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This is an expository introduction to p-adic L-functions and the foundations
of Iwasawa theory. We focus on Kubota–Leopoldt’s p-adic analogue of the
Riemann zeta function, which we describe in three different ways. We first
present a measure-theoretic (analytic) p-adic interpolation of special values of the
Riemann zeta function. Next, we describe Coleman’s (arithmetic) construction
via cyclotomic units. Finally, we examine Iwasawa’s (algebraic) construction via
Galois modules over the Iwasawa algebra.

The Iwasawa Main Conjecture, now a theorem due to Mazur and Wiles,
says that these constructions agree. We will state the conjecture precisely, and
give a proof when p is a Vandiver prime (which conjecturally covers every
prime). Throughout, we discuss generalisations of these constructions and their
connections to modern research directions in number theory.
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1. Introduction

The theory of L-functions, and their special values, has been central in number theory
for 200 years. Their study spans from classical results, such as Gauss’s class number
formula and the proof of Dirichlet’s theorem on primes in arithmetic progressions,
to two major problems in mathematics: the Riemann hypothesis and the Birch and
Swinnerton-Dyer conjecture. They are also central in the Langlands program, a vast
project connecting the fields of number theory, geometry and representation theory.

The Birch and Swinnerton-Dyer conjecture is one example of a huge network of
conjectures on the special values of L-functions, including the Beilinson, Deligne,
and Bloch–Kato conjectures. At their heart, these problems relate complex analytic
information — such as the order of vanishing and special values of meromorphic
functions — to arithmetic data, such as invariants attached to algebraic varieties
and Galois representations. A fruitful approach to these problems has been the use
of p-adic methods, for p a prime number. Naively, one might consider the complex
world a “bad” place to do arithmetic, as the integers are discrete in C. This is not
the case when one instead considers finite extensions of Qp. The p-adic setting
brings extra flexibility and methods with which to attack these open problems,
including p-adic L-functions, Euler systems, and Hida and Coleman families of
modular/automorphic forms.

The study of p-adic properties of special values of L-functions is generally known
as Iwasawa theory. In these notes, we give an introduction to this subject, focussing
on perhaps the most fundamental of all L-functions: the Riemann zeta function ζ(s).
We describe what a p-adic L-function is, construct it in this setting, and then describe
Iwasawa’s Main Conjecture1 in this case. We try to anchor the theory in the context
of current research activity, indicating how the various concepts we discuss have
been generalised, and where the reader should turn next to learn more.

1.1. What do we cover in these notes? We now summarise the main results we
cover. In Section 2, we give a broad introduction to p-adic L-functions, with an
emphasis on how one can naturally move from complex to p-adic L-functions. We
make this precise in our case of interest by stating some of the main results of Part I.

Our focus for the rest of the notes is on the Kubota–Leopoldt p-adic L-function
(or p-adic zeta function), which is the p-adic analogue of the Riemann zeta function.
We will see three constructions of this object, each of a different flavour, and describe
the connections between them.

1Iwasawa’s original conjecture was proved in full by Mazur and Wiles in [61]. However analogous
conjectures, relating Selmer groups and p-adic L-functions, have been formulated in a large generality,
for example for elliptic curves, modular forms, and beyond. These are also (somewhat confusingly)
referred to as “Iwasawa Main Conjectures”, even in the special cases (such as the one we consider)
where they have been proved. We discuss such generalisations in Section 13.5 and Appendix B.
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Part I is devoted to the construction and study of an analytic version of the
Kubota–Leopoldt p-adic L-function. This has the clearest connection to the classical
complex Riemann zeta function; it is a pseudomeasure ζ an

p on Z×p that interpolates
the (rational numbers) ζ(1− k) for all positive integers k.2

• In Section 3, we describe some basic tools and results from p-adic analysis needed
to parse the previous statement, including measures/pseudomeasures, Iwasawa
algebras, and their connections to power series.

• In Section 4 we use the techniques developed in Section 3 to prove Theorem
2.13 (see also Theorem 4.1) on the existence of the Kubota–Leopoldt p-adic
L-function ζ an

p .

• In Section 5 we prove that ζ an
p also interpolates special values of L-functions of

Dirichlet characters of p-power conductor, and construct analogues for arbitrary
Dirichlet characters.

• In Section 6, we describe a result of Leopoldt, showing that the values of the
p-adic L-function of a nontrivial Dirichlet character 1 are related to logarithms
of cyclotomic units, establishing one of the first instances of the p-adic Beilinson
conjectures. The (untwisted) p-adic zeta function has a simple pole at s = 1; in
Section 7, we prove an analogous result describing its residue.

• Finally in Section 8 we discuss an approach to p-adic L-functions based on the
theory of families of Eisenstein series.

In Part II, we give two more constructions of the Kubota–Leopoldt p-adic L-
function: arithmetic and algebraic versions.
• In Section 10, we give an arithmetic construction. The cyclotomic units are
special elements in cyclotomic fields. As one considers the tower Qp(µpn ) of cyclo-
tomic extensions of Qp, the cyclotomic units fit together into a norm-compatible
tower/system. The Coleman map is a map that attaches a p-adic measure to any
such tower of units. Via this process, we show that to the cyclotomic units, one can
naturally attach a pseudomeasure ζ arith

p on Z×p . One connection between arithmetic
and analysis, fully explained in Section 10, is that ζ an

p = ζ
arith
p .

• In Sections 11 and 12, we deepen the arithmetic picture, respectively stating and
proving Iwasawa’s theorem describing the zeros of the p-adic zeta function via
modules of cyclotomic units.

• In Section 13, we build on Iwasawa’s theorem to give an algebraic construction
of the Kubota–Leopoldt p-adic L-function, as an ideal ζ alg

p in the Iwasawa algebra.
This ideal arises from the structure of a Galois module over the Iwasawa algebra.

2The precise meaning of this will be clear later. Here the word interpolation is as in Lagrange’s
interpolation formula, i.e., a single object that hits certain specific values when evaluated at various
points.
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We also describe this module in terms of Selmer groups and discuss generalisations
of the Main Conjecture.

The Iwasawa Main Conjecture says that the ideal ζ alg
p is generated by the

analytic/arithmetic Kubota–Leopoldt p-adic L-function, connecting the analytic,
arithmetic and algebraic constructions, and ultimately connecting special complex
L-values and Selmer groups. We state this precisely in Section 13, and prove it in
the special case where p is a Vandiver prime.

The reader interested in taking a minimal path to the Iwasawa Main Conjecture
can do so by reading the following sections: Section 2.1, Sections 2.3–2.4, Sections
3.2–3.6, Section 4, Sections 10.1–10.4, Sections 11 and 12, and Sections 13.1–13.4.

In Appendix B, we conclude with remarks on how the analytic, arithmetic
and algebraic constructions above have been generalised to other situations, each
spawning a field of study in its own right. We illustrate this by giving a sketch in
the case of modular forms.

Further reading. For more information and detail on Part I of these notes, the
reader could consult [52]. The construction of the p-adic zeta function we give
here is based on Colmez’s beautiful lecture notes [22].

Part II can serve as a prelude to a number of more advanced treatments, such as
Rubin’s (complete) proof of the Main Conjecture using the theory of Euler systems.
We must mention the book of Coates and Sujatha [16], which inspired our original
course, and whose aim was to present Rubin’s proof. A canonical book in the field
is [81], which introduces further topics in classical Iwasawa theory that there was
not space to treat here. We give a flavour of such topics in Appendix A.

2. What is a p-adic L-function, and what should it do?

This introductory section aims to motivate the definition and study of p-adic L-
functions. We start with a general discussion on complex L-functions and then lean
slowly towards the p-adic world, focussing on the example of most importance to
us in these lectures: the Riemann zeta function.

2.1. Classical L-functions. We first give some important examples of L-functions.

• The Riemann zeta function, the most famous and fundamental of all L-functions,
is defined by

ζ(s)=
∑
n≥1

n−s
=

∏
p

(1− p−s)−1,

where the last product — an Euler product — runs over all prime numbers p and
the second equality is a consequence of the unique prime factorisation of integers.
The sum converges absolutely whenever s is a complex variable with real part
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greater than 1, making ζ a well-defined holomorphic function in a right half-plane
{s∈C :Re(s)>1}. It can be meromorphically continued to the whole complex plane,
and satisfies a functional equation, a symmetry relating the values ζ(s) and ζ(1−s).

• Let F be a number field. The zeta function of F is

ζF (s) ..=
∑

0̸=I⊂OF

N (I )−s
=

∏
p

(1− N (p)−s)−1,

where the sum is over all nonzero ideals in the ring of integers, and the product
is over all nonzero prime ideals of K . Again, this sum converges absolutely for
Re(s) > 1, can be meromorphically continued to C, and satisfies a functional
equation relating ζF (s) and ζF (1− s). The existence of the Euler product again
follows from unique factorisation.

• Let χ : (Z/NZ)× → C× be a Dirichlet character. We extend χ to a function
χ : Z→ C by setting χ(m) = χ(m (mod N )) if m is prime to N , and χ(m) = 0
otherwise. The L-function of χ is

L(χ, s) ..=
∑
n≥1

χ(n)n−s
=

∏
p

(1−χ(p)p−s)−1.

Yet again, the above sum defining L(χ, s) converges for Re(s) > 1, admits mero-
morphic continuation to C (analytic when χ is nontrivial), and satisfies a functional
equation relating the values at s and 1− s.

• Let E/Q be an elliptic curve of conductor N . One can define an L-function

L(E, s) ..=
∑
n≥1

an(E)n−s
=

∏
p ∤N

(1− ap(E)p−s
+ p1−2s)−1

∏
p|N

L p(s),

where ap(E) = p + 1 − #E(Fp), and the an(E) are defined recursively from
the ap(E). The factors L p(s) at bad primes p | N are defined as L p(s)= 1 (resp.
(1− p−s)−1, resp. (1+ p−s)−1) if E has bad additive (resp. split multiplicative,
resp. nonsplit multiplicative) reduction at p. The above sum defining the function
L(E, s) converges for Re(s) > 3

2 , admits analytic continuation to C, and satisfies
a functional equation relating the values at s and 2− s.

• Let
f =

∑
n≥1

an( f )qn
∈ Sk(00(N ), ω f )

be a modular newform of weight k, level N and character ω f . The L-function
associated to f is given by

L( f, s) ..=
∑
n≥1

an( f )n−s

=

∏
p ∤N

(1− ap( f )p−s
+ω f (p)pk−1−2s)−1

∏
p|N

(1− ap( f )p−s)−1.
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This sum converges for Re(s) > 1
2(k+ 1), admits analytic continuation to C, and

satisfies a functional equation relating the values at s and k− s. Such objects are
introduced, and these results proved, in [30, Section 5].

The above examples share common features. The “arithmetic” L-functions
of most interest to us should have the following basic properties (which can,
nevertheless, be extremely deep):

(1) an Euler product converging absolutely in a right-half plane;

(2) a meromorphic continuation to the whole complex plane;

(3) a functional equation relating s and k− s for some k ∈ R.

Remark 2.1. More generally, let GQ=Gal(Q/Q) denote the absolute Galois group
of Q and let V ∈RepL GQ be a p-adic Galois representation (i.e., a finite-dimensional
vector space over a finite extension L of Qp equipped with a continuous linear
action of GQ). One defines the global L-function of V as a formal Euler product

L(V, s)=
∏
ℓ

Lℓ(V, s)

of local factors. For ℓ ̸= p a rational prime, the local factor at ℓ is defined as

Lℓ(V, s) ..= det(Id−Frob−1
ℓ ℓ
−s
|V Iℓ)−1,

where Frobℓ denotes the arithmetic Frobenius at ℓ, and Iℓ denotes the inertia group
at ℓ (all described in [74, Section I]). At p, defining the local factor is considerably
more complicated, requiring p-adic Hodge theory, as described in [6; 7]. In this
case, one defines

L p(V, s) ..= det(Id−ϕ−1 p−s
|Dcris(V ))−1,

where Dcris(V ) denotes the crystalline module of V |GQp
, equipped with a crystalline

Frobenius denoted by ϕ.
When V is the representation attached to an arithmetic object,3 the L-function

of the representation is typically equal to the L-function attached to that object; for
example, taking V =Qp(χ) (that is, V is 1-dimensional, with GQ acting through the
character χ via class field theory), one recovers the Dirichlet L-functions described
above. See [3] for further introductions to these topics.

2.2. Motivating questions for Iwasawa theory.

2.2.1. Special values and arithmetic data. There are deep results and conjectures
relating special values of L-functions to important arithmetic information, of which
a prototypical example is the following (see, for example, [64, Section 5]):

3For example, a number field, a Dirichlet character, an elliptic curve, a modular form, or much more
generally — in the spirit of the Langlands program — an automorphic representation of a reductive
group.
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Theorem 2.2 (class number formula). Let F be a number field with r1 real em-
beddings, r2 pairs of complex embeddings, w roots of unity, discriminant D, and
regulator R. The zeta function ζF has a simple pole at s = 1 with residue

ress=1ζF (s)=
2r1(2π)r2 R
w
√
|D|

hF ,

where hF is the class number of F.

On the left-hand side, we have a special value of a complex meromorphic function,
from the world of analysis. On the right-hand side, we have invariants attached
to a number field, from the world of arithmetic. The class number formula thus
provides a deep connection between two different fields of mathematics.

A second famous example of such a connection comes in the form of the Birch
and Swinnerton-Dyer (BSD) conjecture. Let E/Q be an elliptic curve. The set
of rational points E(Q) forms a finitely generated abelian group and, based on
computer computations, Birch and Swinnerton-Dyer predicted that

ords=1 L(E, s)= rankZ E(Q).

They also predicted a closer analogue of the class number formula: that the leading
term of the L-function can be described in terms of arithmetic invariants attached
to E .

Again, the left-hand side is from the world of analysis, the right-hand side is from
the world of arithmetic, and this prediction is inherently surprising. The worlds
are so different that the analytic L-function defies easy study using arithmetic
properties of the elliptic curve. For example, when the conjecture was formulated,
the left-hand side was not even known to exist: nobody had proved that L(E, s) was
defined at the value s = 1. This relies on analytic continuation of the L-function;
such a proof would not follow for several decades, and even now the only proof
we have goes through another deep connection between arithmetic and analysis,
namely Wiles’ modularity theorem.

2.2.2. Iwasawa Main Conjectures. One of the goals of Iwasawa theory is to seek
and prove p-adic analogues of BSD and its generalisations, replacing complex
analysis (which is poorly suited to arithmetic) with p-adic analysis (where arithmetic
arises naturally). For each prime p, there is a p-adic Iwasawa Main Conjecture
(IMC) for the elliptic curve E , relating a p-adic analytic L-function to certain
p-adic arithmetic invariants of E :

complex analytic L-function oo
BSD

//

OO

��

arithmetic invariants of E
OO

��

p-adic analytic L-function oo
IMC

// p-adic invariants of E
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One has many more tools available to attack the bottom row than the top, including
Euler systems, p-adic families and eigenvarieties, p-adic Hodge theory and (ϕ, 0)-
modules, and more. As a result, the p-adic conjectures are much more tractable
than their complex counterparts. Indeed, whilst BSD remains open beyond low-rank
special cases, the IMC for elliptic curves has been proved much more widely by
Skinner–Urban (see [77]), following work of Kato (see [47]). See also [32] for a
recent summary of known results on the IMC for elliptic curves.

2.2.3. Applications of p-adic methods to classical BSD. Each new p-adic Iwasawa
Main Conjecture that is proved brings the worlds of analysis and arithmetic a
little closer together. They can also bring us closer to our original goal of, for
example, BSD. Indeed, the current state-of-the-art results towards BSD have arisen
as consequences of Iwasawa theory.

To elaborate, let us summarise some fundamental work (p-adic and otherwise)
on BSD. There are two natural subquestions:

(a) We could try to prove that ords=1 L(E, s)≤ rankZ E(Q). A natural approach
is to try to construct enough independent rational points on the elliptic curve. The
theory of Heegner points is based on such an idea. A Heegner point in E(Q) has
infinite order if and only if ords=1L(E, s)= 1. This yields the above inequality in
this case.

(b) Conversely, we could try and prove that ords=1 L(E, s)≥ rankZ E(Q). In this
case we want to bound the number of rational points. One method for trying to do
this uses Euler systems attached to p-adic Galois representations (see [70] for a
comprehensive introduction). The main application of Euler systems is in bounding
certain Galois cohomology groups, known as Selmer groups (see Section 13.5),
which are defined using local behaviour and can be viewed as a cohomological
interpretation of the group of rational points on E . Indeed, let X(E/Q) denote the
Tate–Shafarevich group of E , a torsion abelian group that is conjecturally finite. If
the subgroup X(E/Q)[p∞] ≤X(E/Q) of elements with p-power order is finite,
then the Z-rank of E(Q) is equal to the Zp-corank4 of the p-Selmer group. In this
case, bounding the p-Selmer group is equivalent to bounding E(Q).

The ideas above have led to special cases of the conjecture; in particular, we
now know it to be true (under some assumptions) when ords=1 L(E, s)≤ 1 due to
work of Kolyvagin [51], Gross–Zagier [39] and Murty–Murty [63]. More recent
Iwasawa-theoretic research building on the above has led to results towards the
converse [76], as well as towards the leading-term formula [45].

We emphasise that whilst these methods have yielded important progress towards
BSD, to date such results have been fundamentally limited to elliptic curves defined

4That is, the rank of the Pontryagin dual of the p-Selmer group; see [75, Section 2.1.4].
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over Q and of rank ≤ 1. It is natural to try to execute such strategies in more
general settings. More recently, the p-adic theory of Stark–Heegner points, a
p-adic analogue of (a) initiated in [23], has been used with some success for elliptic
curves over totally real fields. Heegner and Stark–Heegner points are beautifully
summarised in [24] and [25]. A more recent overview of work on Heegner and
Stark–Heegner points, and the relationships between them, is given in [9]. There
has also been encouraging (and fundamentally p-adic) work on analogous questions
in rank 2 and beyond; for example, see [12; 27].

Remark 2.3. The study of p-adic L-functions is intrinsic to (b), and they also
feature prominently in the p-adic analogues of (a). Mazur, Tate and Teitelbaum
formulated a p-adic BSD conjecture (see [62] and also [19]), which relates the
order of vanishing of a p-adic L-function at s = 1 to the rank of the rational points
of the elliptic curve, and expresses its principal coefficient in terms of arithmetic
data in a manner analogous to the classical BSD conjecture (replacing the complex
regulator by a p-adic regulator).

For an elliptic curve over Q of analytic rank 0, we know that the order of
vanishing of its attached p-adic L-function is always 0 or 1. The possible extra
zero, discussed in [37; 62], is known as a trivial zero of the p-adic L-function and
is well understood in terms of local data attached to E at p. If the Tate–Shafarevich
group X(E/Q) is finite, the p-adic and classical BSD conjectures are equivalent
in this case.

Under the assumption of the nondegeneration of the p-adic height pairing, the
p-adic IMC for elliptic curves implies the p-adic BSD conjecture (see [72]).

2.2.4. The IMC for the Riemann zeta function. We mention the elliptic curve case
only to motivate the study of p-adic L-functions and Iwasawa theory. In these notes,
we will focus on a simpler example of the above picture, namely the Main Conjecture
for the p-adic Riemann zeta function, as formulated by Iwasawa himself. Here
the picture above is essentially complete; the full IMC is known for any prime p
(thanks to [61] for p odd, and [83] for p = 2). We will (for odd p) construct the
p-adic analogue of the zeta function on the way to stating the Main Conjecture,
which we will prove for a special case.

2.3. The Riemann zeta function. Since the Riemann zeta function will be a central
player in the rest of these notes, we take a brief detour to describe some of the
classical theory surrounding it. We start with the following general result.

Theorem 2.4. Let f : R≥0→ R be a rapidly decreasing C∞-function (i.e., such
that f and all of its derivatives f ′, f ′′, . . . decay exponentially at infinity). Let

0(s)=
∫
∞

0
e−t t s−1 dt (2-1)
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be the usual gamma function. The function

L( f, s) ..=
1
0(s)

∫
∞

0
f (t)t s−1 dt, s ∈ C,

which converges to a holomorphic function for Re(s) > 0, has an analytic continua-
tion to the whole complex plane, and

L( f,−n)= (−1)n
dn

dtn f (0).

We call L( f, s) the Mellin transform of f .

Proof. To show analytic continuation, we claim that when Re(s) > 1, we have

L( f, s)=−L( f ′, s+ 1),

where f ′ = d f/dt . This is an exercise in integration by parts, using the identity
0(s)= (s− 1)0(s− 1), and gives the analytic continuation to all of C by iteration.
Finally, iterating the same identity n+ 1 times shows that

L( f,−n)= (−1)n+1L( f (n+1), 1)= (−1)n+1
∫
∞

0
f (n+1)(t) dt = (−1)n f (n)(0)

from the fundamental theorem of calculus, giving the result. □

We would like to use the Mellin transform to recover the Riemann zeta function
and its properties. For this, we pick a specific choice of f , namely, we let

f (t)=
t

et − 1
=

∑
n≥0

Bn
tn

n!
,

the generating function for the Bernoulli numbers Bn .

Remark 2.5. The Bernoulli numbers are highly combinatorial, and they satisfy
recurrence relations that ensure they are rational numbers; for example, the first
few are

B0 = 1, B1 =−
1
2 , B2 =

1
6 , B3 = 0, B4 =−

1
30 , . . . .

For k ≥ 3 odd, Bk = 0.

We want to plug this function into Theorem 2.4, and for this, we require:5

Lemma 2.6. The function f (t) and all of its derivatives decay exponentially at
infinity.

Proof. For t > 0, we may expand f (t) as a geometric series

f (t)= t (e−t
+ e−2t

+ e−3t
+ · · · )=: t F(t).

5We thank Keith Conrad for pointing out this proof.
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Note f ′(t)= F(t)+t F ′(t) and f ′′(t)= 2F ′(t)+t F ′′(t); arguing inductively we see

f (n)(t)= nF (n−1)(t)+ t F (n)(t)

= n(−1)n−1(e−t
+ 2n−1e−2t

+ 3n−1e−3t
+ · · · )

+ (−1)nt (e−t
+ 2ne−2t

+ 3ne−3t
+ · · · )

∼ (−1)nte−t as t→∞.

This decays exponentially. □

Lemma 2.7. For the choice of f as above, we have

(s− 1)ζ(s)= L( f, s− 1).

Proof. Substituting t for nt and rearranging in (2-1) defining 0(s), we obtain

n−s
=

1
0(s)

∫
∞

0
e−nt t s−1 dt.

Now, when Re(s) is sufficiently large, we can write

ζ(s)=
∑
n≥1

n−s
=

1
0(s)

∑
n≥1

∫
∞

0
e−nt t s−1 dt =

1
0(s)

∫
∞

0

( ∑
n≥1

e−nt
)

t · t s−2 dt,

and the result now follows from the identity

1
et − 1

=

∑
n≥1

e−nt . □

From the theorem above, we immediately obtain:

Corollary 2.8. For n ≥ 0, we have

ζ(−n)=−
Bn+1

n+ 1
.

In particular, ζ(−n) ∈Q for n ≥ 0, and ζ(−n)= 0 if n ≥ 2 is even.

2.4. p-adic L-functions. As explained in the introduction, p-adic L-functions are
excellent tools to study special values of L-functions. In this section, we explain
what a p-adic L-function is and the properties it should satisfy.

2.4.1. p-adic L-functions, a first idea. The complex ζ -function is a complex ana-
lytic function

ζ : C→ C

which is rational at negative integers. Since Z is a common subset of both C and
Zp ⊆ Cp, it is natural to ask if there exists a function

ζp : Zp→ Cp
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that is “p-adic analytic” (in some sense to be defined) and which agrees with the
complex L-function at negative integers in the sense that

ζp(1− n)= (∗) · ζ(1− n), (2-2)

for some explicit factor (∗). We would say that such a function “p-adically in-
terpolates the special values of ζ(s)”. Ideally, one would like these properties to
uniquely characterise ζp.

2.4.2. Ideles, measures and Tate’s thesis. In practice, there is no single analytic
function on Zp that interpolates all of the special values,6 as we shall explain in
Section 5.3. Instead, a better way of thinking about L-functions is to use a viewpoint
initiated by Tate in his thesis [78] (and later independently by Iwasawa [43]). This
viewpoint sees L-functions as measures on ideles, and allows one to package
together all Dirichlet L-functions, including the Riemann zeta function, into a
single object. We will give a brief account of the classical theory here, but for fuller
accounts, one should consult the references above.

We begin with some observations on characters.

Proposition 2.9. The following assertions hold.

(i) There is an identification between Dirichlet characters χ and continuous
characters

χ :
∏
ℓ prime

Z×ℓ → C×,

where the source is equipped with the product of the ℓ-adic topologies.

(ii) There is an identification of C with the space Homcts(R>0,C×) of continuous
multiplicative characters by sending s to x 7→ x s .

In particular, each pair (χ, s), where χ is a Dirichlet character and s ∈ C,
corresponds to a (unique) continuous character

κχ,s : R>0×
∏
ℓ prime

Z×ℓ → C×, (x, y) 7→ x sχ(y),

where we equip the source with the product topology, and all continuous characters
on this group are of this form.

Proof. First, observe that any Dirichlet character χ : (Z/NZ)× → C× induces
naturally a character

χ :
∏
ℓ prime

Z×ℓ → C×.

6Rather, there are p−1 different analytic functions ζp,1, . . . , ζp,p−1 on Zp , and ζp,i interpolates
only the values ζ(1− k) for which k ≡ i (mod p− 1).
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Indeed, suppose first that N = ℓn is a power of some prime ℓ, with n ≥ 1. As
(Z/ℓnZ)× ∼= Z×ℓ /(1+ ℓ

nZℓ), we can lift χ from (Z/ℓnZ)× to a function on Z×ℓ .
The case for general N follows from the Chinese remainder theorem. Conversely,
any continuous character χ :

∏
ℓ prime Z×ℓ → C× must factor through a finite quo-

tient (Z/NZ)× of
∏
ℓ prime Z×ℓ for some large enough N . Indeed, the image of a

sufficiently small open neighbourhood

UN
..=

{
x ∈

∏
ℓ

Z×ℓ : x ≡ 1 (mod N )
}

of 1 is contained in {z ∈ C : |z− 1|< 1}. This image is a compact subgroup, but
the only compact subgroup of the latter set is {1}. Hence χ is trivial on UN , and
factors through

(∏
ℓ Z×ℓ

)
/UN = (Z/NZ)×, inducing a Dirichlet character. These

two procedures are inverse to each other, showing the first point.
We now prove the second point. For s ∈ C, the function x 7→ x s is visibly a

continuous character on R>0. We want to show that all such characters are of this
form. After taking a logarithm, this is equivalent to showing that all continuous
homomorphisms (of additive groups) g : R→ C are of the form g(x) = xg(1),
which is shown by directly computing the values of g on Q and extending by
continuity. □

The product space in Proposition 2.9 is more usually written using ideles.

Definition 2.10. Define the ideles A× of Q to be

A× = A×
Q

..= R××
∏′

ℓ prime

Q×ℓ

= {(xR, x2, x3, x5, . . . ) : xℓ ∈ Z×ℓ for all but finitely many ℓ}.

(The prime on the product denotes restricted product, which indicates the almost
everywhere integral property in the definition.) The ideles form a topological ring
equipped with the restricted product topology, namely the topology with a basis of
open neighbourhoods given by subsets of the form U ×

∏
ℓ Uℓ with U ⊆ R× and

Uℓ ⊆Q×ℓ open subsets such that Uℓ = Z×ℓ for almost all primes ℓ. The units Q×

embed diagonally in A× (that is, via x 7→ (x, x, x, . . . )) and we have:

Proposition 2.11 (strong approximation). There is a topological isomorphism

Q×\A× ∼= R>0×
∏
ℓ prime

Z×ℓ .

Hence all continuous characters

Q×\A×→ C×

are of the form κχ,s as above, where χ is a Dirichlet character and s ∈ C.

Proof. See [34, Proposition I.4.6]. □
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Remark 2.12. The space Q×\A× is the idele class group of Q, and features
prominently in the idelic formulation of class field theory.

By the identification of C with Homcts(R>0,C×) one can view ζ as a function

ζ : Homcts(R>0,C×)→ C, [x 7→ x s
] 7→ ζ(s).

But now we can consider all complex Dirichlet L-functions at once via the function

L : Homcts(Q
×
\A×,C×)→ C, κχ,s 7→ L(χ, s). (2-3)

In the framework of Tate, this function L can be viewed as integrating κχ,s against
the Haar measure on Q×\A×. In Tate’s thesis, he showed properties such as
the analytic continuation and functional equations of Dirichlet L-functions using
harmonic analysis on measures. Indeed, the idelic formulation gives a beautiful
conceptual explanation for the appearance of the 0-functions and powers of 2π i in
the functional equation of the zeta function; these factors form the “Euler factor at the
archimedean place”. The measure-theoretic perspective has proven to be a powerful
method of defining and studying automorphic L-functions in wide generality.

2.4.3. p-adic L-functions via measures. To obtain a p-adic version of this picture,
by analogy with (2-3), a natural thing to do is to consider Homcts(Q

×
\A×,C×p )

(that is, replacing C with Cp). Again, by strong approximation, an element of
this space corresponds to a Cp-valued character on R>0 ×

∏
Z×ℓ . Since R>0 is

connected and Cp is totally disconnected, the restriction of any such character
to R>0 is trivial. Also using topological arguments we find that the restriction to∏
ℓ̸=p Z×ℓ factors through a finite quotient, so gives rise to some Dirichlet character

of conductor prime to p. This leaves the restriction to Z×p , i.e., Homcts(Z
×
p ,C×p ),

which is by far the most interesting part.
In particular, in the spirit of (2-2), we look for a “p-adic analytic” function

ζp : Homcts(Z
×

p ,C×p )→ Cp

which “sees” the special values of ζ(s) in the sense that

ζp(x 7→ xk)= (∗) · ζ(1− k), k ≥ 1

for an explicit factor (∗).
In Section 3, we will develop the appropriate notion of “p-adic analytic” object

in this setting: p-adic measures7 (and pseudomeasures) on Z×p . Then in Section 4
we will prove:

7It is not immediately obvious why we describe these as analytic, but in the background such
objects can be described in terms of rigid analysis, a p-adic analogue of complex analysis. Whilst we
will not explicitly use rigid analysis, the connection is described precisely in Remark 3.47.

In this language, measures correspond to analytic functions, and pseudomeasures to meromorphic
functions with at worst simple poles.
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Theorem 2.13 (Kubota–Leopoldt; Iwasawa). There is a unique pseudomeasure ζp

on Z×p such that, for all k > 0,∫
Z×p

xk
· ζp

..= ζp(x 7→ xk)= (1− pk−1)ζ(1− k).

Remark 2.14. Note that the factor (1− pk−1) is the inverse of the factor at the
prime p of the product formula ζ(s) =

∏
ℓ(1− ℓ

−s)−1, evaluated at s = 1− k.
So, even though the Euler product does not converge at s = 1− k, Theorem 2.13
morally says that, removing the factor at p from the Euler product formula, one can
p-adically interpolate the Riemann zeta function. This is a general phenomenon
appearing in the theory of p-adic L-functions.

