associated

to φ is such that

fφ

((
1 x
0 1

) (
y 0
0 1

) (
z 0
0 z

) (
cos θ sin θ

− sin θ cos θ

))
= sgn(y)κ j |y|

1/2+ir j e2kiθ fφ

(
1 0
0 1

)
(56)
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for all x ∈ R, y, z ∈ R×, and θ ∈ R. From (55) together with the change of variables
a 7→ π−1/2

|a|
1/2, we have that

fφ

(
1 0
0 1

)
= π−1/2−ir j0

(1
2 + ir j

)
ρ j (1). (57)

7C. The Watson–Ichino triple product formula. We now state an explicit form of
the Watson–Ichino triple product formula, which relates the integral (47) to a triple
product L-function and the square of the absolute value of certain local Whittaker
functions and elements of the induced model.

Lemma 7.1 (Watson–Ichino triple product formula). Let φi be Hecke cusp forms of
weight 2ki for which k1 + k2 + k3 = 0 and such that φ3 is a shifted Hecke–Maaß
cusp form. Let W1 and W2 denote the local Whittaker functions associated to φ1

and φ2 respectively, as in (52) and (54), and let f3 denote the element of the induced
model associated to φ3, as in (56). We have that∣∣∣∣∫

Z(AQ)GL2(Q)\GL2(AQ)

φ̃1(g)φ̃2(g)φ̃3(g)dg
∣∣∣∣2

=
36
π2

L
( 1

2 ,φ1⊗φ2⊗φ3
)∣∣∣∣∫

R×

W1

(
y 0
0 1

)
W2

(
y 0
0 1

)
f3

(
y 0
0 1

)
|y|

−1 d×y
∣∣∣∣2

. (58)

Proof. This follows by combining the Watson–Ichino triple product formula in the
form given in [Ichino 2008, Theorem 1.1] (compare [Watson 2002, Theorem 3])
together with the identities [Sarnak and Zhao 2019, Lemma 5] (compare [Michel
and Venkatesh 2010, Lemma 3.4.2]) and [Waldspurger 1985, Proposition 6]. □

Remark 7.2. In place of the square of the absolute value of the integral on the
right-hand side of (58), the Watson–Ichino triple product formula given in [Ichino
2008, Theorem 1.1] instead involves an integral of matrix coefficients. The utility
of the induced model is that this integral of matrix coefficients may be expressed in
terms of the simpler expression given in (58) [Sarnak and Zhao 2019, Lemma 5]. In
turn, we shall shortly show that for our applications, this simpler expression can be
explicitly evaluated in exactly the same way as in the Eisenstein setting in Lemmata
5.1 and 6.1. Thus utilizing the induced model allows us to express this integral in a
way that is an exact analogue of the Eisenstein integrals in (44) and (45).

8. Maaß cusp form computation

We use the Watson–Ichino triple product formula to complete the next step of our
main theorem, namely proving the desired bound for Hecke–Maaß cusp forms. The
Watson–Ichino triple product formula allows us to relate an integral of a Hecke–
Maaß cusp form and two shifted Hecke–Maaß cusp forms to the product of a ratio
of L-functions and an integral involving Whittaker functions.
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Lemma 8.1. For any shifted Hecke–Maaß cusp form ϕℓ,k of weight 2k ≥ 0 arising
from a Hecke–Maaß cusp form ϕℓ of weight 0 and spectral parameter rℓ, we have
that∣∣∣∣∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z)ϕℓ,k(z)dµ(z)
∣∣∣∣2

=
π3

2
L
( 1

2 ,ϕℓ
)
L
( 1

2 ,adϕ j⊗ϕℓ
)

L(1,adϕℓ)L(1,adϕ j )2

×

∣∣∣∣∫ ∞

0

W0,ir j (u)

0
( 1

2+ir j
)(

Wk,−ir j (u)

0
( 1

2+k−ir j
)+

W−k,−ir j (u)

0
( 1

2−k−ir j
))

u−1/2+irℓ du
u

∣∣∣∣2

. (59)

Proof. We apply the Watson–Ichino triple product formula (58), in conjunction
with the classical-to-adèlic correspondence (47), in the case where the integrand is
ϕ jϕ j,kϕℓ,k . Thus we set

φ1 = ϕ j , φ2 = ϕ j,k and φ3 = ϕℓ,k,

and we analyze the right-hand side of (58). We may factor the triple product
L-function in (58) as

