
ESSENTIAL
NUMBER THEORY

msp

The Heegner–Stark theorem and Stark–Heegner points

Elias Caeiro and Henri Darmon

2025

vol. 4 no. 1





msp
Essential Number Theory

Vol. 4, No. 1, 2025

https://doi.org/10.2140/ent.2025.4.67

The Heegner–Stark theorem and Stark–Heegner points

Elias Caeiro and Henri Darmon

The determination by Heegner, Baker and Stark of the complete list of imaginary
quadratic orders of class number one relies critically on the theory of complex
multiplication. A conjectural extension of this theory to real quadratic fields
based on the notion of rigid analytic elliptic cocycles is shown to yield similar
lists for some explicit families of real quadratic orders with small regulators.
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Notation

Given D ≡ 0, 1 (mod 4), let OD = Z
[1

2(D +
√

D)
]

be the unique quadratic order
of discriminant D, let Cl(D) denote its class group in the wide sense, and let
h(D) := # Cl(D) denote the class number of OD. The discriminant D is said to
be fundamental if OD is a maximal order. If D is of the form D0m2 with D0

fundamental, then OD is also referred to as the order of conductor m in OD0 .
Class field theory associates to D an abelian extension HD of K D := Q(

√
D), the

ring class field of the order OD , whose Galois group Gal(HD/K D) is isomorphic
to Cl(D).

Let χD be the quadratic Dirichlet character of conductor D attached to K D , and
let L(s, χD) be the associated Dirichlet L-series.
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When D is positive, let εD > 1 denote the fundamental unit of OD. It has
norm −1 when the wide and narrow class numbers agree, and norm 1 otherwise.
The quantity log |εD| is called the regulator of OD .

If E is an elliptic curve over Q, let E (D) denote its D-th quadratic twist.

Introduction

The Heegner–Stark theorem of the title is the celebrated result that there are precisely
13 negative discriminants D for which h(D) = 1, namely,

D =−3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, −163. (1)

It was originally conjectured in a slightly different form by Gauss in his Disquisi-
tiones Arithmeticae; see [18]. Heegner’s original proof [20] exploits the theory of
complex multiplication to show that the negative discriminants of class number one
give rise to integral points on an affine “nonsplit Cartan” modular curve of level 24,
reducing their classification to the tractable Diophantine problem of finding the
integral points on a specific elliptic curve. The method is now the object of an
extensive literature. Stark’s work [33; 34] vindicating Heegner’s approach was
immediately preceded by a proof by Baker [1] exploiting linear forms in logarithms.
Variants involving modular curves of levels 15, 7, 9, 11, 13 and 17 have also been
described in [32], [21], [4], [29], [2] and [3] respectively. See [30, Appendix] for a
general survey.

The Diophantine approach initiated by Heegner is somewhat superseded by
analytic techniques based on Dirichlet’s class number formula, which for D < 0
asserts that

L(1, χD) =
2πh(D)

w
√

|D|
, w := #O×

D. (2)

Siegel showed that L(1, χD) ≫ |D|
−ϵ for all ϵ > 0, and hence that h(D) grows like

|D|
1/2−ϵ , but this result suffers from the fact that the implied constant in the lower

bound cannot be effectively computed owing to the possible existence of Siegel
zeroes of Dirichlet L-functions.

An important result of Goldfeld [17; 18] parlays a Hasse–Weil L-function of
an elliptic curve of conductor N with a zero of order ϱ at the central point for the
functional equation into an effective lower bound of the form

L(1, χD) ≫
log(|D|)ϱ−2−ϵ

√
|D|

(3)

for any ϵ > 0, provided χD(−N ) = (−1)ϱ−1. When combined with (2), this
inequality leads to the lower bound h(D) ≫ log(|D|)ϱ−2−ϵ with an explicit implied
constant, making it possible in principle to enumerate all the quadratic imaginary
orders of a given class number. The theory of complex multiplication makes a
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crucial cameo appearance in Goldfeld’s attack via the theorem of Gross–Zagier,
which exploits Heegner points to produce the desired Hasse–Weil L-series with a
zero of order ϱ ≥ 3 at the center. A survey of the Goldfeld–Gross–Zagier solution
to the effective class number problem for quadratic imaginary fields can be found
in the Bourbaki seminar article by Oesterlé [28].

For positive discriminants, the analytic class number formula

L(1, χD) =
h(D) log(εD)

√
D

(4)

only yields asymptotic lower bounds on the product of the class number and the
regulator. It is expected that there are infinitely many D > 0 for which h(D) = 1,
reflecting the unproved yet widely believed fact that log(εD) can often be roughly as
large as |D|

1/2. Proving that h(D) = 1 infinitely often is perhaps the most important
open problem about class numbers of real quadratic fields.

The analytic class number formula nonetheless suggests that families of real
quadratic orders with small fundamental units, whose regulators grow like log(D),
should behave like imaginary quadratic orders. This is the case for discriminants of
the form D = n2

± 4, where OD contains the explicit unit (n +
√

D)/2. Yokoi [36]
conjectured that there are exactly ten discriminants of the form D = n2

+ 4 with
class number one, namely,

D = 5, 8, 13, 20, 29, 53, 68, 125, 173, 293. (5)

Mollin [26] likewise predicted that there are ten class number one discriminants,

D = −4, −3, 5, 12, 21, 32, 45, 77, 117, 437, (6)

of the form D = n2
− 4, and Chowla [11] conjectured that there are six such

discriminants of the form 4n2
+ 1:

D = 5, 17, 37, 101, 197, 677. (7)

To yield nontrivial lower bounds on h(D) in families where the regulator grows
like log(D), Goldfeld’s inequality (3) would require a Hasse–Weil L-function with
a zero of order ϱ ≥ 4, whose existence follows from the Birch and Swinnerton-Dyer
conjecture but has yet to be established unconditionally. In spite of this difficulty,
Biró was able to prove Yokoi’s conjecture [7] and Chowla’s conjecture [6] by a
relatively elementary approach exploiting explicit formulas for special values of
zeta functions attached to ideal classes in real quadratic fields (see [8]) and Byeon,
Lee and Kim [9] managed to adapt Biró’s method to settle the n2

− 4 case. Further
recent progress based on Goldfeld’s method has been achieved in [35].

In conclusion, the Goldfeld–Gross–Zagier approach can, with some further effort,
be applied to real quadratic fields. Adapting the Heegner–Stark approach presents
a different kind of difficulty, since it would require an extension of the theory of
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complex multiplication to the setting of real quadratic fields. A largely conjectural
theory of “real multiplication” was proposed in [14] and developed further in [15]
and [16], so that the main arithmetic objects arising in the theory of complex
multiplication — singular moduli, elliptic units, and Heegner points — now admit
well-documented analogues in this framework.

Our main goal is to explain how the Stark–Heegner points of the title provide the
basis for a natural — albeit conditional — solution, modelled on the Heegner–Stark
approach, to various class number one problems for real quadratic fields like the
conjectures of Yokoi, Mollin and Chowla evoked above.

Section 3 briefly recapitulates the theory of Stark–Heegner points, whose key
predictions are summarised in Conjectures 7 and 26. The main theorem of this
paper is:

Main Theorem. Assume Conjecture 7 of Section 3. Then the conjectures of Yokoi,
Mollin and Chowla are true.

To sketch the proof of this theorem, the “rigid analytic elliptic cocycle” attached
to an elliptic curve E of prime conductor p yields an explicit rigid analytic function
8E(τ ) on the Drinfeld p-adic upper half-plane,

Hp := P1(Cp) − P1(Qp),

which enjoys a number of remarkable properties. For instance, letting

D := n2
+ 4, εD :=

1
2(n +

√
n2 + 4) with n ≥ 1,

the image of 8E(εD) in E(Cp) under the Tate uniformisation is expected to be
a global point on E — a so-called Stark–Heegner point — defined over the ring
class field HD. In particular, this point should belong to E(K D) if h(D) = 1.
The conjectural Gross–Zagier formula for Stark–Heegner points spelled out in
Conjecture 7(2) of Section 3 further predicts the triviality of this quadratic point
if E has analytic rank ≥ 2 over Q; it follows in this case that, for D = n2

+ 4,

8E(εD) = 1 whenever h(D) = 1.

When n is larger than p + 2 and p does not divide D, it is shown in Section 1 that
the quadratic elements εD must lie in Hp and even in the standard affinoid subset
H◦

p ⊂Hp consisting of the complement in P1(Cp) of the (p+1) distinct Fp-rational
mod p residue discs. To deduce Yokoi’s conjecture from the conjectured properties
of 8E , it therefore essentially suffices to verify that all the zeroes of 8E(τ ) − 1
in H◦

p that are quadratic over Qp and of norm −1 are accounted for by the class
number one discriminants listed in (5).

Thanks to Hensel’s lemma, understanding the zeroes of 8E(τ ) − 1 in H◦
p can

largely be reduced to the study of the mod p reduction of 8E(z), denoted by RE(x).
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It is a rational function on P1 over Fp with all its zeroes and poles in P1(Fp).
A formula for RE(x) is available in terms of the Manin symbols for E , and the
factorisation of RE(x) − 1 over Fp is readily carried out by computer.