From the pseudomeasure ζp, we can build p−1 (meromorphic) functions on Zp,
each satisfying a partial version of (2-2). If we stick with the measure-theoretic
approach, however, we have much more. The following result illustrates this
power. In constructing ζp, we use only values of ζ(s), without referring to Dirichlet
characters at all. However, we also have:

Theorem 2.15. Let χ be a Dirichlet character of conductor pn , n ≥ 0, viewed as a
locally constant character on Z×p .8 Then, for all k > 0,∫

Z×p

χ(x)xk
· ζp = (1−χ(p)pk−1)L(χ, 1− k).

Thus ζp also interpolates all the negative integer values L(χ,−k) for all Dirichlet
L-functions of p-power conductor. This is very surprising, since a priori one
constructs ζp using only information about the untwisted special L-values.

To complete the picture given in Section 2.4.2, one also considers Dirichlet
characters of conductor prime to p. Similar ideas can also be used to show:

Theorem 2.16. Let D>1 be any integer coprime to p, and let η denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure ζη on Z×p with
the following interpolation property: for all primitive Dirichlet characters χ with
conductor pn for some n ≥ 0, we have, for all k > 0,∫

Z×p

χ(x)xk
· ζη = (1−χη(p)pk−1)L(χη, 1− k).

Remark 2.17. Let (Z/DZ)×∧ denote the space of characters on (Z/DZ)×. The
measures given by Theorem 2.16 can be seen as functions on

Homcts(Z
×

p ,C×p )× (Z/DZ)×∧,

8That is, a character on Z×p factoring through Z×p /(1+ pnZp) for some large enough n.
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and they are compatible with respect to the natural maps (Z/EZ)×∧→ (Z/DZ)×∧

for E |D. This shows that they define a function on

Homcts(Z
×

p ,C×p )× lim
−−→

(D,p)=1
(Z/DZ)×∧ = Homcts(Z

×

p ,C×p )×

( ∏
ℓ̸=p

Z×ℓ

)∧
= Homcts(Q

×
\A×,C×p ).

In other words, they give a measure on the idele class group of Q.

Remark 2.18. Note that if k ≡ ℓ (mod pm−1(p− 1)), then xk
≡ xℓ (mod pm) for

any x ∈ Z×p . In particular, for any Dirichlet character η of conductor prime to p,
these theorems tell us that the special values of L-functions satisfy congruences

(1− η(p)pk−1)L(η, 1− k)≡ (1− η(p)pℓ−1)L(η, 1− ℓ) (mod pm).

For the Riemann zeta function, these are the (generalised) Kummer congruences,
which played a role in his classification of irregular primes, and which provided
significant motivation for Theorem 2.13. This gives an alternative way of viewing
p-adic L-functions: as p-adic analytic objects that package together systematic
congruences between L-values.

Part I: The Kubota–Leopoldt p-adic L-function

In this part, we give constructions of the Kubota–Leopoldt p-adic L-function
and the p-adic L-functions of Dirichlet characters. In Section 3, we introduce the
necessary formalism of p-adic (pseudo)measures and Iwasawa algebras, and — via
Mahler transforms — their relationship with spaces of power series. This section
sets up language and correspondences we will use throughout the rest of these notes.

In Section 4, we construct a pseudomeasure on Z×p that interpolates the values of
the Riemann zeta function at negative integers. In Section 5, we show moreover that
this pseudomeasure interpolates the values L(χ,−k) for k > 0 and χ any Dirichlet
character of p-power conductor. Further, if η is a Dirichlet character of conductor
prime to p, we construct a measure on Zp that interpolates the values L(χη,−k)
for the same range of k and χ . In Section 5.3 we rephrase the construction in
terms of analytic functions on Zp via the Mellin transform. In Sections 6 and 7
we describe the behaviour at s = 1 of these analytic functions, a point outside the
region of interpolation. Finally, in Section 8 we discuss how these results can be
used to construct the p-adic family of Eisenstein series, a prototype for Hida and
Coleman families.

3. Measures and Iwasawa algebras

In this section, we formally develop the theory of p-adic analysis that we will
be using in the sequel. Whilst some of the results may appear a little dry in
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isolation, fluency in the measure-theoretic language will greatly help us simplify
later calculations that would otherwise be very technical.

We start in a general setting, letting G be a profinite abelian group, and intro-
ducing p-adic measures on G. We then show that the space of p-adic measures is
isomorphic to the Iwasawa algebra of G. Additionally, in the special case where
G = Zp, we give a third perspective, showing that the Iwasawa algebra is also
isomorphic to a space of power series via the Mahler transform. After developing a
measure-theoretical toolkit for later use, we introduce pseudomeasures. We then
conclude by discussing generalisations, including locally analytic distributions and
rigid analytic functions.

Throughout, we fix a finite extension L of Qp, with the p-adic valuation nor-
malised so that vp(p) = 1; this will be the coefficient field. We write OL for its
ring of integers.

3.1. Preliminaries on p-adic Banach spaces. We first collect some technical
general definitions to anchor our discussions. This is intended only to make precise
some of the notions we subsequently use, and the reader comfortable with p-adic
Banach spaces and orthonormal bases may skip to Section 3.2. For more details,
see [20, Section I.1].

Definition 3.1. Let B be an L-vector space. A valuation on B is a function
v : B→ R∪ {+∞} such that

(i) v(x)=+∞ if and only if x = 0;

(ii) v(x + y)≥min(v(x), v(y)) for all x, y ∈ B; and

(iii) v(λx)= vp(λ)+ v(x) for all λ ∈ L , x ∈ B.

Such a valuation induces a norm (hence a topology) on B.

Definition 3.2. An L-Banach space is a complete topological L-vector space B
whose topology is induced from a valuation v.

Definition 3.3. (1) Let I be a set, and ℓ0
∞
(I, L) the set of sequences (ai )i∈I in L

that tend to 0 in the sense that for all ε > 0, we have |ai |L < ε for all but finitely
many i . This is naturally an L-Banach space with valuation v((ai )i )= infi∈Ivp(ai ).

(2) If B is an L-Banach space, an orthonormal basis of B is a collection (ei )i∈I ,
for some set I , such that we have an isometry

ℓ0
∞
(I, L)→ B, (ai )i∈I 7→

∑
i∈I

ai ei .

Remark 3.4. By [20, Proposition I.1.5], if B is an L-Banach space with valuation
vB , and vB(B)= vp(L), then B admits an orthonormal basis.
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We shall also be concerned with dual spaces. If B is a topological L-vector
space, denote its continuous linear dual by

B∗ ..= Homcts(B, L).

If B is an L-Banach space, there are two natural topologies on B∗.

Definition 3.5. Let B be an L-Banach space and B∗ its continuous dual.

• The strong topology is induced by the natural dual valuation v∗, where

v∗(µ) ..= infx∈B
(
vp(µ(x))− v(x)

)
.

This is the coarsest topology such that a sequence (µ j ) j ⊂ B∗ converges if and
only if it converges uniformly (in the usual sense of continuous functions on B).

• The weak topology is induced by the family of semivaluations9
{vx : x ∈ B}, where

vx(µ)
..= vp(µ(x)).

This is the topology of pointwise convergence, the coarsest such that a sequence
(µ j ) j ⊂ B∗ converges if and only if µ j (x) converges for all x ∈ B.

Remark 3.6. The dual B∗ is complete with both of these topologies. However
generally it is an L-Banach space only for the strong topology, whilst B is reflexive
(canonically isomorphic to its double continuous dual) only when B∗ is equipped
with the weak topology.

3.2. p-adic measures. We now return to our specific setting, and introduce the
p-adic measures fundamental to our story. Let G be a profinite abelian group; the
examples G = Zp or G = Z×p are of most interest to us.

Definition 3.7. We denote by C (G, L) the space of continuous functions φ :G→ L .
We equip this space with a valuation

vC (φ)= inf
x∈G

vp(φ(x)), φ ∈ C (G, L),

noting this is well defined as G is compact (hence φ is bounded).

This valuation induces the sup norm on C (G, L), and endows it with the structure
of an L-Banach space, in the sense of Definition 3.2.

Definition 3.8. We define the space M (G, L) of L-valued measures on G as
the continuous linear dual C (G, L)∗ = Homcts(C (G, L), L). If φ ∈ C (G, L) and
µ ∈M (G, L), the evaluation of µ at φ will be denoted by∫

G
φ(x) ·µ(x),

or by
∫

G φ ·µ if the variable of integration is clear from the context.

9That is, functions v that satisfy (ii) and (iii) of Definition 3.1, but not necessarily (i).
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We say that an element µ ∈ M (G, L) is an OL -valued measure, and write
µ ∈M (G,OL), if

∫
G φ ·µ ∈ OL for every OL -valued function φ. Since measures

are continuous (or equivalently, bounded), we have M (G, L)=M (G,OL)⊗OL L .
We will be mainly concerned with OL -valued functions and measures.

Remark 3.9. All parts of Definitions 3.7 and 3.8 apply identically if we replace G
with any subset X ⊂ G equipped with the subspace topology (noting that X no
longer need be a group).

The following simple example will be crucial in later sections.

Example 3.10. For any g ∈ G, the Dirac measure δg ∈M (G,OL) is the linear
functional “evaluation at g”, that is, the measure defined by

δg : C (G,OL)→ OL , φ 7→ φ(g).

We will give a number of alternative descriptions of p-adic measures. Firstly,
we make the following simplifications.

Remark 3.11. Let C lc(G,OL) denote the space of locally constant functions
G→ OL ; this is a dense subspace of the continuous functions C (G,OL). Indeed,
any continuous function φ ∈ C (G,OL) can be p-adically approximated by its lo-
cally constant truncations φn(x)=

∑
a∈(Z/pnZ) φ(a)1a+pnZp(x), where 1a+pnZp(x)

denotes the characteristic function of a+ pnZp. Let

M lc(G,OL)
..= C lc(G,OL)

∗

be the continuous dual, the space of “locally constant measures on G”. We claim
restriction from C to C lc defines a canonical isomorphism

M (G,OL)
∼
−→M lc(G,OL). (3-1)

To see this, we write down an inverse. Suppose µlc
∈M lc(G,OL), and let φ ∈

C (G,OL). Using density, choose a sequence φn ∈ C lc(G,OL) with φn → φ and
define ∫

G
φ ·µ ..= lim

n→∞

∫
G
φn ·µ

lc.

By continuity, the limit is well defined and independent of the choice of φn , and
hence we obtain a well-defined measure µ ∈M (G,OL). This gives a map

M lc(G,OL)→M (G,OL)

visibly inverse to (3-1).
Henceforth we drop the notation µlc and just write µ.

Remark 3.12. We have an identification of M lc(G,OL) with the space of additive
functions

µ : {open compact subsets of G} → OL . (3-2)
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Indeed, if µ∈M lc(G,OL) and U ⊂G is an open compact set, one defines µ(U ) ..=∫
G 1U (x) ·µ(x), where 1U (x) denotes the characteristic function of U .

Conversely, let µ be such a function and let φ ∈ C lc(G,OL). We will see how
to integrate φ against µ. As φ is locally constant, there is some open subgroup H
of G such that φ can be viewed as a function on G/H . We define the integral of φ
against µ to be ∫

G
φ ·µ ..=

∑
[a]∈G/H

φ(a)µ(aH).

Combining Remarks 3.11 and 3.12, we have an identification of M (G,OL) with
the space of additive functions on the open compact subsets of G.

Remark 3.13. On Zp, we have a (real-valued) Haar measure defined so that open
compact subsets of the form a+ pnZp have measure p−n . Whilst this is probably
the most natural measure one might consider on Zp, observe that this is not a p-adic
measure, as it is not p-adically bounded!

Example 3.14. For g ∈ G, the Dirac measure δg from Example 3.10 corresponds
to the function δ̃g on open compact subsets given by

δ̃g(X)=
{

1 if g ∈ X,
0 if g ̸∈ X,

as can be seen directly from the identification above.

3.3. The Iwasawa algebra. We will now express measures in algebraic terms. As a
prototype, we recall a useful fact from representation theory. If G is a finite abelian
group, let C (G,Z) be the space of functions G→ Z, and M (G,Z) its dual, the
space of “continuous measures” on G (when we equip G with the discrete topology).
For any g ∈ G we have the Dirac measure δg ∈M (G,Z) given by δg(φ)

..= φ(g),
as in Example 3.10. Then recall the following classical result.

Proposition 3.15. If G is a finite abelian group, the map [g] 7→ δg induces an
isomorphism between the group algebra Z[G] and M (G,Z).

When G is profinite abelian, we have an analogous p-adic result after replacing
the group algebra with its profinite completion, the Iwasawa algebra.

Proposition 3.16. We have an natural isomorphism

M (G,OL)∼= lim
←−−

H
OL [G/H ],

where the limit is over all open subgroups of G.

Proof. By Remark 3.11, we have a canonical isomorphism

M (G,OL)∼=M lc(G,OL)= Homcts(C
lc(G,OL),OL).
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As any locally constant function factors through G/H for some open compact
subgroup H ≤ G, we also have a natural isomorphism

C lc(G,OL)∼= lim
−−→

H
C (G/H,OL).

We thus have

M (G,OL)∼= Homcts(lim−−→
H

C (G/H,OL),OL)∼= lim
←−−

H
M (G/H,OL), (3-3)

the final isomorphism following from compatibility of duals with limits. As G/H
is a finite group, by Proposition 3.15 we have that M (G/H,OL)∼= OL [G/H ]. □

We explicitly describe both maps in this isomorphism.
Let µ be a measure, considered as an additive function as in (3-2), and let H be

an open subgroup of G. We define an element λH of OL [G/H ] by setting

λH
..=

∑
[a]∈G/H

µ(aH)[a].

By the additivity property of µ, we see that (λH )H ∈ lim
←−−

OL [G/H ], and this gives
the map from measures to the inverse limit.

Conversely, given such an element λ of the inverse limit, write λH for its image
in OL [G/H ] under the natural projection. Then

λH =
∑
[a]∈G/H

ca[a].

We define
µ(aH)= ca.

Since the λH are compatible under projection maps, this defines an additive function
on the open compact subsets of G, i.e., an element µ ∈M (G,OL).

Definition 3.17. We define the Iwasawa algebra of G to be the profinite completion
of the group algebra OL [G], i.e.,

3(G) ..= lim
←−
H

OL [G/H ].

(Note that we suppress L from the notation.)

Remark 3.18. The Iwasawa algebra 3(Zp) has a natural OL -algebra structure, and
hence by transport of structure we obtain such a structure on M (Zp,OL). As with
the classical situation for finite group rings, the algebra structure on the space of
measures can be described directly via convolution of measures. For a general
profinite abelian group G, given two measures µ, λ ∈M (G,OL), one defines their
convolution µ ∗ λ to be∫

G
φ · (µ ∗ λ)=

∫
G

( ∫
G
φ(x + y) · λ(y)

)
·µ(x).
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One checks that this does give an algebra structure and that the isomorphism above
is an isomorphism of OL -algebras.

Example 3.19. Let a∈Zp, and let δa be the Dirac measure on Zp from Example 3.10.
Recall this corresponds to the function δ̃a on open compact subsets given by δ̃a(a)=1
(if a ∈ X ) and δ̃a(a)= 0 (if a ̸∈ X ). Under the isomorphism of Proposition 3.16, δa

corresponds to the projective system

([a+ pnZp])n∈N ∈ lim
←−−
n∈N

OL [Zp/pnZp].

In the inverse limit this yields an element of the Iwasawa algebra that we denote
by [a].

3.4. p-adic analysis and Mahler transforms. So far we have given three equivalent
descriptions of p-adic measures on a profinite abelian group G:

(1) as linear functionals on C (G, L),

(2) as additive functions on open compact subsets of G, and

(3) as elements of the Iwasawa algebra of G.

In this section we specialise to G=Zp, and in this case give yet another equivalent
description, via the power series ring OL [[T ]].

Definition 3.20. For x ∈ Zp, let( x
n

)
..=

x(x − 1) · · · (x − n+ 1)
n!

for n ≥ 1 and
( x

0

)
= 1.

One easily checks that x 7→
(x

n

)
defines an element in C (Zp,Zp) of valuation

vC

((x
n

))
= 0. The following theorem is fundamental in all that follows. It says that

the functions
(x

n

)
form an orthonormal basis for the L-Banach space C (Zp, L) (in

the sense of Definition 3.3).

Theorem 3.21 (Mahler). Let φ : Zp→ L be a continuous function. There exists a
unique expansion

φ(x)=
∑
n≥0

an(φ)
( x

n

)
,

where an(φ) ∈ L and an(φ)→ 0 as n→∞. Moreover, vC (φ)= infn∈N vp(an(φ)).

Proof. See [20, Théorème 1.2.3.]. □

Remark 3.22. The coefficients an(φ) are called the Mahler coefficients of φ. One
can write down the Mahler coefficients of φ very simply: we define the discrete
derivatives of φ by

φ[0] = φ, φ[k+1](x)= φ[k](x + 1)−φ[k](x),

and then an(φ)= φ
[n](0).
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It is natural to study a measure by looking at its values on the elements of the
(orthonormal) Mahler basis. We encode these values in the following power series.

Definition 3.23. Letµ∈M (Zp,OL) be a p-adic measure on Zp. Define the Mahler
transform (or Amice transform) of µ to be

Aµ(T ) ..=

∫
Zp

(1+ T )x ·µ(x)=
∑
n≥0

( ∫
Zp

( x
n

)
·µ

)
T n
∈ OL [[T ]].

Example 3.24. Let a ∈ Zp, and recall the Dirac measure δa . By definition, its
Mahler transform is

Aδa (T )=
∑
n≥0

(a
n

)
T n
= (1+ T )a.

Before stating the main theorem concerning the Mahler transform, let us consider
how it interacts with the isomorphism M (Zp,OL)

∼
−→3(Zp) of Proposition 3.16.

As 1 is a topological generator of (the additive group) Zp, and likewise 1+ T is
a topological generator of OL [[T ]], one may check that [1] 7→ (1+ T ) induces an
isomorphism 3(Zp)

∼
−→ OL [[T ]], fitting into a commutative diagram

M (Zp,OL) OL [[T ]]

3(Zp)

(3-4)

Indeed, by continuity it suffices to check on Dirac measures. As δa 7→ (1+ T )a

under the top arrow, and δa 7→ [a] 7→ (1+ T )a under the bottom arrows, we are
done.

Given the bottom two arrows in (3-4) are isomorphisms, the following theorem
should not be surprising.

Theorem 3.25. The Mahler transform gives an OL -algebra isomorphism

M (Zp,OL)
∼
−→ OL [[T ]].

Proof. This is almost a tautology from the definition of orthonormal basis. By
continuity and linearity, any measure µ ∈M (Zp,OL) is uniquely determined by
the values

∫
Zp

(x
n

)
·µ. Indeed, let φ ∈C (Zp,OL). By Mahler’s theorem, we can write

φ(x)=
∑

n≥0 an(φ)
(x

n

)
for some unique an(φ)∈OL such that an(φ)→0 as n→∞;

and then we have ∫
Zp

φ ·µ=
∑
n≥0

an(φ)

∫
Zp

( x
n

)
·µ.

Conversely, given any collection of values cn ∈ OL , defining an element g =∑
n≥0 cnT n

∈OL [[T ]], there is a unique measureµg with
∫

Zp

(x
n

)
·µg=cn . Concretely,
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for any φ =
∑

n≥0 an(φ)
(x

n

)
∈ C (Zp,OL) as above, we define∫

Zp

φ ·µg =
∑
n≥0

an(φ)cn,

which converges to an element in OL . Visibly we have Aµg = g, so this defines an
inverse to the Mahler transform. □

Remark 3.26. Each space in the diagram (3-4) has a description as an inverse limit.
For measures, this is (3-3); for the Iwasawa algebra, this is by definition; and for
power series, we have

OL [[T ]] ∼= lim
←−−

n
OL [T ] /((1+ T )pn

− 1).

The appearance of the expression (1+T )pn
−1 will become clearer in Section 3.5.5

below (and its importance further recognised in Appendix A).
We invite the reader to spell out maps between the “level n” terms of the inverse

limits, analogous to (3-4) and such that the following diagram commutes:

M (Z/pnZ,OL) OL [T ] /((1+ T )pn
− 1)

OL [Z/pnZ]

Definition 3.27. If g ∈ OL [[T ]], we continue to write µg ∈ M (Zp,OL) for the
corresponding (OL -valued) measure on Zp (so that Aµg = g).

Remark 3.28. (1) Mahler’s isomorphism induces an isomorphism

M (Zp, L)∼=M (Zp,OL)⊗OL L ∼
−→ O[[T ]]⊗OL L ∼= O[[T ]][1/p].

(2) Let g ∈ OL [[T ]] with associated measure µg. From the definitions, it is easily
seen that∫

Zp

µg = g(0),
∫

Zp

x ·µg = g′(0),
∫

Zp

x2
·µg = g′′(0)+ g′(0),∫

Zp

x3
·µg = g′′′(0)+ 3g′′(0)+ g′(0), . . . ,

that is, for every n, the value
∫

Zp xn
·µg can be written as an integer combination

of g(r)(0) for 0≤ r ≤ n. We simplify this in Corollary 3.30 below.

(3) Recall (from Definition 3.5) that there are two natural topologies on M (Zp,OL).
One can check that under the isomorphism of Theorem 3.25, the strong topology
corresponds to the p-adic topology on OL [[T ]], whilst the weak topology cor-
responds to the (p, T )-adic topology. Analogously to Remark 3.6, the p-adic
topology on OL [[T ]] is that of uniform convergence in the power series coefficients,
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whilst the (p, T )-adic topology is that of pointwise (term-by-term) convergence.
For example, consider the sequence 1, T, T 2, T 3, . . . in OL [[T ]]. This converges
to 0 pointwise, and in the (p, T )-adic (weak) topology; but it does not converge
uniformly, or in the p-adic (strong) topology.

3.5. A measure-theoretic toolbox. There are natural operations one might consider
on measures, and via the Mahler transform these give rise to operators on power
series. The following operations can be considered as a “toolbox” for working with
measures and power series; as we shall see in the sequel, the ability to manipulate
measures in this way has important consequences. For further details (and more
operations), see [20].

Notation. In light of the isomorphism between the space M (G,OL) of measures
and the Iwasawa algebra 3(G), we will frequently conflate the two. In particular,
it is convenient — and indeed standard — to write µ ∈ 3(G) for measures on G,
typically suppressing the coefficient field L , which is fixed throughout.

3.5.1. Multiplication by x. Given a measure µ on Zp, we naturally wish to compute∫
Zp xk

·µ for k a positive integer. To allow us to do that, we let xµ be the measure
defined by ∫

Zp

f (x) · xµ=
∫

Zp

x f (x) ·µ.

We can ask what the operation µ 7→ xµ does on Mahler transforms; we find:

Lemma 3.29. We have
Axµ = ∂Aµ,

where ∂ denotes the differential operator (1+ T ) d
dT .

Proof. The result follows directly from computing

x
( x

n

)
= (x − n)

( x
n

)
+ n

( x
n

)
= (n+ 1)

( x
n+1

)
+ n

( x
n

)
. □

From the above lemma, we immediately obtain the following expressions, com-
pleting the examples seen in Remark 3.28.

Corollary 3.30. For µ ∈3(Zp), we have∫
Zp

xk
·µ= (∂kAµ)(0).

3.5.2. Multiplication by zx . Totally analogously to the above, if g ∈ C (Zp, L)
and µ is a measure on Zp, then we can define a measure g(x)µ by∫

Zp

f (x) · g(x)µ ..=

∫
Zp

f (x)g(x) ·µ.
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Of particular interest is the measure zxµ, for z ∈ OL such that |z− 1|< 1. We
claim the Mahler transform of zxµ is

Azxµ(T )= Aµ((1+ T )z− 1).

Indeed, from the definition of the Mahler transform, we see that

Aµ((1+ T )z− 1)=
∫

Zp

((1+ T )z)x ·µ,

and this is precisely the Mahler transform of zxµ (one has to be slightly careful
about convergence issues).

3.5.3. Restriction to open compact subsets. Consider an open compact subset
X ⊂ Zp, and write 1X for the characteristic function of X . The “restriction of µ
to X” is the measure ResX (µ) on Zp defined by∫

Zp

f ·ResX (µ)
..=

∫
Zp

f 1X ·µ.

It is also standard (and intuitive) to denote this quantity as∫
X

f ·µ.

We say a measure µ is supported on X if µ= ResX (µ).

Remark 3.31. Note that we may view this restriction as a measure on X as follows.
For any continuous function g : X→ L , let g̃ : Zp→ L denote its extension by 0
outside X . The map

C (X, L)→ L , g 7→
∫

Zp

g̃ ·µ

defines a measure on X . Abusing notation, we also denote this measure by ResX (µ),
noting it is intuitively compatible with its cousin defined on Zp. Indeed we will
often blur the distinction between considering ResX (µ) as a measure on Zp or on X .

When X = b+ pnZp, we can write the characteristic function explicitly as

1b+pnZp(x)=
1
pn

∑
ξ∈µpn

ξ x−b,

and then using the above, we calculate the Mahler transform of Resb+pnZp(µ) to be

AResb+pn Zp (µ)
(T )= 1

pn

∑
ξ∈µpn

ξ−bAµ((1+ T )ξ − 1). (3-5)

3.5.4. Restriction to Z×p . Immediately from the above applied to b = 0 and n = 1,

ARes
Z
×
p
(µ)(T )= Aµ(T )−

1
p

∑
ξ∈µp

Aµ((1+ T )ξ − 1). (3-6)
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In order to calculate a formula for the restriction to an arbitrary open compact
subset X ⊆Zp, we can write X (or its complement, as we did with Z×p ) as a disjoint
union of sets of the form b+ pnZp and apply the formulas obtained before.

3.5.5. The action of Z×p , ϕ and ψ . We introduce an action of Z×p that serves as a
precursor to a Galois action later on. Let a ∈Z×p . We can define a measure σa(µ) by∫

Zp

f (x) · σa(µ)=

∫
Zp

f (ax) ·µ.

This has Mahler transform

Aσa(µ) = Aµ((1+ T )a − 1).

In a similar manner, we can define an operator ϕ acting as “σp” by∫
Zp

f (x) ·ϕ(µ)=
∫

Zp

f (px) ·µ,

and this corresponds to

Aϕ(µ) = ϕ(Aµ)
..= Aµ((1+ T )p

− 1). (3-7)

Finally, we also define the analogous operator for p−1; we define a measure ψ(µ)
on Zp by defining ∫

Zp

f (x) ·ψ(µ)=
∫

pZp

f (p−1x) ·µ.

Note that ψ ◦ϕ = id, whilst ϕ ◦ψ(µ)= RespZp(µ). Indeed, we have∫
Zp

f (x) ·ψ ◦ϕ(µ)=
∫

Zp

1pZp(x) f (p−1x) ·ϕ(µ)

=

∫
Zp

1pZp(px) f (x) ·ϕ(µ)=
∫

Zp

f (x) ·µ

and∫
Zp

f (x) ·ϕ ◦ψ(µ)=
∫

Zp

f (px) ·ψ(µ)=
∫

pZp

f (x) ·µ=
∫

Zp

f (x) ·RespZp(µ).

In particular, we have

ResZ×p
(µ)= (1−ϕ ◦ψ)(µ). (3-8)

The operator ψ also gives an operator on any F(T ) ∈ OL [[T ]] under the Mahler
transform, and using the restriction formula above, we see that it is the unique
operator satisfying

ϕ ◦ψ(F)(T )= 1
p

∑
ξ∈µp

F((1+ T )ξ − 1). (3-9)
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The following result will be useful in Part II.

Corollary 3.32. A measure µ∈3(Zp) is supported on Z×p if and only if ψ(Aµ)= 0.

Proof. Let µ ∈ 3(Zp). Then µ is supported on Z×p if and only if ResZ×p
(µ) = µ,

or equivalently if and only if Aµ = Aµ−ϕ ◦ψ(Aµ), which happens if and only if
ψ(Aµ)= 0, since the operator ϕ is injective. □

Remark 3.33. We have an injection ι :3(Z×p ) ↪→3(Zp) given by∫
Zp

φ · ι(µ)=

∫
Z×p

φ|Z×p ·µ,

and because ResZ×p
◦ι is the identity on 3(Z×p ), we can identify 3(Z×p ) with its

image as a subset of3(Zp). By Corollary 3.32, a measure µ∈3(Zp) lies in3(Z×p )
if and only if ψ(µ) = 0. Whilst we identify 3(Z×p ) with a subset of 3(Zp), it is
important to remark that it is not a subalgebra. Indeed, convolution of measures on
a group G uses the group structure of G; for Z×p this is multiplicative, and for Zp

this is additive (see Remark 3.18). If λ and µ are two measures on Z×p , writing
µ ∗Z×p

λ for the convolution over Z×p , we have∫
Z×p

f (x) · (µ ∗Z×p
λ)=

∫
Z×p

( ∫
Z×p

f (xy) ·µ(x)
)
· λ(y). (3-10)

3.6. Pseudomeasures. The Mahler transform gives a correspondence between
p-adic measures and p-adic analytic functions on the open unit ball (explained
in Remark 3.39 below). The Riemann zeta function, however, is not analytic
everywhere, as it has a simple pole at s = 1. To reflect this, we also need to
be able to handle simple poles on the p-adic side. We do this via the theory of
pseudomeasures.

Definition 3.34. Let G be a profinite abelian group, and let Q(G) denote the ring
of fractions of the Iwasawa algebra 3(G). A pseudomeasure on G is an element
λ ∈ Q(G) such that

([g] − [1])λ ∈3(G)

for all g ∈ G. (This is using the natural product on the Iwasawa algebra 3(G),
which we recall corresponds to convolution (3-10) of measures).

We first explain how to integrate certain functions against pseudomeasures. Let
χ : G→C×p be a nontrivial character, and let λ ∈ Q(G) be a pseudomeasure. Then
one can define ∫

G
χ · λ ..= (χ(g)− 1)−1

∫
G
χ · ([g] − [1])λ, (3-11)
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where g ∈ G is any element such that χ(g) ̸= 1. This definition does not depend
on the choice of g ∈ G. Indeed one has

(χ(h)− 1)
∫

G
χ · ([g] − [1])λ=

∫
G
χ · ([g] − 1)([h] − 1)λ

= (χ(g)− 1)
∫

G
χ · ([h] − 1)µ.

Here we used the convolution product and that G is abelian.

Remark 3.35. To motivate this definition, note that if χ : G→ C×p is a nontrivial
character, then from the definition of convolution product, the function

3(G)→ Cp, µ 7→

∫
G
χ ·µ

is a ring homomorphism. This induces a unique homomorphism Q(G)→ Cp,
which — when applied to a pseudomeasure — yields the expression (3-11) above.

We will be most interested in pseudomeasures on G =Z×p . The following lemma
shows that a pseudomeasure µ on Z×p is uniquely determined by the values

∫
Z×p

xk
·µ

for k > 0.

Lemma 3.36. (i) Let µ ∈3(Z×p ) be such that∫
Z×p

xk
·µ= 0

for all k > 0. Then µ= 0.

(ii) Let µ ∈3(Z×p ) be such that ∫
Z×p

xk
·µ ̸= 0

for all k > 0. Then µ is not a zero divisor in 3(Z×p ).

(iii) Part (i) holds if , more generally, µ is a pseudomeasure.

