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This is an expository introduction to p-adic L-functions and the foundations
of Iwasawa theory. We focus on Kubota—Leopoldt’s p-adic analogue of the
Riemann zeta function, which we describe in three different ways. We first
present a measure-theoretic (analytic) p-adic interpolation of special values of the
Riemann zeta function. Next, we describe Coleman’s (arithmetic) construction
via cyclotomic units. Finally, we examine Iwasawa’s (algebraic) construction via
Galois modules over the Iwasawa algebra.

The Iwasawa Main Conjecture, now a theorem due to Mazur and Wiles,
says that these constructions agree. We will state the conjecture precisely, and
give a proof when p is a Vandiver prime (which conjecturally covers every
prime). Throughout, we discuss generalisations of these constructions and their
connections to modern research directions in number theory.
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1. Introduction

The theory of L-functions, and their special values, has been central in number theory
for 200 years. Their study spans from classical results, such as Gauss’s class number
formula and the proof of Dirichlet’s theorem on primes in arithmetic progressions,
to two major problems in mathematics: the Riemann hypothesis and the Birch and
Swinnerton-Dyer conjecture. They are also central in the Langlands program, a vast
project connecting the fields of number theory, geometry and representation theory.

The Birch and Swinnerton-Dyer conjecture is one example of a huge network of
conjectures on the special values of L-functions, including the Beilinson, Deligne,
and Bloch—Kato conjectures. At their heart, these problems relate complex analytic
information — such as the order of vanishing and special values of meromorphic
functions — to arithmetic data, such as invariants attached to algebraic varieties
and Galois representations. A fruitful approach to these problems has been the use
of p-adic methods, for p a prime number. Naively, one might consider the complex
world a “bad” place to do arithmetic, as the integers are discrete in C. This is not
the case when one instead considers finite extensions of Q,. The p-adic setting
brings extra flexibility and methods with which to attack these open problems,
including p-adic L-functions, Euler systems, and Hida and Coleman families of
modular/automorphic forms.

The study of p-adic properties of special values of L-functions is generally known
as Iwasawa theory. In these notes, we give an introduction to this subject, focussing
on perhaps the most fundamental of all L-functions: the Riemann zeta function ¢ (s).
We describe what a p-adic L-function is, construct it in this setting, and then describe
Iwasawa’s Main Conjecture' in this case. We try to anchor the theory in the context
of current research activity, indicating how the various concepts we discuss have
been generalised, and where the reader should turn next to learn more.

1.1. What do we cover in these notes? We now summarise the main results we
cover. In Section 2, we give a broad introduction to p-adic L-functions, with an
emphasis on how one can naturally move from complex to p-adic L-functions. We
make this precise in our case of interest by stating some of the main results of Part I.

Our focus for the rest of the notes is on the Kubota—Leopoldt p-adic L-function
(or p-adic zeta function), which is the p-adic analogue of the Riemann zeta function.
We will see three constructions of this object, each of a different flavour, and describe
the connections between them.

wasawa’s original conjecture was proved in full by Mazur and Wiles in [61]. However analogous
conjectures, relating Selmer groups and p-adic L-functions, have been formulated in a large generality,
for example for elliptic curves, modular forms, and beyond. These are also (somewhat confusingly)
referred to as “Iwasawa Main Conjectures”, even in the special cases (such as the one we consider)
where they have been proved. We discuss such generalisations in Section 13.5 and Appendix B.
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Part I is devoted to the construction and study of an analytic version of the
Kubota—Leopoldt p-adic L-function. This has the clearest connection to the classical
complex Riemann zeta function; it is a pseudomeasure ¢," on Z that interpolates
the (rational numbers) ¢ (1 — k) for all positive integers k.>

« In Section 3, we describe some basic tools and results from p-adic analysis needed
to parse the previous statement, including measures/pseudomeasures, Iwasawa
algebras, and their connections to power series.

e In Section 4 we use the techniques developed in Section 3 to prove Theorem
2.13 (see also Theorem 4.1) on the existence of the Kubota—Leopoldt p-adic
L-function £".

* In Section 5 we prove that ¢," also interpolates special values of L-functions of
Dirichlet characters of p-power conductor, and construct analogues for arbitrary
Dirichlet characters.

 In Section 6, we describe a result of Leopoldt, showing that the values of the
p-adic L-function of a nontrivial Dirichlet character 1 are related to logarithms
of cyclotomic units, establishing one of the first instances of the p-adic Beilinson
conjectures. The (untwisted) p-adic zeta function has a simple pole at s = 1; in
Section 7, we prove an analogous result describing its residue.

« Finally in Section 8 we discuss an approach to p-adic L-functions based on the
theory of families of Eisenstein series.

In Part II, we give two more constructions of the Kubota—Leopoldt p-adic L-
function: arithmetic and algebraic versions.

e In Section 10, we give an arithmetic construction. The cyclotomic units are
special elements in cyclotomic fields. As one considers the tower Q, () of cyclo-
tomic extensions of Q,, the cyclotomic units fit together into a norm-compatible
tower/system. The Coleman map is a map that attaches a p-adic measure to any
such tower of units. Via this process, we show that to the cyclotomic units, one can
naturally attach a pseudomeasure {l"jmh on Z ;. One connection between arithmetic

and analysis, fully explained in Section 10, is that £;" =¢ ;‘ri‘h.

 In Sections 11 and 12, we deepen the arithmetic picture, respectively stating and
proving Iwasawa’s theorem describing the zeros of the p-adic zeta function via
modules of cyclotomic units.

« In Section 13, we build on Iwasawa’s theorem to give an algebraic construction
of the Kubota—Leopoldt p-adic L-function, as an ideal §;1g in the Iwasawa algebra.
This ideal arises from the structure of a Galois module over the Iwasawa algebra.

2The precise meaning of this will be clear later. Here the word interpolation is as in Lagrange’s
interpolation formula, i.e., a single object that hits certain specific values when evaluated at various
points.
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We also describe this module in terms of Selmer groups and discuss generalisations
of the Main Conjecture.

The Iwasawa Main Conjecture says that the ideal g“;;‘lg is generated by the
analytic/arithmetic Kubota—Leopoldt p-adic L-function, connecting the analytic,
arithmetic and algebraic constructions, and ultimately connecting special complex
L-values and Selmer groups. We state this precisely in Section 13, and prove it in
the special case where p is a Vandiver prime.

The reader interested in taking a minimal path to the Iwasawa Main Conjecture
can do so by reading the following sections: Section 2.1, Sections 2.3-2.4, Sections
3.2-3.6, Section 4, Sections 10.1-10.4, Sections 11 and 12, and Sections 13.1-13.4.

In Appendix B, we conclude with remarks on how the analytic, arithmetic
and algebraic constructions above have been generalised to other situations, each
spawning a field of study in its own right. We illustrate this by giving a sketch in
the case of modular forms.

Further reading. For more information and detail on Part I of these notes, the
reader could consult [52]. The construction of the p-adic zeta function we give
here is based on Colmez’s beautiful lecture notes [22].

Part II can serve as a prelude to a number of more advanced treatments, such as
Rubin’s (complete) proof of the Main Conjecture using the theory of Euler systems.
We must mention the book of Coates and Sujatha [16], which inspired our original
course, and whose aim was to present Rubin’s proof. A canonical book in the field
is [81], which introduces further topics in classical Iwasawa theory that there was
not space to treat here. We give a flavour of such topics in Appendix A.

2. What is a p-adic L-function, and what should it do?

This introductory section aims to motivate the definition and study of p-adic L-
functions. We start with a general discussion on complex L-functions and then lean
slowly towards the p-adic world, focussing on the example of most importance to
us in these lectures: the Riemann zeta function.

2.1. Classical L-functions. We first give some important examples of L-functions.

o The Riemann zeta function, the most famous and fundamental of all L-functions,

is defined by
(=) n=]Ja-p™"",

n>1 P

where the last product— an Euler product — runs over all prime numbers p and
the second equality is a consequence of the unique prime factorisation of integers.
The sum converges absolutely whenever s is a complex variable with real part
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greater than 1, making ¢ a well-defined holomorphic function in a right half-plane
{s € C:Re(s) > 1}. It can be meromorphically continued to the whole complex plane,
and satisfies a functional equation, a symmetry relating the values ¢ (s) and ¢ (1 —s).

e Let F be a number field. The zeta function of F is

i)=Y NI =[]a-N@p™",
0#£ICOF p

where the sum is over all nonzero ideals in the ring of integers, and the product

is over all nonzero prime ideals of K. Again, this sum converges absolutely for

Re(s) > 1, can be meromorphically continued to C, and satisfies a functional

equation relating {r(s) and {r(1 —s). The existence of the Euler product again

follows from unique factorisation.

e Let x : (Z/NZ)* — C* be a Dirichlet character. We extend x to a function
x : Z — C by setting x(m) = x (m (mod N)) if m is prime to N, and x(m) =0
otherwise. The L-function of x is

L(x.8)=Y_ xmn* =[Ja-xpp ™"
n>1 p
Yet again, the above sum defining L(x, s) converges for Re(s) > 1, admits mero-
morphic continuation to C (analytic when y is nontrivial), and satisfies a functional
equation relating the values at s and 1 —s.

o Let £/Q be an elliptic curve of conductor N. One can define an L-function

L(E.s)=) an(En~ =[] —apE)p~ +p' )" [ L),
n>1 PIN pIN

where a,(E) = p + 1 — #E(F),), and the a,(E) are defined recursively from
the a,(E). The factors L, (s) at bad primes p | N are defined as L ,(s) =1 (resp.
(1—-p=~1, resp. 1+ p~—* )~1) if E has bad additive (resp. split multiplicative,
resp. nonsplit multiplicative) reduction at p. The above sum defining the function
L(E, s) converges for Re(s) > % admits analytic continuation to C, and satisfies
a functional equation relating the values at s and 2 — 5.

e Let
f=)_an(f)q" € Si(To(N), wy)

n>1
be a modular newform of weight k, level N and character w;. The L-function
associated to f is given by

L(f.5) =Y ay(fn”*

n>1

=[[a—a,(Np~+orpp ) ] =a,(Hp ™"

PN pIN
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This sum converges for Re(s) > %(k + 1), admits analytic continuation to C, and
satisfies a functional equation relating the values at s and £ — s. Such objects are
introduced, and these results proved, in [30, Section 5].

The above examples share common features. The “arithmetic” L-functions
of most interest to us should have the following basic properties (which can,
nevertheless, be extremely deep):

(1) an Euler product converging absolutely in a right-half plane;
(2) a meromorphic continuation to the whole complex plane;
(3) a functional equation relating s and k — s for some k € R.