L
( 1

2 , ϕℓ
)
L
( 1

2 , adϕ j ⊗ϕℓ
)

via [Gelbart and Jacquet 1978, (9.3) Theorem]. Note that both central L-values
vanish unless ϕℓ is even, which we assume without loss of generality is the case.
We consider the remaining integral in (58). Recall that W1 and W2 are the local
Whittaker functions associated to ϕ j and ϕ j,k , while f3 is the element of the induced
model corresponding to the local Whittaker function W3 for ϕℓ,k . From (52), we
have that

W1

(
y 0
0 1

)
= sgn(y)κ jρ j (1)W0,ir j (4π |y|) (60)

while comparing (21) and (49), we have that

W2

(
y 0
0 1

)
= Dsgn(y)

k,−r j
sgn(y)κ jρ j (1)Wsgn(y)k,−ir j (4π |y|),

Finally, we have from (56) and (57) that

f3

(
y 0
0 1

)
= π−1/2−irℓ0

( 1
2 + irℓ

)
ρℓ(1)|y|

1/2+irℓ,



134 A. BISAIN, P. HUMPHRIES, A. MANDELSHTAM, N. WALSH AND X. WANG

where the assumption that ϕℓ is even means that we may omit sgn(y)κℓ . Inserting
these formulæ and making the substitution u = 4π |y|, we deduce that∫

R×

W1

(
y 0
0 1

)
W2

(
y 0
0 1

)
f3

(
y 0
0 1

)
|y|

−1 d×y

= 2(2π)−2irℓ0
( 1

2 + irℓ
)
ρℓ(1)ρ j (1)2

×

∫
∞

0
W0,ir j (u)(D

+

k,−r j
Wk,−ir j (u)+ D−

k,−r j
W−k,−ir j (u))u

−1/2+irℓ du
u
.

The desired identity now follows from the identities (22) for D±

k,−r j
(and noting

that 0(z)= 0(z̄)) and (20) for ρℓ(1) and ρ j (1)2. □

Theorem 8.2. For any δ > 0 and A > 0, given a subconvex bound of the form

L
( 1

2 , adϕ1 ⊗ϕ2
)
≪ r1−4δ

1 r2A
2 , (61)

where ϕ1, ϕ2 are arbitrary Hecke–Maaß cusp forms with spectral parameters r1, r2,
we have that∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z)ϕℓ,k(z) dµ(z)

≪k,ε r1/2−2δ
j log r j r A−1/4+ε

ℓ (2r j + rℓ)−1/4(1 + |2r j − rℓ|)−1/4

for any shifted Hecke–Maaß cusp form ϕℓ,k of weight 2k and spectral parameter rℓ.

Proof. We consider only the positive weight case; the analogous bounds for the
negative weight case follow by conjugational symmetry. We bound the expression
(59). Via the assumption of the subconvex bound (61), the bound (32), and the con-
vexity bound (36), the ratio of L-functions in (59) is Oε(r1−4δ

j (log r j )
2r2A+1/2+ε

ℓ ).
It remains to deal with the integral of Whittaker functions. In Corollary A.4, we
show that this integral is Ok(r

−1/2
ℓ (2r j + rℓ)−1/4(1 + |2r j − rℓ|)−1/4). This yields

the desired estimate. □

9. Holomorphic cusp form computation

We once more use the Watson–Ichino triple product formula in order to complete the
final step of our main theorem, namely proving the desired bound for holomorphic
or antiholomorphic Hecke cusp forms. The Watson–Ichino triple product formula
allows us to relate an integral of a Hecke–Maaß cusp form, a shifted Hecke–Maaß
cusp form, and a shifted holomorphic or antiholomorphic Hecke cusp form to the
product of a ratio of L-functions and an integral involving Whittaker functions.
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Lemma 9.1. For any shifted holomorphic Hecke cusp form fk of weight 2k > 0
arising from a holomorphic Hecke cusp form F of weight 2ℓ > 0, we have that∣∣∣∣∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z) fk(z) dµ(z)
∣∣∣∣2

=
π3

2
L
( 1

2 , F
)
L
( 1

2 , adϕ j ⊗ F
)

L(1, ad F)L(1, adϕ j )2

×

∣∣∣∣∫ ∞

0

W0,ir j (u)

0
( 1

2 + ir j
) Wk,ℓ−1/2(u)
√
0(k + ℓ)0(k − ℓ+ 1)

u−1/2−ir j
du
u

∣∣∣∣2

. (62)

Proof. We apply the Watson–Ichino triple product formula (58), in conjunction
with the classical-to-adèlic correspondence (47), in the case where the integrand is
ϕ jϕ j,k fk . Thus we set

φ1 = ϕ j , φ2 = fk and φ3 = ϕ j,k .