Proof. (i) Note that the vanishing condition forces the Mahler transform Aµ(T )=∑
k≥0

( ∫
Zp

(x
k

)
·µ

)
T k of µ to be constant, since each nontrivial binomial polynomial

is a linear combination of strictly positive powers of x . As µ is a measure on Z×p ,
we also have ψ(Aµ)(T )= 0 by (3-8). Since ψ is the identity on constants (using,
e.g., (3-9)), we deduce that Aµ(T )= 0, so µ= 0.

(ii) Suppose there exists a measure λ such that µ ∗Z×p λ= 0, where the product is
the convolution product on Z×p (see Remark 3.33). Then

0=
∫

Z×p

xk
·(µ∗Z×p

λ)=

∫
Z×p

( ∫
Z×p

(xy)k ·µ(x)
)
·λ(y)=

( ∫
Z×p

xk
·µ

)( ∫
Z×p

xk
·λ

)
,

which forces λ= 0 by part (i). In particular µ is not a zero divisor.
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(iii) Let µ be a pseudomeasure satisfying the vanishing condition. Let a ̸= 1 be an
integer prime to p; then λ= ([a] − [1])µ ∈3(Z×p ) is a measure by the definition
of pseudomeasure, and by (3-11) we have∫

Z×p

xk
· λ= (ak

− 1)
∫

Z×p

xk
·µ= 0

for all k > 0. By part (i), we have λ = 0. But [a] − [1] satisfies the condition of
part (ii), so it is not a zero-divisor, and this forces µ= 0, as required. □

Finally, we give a simpler process for writing down pseudomeasures on Z×p .

Definition 3.37. The augmentation ideal I ((Zp/pn)×) ⊂ OL [(Zp/pn)×] is the
kernel of the natural “degree” map

OL [(Z/pnZ)×] → OL ,
∑

a

ca[a] 7→
∑

a

ca.

These fit together into a degree map 3(Z×p )→ OL ; we call its kernel the augmenta-
tion ideal I (Z×p )⊂3(Z

×
p ). One may check directly there is an isomorphism

I (Z×p )∼= lim
←−−

I ((Zp/pn)×).

Lemma 3.38. Let a be any topological generator of Z×p (for example, take a to
be a primitive root modulo p such that a p−1

̸≡ 1 (mod p)2), and µ ∈ 3(Z×p ) a
measure. Then

µ′ ..=
µ

[a] − [1]
∈ Q(Z×p )

is a pseudomeasure.

Proof. As p is odd, (Zp/pn)× is cyclic, generated by ā ..= a (mod pn), and we have

I ((Zp/pn)×)= ([ā] − [1])OL [(Zp/pn)×].

In the inverse limit we see that

I (Z×p )= ([a] − [1])3(Z
×

p ).

Thus if g ∈ Z×p , we have [g] − [1] ∈ I (Z×p ), and we must have

[g] − [1] = ν([a] − [1])

for some ν ∈3(Z×p ). Then

([g] − [1])µ′ = ν([a] − [1])µ′ = ν ·µ ∈3(Z×p ),

that is, µ′ is a pseudomeasure. □

Note moreover that all pseudomeasures have this shape. Indeed, let µ′ be a
pseudomeasure, and a ∈ Z×p a topological generator; then µ = ([a] − [1])µ′ is a
measure, and µ′ = µ/([a] − [1]) as above.
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3.7. Locally analytic functions and distributions. We finally introduce another
important space of functions and its dual, namely locally analytic functions and
locally analytic distributions. This subsection may be safely skipped on a first
reading, and indeed we make only peripheral use of its content in these notes (in
Sections 6.2 and 7, to study values of the p-adic zeta function). The locally analytic
theory is nonetheless of fundamental importance in more general settings, so we
include a sketch here, and indicate how it dovetails beautifully with the theory of
measures we have already studied. All of this — and other related theories in p-adic
functional analysis — are described in detail in [20].

As motivation, we first note the following.

Remark 3.39. The space M (Zp, L) of measures has an interpretation via rigid
analysis. To explain this, consider the p-adic open unit ball in Cp, i.e., the space

B(0, 1)= {z ∈ Cp : |z|< 1} ⊂ Cp.

This is the set of Cp-points of a rigid analytic space in the sense of [10]. An
L-valued function on B(0, 1) is rigid analytic if it can be written as a power series∑

n≥0 anT n
∈ L[[T ]] that is everywhere convergent on B(0, 1) (i.e., |an|rn

→ 0 as
n→∞ for all r < 1); write R+ ⊂ L[[T ]] for the space of such functions. A rigid
analytic function is bounded if the |ai | are bounded.

Note that the space of bounded L-valued rigid analytic functions is OL [[T ]]⊗OL L ,
which, via the Mahler transform (Remark 3.28), is isomorphic to M (Zp, L). Hence
p-adic measures on Zp can be viewed as bounded rigid analytic functions on B(0, 1).

It is natural to ask if the Mahler correspondence, as studied in Theorem 3.25,
can be extended from OL [[T ]] to all of R+. Such an extension is given by locally
analytic distributions, in the sense described in Theorem 3.43 and (3-12) below.

Definition 3.40. Let L/Qp be a finite extension, and let f : Zp→ L be a function.

(1) For z ∈ Zp, we say f is locally analytic at z if f can be described locally
around z by a convergent power series. Precisely, this means there exists some
integer nz ≥ 0 and numbers {ak(z) ∈ L : k ≥ 0} such that∑

k≥0

ak(z) · (x − z)k

converges to f (x) for all x ∈Uz
..= z+ pnz Zp.

(2) We say f is locally analytic if it is locally analytic at all z ∈ Zp.

(3) We write C la(Zp, L) for the L-vector space of all locally analytic functions
Zp→ L .

Recall that C (Zp, L) can be equipped with a valuation that makes it into an
L-Banach space, and that the space of measures M (Zp, L) was defined as its con-
tinuous dual. Analogously, the space C la(Zp, L) has a natural topology, described
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as follows (see [20, Section I.4] for more details). For each n ∈N, we say a function
f : Zp→ L is locally analytic of radius p−n if it is locally analytic and moreover

we can take nz = n for all z ∈Zp; in other words, it is analytic (described by a single
power series) on each open set of form z + pnZp. Denote by C n−an(Zp, L) the
subspace of such functions. Then one can check that C n−an(Zp, L) is an L-Banach
space with valuation given by

vn( f ) ..= inf
z∈(Zp/pnZp)

inf
k∈N

(
nk+ vp(ak(z))

)
,

or, equivalently, norm given by

∥ f ∥n ..= sup
z∈(Zp/pnZp)

sup
k∈N

|ak(z)|p−nk .

Moreover, almost by definition, we have that C la(Zp, L)= lim
−−→n∈N

C n−an(Zp, L),
and so it inherits a natural topology given by the direct limit topology.

Remark 3.41. Locally analytic functions are continuous, so C la(Zp, L)⊂C (Zp, L).
Note, however, that the topology we just defined on C la(Zp, L) is not the one
induced from C (Zp, L). Nonetheless the image of this inclusion is dense, as, for
example, locally constant functions are locally analytic functions and are dense
in C (Zp, L).

Analogously to Definition 3.8, we make the following definition.

Definition 3.42. We define the space D la(Zp, L) of locally analytic distributions
on Zp to be the continuous dual Homcts(C

la(Zp, L), L).

If µ is a locally analytic distribution on Zp, and φ ∈ C la(Zp, L), we continue to
write ∫

Zp

φ(x) ·µ(x) ..= µ(φ).

The binomial polynomials
(x

n

)
are visibly locally analytic, so we may also extend

the Mahler transform to this generality; namely, if µ ∈ D la(Zp, L), define

Aµ(T ) ..=

∫
Zp

(1+ T )x ·µ(x)=
∑
n≥0

( ∫
Zp

( x
n

)
·µ

)
T n
∈ L[[T ]].

The following crucial result provides the desired extension of the Mahler trans-
form beyond bounded measures/power series.

Theorem 3.43. The Mahler transform induces a bijection

D la(Zp, L)→R+ ⊂ L[[T ]].

Proof. This is [20, Theorem II.2.2]. □
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As with Theorem 3.25, the theorem says more: the bijection respects natural
topologies on both sides. Here the topologies are as follows:

• D la(Zp, L) is the inverse limit of the continuous duals Dn−an(Zp, L); each of
these is a Banach space with the natural dual (strong) topology (see Remark 3.6).
This endows D la(Zp, L) with the corresponding inverse limit topology.

• As the open unit disc is the union of the closed discs B(0, r) ..={z ∈Cp : |z|≤ r}
of radius r < 1, we can write R+ as the inverse limit over r < 1 of the Banach
spaces O(B(0, r)) of analytic functions on B(0, r). Again we get an inverse
limit topology on R+.

A topology induced from an inverse limit of Banach spaces is called a Fréchet
topology. The Mahler transform is then an isomorphism of Fréchet spaces.

Remark 3.44. If µ ∈M (Zp, L) is any measure, then we obtain a locally analytic
distribution µ̃ ∈ D la(Zp, L) by restricting to C la(Zp, L) ⊂ C (Zp, L). As locally
analytic functions are dense inside continuous functions, the association µ 7→ µ̃ is
injective, and hence this identification allows us to consider M (Zp, L) ⊂ D la as
a subset. The combination of Theorems 3.25 and 3.43 says that this inclusion is
compatible with the natural inclusion of bounded power series inside power series
converging in the open unit disc, that is, the following diagram commutes:

D la(Zp, L)

⊃

µ 7→Aµ
// R+

⊃

M (Zp, L)
µ 7→Aµ

// OL [[T ]]⊗OL L

(3-12)

Remark 3.45. Observe that every part of our “measure-theoretic toolbox” from
Section 3.5, including corresponding operations on Mahler transforms, carries over
identically to the setting of locally analytic distributions.

Remark 3.46. Locally analytic p-adic analysis is fundamentally important in
the study of p-adic L-functions (and in many other areas, such as in the study
of p-adic automorphic forms, in the p-adic Langlands correspondence, in p-adic
Hodge theory, etc.). Indeed, more general p-adic L-functions — for example, those
attached to elliptic curves and modular forms — are frequently not measures or
pseudomeasures, but rather locally analytic distributions with prescribed growth, in
the sense of [1]. We discuss this further in Appendix B.

3.8. Further remarks. The following remarks will not be seriously used in the
sequel, but are included for completeness, and to illustrate some other ways that
the objects studied in this section appear in the literature.
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Remark 3.47. We have an analogue of Remark 3.39 for measures on Z×p , using
instead the multiplicative structure. The key object here is the weight space

W(Cp)= Homcts(Z
×

p ,C×p ).

Since Z×p = µp−1× (1+ pZp), we have

Homcts(Z
×

p ,C×p )
∼= Homcts(µp−1,C×p )×Homcts(1+ pZp,C×p ).

Evaluation at a topological generator of 1+ pZp identifies Homcts(1+ pZp,C×p )

with B(0, 1) from above. Hence we may identify Homcts(Z
×
p ,C×p ) with p−1 copies

of B(0, 1). Summarising,

W(Cp)=
⊔

ν∈(µp−1)∨

Uν,

where:

• ν ranges over the p− 1 different characters of µp−1.

• Uν ⊂W(Cp) is the subset of characters χ of Z×p with χ |µp−1 = ν.

• Each Uν may be identified with B(0, 1).

This space can also be given more structure; there is a rigid analytic space W
such that the elements of W(Cp) are the Cp-points of W . Analogously to above,
a theorem of Amice says that giving a measure µ on Z×p is equivalent to giving a
bounded rigid analytic function Fµ on W . This equivalence is given as follows: if µ
is a measure on Z×p and χ : Z×p → C×p is a character (seen as a point on W(Cp)),
then one defines Fµ(χ) ..=

∫
Z×p
χ ·µ. Observe that the multiplicative convolution

product corresponds to pointwise multiplication of rigid functions.
Finally, if λ ∈ Q(Z×p ) is a pseudomeasure, then it is of the form µ/([a] − [1])

for some topological generator a ∈ Z×p and some measure µ ∈ 3(Z×p ). Note∫
Z×p
χ · ([a] − [1]) = 0 if and only if χ(a) = 1, which — as a is a topological

generator of Z×p — implies χ is the trivial character. Hence, as a function on the
weight space, λmight have a simple pole at the trivial character. So pseudomeasures
can be seen as rigid analytic functions on the weight space that possibly have a
simple pole at the trivial character.

Remark 3.48. Power series rings have been generalised to what now are called
Fontaine rings. It turns out that Galois representations are connected to certain
modules over these rings called (ϕ, 0)-modules. The operations described above
generalise to fundamental operations on (ϕ, 0)-modules, and their interpretation
via p-adic analysis inspired the proof of the p-adic Langlands correspondence
for GL2(Qp) (see [21]).
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4. The Kubota–Leopoldt p-adic L-function

In this section, we prove the following:

Theorem 4.1. There is a unique pseudomeasure ζp on Z×p such that, for all k > 0,∫
Z×p

xk
· ζp = (1− pk−1)ζ(1− k).

This pseudomeasure, denoted by ζ an
p in Section 1, is the Kubota–Leopoldt p-adic

L-function.

4.1. The measure µa. Recall from Lemma 2.7 that we can write the Riemann zeta
function in the form

(s− 1)ζ(s)= L( f, s− 1) ..=
1

0(s− 1)

∫
∞

0
f (t)t s−2 dt,

where f (t)= t/(et
−1), and that ζ(−k)= (dk f/dtk)(0)= (−1)k Bk+1/(k+1). We

want to remove the smoothing factor at s = 1. For this, let a be an integer coprime
to p and consider the related function

fa(t)=
1

et − 1
−

a
eat − 1

.

This is also C∞ and rapidly decreasing, so we can apply Theorem 2.4 and consider
the function L( fa, s). The presence of a removes the factor of s− 1, at the cost of
introducing a different smoothing factor.

Lemma 4.2. We have
L( fa, s)= (1− a1−s)ζ(s),

which has an analytic continuation to C, and

f (k)a (0)= (−1)k(1− a1+k)ζ(−k).

Proof. This follows from calculations similar to those in the proof of Lemma 2.7. □

We now introduce the p-adic tools we have developed into the picture. We
will start with the function fa(t), and slowly manipulate it until we construct a
(pseudo)measure with the desired interpolation properties. Note first the following
very simple observation.

Lemma 4.3. Under the substitution et
= T + 1, the derivative d/dt becomes the

operator ∂ = (1+ T ) d
dT . In particular, if we define

Fa(T ) ..=
1
T
−

a
(1+ T )a − 1

,

we have
f (k)a (0)= (∂k Fa)(0). (4-1)
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The left-hand side of (4-1) computes the L-value ζ(−k) by Lemma 4.2. The
right-hand side is similar to Corollary 3.30, which expressed the integral

∫
Zp xk

·µ

in terms of the Mahler transform Aµ. This motivates us to seek a measure µa with
Aµa = Fa . This is possible by:

Proposition 4.4. The function Fa(T ) is an element of Zp[[T ]].

Proof. We can expand

(1+ T )a − 1=
∑
n≥1

(a
n

)
T n
= aT (1+ T g(T )),

where g(T ) =
∑

n≥2
1
a

(a
n

)
T n−2 has coefficients in Zp since we have chosen a

coprime to p. Hence, expanding the geometric series, we find

1
T
−

a
(1+ T )a − 1

=
1
T

∑
n≥1

(−T )ng(T )n,

which is visibly an element of Zp[[T ]]. □

Definition 4.5. Let µa be the measure on Zp whose Mahler transform is Fa(T ).

Proposition 4.6. For k ≥ 0, we have∫
Zp

xk
·µa = (−1)k(1− ak+1)ζ(−k).

Proof. By Corollary 3.30, the left-hand side is (∂kAµa )(0). By definition of µa

and Lemma 4.3 this is (∂k Fa)(0) = f (k)a (0). This equals the right-hand side by
Lemma 4.2. □

4.2. Restriction to Z×
p . Recall from the introduction that we want the p-adic ana-

logue of the Riemann zeta function to be a measure on Z×p , not all of Zp. We have
already defined a restriction operator in (3-8), which on Mahler transforms acts as
1−ϕ ◦ψ . We begin with a short but important property of the measure µa .

Lemma 4.7. We have ψ(µa)= µa .

Proof. We show the result by considering the action on power series. We wish to
show ψ(Fa)= Fa . First note that Fa(T )= 1

T −a ·σa
( 1

T

)
, for σa as in Section 3.5.5.

As ψ commutes with σa , we have ψ(Fa) = ψ
( 1

T

)
− a · σaψ(

1
T ), so it suffices to

show ψ
( 1

T

)
=

1
T .

By definition (see (3-9)) we have

(ϕ ◦ψ)

(
1
T

)
= p−1

∑
ξ∈µp

1
(1+ T )ξ − 1

=
1

(1+ T )p − 1
= ϕ

(
1
T

)
,

as can be seen by calculating the partial fraction expansion. By injectivity of ϕ, we
deduce that ψ

( 1
T

)
=

1
T , and conclude. □
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Proposition 4.8. We have∫
Z×p

xk
·µa = (−1)k(1− pk)(1− ak+1)ζ(−k). (4-2)

(In other words, restricting to Z×p removes the Euler factor at p).

Proof. Since ResZ×p
= 1−ϕ ◦ψ , we deduce that∫

Z×p

xk
·µa =

∫
Zp

xk
· (1−ϕ ◦ψ)µa =

∫
Zp

xk
· (1−ϕ)µa = (1− pk)

∫
Zp

xk
·µa,

where for the second equality we have used Lemma 4.7. This finishes the proof. □

4.3. Rescaling and removing dependence on a. Finally we remove the dependence
on a. Thus far, the presence of a has acted as a “smoothing factor” which removes
the pole of the Riemann zeta function; so to remove it, we must be able to handle such
poles on the p-adic side. We use the notion of pseudomeasures from Section 3.6.

Definition 4.9. Let a be an integer that is prime to p, and let θa denote the element
of 3(Z×p ) corresponding to [a] − [1]. Note that, by definition, we have∫

Z×p

xk
· θa = ak

− 1.

However, in (4-2) it is ak+1
−1 that appears. To bridge this gap, note that on Z×p ,

we have a well-defined operation “multiplication by x−1” given by∫
Z×p

f (x) · x−1µ ..=

∫
Z×p

x−1 f (x) ·µ, (4-3)

and that ∫
Z×p

xk
· x−1µa = (−1)k(ak

− 1)(1− pk−1)ζ(1− k).

We comment further on this multiplication by x−1 in Remark 12.7.

Definition 4.10. Let a be a topological generator of Z×p . The p-adic zeta function is

ζp
..=

x−1 ResZ×p
µa

θa
∈ Q(Z×p ).

Proposition 4.11. The element ζp is a well-defined pseudomeasure satisfying∫
Z×p

xk
· ζp = (1− pk−1)ζ(1− k) for all k > 0.

Proof. We see ζp is a pseudomeasure by Lemma 3.38. It is independent of the
choice of a by Lemma 3.36(iii).
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Using (3-11) (to integrate the pseudomeasure) and Proposition 4.8, we obtain
the interpolation property∫

Z×p

xk
· ζp = (−1)k(1− pk−1)ζ(1− k).

The result follows since ζ(1− k) ̸= 0 if and only if k is even (that is, if and only
if (−1)k = 1). □

We finally prove Theorem 4.1. Existence of the pseudomeasure is Proposition
4.11. To conclude the proof we need only show uniqueness; but this follows from
Lemma 3.36(iii). □

5. Interpolation at Dirichlet characters

In our study of the Kubota–Leopoldt p-adic L-function, the entire construction
was essentially built to interpolate special values of the Riemann zeta function,
so this property should not have come as a surprise. Now, however, some real
magic happens. Since the introduction, we’ve not mentioned Dirichlet L-functions
once — but, miraculously, the Kubota–Leopoldt p-adic L-function also interpolates
Dirichlet L-values as well.

5.1. Characters of p-power conductor. We start studying the interpolation proper-
ties when twisting by a Dirichlet character of conductor a power of p.

Theorem 5.1. Let χ be a (primitive) Dirichlet character of conductor pn for some
integer n ≥ 1 (seen as a locally constant character of Z×p ; see Section 2.4.2). Then,
for k > 0, we have ∫

Z×p

χ(x)xk
· ζp = L(χ, 1− k).

The rest of this subsection will contain the proof of this result. The proof is
somewhat calculation-heavy, but — given familiarity with the dictionary between
measures and power series — is not conceptually difficult.

In particular: the Riemann zeta function was the complex Mellin transform of
a real analytic function, which — via Theorem 2.4 — gave us a formula for its
special values. Under the transformation et

= T + 1, we obtained a p-adic power
series; and under the measures–power series correspondence given by the Mahler
transform, this gave us a measure on Zp, from which we constructed ζp. To obtain
interpolation at Dirichlet characters, we pursue this in reverse, as summarised in
the diagram at the top of the next page.
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(1− a1−s)ζ(s)
OO

Mellin
��

(1−χ(a)a1−s)L(χ, s)

fa(t) oo
et
=T+1

// Fa(T ) ∈OL [[T ]]
OO

Mahler
��

fa,χ (t) oo
et
=T+1

//
��

Mellin

OO

Fa,χ (T ) ∈OL [[T ]]

µa ∈3(Zp)

��

oo
“twist by χ”

// µa,χ ∈3(Zp)
��

Mahler

OO

ζp

Firstly, we introduce a twisting operation on measures. If µ is a measure on Zp,
we define a measure µχ on Zp by∫

Zp

f (x) ·µχ =
∫

Zp

χ(x) f (x) ·µ. (5-1)

Observe that, as χ is supported on Z×p , the twisted measure µχ is automatically
supported on Z×p as well. In particular, under this we have∫

Z×p

χ(x)xk
· ζp =

∫
Z×p

xk
· (ζp)χ = (∂

kA(ζp)χ )(0),

where the last equality follows from Corollary 3.30. Thus we want to determine the
Mahler transform of µχ in terms of Aµ, for which we use our measure-theoretic
toolkit. This requires a classical definition.

Definition 5.2. Let χ be a primitive Dirichlet character of conductor pn , n ≥ 1.
Define the Gauss sum of χ as

G(χ) ..=
∑

c∈(Z/pnZ)×

χ(c)εc
pn ,

where (εpn )n∈N denotes a system of primitive p-power roots of unity in Qp such
that ε p

pn+1 = εpn for all n ≥ 0 (if we fix an isomorphism Qp ∼= C, then one can take
εpn ..= e2π i/pn

).

Remark 5.3. We note the following basic properties of Gauss sums (see [30,
Section 4.3]):

(i) G(χ)G(χ−1)= χ(−1)pn .

(ii) G(χ)= χ(a)
∑

c∈(Z/pnZ)× χ(c)ε
ac
pn for any a ∈ Z×p .

Lemma 5.4. The Mahler transform of µχ is

Aµχ (T )=
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1Aµ((1+ T )εc
pn − 1).
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Proof. Since χ is constant modulo pn , the measure µχ is simply

µχ =
∑

c∈(Z/pnZ)×

χ(c)Resc+pnZp(µ).

Using this expression and the formula for the Mahler transform of the restriction of
a measure to c+ pnZp given in (3-5), we find that

Aµχ (T )=
1
pn

∑
b∈(Z/pnZ)×

χ(b)
∑
ξ∈µpn

ξ−bAµ((1+ T )ξ − 1).

Writing µpn = {εc
pn : c = 0, . . . , pn

− 1}, and rearranging the sums, we have

Aµχ (T )=
1
pn

∑
c (mod pn)

∑
b∈(Z/pnZ)×

χ(b)ε−bc
pn Aµ((1+ T )εc

pn − 1)

=
1
pn

∑
c∈(Z/pnZ)×

G(χ)χ(−c)−1Aµ((1+ T )εc
pn − 1)

=
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1Aµ((1+ T )εc
pn − 1),

where the second equality follows from Remark 5.3(ii) and the last one from
Remark 5.3(i). This finishes the proof. □

We now consider the case where µ= µa from Definition 4.5, the measure from
which we built the Kubota–Leopoldt p-adic L-function, and which has Mahler
transform

Aµa (T )=
1
T
−

a
(1+ T )a − 1

.

Applying the above transformation, we obtain a measureµχ,a with Mahler transform

Fχ,a(T )=
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1
(

1
(1+ T )εc

pn − 1
−

a
(1+ T )aεac

pn − 1

)
.

Via the standard substitution et
= T + 1, this motivates the study of the function

fχ,a(t)=
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1
(

1
etεc

pn − 1
−

a
eatεac

pn − 1

)
,

by analogy with the case of the Riemann zeta function.

Lemma 5.5. We have

L( fχ,a, s)= χ(−1)(1−χ(a)a1−s)L(χ, s),

where L( fχ,a, s) is as defined in Theorem 2.4.
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Moreover, for k ≥ 0, we have

f (k)χ,a(0)=
{
−(1−χ(a)ak+1)L(χ,−k) if χ(−1)(−1)k =−1,

0 if χ(−1)(−1)k = 1.

Proof. We follow a similar strategy to that used for the Riemann zeta function (in
Lemma 2.7). In particular, expanding as a geometric series, we obtain

1
etεc

pn − 1
=

∑
k≥1

e−ktε−kc
pn .

Then we have

L( fχ,a, s)=
1

0(s)G(χ−1)

∫
∞

0

∑
c∈(Z/pnZ)×

χ(c)−1
∑
k≥1

(e−ktε−kc
pn −e−aktε−akc

pn )t s−1 dt.

Note that ∑
c∈(Z/pnZ)×

χ(c)−1ε−akc
pn = χ(−ak)G(χ−1),

and similarly for the first term, so that the expression collapses to

L( fχ,a, s)=
1
0(s)

∫
∞

0

∑
k≥1

χ(−k)(e−kt
−χ(a)e−akt)t s−1 dt.

For Re(s)≫ 0, we can rearrange the sum and the integral, and then we can evaluate
the k-th term of the sum easily to (1−χ(a)a1−s)k−s , giving

L( fχ,a, s)=χ(−1)(1−χ(a)a1−s)
∑
k≥1

χ(−k)k−s
=χ(−1)(1−χ(a)a1−s)L(χ, s),

showing the equality of L-functions.
To see the final statement about special values, we use Theorem 2.4, which

immediately says

f (k)χ,a(0)= (−1)kχ(−1)(1−χ(a)ak+1)L(χ,−k). (5-2)

To get the claimed statement, we note that

1
e−tεc

pn − 1
=−1−

1
etε−c

pn − 1
,

and using this twice, we find

fχ,a(−t)=−
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1
(

1
etε−c

pn − 1
−

a
eatε−ac

pn − 1

)
.

Changing c for −c yields fχ,a(−t) = −χ(−1) fχ,a(t), whence (−1)k f (k)χ,a(0) =
−χ(−1) f (k)χ,a(0). This implies that f (k)χ,a(0)= 0 unless χ(−1)(−1)k =−1, conclud-
ing the proof. □
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Remark 5.6. By (5-2) and the above proof, we recover the well-known fact that
L(χ,−k)= 0 if χ(−1)(−1)k = 1.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Since χ is 0 on pZp, we have∫
Z×p

χ(x)xk
·µa =

∫
Zp

χ(x)xk
·µa =

∫
Zp

xk
·µχ,a,

where µχ,a is the twist of µa by χ . We know this integral to be

(∂k Fχ,a)(0)= f (k)χ,a(0),

under the standard transform et
= T + 1. Hence, by Lemma 5.5, we find∫

Z×p

χ(x)xk
·µa =−(1−χ(a)ak+1)L(χ,−k),

so that ∫
Z×p

χ(x)xk
· x−1µa =−(1−χ(a)ak)L(χ, 1− k).

By definition, we have ∫
Z×p

χ(x)xk
· θa =−(1−χ(a)ak),

and hence we find ∫
Z×p

χ(x)xk
· ζp = L(χ, 1− k). □

5.2. Nontrivial tame conductors. We can go even further. The theorem above
deals with the case of “tame conductor 1”, in that we have constructed a p-adic
measure that interpolates all of the L-values L(χ, 1−k) for k> 0 and cond(χ)= pn

with n ≥ 0 (where trivial conductor corresponds to the Riemann zeta function).
More generally, we have the following result.

Theorem 5.7. Let D> 1 be any integer coprime to p, and let η denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure ζη ∈ 3(Z×p )
such that, for all primitive Dirichlet characters χ with conductor pn , n ≥ 0, and
for all k > 0, we have∫

Z×p

χ(x)xk
· ζη = (1−χη(p)pk−1)L(χη, 1− k).

Remark 5.8. (1) In this case, we obtain a genuine measure rather than a pseudomea-
sure. As L-functions of nontrivial Dirichlet characters are everywhere holomorphic,
there is no need for the smoothing factor involving a.

(2) Implicit in this theorem is the fact that the relevant Iwasawa algebra is defined
over a (fixed) finite extension L/Qp containing the values of η.



144 JOAQUÍN RODRIGUES JACINTO AND CHRIS WILLIAMS

Proof. Since many of the ideas involved in proving the above theorem are present
in the case of trivial tame conductor, the proof of Theorem 5.7 is a good exercise.
As such, we give only the main ideas involved in the proof.

For χ of p-power conductor, note that the calculation relating L( fχ,a,s) to L(χ,s)
above was entirely classical, in the sense that p did not appear anywhere. We can
thus perform a similar calculation for general conductors. As there is no need for
the smoothing factor a, we consider the function

fη(t)=−
1

G(η−1)

∑
c∈(Z/DZ)×

η(c)−1

etεc
D − 1

.

(This scaling by −1 also appears in the trivial tame conductor situation, but it is
incorporated into θa). In the above definition, the Gauss sum G(η−1) of a Dirichlet
character η of conductor D is defined as in Definition 5.2, replacing the power of p
by D. Define Fη(T ) by substituting T + 1 for et , i.e.,

Fη(T ) ..=−
1

G(η−1)

∑
c∈(Z/DZ)×

η(c)−1

(1+ T )εc
D − 1

. (5-3)

Expanding the geometric series, we find

Fη(T )=−
1

G(η−1)

∑
c∈(Z/DZ)×

η(c)−1
∑
k≥0

εkc
D

(εc
D − 1)k+1 T k .

This is an element of OL [[T ]] for some sufficiently large finite extension L of Qp,
since the Gauss sum is a p-adic unit (indeed, we have G(η)G(η−1) = η(−1)D
and D is coprime to p) and εc

D − 1 ∈ O×L (since it has norm dividing D). There
is therefore a measure µη ∈3(Zp), the Iwasawa algebra over OL , corresponding
to Fη under the Mahler transform.

Lemma 5.9. We have L( fη, s)=−η(−1)L(η, s). Hence for k ≥ 0 we have∫
Zp

xk
·µη = L(η,−k).

Proof. The first statement is proved in a similar manner to Lemma 5.5. The
second is proved by equating ∂ with d/dt and using the general theory described
in Theorem 2.4. □

The following is the analogue of Lemma 4.7.

Lemma 5.10. We have ψ(Fη)= η(p)Fη.