For example, the smallest elliptic curve of rank two and prime conductor arises
when p = 389. For this elliptic curve, denoted by 389A1 in the tables of Cremona,
the degree of RE(x) is 144. Assuming Conjecture 7 on Stark–Heegner points, a
study of the zeroes of RE(x) − 1 implies that any class number one discriminant
of the form n2

+ 4 not appearing in (5) must be divisible by 389. Several other
elliptic curves of rank two also yield the analogous result, and the full determination
follows from genus theory, as will be explained further in Section 6.

The same strategy applies to the discriminants D of the form n2
− 4, leading

to the conclusion that (6) is a complete list of the class number one discriminants
of that form. Modifications of 8E can also be constructed to tackle Chowla’s
conjecture, or more general class number one problems for real quadratic fields of
Richaud–Degert type, as explained in Section 7.

The situation is somewhat reminiscent of Skolem’s p-adic method and its more
elaborate version by Chabauty and Coleman, which produces a nonconstant p-adic
analytic function on a curve that vanishes at all of its integral points. One gets a full
determination of the set of integral points by examining the zeroes of this function,
provided it has no extraneous ones. The function 8E(z)− 1 fills an analogous role
for the class number one discriminants of the form n2

± 4. The Heegner–Stark
approach to Yokoi’s conjecture is thus imbued with a diophantine flavour, even if the
diophantine aspects of the theory of Stark–Heegner points remain rather mysterious.
See [10, Chapter 4, Section 6 and Chapter 10, Section 10] for a nice overview of
Skolem’s p-adic method, and [2] and [3] for a discussion of an anabelian refinement
of the Chabauty–Coleman method, with applications to certain modular curves of
level 13 and 17 with direct relevance to the Gauss class number problem.

We close the introduction with three remarks:

(1) The names of Heegner and Stark appeared in [14] because of a sentiment that
“Stark–Heegner points are to Heegner points what (Gross–)Stark units are to elliptic
or circular units”. That the Heegner–Stark method can be adapted to real quadratic
fields thanks to the eponymous points is a happy but entirely fortuitous circumstance
which was not anticipated when the terminology was coined.

(2) It is amusing that a conjectural Gross–Zagier formula for Stark–Heegner points
applied to certain elliptic curves of rank > 1 features prominently in a strategy which
otherwise has very little in common with the approach of Goldfeld–Gross–Zagier.

(3) Readers inclined to take the jaundiced view may question the value of a condi-
tional proof, relying on a highly conjectural theory, of theorems which are in many
cases already known. Aside from its aesthetic appeal, the authors hope that the
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approach they describe provides convincing if somewhat oblique evidence for the
theory of Stark–Heegner points by subjecting it to an exacting “stress test”, much
as physicists validate their theories by showing that they accurately predict certain
experimental outcomes.

1. Splitting of small primes in real quadratic fields

In this section, we prove that, if D = n2
± 4 is a fundamental discriminant of class

number one, then the small primes p < n + 2 are either inert or ramified in K D/Q.
This implies that the RM points of discriminant D = n2

± 4 belong to Hp so long
as n > p + 2, a crucial property which allows the classification of such D to be
tackled with the theory of real multiplication and Stark–Heegner points.

The following proposition seems to be folklore (see for instance [27, Lemma 1]
and [7, Fact B]) but we include a proof for the sake of completeness. It is the real
quadratic analogue of the classical fact that every prime strictly smaller than 1

4 |D|

is inert in K D when D is a negative discriminant of class number one.

Proposition 1. Let D > 0 be a discriminant of class number one and let v be the
conductor of Z[εD] relative to OD . Then every prime p < 1

v
(
√

D−2) is inert in OD

or divides its conductor.

Remark 2. This bound is sharp: if D = n2
−4 has class number one and p = n −2

is prime, p ramifies, so the −2 in the numerator is necessary. Nonetheless, it is not
hard to see from our proof that this is the only case in which we cannot replace the
bound by 1

v
(
√

D − 1).

Corollary 3. Let D >0 be a discriminant of class number one and of the form n2
±4.

Then any prime p < n − 2 which doesn’t divide the conductor of D is inert in K D .

Proof. In this case, 1
2(n +

√
D) is a power of the fundamental unit εD. Since

Z
[ 1

2(n +
√

D)
]
= OD already has conductor 1, the same holds for Z[εD]. □

To prove Proposition 1, we use the following lemma.

Lemma 4. Let D > 0 be a positive discriminant and let v be the conductor of Z[εD]

relative to OD . If α ∈ OD is such that

|NormK D/Q(α)| <

√
D−2
v

,

then α is associated to a rational integer.

Proof. Set ε = εD = u +v
√

D/2, where u, v > 0. The statement is vacuous if u ≤
3
2

(since then
√

D − 2 < 2) so we may assume u ≥ 2. As 4u2
− Dv2

= ±4, we have

D =
4u2

∓ 4
v2 ≤

(
2u + 1

v

)2

.
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In particular, since
√

D ≤ (2u + 1)/v, it suffices to prove the claim for α of norm
at most (2u − 2)/v2. In the same way, we obtain D ≥ ((2u − 1)/v)2 and so

|ε−1
| =

1

u +
1
2v

√
D

≤
1

2u − 1
.

Set vα = aε−1
+ b for some rational integers a, b. After possibly multiplying α by

a power of epsilon, we may assume that ε−1
≤ |vα| ≤ 1. If a = 0 then α is already

rational so suppose a > 0. The conjugate α of α satisfies

v|α| = |aε ± b| = |a(ε ∓ ε−1) ± vα| ≥ a(ε ∓ ε−1) − 1.

It follows that

v2
|αα| ≥ ε−1(a(ε ∓ ε−1) − 1) ≥ a(1 − ε−2) − ε−1.

On the other hand, if a ≥ 2u − 1, we have

a(1 − ε−2) − ε−1 > (2u − 1)

(
1 −

1
(2u − 1)2

)
−

1
2u − 1

≥ 2u − 2.

We conclude that a < 2u − 1, from which we deduce 0 < aε−1 < 1. As |vα| ≤ 1,
we must have b = 0 or b = −1. If b = 0 we are done, and if b = −1 we find

2u − 2 ≥ v2
|αα| = a(2u − a) ∓ 1,

which impossible as 0 < a ≤ 2u − 2. □

Proof of Proposition 1. Suppose p < (
√

D − 2)/v is a prime which is not inert
and doesn’t divide the conductor of OD . Then, since D has class number one, ±p
is represented by the principal form, i.e., we can write ±p as the norm of some
element α ∈ OD . Lemma 4 then implies that p is a square, a contradiction. □

2. Modular parametrisations and elliptic cocycles

We begin with a presentation of classical modular parametrisations of elliptic curves
designed to motivate their p-adic counterparts: the rigid analytic elliptic cocycles
that are the basis for the theory of Stark–Heegner points.

Let E be an elliptic curve of conductor N , and let

aℓ(E) = ℓ + 1 − #E(Fℓ) for all primes ℓ ∤ N .

The first cohomology H 1(00(N ), Z) of the Hecke congruence group 00(N ) is
endowed with an action of Hecke operators, and the modularity theorem of Wiles
and Taylor–Wiles asserts that there are two classes ϕ+

E and ϕ−

E ∈ H 1(00(N ), Z)

satisfying

ϕ±

E

(
a −b

−c d

)
= ±ϕ±

E

(
a b
c d

)
, Tℓ(ϕ

±

E ) = aℓ(E) · ϕ±

E for all ℓ ∤ N .
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Wiles’ proof produces suitable eigenclasses in the étale cohomology of the
modular curve X0(N ), from which the classes ϕ±

E are deduced via comparison
theorems between étale and singular cohomology.

The group 00(N ) acts discretely on the Poincaré upper half-plane H by Möbius
transformations, and hence on the additive group OH of holomorphic functions
on H. Faltings’ proof of the isogeny conjecture for abelian varieties implies the
following proposition:

Proposition 5. There are two complex numbers �+

E ∈ R and �−

E ∈ iR satisfying
the following conditions:

(1) The lattice 3E := Z�+

E + Z�−

E is commensurable with the Néron lattice of E.

(2) The class
�+

E · ϕ+

E + �−

E · ϕ−

E ∈ H 1(00(N ), C) (8)

is in the kernel of the natural map

H 1(00(N ), C) → H 1(00(N ),OH).