We may again factor the triple product L-function in (58) as

L
(1

2 , F
)
L
( 1

2 , adϕ j ⊗ F
)

via [Gelbart and Jacquet 1978, (9.3) Theorem]. Both central L-values vanish unless
ℓ is even, which we assume without loss of generality is the case. We consider the
remaining integral in (58). Here W1 is once more as in (60). Next, W2 is the local
Whittaker function associated to fk , so that from (54),

W2

(
y 0
0 1

)
=

{
Ck,ℓρF (1)Wk,ℓ− 1

2
(4π |y|) if y > 0,

0 if y < 0,

noting that k is assumed to be positive. From (56) and (57), the element of the
induced model associated to ϕ j,k satisfies

f3

(
y 0
0 1

)
= π−1/2+ir j0

( 1
2 − ir j

)
sgn(y)κ jρ j (1)|y|

1/2−ir j .

Inserting these formulæ and making the substitution u = 4π |y|, we deduce that∫
R×

W1

(
y 0
0 1

)
W2

(
y 0
0 1

)
f3

(
y 0
0 1

)
|y|

−1 d×y

= 2(2π)2ir j0
( 1

2 − ir j
)
Ck,ℓρF (1)ρ j (1)2

∫
∞

0
W0,ir j (u)Wk,ℓ−1/2(u)u−1/2−ir j

du
u
.

The desired identity now follows from the identities (25) for Ck,ℓ, (23) for ρF (1),
and (20) for ρ j (1)2. □



136 A. BISAIN, P. HUMPHRIES, A. MANDELSHTAM, N. WALSH AND X. WANG

Theorem 9.2. For any δ > 0, given a subconvex bound of the form

L
( 1

2 , adφ⊗ F
)
≪ℓ r1−4δ, (63)

where φ is an arbitrary Hecke–Maaß cusp form with spectral parameters r and F
is a holomorphic Hecke cusp form of weight 2ℓ > 0, we have that∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z) fk(z) dµ(z)≪k,ℓ r−2δ
j log r j

for any shifted holomorphic or antiholomorphic Hecke cusp form fk of weight 2k
arising from a holomorphic Hecke cusp form F of weight 2ℓ > 0 for which ℓ≤ |k|.

Proof. We consider only the positive weight case; the analogous bounds for the
negative weight case follow by conjugational symmetry. We bound the expression
(62). Via the assumption of the subconvex bound (63) and the bound (32), the ratio
of L-functions in (62) is Oℓ,ε(r1−4δ

j (log r j )
2). It remains to deal with the integral

of Whittaker functions. In Corollary A.7, we show that this integral is Ok,ℓ(r
−1/2
j ).

This yields the desired estimate. □

10. Putting everything together

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let a ∈ C∞

c,K (SL2(Z)\ SL2(R)). We recall from (18) that∫
SL2(Z)\ SL2(R)

a(z, θ) dω j (z, θ)

=

∫
SL2(Z)\ SL2(R)

a(z, θ) dω(z, θ)

+
3
π

∞∑
ℓ=1

∞∑
k=−∞

⟨a,8ℓ,k⟩
∫

SL2(Z)\H

ϕ j (z)ϕ j,k(z)ϕℓ,k(z) dµ(z)

+
3
π

∞∑
ℓ=1

∑
F∈Hℓ

∞∑
k=−∞
|k|≥ℓ

⟨a, 9F,k⟩

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z) fk(z) dµ(z)

+
3

4π2

∞∑
k=−∞

∫
∞

−∞

〈
a, Ẽ2k

(
· , · , 1

2 + i t
)
⟩

×

∫
SL2(Z)\H

ϕ j (z)ϕ j,k(z)E2k
(
z, 1

2 + i t
)

dµ(z) dt.
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Since 8ℓ,k , 9F,k , and Ẽ2k
(
· , · , 1

2 + i t
)

are eigenfunctions of the Casimir operator
�, we have that for any nonnegative integer A,

�A8ℓ,k =
( 1

4 + r2
ℓ

)A
8ℓ,k,

�A9F,k = (ℓ(1 − ℓ))A9F,k,

�A Ẽ2k
(
· , · , 1

2 + i t
)
=

( 1
4 + t2)A Ẽ2k

(
· , · , 1

2 + i t
)
.