Proof. We show first that

1
p

∑
ξ∈µp

1
(1+ T )ξεc

D − 1
=

1
(1+ T )pε

pc
D − 1

. (5-4)



AN INTRODUCTION TO p-ADIC L -FUNCTIONS 145

Expanding each summand as a geometric series, the left-hand side is

−
1
p

∑
ξ∈µp

∑
n≥0

(1+ T )nεnc
D ξ

n
=−

∑
n≥0

(1+ T )pnε
pcn
D ,

and summing the geometric series gives the right-hand side of (5-4). It follows that

(ϕ ◦ψ)(Fη)=−
1

pG(η)−1

∑
ξ∈µp

∑
c∈(Z/DZ)×

η(c)−1

(1+ T )ξεc
D − 1

=−
1

G(η−1)

∑
c∈(Z/DZ)×

η(c)−1

(1+ T )pε
pc
D − 1

= η(p)ϕ(Fη).

The result now follows from the injectivity of ϕ. □

We can now show the interpolation property at powers of x .

Lemma 5.11. We have∫
Z×p

xk
·µη = (1− η(p)pk)L(η,−k).

Proof. By Lemma 5.10 we have

ResZ×p
(µη)= (1−ϕ ◦ψ)(µη)= µη− η(p)ϕ(µη),

and ∫
Zp

xk
·ϕ(µη)= pk

∫
Zp

xk
·µη.

The result now follows from Lemma 5.9. □

Now let χ be a Dirichlet character of conductor pn for some n ≥ 0, and let
θ ..= χη the product (a Dirichlet character of conductor Dpn). For such θ = χη,
we define

µθ
..= (µη)χ . (5-5)

Using Lemma 5.4, we find easily that:

Lemma 5.12. The Mahler transform of µθ is

Fθ (T ) ..= Aµθ (T )=−
1

G(θ−1)

∑
c∈(Z/DpnZ)×

θ(c)−1

(1+ T )εc
Dpn − 1

.

Via a calculation essentially identical to the cases already seen, we can prove∫
Zp

χ(x)xk
·µη =

∫
Zp

xk
·µθ = L(θ,−k)

and that
ResZ×p

(µθ )= (1− θ(p)ϕ)µθ . (5-6)
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(Here, note that if χ is nontrivial, then µθ is already supported on Z×p ; but this is
consistent, as θ(p)= 0 in this case). Combining the above we find∫

Z×p

χ(x)xk
·µη = (1− θ(p)pk)L(θ,−k).

Finally, to complete the proof of Theorem 5.7 and to ensure compatibility with
the construction of ζp, we introduce a shift by 1. The following is directly analogous
to the construction of ζp; note again that ζη is truly a measure, not a pseudomeasure.

Definition 5.13. Define ζη ..= x−1 ResZ×p
(µη).

We see that ∫
Z×p

χ(x)xk
· ζη = (1− θ(p)pk−1)L(θ, 1− k),

which completes the proof of Theorem 5.7. □

5.3. Analytic functions on Z p via the Mellin transform. The reader should hope-
fully now be convinced that measures are a natural language with which to discuss
p-adic L-functions. In this subsection, we use this (more powerful) language to
answer the question we originally posed in the introduction: namely, we define
analytic functions on Zp interpolating the values ζ(1−k) for k> 0. In passing from
measures to analytic functions on Zp, we lose the clean interpolation statements.
In particular, there is no single analytic function on Zp interpolating the values
ζ(1−k) for all k > 0, but rather p−1 different “branches” of the Kubota–Leopoldt
p-adic L-function on Zp, each interpolating a different range.

The reason we cannot define a single p-adic L-function on Zp is down to the
following technicality. We’d like to be able to define “ζp(s)=

∫
Z×p

x−s
·ζp” for s∈Zp.

The natural way to define the exponential x 7→ x s is as

x s
= exp(s · log(x)),

but unfortunately in the p-adic world the exponential map does not converge on all
of Zp, so this is not well defined for general x ∈ Z×p . Instead:

Lemma 5.14. The p-adic exponential map converges on pZp. Hence, for any
s ∈ Zp, the function 1+ pZp → Zp given by x 7→ x s ..= exp(s · log(x)) is well
defined.

Proof. This is a standard result in the theory of local fields; see, for example, [11,
Section 12]. □

Definition 5.15. Recall that we assume p to be odd and that we have a decomposi-
tion Z×p

∼= µp−1× (1+ pZp). Let

ω : Z×p → µp−1 and ⟨ · ⟩ : Z×p → 1+ pZp,
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where ω(x) ..=Teichmüller lift of the reduction modulo p of x and ⟨x⟩ ..=ω−1(x)x
denote the projections to the first and second factors respectively. If x ∈ Z×p , then
we can write x = ω(x)⟨x⟩.

By Lemma 5.14, the function x 7→ ⟨x⟩s is well defined for any s ∈ Zp. For each
i = 1, . . . , p− 1 we can define an injection

Zp ↪→ Homcts(Z
×

p ,C×p ), s 7→ [x 7→ ω(x)i ⟨x⟩s],

and hence we can define a meromorphic function as follows.

Definition 5.16. We define the i-th branch of the p-adic zeta function as

ζp,i : Zp→ Cp, s 7→
∫

Z×p

ω(x)i ⟨x⟩1−s
· ζp.

This function does not interpolate as wide a range of values as the measure ζp,
because the character xk can be written in the form ω(x)i ⟨x⟩k if and only if
k ≡ i (mod p − 1), and in this case xk is the value of ω(x)i ⟨x⟩1−s at the value
s = 1− k. Then we have the following result.

Theorem 5.17. For all k ≥ 1 with k ≡ i (mod p− 1), we have

ζp,i (1− k)= (1− pk−1)ζ(1− k).

Note that the above theorem implies that ζp,i is identically zero whenever i is odd
(as by Corollary 2.8 the value ζ(1− k) is zero for every odd positive integer k ≥ 1).
More generally, we can twist by Dirichlet characters as we have done before.

Definition 5.18. Let θ = χη be a Dirichlet character, where η has conductor D
prime to p and χ has conductor pn for n ≥ 0. Define

L p(θ, s) ..=

∫
Z×p

χ(x)⟨x⟩1−s
· ζη, s ∈ Zp.

Remark 5.19. An equivalent definition is

L p(θ, s)=
∫

Z×p

χω−1(x)⟨x⟩−s
·µη =

∫
Z×p

χωs−1(x)x−s
·µη. (5-7)

Note here we use the measure µη, rather than the (shifted-by-1) analogue ζη. In [81],
the analytic functions L p(θ, s) are constructed directly without using measures, and
the more direct approach differs from the one obtained using our measure-theoretic
approach by precisely this factor of ω. This twist by 1 also appears naturally when
we study the Iwasawa Main Conjecture.

Theorem 5.20. For all k ≥ 1, we have

L p(θ, 1− k)= (1− θω−k(p)pk−1)L(θω−k, 1− k).
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Proof. We use the description of (5-7). From the definitions, we have

χω−1(x)⟨x⟩k−1
= χω−k(x) ·ωk−1(x)⟨x⟩k−1

= χω−k(x)xk−1,

so that ∫
Z×p

χ(x)⟨x⟩k−1
·µη =

∫
Z×p

χω−k(x)xk−1
·µη

= (1− θω−k(p)pk−1)L(θω−k, 1− k),

as required. The last equality here is Lemma 5.11. □

Remark 5.21. Directly from the definitions, we have ζp,i (s)= L p(ω
i , s). Hence

for arbitrary k > 0, Theorem 5.20 gives

ζp,i (1− k)= (1−ωi−k(p)pk−1)L(ωi−k, 1− k).

Of course, ωi−k is just the trivial character when i ≡ k (mod p− 1), so we recover
Theorem 5.17 from Theorem 5.20.

In general, for any measure µ on Z×p one can define

Melµ,i (s)=
∫

Z×p

ω(x)i ⟨x⟩s ·µ,

the Mellin transform of µ at i . We have then ζp,i (s)=Melζp,i (1−s). This transform
gives a way to pass from p-adic measures on Zp to analytic functions on Zp.

Remark 5.22. The results of this section are simply a more concrete version of
Remark 3.47. There we described how a measure (resp. pseudomeasure) µ on Z×p
gives rise to a rigid analytic (resp. rigid meromorphic) function Fµ on weight
space W(Cp). The function ζp,i above corresponds to the restriction of Fµ to the
open ball Uωi ⊂ W(Zp) (again explaining why we need p − 1 such functions,
corresponding to the p− 1 disjoint open balls).

6. The values at s = 1

In the following we give an example of further remarkable links between the
classical and p-adic zeta functions. Let θ be a nontrivial Dirichlet character, which
as usual we write in the form χη, where χ has conductor pn and η has conductor D
prime to p. By Theorem 5.7, for any integer k > 0, we have∫

Z×p

χ(x)xk
· ζη = L(θ, 1− k).

It’s natural to ask what happens outside the range of interpolation k>0. In particular,
what happens when we take k = 0? Since this is outside the range of interpolation,
this value may a priori have nothing to do with classical L-values. Indeed, the
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classical value L(θ, 1) is transcendental,10 so one cannot see it as a p-adic number
in a natural way. However, even though we cannot directly equate the two values,
it turns out that there is a formula for the p-adic L-function at s = 1 which is
strikingly similar to its classical analogue.

Theorem 6.1. Let θ be a nontrivial Dirichlet character of conductor N , and let εN

denote a primitive N-th root of unity. Then:

(i) (classical value at s = 1). We have

L(θ, 1)=−
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) log(1− εc
N ).

(ii) (p-adic value at s = 1). We have

L p(θ, 1)=−(1− θ(p)p−1)
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) logp(1− ε
c
N ).

Remark 6.2. Part (ii) of Theorem 6.1 is due to Leopoldt. Values in the range
of interpolation, where the link to classical L-values is explicit, are often called
critical values. Values outside this range, such as those studied in Theorem 6.1, are
called noncritical values. The above result is an instance of the p-adic Beilinson or
Perrin-Riou conjectures, which give arithmetic descriptions of noncritical special
values of p-adic L-functions. We refer the interested reader to [67] (or Remark 6.8
below) for more details on this.

If θ is an odd character, both sides of the p-adic formula vanish. In any case,
the formulae are identical up to replacing log with its p-adic avatar and, as usual,
deleting the Euler factor at p. This result can be used to prove a p-adic analogue
of the class number formula.

6.1. The complex value at s = 1. For completeness, we prove the complex case of
Theorem 6.1, following [81, Theorem 4.9].

Proof of Theorem 6.1 (i). Write

L(θ, s)=
∑

a∈(Z/NZ)×

θ(a)
∑

n≡a (mod D)

n−s .

Using the fact that

1
N

∑
c∈(Z/NZ)

ε
(a−n)c
N =

{
0 if n ̸≡ a mod N ,
1 if n ≡ a mod N ,

10This follows from Baker’s theorem and Theorem 6.1(i).
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we show that the above formula equals∑
a∈(Z/NZ)×

θ(a)
1
N

∑
n≥1

∑
c∈(Z/NZ)

ε
(a−n)c
N n−s

=
1
N

∑
c∈(Z/NZ)

( ∑
a∈(Z/NZ)×

θ(a)εac
N

) ∑
n≥1

ε−nc
N

ns

=
G(θ)

N

∑
c∈(Z/NZ)

θ−1(c)
∑
n≥1

ε−nc
N

ns

=
θ(−1)
G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c)
∑
n≥1

ε−nc
N

ns

=
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c)
∑
n≥1

εnc
N

ns . (6-1)

The penultimate equality uses the standard identity G(θ)G(θ−1)= θ(−1) cond(θ)
of Gauss sums (see Remark 5.3(i)) and that θ−1(c)= 0 if (c, N ) ̸= 1, and the last
equality follows from the change of variables c 7→ −c.

Finally we evaluate this expression at s = 1. As θ is not trivial we have N > 1,
so εc

N ̸= 1 for any c ∈ (Z/NZ)×. Thus we may consider the Taylor series expansion

−log(1− εc
N )=

∑
n≥1

εnc
N n−1.

Substituting this into (6-1), we see the series converges at s = 1 to the required
result. □

Remark 6.3. We can further refine this expression depending on the parity of θ .
If θ is even then θ−1(c) log(1−εc

N )+θ
−1(−c) log(1−ε−c

N )= 2θ−1(c) log |1−εc
N |,

so, rearranging,

L(θ, 1)=−
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) log |1− εc
|.

If θ is odd, we can use the functional equation to obtain

L(θ, 1)=−iπ
1

G(θ−1)
B1,θ−1,

where Bk,θ−1 denotes the k-th twisted Bernoulli number (see [81, Chapter 4]).

6.2. The p-adic value at s = 1. We now compute

L p(θ, 1) ..=

∫
Z×p

χ(x)x−1
·µη =

∫
Z×p

x−1
·µθ . (6-2)
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A tempting argument to study this goes as follows. Suppose that k is divisible
by p− 1. We know from (5-7) that

L p(θ, 1− k)=
∫

Z×p

χ(x)xk−1
·µη,

noting thatω(1−k)−1
=ω−k

=1 asω has order p−1. For k>0, we showed above that∫
Z×p

χ(x)xk−1
·µη = AResZ

×
p (x

k−1µθ )(0)= (1− θ(p)p
k−1)(∂k−1 Fθ )(0).

We want to compute this for k = 0. Identically we could try to argue that

L p(θ, 1)= AResZ
×
p (x
−1µθ )(0)= (1− θ(p)p

−1)(∂−1 Fθ )(0). (6-3)

Then, recalling that by Lemma 5.12 we have

Fθ (T )=−
1

G(θ−1)

∑
c∈(Z/NZ)×

θ(c)−1

(1+ T )εc
N − 1

,

we observe that, if we define

F̃θ (T )=−
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) log((1+ T )εc
N − 1),

then formally ∂ F̃θ = Fθ ; we will show this in the proof of Lemma 6.5 below. In
particular, F̃θ is a good candidate for ∂−1 Fθ . Plugging in T = 0 and combining
with (6-3) would give the claimed value of L p(θ, 1).

In order to make this reasoning rigorous, one needs to deal with the fact that x−1

is not a well-defined operation on measures on Zp, rendering x−1µθ ill-defined. On
power series, this is captured by the indeterminacy in defining ∂−1. In particular,
F̃θ (T ) is not necessarily a bounded power series, so under the Mahler correspon-
dence, does not correspond to a p-adic measure. However we do have the following.
Recall that R+ (from Remark 3.39) denotes the space of power series

∑
anT n such

that |an|rn
→ 0 for any 0≤ r < 1.

Lemma 6.4. The power series F̃θ (T ) is an element of R+.

Proof. We can write

log((1+ T )εc
N − 1)= logp(ε

c
N − 1)+ log

(
1+

εc
N T

εc
N − 1

)
= logp(ε

c
N − 1)+

∞∑
n=1

(−1)n−1

n
·

εcn
N

(εc
N − 1)n

T n.

We now consider two cases. If (N , p) = 1, we know that (εc
N − 1) is a p-adic

unit; then the coefficient of T n has p-adic valuation bounded below by −vp(n).
This means the coefficients in F̃θ (T ) have logarithmic growth, and in particular
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F̃θ (T ) ∈R+. More generally, suppose that N = Dpn with (D, p)= 1. We write
θ = ηχ , with η and χ characters of conductors D and pn respectively. Then, as in
Lemma 5.4 or Lemma 5.12, we have

F̃θ (T )= (F̃η)χ (T )=−
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ−1(c)F̃η((1+ T )εc
pn − 1).

As F̃η(T ) ∈R+, the same holds for F̃θ (T ). □

By Theorem 3.43, F̃θ (T ) is the Mahler transform of a locally analytic distribution
µ̃θ on Zp. We now relate this distribution to x−1 ResZ×p

(µθ ), as appeared in (6-2).

Lemma 6.5. We have
xµ̃θ = µθ .

In particular,
ResZ×p

(µ̃θ )= x−1 ResZ×p
(µθ ).

Proof. The first equality can be checked on Mahler transforms. By Lemma 3.29,
this means showing

∂ F̃θ (T )= (1+ T )
d

dT
F̃θ (T )= Aµθ (T ). (6-4)

By Lemma 5.12, we have

Aµθ (T )= Fθ (T )=−
1

G(θ−1)

∑
c∈(Z/NZ)×

θ(c)−1

(1+ T )εc
N − 1

.

Then (6-4) follows immediately from the formula

∂ log((1+ T )εc
D − 1)=

(1+ T )εc
D

(1+ T )εc
D − 1

= 1+
1

(1+ T )εc
D − 1

and the fact that
∑

c∈(Z/DZ)× θ
−1(c)= 0.

To see the second equality, note that as measures on Z×p , we visibly have
x ResZ×p (µ̃θ )= ResZ×p (µθ ). It follows that ResZ×p (µ̃θ )= x−1 ResZ×p (µθ ) as “multi-
plication by x” is an invertible operator on measures/distributions on Z×p . □

From the above, we now know that

L p(θ, 1)= Ax−1 ResZ
×
p (µθ )

(0)= AResZ
×
p (µ̃θ )

(0)= ((1−ϕ ◦ψ)F̃θ )(0), (6-5)

where the last equality follows from the formula for the restriction of a distribution
to Z×p (see (3-8), and Remark 3.45). We are now ready to prove Theorem 6.1(ii).

Proof of Theorem 6.1 (ii). We compute the right-hand side of (6-5). Recall from
Section 3.5.5 that ϕ◦ψ(F̃θ ) is the Mahler transform of RespZp(µ̃θ ). Recall N =Dpn

and θ = ηχ , where η has prime-to-p conductor D, and χ has conductor pn . To
compute this we break into two cases.
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(1) First assume that n > 1, so that χ ̸= 1; then, as χ |pZp = 0, we see µ̃θ = (µ̃η)χ
is automatically supported on Z×p by (5-1). In particular, RespZp(µ̃θ )= 0, and thus
ϕ ◦ψ(F̃θ )= 0. In particular, in this case,

L p(θ, 1)= F̃θ (0).

It is convenient to write this in the form L p(θ, 1)= (1− θ(p)p−1)F̃θ (0) using that
θ(p)= 0.

(2) Now assume n = 0, so N = D is coprime to p and hence θ = η. By (3-9),

ϕ ◦ψ(F̃θ )=
1
p

∑
ξ∈µp

F̃θ ((1+ T )ξ − 1)

=−
1

G(θ−1)
·

1
p

∑
c∈(Z/NZ)×

θ−1(c)
∑
ξ∈µp

logp((1+ T )ξεc
N − 1).

Evaluating at T = 0, we get

ϕ ◦ψ(F̃θ )(0)=−
1

G(θ−1)
·

1
p

∑
c∈(Z/NZ)×

θ−1(c)
∑
ξ∈µp

logp(ξε
c
N − 1)

=−
1

G(θ−1)
·

1
p

∑
c∈(Z/NZ)×

θ−1(c) logp(ε
pc
N − 1)

=−
1

G(θ−1)
·
θ(p)

p

∑
c′∈(Z/NZ)×

θ−1(c′) logp(ε
c′
N − 1)

=
θ(p)

p
F̃θ (0).

Here, we used that, since p ∤ N , the assignment c 7→c′= pc defines an automorphism
of (Z/NZ)×. Hence in this case we also find that

L p(θ, 1)= ((1−ϕ ◦ψ)F̃θ )(0)= (1− θ(p)p−1)F̃θ (0).

To complete the proof, we simply evaluate the expression F̃θ (0) (and use that
logp(x)= logp(−x) for x ∈ C×p ) to find, for all N , that

L p(θ, 1)=−(1− θ(p)p−1)
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) logp(1− ε
c
N ). □

Remark 6.6. Theorem 6.1 has been generalised by Coleman in [17] for every
positive integer value s = k ≥ 1. More precisely, for s, z ∈ C, let Lis(z) ..=∑

n≥1 zn/ns be the polylogarithm function; recall that it admits a unique analytic
continuation to C \ {z ∈ R : z ≥ 1}. In particular, one sees that Lis(1) = ζ(s),
and Li1(z)=−log(1− z). Coleman constructed p-adic analogues Lik,p(z), which
are locally analytic functions on Cp \ {1}, and showed:
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Theorem 6.7 [17]. Let θ be a nontrivial Dirichlet character of conductor N , let
k ≥ 1 be an integer, and let εN denote a primitive N-th root of unity. Then:

(i) (classical value at s = k). We have

L(θ, k)=
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c)Lik(εc
N ).

(ii) (p-adic value at s = k). We have

L p(θ, k)= (1− θ(p)p−k)
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c)Lik,p(εc
N ).

Remark 6.8. We highlighted in Remark 6.2 that Theorem 6.1(ii) is an instance
of Perrin-Riou’s p-adic Beilinson conjectures. More precisely, her conjectures
describe special, noncritical values of p-adic L-functions of motives in terms of
arithmetic data. Specialised to the case of the Kubota–Leopoldt p-adic L-function
(see [67, Section 4.3.3]), this gives formulas for the values of L p(θ, k) in terms
of p-adic regulators of the cyclotomic units, special elements that we will see later;
the right-hand sides of Theorems 6.1(ii) and 6.7(ii) can be reinterpreted in such
terms, justifying Remark 6.2. We refer to [67] for more details, and [18] for an
excellent survey on all of this.

We also mention the pioneering work of Gross [38], based on Coleman’s work, as
well as [50], for another approach expressing values of Dirichlet p-adic L-functions
at odd positive integers in terms of syntomic regulators and K -theory.

7. The residue of ζ p at s = 1

In the previous section, we described the value of the Dirichlet p-adic L-functions
L p(θ, s) at s = 1 for a nontrivial Dirichlet character θ . We now turn to the value at
s = 1 of the untwisted p-adic zeta function, that is, the analogue when θ is trivial.
Recall the Riemann zeta function has a simple pole at s = 1 with residue 1 and that,
in the p-adic world, we have defined the p-adic zeta function as a pseudomeasure
(rather than a measure) which implies, as explained in Remark 3.47, that there
might be a potential pole at the trivial character. We now show that there is indeed
a simple pole here, and calculate its residue.

As with L p(θ, s), it is convenient to use the language of analytic functions ζp,i

from Definition 5.16. The behaviour of ζp at the trivial character is captured by the
behaviour of ζp,p−1(s) at s = 1. The main result of this section is the following.

Theorem 7.1. Let i ∈ {1, 2, . . . , p− 1}. The following assertions hold:

(i) If i ̸= p− 1, then ζp,i is analytic at s = 1.

(ii) The function ζp,p−1 has a simple pole at s = 1 with residue (1− p−1).
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The proof will occupy the rest of this section.
For any i ∈ {1, 2, . . . , p− 1}, by Definition 5.16 we have

ζp,i (s)=
∫

Z×p
ω(x)i ⟨x⟩1−s

· ζp.

Now, from Definition 4.10, we have

ζp =
x−1 ResZ×p

(µa)

θa
=

x−1 ResZ×p
(µa)

[a] − [1]
,

where a is any topological generator of Z×p . Thus by the expression (3-11) for
evaluating pseudomeasures, we find

ζp,i (s)=

∫
Z×p
ω(x)i ⟨x⟩1−s x−1

·µa

ω(a)i ⟨a⟩1−s − 1
=

∫
Z×p
ω(x)s+i−1x−s

·µa

ω(a)i ⟨a⟩1−s − 1
, (7-1)

where we have used ⟨x⟩ = ω−1(x)x in the second equality. Let

ga,i (s) ..= ω(a)i ⟨a⟩1−s
− 1

be the denominator of (7-1).

Lemma 7.2. The following assertions hold.

(i) If i ̸= p− 1, then ga,i (1) ̸= 0. In particular, Theorem 7.1 (i) holds.

(ii) We have ga,p−1(1)= 0, and

lim
s→1

(s− 1)−1ga,p−1(s)=−logp(a).

Proof. Since a is a topological generator of Z×p , we see ω(a) is a primitive (p−1)-th
root of unity. Hence the denominator ω(a)i ⟨a⟩1−s

− 1 of (7-1) vanishes at s = 1 if
and only if i = p− 1. This already implies Theorem 7.1(i), as the expression (7-1)
does not have a pole at s = 1.

If i = p− 1, we know ω(a)i = 1, so ga,p−1(1)= 0. Moreover,

ga,p−1(s)= ω(a)p−1
⟨a⟩1−s

− 1= ⟨a⟩1−s
− 1

=

∑
n≥1

(1−s
n

)
(⟨a⟩− 1)n

= (1− s)
∑
n≥1

1
n

(
−s

n−1

)
(⟨a⟩− 1)n, (7-2)

where in the last equality we have used the identity
(1−s

n

)
=

1−s
n

(
−s

n−1

)
for n ≥ 1.

The sum in (7-2) evaluates at s = 1 to∑
n≥1

1
n

(
−1

n−1

)
(⟨a⟩− 1)n =

∑
n≥1

(−1)n−1

n
(⟨a⟩− 1)n = logp(⟨a⟩)= logp(a),
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where we have used
(
−1

n−1

)
= (−1)n−1 (direct from Definition 3.20). We deduce that

lim
s→1
[(s− 1)−1ga,s−1(s)] = −logp(a). □

Combining Lemma 7.2(ii) with (7-1), we deduce

lim
s→1

(s− 1)ζp,p−1(s)=−

∫
Z×p

x−1
·µa

logp(a)
. (7-3)

We calculate the numerator in this expression via similar methods to those used
in Section 6.2. Recall that Fa(T ) = (1/T ) − a/((1 + T )a − 1) is the Mahler
transform of µa; we find a power series F̃a(T ) such that ∂ F̃a(T )= Fa(T ), where
∂ = (1+ T ) d

dT . Then, via Lemma 6.5 and directly analogously to (6-5), we find∫
Z×p

x−1µa = ((1−ϕ ◦ψ)F̃a)(0). (7-4)

To this end, let

F̃a(T ) ..= log
(

T
1+ T

·
(1+ T )a

(1+ T )a − 1

)
.

Lemma 7.3. Formally, we have

∂ F̃a(T )= Fa(T ).

Proof. We let the reader check that

∂ log
(
(1+ T )a − 1
(1+ T )a

)
=

a
(1+ T )a − 1

.

In particular, taking a = 1, we also get

∂ log
(

T
1+ T

)
=

1
T
.

We conclude as

∂ F̃a(T )= ∂ log
(

T
1+ T

)
− ∂ log

(
(1+ T )a − 1
(1+ T )a

)
=

1
T
−

a
(1+ T )a − 1

= Fa(T ). □

As in Lemma 6.4, we must also check that F̃a(T ) ∈ R+ to use the Mahler
correspondence.

Lemma 7.4. We have F̃a(T ) ∈R+.

Proof. It is convenient to note

F̃a(T )= log
(

T
(1+ T )a − 1

· (1+ T )a−1
)
. (7-5)
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As in Proposition 4.4, write

(1+ T )a − 1= aT (1+ T g(T )), g(T )=
∑
n≥2

a−1
(a

n

)
T n−2.

Recall from the proof of that proposition that we have

1
(1+ T )a − 1

=
1

aT
(1+ T h(T )), (7-6)

with

h(T )=
∑
n≥1

(−1)nT n−1g(T )n ∈ Zp[[T ]].

We thus see that
T

(1+ T )a − 1
= a−1(1+ T h(T )),

whose logarithm is given by

log
(

T
(1+ T )a − 1

)
=−logp(a)+ log(1+ T h(T ))

=−logp(a)+
∑
n≥1

(−1)n+1

n
T nh(T )n. (7-7)

As in Lemma 6.4, the coefficients here have logarithmic growth in n, so this lies
in R+. Identically, (1+ T )a−1

= 1+ T
∑

n≥1
(a−1

n

)
T n−1 also has well-defined

logarithm in R+. Adding these two elements of R+ yields F̃a(T ) and completes
the proof. □

Lemma 7.5. We have ((1−ϕ ◦ψ)F̃a)(0)=−(1− p−1) logp(a).

Proof. First, by (7-5) we know that

F̃a(0)= log
(

T
(1+ T )a − 1

)∣∣∣
T=0
+ log((1+ T )a−1)|T=0 =−logp(a)+ 0, (7-8)

where we use (7-7) to evaluate the first summand. Secondly, we have

ϕ ◦ψ(F̃a)(T )=
1
p

∑
ξ∈µp

F̃a((1+ T )ξ − 1)

=
1
p

∑
ξ∈µp

log
(
(1+ T )ξ − 1
(1+ T )ξ

·
(1+ T )aξa

(1+ T )aξa − 1

)

=
1
p

∑
ξ∈µp

log
(
(1+ T )ξ − 1
(1+ T )aξa − 1

· (1+ T )a−1ξa−1
)
.
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This rearranges to

1
p

log
( ∏
ξ∈µp

(1+ T )ξ − 1
(1+ T )aξa − 1

· (1+ T )a−1ξa−1
)

=
1
p

log
(
(1+ T )p

− 1
(1+ T )ap − 1

· (1+ T )(a−1)p
)
.

Here we simplify both terms of the fraction using
∏
ξ∈µp

(Xξ − 1) = X p
− 1,

in the denominator noting that as a is a topological generator of Z×p , we have
{ξa
: ξ ∈ µp} = µp. In the final term we use that

∏
ξ∈µp

ξa−1
=

(∏
ξ∈µp

ξ
)a−1
= 1.

Writing

(1+ T )p
− 1= pT (1+ T j (T )),

1
(1+ T )ap − 1

=
1

apT
(1+ T k(T )),

analogously to (7-6), we find ultimately that

ϕ ◦ψ(F̃a)(T )=
1
p

log
( 1

a
(1+ T j (T ))(1+ T k(T )) · (1+ T )(a−1)p

)
,

and the right-hand side at T = 0 collapses to −p−1 logp(a). Combining with (7-8),

((1−ϕ ◦ψ)F̃a)(0)= F̃a(0)− (ϕ ◦ψ)F̃a(0)

=−logp(a)− p−1 logp(a)=−(1− p−1) logp(a),

as required. □

Combining (7-3) and (7-4) with Lemma 7.5, we deduce that

lim
s→1

(s− 1)ζp,p−1(s)= 1− p−1,

completing the proof of Theorem 7.1(ii). □

8. The p-adic family of Eisenstein series

We finally take a brief detour to illustrate another example of p-adic variation in
number theory, namely the p-adic variation of modular forms. In constructing the
Kubota–Leopoldt p-adic L-function, we have seen many of the key ideas that go
into the simplest example of this, namely the p-adic family of Eisenstein series,
which we will illustrate below.

Let k ≥ 4 be an even integer. The Eisenstein series of level k, defined as

Gk(z) ..=
∑

c,d∈Z
(c,d) ̸=(0,0)

1
(cz+ d)k

, z ∈H ..= {z ∈ C : Im(z) > 0},

can be viewed as a two-dimensional analogue of the zeta value ζ(k). It is an
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example of a modular form of weight k. In the classical theory of modular forms,
one computes the normalised Fourier expansion of such an object to be

Ek(z) ..=
Gk(z)(k− 1)!

2 · (2π i)k
=
ζ(1− k)

2
+

∑
n≥1

σk−1(n)qn,

where σk−1(n)=
∑

0<d|n dk−1 and q = e2iπ z . In particular, it is a power series with
rational coefficients. (This is a standard exercise; see [30, Chapter 1.1] for details).

From the definition, we see the Kubota–Leopoldt p-adic L-function as a pseu-
domeasure that, when evaluated at xk with k ≥ 4 even, gives (up to an Euler factor)
the constant coefficient of the Eisenstein series of weight k. The idea now is to
find measures giving similar interpolations of the other coefficients. Fortunately,
these are much easier to deal with: we only need interpolations of the functions
k 7→ dk , where k is varying p-adically. When d is coprime to p, we do this by
viewing d as an element of Z×p and considering the Dirac measure δd at d (that is,
evaluation at d). Indeed,

∫
Z×p

xk
· δd = dk for any k ∈ Z.