Remark 2.1. More generally, let % = Gal(Q/Q) denote the absolute Galois group
of Qandlet V eRep; ¥p be a p-adic Galois representation (i.e., a finite-dimensional
vector space over a finite extension L of @, equipped with a continuous linear
action of %g). One defines the global L-function of V as a formal Euler product

L(V.s)=]]Le(V.9)
l

of local factors. For £ # p a rational prime, the local factor at £ is defined as
L(V,s) == det(Id — Frob, '¢=s |V 1)~ 1,

where Frob, denotes the arithmetic Frobenius at £, and I, denotes the inertia group
at £ (all described in [74, Section I]). At p, defining the local factor is considerably
more complicated, requiring p-adic Hodge theory, as described in [6; 7]. In this
case, one defines

Ly(V,s)=detdd— ¢~ p~|Deris(V) 7,

where D¢is(V) denotes the crystalline module of V |4, » equipped with a crystalline
Frobenius denoted by ¢.

When V is the representation attached to an arithmetic object,® the L-function
of the representation is typically equal to the L-function attached to that object; for
example, taking V = Q) (x) (thatis, V is 1-dimensional, with %g acting through the
character y via class field theory), one recovers the Dirichlet L-functions described
above. See [3] for further introductions to these topics.

2.2. Motivating questions for Iwasawa theory.

2.2.1. Special values and arithmetic data. There are deep results and conjectures
relating special values of L-functions to important arithmetic information, of which
a prototypical example is the following (see, for example, [64, Section 5]):

3For example, a number field, a Dirichlet character, an elliptic curve, a modular form, or much more
generally — in the spirit of the Langlands program — an automorphic representation of a reductive

group.
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Theorem 2.2 (class number formula). Let F be a number field with ry real em-
beddings, ry pairs of complex embeddings, w roots of unity, discriminant D, and
regulator R. The zeta function (g has a simple pole at s = 1 with residue

2" (2m)2 R
———F——hF,
w+/| D]

res;—1{r(s) =

where hp is the class number of F.

On the left-hand side, we have a special value of a complex meromorphic function,
from the world of analysis. On the right-hand side, we have invariants attached
to a number field, from the world of arithmetic. The class number formula thus
provides a deep connection between two different fields of mathematics.

A second famous example of such a connection comes in the form of the Birch
and Swinnerton-Dyer (BSD) conjecture. Let E/Q be an elliptic curve. The set
of rational points E(Q) forms a finitely generated abelian group and, based on
computer computations, Birch and Swinnerton-Dyer predicted that

ordg—; L(E, s) =ranky E(Q).

They also predicted a closer analogue of the class number formula: that the leading
term of the L-function can be described in terms of arithmetic invariants attached
to E.

Again, the left-hand side is from the world of analysis, the right-hand side is from
the world of arithmetic, and this prediction is inherently surprising. The worlds
are so different that the analytic L-function defies easy study using arithmetic
properties of the elliptic curve. For example, when the conjecture was formulated,
the left-hand side was not even known to exist: nobody had proved that L(E, s) was
defined at the value s = 1. This relies on analytic continuation of the L-function;
such a proof would not follow for several decades, and even now the only proof
we have goes through another deep connection between arithmetic and analysis,
namely Wiles’ modularity theorem.

2.2.2. Iwasawa Main Conjectures. One of the goals of Iwasawa theory is to seek
and prove p-adic analogues of BSD and its generalisations, replacing complex
analysis (which is poorly suited to arithmetic) with p-adic analysis (where arithmetic
arises naturally). For each prime p, there is a p-adic Iwasawa Main Conjecture
(IMC) for the elliptic curve E, relating a p-adic analytic L-function to certain
p-adic arithmetic invariants of E:

‘ complex analytic L-function ‘ === - ‘ arithmetic invariants of £ ‘
N ™
\ \
+ 4
IMC

‘ p-adic analytic L-function ‘ ‘ p-adic invariants of E ‘
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One has many more tools available to attack the bottom row than the top, including
Euler systems, p-adic families and eigenvarieties, p-adic Hodge theory and (¢, I')-
modules, and more. As a result, the p-adic conjectures are much more tractable
than their complex counterparts. Indeed, whilst BSD remains open beyond low-rank
special cases, the IMC for elliptic curves has been proved much more widely by
Skinner—Urban (see [77]), following work of Kato (see [47]). See also [32] for a
recent summary of known results on the IMC for elliptic curves.

2.2.3. Applications of p-adic methods to classical BSD. Each new p-adic Iwasawa
Main Conjecture that is proved brings the worlds of analysis and arithmetic a
little closer together. They can also bring us closer to our original goal of, for
example, BSD. Indeed, the current state-of-the-art results towards BSD have arisen
as consequences of Iwasawa theory.

To elaborate, let us summarise some fundamental work (p-adic and otherwise)
on BSD. There are two natural subquestions:

(a) We could try to prove that ord;—; L(E, s) <rankz E(Q). A natural approach
is to try to construct enough independent rational points on the elliptic curve. The
theory of Heegner points is based on such an idea. A Heegner point in E(Q) has
infinite order if and only if ord;—| L(E, s) = 1. This yields the above inequality in
this case.

(b) Conversely, we could try and prove that ord;—; L(E, s) > rankz E(Q). In this
case we want to bound the number of rational points. One method for trying to do
this uses Euler systems attached to p-adic Galois representations (see [70] for a
comprehensive introduction). The main application of Euler systems is in bounding
certain Galois cohomology groups, known as Selmer groups (see Section 13.5),
which are defined using local behaviour and can be viewed as a cohomological
interpretation of the group of rational points on E. Indeed, let III(£/Q) denote the
Tate—Shafarevich group of E, a torsion abelian group that is conjecturally finite. If
the subgroup II(E/Q)[p™>] < TI(E/Q) of elements with p-power order is finite,
then the Z-rank of E(Q) is equal to the Z p-corank4 of the p-Selmer group. In this
case, bounding the p-Selmer group is equivalent to bounding E(Q).

The ideas above have led to special cases of the conjecture; in particular, we
now know it to be true (under some assumptions) when ord,—; L(E, s) <1 due to
work of Kolyvagin [51], Gross—Zagier [39] and Murty—Murty [63]. More recent
Iwasawa-theoretic research building on the above has led to results towards the
converse [76], as well as towards the leading-term formula [45].

We emphasise that whilst these methods have yielded important progress towards
BSD, to date such results have been fundamentally limited to elliptic curves defined

4That is, the rank of the Pontryagin dual of the p-Selmer group; see [75, Section 2.1.4].
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over Q and of rank < 1. It is natural to try to execute such strategies in more
general settings. More recently, the p-adic theory of Stark—Heegner points, a
p-adic analogue of (a) initiated in [23], has been used with some success for elliptic
curves over totally real fields. Heegner and Stark—Heegner points are beautifully
summarised in [24] and [25]. A more recent overview of work on Heegner and
Stark—Heegner points, and the relationships between them, is given in [9]. There
has also been encouraging (and fundamentally p-adic) work on analogous questions
in rank 2 and beyond; for example, see [12; 27].

Remark 2.3. The study of p-adic L-functions is intrinsic to (b), and they also
feature prominently in the p-adic analogues of (a). Mazur, Tate and Teitelbaum
formulated a p-adic BSD conjecture (see [62] and also [19]), which relates the
order of vanishing of a p-adic L-function at s = 1 to the rank of the rational points
of the elliptic curve, and expresses its principal coefficient in terms of arithmetic
data in a manner analogous to the classical BSD conjecture (replacing the complex
regulator by a p-adic regulator).

For an elliptic curve over Q of analytic rank 0, we know that the order of
vanishing of its attached p-adic L-function is always 0 or 1. The possible extra
zero, discussed in [37; 62], is known as a trivial zero of the p-adic L-function and
is well understood in terms of local data attached to E at p. If the Tate—Shafarevich
group III(E/Q) is finite, the p-adic and classical BSD conjectures are equivalent
in this case.

Under the assumption of the nondegeneration of the p-adic height pairing, the
p-adic IMC for elliptic curves implies the p-adic BSD conjecture (see [72]).

2.2.4. The IMC for the Riemann zeta function. We mention the elliptic curve case
only to motivate the study of p-adic L-functions and Iwasawa theory. In these notes,
we will focus on a simpler example of the above picture, namely the Main Conjecture
for the p-adic Riemann zeta function, as formulated by Iwasawa himself. Here
the picture above is essentially complete; the full IMC is known for any prime p
(thanks to [61] for p odd, and [83] for p = 2). We will (for odd p) construct the
p-adic analogue of the zeta function on the way to stating the Main Conjecture,
which we will prove for a special case.

2.3. The Riemann zeta function. Since the Riemann zeta function will be a central
player in the rest of these notes, we take a brief detour to describe some of the
classical theory surrounding it. We start with the following general result.

Theorem 2.4. Let f : R>o — R be a rapidly decreasing €°°-function (i.e., such
that f and all of its derivatives f', f”, ... decay exponentially at infinity). Let

[(s) = /ooe_’t“"ldt (2-1)
0
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be the usual gamma function. The function

1

L(f,s) ZZm

o0
/f(t)ts_ldt, seC,
0

which converges to a holomorphic function for Re(s) > 0, has an analytic continua-
tion to the whole complex plane, and
dl’l
L(f, —n)=(-D"
(fi=m) = (=1

We call L(f, s) the Mellin transform of f.

f(0).

Proof. To show analytic continuation, we claim that when Re(s) > 1, we have

L(f,s)=—L(f",s+D),

where f’ = df/dt. This is an exercise in integration by parts, using the identity
['(s) =(s—1I'(s — 1), and gives the analytic continuation to all of C by iteration.
Finally, iterating the same identity n + 1 times shows that

L(f.=m) = (=1 LD 1 = ()™ f A 4y di = (-1 £ (0)
0

from the fundamental theorem of calculus, giving the result. (]

We would like to use the Mellin transform to recover the Riemann zeta function
and its properties. For this, we pick a specific choice of f, namely, we let

t . Btn
e’—l_z "l

n>0

f@) =

the generating function for the Bernoulli numbers B,,.

Remark 2.5. The Bernoulli numbers are highly combinatorial, and they satisfy
recurrence relations that ensure they are rational numbers; for example, the first
few are

By=1, Bi=—-} Bi=¢ Bi=0, By=—g,

For k > 3 odd, B, =0.

We want to plug this function into Theorem 2.4, and for this, we require:’
Lemma 2.6. The function f(t) and all of its derivatives decay exponentially at
infinity.