By the linearity of the inner product together with the fact that the Casimir operator
is self-adjoint with respect to the inner product, we deduce that

⟨a,8ℓ,k⟩ =
( 1

4 + r2
ℓ

)−A
⟨�Aa,8ℓ,k⟩,

⟨a, 9F,k⟩ = (ℓ(1 − ℓ))−A
⟨�Aa, 9F,k⟩,〈

a, Ẽ2k
(
· , · , 1

2 + i t
)〉

=
( 1

4 + t2)−A〈
�Aa, Ẽ2k

(
· , · , 1

2 + i t
)〉
.

Moreover, since a is K -finite, there exists a nonnegative integer M for which

⟨a,8ℓ,k⟩ = ⟨a, 9F,k⟩ =
〈
a, Ẽ2k

(
· , · , 1

2 + i t
)〉

= 0

whenever |k|> M . From Theorems 6.2, 8.2, and 9.2, we deduce that∫
SL2(Z)\ SL2(R)

a(z, θ) dω j (z, θ)−
∫

SL2(Z)\ SL2(R)

a(z, θ) dω(z, θ)

≪M,ε r1/2−2δ
j log r j

∞∑
ℓ=1

M∑
k=−M

∣∣〈�⌈(A+1)/2⌉a,8ℓ,k
〉∣∣r−5/4+ε

ℓ

× (2r j + rℓ)−1/4(1 + |2r j − rℓ|)−1/4

+ r−2δ
j log r j

M∑
ℓ=1

∑
F∈Hℓ

M∑
k=−M
|k|≥ℓ

|⟨�⌈(A+1)/2⌉a, 9F,k⟩|ℓ
−A−1

+ r1/2−2δ
j log r j

M∑
k=−M

∫
∞

−∞

∣∣〈�⌈(A+1)/2⌉a, Ẽ2k
(
· , · , 1

2 + i t
)〉∣∣

× (1 + |t |)−5/4+ε(2r j + |t |)−1/4(1 + |2r j − |t ||)−1/4 dt.

Weyl’s law [Risager 2004, Theorem 2] implies that #{ℓ∈N : T −1< rℓ≤ T }≪ T for
T ≥ 1. Thus by subdividing the sum over ℓ∈ N into sums for which rℓ ∈ (T −1, T ]

for each T ∈ N, we find that
∞∑
ℓ=1

r−5/2+ε

ℓ (2r j + rℓ)−1/2(1 + |2r j − rℓ|)−1/2
≪

1
r j
.

Similarly,∫
∞

−∞

(1 + |t |)−5/2+ε(2r j + |t |)−1/2(1 + |2r j − |t ||)−1/2 dt ≪
1
r j
.
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Thus by the Cauchy–Schwarz inequality and Bessel’s inequality (bearing in mind
Parseval’s identity (14)), we deduce that∫

SL2(Z)\ SL2(R)

a(z, θ) dω j (z, θ)−
∫

SL2(Z)\ SL2(R)

a(z, θ) dω(z, θ)

≪M ∥�⌈(A+1)/2⌉a∥L2(SL2(Z)\ SL2(R))r
−2δ
j log r j , (64)

which completes the proof. □

Remark 10.1. Theorem 1.1 is proven for functions a : SL2(Z)\ SL2(R)→ C that
are finite linear combinations of even weight smooth compactly supported functions.
In order to remove the condition that a be a finite linear combination of even weight
functions, we would require bounds for the integral (15) that are uniform not only in
r j and rℓ but additionally uniform in k; we would also similarly require such uniform
bounds for the integrals (16) and (17). To prove such uniform bounds would require
stronger bounds for certain hypergeometric functions than the weaker bounds we
derive in Lemma A.3 and Corollary A.7 below, as we discuss in Remark A.8.