When d is divisible by p, however, we run into an immutable obstacle. There is
no Dirac measure on Z×p corresponding to evaluation at p, since p ̸∈ Z×p . Moreover,
the function k 7→ pk can never be interpolated continuously p-adically; it simply
behaves too badly for this to be possible. Suppose there was indeed a measure θp

with ∫
Z×p

xk
· θp = pk,

and then suppose kn is a strictly increasing sequence of integers p-adically tending
to k. Then

pkn =

∫
Z×p

xkn · θp→

∫
Z×p

xk
· θp = pk,

which is clearly impossible since pkn tends to 0.
We get around this issue by taking p-stabilisations to kill the coefficients at p.

Definition 8.1. We define the p-stabilisation of Ek to be

E (p)k (z) ..= Ek(z)− pk−1 Ek(pz).

An easy check shows that

E (p)k =
1
2(1− pk−1)ζ(1− k)+

∑
n≥1

σ
p

k−1(n)q
n,

where
σ

p
k−1(n)=

∑
0<d|n

p ∤d

dk−1.

Note E (p)k is a modular form of weight k and level 00(p)=
{(a

c
b
d

)
∈ SL2(Z) : p | c

}
.
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We’ve done all the work in proving the following result.

Theorem 8.2. There exists a power series

E(z)=
∑
n≥0

Anqn
∈ Q(Z×p )[[q]]

such that:

(a) A0 is a pseudomeasure, and An ∈3(Z
×
p ) for all n ≥ 1.

(b) For all even k ≥ 4, we have∫
Z×p

xk−1
· E(z) ..=

∑
n≥0

( ∫
Z×p

xk−1
· An

)
qn
= E (p)k (z).

Proof. The pseudomeasure A0 is simply xζp/2 (shifting by 1 again, but in the
opposite direction to before). We then define

An =
∑

0<d|n
p ∤d

δd ∈3(Z
×

p ).

By the interpolation property of the Kubota–Leopoldt p-adic L-function, A0 inter-
polates the constant term of the Eisenstein series. We also have∫

Z×p

xk−1
· An =

∑
0<d|n

p ∤d

∫
Z×p

xk−1
· δd =

∑
0<d|n

p ∤d

dk−1
= σ

p
k−1(n),

so we get the required interpolation property. □

Remark 8.3. (1) The power series E(z) is an example of a 3-adic modular form.
In particular, it can be colloquially described as the statement:

Eisenstein series vary p-adically continuously as you change the weight;
if k and k ′ are close p-adically, then the Fourier expansions of Ek and
Ek′ are close p-adically.

The theory of p-adic modular forms, and in particular the construction and study
of p-adic families of Eisenstein series, was introduced by Serre [73] to give a new
construction of the p-adic zeta function of a totally real number field. Indeed, the
main idea of Serre’s paper (see [73, Corollaire 2]) was to show that if one can
interpolate all of the nonconstant coefficients — which, as we saw above, is quite
simple — then this automatically gives an interpolation of the constant term, namely
the p-adic zeta function, which is much more difficult to interpolate directly.

(2) These results are often presented instead using the weight space W from
Remark 3.47. The integers are naturally a subset of W(Cp) via the maps κk : x 7→ xk ,
and two integers k and k ′ lie in the same unit ball if and only if k ≡ k ′ (mod p− 1).
Let O+(W) be the space of bounded rigid analytic functions on W (corresponding
to measures on Z×p ), and Q(W) the space of rigid meromorphic functions on W
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with a possible (simple) pole only at the trivial character (corresponding to pseudo-
measures on Z×p ). Then we can view E as a power series E(q) =

∑
n≥0 Bnqn

∈

Q(W)[[q]], with Bn ∈ O+(W) for all n > 0, such that for all k ≥ 4, we have
E(q)(κk)

..=
∑

n≥0 Bn(κk)qn
= E (p)k (z). Hence we see E as a p-adic interpolation

of the Eisenstein series over the weight space.

(3) These two remarks go hand in hand. Indeed, pioneering work of Hida went
much further on the study of p-adic weight families of modular forms, showing
that similar families (known as Hida families) exist for far more general modular
forms. His work has been vastly generalised to the theory of Coleman families and
eigenvarieties, parametrising the p-adic variation of modular/automorphic forms
over appropriate weight spaces. Such families have important applications to the
construction and study of p-adic L-functions; notable constructions in this direction
are given in [4; 68]. For a flavour of the theory of Hida and Coleman families of
modular forms, see the books [41] or [5].

Part II: Iwasawa’s Main Conjecture

The second part of this work is devoted to the motivation, formulation and study
of Iwasawa’s Main Conjecture. We will start by studying the Coleman map, a
map between towers of local units and p-adic measures. This gives a connection
between the tower of cyclotomic units — historically important for their connection
to class numbers — and the Kubota–Leopoldt p-adic L-function ζp from Part I, and
hence a new arithmetic construction of ζp (Theorem 10.15). This construction can
be seen as an arithmetic manifestation of the Euler product expression of the zeta
function, and this point of view has led to beautiful generalisations now known as
the theory of Euler systems. We then prove a theorem of Iwasawa (Theorem 12.23)
relating the zeros of the p-adic L-function to arithmetic information in terms of
units. Using these two results and class field theory, we will naturally arrive at the
formulation and proof of (a special case of) the Main Conjecture (Theorem 13.8).

9. Notation

Our study of the Iwasawa Main Conjecture requires a certain amount of notation,
which we introduce straight away for convenience. The following should be used
as an index of the key notation, and the reader is urged to consult the definition of
new objects as they appear in the text.

Let p be an odd prime. Throughout this section, we work with coefficient field
L =Qp. For n ∈ N, write

Fn
..=Q(µpn ), F+n

..=Q(µpn )+, Vn
..= O×Fn

, V +n
..= O×

F+n
,

Kn
..=Qp(µpn ), K+n

..=Qp(µpn )+, Un
..= O×Kn

, U +n
..= O×

K+n
,
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where (−)+ denotes the maximal totally real subfield (i.e., the fixed points under
complex conjugation). The extensions Fn/Q, Kn/Qp, F+n /Q and K+n /Qp are
Galois and totally ramified at p (the first two of degree (p− 1)pn−1 and the last
two of degree 1

2(p−1)pn−1) and we denote by pn (resp. p+n ) the unique prime ideal
of Fn (resp. F+n ) above the rational prime p. We let

F∞ = Q(µp∞) =
⋃
n≥1

Fn, F+
∞

..= (F∞)+ =
⋃
n≥1

F+n ,

K∞ =Qp(µp∞)=
⋃
n≥1

Kn, K+
∞

..= (K∞)+ =
⋃
n≥1

K+n ,

and denote by p (resp. p+) the unique prime of F∞ (resp. F+
∞

) above p.
Write 0 ..= Gal(F∞/Q) and 0+ ..= Gal(F+

∞
/Q) = 0/⟨c⟩, where c denotes the

complex conjugation. Since Gal(Fn/Q) sends a primitive pn-th root of unity to a
primitive pn-th root of unity, one deduces an isomorphism

χn : Gal(Fn/Q)
∼
−→ (Z/pnZ)×

determined by the identity
σ(ξ)= ξχn(σ ),

for σ ∈Gal(Fn/Q) and ξ ∈µpn any primitive pn-th root of unity. By infinite Galois
theory,

0 = Gal(F∞/Q) ..= lim
←−−

n
Gal(Fn/Q)

∼
−→ lim

←−−
n
(Z/pnZ)× ∼= Z×p , (9-1)

via the cyclotomic character χ ..= lim
←−−

χn . Note χ induces an isomorphism 0+ ∼=

Z×p /{±1}.
We also define

Un,1
..= {u ∈ Un : u ≡ 1 (mod pn)}, U +n,1

..= Un,1 ∩U +n . (9-2)

The subsets Un,1 and U +n,1 are important as they have the structure of Zp-modules
(indeed, if u ∈ Un,1 or U +n,1 and a ∈ Zp, then ua

=
∑

k≥0
(a

k

)
(u − 1)k converges).

By contrast, the full local units Un and U +n are only Z-modules.
In general, our notation satisfies the following logic: if Xn is any subgroup of Un ,

then we let X+n = Xn ∩U +n , Xn,1 = Xn ∩Un,1 and X+n,1 = X+n ∩U +n,1. Observe
that, since Vn ⊆ Un , the same applies for any subgroup Xn of Vn .

It will be essential for our constructions and methods to consider these modules
at all levels simultaneously. We define

U∞
..= lim
←−−

n
Un, U∞,1

..= lim
←−−

n
Un,1, (9-3)

U +
∞

..= lim
←−−

n
U +n , U +

∞,1
..= lim
←−−

n
U +n,1,
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where all limits are taken with respect to the norm maps. All of these infinite-
level modules are compact Zp-modules (since they are inverse limits of compact
Zp-modules) and moreover they are all endowed with natural continuous actions
of 0 = Gal(F∞/Q) or 0+ = Gal(F+

∞
/Q). Accordingly, they are endowed with

continuous actions of the Iwasawa algebras 3(0) or 3(0+) (which is the primary
reason for passing to infinite-level objects).

We fix once and for all a compatible system of roots of unity (ξpn )n∈N, that is,
a sequence where ξpn is a primitive pn-th root of unity such that ξ p

pn+1 = ξpn for
all n ∈ N. We let πn = ξpn − 1, which is a uniformiser of Kn .

10. The Coleman map

In this section we prove a theorem of Coleman relating local units to power series
over Zp. Using this result, we construct in Section 10 the Coleman map, a device
for constructing p-adic L-functions from the data of a compatible system of units.
We will explain how the Kubota–Leopoldt p-adic L-function can be constructed
from towers of cyclotomic units using the Coleman map. This map thus provides
an important bridge between analytic objects (p-adic L-functions) and arithmetic
structures (cyclotomic units), and will serve as the key step in our formulation of
the Main Conjecture.

In Section 10.5, we discuss a program started by Perrin-Riou to generalise
Coleman’s work. Given a p-adic Galois representation, Perrin-Riou’s big logarithm
maps construct a p-adic L-function from certain compatible systems of cohomology
classes. Specialising to the representation Qp(1), her map recovers the Coleman
map. The results of this section are thus a prototype for studying p-adic L-functions
in a larger, more conceptual framework.

10.1. Notation and Coleman’s theorem. Recall that Kn = Qp(µpn ) and K∞ =
Qp(µp∞) are the local versions of Fn = Q(µpn ) and F∞ = Q(µp∞). We also
defined

Un = O×Kn

to be the module of local units at level n, took a compatible system (ξpn ) of primitive
pn-th roots of unity, and defined πn

..= ξpn −1, a uniformiser of Kn . Recall that we
defined

U∞
..= lim
←−−

n
Un,

where the projective limit is taken with respect to the norm maps Nn,n−1 :Kn→Kn−1.
Let us first motivate Coleman’s theorem. The elements πn give a sequence of

elements in the open unit ball

B(0, 1)= {z ∈ Cp : |z|< 1},
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which approaches the boundary {|z| = 1} as n→∞. Now, recall from Remark 3.39
that an element f ∈ Zp[[T ]] can be viewed as a bounded rigid analytic function on
B(0, 1); so any such f gives a sequence f (πn) of elements of OKn . As we shall see
below, the Weierstrass preparation theorem implies that f is uniquely determined
by this sequence.

In the spirit of earlier sections, where we sought analytic objects interpolating
collections of specific values, it is natural to ask which sequences arise in this way.
Precisely, given a sequence {un ∈ OKn }, can it be interpolated by a power series f ,
in the sense that f (πn)= un for all n? Coleman’s theorem gives a positive answer
to this question for norm-compatible sequences of units (un)n∈N ∈ U∞.

We begin with a simple observation, for a single fixed n.

Lemma 10.1. Let u ∈ Un be a local unit at level n. There exists a power series
f ∈ Zp[[T ]]× such that f (πn)= u.

Proof. This is essentially immediate from the fact that πn is a uniformiser. Indeed,
Kn is totally ramified, so one can choose some a0 ∈ Zp such that

a0 ≡ u (mod πn),

and then a1 ∈ Zp such that

a1 ≡
u− a0

πn
(mod πn),

and so on, defining f (T )=
∑

n anT n
∈ Zp[[T ]]. By construction, f (πn)= u. As u

is a unit, we have a0 ∈Z×p . It’s then an exercise to see f ∈Zp[[T ]]× is invertible. □

The problem with this proposition is that such a power series f is far from being
unique, since we had an abundance of choices for each coefficient. In the usual
spirit of Iwasawa theory, Coleman realised that it was possible to solve this problem
by passing to the infinite tower K∞, considering all n simultaneously.

Theorem 10.2 (Coleman). There exists a unique injective homomorphism

U∞→ Zp[[T ]]×, u 7→ fu

of multiplicative groups such that fu(πn)= un for all u ∈ U∞ and n ≥ 1.

Coleman actually proved something stronger. He described a precise subspace
of Zp[[T ]] in which the associated interpolating power series fu lives; it is invariant
under a certain norm operator N on Zp[[T ]]. In particular, norm-compatibility on
the right-hand side translates into norm-invariance on the left-hand side. We will
prove all of this in Section 10.3 below.

First, though, we study an important application, explaining how this theorem is
related to the Kubota–Leopoldt p-adic L-function.
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10.2. Example: cyclotomic units. Let a ∈ Z prime to p, and define

cn(a) ..=
ξa

pn − 1

ξpn − 1
∈ Un.

This is indeed a unit, as both ξa
pn − 1 and ξpn − 1 are uniformisers in Kn .

Lemma 10.3. We have c(a) ..= (cn(a))n ∈ U∞.

Proof. This is equivalent to proving that Nn,n−1(cn(a)) = cn−1(a). Since the
minimal polynomial of ξpn over Kn−1 is X p

− ξpn−1 , for any b prime to p we see
that

Nn,n−1(ξ
b
pn − 1)=

∏
η∈µp

(ξ b
pnη− 1)= ξ bp

pn − 1= ξ b
pn−1 − 1,

where in the penultimate equality we have used the identity X p
−1=

∏
η∈µp

(Xη−1).
Applying this with b = a shows the numerator of c(a) is norm-compatible, and
with b = 1 the denominator. We conclude as norm is multiplicative. □

It is possible to write down fc(a) ∈ Zp[[T ]]× directly by inspection. Indeed, we
see that

fc(a)(T )=
(1+ T )a − 1

T
satisfies the required property (and fc(a) is even a polynomial). We now connect
this to the construction studied in Section 4. Recall the operator ∂ = (1+ T ) d

dT
from Lemma 3.29.

Proposition 10.4. Let Fa(T ) be the power series defined in Lemma 4.3. Then

∂ log fc(a)(T )= a− 1− Fa(T ).

Proof. We compute directly that

∂ log fc(a) = ∂ log((1+ T )a − 1)− ∂ log(T )

=
a(1+ T )a

(1+ T )a − 1
−

T + 1
T

= a− 1−
1
T
+

a
(1+ T )a − 1

= a− 1− Fa(T ). □

Lemma 10.5. Let µa be the measure in Definition 4.5. Then

ResZ×p
(µ∂ log fc(a))=−ResZ×p

(µa).

Proof. In terms of power series, the restriction to Z×p corresponds to applying the
operator (1−ϕ ◦ψ). As 1−ϕ ◦ψ kills the term a− 1, we find that, as required,

(1−ϕ ◦ψ)∂ log fc(a) =−(1−ϕ ◦ψ)Fa. □
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Remark 10.6. The measure µa was used in the construction of ζp. Later in
Section 10 we will use Theorem 10.2 to give a new construction of ζp via the
cyclotomic units. We will see more about the units cn(a), and in particular the
module they generate in Un , in Section 11.

10.3. Proof of Coleman’s theorem. First we see that there is at most one power
series fu attached to a system of units u.

Lemma 10.7. Suppose u = (un) ∈ U∞ and f, g ∈ Zp[[T ]]× both satisfy

f (πn)= g(πn)= un

for all n ≥ 1. Then f = g.

Proof. The Weierstrass preparation theorem says that we can write any nonzero
h(T ) ∈ Zp[[T ]] in the form pmu(T )r(T ), where u(T ) is a unit and r(T ) is a
polynomial. Any such h(T ) converges to a function on the maximal ideal in the
ring of integers of Qp, and since u(T ) cannot have zeros, we deduce that h(T ) has
a finite number of zeros in this maximal ideal. Now (πn)n≥1 is an infinite sequence
of elements in this maximal ideal, so the fact that ( f − g)(πn) = 0 for all n ≥ 1
implies that f = g, as required. □

We now move to showing the existence of such a series fu . The key idea in
the proof is to identify the subspace of f ∈ Zp[[T ]]× such that ( f (πn))n ∈ U∞;
that is, identify the image in Theorem 10.2. For this, we want norm-compatibility
of f (πn). Lemma 10.8 and Proposition 10.10 below will show the existence of a
norm operator on power series, and then translate the norm-compatibility condition
of units into norm-invariance of power series; Lemma 10.11 will show certain
continuity properties of this norm operator, which will allow us to prove Coleman’s
theorem by a standard diagonal argument.

Recall that the action of ϕ on f (T ) ∈ Zp[[T ]] is defined by

ϕ( f )(T )= f ((1+ T )p
− 1)

(see (3-7)) and that this action is injective. Importantly, we also have

ϕ( f )(πn+1)= f ((πn+1+1)p
−1)= f (ξ p

pn+1 −1)= f (ξpn −1)= f (πn). (10-1)

From our work with measures (see Section 3.5.5), we have also seen the existence
of an additive operator ψ with the property that

(ϕ ◦ψ)( f )(T )= 1
p

∑
η∈µp

f (η(1+ T )− 1).

We henceforth call ψ the trace operator (this terminology will become clear after
Lemma 10.8). We now define a multiplicative version of this operator.
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Lemma 10.8. There exists a unique multiplicative operator N on Zp[[T ]], the norm
operator, such that

(ϕ ◦N )( f )(T )=
∏
η∈µp

f (η(1+ T )− 1).

Proof. The ring B = Zp[[T ]] is an extension of A = Zp[[ϕ(T )]] = ϕ(Zp[[T ]]) of
degree p, the former being obtained by adjoining a p-th root of (1+ T )p to the
latter. Each automorphism of B over A is given by T 7→ (1+ T )η− 1 for some
η ∈ µp. There is a norm map

NB/A : Zp[[T ]] → ϕ(Zp[[T ]]), f (T ) 7→
∏
η∈µp

f ((1+ T )η− 1).

The norm operator N is then defined to be ϕ−1
◦NB/A, recalling that ϕ is injective. □

We similarly have ψ = p−1ϕ−1
◦TrB/A, where TrB/A is the trace operator for

the extension B/A in the proof of Lemma 10.8. Note that as N is multiplicative, it
preserves Zp[[T ]]×. Moreover, it is closely related to the norm operator Nn+1,n :

Un+1→ Un used to defined U∞, via the following lemma.

Lemma 10.9. The following diagram commutes:

Zp[[T ]]× Un+1

Zp[[T ]]× Un

f 7→ f (πn+1)

N Nn+1,n

f 7→ f (πn)

(10-2)

Proof. If f ∈ Zp[[T ]]×, then f (πn) ∈ Un for all n, as f (πn)
−1
= f −1(πn) is also

integral. In particular, the horizontal maps are well defined.
Observe now that, as the minimal polynomial of ξpn+1 over Kn is X p

− ξpn = 0,
we can write the right-hand norm as

Nn+1,n( f (πn+1))=
∏
η∈µp

f (ηξpn+1 − 1)= (ϕ ◦N )( f )(πn+1)= (N f )(πn),

giving exactly the claimed commutativity. In the final step we have used (10-1). □

In particular, we get the following.

Proposition 10.10. There is an injective map

R : (Zp[[T ]]×)N=id ↪→ U∞, f 7→ ( f (πn))n.

Proof. Suppose N ( f )= f . By Lemma 10.9, we deduce that

Nn+1,n( f (πn+1))= f (πn), (10-3)

so ( f (πn))n ∈ U∞. □
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To prove Theorem 10.2 it suffices to prove that the map R is surjective. We need
the following lemma on the behaviour of N modulo powers of p.

Lemma 10.11. Let f (T ) ∈ Zp[[T ]]. Then:

(i) If ϕ( f )(T )≡ 1 (mod pk) for some k ≥ 0, then f (T )≡ 1 (mod pk).

(ii) We have
N ( f )≡ f (mod p).

Now suppose f ∈ Zp[[T ]]×. Then:

(iii) If f ≡ 1 (mod pk) with k ≥ 1, then

N ( f )≡ 1 (mod pk+1).

(iv) If k2 ≥ k1 ≥ 0, then

N k2( f )≡N k1( f ) (mod pk1+1).

Proof. We leave parts (i) and (ii) as an exercise (see [16, Lemma 2.3.1]). To
see part (iii), suppose that f ≡ 1 (mod pk) with k ≥ 1, and recall that p1 is the
maximal ideal of the ring of integers of K1 = Qp(µp). For each η ∈ µp, as
(η− 1)(1+ T ) ∈ p1Zp[[T ]], we have

η(1+ T )− 1≡ T (mod p1Zp[[T ]]),
so that

f (η(1+ T )− 1)≡ f (T ) (mod p1 pkZp[[T ]])

by considering each term separately. It follows that

ϕ ◦N ( f )(T )=
∏
η∈µp

f (η(1+ T )− 1)

≡ f (T )p (mod p1 pkZp[[T ]]).

Since both ϕ◦N ( f ) and f (T )p are elements of Zp[[T ]], this is in fact an equivalence
modulo p1 pk

∩ Zp = pk+1. If f (T ) ≡ 1 (mod pk), then f (T )p
≡ 1 (mod pk+1),

and then the proof follows from part (i).
To see part (iv), from part (ii) we see that

N k2−k1 f
f

≡ 1 (mod p).

Then iterating N and using part (iii) k1 times, we obtain the result. □

Proposition 10.12. The map R : (Zp[[T ]]×)N=id ↪→ U∞ is surjective.

Proof. Let u = (un)n≥1 ∈ U∞. For each n, choose fn ∈ Zp[[T ]]× such that

fn(πn)= un.
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We claim that N fn+1(πn)= un . Indeed, using Lemma 10.9 we have

N fn+1(πn)= Nn+1,n( fn+1(πn+1))= Nn+1,n(un+1)= un.

Iterating, for any k ≥ 0 we have

(N k fn+k)(πn)= un. (10-4)

In view of Lemma 10.11(iv), we define

gn
..=N n f2n ∈ Zp[[T ]]×.

Then, for any m ≥ n, we have

un =N 2m−n f2m(πn)

≡Nm f2m(πn)= gm(πn) (mod pm+1),

where the first equality is (10-4) and the congruence is Lemma 10.11(iv), taking
k2= 2m−n and k1=m. Hence as m→∞, we have gm(πn)→ un for all n. It thus
suffices to find a convergent subsequence of (gm); but such a subsequence exists,
as Zp[[T ]]× is compact. Letting fu ∈ Zp[[T ]]× denote the limit of this subsequence,
we have fu(πn)= un for all n.

It remains to show that N ( fu) = fu . Indeed, as the sequence (un) is norm-
compatible, we have, using Lemma 10.9,

N ( fu)(πn)= Nn+1,n fu(πn+1)= Nn+1,n(un+1)= un = fu(πn).

As N ( fu) and fu are both Coleman power series for u, by Lemma 10.7 they are
equal. □

With this in hand, we have proved the following more precise version of
Theorem 10.2.

Theorem 10.13. There exists a unique isomorphism of groups

U∞→ (Zp[[T ]]×)N=id, u 7→ fu

such that fu(πn)= un for all u ∈ U∞ and n ≥ 1.

Proof. By Propositions 10.10 and 10.12, we have a bijection

R : (Zp[[T ]]×)N=id ∼
−→ U∞.

This is an isomorphism, and R−1 gives the required map. We have fu(πn)= un by
construction of R and uniqueness follows from Lemma 10.7. □

10.4. Definition of the Coleman map. The Coleman map is motivated by the ex-
ample of Section 10.2, where we saw that a distinguished family of local units — the
cyclotomic units — are strongly linked to the Kubota–Leopoldt p-adic L-function.
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In particular, given the construction of ζp in Section 4 and Lemma 10.5, ζp can be
defined by the following procedure:

(1) Consider the tower c(a) of cyclotomic units.

(2) Take its Coleman power series fc(a).

(3) Apply ∂ log.

(4) Apply (1−ϕ ◦ψ).

(5) Apply ∂−1.

(6) Pass to the corresponding measure on Z×p by inverting the Mahler transform.

(7) Finally, divide by θa .

Recall that in terms of measures, step (4) corresponds to restriction to Z×p , and (5) to
multiplication by x−1. We are therefore led to consider the following construction.

Definition 10.14. Let

Col : U∞
u 7→ fu(T )
−−−−−−→ (Zp[[T ]]×)N=id ∂ log

−−→ Zp[[T ]]
1−ϕ◦ψ
−−−−→ Zp[[T ]]ψ=0

∂−1
−−→ Zp[[T ]]ψ=0 A −1

−−→3(Z×p ),

where the first map is Coleman’s isomorphism, the second is the logarithmic
derivative appearing in Section 10.2, the third is the measure-theoretic restriction
from Zp to Z×p , the fourth is multiplication by x−1, and the last is the Mahler
correspondence (Section 3.4 and Corollary 3.32).

Via Section 10.2, we have the following description of the Kubota–Leopoldt
p-adic L-function.

Theorem 10.15. For any topological generator a of Z×p , we have an equality of
pseudomeasures

ζp =
Col(c(a))

θa
∈ Q(Z×p ).

10.5. Generalisations: the Kummer sequence, Euler systems and p-adic L-
functions. We conclude this section with a digression on the generalisation of
the Coleman map that leads to a conjectural construction, under the assumption of
the existence of certain global cohomological elements, of p-adic L-functions of
more general motives. This section is included as additional context and may be
skipped on a first reading. Throughout, if F is a number field, we let GF denote its
absolute Galois group.

Consider, for m ≥ 1, the Kummer exact sequence

0→ µpm → Gm
x 7→x pm

−−−−→ Gm→ 0. (10-5)
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Evaluating at Q and taking fixed points by GF , this short exact sequence induces,
for any number field F , a long exact sequence on cohomology

0→ µpm (F)→ F× x 7→x pm

−−−−→ F×→ H 1(F, µpm )→ H 1(F,Q×). (10-6)

Here, for any topological GF -module A, we write H 1(F, A) ..= H 1(GF , A) for the
Galois cohomology, i.e., the continuous group cohomology of GF . By Hilbert 90,
we have H 1(F,Q×) = 0. Taking inverse limits over m ≥ 1, which is exact, we
obtain an isomorphism called the Kummer map,

δ : F×⊗Zp
∼
−→ H 1(F,Zp(1)). (10-7)

Explicitly, at each finite level, the isomorphism

F×⊗Z/pnZ= F×/(F×)pn
∼
−→ H 1(GF , µpn )

is given as follows. Take a ∈ F× and take any b ∈ Q× such that bpn
= a. Then

ca : σ 7→ σ(b)/b defines a 1-cocycle on GF and it is a coboundary if and only if
a is a pn-th power in F×, which shows that the map sending the class of a to the
class of ca is well defined.

Let m = Dpn , n ≥ 1, and define

cm
..=
ξ−1

m − 1
ξm − 1

∈ O×
Q(µm)

,

a generalisation of the cyclotomic units cn(−1) (where D = 1) from Section 10.2,
where (ξm)m denotes a compatible system of m-th roots of unity. One can show
that these elements satisfy the following relations with respect to the norm maps:

NQ(µmℓ)/Q(µm)(cmℓ)=

{
cm if ℓ |m,

(1− ℓ−1)cm if ℓ ∤m.

Using the Kummer map (10-7), we get elements Zm
..= δ(cm) ∈ H 1(Q(µm),Zp(1))

satisfying

coresQ(µmℓ)/Q(µm)(Zmℓ)=

{
Zm if ℓ |m,

(1−Frob−1
ℓ )Zm if ℓ ∤m,

where we have used that Frobℓ acts on Zp(1) simply by multiplication by ℓ on Zp(1).
Observe also that (1− ℓ−1) is the Euler factor at ℓ of the Riemann zeta function
(evaluated at s = 1). This admits the following huge generalisation, as described
comprehensively in [70].

Definition 10.16. Let 6 be a finite set of primes containing p, let V ∈ RepLGQ be
a global p-adic Galois representation which is unramified outside 6, and let T ⊆ V
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be an OL -lattice stable under GQ. An Euler system for (V, T, 6) is a collection of
classes

Zm ∈ H 1(Q(µm), T ),

where m is of the form m = pnm′ with n ≥ 0, and where m′ is a square-free product
of prime numbers not belonging to 6, satisfying

coresQ(µmℓ)/Q(µm)(Zmℓ)=

{
Zm if ℓ= p,

Pℓ(V ∗(1), σ−1
ℓ )Zm if ℓ ̸= p,

where Pℓ(V ∗(1), X)= det(1−Frob−1
ℓ X |V ∗(1)Iℓ) is the Euler factor at ℓ of the L-

function associated to V ∗(1) and σℓ denotes the image of Frobℓ in Gal(Q(µm)/Q).

The cyclotomic units form an Euler system for the representation Zp(1), and lie
at the heart of Rubin’s proof of the Main Conjecture. In general, constructing Euler
systems for a Galois representation is a very difficult task, and few examples exist
at the moment.

We now describe a rephrasing of Coleman’s map that more easily generalises.
Above, we showed that evaluating Kummer’s exact sequence (10-5) at Q, taking the
long exact sequence in Galois cohomology for F , and taking an inverse limit, we get
an isomorphism F×⊗Zp ∼= H 1(F,Zp(1)). In exactly the same way, replacing Q

by Qp, and F by the finite extension Kn of Qp for n≥ 1, we obtain an isomorphism

K×n ⊗Zp ∼= H 1(Kn,Zp(1)).

These isomorphisms intertwine the norm maps on the left-hand side with the
corestriction maps in cohomology on the right-hand side, and hence, considering
the inverse limit over all n, we see that there is an isomorphism

lim
←−−
n≥1

K×n ⊗Zp ∼= lim
←−−
n≥1

H 1(Kn,Zp(1)). (10-8)

We define the Iwasawa cohomology to be

H 1
Iw(Qp,Qp(1)) ..= lim

←−−
n≥1

H 1(Kn,Zp(1))⊗Zp Qp.

Such groups can be attached to general Galois representations (see below), and they
are a natural generalisation of the local units.

To make this precise, note that the inclusion Un = O×Kn
⊂ K×n induces a natural

map Un → K×n ⊗ Zp, yielding a map U∞ → lim
←−−

K×n ⊗ Zp. Composing this
with (10-8), we obtain a map

κ : U∞→ lim
←−−
n≥1

H 1(Kn,Zp(1)).

One can then show that there exists a map

Col′ : H 1
Iw(Qp,Qp(1))→M (Z×p ,Qp),
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where we recall that M (Z×p ,Qp) = 3(Z
×
p ) ⊗Zp Qp is the space of Qp-valued

measures on 0, making the diagram

U∞ H 1
Iw(Qp,Qp(1))

M(Z×p ,Qp)

κ

Col Col′

commute.
By localising, the Euler system of cyclotomic units give rise to an element of

the Iwasawa cohomology. By combining the above with Proposition 10.4, we see
that the p-adic zeta function can be obtained by evaluating Col′ at this Iwasawa
cohomology class (and dividing through by the measure θa to make it independent
of a, which introduces a pole).