In particular, there is a 0-cochain JE ∈ C0(00(N ),OH) satisfying

JE(γ −1z) −JE(z) = �+

E · ϕ+

E (γ ) + �−

E · ϕ−

E (γ ) for all γ ∈ 00(N ). (9)

The resulting function

JE : 00(N )\H → C/3E ≃ E(C) (10)

is called the modular parametrisation attached to E . An important application
of JE is the construction of a plentiful and arithmetically interesting supply of
algebraic points on E which are the basis for the best known results towards the
Birch and Swinnerton-Dyer conjecture: the Heegner points arising from the image
of (imaginary) quadratic arguments in H. Namely, letting HCM be the set of points
of H satisfying a quadratic equation over Q, the holomorphic function JE on H

induces a map
JE : HCM

→ E(C), (11)

whose image lies in the Mordell–Weil groups of E over ring class fields of quadratic
imaginary fields.

We now turn to elliptic cocycles which are a p-adic analogue of the modular
parametrisation JE of (11) suitable for a theory of real multiplication.

Suppose p is a prime at which E has multiplicative reduction. The periods �±

E
(or rather, the complex exponential of 2π i ·�−

E/�+

E ) then admit a p-adic analogue,
the Tate period q ∈ Q×

p attached to E , for which

E(Cp) = C×

p /qZ. (12)
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The prime p necessarily divides the conductor N of E . For simplicity, and because
this is the only case that will arise in the application to the class number one problem,
assume from now on that N = p.

The class in (8) admits two natural p-adic multiplicative counterparts arising from
the map on cohomology induced by the homomorphism from Z to Q×

p sending k
to qk , namely,

qϕ+

E , qϕ−

E ∈ H 1(00(p), Q×
p ).

To transpose the discussion of the previous section to a p-adic setting, it is natural
to replace H by the Drinfeld p-adic upper half-plane

Hp := P1(Cp) − P1(Qp)

equipped with its structure of a rigid analytic space. Let OHp denote the ring of rigid
analytic functions on Hp. The group 00(p) acts on Hp by Möbius transformations,
and hence on O×

Hp
, but the class qϕE is not trivialised under the natural inclusion

Q×
p →O×

Hp
. This is because the analogue of the cochain JE of (9) would have to be

invariant under integer translations, and Z is not discrete p-adically, but dense in Zp.
It turns out to be fruitful to replace 00(p) by the larger Ihara group 0 :=

SL2(Z[1/p]), which is an amalgamated product

0 = SL2(Z) ∗00(p) SL2(Z).

The Mayer–Vietoris sequence in group cohomology supplies an injective map

H 1(00(p), Z) → H 2(0, Z)

with finite cokernel. Let α+

E , α−

E ∈ H 2(0, Z) be the images of ϕ+

E and ϕ−

E respec-
tively, under this map.

The following conjecture is a p-adic counterpart of Proposition 5 in which the
degree of cohomology is shifted by one:

Conjecture 6 [14, Conjecture 5]. The classes

qα+

E , qα−

E ∈ H 2(0, Q×
p )

lie in the kernel of the natural map

H 2(0, Q×
p ) → H 2(0,O×

Hp
).

Conjecture 6 is obtained by formally exponentiating the formula in [14, Theorem
4], which is itself deduced as a formal consequence of the exceptional zero conjecture
of Mazur, Tate and Teitelbaum [24] proved by Greenberg and Stevens [19]. The tame
refinement of the Greenberg–Stevens theorem proved in [31] leads to a statement
that is almost as strong as Conjecture 6 up to a supplementary torsion ambiguity, at
least for elliptic curves that are unique in their rational isogeny class.
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Conjecture 6 implies that there are one-cochains J+

E and J−

E ∈ C1(0,O×

Hp
)

satisfying

J±

E (γ2)(γ
−1
1 z) ÷ J±

E (γ1γ2)(z) × J±

E (γ1)(z) = qα±

E (γ1,γ2) for all γ1, γ2 ∈ 0.

The natural images of J+

E and J−

E in H 1(0,O×
Hp

/qZ) are called the (even and
odd, respectively) rigid analytic elliptic cocycles attached to E . They play much
the same role as the modular parametrisation of E in (10) in the setting of real
multiplication theory, as will be explained in the next section.

The construction in [14] shows that the cocycles J±

E can be represented by
parabolic cocycles which are trivial on the standard parabolic subgroup, and hence
can also be described as a 0-invariant modular symbol with values in O×

Hp
/qZ. This

point of view, which is convenient for explicit calculations, will be systematically
adopted from now on, namely, the symbols J±

E will be used interchangeably to
describe parabolic one-cocycles on 0 and their associated modular symbol. Hence
the cocycles J+

E and J−

E are now to be envisaged as functions

J+

E , J−

E : P1(Q) × P1(Q) → O×

Hp
/qZ

satisfying the usual additivity properties of modular symbols,

J±

E {r, s}= J±

E {s, r}
−1, J±

E {r, s}×J±

E {s, t}= J±

E {r, t} for all r, s, t ∈P1(Q),

as well as an invariance property under 0,

J±

E {γ r, γ s}(γ τ) = J±

E {r, s}(τ ) for all γ ∈ 0.

The cohomology class c can be recovered from its associated 0-invariant modular
symbol m by choosing a basepoint t ∈ P1(Q) and setting

c(γ ) := m{t, γ t}.

3. Stark–Heegner points

An element τ ∈ Hp is called an RM point if it satisfies a quadratic equation with
integer coefficients and positive discriminant. The field Kτ = Q(τ ) is then a real
quadratic field in which p is nonsplit, and the Z[1/p]-order

O(p)
τ :=

{(
a b
c d

)
∈ M2(Z[1/p]) such that cτ 2

+ (d − a)τ − b = 0
}

is isomorphic to a Z[1/p]-order in Kτ , embedded via(
a b
c d

)
7→ cτ + d.

The discriminant of O(p)
τ (a positive integer which is not divisible by p2 if p is odd,

by definition) is also called the discriminant of τ .
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The stabiliser of τ in GL2(Z[1/p]), denoted by 0τ , is isomorphic to the group
O(p)×

τ of units in O(p)
τ , and hence is of rank one. A generator γτ for 0τ , which we call

the fundamental automorph of τ , can be normalised by choosing the fundamental
unit ετ > 1 of O(p)

τ , embedding it into Cp, and requiring that γτ act on the column
vector (τ, 1) as multiplication by ετ . The value of J+

E at τ ∈ HRM
p is then defined

by setting

J+

E [τ ] := J+

E (γτ )(τ ) = J+

E {0, γτ 0}(τ ) ∈ C×

p /qZ
= E(Cp).

(To evaluate the odd cocycle J−

E , it is necessary to replace γτ by a generator of
the stabiliser of τ in 0 ⊂ GL2(Z[1/p]) modulo torsion, i.e., to replace γτ by its
square when the fundamental unit of O(p)

τ has norm −1.)
The value of J±

E at an RM point τ only depends on the cohomology class of J±

E :
if ϕ(γ ) = f −1

· (γ f ) is a one-coboundary, then

ϕ[τ ] = f (γ −1
τ τ) f (τ )−1

= 1.

Moreover, the assignment τ 7→ J±

E [τ ] is 0-invariant: if γ ∈ 0, the fundamental
automorph of γ τ is γ γτγ

−1 and we have

J±

E [γ τ ] = J±

E (γ γτγ
−1)(γ τ) = J±

E (γ )(γ τ)× J±

E (γτ )(τ )× J±

E (γ −1)(τ ) = J±

E [τ ].

The cocycles J+

E and J−

E thus yield two maps

J+

E , J−

E : 0\HRM
p → E(Cp) (13)

directly analogous to (11), where HRM
p denotes the set of RM points in Hp. The

main conjecture of [14] (see [14, Conjectures 5.6, 5.15]) predicts that the image
of J+

E (resp. J−

E ) lies in the union of the Mordell–Weil groups of E over all ring
class fields in the wide (resp. narrow) sense of real quadratic fields, suggesting the
construction of a plentiful and arithmetically interesting supply of algebraic points
on E , the so-called Stark–Heegner points:

Conjecture 7. (1) If τ ∈ HRM
p is an RM point with (not necessarily maximal)

associated order Oτ = OD , then the image of J+

E [τ ] (resp. J−

E [τ ]) under (12)
is a global point of E defined over the ring class field HD (resp. the narrow
ring class field) attached to D.

(2) (Gross–Zagier formula) For D a fundamental discriminant,

htE(TraceHD
K D

(J+

E [τ ])) ∼ L ′(E/K , 1), (14)

where htE is the Néron–Tate canonical height on E over K D , and ∼ denotes
an equality up to an explicit nonzero fudge factor.

Remark 8. Conjecture 7 can be supplemented with a conjectural Shimura reci-
procity law [14, Conjecture 5.9], which allows the trace in (2) to be expressed as



78 ELIAS CAEIRO AND HENRI DARMON

a sum over the class group rather than over the Galois group of HD/K D. This
makes (2) somewhat more independent of (1).