Proof. For t > 0, we may expand f(¢) as a geometric series
fO) =t +e X 4 4...)=tF(1).

SWe thank Keith Conrad for pointing out this proof.
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Note f/'(t)= F(t)+tF’'(¢t) and f”(t) =2F'(¢t)+1t F"(t); arguing inductively we see
P =nF" V@) +1F" (1)
=n(=1)""e " +2" e 43" e )
+(=D"t(e™ 42" H 43 )
~(=1)"te”! as t — oo.
This decays exponentially. ([

Lemma 2.7. For the choice of f as above, we have

(s—=DZs)=L(f,s—1).

Proof. Substituting ¢ for nt and rearranging in (2-1) defining I'(s), we obtain

—s 1 oo —nt ,s—1
n = m e t dt.
s) Jo

Now, when Re(s) is sufficiently large, we can write

_ —s _ 1 OO —nt ,s—1 _ 1 OO —nt L4852
(s)=Y n _F(S)g/(; e Mt dt_F(s)/o <§e >tt dt,

n>1

and the result now follows from the identity

1

1 =Ze_”’. O

n>1

From the theorem above, we immediately obtain:
Corollary 2.8. Forn > 0, we have

Bn+l
n+1°
In particular, { (—n) € Q forn > 0, and £ (—n) =0 if n > 2 is even.

£(-—n) =~

2.4. p-adic L-functions. As explained in the introduction, p-adic L-functions are
excellent tools to study special values of L-functions. In this section, we explain
what a p-adic L-function is and the properties it should satisfy.

2.4.1. p-adic L-functions, a first idea. The complex ¢-function is a complex ana-
lytic function
;:C—>C

which is rational at negative integers. Since Z is a common subset of both C and
Z, € Cp, it is natural to ask if there exists a function

tpil,—C,
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that is “p-adic analytic” (in some sense to be defined) and which agrees with the
complex L-function at negative integers in the sense that

Ep(1—n)=(%)-¢(1 —n), (2-2)

for some explicit factor (x). We would say that such a function “p-adically in-
terpolates the special values of ¢(s)”. Ideally, one would like these properties to
uniquely characterise ¢),.

2.4.2. Ideles, measures and Tate’s thesis. In practice, there is no single analytic
function on Z,, that interpolates all of the special values,® as we shall explain in
Section 5.3. Instead, a better way of thinking about L-functions is to use a viewpoint
initiated by Tate in his thesis [78] (and later independently by Iwasawa [43]). This
viewpoint sees L-functions as measures on ideles, and allows one to package
together all Dirichlet L-functions, including the Riemann zeta function, into a
single object. We will give a brief account of the classical theory here, but for fuller
accounts, one should consult the references above.

We begin with some observations on characters.

Proposition 2.9. The following assertions hold.

(i) There is an identification between Dirichlet characters x and continuous
characters

X 1_[ z; — C*,
£ prime
where the source is equipped with the product of the £-adic topologies.

(ii) There is an identification of C with the space Homs(R~o, C*) of continuous
multiplicative characters by sending s to x +— x°.

In particular, each pair (x,s), where yx is a Dirichlet character and s € C,
corresponds to a (unique) continuous character

KysRsog X 1_[ Z; —C*, (x,y)—>x"x(y),
£ prime

where we equip the source with the product topology, and all continuous characters
on this group are of this form.

Proof. First, observe that any Dirichlet character x : (Z/NZ)* — C* induces
naturally a character

X : l_[ z; — C*.

£ prime

ORather, there are p — 1 different analytic functions ¢}, 1, ..., &p p—1 OnZp, and ¢p ; interpolates
only the values ¢ (1 — k) for which k =i (mod p —1).
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Indeed, suppose first that N = £" is a power of some prime ¢, with n > 1. As
z)enz)* = ZEX/(I +£"Zy), we can lift x from (Z/¢"Z)* to a function on Zz(.
The case for general N follows from the Chinese remainder theorem. Conversely,
any continuous character x : [, yime Z; — C* must factor through a finite quo-
tient (Z/NZ)* of [], prime Z; for some large enough N. Indeed, the image of a
sufficiently small open neighbourhood

Uy = {x e[z :le(modN)}
£

of 1 is contained in {z € C: |z — 1| < 1}. This image is a compact subgroup, but
the only compact subgroup of the latter set is {1}. Hence y is trivial on Uy, and
factors through ([], Z;)/ Uy = (Z/NZ)*, inducing a Dirichlet character. These
two procedures are inverse to each other, showing the first point.

We now prove the second point. For s € C, the function x — x* is visibly a
continuous character on R. . We want to show that all such characters are of this
form. After taking a logarithm, this is equivalent to showing that all continuous
homomorphisms (of additive groups) g : R — C are of the form g(x) = xg(1),
which is shown by directly computing the values of g on @ and extending by
continuity. ([

The product space in Proposition 2.9 is more usually written using ideles.
Definition 2.10. Define the ideles A* of Q to be
X X X ¢ X
A=A =R"x [ @
£ prime
= {(xp, x2, X3, x5, ...) : x¢ € Z; for all but finitely many ¢}.

(The prime on the product denotes restricted product, which indicates the almost
everywhere integral property in the definition.) The ideles form a topological ring
equipped with the restricted product topology, namely the topology with a basis of
open neighbourhoods given by subsets of the form U x [, Uy with U € R* and

Uy, C @Z open subsets such that U, = ZL,X for almost all primes £. The units Q*
embed diagonally in A* (that is, via x — (x, x, x, ...)) and we have:

Proposition 2.11 (strong approximation). There is a topological isomorphism
Q\A* =R x [] 77
£ prime

Hence all continuous characters
Q\A* — C~
are of the form «, s as above, where x is a Dirichlet character and s € C.

Proof. See [34, Proposition 1.4.6]. O
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Remark 2.12. The space QQ*\A* is the idele class group of (), and features
prominently in the idelic formulation of class field theory.

By the identification of C with Hom (R~ 9, C*) one can view ¢ as a function

¢ :Homg(Rog, C*) - C, [x+> x*] £(s).
But now we can consider all complex Dirichlet L-functions at once via the function
L :Homg(Q*\A™,C*) - C, &y L(x,s). (2-3)

In the framework of Tate, this function L can be viewed as integrating «, ; against
the Haar measure on Q*\A*. In Tate’s thesis, he showed properties such as
the analytic continuation and functional equations of Dirichlet L-functions using
harmonic analysis on measures. Indeed, the idelic formulation gives a beautiful
conceptual explanation for the appearance of the I'-functions and powers of 27 in
the functional equation of the zeta function; these factors form the “Euler factor at the
archimedean place”. The measure-theoretic perspective has proven to be a powerful
method of defining and studying automorphic L-functions in wide generality.

2.4.3. p-adic L-functions via measures. To obtain a p-adic version of this picture,
by analogy with (2-3), a natural thing to do is to consider Hom(Q*\A*, C;)
(that is, replacing C with C,). Again, by strong approximation, an element of
this space corresponds to a C,-valued character on R.o x [[Z;. Since R.g is
connected and C, is totally disconnected, the restriction of any such character
to R~ is trivial. Also using topological arguments we find that the restriction to
L £p Z; factors through a finite quotient, so gives rise to some Dirichlet character
of conductor prime to p. This leaves the restriction to Z;, i.e., Homy(Z7%, C;),
which is by far the most interesting part.
In particular, in the spirit of (2-2), we look for a “p-adic analytic” function

¢p : Home(Z 3, C;) - C,
which “sees” the special values of ¢(s) in the sense that
G ) =()-c(1-k), k=1

for an explicit factor (x).

In Section 3, we will develop the appropriate notion of ““p-adic analytic” object
in this setting: p-adic measures’ (and pseudomeasures) on Z};. Then in Section 4
we will prove:

It is not immediately obvious why we describe these as analytic, but in the background such
objects can be described in terms of rigid analysis, a p-adic analogue of complex analysis. Whilst we
will not explicitly use rigid analysis, the connection is described precisely in Remark 3.47.

In this language, measures correspond to analytic functions, and pseudomeasures to meromorphic
functions with at worst simple poles.
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Theorem 2.13 (Kubota—Leopoldt; Iwasawa). There is a unique pseudomeasure ¢,
on Z; such that, for all k > 0,

/ZX gy =gl ) = 1= phed — k).
»

Remark 2.14. Note that the factor (1 — pk_l) is the inverse of the factor at the
prime p of the product formula ¢ (s) = He(l — ¢!, evaluated at s = 1 — k.
So, even though the Euler product does not converge at s = 1 — k, Theorem 2.13
morally says that, removing the factor at p from the Euler product formula, one can
p-adically interpolate the Riemann zeta function. This is a general phenomenon
appearing in the theory of p-adic L-functions.

From the pseudomeasure ¢,,, we can build p — 1 (meromorphic) functions on Z,,,
each satisfying a partial version of (2-2). If we stick with the measure-theoretic
approach, however, we have much more. The following result illustrates this
power. In constructing ¢,, we use only values of ¢ (s), without referring to Dirichlet
characters at all. However, we also have:

Theorem 2.15. Let x be a Dirichlet character of conductor p", n > 0, viewed as a
locally constant character on Z;.S Then, for all k > 0,

[ 2t g =1 = xpDL0 1= b,

»

Thus ¢, also interpolates all the negative integer values L(x, —k) for all Dirichlet
L-functions of p-power conductor. This is very surprising, since a priori one
constructs ¢, using only information about the untwisted special L-values.

To complete the picture given in Section 2.4.2, one also considers Dirichlet
characters of conductor prime to p. Similar ideas can also be used to show:

Theorem 2.16. Let D > 1 be any integer coprime to p, and let n) denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure &, on Z; with
the following interpolation property: for all primitive Dirichlet characters x with
conductor p" for some n > 0, we have, for all k > 0,

[ 2t == e DL Gen, 1=,

P

Remark 2.17. Let (Z/DZ)*" denote the space of characters on (Z/DZ)*. The
measures given by Theorem 2.16 can be seen as functions on

Home(Z,, Cp) x (Z/DZ)*",

8That is, a character on Z}, factoring through Z}; /(1+ p"Z ) for some large enough n.
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and they are compatible with respect to the natural maps (Z/EZ)*" — (Z/DZ)*"
for E|D. This shows that they define a function on

VAN
Home(Z), CX) x  lim (Z/DZ)*" =Home(Z};, C}) x ( ]_[ z;)
(D,p)=1 L#£p

= Homcts(@x\AX’ C;)
In other words, they give a measure on the idele class group of Q.