The advantage of this reformulation is that Iwasawa cohomology generalises
well, as we now explain. Let V ∈ RepLGQp be any p-adic representation of GQp ,
i.e., a finite-dimensional L-vector space V equipped with a continuous linear action
of GQp . As before, we define its Iwasawa cohomology groups as

H 1
Iw(Qp, V ) ..= lim

←−−
n≥1

H 1(Kn, T )⊗OL L ,

where T ⊆ V denotes any OL -lattice of V stable under the action of the Galois
group GQp and, as before, the inverse limit is taken with respect to the corestriction
maps in cohomology. Morally, Iwasawa cohomology groups are the groups where
the local part at p of an Euler system of a global p-adic representation lives.
Assuming the representation is crystalline,11 the Coleman map has been generalised
by Perrin-Riou [67]. Under some choices, she constructed big logarithm maps

LogV : H
1
Iw(Qp, V )→ D la(Z×p , L),

where D la(Z×p , L) denotes the space of L-valued locally analytic distributions on Z×p
(in the sense of Section 3.7). The map LogV satisfies certain interpolation properties
expressed in terms of Bloch and Kato’s exponential and dual exponential maps and,
for V =Qp(1), we recover Col′.

The general idea is that, given an Euler system for a global p-adic Galois
representation, localising it at the place p and applying Perrin-Riou’s map, one can
construct a p-adic L-function for V . In a diagram:

{Euler systems}
locp
−−→ H 1

Iw(Qp, V )
LogV
−−→ {p-adic L-functions}.

11Loosely, a p-adic representation of GQp being crystalline is a condition from p-adic Hodge
theory that is the p-adic equivalent to an ℓ-adic representation of GQp (with ℓ ̸= p) being unramified.
For the Galois representation attached to an elliptic curve E defined over Q, this amounts to asking
that E has good reduction at p. An extension of these results in the case of bad reduction can be
found in [69].
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This splits the problem of constructing p-adic L-functions for motives into a global
problem (finding an Euler system) and a purely local problem (constructing the big
logarithm maps). See [18] for further references on this subject.

11. Iwasawa’s theorem on the zeros of the p-adic zeta function

In the previous section, the Coleman map allowed us to give a construction of
the Kubota–Leopoldt p-adic L-function ζp using a specific tower of cyclotomic
units. We now describe a theorem of Iwasawa (Theorem 11.9) that puts this on a
deeper footing. This theorem describes the zeros of ζp — captured by a canonically
attached ideal in the Iwasawa algebra — in terms of arithmetic data, via the module
of cyclotomic units inside the local units. The Coleman map from Section 10 will
be the key step for connecting both worlds.

With the aim of moving all the analytic information to the Galois side, we will
start by reformulating the definition of the p-adic zeta function as a pseudomeasure
on the Galois group 0=Gal(F∞/Q)∼= Z×p . We then introduce the global and local
modules of cyclotomic units (which will be systematically studied later), stating
the connection to class numbers, and state Iwasawa’s theorem.

11.1. Measures on Galois groups. Recall that F∞ =
⋃

n≥1 Q(µpn ), that 0 =
Gal(F∞/Q), and that the cyclotomic character gives an isomorphism χ :0 ∼

−→ Z×p .
This isomorphism induces an identification between measures on Z×p and measures
on the Galois group 0. From now on, we will let 3(0) be the space of measures
on 0, which we identify with 3(Z×p ) via the cyclotomic character. We may thus
naturally consider ζp as a pseudomeasure on 0.

Similarly, the Galois group 0+ = Gal(F+
∞
/Q) = 0/⟨c⟩ is identified through

the cyclotomic character with Z×p /{±1}. Observe that ζp, which ostensibly is an
element of Q(0), vanishes at the characters χ k , for any odd integer k > 1. We will
use this fact to show that ζp actually descends to a pseudomeasure on 0+.

Lemma 11.1. Let c ∈ 0 denote complex conjugation. Let R be a ring in which 2 is
invertible and M an R-module with a continuous action of 0. Then

M ∼= M+⊕M−

is a decomposition of M, with c acting as +1 on M+ and as −1 on M−.

Proof. This follows directly by using the idempotents 1
2(1+ c) and 1

2(1− c), which
act as projectors to the corresponding M+ and M−. □

We are assuming that p is odd, so 3(0)∼=3(0)+⊕3(0)−. In fact, the module
3(0)+ admits a description solely in terms of the quotient 0+.

Lemma 11.2. There is a natural isomorphism

3(0)+ ∼=3(0
+).
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Proof. We work at finite level. Let 0n
..=Gal(Fn/Q), and 0+n ..=Gal(F+n /Q). Then

there is a natural surjection

Zp[0n] → Zp[0
+

n ]

induced by the natural quotient map on Galois groups. Since this must necessarily
map Zp[0n]

− to 0, this induces a map Zp[0n]
+
→Zp[0

+
n ]. The result now follows

at finite level by a dimension count (because both are free Zp-modules of rank
(p−1)pn−1/2, and one sees easily that the map sends a basis of the first module to a
basis of the second). We obtain the required result by passing to the inverse limit. □

We henceforth freely identify 3(0+) with the submodule 3(0)+ of 3(0).

Lemma 11.3. Let µ ∈3(0). Then µ ∈3(0+) if and only if∫
0

χ(x)k ·µ= 0

for all odd k ≥ 1.

Proof. By Lemma 11.1, we can write µ= µ++µ−, where µ± = 1
2(1± c)µ. We

want to show that µ− = 0 if and only if
∫
0
χ(x)k ·µ= 0 for all odd k ≥ 1. Since

χ(c)=−1, we have∫
0

χ(x)k ·µ+ = 1
2

( ∫
0

χ k
·µ+ (−1)k

∫
0

χ k
·µ

)
.

If k is odd, the above expression vanishes, showing that
∫
0
χ(x)k ·µ=

∫
0
χ(k) ·µ+

for all odd k. On the other hand, the same argument shows that
∫
0
χ(x)k · µ−

vanishes for all k even. The result follows then by Lemma 3.36. □

Corollary 11.4. The p-adic zeta function is a pseudomeasure on 0+.

Proof. This follows from the interpolation property, as ζ(1−k)= 0 for odd k≥ 1. □

11.2. The ideal generated by the p-adic zeta function. It is natural to ask about
the zeros of the p-adic zeta function. Since the zeros are not modified if we multiply
by a unit, studying the zeros of a measure on 0 is equivalent to studying the ideal
in 3(0) generated by the measure.

Even though Kubota–Leopoldt is only a pseudomeasure — hence not an element
of3(0)— we now see that it still “generates” a natural ideal in3(0). By definition
of pseudomeasures, the elements ([g]−[1])ζp belong to the Iwasawa algebra 3(0)
for any g ∈ 0. Recall from Definition 3.37 that I (0) denotes the augmentation
ideal of 3(0), that is, the ideal

I (0)= ker(3(0)→ Zp),

where 3(0)↠ Zp is the map induced by [g] 7→ 1 for any σ ∈ 0. We define I (0+)
similarly.
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Proposition 11.5. The module I (0)ζp is an ideal in 3(0). Similarly, the module
I (0+)ζp is an ideal in 3(0+).

Proof. Since ζp is a pseudomeasure, we know ([g] − [1])ζp ∈3(0) for all g ∈ 0.
Hence the result follows as I (0) is the topological ideal generated by the elements
[g] − [1] for g ∈ 0. The same argument holds for I (0+)ζp. □

11.3. Cyclotomic units and Iwasawa’s theorem. Iwasawa’s theorem describes the
ideal I (0)ζp in terms of the module of cyclotomic units. We now recall this module,
and its classical connection to class numbers, and then state Iwasawa’s theorem.

Definition 11.6. For n ≥ 1, we define the group Dn of cyclotomic units of Fn to
be the intersection of O×Fn

and the multiplicative subgroup of F×n generated by
{±ξpn , ξa

pn − 1 : 1≤ a ≤ pn
− 1}. We set D+n = Dn ∩ F+n .

We will study the structure of cyclotomic units more in detail in subsequent
sections. The following result shows their connection to class numbers.

Theorem 11.7. Let n ≥ 1. The group Dn (resp. D+n ) is of finite index in the group
of units Vn (resp. V +n ) in Fn (resp. F+n ), and we have

h+n = [Vn : Dn] = [V
+

n : D
+

n ],

where h+n ..= #Cl(F+n ) is the class number of F+n .

Proof. We will not prove this here; see [81, Theorem 8.2]. The proof goes by
showing that the regulator of cyclotomic units is given in terms of special L-values
at s = 1 of Dirichlet L-functions, and then using the class number formula. □

As we explained in Section 10.4, the construction of the p-adic zeta function
via the Coleman map goes as follows. The cyclotomic units cn(a), introduced
in Section 10.2, are naturally elements of Dn , hence global. One then considers
their image inside the space of local units, and then applies the Coleman map
(Definition 10.14), which is a purely local procedure. In this spirit it is natural to
switch here from studying the global modules Dn and D+n to their closures in the
space of local units. Recall U +

∞,1 from the notational introduction to Part II; it is
the group of norm-compatible local units congruent to 1 (mod p).

Definition 11.8. For any n ≥ 1, define Cn as the p-adic closure of Dn inside the
local units Un ,12 let C+n

..= Cn ∩U +n , and let

Cn,1
..= Cn ∩Un,1, C+n,1

..= C+n ∩Un,1,

C∞,1
..= lim
←−−
n≥1

Cn,1, C+
∞,1

..= lim
←−−
n≥1

C+n,1.

12We will describe this closure more explicitly in Lemma 12.20 below.
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We will see that U +
∞,1, and its quotient U +

∞,1/C
+

∞,1, naturally have 3(0+)-
module structures. Moreover, Iwasawa explicitly related this quotient to the p-adic
zeta function. The following theorem, which we prove in Section 12, says that
the cyclotomic units capture the zeros of ζp and ultimately motivated Iwasawa to
formulate his Main Conjecture.

Theorem 11.9. The Coleman map induces an isomorphism of 3(0+)-modules

U +
∞,1/C

+

∞,1
∼
−→3(0+)/I (0+)ζp.

The quotient U +
∞,1/C

+

∞,1 is a local analogue, at infinite level, of the cyclotomic
units inside the global units, whose indices compute class numbers in the cyclotomic
tower (Theorem 11.7). They will in turn be related (see Corollary 13.14) to the
Galois modules appearing in the formulation of the Iwasawa Main Conjecture.
This theorem is hence the first step into proving a remarkable and deep connection
between class groups and the p-adic zeta function, which will be the main purpose
of the Iwasawa Main Conjecture.

12. Proof of Iwasawa’s theorem

In this section, we prove Theorem 11.9. First, we equip the local units with an action
of 3(0), and prove that the Coleman map is equivariant with respect to this action.
Then, in Theorem 12.17, we compute the kernel and cokernel of the Coleman map.
Finally we describe generators of the modules of cyclotomic units, and compute
their image under the Coleman map. We combine all of this to prove Theorem 11.9.

12.1. Equivariance properties of the Coleman map. Theorem 11.9 is a statement
about 3(0+)-modules. Here it is important that we work over the full Iwasawa
algebra; the structure theorem for modules over 3(0) and 3(0+)— stated in
Theorem 13.1 below — is crucial in studying the Iwasawa Main Conjecture. It
is desirable, then, to equip U∞ with a 3(0)-module structure. As 3(0) is the
completed group ring of 0 over Zp, this amounts to equipping it with compatible
actions of Zp and 0. For the latter, we use the natural Galois action on the local
units. For the former, however, we are stuck: whilst there is a natural action of Z

on U∞ by u 7→ ua for an integer a, this does not extend to an action of Zp.

12.1.1. The action of Zp. To fix the absence of a Zp-action on local units, we recall
the definition of the subgroup U∞,1 ⊂ U∞ introduced in (9-3). In particular, we
showed there that the action of Z does extend to Zp on U∞,1. For convenience, we
recall (see Definition 10.14) that the Coleman map was defined as the following
composition:

Col : U∞
u 7→ fu(T )
−−−−−−→ (Zp[[T ]]×)N=id ∂ log

−−→ Zp[[T ]]
1−ϕ◦ψ
−−−−→ Zp[[T ]]ψ=0

∂−1
−−→ Zp[[T ]]ψ=0 A −1

−−→3(Z×p ).
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Proposition 12.1. The map Col restricts to a Zp-equivariant map

Col : U∞,1→3(Z×p ).

Proof. It suffices to check Zp-equivariance for each map in the composition in
Definition 10.14. The action of a ∈ Zp on u ∈ U∞,1 is given by u 7→ ua ..=∑

k≥0
(a

k

)
(u− 1)k . Write fu =

∑
k≥1 ak(u)T k . We first claim that

a0(u)≡ 1 (mod p). (12-1)

Indeed, by definition fu(πn)=un≡1 (mod pn) for each n, and as πn is a uniformiser
for Kn , we see

fu(πn)= a0(u)+
∑
k≥1

ak(u)π k
n ∈ a0(u)+ pn,

from which we see that a0(u)≡ 1 (mod pn). But a0(u) lies in Zp, giving (12-1).
Thus fu(T )− 1 ∈ (p, T ). As Zp[[T ]] is complete in the (p, T )-adic topology,

fu(T )a =
∑
j≥0

(a
j

)
( fu(T )− 1) j

converges to a power series f a
u (T ) ∈ Zp[[T ]]. Since by construction fu(πn)

a
= ua

n ,
by Lemma 10.7 we have

f a
u = fua ∈ (Zp[[T ]]×)N=id.

As a result, we have equipped the image of U∞,1 inside Zp[[T ]] under the map
u 7→ fu with a Zp-action such that the restriction of the Coleman isomorphism is
Zp-equivariant. We compute that ∂ log( f a

u ) = a∂ log( fu), so ∂ log is equivariant
for the natural Zp-action on Zp[[T ]]. Finally the maps (1−ϕ ◦ψ), ∂−1 and A −1

are Zp-equivariant by definition. □

The next two lemmas show that we have not lost any information by restricting.

Lemma 12.2. We have U∞ = µp−1×U∞,1.

Proof. We start at finite level n. As p is totally ramified in Kn for all n, there is
a unique prime pn of Kn above p, and reduction modulo pn gives a short exact
sequence

1→ Un,1→ Un→ µp−1→ 1,

which is split, so Un = µp−1×Un,1. The result follows in the inverse limit. □

Lemma 12.3. The subgroup µp−1 of U∞ is killed by Col. In particular, no infor-
mation is lost when restricting to U∞,1.

Proof. Note µp−1 ⊂ Z×p . The first map u 7→ fu is an isomorphism that sends
v = (v)n∈N ∈ µp−1 ⊂ U∞ to the constant power series fv(T ) = v. But constant
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power series are killed by the second map Zp[[T ]]
∂ log
−−→ Zp[[T ]], which involves

differentiation. Thus µp−1 is mapped to zero under the composition, and hence
under Col. □

Remark 12.4. The kernel of ∂ log is comprised of constant power series. Moreover,
if f ∈ Zp[[T ]] is constant and invariant under N , then this forces f p

= f . Thus the
kernel of the composition of the first two maps is exactly µp−1.

12.1.2. The Galois action. The Galois group 0 = Gal(F∞/Q) is naturally isomor-
phic to Gal(K∞/Qp), as p is totally ramified in F∞. Thus 0 acts on U∞.

Notation. For a ∈Z×p , let σa ∈0 be the corresponding element of 0 with χ(σa)=a,
recalling that χ : 0 ∼

−→ Z×p is the cyclotomic character from (9-1).

Proposition 12.5. The Coleman map Col : U∞→3(0) is 0-equivariant.

Proof. We must show that if a ∈ Z×p , and u ∈ U∞, we have

Col(σa(u))= σa(Col(u)).

This is easy to check if we understand how 0 acts on each of the modules involved.
If u = (un)n≥1 ∈ U∞, then

σa(u)= (σa(un))n≥1 ∈ U∞,

and if f (T ) ∈ Zp[[T ]], then

σa( f )(T )= f ((1+ T )a − 1).

Then:

• We have

(σa fu)(πn)= fu((1+πn)
a
− 1)= fu(ξ

a
pn − 1)= fu(σa(ξpn − 1))

= σa( fu(ξpn − 1))= σa(un),

so that u 7→ fu(T ) is 0-equivariant.

• If f (T ) ∈ Zp[[T ]]×, then an easy calculation on power series shows that

∂ log(σa( f ))= aσa(∂ log( f )). (12-2)

• On measures, restriction to Z×p is 0-equivariant since the action of σa is by
multiplying the variable by a ∈ Z×p , which obviously stabilises both Z×p and pZp.

• As operations on Zp[[T ]]ψ=0, we have

∂−1
◦ σa = a−1σa ◦ ∂

−1, (12-3)
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as is easily checked on measures. Indeed,∫
Z×p

f (x) · ∂−1σaµ=

∫
Z×p

f (x)
x
· σaµ

=

∫
Z×p

f (ax)
ax
·µ

= a−1
∫

Z×p

f (ax) · ∂−1µ= a−1
∫

Z×p

f (x) · σa∂
−1µ.

• By definition of the action, the inverse Mahler transform A −1 is equivariant
under σa .

Putting all that together, the result follows. □

Now, the 0-action on U∞ fixes 1 ∈ µp−1, so it stabilises the subspace U∞,1.
This action commutes with the Zp-action on U∞,1. We deduce that U∞,1 is a
3(0)-module. The results of Section 12.1 can then be summarised as follows.

Corollary 12.6. The map Col restricts to a map U∞,1→3(0) of 3(0)-modules.

Remark 12.7. In the construction of ζp, we renormalised by “dividing by x” (in
Section 4.3). This appears here via ∂−1. We see from (12-3) that ∂−1 really is
essential for the Coleman map to be 0-equivariant, motivating the appearance of x−1

in Section 4.3. Conceptually, ζ and ζp are the L-function and p-adic L-function
of the trivial Galois representation Qp, whilst the cyclotomic units in U∞ form
an Euler system for its twist Qp(1); the ∂−1 bridges between these two Galois
representations.

12.2. The fundamental exact sequence. Theorem 11.9 says that the Coleman map
induces an isomorphism U +

∞,1/C
+

∞,1
∼=3(0+)/I (0+)ζp. To prove this, we must

study the kernel and cokernel of the Coleman map. We do so here (in Theorem 12.17)
via a careful study of each of its constituent maps.

12.2.1. The logarithmic derivative. We will now show that the logarithmic deriva-
tive translates norm-invariance into trace-invariance (recalling the trace operator ψ).
The key result is Theorem 12.9. For convenience of notation, and consistency
with [16], we make the following definition.

Definition 12.8. For f (T ) ∈ Zp[[T ]]×, define its logarithmic derivative as

1( f ) ..= ∂ log f =
∂ f (T )
f (T )

= (1+ T )
f ′(T )
f (T )

.

The main result of this section is the following.

Theorem 12.9. The logarithmic derivative induces a short exact sequence

0→ µp−1→ (Zp[[T ]]×)N=id 1
−→ Zp[[T ]]ψ=id

→ 0.
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We described the kernel of 1 in Remark 12.4 above, so it suffices to deal with its
image. We first prove that this image is contained in Zp[[T ]]ψ=id (Lemma 12.10).
We then reduce the proof of surjectivity, via Lemma 12.11, to surjectivity modulo p.
Finally, in Lemmas 12.12 and 12.13 we calculate the reduction modulo p of both
spaces.

For convenience, let W ..= (Zp[[T ]]×)N=id.

Lemma 12.10. We have 1(W )⊆ Zp[[T ]]ψ=id.

Proof. If f ∈W , then

ϕ( f )= (ϕ ◦N )( f )=
∏
η∈µp

f ((1+ T )η− 1).

Applying 1 to the above equality and using the fact that 1 ◦ϕ = pϕ ◦1 (which is
easy to see on power series from the definitions), we obtain

(ϕ ◦1)( f )= p−1
∑
η∈µp

1( f )((1+ T )η− 1)= (ϕ ◦ψ)(1( f )).

By injectivity of ϕ, we deduce ψ(1( f ))=1( f ). □

We move now to the proof of surjectivity. In the following, let

A =1(W )⊆ Fp[[T ]], B = Zp[[T ]]ψ=id ⊆ Fp[[T ]]

be the reduction modulo p of the modules we need to compare.

Lemma 12.11. If A = B, then 1(W )= Zp[[T ]]ψ=id.

Proof. Let f0 ∈ Zp[[T ]]ψ=id. By hypothesis, there exists a g1 ∈W such that

1(g1)− f0 = p f1 for some f1 ∈ Zp[[T ]].

Since 1(W ) ⊆ Zp[[T ]]ψ=id by Lemma 12.10, we see that ψ fixes both 1(g1)

and f0 and hence, by additivity, ψ fixes f1; so again by hypothesis, there exists
some g2 ∈W such that

1(g2)− f1 = p f2 for some f2 ∈ Zp[[T ]].

By induction, there exist gi ∈W and fi ∈ Zp[[T ]]ψ=id, i ≥ 1, such that

1(gi )− fi−1 = p fi .

Now let

hn =

n∏
k=1

g(−1)k−1 pk−1

k ∈W ,

i.e.,

h1 = g1, h2 =
g1

g p
2
, h3 =

g1 · g
p2

3

g p
2

, h4 =
g1 · g

p2

3

g p
2 · g

p3

4

,



182 JOAQUÍN RODRIGUES JACINTO AND CHRIS WILLIAMS

etc. As 1 transforms multiplication into addition, we have

1(hn)=1(g1)− p1(g2)+ · · ·+ (−1)n−1 pn−11(gn)

= ( f0+ p f1)− (p f1+ p2 f2)+ · · ·+ (−1)n−1(pn−1 fn−1+ pn fn)

= f0+ (−1)n−1 pn fn.

By compactness, the sequence (hn)n≥1 admits a convergent subsequence converging
to an element h ∈W satisfying 1(h)= f0, which shows the result. □

Lemma 12.12. We have W ..=W (mod p)= Fp[[T ]]×.

Proof. The inclusion ⊂ is obvious. Conversely, for any element f ∈ Fp[[T ]]×, lift it
to an element f̃0 ∈ Zp[[T ]]×. By points (ii) and (iv) of Lemma 10.11, the sequence
N k( f̃0) converges to an element f̃ that is invariant under N and whose reduction
modulo p is f . □

The most delicate and technical part of the proof of Theorem 12.9 is contained
in the following two lemmas describing the reduction of Zp[[T ]]ψ=id modulo p.

Lemma 12.13. We have B =1(Fp[[T ]]×).

Proof. We have 1(W )⊆ Zp[[T ]]ψ=id by Lemma 12.10, and therefore the inclusion
1(Fp[[T ]]×) ⊂ B is clear using Lemma 12.12. For the other inclusion, take any
f ∈ B and use Lemma 12.14 below to write

f =1(a)+ b

for some a ∈ Fp[[T ]]× and b=
∑
+∞

m=1 dm
T+1

T T pm . Since ψ( f )= f and ψ(1(a))=
1(a) (by a slight abuse of notation, as f and 1(a) are actually the reduction
modulo p of elements fixed by ψ), we deduce that ψ(b)= b. But we can explicitly
calculate the action of ψ on b. Using the identity13 ψ(g · ϕ( f )) = ψ(g) f , the
identity T pm

= ϕ(T m) in Fp[[T ]] and the fact that ψ fixes T+1
T (see the proof of

Lemma 4.7), we deduce that

ψ(b)=
+∞∑
m=1

dm
T+1

T
T m,

which immediately implies b = 0 and concludes the proof. □

Lemma 12.14. We have

Fp[[T ]] =1(Fp[[T ]]×)+
T+1

T
C,

where C =
{ ∑

+∞

n=1 anT pn
}
⊆ Fp[[T ]].

13Again, this can be easily checked on measures.
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Proof. One inclusion is clear. Take g ∈ Fp[[T ]] and write T
T+1 g =

∑
+∞

n=1 anT n .
Define

h =
+∞∑
m=1

(m,p)=1

am

+∞∑
k=0

T mpk
.

Clearly T
T+1 g− h ∈ C , so it suffices to show that T+1

T h ∈1(Fp[[T ]]×). Indeed, we
will show by induction that, for every m ≥ 1, there exists αi ∈ Fp for 1 ≤ i < m
such that

hm
..=

T+1
T

h−
( m−1∑

i=1

1(1−αi T i )

)
∈ T m−1 Fp[[T ]].

The case m= 1 is empty. Suppose that the claim is true for m and that α1, . . . , αm−1

have been chosen. Observe first that

1(1−αi T i )=−
T + 1

T

+∞∑
k=1

iαk
i T ik,

so we can write

hm =
T + 1

T

+∞∑
k=m

dk T k .

Observe that, by construction of h and hm , we have dn= dnp for all n. If dm = 0 then
we set αm = 0. If dm ̸= 0 then, by what we have just remarked, m must be prime
to p, hence invertible in Fp, and we set αm =−dm/m. One can then check that

g =
+∞∏
n=1

(1−αnT n) ∈ Fp[[T ]]

satisfies 1(g)= T+1
T h, which concludes the proof. □

We can now complete the proof of Theorem 12.9.

Proof of Theorem 12.9. By Lemma 12.10, the map 1 is well defined, and its kernel
is µp by Remark 12.4. It remains to prove surjectivity. By Lemma 12.11, it suffices
to prove that A = B, which follows directly from Lemmas 12.12 and 12.13. □

12.2.2. The fundamental exact sequence. Finally, we will study the fundamental
exact sequence describing the kernel and cokernel of the Coleman map. The only
remaining map to study is 1− ϕ ◦ψ . By Theorem 12.9, it suffices to study this
on Zp[[T ]]ψ=id.

Lemma 12.15. There is an exact sequence

0→ Zp→ Zp[[T ]]ψ=id 1−ϕ
−−→ Zp[[T ]]ψ=0

→ Zp→ 0,

where the first map is the natural inclusion and the last map is evaluation at T = 0.



184 JOAQUÍN RODRIGUES JACINTO AND CHRIS WILLIAMS

Proof. Injectivity of the first map is trivial. To see surjectivity of the last map, note
that ψ(1+ T )= 0, since

(ϕ ◦ψ)(1+ T )= p−1
∑
η∈µp

η(1+ T )= 0.

Thus 1+ T ∈ Zp[[T ]]ψ=0 and is mapped to 1 under the last map.
Let f (T ) ∈ Zp[[T ]]ψ=0 be in the kernel of the last map, that is, be such that

f (0)= 0. Then ϕn( f ) goes to zero (in the weak /(p, T )-adic topology) and hence∑
n≥0 ϕ

n( f ) converges to an element g(T ) whose image under (1− ϕ) is f (T ).
Since ψ ◦ϕ = id, we also have

ψ(g)=
∑
n≥0

ψ ◦ϕn( f )= ψ( f )+
∑
n≥1

ϕn−1( f )= g,

as ψ( f )= 0, which shows that

f ∈ (1−ϕ)(Zp[[T ]]ψ=id)

and hence that the sequence is exact at Zp[[T ]]ψ=0. Finally, if f (T ) ∈ Zp[[T ]]
is not constant, then f (T ) = a0 + ar T r

+ · · · for some ar ̸= 0 and ϕ( f )(T ) =
a0+ par T r

+· · · ̸= f (T ), which shows that ker(1−ϕ)=Zp, finishing the proof. □

Definition 12.16. Let Zp(1) ..= lim
←−−

µpn , the module Zp with an action of 0 by
σ · x = χ(σ)x , recalling χ is the cyclotomic character. This is an integral version
of Qp(1).

Theorem 12.17. The Coleman map induces an exact sequence of 0-modules

0→ µp−1×Zp(1)→ U∞
Col
−−→3(0)→ Zp(1)→ 0,

where the last map sends µ ∈3(0) to
∫
0
χ ·µ. In particular, it induces an exact

sequence

0→ Zp(1)→ U∞,1
Col
−−→3(0)→ Zp(1)→ 0

of 3(0)-modules.

Proof. We first compute the kernel of the Coleman map, which we recall from
Definition 10.14 is the composition

Col : U∞
u 7→ fu(T )
−−−−−−→ (Zp[[T ]]×)N=id 1

−→ Zp[[T ]]ψ=id 1−ϕ◦ψ
−−−−→ Zp[[T ]]ψ=0

∂−1
−−→ Zp[[T ]]ψ=0 A −1

−−→3(Z×p ).

In the third term, we have used Theorem 12.9 to replace Zp[[T ]] with Zp[[T ]]ψ=id.
The first map is an isomorphism by Theorem 10.13. By Theorem 12.9, the second

map surjects with kernel µp−1. By Lemma 12.15 the third map has kernel Zp; this is
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the image of {(1+T )a : a ∈ Zp} under 1. This is the power series interpolating the
sequence (ξa

pn )n≥1. Accordingly, when we pull this back to U∞, we get the factor

Zp(1)= {(ξa
pn )n : a ∈ Zp} ⊂ U∞.

Finally, the fourth and fifth maps are isomorphisms, so ultimately the kernel of Col
is as claimed.

We now compute the cokernel. The first two and last two maps in Col are
surjective, and the third map has cokernel Zp by Lemma 12.15, showing the
exactness of the sequence.

Finally, we turn to the 0-equivariance. The subspace µp−1 × Zp(1) ⊂ U∞ is
preserved by 0, so the first map is 0-equivariant. That Col is 0-equivariant was
Corollary 12.6. The last map is 0-equivariant since∫

0

χ(x) · σµ(x)=
∫
0

χ(σ x) ·µ(x)= χ(σ)
∫
0

χ ·µ,

and 0 acts on Zp(1) through the cyclotomic character χ . □

12.3. Generators for the global cyclotomic units. Recall the (global) module of
cyclotomic units Dn is the intersection of O×Fn

with the multiplicative subgroup
of F×n generated by±ξpn and ξa

pn−1 with 1≤a< pn , and D+n = Dn ∩ F+n . We now
show this module is cyclic over the group ring Z[0+n ]. This is essential preparation
for treating the local analogue C+n,1 in the next subsection.

Recall that we defined

cn(a) ..=
ξa

pn − 1

ξpn − 1
∈ Dn,

and note that

γn,a
..= ξ

(1−a)/2
pn cn(a)=

ξ
a/2
pn − ξ

−a/2
pn

ξ
1/2
pn − ξ

−1/2
pn

is fixed by conjugation c ∈ 0, hence gives an element of D+n . In fact:

Lemma 12.18. Let n ≥ 1. Then:

(i) The group D+n is generated by −1 and{
γn,a : 1< a < 1

2 pn, (a, p)= 1
}
.

(ii) The group Dn is generated by ξpn and D+n .

Proof. We first show that we need only consider those elements ξa
pn − 1 with a

prime to p. Indeed, this follows from the identity

ξ
bpm

pn − 1=
pm
−1∏

j=0

(ξ
b+ j pn−m

pn − 1),
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where (b, p)= 1 and 1≤ m < n, noting that b+ j pn−m is prime to p. Also, since
ξa

pn − 1=−ξa
pn (ξ

−a
pn − 1), we can restrict to considering 1≤ a < 1

2 pn (recall here
that p is odd).