Appendix: Whittaker integral computations

AA. Special functions. We compute integrals of Whittaker functions by expressing
them in terms of generalized hypergeometric functions, as defined in [Slater 1966,
Chapter 2]. A generalized hypergeometric function is defined, wherever it converges,
as a series

p Fq

(
a1, . . . , ap

b1, . . . , bq
; z

)
:=

∞∑
m=0

(a1)m · · · (ap)m

(b1)m · · · (bq)m

zm

m!
. (1)

Here (b)m := b(b + 1) · · · (b + m − 1) and (b)0 := 1 for all b ∈ C, so that

(b)m =


0(b+m)
0(b) if b is not a nonpositive integer,
(−1)m 0(1−b)

0(1−b−m) if b is a nonpositive integer and m ≤ −b,
0 if b is a nonpositive integer and m >−b.

(2)

To bound hypergeometric functions, we must therefore bound gamma functions.
We do this via Stirling’s formula, which states that for s ∈ C with ℜ(s) > δ with
δ > 0,

0(s)=
√

2πss−1/2e−s
(

1 + Oδ

(
1
|s|

))
.

We use this in the following form: for s = σ + iτ with σ > 0,

|0(σ + iτ)| ≍σ (1 + |τ |)σ−1/2e−(π/2)|τ |. (3)



SUBCONVEXITY IMPLIES EFFECTIVE QUANTUM UNIQUE ERGODICITY 139

AB. Nonholomorphic case. We seek to provide an upper bound for an integral of
the form

Ik(α, β, γ )=

∫
∞

0

W0,iα(y)

0
( 1

2 + iα
)(

Wk,iβ(y)

0
( 1

2 + k + iβ
) +

W−k,iβ(y)

0
( 1

2 − k + iβ
))

y−1/2+iγ dy
y
,

where k ∈ Z and α, β, γ ∈ R. This can be expressed in terms of gamma functions
and a terminating hypergeometric function.

Lemma A.1 [Jakobson 1997, (27)]. For k ∈ Z and α, β, γ ∈ R, we have that

Ik(α, β, γ )=
(−1)k4iγ

2π

∏
ϵ1,ϵ2∈{±1}

0
( 1

4 +
i
2(ϵ1α+ ϵ2β + γ )

)
0

(1
2 + iα

)
0

(1
2 + iβ

)
0

( 1
2 + iγ

)
× 4 F3

(
−k, k, 1

4 +
i
2(−α+β + γ ), 1

4 +
i
2(α+β + γ )

1
2 ,

1
2 + iβ, 1

2 + iγ
; 1

)
. (4)

To obtain uniform bounds for the expression (4), we first deal with the ratio of
gamma functions.

Lemma A.2. For r, t ∈ R, we have that

0
(1

4 +
i(2r+t)

2

)
0

( 1
4 +

i t
2

)2
0

( 1
4 +

i(−2r+t)
2

)
0

( 1
2 + ir

)
0

( 1
2 − ir

)
0

( 1
2 + i t

)
≪

{
(1 + |t |)−1/2(1 + |2r + t |)−1/4(1 + |2r − t |)−1/4 if |t | ≤ 2|r |,

(1 + |t |)−1/2(1 + |2r + t |)−1/4(1 + |2r − t |)−1/4e−(π/2)(|t |−2|r |) if |t | ≥ 2|r |.

Proof. This follows from Stirling’s formula (3). □

Next, we bound the hypergeometric function in (4).

Lemma A.3. For k ∈ Z and r, t ∈ R, we have that

4 F3

(
−k, k, 1

4 +
i(−2r+t)

2 , 1
4 +

i t
2

1
2 ,

1
2 − ir, 1

2 + i t
; 1

)
≪k 1 +

(
1 + |2r − t |

1 + |r |

)|k|

.

Proof. By (1) and (2), the left-hand side is
|k|∑

m=0

√
π |k|(−1)m(|k| + m − 1)!

(|k| − m)!0
( 1

2 + m
)
m!

×
0

(
m +

1
4 +

i(−2r+t)
2

)
0

(
m +

1
4 +

i t
2

)
0

( 1
2 − ir

)
0

( 1
2 + i t

)
0

( 1
4 +

i(−2r+t)
2

)
0

( 1
4 +

i t
2

)
0

(1
2 + m − ir

)
0

( 1
2 + m + i t

) .
By Stirling’s formula (3), each summand is

≪k

(
1 + |2r − t |

1 + |r |

)m

.