Remark 2.18. Note that if k = £ (mod p”~'(p — 1)), then x* = x* (mod p™) for
any x € Z. In particular, for any Dirichlet character n of conductor prime to p,
these theorems tell us that the special values of L-functions satisfy congruences

(L—n(p)p" " HLn, 1 —k)y =1 —n(p)p* " L(n, 1 — ) (mod p™).

For the Riemann zeta function, these are the (generalised) Kummer congruences,
which played a role in his classification of irregular primes, and which provided
significant motivation for Theorem 2.13. This gives an alternative way of viewing
p-adic L-functions: as p-adic analytic objects that package together systematic
congruences between L-values.

Part I: The Kubota-Leopoldt p-adic L-function

In this part, we give constructions of the Kubota-Leopoldt p-adic L-function
and the p-adic L-functions of Dirichlet characters. In Section 3, we introduce the
necessary formalism of p-adic (pseudo)measures and Iwasawa algebras, and — via
Mahler transforms — their relationship with spaces of power series. This section
sets up language and correspondences we will use throughout the rest of these notes.

In Section 4, we construct a pseudomeasure on Z; that interpolates the values of
the Riemann zeta function at negative integers. In Section 5, we show moreover that
this pseudomeasure interpolates the values L(x, —k) for k > 0 and x any Dirichlet
character of p-power conductor. Further, if 7 is a Dirichlet character of conductor
prime to p, we construct a measure on Z, that interpolates the values L(xn, —k)
for the same range of k and x. In Section 5.3 we rephrase the construction in
terms of analytic functions on Z, via the Mellin transform. In Sections 6 and 7
we describe the behaviour at s = 1 of these analytic functions, a point outside the
region of interpolation. Finally, in Section 8 we discuss how these results can be
used to construct the p-adic family of Eisenstein series, a prototype for Hida and
Coleman families.

3. Measures and Iwasawa algebras

In this section, we formally develop the theory of p-adic analysis that we will
be using in the sequel. Whilst some of the results may appear a little dry in
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isolation, fluency in the measure-theoretic language will greatly help us simplify
later calculations that would otherwise be very technical.

We start in a general setting, letting G be a profinite abelian group, and intro-
ducing p-adic measures on G. We then show that the space of p-adic measures is
isomorphic to the Iwasawa algebra of G. Additionally, in the special case where
G = Z,, we give a third perspective, showing that the Iwasawa algebra is also
isomorphic to a space of power series via the Mahler transform. After developing a
measure-theoretical toolkit for later use, we introduce pseudomeasures. We then
conclude by discussing generalisations, including locally analytic distributions and
rigid analytic functions.

Throughout, we fix a finite extension L of Q,, with the p-adic valuation nor-
malised so that v,(p) = 1; this will be the coefficient field. We write & for its
ring of integers.

3.1. Preliminaries on p-adic Banach spaces. We first collect some technical
general definitions to anchor our discussions. This is intended only to make precise
some of the notions we subsequently use, and the reader comfortable with p-adic
Banach spaces and orthonormal bases may skip to Section 3.2. For more details,
see [20, Section I.1].

Definition 3.1. Let B be an L-vector space. A valuation on B is a function
v: B — RU {400} such that

(i) v(x) =400 if and only if x = 0;

(i) v(x +y) > min(v(x), v(y)) for all x, y € B; and
(iii) v(Ax) =v,(A) +v(x) forall L € L, x € B.
Such a valuation induces a norm (hence a topology) on B.

Definition 3.2. An L-Banach space is a complete topological L-vector space B
whose topology is induced from a valuation v.

Definition 3.3. (1) Let / be a set, and Ego(l , L) the set of sequences (a;);c; in L
that tend to O in the sense that for all € > 0, we have |a;|; < ¢ for all but finitely
many i. This is naturally an L-Banach space with valuation v((a;);) = inf;c;v,(a;).

(2) If B is an L-Banach space, an orthonormal basis of B is a collection (e;);e;y,
for some set I, such that we have an isometry

0., L)~ B, (aicr— ) ajer.
iel
Remark 3.4. By [20, Proposition 1.1.5], if B is an L-Banach space with valuation
vp, and vp(B) = v, (L), then B admits an orthonormal basis.
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We shall also be concerned with dual spaces. If B is a topological L-vector
space, denote its continuous linear dual by
B* := Homy(B, L).
If B is an L-Banach space, there are two natural topologies on B*.
Definition 3.5. Let B be an L-Banach space and B* its continuous dual.

o The strong topology is induced by the natural dual valuation v*, where

v () = infeep (vp(n(x)) — v(x)).
This is the coarsest topology such that a sequence (u;); C B* converges if and
only if it converges uniformly (in the usual sense of continuous functions on B).

o The weak topology is induced by the family of semivaluations® {v, : x € B}, where

Ux (1) == vp(ﬂ(x))-
This is the topology of pointwise convergence, the coarsest such that a sequence
(1 ;)j C B* converges if and only if 1 ;(x) converges for all x € B.

Remark 3.6. The dual B* is complete with both of these topologies. However
generally it is an L-Banach space only for the strong topology, whilst B is reflexive
(canonically isomorphic to its double continuous dual) only when B* is equipped
with the weak topology.

3.2. p-adic measures. We now return to our specific setting, and introduce the
p-adic measures fundamental to our story. Let G be a profinite abelian group; the
examples G = Z,, or G = Z,; are of most interest to us.

Definition 3.7. We denote by (G, L) the space of continuous functions ¢ : G — L.
We equip this space with a valuation

ve(¢) = Inf v,($(x)), ¢ €C(G, L),

noting this is well defined as G is compact (hence ¢ is bounded).

This valuation induces the sup norm on ¢ (G, L), and endows it with the structure
of an L-Banach space, in the sense of Definition 3.2.

Definition 3.8. We define the space .# (G, L) of L-valued measures on G as
the continuous linear dual € (G, L)* = Hom(¢ (G, L), L). If ¢ € €(G, L) and
w € # (G, L), the evaluation of p at ¢ will be denoted by

/ ¢ (x) - pu(x),
G
or by |, ¢ @ - w if the variable of integration is clear from the context.

9That is, functions v that satisfy (ii) and (iii) of Definition 3.1, but not necessarily (i).
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We say that an element u € # (G, L) is an O -valued measure, and write
uwe.#(G,0r),if fG ¢ - u € Oy, for every ¢-valued function ¢. Since measures
are continuous (or equivalently, bounded), we have .# (G, L) = .# (G, 01) Q¢, L
We will be mainly concerned with & -valued functions and measures.

Remark 3.9. All parts of Definitions 3.7 and 3.8 apply identically if we replace G
with any subset X C G equipped with the subspace topology (noting that X no
longer need be a group).

The following simple example will be crucial in later sections.

Example 3.10. For any g € G, the Dirac measure 8, € .# (G, 1) is the linear
functional “evaluation at g”, that is, the measure defined by

8 :6(G,0L) — O, ¢+ ¢(g).

We will give a number of alternative descriptions of p-adic measures. Firstly,
we make the following simplifications.

Remark 3.11. Let €'°(G, 6;) denote the space of locally constant functions
G — Op; this is a dense subspace of the continuous functions (G, ¢ ). Indeed,
any continuous function ¢ € (G, ) can be p-adically approximated by its lo-

cally constant truncations ¢, (x) = Zae(Z /) ¢ (a)layprz, (x), where 144 pnz,(x)
denotes the characteristic function of a + p"Z,. Let
MG, 01) =C"(G, 0.)"

be the continuous dual, the space of “locally constant measures on G”. We claim
restriction from % to ¢'° defines a canonical isomorphism

M(G, O) => 4G, 07). (3-1)

To see this, we write down an inverse. Suppose ,ulc IS/ l"(G, 0r), and let ¢ €
% (G, 0r). Using density, choose a sequence ¢, € €'°(G, 0r) with ¢, — ¢ and
define

/qﬁ pi= lim ¢n

By continuity, the limit is well defined and 1ndependent of the choice of ¢,, and
hence we obtain a well-defined measure u € .# (G, ). This gives a map

MG, 0L) —~ #(G, OL)
visibly inverse to (3-1).
Henceforth we drop the notation w' and just write u.
Remark 3.12. We have an identification of .#'°(G, &) with the space of additive

functions
w : {open compact subsets of G} — 0. (3-2)



AN INTRODUCTION TO p-ADIC L-FUNCTIONS 121

Indeed, if u € .#'°(G, 1) and U C G is an open compact set, one defines u(U) :=
f ¢ lu(x) - u(x), where 1y (x) denotes the characteristic function of U.

Conversely, let i be such a function and let ¢ € ¢(G, 01). We will see how
to integrate ¢ against p. As ¢ is locally constant, there is some open subgroup H
of G such that ¢ can be viewed as a function on G/H. We define the integral of ¢
against u to be

/ ¢-u= Y ¢@unaH).
G laleG/H

Combining Remarks 3.11 and 3.12, we have an identification of .# (G, &) with

the space of additive functions on the open compact subsets of G.

Remark 3.13. On Z,, we have a (real-valued) Haar measure defined so that open
compact subsets of the form a + p"Z, have measure p~". Whilst this is probably
the most natural measure one might consider on Z,,, observe that this is not a p-adic
measure, as it is not p-adically bounded!

Example 3.14. For g € G, the Dirac measure 8, from Example 3.10 corresponds
to the function §, on open compact subsets given by

S0 if g X,

as can be seen directly from the identification above.

3.3. The Iwasawa algebra. We will now express measures in algebraic terms. As a
prototype, we recall a useful fact from representation theory. If G is a finite abelian
group, let ¥ (G, Z) be the space of functions G — Z, and .# (G, Z) its dual, the
space of “continuous measures” on G (when we equip G with the discrete topology).
For any g € G we have the Dirac measure é, € .# (G, Z) given by 84(¢) == ¢ (g),
as in Example 3.10. Then recall the following classical result.

Proposition 3.15. If G is a finite abelian group, the map [g] + 8, induces an
isomorphism between the group algebra Z|G] and # (G, Z).

When G is profinite abelian, we have an analogous p-adic result after replacing
the group algebra with its profinite completion, the Iwasawa algebra.

Proposition 3.16. We have an natural isomorphism

AM(G,0L) =lim 0L [G/H],
H

where the limit is over all open subgroups of G.

Proof. By Remark 3.11, we have a canonical isomorphism

M(G, O1) = 4" (G, 61) = Home (€°(G, 61), O1).
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As any locally constant function factors through G/H for some open compact
subgroup H < G, we also have a natural isomorphism
¢"(G, 1) Z1lim ¢ (G/H, Oy).