Suppose that
γ =±ξ d

pn

∏
1≤a< 1

2 pn

(a,p)=1

(ξa
pn − 1)ea ∈ Dn,

for some integers d and ea . Since vp(ξ
d
pn ) = 0 and all the p-adic valuations of

ξa
pn − 1 coincide

(
namely, vp(ξ

a
pn − 1) = 1

(p−1)pn−1

)
, we deduce that

∑
a ea = 0.

Therefore we can write

γ =±ξ d
pn

∏
a

(
ξa

pn − 1

ξpn − 1

)ea

=±ξ e
pn

∏
a

γ ea
n,a,

where e=d+ 1
2

∑
a ea(a−1). This shows the second point; the first point follows by

observing that every term γ
ea
n,a of the product is real, so γ ∈D+n if and only if e=0. □

Corollary 12.19. If a generates (Z/pnZ)×, then γn,a generates D+n as a Z[0+n ]-
module.

Proof. If 1≤ b< pn is prime to p, then b≡ ar (mod p)n for some r ≥ 0, and hence

γn,b =
ξar

pn − 1

ξpn − 1
=

r−1∏
i=0

ξai+1

pn − 1

ξai

pn − 1
=

r−1∏
i=0

(γn,a)
σ i

a . □

12.4. Generators for the local cyclotomic units. We now move to analogous results
for the local cyclotomic units, that is, the p-adic closure of the global cyclotomic
units.

A natural guess might be that “as D+n is generated by γn,a as a Z[0+n ]-module,
C+n is generated by γn,a as a Zp[0

+
n ]-module”. However, this is nonsense, since C+n

is not a Zp-module; to parse this, we must pass to the principal cyclotomic units C+n,1.
The following simple lemma then describes precisely the p-adic closure.

Lemma 12.20. Let g1, . . . , gr ∈ Un,1, and let X = ⟨g1, . . . , gr ⟩ ⊂ Un,1 be the Z-
module they generate (multiplicatively14). Then the p-adic closure X of X in Un,1

is the Zp-submodule of Un,1 generated by g1, . . . , gr .

Proof. Let a ∈ Zp, and a j be any sequence of integers tending to a ∈ Zp. Then

ga j
i =

∑
k≥0

(a j

k

)
(gi − 1)k →

∑
k≥0

(a
k

)
(gi − 1)k = ga

i , (12-4)

14By which we mean, the Z-module structure is given by exponentiation, i.e., (a, g) 7→ ga for
a ∈ Z (or Zp). As is standard, but perhaps confusingly, we sometimes use additive notation ag for
this module structure.
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since gi − 1 ≡ 0 (mod pn) (as gi ∈ Un,1). Thus ga
i lies in the p-adic closure. An

identical argument shows more generally that the Zp-span of the gi ’s is a subset of
the p-adic closure.

To see the converse, let g ∈ X . Then by definition there exists a sequence
(ga1, j

1 · · · g
ar, j
r ) j ⊂ X tending to g, with each ai, j ∈ Z. This gives a sequence

(a1, j , . . . , ar, j ) j ⊂ Zr
⊂ Zr

p. By compactness of Zr
p, there exists a convergent

subsequence
(b1,k, . . . , br,k)k→ (b1, . . . , br ) ∈ Zr

p.

Then (gb1,k
1 · · · g

br,k
r )k converges to gb1

1 · · · g
br
r by (12-4); but by construction it also

converges to g. Thus g = gb1
1 · · · g

br
r , showing that g lies in the Zp-span of the gi ’s,

as required. □

We now put Corollary 12.19 into a form useful for Lemma 12.20.

Lemma 12.21. Let a ∈ Z be a topological generator of Z×p , and w ∈ µp−1 ⊂ Un

be such that aw ≡ 1 (mod pn). Then:

(i) wγn,a ∈ Un,1.

(ii) (wγn,a)
p−1
= γ

p−1
n,a lies in U +n,1, and generates the cyclic Z[0+n ]-module

Z[0+n ] · (wγn,a)
p−1
= (p− 1)D+n = {γ

p−1
: γ ∈ D+n } ⊂ U +n,1.

Proof. (i) We first claim γn,a ≡ a (mod pn). Indeed, by definition, γn,a = ξ
a/2
pn cn(a).

Recall πn = ξpn − 1 is a uniformiser in pn , so ξa/2
pn ≡ 1 (mod pn). It thus suffices to

show
cn(a)≡ a (mod pn).

For this, recall that by construction of the Coleman power series attached to any
unit u = (un) ∈ U∞, we have

un = fu(πn)≡ fu(0) (mod pn).

For u = c(a), recall we have fc(a) = ((1+ T )a − 1)/T ; so cn(a) ≡ fc(a)(0) =
a (mod pn), proving the claim. Thus w is the unique element of µp−1 such that
wγn,a ≡ 1 (mod pn), and hence wγn,a ∈ Un,1, as required.

(ii) By Corollary 12.19, we know γn,a generates D+n , and deduce γ p−1
n,a generates

(p− 1)D+n . In particular γ p−1
n,a lies in U +n,1. Because w p−1

= 1, we have γ p−1
n,a =

(wγn,a)
p−1, giving (ii). □

Lemma 12.22. Let a ∈ Z be a topological generator of Z×p , and w ∈ µp−1 ⊂ Un

be such that aw ≡ 1 (mod pn). Then:

(i) The module C+n,1 is a cyclic Zp[0
+
n ]-module generated by wγn,a .

(ii) The module C+
∞,1 is a cyclic 3(0+)-module generated by (wγn,a)n≥1.
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Proof. (i) By Lemma 12.21(ii),

(p− 1)D+n = (p− 1)D+n,1 ⊂ U +n,1

is generated as a Z[0+n ]-module by (wγn,a)
p−1. By Lemma 12.20 the p-adic closure

(p− 1)C+n,1 of (p− 1)D+n,1 is generated as a Zp[0
+
n ]-module by (wγn,a)

p−1. As
p− 1 is invertible in Zp, we conclude (p− 1)C+n,1 = C+n,1 is generated by wγn,a .
We use here that wγn,a ≡ 1 (mod pn), so that wγn,a is the unique (p−1)-th root of
(wγn,a)

p−1 lying in C+n,1.

(ii) Observe that

C+
∞,1
∼= lim
←−−

C+n,1 = lim
←−−
(Zp[0

+

n ] ·wγn,a)∼=3(0
+) · (wγn,a)n,

as required, with all maps as 3(0+)-modules and where the middle equality is
from (i). □

12.5. End of the proof. Finally we can prove Iwasawa’s theorem, Theorem 11.9.

Theorem 12.23. The Coleman map induces

(i) a short exact sequence of 3(0)-modules

0→ U∞,1/C∞,1→3(0)/I (0)ζp→ Zp(1)→ 0,

(ii) an isomorphism of 3(0+)-modules

U +
∞,1/C

+

∞,1
∼
−→3(0+)/I (0+)ζp.

Proof. Theorem 12.17 gave an exact sequence of 3(0)-modules

0→ Zp(1)→ U∞,1
Col
−−→3(0)→ Zp(1)→ 0.

The theorem will follow by calculating the image of the modules C∞,1 and C+
∞,1

under the Coleman map. By Lemma 12.22, it suffices to calculate the image under
Col of an element (ξ b

pnγn,a)n≥1 ∈ U∞,1, for a, b ∈ Z×p . But this has already been
done: by Theorem 10.15, and the fact that ξ b

pn lies in the kernel of the Coleman
map, we know that

Col((ξ b
pnγn,a)n≥1)= Col(ξ−(1−a)/2

pn (γn,a)n≥1)= Col(c(a))= ([σa] − [1])ζp,

where as usual σa denotes an element of 0 such that χ(σa)= a. Since a ∈ Z×p was
arbitrary, we conclude that the image of C∞,1 (resp. C+

∞,1) under Col is I (0)ζp

(resp. I (0+)ζp). We deduce an exact sequence

0→ U∞,1/C∞,1→3(0)/I (0)ζp→ Zp(1)→ 0.
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This shows (i). Since p is odd, taking invariants under the group ⟨c⟩ ⊂ 0 of order
two generated by complex conjugation is exact. As c acts on Zp(1) by −1, we see
that Zp(1)⟨c⟩ = 0, which shows (ii) and concludes the proof of the theorem. □

13. The Iwasawa Main Conjecture

We now move from arithmetic to algebra. To state the Iwasawa Main Conjecture,
we use the structure theory of 3-modules. We first summarise this theory. We
then define modules from the Galois theory of abelian extensions that will be
needed. These modules carry an action of the Galois group 0 =Gal(F∞/Q)∼= Z×p ,
and hence obtain the structure of 3(0)-modules. The Iwasawa Main Conjecture
describes the characteristic ideal of one of these Galois modules in terms of the
Kubota–Leopoldt p-adic L-function.

In the interests of space, we state without proof some relevant auxiliary results.

13.1. Structure theory for 3-modules. There is a rich structure theory of modules
over Iwasawa algebras, which looks similar to that of modules over PIDs. Here we
state (without proof) some basic yet fundamental results.

Let L be a finite extension of Qp, and OL its ring of integers, and let3 ..=3(Zp)=

lim
←−−

OL [Zp/pnZp] ∼=OL [[T ]] be the Iwasawa algebra of Zp over OL . Let M and M ′

be two 3-modules. We say that M is pseudoisomorphic to M ′, and we write
M ∼ M ′, if there exists a homomorphism M→ M ′ with finite kernel and cokernel,
i.e., if there is an exact sequence

0→ A→ M→ M ′→ B→ 0,

with A and B finite 3-modules (just in case: A and B have finite cardinality!). We
remark that ∼ is not an equivalence relation (see [81, Warning, Section 13.2]) but
it is an equivalence relation between finitely generated, torsion 3-modules. The
following is the main result concerning the structure theory of finitely generated
3-modules.

Theorem 13.1 [81, Theorem 13.12]. Let M be a finitely generated3-module. Then

M ∼3r
⊕

( s⊕
i=1

3/(pni )

)
⊕

( t⊕
j=1

3/( f j (T )m j )

)
,

for some r, s, t ≥ 0, ni ,m j ≥ 1 and irreducible distinguished polynomials f j (T ) ∈
O[T ].

Here we call a polynomial P(T ) ∈ OL [T ] distinguished if P(T )= a0+ a1T +
· · ·+ an−1T n−1

+ T n with ai ∈ p for every 0≤ i ≤ n− 1.

Remark 13.2. We do not have a similar result for the finite-level group algebras
OL [Zp/pnZp], only for the projective limit. This is another major example of the
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fundamental concept of Iwasawa theory, where it is profitable to study a whole
tower of objects all in one go, rather than individually at finite level.

Definition 13.3. Suppose M is a finitely generated torsion 3-module. Then r = 0
in the structure theorem. We define the characteristic ideal of M to be the ideal

Ch3(M)= (pn)

t∏
j=1

( f m j
j )⊂3, where n =

s∑
i=1

ni .

We will apply this theory more generally. Suppose 0 = H ×0′, where H is a
finite commutative group of order prime to p and 0′ ∼= Zp. A key example to have
in mind is 0 = Z×p , H = µp−1 and 0′ = 1+ pZp. Then we have a decomposition

3(0)∼= OL [H ]⊗3.

Let M be a finitely generated torsion 3(0)-module. Let H∧ denote the group of
characters of H and define, for any ω ∈ H∧, the projector to the isotypic component

eω ..=
1
|H |

∑
a∈H

ω−1(a)[a] ∈ OL [H ],

possibly after extending L by adjoining the values of ω. As the order of H is prime
to p, one can easily show the following result.

Lemma 13.4 [16, A.1]. The group H acts on M (ω) ..= eωM via multiplication by ω
and we have a decomposition of 3(0)-modules

M =
⊕
ω∈H∧

M (ω).

Moreover, each M (ω) is a finitely generated torsion 3-module.

Definition 13.5. Let 0 = H ×Zp be as above and let M be a finitely generated
torsion 3(0)-module. We define the characteristic ideal of M to be the ideal

Ch3(0)(M) ..=
⊕
ω∈H∧

Ch3(M (ω))⊆3(0).

Lemma 13.6 [16, A.1 Proposition 1]. The characteristic ideal is multiplicative in
exact sequences.

13.2. The 3-modules arising from Galois theory. The following 3-modules will
be the protagonists of the Galois side of the Main Conjecture; we urge the reader to
refer back to the following definitions as these objects appear in the text. Recall
Fn =Q(µpn ), that pn is the unique prime above p in Fn , and other similar notation
from Section 9. Then define

Mn
..=maximal abelian p-extension of Fn unramified outside pn,

M+

n
..=maximal abelian p-extension of F+n unramified outside p+n ,
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Ln
..=maximal unramified abelian p-extension of Fn,

L +n
..=maximal unramified abelian p-extension of F+n ,

and set

M∞
..=

⋃
n≥1

Mn =maximal abelian pro-p-extension of F∞ unramified outside p,

M+

∞
..=

⋃
n≥1

M+

n =maximal abelian pro-p-extension of F+
∞

unramified outside p+,

L∞
..=

⋃
n≥1

Ln =maximal unramified abelian pro-p-extension of F∞,

L +
∞

..=
⋃
n≥1

L +n =maximal unramified abelian pro-p-extension of F+
∞
.

Finally, define

X∞
..= Gal(M∞/F∞), X +

∞
= Gal(M+

∞
/F+
∞
),

Y∞
..= Gal(L∞/F∞), Y +

∞
= Gal(L +

∞
/F+
∞
).

These modules fit into the following diagram of field extensions:

M∞

L∞

F∞ Mn

Ln

Fn

Q

Y∞

X∞

0n

0

There is an identical diagram for the totally real objects, with superscripts +

everywhere.

Remark 13.7. In the limit, the module X∞ is a 3(0)-module, and thus can be
studied via Theorem 13.1. To describe this, let x ∈X∞ and σ ∈ 0, and choose any
lifting σ̃ ∈ Gal(M∞/Q) of σ ; then

σ · x ..= σ̃ x σ̃−1
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gives a well-defined action of 0 on X∞. As OL [0] is dense in 3(0), and the latter
is Hausdorff, this action extends by linearity and continuity to an action of 3(0)
on X∞. In exactly the same way we define actions of 3(0) on Y∞ and of 3(0+)
on X +

∞
and Y +

∞
.

13.3. The Main Conjecture. Recall the ideal I (0+)ζp ⊂ 3(0
+), and that this

encodes the zeros of ζp. We already gave an arithmetic description of this ideal in
Theorem 11.9 in terms of cyclotomic units. The Iwasawa Main Conjecture upgrades
this to the following:

Theorem 13.8 (Iwasawa Main Conjecture). X +
∞

is a finitely generated torsion
3(0+)-module, and

ch3(0+)(X +

∞
)= I (0+)ζp.

Remark 13.9. It is usual in the literature to formulate the Iwasawa Main Con-
jecture in terms of an even Dirichlet character of Gal(Q(µp)/Q). As one can
already observe from the behaviour of the Bernoulli numbers, there exists a certain
dichotomy involving the parity of this character which makes the formulation of
the Main Conjecture different in the even and odd cases. The above formulation
takes into account every such even Dirichlet character. For a formulation of the
Main Conjecture for odd Dirichlet characters, see [42].

13.4. The Iwasawa Main Conjecture for Vandiver primes.

Definition 13.10. Let h+n
..= #Cl(F+n ) be the class number of F+n . We say p is a

Vandiver prime if p ∤ h+1 .

The rest of these notes are dedicated to the following theorem of Iwasawa.

Theorem 13.11. If p is a Vandiver prime, we have an isomorphism of 3(0+)-
modules

X +

∞
∼=3(0

+)/I (0+)ζp.

In particular, Iwasawa’s Main Conjecture holds.

The arguments of this section form the origins of Iwasawa’s formulation of the
Main Conjecture, and give further motivation for it. As our main goal is the study
of p-adic L-functions, we omit the proofs of some more classical auxiliary results.
Our approach follows that of [16, Section 4.5], which we suggest the reader consult
for a more detailed exposition.

We first use class field theory to reinterpret Theorem 12.23 in terms of some
modules arising from Galois theory.
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Definition 13.12. For any n ≥ 1, define En as the p-adic closure of the global units
Vn = O×Fn

inside the local units Un , let E +n
..= En ∩U +n , and let

En,1
..= En ∩Un,1, E +n,1

..= E +n ∩Un,1,

E∞,1
..= lim
←−−
n≥1

En,1, E+
∞,1

..= lim
←−−
n≥1

E+n,1.

Leopoldt’s conjecture (which is known in this case by a theorem of Brumer)
states that for any n ≥ 1, the group En is a finite Zp-module of rank r1+ r2− 1=
pn−1(p− 1)/2. Here as usual r1 (resp. r2) denotes the number of real (resp. half
the number of complex) embeddings of Fn into C. In light of Lemma 12.20, the
conjecture says that if global units are (multiplicatively) independent over Z, then
they are independent over Zp.

Proposition 13.13. There is an exact sequence of 3(0+)-modules

0→ E +
∞,1→ U +

∞,1→ Gal(M+

∞
/L +
∞
)→ 0.

Proof. Global class field theory (see [81, Corollary 13.6]) gives a short exact
sequence

0→ E+n,1→ U +n,1→ Gal(M+

n /L
+

n )→ 0. (13-1)

Taking the inverse limit over n gives the result. This is exact as all modules in the
sequence above are finitely generated Zp-modules (so satisfy the Mittag-Leffler
condition). □

We now rewrite the terms in this sequence, moving it closer to Theorem 13.11.
Motivated by Theorem 11.9, we also introduce C+

∞,1 into the picture. Then:

Corollary 13.14. We have an exact sequence of 3(G)-modules

0→ E +
∞,1/C

+

∞,1→ U +
∞,1/C

+

∞,1→X +

∞
→ Y +

∞
→ 0.

Proof. The fundamental theorem of Galois theory yields a short exact sequence

0→ Gal(M+

∞
/L +
∞
)→X +

∞
→ Y +

∞
→ 0.

The result now follows from Proposition 13.13, as

Gal(M+

∞
/L +
∞
)∼= E +

∞,1/U
+

∞,1
∼= (E

+

∞,1/C
+

∞,1)/(U
+

∞,1/C
+

∞,1),

the last identification being the third isomorphism theorem. □

Key to the proof of Theorem 13.11 is the following result from classical Iwasawa
theory. For the sake of completeness we will give in Appendix A an introduction to
this topic, including in particular a proof of the following result. Let

Y +n
..= Gal(L +n /F+n )∼= Cl(F+n )⊗Z Zp. (13-2)



194 JOAQUÍN RODRIGUES JACINTO AND CHRIS WILLIAMS

Proposition 13.15 [81, Proposition 13.22]. For all n ≥ 0, we have

(Y +
∞
)0+n = Y +n ,

where 0+n = Gal(F+
∞
/F+n ) and the left-hand side is the module of coinvariants.

Proof. See Proposition A.6. □

Corollary 13.16. If p is a Vandiver prime, then

(i) Y +
∞
= 0;

(ii) p ∤ h+n for any n ≥ 1;

(iii) E +
∞,1/C

+

∞,1 = 0.

Proof. By (13-2), we deduce that p ∤ h+n if and only if Y +n = 0.

(i) By Proposition 13.15, if p ∤ h+1 , then 0= Y +1 = (Y
+
∞
)00 = 0. By Nakayama’s

lemma, this implies that Y +
∞
= 0.

(ii) Combining (i) with Proposition 13.15 shows Y +n = 0, hence the result.

(iii) In Theorem 11.7 we saw that [V +n :D
+
n ] = h+n , which is prime to p by (ii). We

claim further that
[V +n,1 : D

+

n,1] is prime to p. (13-3)

Indeed, note D+n,1 = V +n,1 ∩D+n by definition; so applying the isomorphism theorem
S/(S ∩ N )∼= SN/N ≤ G/N to the subgroups S = V +n,1 and N = D+n of G = V +n ,
we see that V +n,1/D

+

n,1 is isomorphic to a subgroup of V +n /D
+
n , hence has order

dividing h+n , which is prime to p. Hence there is an exact sequence

0→ D+n,1→ V +n,1→Wn→ 0,

where Wn is a finite group of order prime to p. We apply−⊗ZZp to every term to get

D+n,1⊗Z Zp ∼= V +n,1⊗Z Zp.

Recall that E +n,1 (resp. C+n,1) is by definition the p-adic closure of V +n,1 (resp. D+n,1)
inside U +n,1, and that C+n,1 ⊆ E +n,1. By Lemma 12.20, we have natural surjections
D+n,1⊗Z Zp→ C+n,1 and V +n,1⊗Z Zp→ E+n,1, making the diagram

D+n,1⊗Z Zp
∼
//

����

V +n,1⊗Z Zp

����

C+n,1
// E+n,1

commute. Thus the inclusion C+n,1→ E +n,1 is surjective, so an isomorphism. Taking
inverse limits yields C+

∞,1
∼= E +
∞,1, which finishes the proof. □

We can now easily finish the proof of Iwasawa Main Conjecture for Vandiver
primes.
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Proof. By Corollaries 13.14 and 13.16 (i, iii) (for the first isomorphism) and Theorem
11.9 (for the second), we have

X +

∞
∼= U +

∞,1/C
+

∞,1
∼=3(0

+)/I (0+)ζp.

In particular,

ch3(0+)(X +

∞
)= ch3(0+)

(
3(0+)/I (0+)ζp

)
= I (0+)ζp. □

Remark 13.17. Conjecturally, every prime is a Vandiver prime, and under this
conjecture we have proved the full Iwasawa Main Conjecture. The conditional
proof above was due to Iwasawa himself. The first full proof of the Iwasawa Main
Conjecture was given by Mazur–Wiles [61]. For a description of another proof,
using Euler systems and due to Kolyvagin, Rubin, and Thaine, see [16] and [52].

13.5. Generalisations: Selmer groups, p-adic L-functions, Iwasawa–Greenberg
Main Conjectures. Our focus throughout has been on Iwasawa’s original Main
Conjecture. We conclude with a sketch of a formulation due to Greenberg [36] of
a Main Conjecture for more general Galois representations, which, for the trivial
Galois representation, recovers Theorem 13.8. In order to do this, we first need
to introduce Selmer groups. These are fundamental objects in arithmetic, lying at
the core of two very important conjectures concerning L-functions: Iwasawa Main
Conjectures and Bloch–Kato conjectures. The reader interested in this beautiful
theory can learn more from [3; 36; 47; 67; 70; 75].

13.5.1. Selmer groups over F+
∞

. Selmer groups are objects that generalise one of
the sides of the Iwasawa Main Conjecture. Let us start with a general definition. For
compatibility with our earlier study, we will work over the field F+

∞
=Q(µp∞)

+,
which we denote by F (to ease notation). This differs from [36], in which the author
works over the cyclotomic Zp-extension Q∞/Q (see Remark 13.9). We continue
to take coefficients in a fixed finite extension L/Qp.

Definition 13.18. (1) Let M be a topological OL -module equipped with a continu-
ous OL -linear action of GF , which is unramified outside a finite set of places.

(2) A Selmer structure L = (Lv)v for M over F is a choice of subspace Lv ⊆
H 1(Fv,M) for every finite place v of F such that, for almost all v, we have
Lv = H 1

ur(Fv,M).15

(3) Given a Selmer structure L= (Lv)v for M , we define the Selmer group to be

H 1
L(F,M)= ker

(
H 1(F,M)→

⊕
v

H 1(Fv,M)/Lv
)
,

where v runs over every finite place of F .

15Here, the unramified cohomology groups are defined as H1
ur(Fv,M) ..= ker

(
H1(Fv,M)→

H1(IFv ,M)
)
, where IFv denotes the inertia group of Fv and the map is restriction.
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In what follows, we will only be interested in Selmer structures with unramified
local conditions for all places v not dividing p. Let T be a finite free Zp-module
equipped with an action of GQ. We let V ..= T ⊗Zp Qp and W ..= V/T , which
is a finite free Qp/Zp-representation of GQ. We will assume that V is one of the
representations that appeared in Section 2.1, i.e., a Galois representation attached
to some arithmetic object, and take M =W .

Given the general definition of a Selmer structure and Selmer group, the next step
is to give reasonable subspaces Lv for v ∈6. There are two main approaches to this.

Definition 13.19. (1) (Greenberg’s approach) To define interesting Selmer struc-
tures at p, Greenberg’s approach assumes that the representation V is p-ordinary,
in the sense that there exists a saturated, finite, GQ-invariant filtration Fili of V such
that the inertia group IQp of GQp acts on the i-th graded piece Fili/Fili+1 as the i-th
power of the cyclotomic character (from (9-1)). Let F =Q(µp∞)

+ as before and
let vp be the unique place of F above p. Then one defines

LGr
vp

..= ker
(
H 1(Fvp ,W )→ H 1(Ivp ,W )→ H 1(Ivp ,W/Fil1W )

)
,

where Fil1W denotes the image of Fil1V under the natural map V →W .

(2) (Bloch–Kato’s approach) This approach uses technology coming from p-adic
Hodge theory (see, e.g., [6; 7]), and we only mention it here for the sake of
completeness. Letting V be as before, we define

H 1
f (Fvp , V ) ..= ker

(
H 1(Fvp , V )→ H 1(Fvp , V ⊗ Bcris)

)
,

where Bcris denotes Fontaine’s ring of crystalline periods. Then one defines

LBK
vp

..= Im
(
H 1

f (Fvp , V )→ H 1(Fvp ,W )
)
,

where the map is induced by the natural map V →W .

Remark 13.20. Greenberg Selmer groups and Bloch–Kato Selmer groups coincide
in some fundamental examples. For a general relation between them, we refer the
reader to [47] and [67, Section 2.4.7].

13.5.2. The module X +
∞

via Selmer groups. We now reinterpret the space X +
∞

appearing in Theorem 13.8 in terms of a Greenberg Selmer group. We follow [36,
Section 1]. Recall F∞=Q(µp∞) and the cyclotomic character χ :Gal(F∞/Q)→Z×p .
Note that Gal(F∞/Q) is the quotient of GQ by GF∞ , so that we may consider χ as
a character of GQ that is trivial on GF∞ . For n ∈ Z, we consider the representation
Tn

..= Zp(n), that is, the space Zp upon which GQ acts by χn (see Definition 12.16).
Let Vn

..=Qp(n) and Wn
..= Vn/Tn = (Qp/Zp)(n).

By the above remark, GF∞ acts trivially on Wn , and we thus have

H 1(F∞,Wn)= Homcts(GF∞,Wn).
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As Gal(F∞/F+
∞
)= {1, c} ∼= {±1} (with the nontrivial element given by complex

conjugation) and p is odd, the inflation-restriction sequence gives

H 1(F,Wn)= H 1(GF∞,Wn)
{±1}
= Homcts,{±1}(GF∞,Wn),

recalling F= F+
∞

and where the subscript {±1} denotes homomorphisms equivariant
for Gal(F∞/F+

∞
), acting on GF∞ as in Remark 13.7. We can thus describe the

Greenberg Selmer group over F in the simpler language of group homomorphisms,
rather than Galois cohomology classes.

We can refine this via local/global conditions. To do so, let σ ∈H 1(F,Wn). Then:

(1) As Wn is abelian and p-power torsion, we find

H 1(F,Wn)= Homcts,{±1}(Gal(Fab,pro−p
∞ /F∞),Wn),

where Fab,pro−p
∞ is the maximal abelian pro-p extension of F∞.

(2) Finite primes away from p: Since the local condition at finite places v ∤ p is the
unramified condition, we deduce that σ is unramified at all v ∤ p. Then σ descends
to a homomorphism on X∞ = Gal(M∞/F∞), for M∞ the maximal abelian pro-p
extension of F∞ unramified outside p as in Section 13.2.

(3) The prime above p: At p, we have Fvp = K+
∞
= Qp(µp∞)

+. The filtration
required by Greenberg is given by

Fili Qp(n)=
{

Qp(n) if i ≤ n,
0 if i > n.

From the definition, we see that

LGr
vp
=

{
H 1(K+

∞
,Wn) if n ≥ 1,

H 1
ur(K

+
∞
,Wn) if n ≤ 0.

Thus if n ≥ 1, the local condition at p is empty, while for n ≥ 0 the local condition
at p means σ is also unramified at p, so it descends further to Y∞ =Gal(L∞/F∞)
(for notation as in Section 13.2). We conclude that

H 1
LGr(F∞,Wn)=

{
Homcts,{±1}(X∞,Wn) if n ≥ 1,
Homcts,{±1}(Y∞,Wn) if n ≤ 0.

(4) Equivariance for {±1}: As p is odd, the action of Gal(F∞/F+
∞
)= {1, c} yields

a decomposition X∞ = (X∞)
c=1
⊕ (X∞)

c=−1. There is a similar decomposition
for Y∞. Note also that c acts on Wn as (−1)n . We see that if n > 0, we have

H 1
LGr(F∞,Wn)= Homcts((X∞)

c=(−1)n ,Wn),
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that is, we see the dual of (X∞)c=1 for even n> 0, and of (X∞)c=−1 for odd n> 0.
Similarly for n ≤ 0 we have

H 1
LGr(F∞,Wn)= Homcts((Y∞)

c=(−1)n ,Wn).

As in [16, p. 6], the natural surjection X∞→X +
∞
= Gal(M+

∞
/F+
∞
) induces an

isomorphism (X∞)
c=1 ∼=X +

∞
(and similarly (Y∞)c=1 ∼= Y +

∞
). Combining all of

the above, we conclude that for even positive n, we have

H 1
LGr(F∞,Wn)= Homcts(X

+

∞
,Wn),

(a twist of) the Pontryagin dual of the module X +
∞

appearing in Theorem 13.8.

13.5.3. The Iwasawa–Greenberg Main Conjecture. Let T , V and W be represen-
tations as in Section 13.5.1. We also let V∨ = Homcts(V,Qp(1)) be the Tate dual
of V . In particular V is ordinary at p. Inspired by the Iwasawa Main Conjecture and
by an analogous conjecture of Mazur for ordinary elliptic curves, Greenberg [36]
described a Main Conjecture for V , which we now state.

Attached to V is an L-function L(V, s), and an Euler factor at infinity L∞(V, s)
(called the gamma factor in [36]). This involves a product of certain translates of
the usual gamma function 0(s) and has no zeros. We let rV denote the order of the
pole of L∞(V, s) at s = 1. For example, if V = Qp(n), then L(V, s) = ζ(s − n)
and L∞(V, s) = π−(s−n)/20((s − n)/2). The poles of the last function are s =
n, n− 2, n− 4, . . . .

Coates–Perrin-Riou conjectured in [15] that there should exist a p-adic L-function
for V , which in this context lies in the field of fractions of 3(0+). We comment
more on this conjecture in Section B.3.

Conjecture 13.21 (Greenberg). The following assertions hold.

(i) H 1
LGr(F,W ) has 3(0+)-corank equal to rV .

(ii) If rV = rV∨ = 0, then the characteristic ideal of the Pontryagin dual of
H 1

LGr(F,W ) (as a 3(0+)-module) coincides with the ideal generated by the
p-adic L-function of V .

Example 13.22. Suppose n > 0 is even; then above we showed H 1
L(F,Wn) =

Homcts(X
+
∞
,Wn). This has Pontryagin dual X +

∞
(−n), the space X +

∞
with 3(0+)-

action twisted by χ−n . In this case, the p-adic L-function in Greenberg’s conjecture
is ∂nζp, the n-th twist of Kubota–Leopoldt, so we see that Greenberg’s conjecture
is essentially a (twist of) Theorem 13.8.