Remark 9. If D is not a fundamental discriminant, and ℓ is an odd prime whose
square divides it exactly, then the Stark–Heegner points of discriminants D and
D0 := D/ℓ2 are related by the same norm-compatibility relations as classical
Heegner points:

TraceHD
HD0

(J+

E [τD])

=

{
(aℓ(E) − frobλ − frobλ′)J+

E [τD0] if ℓ = λλ′ in K D/Q,

aℓ(E)J+

E [τD0] if ℓ is inert in K D/Q,
(15)

for a suitable τD0 of discriminant D0, where the traces and frobenius elements
are to be understood as elements of (the group ring of) the class group via the
reciprocity law of global class field theory for K D . The Gross–Zagier formula (14)
can be extended to nonfundamental discriminants of the form D = D0c2 with D0

fundamental and c = ℓ1 · · · ℓm ·q1 · · · qn an odd squarefree product of rational primes
in which the ℓi are split and the q j are inert in K D/Q, by the formula

htE(TraceHD
K D

(J+

E [τ ])) ∼

m∏
i=1

(aℓi (E) − 2)2
n∏

j=1

aq j (E)2
· L ′(E/K , 1). (16)

Remark 10. While Conjecture 7(1) seems inaccessible short of an essentially new
idea, Conjecture 7(2) might be amenable to the methods of [5] and [25], where
the p-adic logarithms of the traces of Stark–Heegner points to certain genus fields
of real quadratic fields are shown to agree with the p-adic logarithms of global
points, by a comparison with Heegner points arising from suitable Shimura curve
parametrisations. It does not seem out of the question that a tame refinement of this
approach and its extension in the spirit of de Shalit’s proof [31] of a tame refinement
of the theorem of Greenberg–Stevens could eventually lead to a proof of, or at least
partial theoretical evidence for, Conjecture 7(2).

The special case of Conjecture 7 that is germane to the class number one problem
for real quadratic fields involves only the even cocycle J+

E , which shall henceforth
be denoted by JE to lighten the notation.

A simple but crucial observation is that if

L(E/Q, 1) = L ′(E/Q, 1) = 0,

the L-series derivative that appears in Conjecture 7(2) always vanishes. The non-
degeneracy of the Néron–Tate height then implies that the trace to Kτ of the
Stark–Heegner point JE [τ ] is torsion. This leads to a nontrivial property of the
class number one real quadratic orders in which p is inert:
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Corollary 11. Assume Conjecture 7. If E is an elliptic curve of prime conductor p
and analytic rank ≥ 2, and D is a discriminant of class number one for which
(D/p) = −1, then JE

[1
2(D +

√
D)

]
maps to a torsion point in E(K D) under (12).

In particular, JE
[ 1

2(D +
√

D)
]
= 1 if E has trivial torsion over quadratic fields.

Remark 12. If E is any elliptic curve over Q, then E(K D)tor = E(Q)tor for all
but finitely discriminants D. Moreover, the list of exceptional D’s can be found in
the LMFDB database entry for E (under “growth of torsion in number fields”). It
turns out that all elliptic curves over Q of analytic rank ≥ 2 and prime conductor
≤ 10000 have trivial torsion over quadratic fields.

Remark 13. The assumption on the analytic rank is implied by a similar assumption
on the algebraic rank, thanks to the deep results of Gross–Zagier and Kolyvagin.
The converse is still open and very little is known about it without assuming the
Birch and Swinnerton-Dyer conjecture or at least the Shafarevich–Tate conjecture.
This is why we have phrased Corollary 11 in terms of the weaker assumption on
the analytic rank.

Although Corollary 11 gives a nontrivial property satisfied by all real quadratic
discriminants of class number one, it is unclear whether it brings us any closer to
understanding the class number one problem for real quadratic fields. Since JE is a
cocycle and not a function, its fibers are clearly not finite: indeed if they were it
would contradict the widely believed infinitude of D for which h(D) = 1.

4. Rigid analytic period functions

The (even) rigid analytic period function attached to E is simply the rigid analytic
function on Hp defined by

8E(z) := JE {0, ∞}.

There is no loss of information in passing from JE to its associated rigid analytic
period function. Indeed, the Euclidean algorithm for the gcd implies that any path
from one cusp to another can be expressed as a finite sum of unimodular paths,
of the form {a/b, c/d} with ad − bc = ±1, and these unimodular paths are all
equivalent under 0 (under GL2(Z), in fact) to {0, ∞}.

The rigid analytic period function 8E is far from being invariant under 0, but
it is invariant under z 7→ −z (because JE is even) and under the map z 7→ p2z. It
also satisfies the two- and three-term relations

8E

(
1
z

)
= 8E(z)−1 and

8E(z + 1)

8E(z)
= 8E

(
z + 1

z

)
, (17)

as well as some further more complicated functional equations whose precise nature
depends on the prime p.
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The value of the cocycle JE at τ ∈ HRM
p can be expressed as a product of values

of 8E at a collection of GL2(Z)-translates of τ arising from its continued fraction
expansion (viewed as a real number)

τ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

with ai ∈ Z≥1.

The number τ is real quadratic if and only if (a0, a1, . . . ) is eventually periodic,
and it is said to be reduced if (a0, a1, . . . ) is periodic. This is equivalent to the
condition

τ > 1, −1 < τ ′ < 0,

where τ ′ is the algebraic conjugate of τ . Assume now that τ is reduced and that its
continued fraction expansion has minimal period length m. Then, denoting by [x]

the integer part of a positive real number x , we can write

τ0 = τ, a0 = [τ0],

τ1 = (τ0 − a0)
−1, a1 = [τ1],

τ2 = (τ1 − a1)
−1, a2 = [τ2],

...
...

τm−1 = (τm−2 − am−2)
−1, am−1 = [τm−1],

τm = (τm−1 − am−1)
−1, τm = τ0.

The sequence (τ0, τ1, . . . , τm−1) is called the reduced cycle attached to τ0 = τ .
The τi represent the roots of binary quadratic forms in a cycle of reduced forms of
discriminant D.

Lemma 14. The value of the even elliptic cocycle JE at a reduced τ ∈HRM
p is given

by
JE [τ ] := 8E(τ0) · 8E(τ1) · 8E(τ2) · · · 8E(τm−2) · 8E(τm−1).

Proof. Let T =
( 1

0
1
1

)
and S =

(0
1

1
0

)
∈ GL2(Z). For each i < m, set γi = T ai S so that

τi+1 = γ −1
i τi . Set γ = γ0 · · · γm−1. The periodicity of the continued fraction of τ

implies that γ τ = τ . Conversely, since τ is reduced, the fundamental automorph γτ

of τ has nonnegative coefficients and its top-left entry is maximal so the Euclidean
algorithm shows it can be written as T b0 ST b1 S · · · T bm−1 S for some positive integers
b0, . . . , bm−1 ≥ 1. The equality γτ τ = τ then translates to [b0, . . . , bm−1] being the
continued fraction of τ . It follows from the uniqueness of the continued fraction
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that γ = γτ is the fundamental automorph of τ . Accordingly,

JE [τ ] = JE {0, γτ 0}(τ ) =

m−1∏
i=0

JE {γ0 · · · γi−10, γ0 · · · γi 0}(τ )

=

m−1∏
i=0

JE {0, γi 0}(γ −1
i−1 · · · γ −1

0 τ) =

m−1∏
i=0

8E(τi ). □

It transpires from Lemma 14 that JE [τ ] is a product of values of 8E , the number
of factors in the product depending on the length of the period in the continued
fraction expansion of τ .

Most importantly, when D is of the form n2
+ 4, we can express JE [τ ] as a

single value of the rigid analytic period function 8E at

εD :=
n +

√
n2 + 4
2

= n +
1

n +
1

n + · · ·

. (18)

The same is true with discriminants of the form D = n2
− 4, where

εD =
1
2(n +

√
n2 − 4)

except when D = 5 and n = 3, where this unit of norm 1 is the square of the golden
ratio εD .

Proposition 15. For all D of the form n2
± 4,

JE
[1

2(D +
√

D)
]
= 8E(εD).

If D = 5, then furthermore

JE
[ 1

2(1 +
√

5)
]
= 8E(ε5) and JE

[1
2(1 +

√
5)

]2
= 8E(ε2

5).

Proof. For D = n2
+4, this follows from Lemma 14 combined with (18). In general,

one can directly see that the fundamental automorph attached to the unit εD of norm
s = ±1 is

γD =

(
n −s
1 0

)
,

so that

JE
[ 1

2(D +
√

D)
]
= JE [εD] = JE {0, γD0}(εD) = JE {0, ∞}(εD) = 8E(εD).

The discriminant D = 5 is exceptional because it is the only discriminant which
can be written as both n2

+ 4 and n2
− 4. In the latter case, 1

2(3 +
√

32 − 4) = ε2
5

is actually the square of the fundamental unit ε5 =
1
2(1 +

√
5). For the same reason( 3

1
−1
0

)
is the square of the automorph γ5, so the above computation yields

8E(ε2
5) = JE

[ 1
2(1 +

√
5)

]2
. □
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Proposition 15 leads to the following concrete consequence of Corollary 11:

Corollary 16. Assume Conjecture 7. Let E be an elliptic curve of prime conductor p
and analytic rank ≥ 2 over Q having no quadratic torsion. If D = n2

± 4 is the
discriminant of a quadratic field of class number one in which p is inert, then
8E(εD) = 1. If p is inert in K5, then 8E(ε2

5) = 1 as well.