H
We thus have

A (G, 0) =Homes(lim € (G/H, O1), ) =lim.#(G/H, 0L), (3-3)
H H

the final isomorphism following from compatibility of duals with limits. As G/H
is a finite group, by Proposition 3.15 we have that .#(G/H, 01) = 01 |G/H]. U

We explicitly describe both maps in this isomorphism.
Let v be a measure, considered as an additive function as in (3-2), and let H be
an open subgroup of G. We define an element Ay of &[G/ H] by setting

hg= ) ulaH)lal.
laleG/H
By the additivity property of u, we see that (Ay)y € lim 1[G /H], and this gives
the map from measures to the inverse limit.
Conversely, given such an element A of the inverse limit, write Ay for its image
in 0 [G/H] under the natural projection. Then

Ag = Z cqlal.

laleG/H
We define
:Uv(aH) =Cqa-

Since the Ay are compatible under projection maps, this defines an additive function
on the open compact subsets of G, i.e., an element u € .# (G, OL).

Definition 3.17. We define the Iwasawa algebra of G to be the profinite completion
of the group algebra 7. [G], i.e.,

A(G):=lmOL[G/H].
H

(Note that we suppress L from the notation.)

Remark 3.18. The Iwasawa algebra A(Z,) has a natural ¢} -algebra structure, and
hence by transport of structure we obtain such a structure on .#(Z,, 01). As with
the classical situation for finite group rings, the algebra structure on the space of
measures can be described directly via convolution of measures. For a general
profinite abelian group G, given two measures i, A € .Z (G, 0}1,), one defines their
convolution u * A to be

/¢-(M*K)=/</¢(X+y)-)»(y)>~u(X)-
G G G
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One checks that this does give an algebra structure and that the isomorphism above
is an isomorphism of & -algebras.

Example 3.19. Leta €Z,, and let §, be the Dirac measure on Z, from Example 3.10.
Recall this corresponds to the function §, on open compact subsets given by §,(a) =1
(if a € X) and §,(a) =0 (if a € X). Under the isomorphism of Proposition 3.16, §,
corresponds to the projective system
(la+ p"Zpnen € im 6112,/ p" Z)].
neN

In the inverse limit this yields an element of the Iwasawa algebra that we denote
by [a].
3.4. p-adic analysis and Mahler transforms. So far we have given three equivalent
descriptions of p-adic measures on a profinite abelian group G:

(1) as linear functionals on (G, L),

(2) as additive functions on open compact subsets of G, and

(3) as elements of the Iwasawa algebra of G.

In this section we specialise to G =Z,, and in this case give yet another equivalent
description, via the power series ring &7 [T]].

Definition 3.20. For x € Z,, let

(x):x(x—l)---(x—n+1)

for n>1 and (x)zl.
n

0

One easily checks that x — (z ) defines an element in ¢(Z,, Z,) of valuation
v ((})) = 0. The following theorem is fundamental in all that follows. It says that
the functions (f; ) form an orthonormal basis for the L-Banach space ¢ (Z,, L) (in
the sense of Definition 3.3).

n!

Theorem 3.21 (Mahler). Let ¢ : Z, — L be a continuous function. There exists a

unique expansion
6=y a@(}).

n>0
where a, (¢) € L and a,(¢p) — 0 as n — o0. Moreover, v¢(¢) = inf,en v (an (¢)).
Proof. See [20, Théoreme 1.2.3.]. U

Remark 3.22. The coefficients a, (¢) are called the Mahler coefficients of ¢. One
can write down the Mahler coefficients of ¢ very simply: we define the discrete
derivatives of ¢ by

¢ =9, ol =g+ 1) oM.
and then a, (¢) = ¢! (0).
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It is natural to study a measure by looking at its values on the elements of the
(orthonormal) Mabhler basis. We encode these values in the following power series.

Definition 3.23. Let u € .#(Z,, 01) be a p-adic measure on Z,. Define the Mahler
transform (or Amice transform) of p to be

%(T)::/Z (1+T)x~u(x):Z(/ (;)-u)T”eﬁL[[T]].

n>0 Zp

Example 3.24. Let a € Z,, and recall the Dirac measure §,. By definition, its
Mahler transform is

a
(D) =Y (0)T" =A+T)".
n>0

Before stating the main theorem concerning the Mahler transform, let us consider
how it interacts with the isomorphism .#(Z,, 01) — A(Z,) of Proposition 3.16.
As 1 is a topological generator of (the additive group) Z,, and likewise 1+ T is
a topological generator of & [[T]], one may check that [1] — (1 + T') induces an
isomorphism A(Z,) — O[[T], fitting into a commutative diagram

MLy, O) —— OLIT]

l / (3-4)

A(Zp)

Indeed, by continuity it suffices to check on Dirac measures. As §, — (1 + T)¢
under the top arrow, and §, +> [a] — (1 + T)“ under the bottom arrows, we are
done.

Given the bottom two arrows in (3-4) are isomorphisms, the following theorem
should not be surprising.

Theorem 3.25. The Mahler transform gives an O’ -algebra isomorphism
MLy, Op) = OL[T].

Proof. This is almost a tautology from the definition of orthonormal basis. By
continuity and linearity, any measure u € .#(Z,, 01) is uniquely determined by
the values fz,, (z ) -w. Indeed, let ¢ € ¢ (Z,,, €1 ). By Mahler’s theorem, we can write
¢ (x) =,-0an(®)(;,) for some unique a, (¢) € 1, such that a, (¢) — 0 as n — oo;

and then we have
X
[ on=aw [ (3)n
Zy n>0 Z,

Conversely, given any collection of values ¢, € ¢, defining an element g =
ano ¢, T" € O [ T], there is a unique measure /1, with fzp (z ) -Jtg =c,. Concretely,
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for any ¢ = ano a, (¢)(z) € ¢(Zp, Or) as above, we define

/ ¢ g =D an(p)cn,
Zp n>0

which converges to an element in &y,. Visibly we have @, = g, so this defines an
inverse to the Mahler transform. ]

Remark 3.26. Each space in the diagram (3-4) has a description as an inverse limit.
For measures, this is (3-3); for the Iwasawa algebra, this is by definition; and for
power series, we have

OLITT = im 6L [T/ (A + 1) —1).

The appearance of the expression (14 T)?" — 1 will become clearer in Section 3.5.5
below (and its importance further recognised in Appendix A).

We invite the reader to spell out maps between the “level n” terms of the inverse
limits, analogous to (3-4) and such that the following diagram commutes:

MZ|p"Z, 61) — OLIT1/(A+T)P" —1)

l /

oLlZ/p"Z]

Definition 3.27. If ¢ € O [T], we continue to write ug, € .#(Z,, 0r) for the
corresponding (& -valued) measure on Z), (so that «7,, = g).

Remark 3.28. (1) Mabhler’s isomorphism induces an isomorphism
MLy, L) =MLy, OL) @6, L = OT®s, L=01TI[1/p].

(2) Let g € OL[[T] with associated measure jo. From the definitions, it is easily
seen that

fugzg(o), /x-ugzg/(o), /xz-ugzg”(O)Jrg’(O),

14 p Zl’

/x3-,,Lg:g”’(0)+3g”(0)+g’(0),

4
that is, for every n, the value fzp x" - g can be written as an integer combination
of g (0) for 0 < r < n. We simplify this in Corollary 3.30 below.

(3) Recall (from Definition 3.5) that there are two natural topologies on .#Z(Z,,, 0).
One can check that under the isomorphism of Theorem 3.25, the strong topology
corresponds to the p-adic topology on & [T], whilst the weak topology cor-
responds to the (p, T')-adic topology. Analogously to Remark 3.6, the p-adic
topology on & [T] is that of uniform convergence in the power series coefficients,
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whilst the (p, T)-adic topology is that of pointwise (term-by-term) convergence.
For example, consider the sequence 1, 7, T2, 73,... in O0,[[T]. This converges
to 0 pointwise, and in the (p, T')-adic (weak) topology; but it does not converge
uniformly, or in the p-adic (strong) topology.

3.5. A measure-theoretic toolbox. There are natural operations one might consider
on measures, and via the Mahler transform these give rise to operators on power
series. The following operations can be considered as a “toolbox” for working with
measures and power series; as we shall see in the sequel, the ability to manipulate
measures in this way has important consequences. For further details (and more
operations), see [20].

Notation. In light of the isomorphism between the space .# (G, ¢ ) of measures
and the Iwasawa algebra A (G), we will frequently conflate the two. In particular,
it is convenient— and indeed standard — to write u € A(G) for measures on G,
typically suppressing the coefficient field L, which is fixed throughout.

3.5.1. Multiplication by x. Given a measure (4 on Z ,, we naturally wish to compute
fzp x* . for k a positive integer. To allow us to do that, we let x i be the measure

defined by
/ f(x)-xu=/ xf(x)- .
Zp Zp

We can ask what the operation i — xu does on Mabhler transforms; we find:
Lemma 3.29. We have

%C/L = 8'3% ’
where 0 denotes the differential operator (1 + T)%.

Proof. The result follows directly from computing

(o)== en()=een(i)nG) 0

From the above lemma, we immediately obtain the following expressions, com-
pleting the examples seen in Remark 3.28.

Corollary 3.30. For i € A(Z,), we have
/ xF = (%.2,)(0).
ZI’

3.5.2. Multiplication by z*. Totally analogously to the above, if g € €(Z,, L)
and p is a measure on Z,, then we can define a measure g(x)u by

/f(x)-g(x),u::/ fx)gx) - u.

Z, Z,
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Of particular interest is the measure z*u, for z € & such that |z — 1| < 1. We
claim the Mahler transform of z* i is

ooy (T) = A, (14+T)z = 1).

Indeed, from the definition of the Mahler transform, we see that
A1+ T)z—1) = / ((+ Ty -,
z,

and this is precisely the Mahler transform of z*u (one has to be slightly careful
about convergence issues).

3.5.3. Restriction to open compact subsets. Consider an open compact subset
X C Z,, and write 1x for the characteristic function of X. The “restriction of u
to X” is the measure Resy (1) on Z,, defined by

/ FResx () =:f Fly-n.
Zp Z,,

It is also standard (and intuitive) to denote this quantity as

/Xf-u-

We say a measure p is supported on X if u = Resx ().

Remark 3.31. Note that we may view this restriction as a measure on X as follows.
For any continuous function g : X — L, let g: Z, — L denote its extension by 0
outside X. The map

(X, L)~ L, g*—>/ g u
ZI’

defines a measure on X. Abusing notation, we also denote this measure by Resx (1),
noting it is intuitively compatible with its cousin defined on Z,. Indeed we will
often blur the distinction between considering Resy (1) as a measure on Z, or on X.