Remark 13.23. We described Theorem 13.8 as “the Main Conjecture for V=Qp”.
Although they are equivalent, strictly speaking, the case n = 0 doesn’t fit into
Greenberg’s picture. Indeed, the underlying assumption does not hold: here Q∨p =

Qp(1), so L∞(Q∨p , s)= L∞(Qp, 1−s), hence rQ∨p
=1. In Greenberg’s terminology,
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L(Qp(n), 1)= ζ(1− n) and L(Qp(n)∨, 1)= ζ(n) are both critical only when n is
even and (strictly) positive, or n is odd and negative, so the case n= 0 is not covered.

Remark 13.24. There exist more general, even noncommutative, statements of the
Main conjecture. We refer the interested reader to [46] and [33].

Appendix A: Iwasawa’s µ-invariant

We end these notes by giving a flavour of further topics in classical Iwasawa
theory, introducing the µ- and λ-invariants of a Zp-extension. In proving Iwasawa’s
theorem on the µ- and λ-invariants, we develop techniques that can be used to show
that the modules appearing in the exact sequence of Corollary 13.14 are finitely
generated torsion modules over the Iwasawa algebra, a part of the general Iwasawa
Main Conjecture (beyond the Vandiver case that we have already proved).

The following results will hold for an arbitrary Zp-extension of number fields,
although we will only prove them under some hypotheses that slightly simplify the
proofs.

Definition A.1. Let F be a number field. A Zp-extension F∞ of F is a Galois
extension such that Gal(F∞/F)∼=Zp. If F∞/F is a Zp-extension, we denote by Fn

the subextension such that Gal(Fn/F)∼= Z/pnZ.

Recall first that any number field has at least one Zp-extension, the cyclotomic
Zp-extension. Indeed, by Galois theory, Gal(F(µp∞)/F) is an open subgroup of
Gal(Q(µp∞)/Q)∼= Z×p , and hence contains a maximal quotient isomorphic to Zp

(specifically, the quotient by the finite torsion subgroup µp−1). The corresponding
field (under the fundamental theorem of Galois theory) is the cyclotomic Zp-
extension.

Example A.2. Let F=Q(µp). Then F∞=Q(µp∞) is the cyclotomic Zp-extension
of F , and

Fn =Q(µpn+1),

noting that earlier we denoted this field by Fn+1. The cyclotomic Zp-extension of Q

is the field (F∞)µp−1 in F∞ fixed by the torsion subgroup µp−1 ⊂ Gal(F∞/Q).

Leopoldt’s conjecture states that the number of independent Zp-extensions of a
number field F is exactly r2+1, where r2 is the number of complex embeddings of F .
In particular, the conjecture predicts that any totally real number field possesses a
unique Zp-extension (the cyclotomic one). Whilst the conjecture remains open for
general number fields, it is known in the case that F is an abelian extension of Q or
an abelian extension of an imaginary quadratic field (see [65, Theorem 10.3.16]).

A.1. Iwasawa’s theorem. Let F be a number field and F∞/F a Zp-extension, let
0=0F =Gal(F∞/F)∼=Zp, and let γ0 be a topological generator of 0F . Using this
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choice of γ0, we identify 3(0) with 3 ..= Zp[[T ]] by sending γ0 to T + 1 (when γ0

is sent to 1 by the isomorphism 0 ∼= Zp, this is simply the Mahler transform, but
this identification holds for any γ0). Let Ln (resp. L∞) be the maximal unramified
abelian p-extension of Fn (resp. pro-p extension of F∞), and write

YF,n = Yn
..= Gal(Ln/Fn)= Cl(Fn)⊗Zp,

which is the p-Sylow subgroup of the ideal class group of Fn . Set

Y∞ = YF,∞
..= lim
←−−

n
YF,n.

Write en = vp(#Yn) for the exponent of p in the class number of Fn . The following
theorem is the main result we intend to show in this section.

Theorem A.3 (Iwasawa). There exist integers λ≥0, µ≥0, ν≥0, and an integer n0,
such that, for all n ≥ n0,

en = µpn
+ λn+ ν.

Remark A.4. (1) This is yet another typical example of the power of Iwasawa
theory, in which we derive information at finite levels by considering all levels
simultaneously.

There are two basic steps in the proof of Theorem A.3. We first show that the
module YF,∞ is a finitely generated torsion 3(0)-module. Using the structure
theorem of 3(0)-modules (Theorem 13.1), we study the situation at infinite level,
and then we transfer the result back to finite level to get the result.

(2) We will only describe the proof for the case where the extension F∞/F satisfies
the following hypothesis: there is only one prime p of F above p, and it ramifies
completely in F∞. The reduction of the general case to this case is not difficult, and
is contained in [81, Section 13]. This assumption covers our cases of interest; in
particular, it applies if F =Q(µpm ) or F =Q(µpm )+ for some m ≥ 0 and F∞/F
is the cyclotomic Zp-extension.

A.1.1. First step. The first step of the proof of Theorem A.3 consists in showing
(Proposition A.8) that the module Y∞ is a finitely generated 3(0)-module. Then
Proposition A.6 will allow us to recover each Yn from the whole tower Y∞. We
then use a variation of Nakayama’s lemma to conclude.

Since p is totally ramified in F∞, and Ln is unramified over Fn , we deduce that
Fn+1 ∩Ln = Fn and hence

Yn = Gal(Ln/Fn)= Gal(Ln Fn+1/Fn+1)= Yn+1/Gal(Ln+1/Ln Fn+1),

showing that Yn+1 surjects onto Yn . The module Y∞ carries the natural Galois
action of 3 = 3(0), and under the identification 3 ∼= Zp[[T ]], the polynomial
1+ T ∈3 acts as γ0 ∈ 0.
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Let p̃ be a prime of L∞ above p, and write

I ⊆ G ..= Gal(L∞/F)

for its inertia group. Since L∞/F∞ is unramified, all of the inertia occurs in the
subextension F∞/F . Accordingly I ∩Y∞ = 1 and since F∞/F is totally ramified
at p, the inclusion I ↪→G/Y∞∼=0 is surjective, and hence bijective. We deduce that

G = IY∞ = 0Y∞.

We’ve shown the following picture of extensions:

L∞

F∞

Ln

Fn

F

Y∞

Yn

Z/pnZ

I ∼= 0 ∼= Zp
G=IY∞

Let σ ∈ I map to the topological generator γ0 ∈0 under the natural isomorphism
I ∼= 0.

Proposition A.5. Let G ′ be the closure of the commutator of G. Then

G ′ = (γ0− 1) ·Y∞ = T Y∞.

Proof. Recall that we have a decomposition G = 0Y∞. Let a = αx, b = βy ∈ G,
where α, β ∈ 0 and x, y ∈ Y∞. Using the definition of the 3(0) structure of Y∞,
and the fact that 0 and Y∞ are abelian, we get that

aba−1b−1
= αxβyx−1α−1 y−1β−1

= (αxα−1)(αβyβ−1α−1)(αβx−1β−1α−1)(βy−1β−1)

= (xα)1−β(yβ)α−1.

Setting β = 1 and α = γ0, we deduce that (γ0 − 1)Y∞ ⊆ G ′. To see the other
inclusion, write β = γ c

0 , where c ∈ Zp, so that 1− β = −
∑
+∞

n=1
(c

n

)
(γ0− 1)n =

−
∑
+∞

n=1
(c

n

)
T n
∈ T3 and similarly for α− 1, which allows us to conclude. □

Recall that the n-th power of the Frobenius operator on Zp[[T ]] is given by
ϕn(T )= (1+ T )pn

− 1. Let ϕ0(T )= T .

Proposition A.6. We have Yn = Y∞/ϕ
n(T ).
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Proof. We treat first the case n = 0. Since L0 is the maximal unramified abelian
p-extension of F and L∞/F is a p-extension, L0/F is the maximal unramified
abelian subextension of L∞. In particular, Y0 = Gal(L0/F) is the quotient of G
by the subgroup generated by the commutator G ′ and by the inertia group I of p.
By the above lemma and the decomposition G = IY∞, we conclude that

Y0 = G/⟨G ′, I ⟩ = Y∞ I/⟨(γ0− 1)Y∞, I ⟩ = Y∞/(γ0− 1)Y∞ = Y∞/T Y∞.

For n ≥ 1, we apply the arguments of the last paragraph, replacing F by Fn and
γ0 by γ pn

0 , so that σ0 becomes σ pn

0 and (γ0− 1)Y∞ becomes

(γ
pn

0 − 1)Y∞ = ((1+ T )pn
− 1)Y∞ = ϕn(T )Y∞,

which gives the result. □

We state next a variation of Nakayama’s lemma for testing when a 3-module is
finitely generated, whose standard proof is left as an exercise.

Lemma A.7 (Nakayama’s lemma; [81, Lemma 13.16]). Let Y be a compact 3-
module. Then Y is finitely generated over 3 if and only if Y /(p, T )Y is finite.
Moreover, if the image of x1, . . . , xm generates Y /(p, T )Y over Z, then x1, . . . , xn

generate Y as a 3-module. In particular, if Y /(p, T )Y = 0, then Y = 0.

Applying this in our particular situation we obtain the following result.

Proposition A.8. Y∞ is a finitely generated 3-module.

Proof. Since

ϕ(T )= (1+ T )p
− 1=

p∑
k=1

( p
k

)
T k
∈ (p, T ),

the module Y∞/(p, T )Y∞ is a quotient of Y∞/ϕ(T )Y∞ = Y1 = Cl(F1)⊗Zp, the
p-Sylow subgroup of Cl(F1), which is finite. Therefore, applying Lemma A.7, we
conclude that Y∞ is a finitely generated 3-module, as desired. □

A.1.2. Second step. Once we know that the module Y∞ is a finitely generated
3-module, we can invoke the structure theorem for these modules (Theorem 13.1)
to get an exact sequence

0→ Q→ Y∞→ A → R→ 0,

where Q and R are finite modules and where

A =3r
⊕

( s⊕
i=1

3/(pmi )

)
⊕

( t⊕
j=1

3/( f j (T )k j )

)
,

for some integers s, r, t ≥ 0, mi , k j ≥ 1 and some distinguished polynomials
f j (T ) ∈3.



AN INTRODUCTION TO p-ADIC L -FUNCTIONS 203

Recall that we want to calculate the size of Yn = Y∞/ϕ
n(T ). The following

lemma reduces the problem to calculating the size of A /ϕn(T ).

Lemma A.9. There exists a constant c and an integer n0 such that, for all n ≥ n0,

|Y∞/ϕ
n(T )| = pc

|A /ϕn(T )|.

Proof. The full proof of this lemma is given in [80, Lemma 13.21]; we give a sketch.
Consider the diagram

0 ϕn(T )Y∞ Y∞ Y∞/ϕ
n(T )Y∞ 0

0 ϕn(T )A A A /ϕn(T )A 0

By hypothesis, the kernel and cokernel of the middle vertical map are bounded.
By elementary calculations and diagram chasing, one ends up showing that the
kernel and the cokernel of the third vertical arrow stabilise for n large enough,
which is what is needed to conclude the proof. □

We now proceed to calculate the size of the module A .

Proposition A.10. Let

A =3r
⊕

( s⊕
i=1

3/(pmi )

)
⊕

( t⊕
j=1

3/( f j (T )k j )

)
,

for some integers s, r, t ≥ 0 and mi , k j ≥ 1 and some distinguished polynomials
f j (T ) ∈3, and write m =

∑
mi , ℓ=

∑
k j deg( f j ). Suppose A /ϕn(T )A is finite

for all n ≥ 0. Then r = 0 and there exist constants n0 and c such that, for all n ≥ n0,

|A /ϕn(T )| = pmpn
+ℓn+c.

Proof. Step 1: First we show r = 0. Note that

ϕn(T )= (1+ T )pn
− 1= T pn

+

pn
−1∑

k=1

( pn

k

)
T k

is distinguished. We may therefore apply the division algorithm from Weierstrass
preparation (a p-adic analytic analogue of Euclid’s algorithm; see [10, Section
5.2.1]). This implies that any f ∈ Zp[[T ]] can be written uniquely as f (T ) =
q(T )·((1+T )pn

−1)+r(T ), where r(T ) is a polynomial of degree≤ pn
−1. We see

3/ϕn(T )= Zp[[T ]]/((1+ T )pn
− 1)∼= {r(T ) ∈ Zp[T ] : deg(r)≤ pn

− 1} (A-1)

is infinite. Since A /ϕn(T ) is assumed to be finite, we deduce that r = 0.
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Step 2: We now deal with the second summand. By (A-1), for any k ≥ 0 we see
that 3/(pk, ϕn(T )) is the space of polynomials over Z/pkZ of degree at most
pn
− 1, whence

|3/(pk, ϕn(T ))| = pkpn
.

We deduce from this that∣∣∣∣( s⊕
i=1

3/(pmi )

) /
ϕn(T )

∣∣∣∣= pmpn
,

where m =
∑

i mi .

Step 3: Finally, we deal with the last (and most involved) summand. Let g(T ) ∈
Zp[T ] be a distinguished polynomial of degree d (that we don’t assume is irreducible,
as we want this to apply to g = f k j

j ). Letting V =3/(g(T )), we want to compute
the order of

V/ϕn(T )=3/(g, ϕn(T )).

We will show inductively that for sufficiently large n, |V/ϕn+1(T )|= pd
|V/ϕn(T )|.

As g is distinguished, T d
≡ p · (poly) (mod g), where (poly) denotes some

polynomial in Zp[T ]. Further, T k
≡ p · (poly) (mod g) for all k ≥ d. Let n0 be

such that pn0 ≥ d . We will use the following lemma.

Lemma A.11. For any n > n0, we have

ϕn+1(T ) · V = pϕn(T ) · V .

Proof. First take k ≥ n0, allowing k = n0. As ϕk(T ) is distinguished, we see that

ϕk(T )= T pk
+ p (poly)≡ p · (poly) (mod g),

as pk
≥ d. Write ϕk(T )= pQk(T ) (mod g), for Qk(T ) ∈ Zp[T ].

We use the identity

(X pk+1
− 1)= (X pk

− 1) · (X pk(p−1)
+ X pk(p−2)

+ · · ·+ X pk
+ 1).

Applying with X = 1+ T yields

ϕk+1(T )

= (1+ T )pk+1
− 1

= ((1+ T )pk
− 1) ·

(
(1+ T )pk(p−1)

+ · · ·+ (1+ T )pk
+ 1

)
= ϕk(T ) ·

(
(ϕ pk

(T )+ 1)p−1
+ · · ·+ (ϕk(T )+ 1)+ 1

)
≡ ϕ pk

(T ) ·
(
(pQk(T )+ 1)p−1

+ · · ·+ (pQk(T )+ 1)+ 1
)
(mod g). (A-2)

Expanding the binomials, every term is divisible by p except the constant term 1
in each expression; but these sum to p. In particular, we deduce

ϕk+1(T )≡ pϕk(T ) (mod g).
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Applying this with k = n0, we see that

pQn0+1(T )≡ ϕn0+1(T )≡ pϕn0(T )≡ p2 Qn(T ) (mod g),

so Qn0+1(T )≡ 0 (mod p). Inductively we see Qn(T )≡ 0 (mod p) for all n > n0.
Returning to the last line of (A-2), now take k = n > n0. As Qn(T )= 0 (mod p),

every term in each binomial expansion is now divisible by p2, again except the
constant terms, which sum to p. In particular, we deduce

ϕn+1(T )≡ ϕn(T ) · (p2
· (poly)+ p)

≡ pϕn(T ) · (p · (poly)+ 1) (mod g).

The term p ·(poly)+1 is a unit in3, so its reduction is a unit in V =3/(g). We find

ϕn+1(T ) (mod g) ∈ pϕn(T ) · V×,

from which ϕn+1(T ) · V = pϕn(T ) · V , completing the proof of the lemma. □

We now go back to the proof of the proposition. For any n > n0, Lemma A.11
implies that ϕn+1(T )V ⊂ pV , and

|V/ϕn+1(T )V | = |V/pV | · |pV/ϕn+1(T )V | = |V/pV | · |pV/pϕn(T )V |.

Since g(T ) is distinguished of degree d , we have

|V/pV | = |3/(p, g(T ))| = |3/(p, T d)| = pd .

Finally, we compute |pV/pϕn+1(T )V |. Since (g(T ), p)= 1, multiplication by p
is injective on V and hence

|pV/pϕn+1(T )V | = |V/ϕn+1(T )V |.

Recall that n0 is fixed with pn0 ≥ d. Inducting on Lemma A.11, we find that, for
any n > n0, we have

ϕn+1(T )V = pn−n0−1ϕn0+1(T )V .

Again by Weierstrass division, we know V is isomorphic to polynomials in Zp[T ]
of degree ≤ d − 1. This means

|V/ϕn+1(T )V | = pd(n−n0−1)
|V/ϕn0+1(T )V |.

Putting everything together, we deduce that

|V/ϕn(T )V | = pnd+c,

for some constant c and all n>n0. Applying this to the third summand of A , we get∣∣∣∣( t⊕
j=1

3/( f j (T )k j )

) /
ϕn(T )

∣∣∣∣= pℓn+c,
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for n ≥ n0, where n0 is such that pn0 ≥ k j deg( f j ) for all j , ℓ =
∑

j k j deg( f j ),
and c is a constant. This finishes the proof of the proposition. □

Along the way, we have proven the following fact.

Corollary A.12. Let Y be a finitely generated 3-module. If Y /ϕn(T )Y is finite
for all n, then Y is torsion.

Proof. If A is as in the statement of Proposition A.10, then we showed that r = 0
in the structure theorem for Y . This implies that A is torsion; each element is
annihilated by the characteristic ideal of A . If Y is any finitely generated3-module,
then Y is quasi-isomorphic to a module A as before, and as A is torsion, so is Y . □

We can now complete the proof of Theorem A.3.

Proof of Theorem A.3. Applying Lemma A.9 and Proposition A.10, for n≥n0 we get

|Yn| = |Y∞/ϕ
n(T )Y∞| = pc

|A /(ϕn(T ))| = pµpn
+λn+ν .

This finishes the proof of the theorem. □

A.2. Some consequences of Iwasawa’s theorem. We have already seen one appli-
cation of Iwasawa’s theorem (Corollary 13.16) during the statement of the main
conjecture. This stated that if one class number in a Zp-extension is coprime to p,
then so are all the others. We list here some further interesting applications.

Recall that if A is a finite abelian group, then

A[p] ..= {x ∈ A : px = 0}

denotes the subgroup of p-torsion elements and its p-rank rkp(A) is defined to be

rkp(A)= dimFp(A/p A)= dimFp(A[p]).

Equivalently, we can decompose A uniquely as a direct sum of cyclic groups of
prime-power order; then the rank at p is the number of direct summands of p-power
order.

Corollary A.13. Let F∞/F be a Zp-extension. It holds that µ = 0 if and only if
rkp(Cl(Fn)) is bounded independently of n.

Proof. Recall that
Cl(Fn)⊗Zp = Yn

..= Y∞/(ϕ
n(T )),

that Y∞ = lim
←−−

Yn is quasi-isomorphic to a 3-module A =
(⊕s

i=13/(p
mi )

)
⊕(⊕t

j=13/(g j (T ))
)

for some integers s, t ≥ 0, mi ≥ 1, and gi (T ) ∈ OL [T ] distin-
guished polynomials, and that we have (see the proof of Proposition A.10) an exact
sequence

0→ Cn→ Yn→ An→ Bn→ 0,
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where An
..= A /ϕn(T ), with |Bn| and |Cn| bounded independently of n. It then

suffices to show that µ= 0 if and only if dimFp(An/pAn) is bounded independently
of n.

We have

A /pAn=A /(p, ϕn(T ))=
( s⊕

i=1

3/(p, ϕn(T ))
)
⊕

( t⊕
j=1

3/(p, g j (T ), ϕn(T ))
)
.

Take n large enough such that pn
≥ deg(g j ) for all j and recall that g j and ϕn(T )

are distinguished polynomials (in the sense that all but their leading coefficients are
divisible by p). The above formula then equals( s⊕

i=1

3/(p, T pn
)

)
⊕

( t⊕
j=1

3/(p, T deg(g j ))

)
= (Z/pZ)spn

+tg,

where g =
∑

deg(g j ). This shows that rkp(Cl(Fn)) is bounded independently of n
if and only if s = 0, i.e., if and only if µ= 0. This finishes the proof. □

Concerning Iwasawa’s invariants, we have the following results:

Theorem A.14 (Ferrero–Washington [81, Section 7.5]). If F is an abelian number
field and F∞/F is the cyclotomic Zp-extension of F , then µ= 0.

Finally, the following is an open conjecture of Greenberg [35].

Conjecture A.15 (Greenberg). For any totally real field F , and any Zp-extension
F∞/F , we have µ = λ = 0. In other words, the values #Cl(Fn) are bounded as
n→+∞.

Appendix B: Iwasawa theory for modular forms

An interesting source of L-functions are those arising from automorphic forms,
analytic functions on adelic groups that are symmetric for certain group actions.
Dirichlet characters are algebraic automorphic forms for GL(1), so Parts I and II
describe “Iwasawa theory for GL(1)”. The next natural case, of GL(2), is that of
modular forms (as explained in [82]). It is natural to ask how much of the theory
above has an analogue for modular forms. The short answer is all of it, though our
understanding of this case is not fully complete.

B.1. Recapping GL(1). We have described three different constructions of the
Kubota–Leopoldt p-adic L-function ζp. Recall that 0+ ..= Gal(Q(µp∞)

+/Q) ∼=

Z×p /{±1} and that 3(0+) is its Iwasawa algebra, with ring of fractions Q(0+).

(1) In Part I, we gave an analytic construction, a p-adic pseudomeasure ζ an
p ∈

Q(0+) interpolating special values of the Riemann zeta function.
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(2) In Section 10, we gave an arithmetic construction, defining ζ arith
p via the image

under Col of the family of cyclotomic units.

(3) In Section 13, we gave an algebraic construction. We described a torsion
3(0+)-module X +

∞
with characteristic ideal ζ alg

p
..=Char3(0+)(X +

∞
)⊂3(0+).

Theorem 10.15 says that ζ an
p = ζ

arith
p . The Iwasawa Main Conjecture says that

ζ alg
p = I (0+)ζ an

p .

B.2. Analogues for GL(2). Ultimately, versions of all of the above theory are
known for sufficiently nice modular forms. Let f be a cuspidal Hecke eigenform of
weight k+2 and level 00(N ), with p | N , and let L( f, s) be its attached L-function.
There are three ways of associating a p-adic L-function to f .

B.2.1. Analytic. In the GL(1) story, the Kubota–Leopoldt p-adic L-function in-
terpolated zeta values L(χ,−k) for k ≥ 0 with χ(−1)(−1)k = −1. Such values
are called “critical”. For a more general L-function L(s), Deligne [29, Definition
1.3] gave an arithmetic characterisation16 of which values s should be critical
for L(s). For the modular form f , his criterion says the critical values of L( f, s)
are L( f, χ, j + 1) for χ any Dirichlet character and 0≤ j ≤ k.

The analytic p-adic L-function is an element Lan
p ( f ) in space of p-adic distri-

butions D(Z×p ) which interpolates these critical values. In particular, we have the
following.

Theorem B.1. Let αp denote the Up eigenvalue of f . If vp(αp) < k+ 1, then there
exists a unique locally analytic distribution Lan

p ( f ) ∈ D la(Z×p ) on Z×p such that:

• Lan
p ( f ) has growth of order vp(αp).

• For all Dirichlet characters χ of conductor pn , and for all 0≤ j ≤ k, we have

Lan
p ( f, χ, j + 1)=

∫
Z×p

χ(x)x j
· Lan

p ( f )

=−α−n
p ·

(
1−χ(p)

p j

αp

)
·

G(χ) · j ! · pnj

(2π i) j+1 ·
L( f, χ, j + 1)

�±f
.

We see that Lan
p ( f ) is, in this generality, only a locally analytic distribution

(in the sense of Section 3.7). We note, however, that if f is p-ordinary (i.e., if
vp(αp)= 0) then the growth condition implies that Lan

p ( f ) lies in the subspace of
p-adic measures on Z×p . This theorem was first proved in [1; 60; 79].

16Precisely, Deligne asks that given a “motivic” L-function L(M, s), if L∞(M, s) denotes the
“Euler factor at infinity”, then s = j is critical for L(M, s) if neither L∞(M, s) nor L∞(M, 1−s) has
a pole at j . For ζ(s), the factor at infinity is π−s/20(s/2), and the 0-function has poles at negative
even integers. We deduce the critical values of ζ(s) are exactly the negative odd integers (as seen by
Kubota–Leopoldt) and positive even integers, which relate to the negative odd integers through the
functional equation for ζ(s).
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If αp ̸= 0, then we know that vp(αp) ≤ k + 1, but the above theorem does
not handle the case vp(α) = k + 1. Subsequent work of Pollack–Stevens [68]
and Bellaïche [4] means we have p-adic L-functions in this case too, though the
statement is slightly different.

The case of αp= 0 is known as the infinite slope case. For certain particular cases,
a construction of a p-adic L-function attached to elliptic curves of bad additive
reduction (where ap = 0) can be found in [28]. For arbitrary modular forms, partial
p-adic L-functions with good interpolation properties have been constructed in [69],
using Kato’s Euler system and extending Perrin-Riou’s big logarithm maps (as
discussed in Section 10.5).

B.2.2. Arithmetic. As we sketched in Section 10.5, the appropriate generalisation
of the arithmetic construction goes through Galois representations and Euler systems.
Attached to a modular form f , we have a Galois representation V f , constructed by
Deligne inside the étale cohomology of the modular curve, in which we can pick a
Galois-stable integral lattice T f . The arithmetic p-adic L-function is then given by
the following deep theorem of Kato, proved in his magisterial paper [47].

Theorem B.2 (Kato). There exists an Euler system ZKato( f ) attached to T f .

In the yoga described in Section 10.5, we then consider the localisation of Kato’s
Euler system at p, which we still denote by the same name, and obtain a class

ZKato( f ) ∈ H 1
Iw(Qp, V f ).

The arithmetic p-adic L-function is then the image of ZKato( f ) under the Perrin-
Riou big logarithm map:

LogV f
: H1

Iw(Qp, V f )→ D la(Z×p ), ZKato( f ) 7→ Larith
p ( f ).

The second deep theorem of [47] is the following explicit reciprocity law.

Theorem B.3. There is an equality

Lan
p ( f )= Larith

p ( f ) ∈ D la(Z×p ).

B.2.3. Algebraic. Recall that, in Section 13.5, we described how the Iwasawa Main
Conjecture for GL(1) (Theorem 13.8) can be generalised via Selmer groups. If f is
a p-ordinary modular form, that is, when the eigenvalue αp has vp(αp)= 0, then its
associated Galois representation V f is p-ordinary in the sense of Definition 13.19;
analogously to that section, we obtain a Selmer group H 1(Q(µp∞), V f ) attached
to f over the Iwasawa algebra 3(0) of 0 ..= Gal(Q(µp∞)/Q) ∼= Z×p . Kato [47]
proved that this is a torsion 3-module, and thus has a characteristic ideal

Lalg
p ( f ) ..= ch3(Z×p )(Xp∞(V f )),
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the algebraic p-adic L-function of f . When f is p-ordinary, the analytic/arithmetic
p-adic L-function is actually a measure on Z×p , and hence lives in the subspace
3(Z×p )⊂ D(Z×p ).

Theorem B.4 (Iwasawa Main Conjecture for f ). Under some mild additional
technical hypotheses, we have

Lalg
p ( f )= (Lan

p ( f ))⊂3(Z×p ).

This is a theorem of Kato [47] and Skinner–Urban [77]. There has since been
much further work weakening the required hypotheses, including analogues for
nonordinary modular forms. For a description of up-to-date developments in this
direction, see [32].

Remark B.5. The Iwasawa theory of modular forms has important applications to
elliptic curves, and in particular to the BSD conjecture. An introduction to this is
contained in Skinner’s 2018 Arizona Winter School lectures [75].

Remark B.6. The topics described above comprise the cyclotomic Iwasawa theory
of modular forms. There is also a rich anticyclotomic Iwasawa theory, working
over an auxiliary imaginary quadratic field, with similarly spectacular applications
to BSD. This is described in [8], and for a more recent overview, see [13].

B.3. Further results. The three constructions above, and the equalities between
them, are expected to go through in very wide generality, but there are very few
cases in which the whole picture has been completed. We sketch this here. Suppose
that V is a Galois representation arising from a motive M and corresponding
(at least conjecturally) under the Langlands correspondence to an automorphic
representation π .

(1) Analytic: There should be a locally analytic p-adic distribution Lan
p (V ) which

interpolates critical values of L(V, s). This analytic p-adic L-function is subject to
precise conjectures of Coates–Perrin-Riou and Panchishkin [14; 15; 66].

All current techniques for proving such conjectures are automorphic; but this
is already difficult, even assuming p-ordinarity. We illustrate this in the case of
(regular algebraic, cuspidal, p-ordinary) automorphic representations of GLn(AQ).

• The cases of GL(1) and GL(2) were described above.

• The case of GL(3) was only recently handled in [56]. Constructions in the
special case where π is a symmetric square lift were given (decades earlier)
in [40; 71].

• No general construction is known for any n ≥ 4. The best known results are
in further “degenerate” cases where π really comes from a different group
(e.g., [2]).
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For other groups, there are also many results; for example, in [31] for unitary
groups, [54; 58] for Siegel modular forms, and [44; 48] for GLn+1 ×GLn . The
general picture remains, however, very fragmented.

We do not claim to give anything approaching a comprehensive list here. Indeed,
we have only scratched the surface; there are also constructions for many other
groups, with more general base fields, and without assuming ordinarity. We highlight
mainly that there remain a vast number of open questions in the construction of
analytic p-adic L-functions.

If one drops the cuspidality assumption, we know even less, with good results
only for GL(2). Without the regular algebraic assumption, we know essentially
nothing at all.

(2) Arithmetic: We also expect Euler systems, in the sense of [70], to exist in great
generality, but known examples are scarcer still. Until relatively recently, Kato’s
Euler system and the cyclotomic units were two of only three examples of Euler
systems, the other being the system of elliptic units (though the system of Heegner
points is closely related). The last decade, though, has seen an explosion of activity
in the area. Recent important examples of Euler systems include Euler systems for
products of two modular forms [53], the diagonal cycles attached to triple products
of modular forms [26], and Euler systems for GSp4 [59].

Where an Euler system exists, one can apply a Perrin-Riou logarithm map and
extract an arithmetic p-adic L-function; but proving an explicit reciprocity law
is harder still. Such reciprocity laws were studied in the Rankin–Selberg setting
in [49], for diagonal cycles in [9], and for GSp4 in [57]. For a precise summary of
the double- and triple-product settings, see [55, Section B].

(3) Algebraic: There are Iwasawa Main Conjectures in wide generality, at least in
ordinary settings, and there are many partial results towards these too. Whenever
one has an Euler system with the equality Lan

p = Larith
p , for example, one has that

the corresponding Selmer group is torsion and the divisibility Lalg
p | (L

an
p ).
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