For the negative discriminants D = −4 and D = −3 that occur in (6), a substan-
tial part of the natural analogue of Corollary 16 can be proven independently of
Conjecture 7. More precisely, if K is any imaginary quadratic field in which p
is inert and τ ∈ Hp ∩ K , we can define JE [τ ] to be JE {0, γτ 0}(τ ), where γτ is a
generator of the stabiliser 0τ of τ , suitably renormalised so as to have positive
imaginary parts when viewed in Oτ ⊂ K .

Since K is imaginary quadratic, the unit group of Oτ now has rank 0 so γτ —
and hence JE [τ ] as well — is torsion. In fact, when τ has discriminant other
than D = −3, −4, the unit group of Oτ is trivial, which means that γτ =

( 1
0

0
1

)
and JE [τ ] = 1. Letting ε−4 = i and ε−3 =

1
2(1 + i

√
3), which correspond to

εn2−4 =
1
2(n +

√
n2 − 4) for n = 0, 1, we find, as in Proposition 15,

γ−4 =

(
0 −1
1 0

)
, JE [ε−4]= 8E(ε−4),

γ−3 =

(
1 −1
1 0

)
, JE [ε−3]= 8E(ε−3).

Lemma 17. If (−4/p) = −1, then JE [ε−4] = ±1, and if (−3/p) = −1, then
JE [ε−3] is a cube root of unity.

Proof. The element γ−3 is 3-torsion so the same holds for JE [ε−3]. For the same
reason, JE [ε−4] is 4-torsion, but in fact, as γ 2

−4 = −
(1

0
0
1

)
fixes 0,

JE [ε−4]
2
= JE {0, γ 2

−40}(ε−4) = 1. □

Remark 18. In concrete instances, it is not hard to determine when these “CM
Stark–Heegner points” are trivial: this happens precisely when they are congruent
to 1 modulo p, since the only torsion point in O×

Cp
congruent to 1 modulo p is 1.

Experiments with curves of prime conductor of rank 0, 1 and 2 and conductor
≤ 2089 suggest that these points, in addition to being torsion, appear to always
be trivial. This resonates with the philosophy that Stark–Heegner points ought to
be defined over K when K has class number one, given that the rank two elliptic
curves we have examined have trivial torsion over quadratic fields, (even if, of
course, Conjecture 7(2) no longer holds in this setting).

It should be noted that the elements εD belong to the standard affinoid H◦
p ⊂ Hp

when p in inert in K D. Corollary 16 suggests tackling Yokoi’s conjecture by
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studying the solutions of the equation

8E(z) = 1

that lie in the standard affinoid. The next section shows that this question can largely
be reduced, thanks to Hensel’s lemma, to a similar question for the mod p reduction
of 8E(z) (more precisely, of its restriction to H◦

p), a rational function over the field
with p elements.

5. Rational period functions

Let X := P1 − P1(Fp) be the “pointless” affine curve over Fp consisting of the
complement of the Fp-rational points in P1, and let

OX = Fp[x][(x p
− x)−1

] ⊂ Fp(x)

be its ring of regular functions. If ordp(q) = 1, then the function 8E ∈ O×
Hp

/qZ

can be translated by a suitable power of q so that it maps the standard affinoid H◦
p

to O×

Cp
⊂ OCp . This representative belongs to the integral Tate algebra Oint

H◦
p
⊂ OH◦

p
.

Reduction modulo p gives rise to maps

redp : H◦

p → X (Fp), redp : Oint
H◦

p
→ OX .

The image
RE(x) := redp(8E |H◦

p
) ∈ O×

X

of 8E is called the (mod p) rational period function attached to E .
The following is a direct consequence of Hensel’s lemma:

Lemma 19. Let x ∈ X (Fp) be a solution of the equation RE(x) = 1 for which
R′

E(x) ̸= 0. Then there is a unique z ∈ H◦
p satisfying

redp(z) = x, 8E(z) = 1.

We obtain the following corollary:

Corollary 20. Let E be an elliptic curve of prime conductor p and rank ≥ 2
over Q having no quadratic torsion. Assuming Conjecture 7, RE(εD) = 1 for all
discriminants D = n2

± 4 of class number one in which p is inert. If εD is a simple
zero of RE(x)−1, then εD is the only solution to 8E(τ )=1 in its mod p residue disc.

Corollary 20 reduces the study of Yokoi’s conjecture to the determination of
the zeroes of a single rational function over Fp, the function RE(x)− 1. We now
proceed to give an explicit formula for RE(x) which allows it to be calculated
efficiently on the computer.

This formula depends on the even 00(p)-invariant modular symbol

m E {r, s} :=
1

�+

E
Re

( ∫ s

r
2π i fE(z) dz

)
∈ Z
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attached to E , and on the associated Manin symbol

ME : P1(Fp) → Z

defined by

ME(a) :=

{
m E {a/p, ∞} if a = 0, 1, . . . , p − 1,

−m E {0, ∞} if a = ∞.

The value ME(0) is a nonzero multiple of L(E, 1) and hence vanishes when E
has analytic rank ≥ 1. The following proposition examines the GL2(Z)-invariant
modular symbol

J E : P1(Q) × P1(Q) → O×

X

defined by
J E {r, s} = redp(JE {r, s}|H◦

p
).

Proposition 21. For all r, s ∈ P1(Q),

J E {r, s} =

∏
a∈Fp

(z − a)Mrs(a) (mod F×

p ), (19)

where

Mrs(a) := m E

{
r − a

p
,

s − a
p

}
.

Proof. Let us first quickly recall the construction of the 0-invariant elliptic modular
symbol JE . Let D(P1(Qp), Z) denote the space of Z-valued measures of total mass
zero on P1(Qp), that is, the space of measures µ on the topological space P1(Qp)

for which µ(U ) ∈ Z for any compact-open subset U and µ(P1(Qp)) = 0. If µ ∈

D(P1(Qp), Z) is such a Z-valued measure, we may define a multiplicative integral
by considering Riemann products instead of Riemann sums: for any continuous
f : P1(Qp) → C×

p ,

×

∫
P1(Qp)

f (t) dµ(t) := lim
P1(Qp)={Uα}

∏
α

f (tα)µ(Uα),

where the limit is taken over finer and finer coverings of P1(Qp) by mutually
disjoint compact open subsets Uα and tα ∈ Uα is a sample point.

It is proved in [14, Section 1.2] that the even modular symbol m E may be
upgraded uniquely to an even modular symbol

µE : P1(Q) × P1(Q) → D(P1(Qp), Z)

satisfying

µE {r, s}(Zp) = m E {r, s}, µE {γ r, γ s}(γU ) = µE {r, s}(U )

for all r, s ∈ P1(Q) and γ ∈ GL2(Z). For simplicity and to avoid the qZ ambiguity,
we now restrict ourselves to the standard affinoid H◦

p. Using this modular symbol,
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we define a multiplicative line integral: for all τ0, τ ∈ H◦
p and r, s ∈ P1(Q),

×

∫ τ

τ0

∫ s

r
ωE := ×

∫
P1(Qp)

(
τ − t
τ0 − t

)
dµE {r, s}(t). (20)

The elliptic modular symbol JE corresponds to the unique indefinite integral

JE {r, s}(τ ) = ×

∫ τ∫ s

r
ωE ,

a 0-invariant modular symbol with values in O×

Hp
/qZ satisfying

×

∫ τ∫ s

r
ωE ÷ ×

∫ τ0
∫ s

r
ωE = ×

∫ τ

τ0

∫ s

r
ωE (21)

for all τ0, τ ∈ H◦
p and r, s ∈ P1(Qp). (See [14, Section 3.3].) Restricting JE to H◦

p
and translating it by a suitable power of q , it becomes a GL2(Z)-invariant modular
symbol with values in (Oint

H◦
p
)×. For all a ∈ P1(Fp), let

Ba =

{
a + pZp if a ̸= ∞,

P1(Qp) \ Zp if a = ∞

denote the preimage of {a} under the reduction map P1(Qp) → P1(Fp). We can
then write Ba = γaZp, where

γa =

(
p a
0 1

)
if a ̸= ∞, γa =

(
0 −1
p 0

)
if a = ∞.

For all r, s ∈ P1(Qp) and any a = 0, 1, . . . , p − 1, one finds that

µE {r, s}(Ba) = µE {γ −1
a r, γ −1

a s}(Zp) = m E

{
r − a

p
,

s − a
p

}
= Mrs(a).

The divisor of J E {r, s}(τ ) is the same as that of the image under redp of the function
in (20), where τ0 is an arbitrary base point in H◦

p and τ is treated as the variable.
This divisor is equal to

Div(J E {r, s}) =

∑
a∈P1(Fp)

Mrs(a)⟨a⟩,

where
Mrs(∞) = −Mrs(0) − · · · − Mrs(p − 1).