When X = b+ p"Z,, we can write the characteristic function explicitly as
1 _
Liprz, (¥) = 5 et
geﬂp"

and then using the above, we calculate the Mahler transform of Resp .z, (1) to be

Aresyyn, ) (T) = pi 3 a1+ g - 1). (3-5)

Eeu‘p”

3.5.4. Restriction to Z;;. Immediately from the above applied to b =0and n = 1,

Fres, (T = Au(T) = - 3 (1 +T)6 = . (3-6)

s§€pp



128 JOAQUIN RODRIGUES JACINTO AND CHRIS WILLIAMS

In order to calculate a formula for the restriction to an arbitrary open compact
subset X C Z,,, we can write X (or its complement, as we did with Z;j) as a disjoint
union of sets of the form b + p"Z, and apply the formulas obtained before.

3.5.5. The action of Z;, ¢ and . We introduce an action of Z that serves as a
precursor to a Galois action later on. Leta € Z;. We can define a measure o, (1) by

/f(X)-Ga(M)=/ f(ax) - p.
Z, z,

This has Mahler transform
,Qfga(u) = ﬂﬂ((l + T)a —1).
In a similar manner, we can define an operator ¢ acting as “o,” by

/Zf(x)-<p(u)=/ f(px) -,

Z,
and this corresponds to
Ay = () = A, (1+T)P = 1). (3-7)

1

Finally, we also define the analogous operator for p~'; we define a measure ¥ (u)

on Z, by defining

f f(X)-w(u)=/ Fo .
Zp P

Zp

Note that Y o ¢ = id, whilst ¢ o /(1) = Respz, (). Indeed, we have

/Zf(X)-woq)(M):/ Loz, () f(p~'x) - @)

:/z 1pzp(pX)f(X)-<p(u)=/Z f)-u

and
/f(x)-wow(u)=/ f(px)-w<u)=f f(x)-u=f F)-Resyz, ().
z, z, »Z, z,

In particular, we have

Resz; (1) = (1 =g 0 ) (). (3-8)

The operator v also gives an operator on any F(7) € ¢ [T] under the Mahler
transform, and using the restriction formula above, we see that it is the unique
operator satisfying

oy (F)(T) = % S F(+TE- D). (3-9)

Eeup
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The following result will be useful in Part II.
Corollary 3.32. A measure u € A(Z),) is supported on Z}; if and only if Y (<7,) = 0.

Proof. Let u € A(Zp). Then p is supported on Z if and only if ResZ; (n) =,
or equivalently if and only if .7, = %7, — ¢ o (7, ), which happens if and only if
Y (,) = 0, since the operator ¢ is injective. O

Remark 3.33. We have an injection ¢ : A(Z;) — A(Z,) given by

[ o= olz;-u.
z, s

and because ReSZ; ot is the identity on A(Z;), we can identify A(Z;) with its
image as a subset of A(Z,). By Corollary 3.32, a measure u € A(Z,) lies in A(Z}))
if and only if ¢ (1) = 0. Whilst we identify A(Z;) with a subset of A(Z)), it is
important to remark that it is not a subalgebra. Indeed, convolution of measures on
a group G uses the group structure of G; for Z this is multiplicative, and for Z,
this is additive (see Remark 3.18). If A and p are two measures on Z’5, writing
1 *z> & for the convolution over Z};, we have

700 oz 20 = [ ( / f(xym(x))-x(y). (3-10)
7 7 \Jz;

3.6. Pseudomeasures. The Mahler transform gives a correspondence between
p-adic measures and p-adic analytic functions on the open unit ball (explained
in Remark 3.39 below). The Riemann zeta function, however, is not analytic
everywhere, as it has a simple pole at s = 1. To reflect this, we also need to
be able to handle simple poles on the p-adic side. We do this via the theory of
pseudomeasures.

Definition 3.34. Let G be a profinite abelian group, and let Q(G) denote the ring
of fractions of the Iwasawa algebra A(G). A pseudomeasure on G is an element
A € Q(G) such that

([g] = [1DA € A(G)

for all g € G. (This is using the natural product on the Iwasawa algebra A(G),
which we recall corresponds to convolution (3-10) of measures).

We first explain how to integrate certain functions against pseudomeasures. Let
x:G— C; be a nontrivial character, and let A € Q(G) be a pseudomeasure. Then
one can define

/X-k: (X(g)—l)I/ x - ([g]1—=T[1DA, (3-11)
G G
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where g € G is any element such that x (g) # 1. This definition does not depend
on the choice of g € G. Indeed one has

() — 1) /G % (81— [1Dx = /G % - (g1 = V(] = DA

=(x () — 1)/6)( ([l =D

Here we used the convolution product and that G is abelian.

Remark 3.35. To motivate this definition, note that if x : G — C is a nontrivial
character, then from the definition of convolution product, the function

AG)— T, M'—>/GX'M

is a ring homomorphism. This induces a unique homomorphism Q(G) — C,,
which — when applied to a pseudomeasure — yields the expression (3-11) above.

We will be most interested in pseudomeasures on G = Z ;. The following lemma
shows that a pseudomeasure 1 on Z is uniquely determined by the values /. z XK
for k > 0.

Lemma 3.36. (i) Let u € A(Z;) be such that

/ xk. uw=0
zZ,

forallk > 0. Then u =0.
(1) Let u € A(Z;) be such that

/ xk-M#O
z;

forall k > 0. Then p is not a zero divisor in A(Z;).
(iii) Part (i) holds if, more generally, | is a pseudomeasure.

Proof. (i) Note that the vanishing condition forces the Mahler transform «7,(T') =
> k=0(JS7, (i) -1)T* of 1 to be constant, since each nontrivial binomial polynomial
is a linear combination of strictly positive powers of x. As u is a measure on Z°%,
we also have ¥ (#,)(T) = 0 by (3-8). Since v is the identity on constants (using,
e.g., (3-9)), we deduce that «7,(T) =0, so u =0.

(ii) Suppose there exists a measure A such that u *zx A = 0, where the product is
the convolution product on Z; (see Remark 3.33). Then

0= [ tetugn = [ ([ oantuco)am=( [ stn)( [ ).
73 2z \Jz3 P pas

P

which forces A = 0 by part (i). In particular p is not a zero divisor.
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(iii) Let u be a pseudomeasure satisfying the vanishing condition. Let a # 1 be an
integer prime to p; then A = ([a] — [1Du € A(Z;) is a measure by the definition
of pseudomeasure, and by (3-11) we have

/ xk-k:(ak—l)f xk
7} z;

for all k > 0. By part (i), we have A = 0. But [a] — [1] satisfies the condition of
part (ii), so it is not a zero-divisor, and this forces u = 0, as required. U

Finally, we give a simpler process for writing down pseudomeasures on Z ;.
Definition 3.37. The augmentation ideal 1((Z,/p")*) C OL[(Z,/p")*] is the
kernel of the natural “degree” map

LZ/p" D)1= 61, ) calal> ) ca

These fit together into a degree map A(Z);) — Oy ; we call its kernel the augmenta-
tion ideal /(Z;) C A(Z};). One may check directly there is an isomorphism

I(Zy) =1mI((Zy/p")7).

Lemma 3.38. Let a be any topological generator of Z, (for example, take a to
be a primitive root modulo p such that a?~' # 1 (mod p)?), and u € A(Zy) a

measure. Then o
!/ — Z
iz =11 € 0(Z,)

is a pseudomeasure.
Proof. As pisodd, (Z,/p")* is cyclic, generated by a == a (mod p"), and we have

I(Zy/p")) = (1al = [1DOLIZ,/ P *].
In the inverse limit we see that

1@Z%) = (a] - [1DAZ).
Thus if g € Z%, we have [g] —[1] € I(Z;j), and we must have
[g]—[11=v(la] —[1D
for some v € A(Z;). Then
(el —=[Du' =v(la] = [1Du' =v-p € A(Z}),

that is, i is a pseudomeasure. U

Note moreover that all pseudomeasures have this shape. Indeed, let i’ be a
pseudomeasure, and a € Z; a topological generator; then u = ([a] — [1]Du’ is a
measure, and u' = w/([a] — [1]) as above.
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3.7. Locally analytic functions and distributions. We finally introduce another
important space of functions and its dual, namely locally analytic functions and
locally analytic distributions. This subsection may be safely skipped on a first
reading, and indeed we make only peripheral use of its content in these notes (in
Sections 6.2 and 7, to study values of the p-adic zeta function). The locally analytic
theory is nonetheless of fundamental importance in more general settings, so we
include a sketch here, and indicate how it dovetails beautifully with the theory of
measures we have already studied. All of this — and other related theories in p-adic
functional analysis — are described in detail in [20].
As motivation, we first note the following.

Remark 3.39. The space .#(Z,, L) of measures has an interpretation via rigid
analysis. To explain this, consider the p-adic open unit ball in C,, i.e., the space

B(0,1)={zeC,:|z| <1} CC,.

This is the set of C,-points of a rigid analytic space in the sense of [10]. An
L-valued function on B(0, 1) is rigid analytic if it can be written as a power series
Y n=0anT™ € L[T] that is everywhere convergent on B(0, 1) (i.e., |a,|r" — 0 as
n — oo for all r < 1); write 2 C L[[T] for the space of such functions. A rigid
analytic function is bounded if the |a;| are bounded.

Note that the space of bounded L-valued rigid analytic functions is O, [T ®g, L,
which, via the Mahler transform (Remark 3.28), is isomorphic to .#(Z,, L). Hence
p-adic measures on Z, can be viewed as bounded rigid analytic functions on B(0, 1).

It is natural to ask if the Mahler correspondence, as studied in Theorem 3.25,
can be extended from ¢ [T] to all of Z*. Such an extension is given by locally
analytic distributions, in the sense described in Theorem 3.43 and (3-12) below.

Definition 3.40. Let L/Q, be a finite extension, and let f : Z, — L be a function.

(1) For z € Z),, we say f is locally analytic at z if f can be described locally
around z by a convergent power series. Precisely, this means there exists some
integer n, > 0 and numbers {a;(z) € L : k > 0} such that

D a@) - (x—2)t
k=0
converges to f(x) forall x e U, :=z+ p"<Z,.
(2) We say f is locally analytic if it is locally analytic at all z € Z,,.

(3) We write %la(Zp, L) for the L-vector space of all locally analytic functions
Z,— L.