This yields the desired bounds. □
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Combining Lemmata A.2 and A.3, we deduce the following bounds; these bounds
are not sharp but are more than sufficient for our purposes.

Corollary A.4. For k ∈ Z and r, t ∈ R,

Ik(r,−r, t)≪k (1 + |t |)−1/2(1 + |2r + t |)−1/4(1 + |2r − t |)−1/4.

AC. Holomorphic case. Here we instead seek to provide an upper bound for an
integral of the form

Ik,ℓ(r) :=

∫
∞

0

W0,ir (u)

0
( 1

2 + ir
) Wk,ℓ−1/2(u)
√
0(k + ℓ)0(k − ℓ+ 1)

u−1/2−ir du
u
,

where k, ℓ ∈ N are positive integers for which k ≥ ℓ and r ∈ R.

Lemma A.5. For k, ℓ ∈ N for which k ≥ ℓ and for r ∈ R, we have that

Ik,ℓ(r)= (−1)k−ℓ

√
π

2

√
0(k + ℓ)0(k − ℓ+ 1)

0
( 1

2 + ir
)

×

k−ℓ∑
m=0

(−1)m(ℓ+ m − 1)!0(ℓ+ m − 2ir)

(k − ℓ− m)!(2ℓ+ m − 1)!0
( 1

2 + ℓ+ m − ir
)
m!
. (5)

Proof. We use the fact that

Wk,ℓ−1/2(u)

= (−1)k−ℓ(k−ℓ)!e−u/2uℓL(2ℓ−1)
k−ℓ (u)

= (−1)k−ℓ(k−ℓ)!(k+ℓ−1)!
k−ℓ∑
m=0

(−1)m/(k−ℓ−m)!(2ℓ+m−1)!m!uℓ+me−u/2

from [Gradshteyn and Ryzhik 2015, (8.970.1) and (9.237.3)], where L(α)n denotes
the associated Laguerre polynomial, together with the identity∫

∞

0
W0,ir (u)e−u/2uℓ+m−1/2−ir du

u
=
(ℓ+ m − 1)!0(ℓ+ m − 2ir)

0
(1

2 + ℓ+ m − ir
)

from [Gradshteyn and Ryzhik 2015, (7.621.11)], in order to obtain the desired
identity. □

Remark A.6. Via (1) and (2), we may write Ik,ℓ(r) in the form

(−1)k−ℓ

√
π

2

√
0(k+ℓ)0(ℓ)0(ℓ−2ir)

√
0(k−ℓ+1)0(2ℓ)0

( 1
2+ir

)
0

( 1
2+ℓ−ir

) 3 F2

(
ℓ−k,ℓ,ℓ−2ir
2ℓ, 1

2+ℓ−ir
;1

)
.
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One can show that this can alternatively be written as

(−1)k−ℓ

√
π

2
0(ℓ)

√
0(k + ℓ)0(k − ℓ+ 1)

0
( 1

2 + k + ir
)
0(ℓ− 2ir)

0
( 1

2 + ir
)
0

( 1
2 + ℓ+ ir

)
0

( 1
2 + ℓ− ir

)
×3 F2

(
ℓ− k, 1

2 + ir, 1
2 − ir

1
2 + ℓ+ ir, 1

2 + ℓ− ir
; 1

)
.

However, we do not make use of these identities.

We now bound Ik,ℓ(r).

Corollary A.7. For k, ℓ ∈ N for which k ≥ ℓ and r ∈ R, we have that

Ik,ℓ(r)≪k,ℓ (1 + |r |)−1/2.

Proof. We simply bound each summand in (5) via Stirling’s formula (3). □

Remark A.8. As highlighted in Remark 10.1, it would be desirable to prove bounds
for Ik(r,−r, t) that are uniform not only with respect to r and t but also with respect
to k. Similarly, it would be desirable to prove bounds for Ik,ℓ(r) that are uniform
not only with respect to r but also with respect to k and ℓ. A closer examination of
the method of proofs of Corollaries A.4 and A.7 shows that these methods can be
used to give bounds that grow exponentially with k, which is insufficient for our
needs. Were we to fix every variable except k, then the methods in [Fields 1965]
can be used to obtain polynomial bounds for both of Ik(r,−r, t) and Ik,ℓ(r) solely
in the k-aspect; unfortunately, however, this is also insufficient for our needs.
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