Proposition 21 follows directly since the rational function on the right of (19) has
the same divisor. □

By specialising this proposition to (r, s) = (0, ∞), since m E is even, we obtain:

Corollary 22. The rational period function RE(x) satisfies

RE(x) =

∏
a∈Fp

(x − a)ME (a) (mod F×

p ).
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Corollary 22 already suffices to compute the rational period function RE(x) in
practice, since the three-term relation can be used to identify the correct constant.
It is however possible to give a simple closed formula for RE(x) in all cases.

Proposition 23. The rational period function RE(x) is given by

RE(x) = x ME (0)
×

∏
ME (a)>0

(x − a)ME (a)
×

∏
ME (a)<0

(
1 −

x
a

)ME (a)

, (22)

where the products are taken over the a ∈ F×
p .

Proof. Corollary 22 shows that (22) is true up to a multiplicative scalar. To check
that this scalar is trivial, it suffices to verify that the formula for RE(x) in (22)
satisfies the two- and three-term identities of (17) which RE(x) inherits from the
rigid analytic period function 8E(z). Set

c =

∏
M(a)<0

(−a)M(a)
=

∏
M(a)<0

aM(a) and R(z) =

∏
a∈Fp

(z − a)M(a)

(since M is even) so that the right-hand side of (22) is c−1 R. After computing the
first nonzero Laurent coefficients at 0 of

R
(

1
z

)
= z−M(0)

∏
a∈F×

p

z−M(a)(1 − az)M(a),

R
(

z+1
z

)
= z−M(0)(z + 1)M(0)

∏
a∈F×

p

z−M(a)(z + 1 − az)M(a),

R(z + 1) = zM(1)
∏

a∈F×
p

(z − a)M(a+1),

we see that the two- and three-term relations

RE(x)RE

(
1
x

)
= 1 and RE

(
x+1

x

)
RE(x) = RE(x + 1)

amount to∏
a∈F×

p

aM(a)
× 1 = c2 and 1 ×

∏
a∈F×

p

aM(a)
= c ×

∏
a∈F×

p

aM(a+1),

respectively. The first equality follows from the observation that

c =

∏
M(a)>0

aM(a)
=

∏
M(b)<0

bM(b),

as seen by letting b = 1/a and recalling that M(1/a) = −M(a), and the second by
grouping together a with 1/a on the right-hand side and recalling that M(a + 1)−

M(1/a + 1) = M(a). □
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Remark 24. When E has rank at least two, the simpler formula

RE(x) =

p−1∏
a=1

(x − a)ME (a) (23)

seems to hold. To show this we need to prove the triviality of the scalar c =∏
M(a)>a aM(a), whose square is

�MT(E) :=

p−1∏
a=1

aME (a)
∈ F×

p .

This interesting quantity arises as the “first derivative” of the “theta element”

θE :=

∑
a∈(Z/pZ)×

ME(a) · ⟨a⟩ ∈ Z[(Z/pZ)×]

attached to E , an object that belongs to the integral group ring of Gal(Q(µp)/Q)

and can be viewed as a tame refinement of the Mazur–Swinnerton-Dyer p-adic
L-function attached to E . This tame refinement is studied in [23], where it is
conjectured that it belongs to the r -th power if the augmentation ideal in the integral
group ring, where r is the rank of E/Q, and even to its (r+1)-st power when E
has split multiplicative reduction at p. The quantity �MT (E) encodes the image
of θE in I/I 2 and hence is predicted to be equal to 1 when r ≥ 2. This is essentially
proved in [31], which gives strong evidence towards the Mazur–Tate conjecture
building on the p-adic insights of Greenberg and Stevens. The fact that the scalar c,
a canonical square root of �MT (E), is also equal to 1 appears to be a slight but
nontrivial refinement of the Mazur–Tate conjecture in this setting.

6. Yokoi’s conjecture

We are now ready to prove the main theorem of the introduction concerning the
conjectures of Yokoi and Mollin:

Theorem 25. Assume Conjecture 7 of Section 3. Then the class number one
discriminants of the form n2

+ 4 are equal to 5, 8, 13, 20, 29, 53, 68, 125, 173,
or 293, and those of the form n2

− 4 are equal to −4, −3, 5, 12, 21, 32, 45, 77, 117,
or 437.

Proof. The elliptic curve of rank two and smallest prime conductor is the curve
denoted by E = 389A1 in the tables of Cremona [13], with equation given by

E : y2
+ y = x3

+ x2
− 2x .

A computer calculation shows that the rational period function RE(x) has degree 144,
and the numerator of the rational function RE(x)− 1, a polynomial of degree 142,
factors into:
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• 66 linear factors, with roots 0 (twice), ±1 (three times), ±2 (twice), ±
1
2 (twice),

±115 (once), and twelve quadruples of roots of the form a, −a, 1/a, −1/a with

a = 3, 4, 6, 10, 13, 15, 62, 98, 101, 117, 123, 2
3 .

• 6 quadratic factors of the form x2
±nx −1, with n = 2, 5, 7, corresponding to the

discriminants D = 8, 29, and 53 in (5). These are precisely the discriminants in (5)
which are not quadratic residues modulo 389. This proves that any class number
one discriminant of the form n2

+ 4 with n > 391 must be divisible by 389.

• 10 quadratic factors of the form x2
±nx +1, with n = 1, 4, 5, 6, 21, corresponding

to the discriminants D = −3, 12, 21, 32, and 437 in (6). The integers in this list are
precisely the discriminants in (6) which are not quadratic residues modulo 389. The
fact that 8E vanishes at the roots of the polynomials x2

± x + 1 can be deduced
directly from Lemma 17, by observing that the vanishing of RE(x)−1 at ε−3 means
that JE [ε−3] is congruent to 1 modulo p, and so is equal to 1 since the only such
torsion point in O×

Cp
is 1. This proves that any class number one discriminant of

the form n2
− 4 with n > 391 must be divisible by 389.

• 4 irreducible factors of degree 11, namely,

h(x) = x11
+61x10

−192x9
+134x8

+19x7
−80x6

+66x5
+64x4

+48x3
−159x2

− 50x − 70,

along with h(−x), x11h(1/x), and x11h(−1/x).

The factorisation of RE(x)−1 shows that the equation 8E(τ ) = 1 has exactly 76
solutions in H◦

389. Four of these are the CM points of the form ±ε−3 and ±ε−1
−3.

Assuming Conjecture 7 and the attendant Corollary 16, there are 28 further roots
given by the RM points

±1 ±
√

2, 1
2(±5 ±

√
29), 1

2(±7 ±
√

53), ±2 ±
√

3,

1
2(±5 ±

√
21), ±3 ± 2

√
2, and 1

2(±21 ±
√

437).

Finally, 8E(τ ) − 1 vanishes at 44 presumably transcendental elements of the
unramified extension of Q389 of degree 11.

A similar computer calculation with the elliptic curve 433A1 of conductor 433
leads to the conclusion that any class number one discriminant of the form n2

± 4
not listed in Theorem 25 must also be divisible by 433. By the main theorem of
genus theory, the genus field of K D contains both

√
433 and

√
389, contradicting

the class number one assumption on D. Theorem 25 follows. □

The factorisation of RE(x)− 1 for the curves 389A1 and 433A1 is summarised
in the first two lines of Table 1, in which similar data is gathered for all the elliptic
curves of analytic rank two of prime conductor ≤ 1000, as well as for the elliptic
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curve 5077A1 of smallest prime conductor and rank 3, which plays such a key role
in the work of Goldfeld–Gross–Zagier.

The first column of Table 1 gives the label for the elliptic curve E of rank ≥ 2
following the conventions of Cremona. (The reader is cautioned that these some-
times differ from the ones in the LMFDB.) The second column gives the degree
of the rational function RE(x), which in all cases provides a (strict) upper bound
for the number of solutions to 8E(z) = 1 in H◦

p. The third column indicates the
number of elements of P1(Fp) that occur (with multiplicity) in the fiber of RE(x)

above x = 1, which is always less than the degree of RE(x).
The integers in the fourth and fifth columns of Table 1 that are printed in a regular

font correspond to class number one discriminants in the lists (5) and (6) respectively.
Those in boldface correspond to discriminants with larger class numbers, but for
which we are nevertheless able to predict that the associated Stark–Heegner point
vanishes because of “excess vanishing” of suitable twisted L-series of E , as will be
explained in more detail shortly. The integers with a superscript of ? indicate more
problematic mod p roots which do not seem to correspond to a Stark–Heegner point
of finite order. It is then entirely possible that the solutions of 8E(z) = 1 in the
associated residue discs of H◦

p, although quadratic over Qp, are not RM points and
are likely to be transcendental over Q. When such “parasitic factors” occur in the
factorisation of RE(x)− 1, they present a more serious obstruction to parlaying E
into a proof of Theorem 25.