Recall that € (Z,, L) can be equipped with a valuation that makes it into an
L-Banach space, and that the space of measures .#(Z,, L) was defined as its con-
tinuous dual. Analogously, the space €'*(Z p» L) has a natural topology, described
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as follows (see [20, Section 1.4] for more details). For each n € N, we say a function
f:Z,— Lis locally analytic of radius p~" if it is locally analytic and moreover
we can take n, = n for all z € Z,; in other words, it is analytic (described by a single
power series) on each open set of form z + p"Z,. Denote by €"~*"(Z,, L) the
subspace of such functions. Then one can check that €”"~*"(Z,, L) is an L-Banach
space with valuation given by

= inf inf (nk ,
)= oI, Sk vy (@)

or, equivalently, norm given by

Ifll.==sup suplax(z)|p ™.
ze(Z,/p"Z,) keN

Moreover, almost by definition, we have that ¢z p L) =lim _ ¢ (Zp, L),

—neN

and so it inherits a natural topology given by the direct limit topology.

Remark 3.41. Locally analytic functions are continuous, so ¢ laz p LYCE(Zp, L).
Note, however, that the topology we just defined on ¢'%(Z p» L) is not the one
induced from ¢(Z,, L). Nonetheless the image of this inclusion is dense, as, for
example, locally constant functions are locally analytic functions and are dense
iné¢(Z,,L).

Analogously to Definition 3.8, we make the following definition.

Definition 3.42. We define the space 2'%(Z,, L) of locally analytic distributions
on Z, to be the continuous dual Homcs (%’ laz L), L).

If u is a locally analytic distribution on Z,, and ¢ € (7 p» L), we continue to
write

fz $() - 1(x) = ().

The binomial polynomials (;‘ ) are visibly locally analytic, so we may also extend
the Mabhler transform to this generality; namely, if u € g (Zp, L), define

,(T) :=fz (1+T)x-,u(x):z</ (;)-M>T”GL[[T]].
» n>0 N’ Zp

The following crucial result provides the desired extension of the Mahler trans-
form beyond bounded measures/power series.

Theorem 3.43. The Mahler transform induces a bijection
7"Z,,L) — #* C LIT].

Proof. This is [20, Theorem 11.2.2]. O
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As with Theorem 3.25, the theorem says more: the bijection respects natural
topologies on both sides. Here the topologies are as follows:

.« 97 p»» L) is the inverse limit of the continuous duals 2" 7*"(Z,,, L); each of
these is a Banach space with the natural dual (strong) topology (see Remark 3.6).
This endows 2'%(Z p» L) with the corresponding inverse limit topology.

« As the open unit disc is the union of the closed discs B(0, r):={z€C,:|z| <r}
of radius r < 1, we can write Z™ as the inverse limit over < 1 of the Banach
spaces O(B(0, r)) of analytic functions on B(0, r). Again we get an inverse
limit topology on ™.

A topology induced from an inverse limit of Banach spaces is called a Fréchet
topology. The Mahler transform is then an isomorphism of Fréchet spaces.

Remark 3.44. If u € .#(Z,, L) is any measure, then we obtain a locally analytic
distribution [t € @la(Zp, L) by restricting to %la(Zp, L) Cc¢(Z,, L). As locally
analytic functions are dense inside continuous functions, the association p > & is
injective, and hence this identification allows us to consider .#(Z,, L) C 7" as
a subset. The combination of Theorems 3.25 and 3.43 says that this inclusion is
compatible with the natural inclusion of bounded power series inside power series
converging in the open unit disc, that is, the following diagram commutes:

>,

2%(Z,, L) A
U U (3-12)

e
///(Zp, Ly ——— 01Tl ®g, L

Remark 3.45. Observe that every part of our “measure-theoretic toolbox” from
Section 3.5, including corresponding operations on Mahler transforms, carries over
identically to the setting of locally analytic distributions.

Remark 3.46. Locally analytic p-adic analysis is fundamentally important in
the study of p-adic L-functions (and in many other areas, such as in the study
of p-adic automorphic forms, in the p-adic Langlands correspondence, in p-adic
Hodge theory, etc.). Indeed, more general p-adic L-functions — for example, those
attached to elliptic curves and modular forms — are frequently not measures or
pseudomeasures, but rather locally analytic distributions with prescribed growth, in
the sense of [1]. We discuss this further in Appendix B.

3.8. Further remarks. The following remarks will not be seriously used in the
sequel, but are included for completeness, and to illustrate some other ways that
the objects studied in this section appear in the literature.
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Remark 3.47. We have an analogue of Remark 3.39 for measures on Z’, using
instead the multiplicative structure. The key object here is the weight space

W(C,) = Homeu (Z. ).
Since Z; = wp—1 X (1 4+ pZp), we have
Hom (7, C;) = Homcts(ﬂp—l, C;) x Homg (1 + pra C;)

Evaluation at a topological generator of 1 + pZ, identifies Hom (1 + pZ,, C;)
with B(0, 1) from above. Hence we may identity Hom(Z %, C;) with p—1 copies
of B(0, 1). Summarising,

wey)= || v,
ve(ip_1)"
where:

v ranges over the p — 1 different characters of (1.
e U, CW(C)) is the subset of characters x of Z; with x|, , =v.
o Each U, may be identified with B(0, 1).

This space can also be given more structure; there is a rigid analytic space W
such that the elements of JW(C,) are the C,-points of W. Analogously to above,
a theorem of Amice says that giving a measure p on Z is equivalent to giving a
bounded rigid analytic function F,, on W. This equivalence is given as follows: if u
1S a measure on Z; and x : Z; — C; is a character (seen as a point on W(C))),
then one defines F, (x) = fz; x - . Observe that the multiplicative convolution
product corresponds to pointwise multiplication of rigid functions.

Finally, if A € Q(Z;) is a pseudomeasure, then it is of the form w/([a] —[1])
for some topological generator a € Z; and some measure u € A(Z;). Note
fz; x - ([a] — [1]) = O if and only if x(a) = 1, which—as a is a topological
generator of Z7 —implies x is the trivial character. Hence, as a function on the
weight space, A might have a simple pole at the trivial character. So pseudomeasures
can be seen as rigid analytic functions on the weight space that possibly have a
simple pole at the trivial character.

Remark 3.48. Power series rings have been generalised to what now are called
Fontaine rings. It turns out that Galois representations are connected to certain
modules over these rings called (¢, I')-modules. The operations described above
generalise to fundamental operations on (¢, I')-modules, and their interpretation
via p-adic analysis inspired the proof of the p-adic Langlands correspondence
for GLo(Q)) (see [21]).
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4. The Kubota-Leopoldt p-adic L-function

In this section, we prove the following:

Theorem 4.1. There is a unique pseudomeasure ¢, on Z[X, such that, for all k > 0,

| e =a=phea-p.

P
This pseudomeasure, denoted by ¢," in Section 1, is the Kubota—Leopoldt p-adic
L-function.

4.1. The measure jL,. Recall from Lemma 2.7 that we can write the Riemann zeta
function in the form

1 [ee)
(S — 1)§(s) = L(f, s — 1) = mA f(l‘)l’x_z dt,

where f(t) =t/(e' —1), and that ¢ (—k) = (d* f/dt*)(0) = (= 1) By41/(k+1). We
want to remove the smoothing factor at s = 1. For this, let a be an integer coprime
to p and consider the related function

a
el —1 e —1
This is also ¥ and rapidly decreasing, so we can apply Theorem 2.4 and consider
the function L( f;, s). The presence of a removes the factor of s — 1, at the cost of
introducing a different smoothing factor.

Lemma 4.2. We have

fa(t) =

L(fars) =1 —=a'™)¢(s),
which has an analytic continuation to C, and
f00) = (=D —a"* ¢ (k).
Proof. This follows from calculations similar to those in the proof of Lemma 2.7. [J

We now introduce the p-adic tools we have developed into the picture. We
will start with the function f,(¢), and slowly manipulate it until we construct a
(pseudo)measure with the desired interpolation properties. Note first the following
very simple observation.

Lemma 4.3. Under the substitution ¢! = T + 1, the derivative d/dt becomes the
operator 0 = (1 + T)%. In particular, if we define

F(T)'—l a
T 0+ -1

we have

£P0) = 8 F,)(0). (4-1)
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The left-hand side of (4-1) computes the L-value ¢{(—k) by Lemma 4.2. The
right-hand side is similar to Corollary 3.30, which expressed the integral fz,, xKu
in terms of the Mahler transform .«7,. This motivates us to seek a measure p, with
o, = F,. This is possible by:

Proposition 4.4. The function F,(T) is an element of Z,[[T].
Proof. We can expand
(A+T)"—1= Z(Z)T —aT(1+Tg(T)),
n>1

where g(T) = Y_,., 2(?)T"? has coefficients in Z,, since we have chosen a

coprime to p. Hence, expanding the geometric series, we find

1 a 1
- —T n T I’l,
T (1+7)—1 TZ( )8(T)
n>1
which is visibly an element of Z,[T']. O

Definition 4.5. Let 1, be the measure on Z, whose Mahler transform is F,(T).

Proposition 4.6. For k > 0, we have

/ g = (DA = a e (k).
ZF

Proof. By Corollary 3.30, the left-hand side is (ak%a)(O). By definition of u,
and Lemma 4.3 this is (8¥F,)(0) = a(k) (0). This equals the right-hand side by
Lemma 4.2. O

4.2. Restriction to 7. Recall from the introduction that we want the p-adic ana-
logue of the Riemann zeta function to be a measure on Z;;, not all of Z,,. We have
already defined a restriction operator in (3-8), which on Mahler transforms acts as
1 — ¢ oyr. We begin with a short but important property of the measure 1.

Lemma 4.7. We have ¥ (ig) = q.

Proof. We show the result by considering the action on power series. We wish to
show ¥ (F,) = F,. First note that F,(T) = 7 —a-0,(%), for o, as in Section 3.5.5.
As ¥ commutes with o,, we have ¥ (F,) = ¥(7) —a - 0,V (), so it suffices to
show ¥ (1) = ..

By definition (see (3-9)) we have

N [ S
“””“(7)_17 se%: <1+T)s—1_(1+T)P—1_¢<T)’

as can be seen by calculating the partial fraction expansion. By injectivity of ¢, we
deduce that W(%) = %, and conclude. ([l
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Proposition 4.8. We have
/ZX g = (DA = pHUA =dThHe(=h). (4-2)
4

(In other words, restricting to Z; removes the Euler factor at p).