Finally, the last column of Table 1 lists the degrees of the irreducible factors of
the numerator of RE(x) − 1 that are not of the form x2

± nx ± 1.
We now turn to a discussion of some of the integers that appear in boldface in

the fourth and fifth columns of Table 1. They correspond to factors of RE(x)− 1
of the form x2

+ nx ± 1, where n is small but D = n2
∓ 4 does not have class

number one. These factors, while seemingly not accounted for by Conjecture 7,
are sometimes explained by a twisted version of the Gross–Zagier formula of
Conjecture 7 formulated in [14, Conjecture 5.15] (some cases of which were proven
in a weaker form, when χ is a genus character, in [22], building on [5] and [25]):

Conjecture 26. Let τ ∈ HRM
p be an RM point with associated order Oτ = OD

and let P = JE [τ ] be the associated Stark–Heegner point in E(HD). If χ is any
primitive character of Cl(D) ≃ Gal(HD/K D), then

htE(P(χ)) ∼ L ′(E/K , χ, 1),

where

P(χ) :=

∑
σ∈Gal(HD/K D)

χ(σ)Pσ
∈ (E(HD) ⊗ C)(χ)

is the χ -isotypical component of P.
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E deg(RE )
linear
factors

x2
± nx − 1 x2

± nx + 1 degrees of
other factors

389A1 144 66 2, 5, 7 1, 4, 5, 6, 21 114

433A1 162 60 1, 4, 5, 11, 13 3, 5, 7, 9 54102122

563A1 152 64 1, 2, 4, 5, 7, 11
13, 17, 31, 41

0, 1, 3, 6, 7 2264

571B1 204 84 2, 7, 8 0, 4, 6, 9, 21, 31 226274104

643A1 180 56 1, 2, 3, 4, 8, 11 0, 3, 4, 5, 6, 7, 9
11, 21, 33, 160? 46162

709A1 296 70 2, 3, 7, 8, 13, 16 6, 11, 21, 24 104222242262

997B1 460 54 1, 2, 4, 5, 8
11, 17, 64? 3, 5, 6, 7 26421682

997C1 328 72
1, 2, 4, 5, 8

11, 16, 17, 31
53, 380?, 463?

3, 5, 6, 7, 17 2684722

5077A1 4624 56 1, 2, 3, 4, 5, 8, 11
3, 6, 7, 9, 11, 21,

956?, 2000?

244282242494

7027222742

358213422

Table 1. Factorisation of RE (x) − 1.

Conjecture 26 predicts that the Stark–Heegner point P is torsion whenever

L ′(E/K D, χ, 1) = 0 for every character χ of Cl(D).

When Cl(D) is an elementary 2-group, i.e., every form of discriminant D is am-
biguous, all the characters of Cl(D) are quadratic and described by genus theory
in terms of Kronecker symbols

( d
·

)
for some d | D. (See [12, Theorem 18.27].) In

this case, up to finitely many Euler factors,

L(E/K D, χ, s) = L(E (d)/Q, s) · L(E (D/d)/Q, s)

and its order of vanishing is the sum of the analytic ranks of the quadratic twists
E (d) and E (D/d) of E .

For example, consider the elliptic curve of rank 2 and conductor p = 563, labelled
563A1 in Cremona’s tables. When factoring the numerator of RE(x)−1 over Fp[x],
we obtain the quadratic factors x2

+31x −1 and x2
+41x −1 corresponding to the

discriminants

D1 = 312
+ 4 = 5 · 193 and D2 = 412

+ 4 = 5 · 521
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of class number 2. For each of j = 1, 2, the nontrivial character of Cl(D j ) cuts out
the extension of K D generated by

√
5. It turns out that E (5) has rank 2 and hence

that L ′(E (5)/Q, 1) = 0. Conjecture 26 therefore implies that all the χ -components
of P are trivial, hence this Stark–Heegner point is torsion. Since it is moreover
congruent to 1 modulo p, it must correspond to an actual zero of 8E − 1.

Remark 27. It may appear somewhat surprising that the fiber R−1
E (1) has so many

Fp-rational elements while RE(x) itself already has all its zeros and poles in P1(Fp).
Such zeros do not lift to the standard affinoid H◦

p, reflecting the fact that the equation
8E(τ ) = 1 has fewer solutions in H◦

p than the equation 8E(τ ) = t for all but finitely
many t . This phenomenon seems to fall outside the framework of real multiplication.
The authors have checked that this pattern persists for all curves of rank ≥ 2 and
conductor less than 10000. Moreover, for curves of rank 2, the elements 0, 1, 2, 3,
4, 6, 2

3 and 3
4 seem to always be roots of RE(x)− 1 with respective multiplicities 2,

3, 2, 1, 1, 1 and 1. These also seem to be the only critical points of RE(x) − 1, i.e.,
roots with multiplicity ≥ 2.

For elliptic curves of rank 1, the pattern breaks down and RE(x) − 1 has almost
no Fp-rational zeros, never exceeding 18 such roots. We checked that 1 and −1
were always, for curves of conductor ≤ 2089 which are unique in their isogeny class,
in the fiber of 1 with multiplicity 3, as well as ∞ with multiplicity 2. Again, these
appear to be the only critical points. Sometimes there are no other Fp-rational zeros.

For curves of rank 0 and conductor ≤2089 which are unique in their isogeny class,
RE(x)− 1 always has 1 and −1 as simple roots as well as ∞ with multiplicity 2.
The only critical point is ∞. Most of the time it has few rational zeros (at most 18),
sometimes it has no other rational zeros, sometimes it has around 50. This is for
instance the case for the elliptic curve with LMFDB label 1171B1.

7. Chowla’s conjecture

This section explains how similar ideas can be adapted to yield a (conditional) proof
of Chowla’s conjecture:

Theorem 28. Assume Conjecture 7 of Section 3. Then the class number one
discriminants of the form 4n2

+ 1 are equal to 5, 17, 37, 101, 197, or 677.

To explain how the approach of the previous section can be adapted to also yield
Theorem 28, it is convenient to first work in a greater generality.

Let D > 0 be any positive discriminant, OD the quadratic order of discriminant D,
and εD = u +v 1

2

√
D its fundamental unit. The stabiliser of a primitive binary form

Q = ax2
+ bxy + cy2 of discriminant D is generated by

γQ =

(
u −

1
2 bv −cv

av u +
1
2 bv

)
.
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In particular, γQ∞ has denominator av. Let ρ be the matrix
( 1

0
w
av

)
with w=u−

1
2 bv.

If τQ denotes a root of Q(x, 1), the fundamental automorph of τQ is (up to sign) γ ±1
Q

and we have

JE [τQ]
±1

= JE {∞, γτQ ∞}(τQ) = JE {ρ∞, ρ0}(τQ).

Putting ρ =
(1

0
q
1

)(1
0

r
av

)
in Hermite normal form, we end up with

JE [τQ]
±1

= JE

{
∞,

r
av

}
(τQ − q),

where w = qav + r is the Euclidean division of w by av. This suggests trying to
enumerate real quadratic fields of class number one based on the “quadratic part” v,
i.e., the conductor of the order Z[εD] generated by the fundamental unit. Indeed,
fixing v and letting Q be the principal form (which has a = 1), we see that JE [τQ]

can be written as the evaluation of some function j at some translate of τQ , where j
belongs to the finite set of functions of the form JE {r/v, ∞}

±1 for some integer
0 ≤ r < v.

Proposition 29. Let Q =ax2
+bxy+cy2 be a primitive binary form of discriminant

D > 0 and let τQ be a root of Q(x, 1). Let εD be the fundamental unit of OD and
let v be the conductor of the order Z[εD]. Then there exist integers 0 ≤ r < av and
q ∈ Z such that gcd(r, av) = 1 and

JE [τQ]
±1

= JE

{
r

av
, ∞

}
(τQ − q),

where the ±1 sign depends on the chosen root of Q(x, 1).

Proof. We have proved everything except that r ≡ u −
1
2 bv (mod av) is coprime

to av, which follows from the equality(
u −

1
2 bv

)(
u +

1
2 bv

)
+ (av)(cv) = det ρ = ±1. □

In Section 6, we studied discriminants D for which the conductor is 1, corre-
sponding to D = n2

± 4. We now proceed to do the same when the conductor is 2,
this time corresponding to the families D = 4n2

+ 1 and D = 4(n2
− n). Indeed,

the order OD contains the small unit εD := 2n +
√

D when D = 4n2
+ 1 and

εD := (2n − 1) +
√

D when D = 4(n2
− n).

Proof of Theorem 28. Just as D = 5 both had the form n2
+ 4 and n2

− 4, the small
unit εD need not be fundamental but merely a power of the fundamental unit. (In
fact it is either the fundamental unit or its square.) Let

αD =

{ 1
2(−2n − 1 +

√
4n2 + 1) if D = 4n2

+ 1,

−n +
√

n2 − n if D = 4(n2
− n)

be a root of x2
+ (2n + 1)x + n in the former case and x2

+ 2nx + n in the latter.
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Making Proposition 29 explicit for those families, we obtain:

Corollary 30. Let D >0 have the form 4n2
+1 or 4(n2

−n) and let τD =
1
2(D+

√
D).

Then a power of JE [τD] is equal to JE
{
−

1
2 , ∞

}
(αD).

Corollaries 30 and 11 invite us to examine the quadratic factors in the factorisation
of R(2)

E (x) − 1, where

R(t)
E (x) = redp(JE {−1/t, ∞}|H◦

p
).

As in the study of Yokoi’s conjecture, Table 2 summarises the factorisation of the
numerator of the rational function R(2)

E (x)−1, following the same conventions as in
Table 1. The second and third lines of this table, corresponding to the elliptic curves
433A1 and 563A1 respectively, imply that any class number one discriminant of
the form 4n2

+ 1 outside of the list in Theorem 28 must be divisible by the two
primes 433 and 563, contradicting genus theory. □

As a byproduct of the proof of Theorem 28 and the data gathered in Table 2, we
also deduce the following list of class number one discriminants of the form 4(n2

−n):

Corollary 31. Assuming Conjecture 7 and its twisted variant, Conjecture 26, there
are exactly four discriminants of the form D = 4(n2

− n) with class number one:

D = 8, 24, 48, 80.

Let us now discuss further some of the outcomes of the numerical experiments
summarised in Table 2. For the unique elliptic curve E of rank 2 and conductor
p = 389 labelled 389A1 in Cremona’s tables, the quadratic factors of R(2)

E (x) − 1
turn out to be

2x2
− 1, 2x2

− 2x − 1, x2
+ 7x + 3, x2

+ 11x + 5, x2
+ 15x + 7

x2
+ 27x + 13, x2

+ 59x + 29, x2
+ 4x + 2, x2

+ 8x + 4, x2
+ 20x + 10,

as well as their images by the matrix
(

−1
0

−1
1

)
, which exchanges −

1
2 and ∞. All

of these are as predicted by Proposition 29: the first two factors corresponding to
a = 2 and v = 1, and the rest to a = 1 and v = 2. Each of the discriminants of
these quadratic polynomials has class number one, apart from x2

+ 59x + 29 and
x2

+ 20x + 10, whose discriminants 3365 and 360 both have class number two.
In the case where D = 3365 = 5 · 673 = 4 · 292

+ 1, one computes that the
Hasse–Weil L-function of E/K D twisted by the nontrivial character χ of Cl(D),

L(E/K D, χ, s) = L(E (5), s) · L(E (673), s),

vanishes to order 3 at s = 1 because of a double zero in the first factor. As explained
in Section 6, this is enough to imply the triviality of the Stark–Heegner point of
discriminant D on E , assuming Conjecture 26.
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In the case where D = 360 = 23
· 32

· 5, the order OD is nonmaximal and
has conductor 3 in the maximal order Z[

√
10] of discriminant 40. Letting χ

be the nontrivial character of Cl(360) = Cl(40), the χ-component, denoted by
P40(χ) ∈ E(H40), of the Stark–Heegner point of discriminant 40 appears to be
nontrivial, and indeed the twisted Hasse–Weil L-function

L(E/K40, χ, s) = L(E (5)/K40, s)

vanishes to order 1 at s = 1. The Stark–Heegner point P360(χ) is defined over the
same field as P40(χ) since H360 = H40, however, the two points are not the same.
Rather, the norm-compatibility property (15) satisfied by the Stark–Heegner points
shows that

P360(χ) = (a3(E) − χ(p3) − χ(p̄3))P40(χ),

where a3(E) is the third Fourier coefficient of the cusp form attached to E , and p3

and p̄3 are the two prime ideals of Z[
√

10] above 3. Since these primes are inert
in H40/K40, we have χ(p3) = χ(p̄3) = −1, and one verifies that a3(E) = −2. It
follows that P360(χ) = 0 because of the presence of this local factor at the prime 3,
even though P40(χ) turns out to be nontrivial. Since the trace P360(1) of the Stark–
Heegner point P360 is also torsion, it follows that P360 is itself a point of finite order,
as suggested by the experiment.

The integer denoted by 37? in the row attached to the elliptic curve E = 571B1
in Table 2 corresponds to the prime discriminant D = 4 · 372

+ 1 = 5477 of class
number three. This suggests that the Hasse–Weil L-series of E over K D twisted by
any cubic unramified character χ of K D might vanish to order ≥ 3. We thank one
of the referees for verifying that the first and second derivatives of these L-series at
the central point are very small and hence ostensibly zero, by a calculation in magma
that would have taxed the authors’ computational expertise. While the numerics are
convincing, the conjectural nature of the Gross–Zagier formula for Stark–Heegner
points places a rigorous proof of the vanishing of L ′(E/K D, χ, 1) squarely beyond
the reach of machine calculations.

Remark 32. The method we have described seems to apply to families of dis-
criminants D whose fundamental unit εD = u D + vD

1
2

√
D has quadratic part vD

bounded by some fixed v. For instance, the family D = n2
+ 2, whose fundamental

unit is given by
εD = (n2

+ 1) + n
√

n2 + 2

lies ostensibly outside of the scope of the method even though its regulator has size
O(log(D)). It would be interesting to further probe the limits of the “Stark–Heegner
approach” by trying to extend it to more general families of real quadratic fields of
Richaud–Degert type.



THE HEEGNER–STARK THEOREM AND STARK–HEEGNER POINTS 95

E deg(R(2)
E )

linear
factors

x2
+ (2n + 1)x + n x2

+ 2nx + n degrees of
other factors

389A1 166 36 1
2 , 3, 5, 7, 13, 29 3

2 , 2, 4, 10 442

433A1 194 44 1, 5, 13 5, 10 22182442

563A1 176 48 1
2 , 1, 3, 13 1

2 , 2, 3, 5, 7 42422

571B1 208 48 1
2 , 2, 5, 7, 23, 29, 37?

1
2 , 3

2 , 2, 4
10, 12

42254

643A1 188 40 1
2 , 1, 2, 3, 7, 11

1
2 , 3

2 , 2, 4
5, 11, 17

64362

709A1 338 52 1
2 , 2, 3, 5, 7, 13 2, 3, 13

2 243444102942

997B1 494 32 1
2 , 1, 2, 3, 7, 13 2, 3, 5 42122174222

262322822

997C1 354 40 1
2 , 1, 2, 3, 7, 11, 13 2, 3, 5 684

5077A1 4852 30 1
2 , 1, 2, 3, 5, 7, 13 2, 3, 5, 9

22262322674

75410141102

151417843362

34623942

Table 2. Factorisation of R(2)
E (x) − 1.

Appendix: Computer code

The following SageMath code computes the rational function RE(x) as a function
of the elliptic curve E :

def rational_period_function(E):
p = E.conductor()
Poly.<z> = PolynomialRing(GF(p))

# Q-valued even modular symbol attached to E
m = E.modular_symbol(1, implementation=’eclib’)

# normalise the modular symbol to take integral values
by finding the lcm of denominators

N = lcm([m(a/p).denominator() for a in range(p)])

# define the Manin symbol
M = lambda a: Integer(N*m(a/p))

# compute the rational period function
R = 1
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for a in range(p):
R *= (z-a)ˆM(a)
if a != 0 and M(a) < 0:

R *= (-1/a)ˆM(a)

return R

Using this, the first line of Table 1 can be computed as below:

E = EllipticCurve(’389A1’)
p = E.conductor()
R = rational_period_function(E)

deg_R = max(R.numerator().degree(), R.denominator().degree())
num = (R-1).numerator()
factors = list(factor(num))

# list of n such that xˆ2 +- nx - 1 is a factor of num
yokoi = []

# list of n such that xˆ2 +- nx + 1 is a factor of num
mollin = []

# number of degree 1 factors of num
linear = 0

# dictionary with degrees of other factors of num
other_factors = {}

# compute yokoi, mollin, linear and other_factors
for (P, mult) in factors:

d = P.degree()

# if P has degree 1
if d == 1:

linear += mult

# if P has the form xˆ2 + nx +-1
elif d == 2 and P[0]ˆ2 == 1:

n = Integer(P[1])
if P[0] == -1 and n < p/2:

yokoi.append(n)
if P[0] == 1 and n < p/2:

mollin.append(n)

else:
# initialise the entry of other_factors corresponding to

degree d if necessary
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if d not in other_factors.keys():
other_factors[d] = 0

# add the multiplicity of P to the list of factors
other_factors[d] += mult

print(deg_R, linear, yokoi, mollin, other_factors)

Table 2 was obtained using a slight variation of the above code together with the
following function that computes the values of any K (z)-valued SL2(Z)-modular
symbol m (where K is a field) from its period function R = m{0, ∞}:

# function that returns m{r,oo} given r and the
period function R = m{0,oo}

def mod_symb(R,r):
# find the variable of R
z = R.numerator().variables()[0]

if r == 0:
return R

q = Integer(floor(r))
if q != 0:

return mod_symb(R, r-q)(z-q)

return (mod_symb(R, -1/r)/R)(-1/z)

(This is more or less the Euclidean algorithm.)
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