Proof. Since Resz; =1— ¢ oy, we deduce that

fx"-ua=/ x"-(l—soowma:/
VA VA VA

(== (1 —pk>/ - pas
; r r Zp
where for the second equality we have used Lemma 4.7. This finishes the proof. [

4.3. Rescaling and removing dependence on a. Finally we remove the dependence
on a. Thus far, the presence of a has acted as a “smoothing factor” which removes
the pole of the Riemann zeta function; so to remove it, we must be able to handle such
poles on the p-adic side. We use the notion of pseudomeasures from Section 3.6.

Definition 4.9. Let a be an integer that is prime to p, and let 8, denote the element
of A(Z;) corresponding to [a] — [1]. Note that, by definition, we have

/ xk-90=ak—1.
z

»
However, in (4-2) it is a**! — 1 that appears. To bridge this gap, note that on zj,
—1s

we have a well-defined operation “multiplication by x ™" given by

/ fx)-x ' :=f xTHF) (4-3)
z; z;

and that
oxTg = DM@ - DA - phHe — k).
zZ,
We comment further on this multiplication by x~! in Remark 12.7.

Definition 4.10. Let a be a topological generator of Z 7. The p-adic zeta function is

~1
x7 " Resyx gy
p = 0. — € Q(Z)).
a

Proposition 4.11. The element ¢, is a well-defined pseudomeasure satisfying

/xk'§p=(1—l7kl)§(1—k) forall k > 0.
ZX

P

Proof. We see () is a pseudomeasure by Lemma 3.38. It is independent of the
choice of a by Lemma 3.36(iii).
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Using (3-11) (to integrate the pseudomeasure) and Proposition 4.8, we obtain
the interpolation property

fzx gy = (=D = pHea - k).

P

The result follows since ¢ (1 — k) # 0 if and only if £ is even (that is, if and only
if (=Df=1). O

We finally prove Theorem 4.1. Existence of the pseudomeasure is Proposition
4.11. To conclude the proof we need only show uniqueness; but this follows from
Lemma 3.36(iii). O

5. Interpolation at Dirichlet characters

In our study of the Kubota—Leopoldt p-adic L-function, the entire construction
was essentially built to interpolate special values of the Riemann zeta function,
so this property should not have come as a surprise. Now, however, some real
magic happens. Since the introduction, we’ve not mentioned Dirichlet L-functions
once — but, miraculously, the Kubota—-Leopoldt p-adic L-function also interpolates
Dirichlet L-values as well.

5.1. Characters of p-power conductor. We start studying the interpolation proper-
ties when twisting by a Dirichlet character of conductor a power of p.

Theorem 5.1. Let x be a (primitive) Dirichlet character of conductor p" for some
integer n > 1 (seen as a locally constant character of 7 ; see Section 2.4.2). Then,
for k > 0, we have

/Xx<x>x"-;p=L<x,1—k).

14

The rest of this subsection will contain the proof of this result. The proof is
somewhat calculation-heavy, but— given familiarity with the dictionary between
measures and power series —is not conceptually difficult.

In particular: the Riemann zeta function was the complex Mellin transform of
a real analytic function, which—via Theorem 2.4 — gave us a formula for its
special values. Under the transformation ¢’ = T + 1, we obtained a p-adic power
series; and under the measures—power series correspondence given by the Mahler
transform, this gave us a measure on Z,, from which we constructed ¢,. To obtain
interpolation at Dirichlet characters, we pursue this in reverse, as summarised in
the diagram at the top of the next page.
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(1—a'")¢(s) (1 —x(@a'"*)L(x.s)
IMellin MellinI
fa(t)mFa(T)eoL[[T]] fa,x(t)mFa,x(T)eoLHT]]
IMahler MahlerI
“twist by x”
Ma €ENLp) ¢ ——————"———— - > Ma,y € ANZp)
$p

Firstly, we introduce a twisting operation on measures. If 1 is a measure on Z,,
we define a measure @, on Z, by

/Zf(X)'Mx=/ x(x) f(x)-p. (5-1)

P
Observe that, as x is supported on Z, the twisted measure u, is automatically
supported on Z; as well. In particular, under this we have

fz xxt g, = / (G = (00 ) )(0),

where the last equality follows from Corollary 3.30. Thus we want to determine the
Mahler transform of u, in terms of .7, for which we use our measure-theoretic
toolkit. This requires a classical definition.

Definition 5.2. Let x be a primitive Dirichlet character of conductor p", n > 1.
Define the Gauss sum of x as

Go= Y. x©s,
ce@/p" D)

where (¢,1),en denotes a system of primitive p-power roots of unity in Q p such
that gn1 = &, for all n > 0 (if we fix an isomorphism @, = C, then one can take
gpn = eFT/PT,

Remark 5.3. We note the following basic properties of Gauss sums (see [30,
Section 4.3]):

i) GXG(x™H=x(=Dp".
(i) G(X) = x(@) X ocz/pmzyx X (c)eyi forany a € Z;;.
Lemma 5.4. The Mahler transform of i, is

1
o (T) = ——— e (1 +T)el, —1).
e (1) G(X_])ce(z%z)x)(@ a " )
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Proof. Since x is constant modulo p”, the measure ., is simply

pa= D x(©Rescipz, ().
ce(Z/p"2)*

Using this expression and the formula for the Mahler transform of the restriction of
a measure to ¢ + p"Z, given in (3-5), we find that

S (M) = o 30 x®) Y A+ -1,

be(Z/p2)* Ecum

Writing ppn = {agn :c=0,..., p" — 1}, and rearranging the sums, we have

1 _ .
A (M)=— > > x®eAu((1+T)eh — 1)
p ¢ (mod p") be(Z/p"Z)*

=Ln Z G(x)x(—(:)’l%((quT)s;n—1)
ce(Z/p"Z)*

1 .
PG REACEN ST

= -1
GO ety

where the second equality follows from Remark 5.3(ii) and the last one from
Remark 5.3(i). This finishes the proof. [l

We now consider the case where & = u, from Definition 4.5, the measure from
which we built the Kubota—Leopoldt p-adic L-function, and which has Mahler

transform

;z%(T)—l a
a2 2 A4+T)e =17

Applying the above transformation, we obtain a measure p, , with Mahler transform

FraM=— ¥ <c>—1< R )
IO ce(Z/p"Z)xX I+Tepu—1 (14D —1/)

Via the standard substitution ¢’ = T + 1, this motivates the study of the function

fra®=Gon 2. x© (ergc_1 ems;’,ﬁ—1>’

ce/p"2)* p"

by analogy with the case of the Riemann zeta function.

Lemma 5.5. We have

L(fy.a»$) = x (=D = x(@a'"")L(x, ),
where L(f.a,s) is as defined in Theorem 2.4.
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Moreover, for k > 0, we have
—(1 = x(@a"*™YL(x, =k) if x(=1)(=Dk =—1,
0 if x(=D(-DF=1.

Proof. We follow a similar strategy to that used for the Riemann zeta function (in
Lemma 2.7). In particular, expanding as a geometric series, we obtain

1 _
— = E e Kg—ke
ete, —1 P

p k>1

FR(0) = {

Then we have

1 oo — —Kt . —KC —aKkt ,—akcy .S —
L(fx,a’s)=mfo Z x(c) 1X:(e kspnk —e kepnk)t Ldt.

ce(Z/p"Z)* k>1
Note that

Yo x©7 e = x(—ak)G(x "),
ce(Z/p"2)*

and similarly for the first term, so that the expression collapses to
1 oo
L) =i | o R = x@e e .
TG J ;

For Re(s) >> 0, we can rearrange the sum and the integral, and then we can evaluate
the k-th term of the sum easily to (1 — x (@)a' =)k, giving

L(fyar9)=x(=DU=x@a'™) Y x (k™ = x(=D)(1=x(@)a'*)L(x, 5),
k>1

showing the equality of L-functions.
To see the final statement about special values, we use Theorem 2.4, which
immediately says

9.0 = (=Df x (=11 = x(@a* T L(x. —k). (5-2)
To get the claimed statement, we note that
1 1
—t ~C 1 = _1 - ta—C 17
e Spn - e Spn -

and using this twice, we find

_ 1 1 1 _ a
T ="gon 2 x© (e’s‘n"—l eare—,fw—l)'

ce(Z/pnZ)* p p

Changing ¢ for —c yields f, «(—t) = —x(—1) fy,a(t), whence (=D ;{2(0) =
—x(=1) £%2(0). This implies that £.*)(0) = 0 unless x (—1)(—1)* = —1, conclud-
ing the proof. (]
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Remark 5.6. By (5-2) and the above proof, we recover the well-known fact that
L(x, =k =0if x (=D (=D* =1.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Since x is 0 on pZ,, we have

/ X(X)xk'MaZ/ X(X)xk-MaZf XX by an
7% Z VA

p p P

where 1, , is the twist of @, by x. We know this integral to be
(0 Fy.a)(0) = f00),

under the standard transform e’ = T + 1. Hence, by Lemma 5.5, we find

[ 20wt == = x@a LG b

so that
x(O)x* x =1 = x(@a" ) L(x, 1 k).
z;

By definition, we have

f X ()x* 0, = —(1 = x(a)d"),
ZX

P
and hence we find

Xx(x)xk-g“p:L(X,l—k). a
»
5.2. Nontrivial tame conductors. We can go even further. The theorem above
deals with the case of “tame conductor 17, in that we have constructed a p-adic
measure that interpolates all of the L-values L(x, 1 —k) for k > 0 and cond(y) = p"
with n > 0 (where trivial conductor corresponds to the Riemann zeta function).
More generally, we have the following result.

Theorem 5.7. Let D > 1 be any integer coprime to p, and let n denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure ¢, € A(Z;)
such that, for all primitive Dirichlet characters y with conductor p", n > 0, and
forall k > 0, we have

/ZX x )" gy = A= xn(p)p*HL(xn, 1 - k).

4
Remark 5.8. (1) In this case, we obtain a genuine measure rather than a pseudomea-
sure. As L-functions of nontrivial Dirichlet characters are everywhere holomorphic,
there is no need for the smoothing factor involving a.

(2) Implicit in this theorem is the fact that the relevant Iwasawa algebra is defined
over a (fixed) finite extension L/Q, containing the values of 7.
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Proof. Since many of the ideas involved in proving the above theorem are present
in the case of trivial tame conductor, the proof of Theorem 5.7 is a good exercise.
As such, we give only the main ideas involved in the proof.

For x of p-power conductor, note that the calculation relating L(fy 4, s) to L(x,s)
above was entirely classical, in the sense that p did not appear anywhere. We can
thus perform a similar calculation for general conductors. As there is no need for
the smoothing factor a, we consider the function

1 n(e)”!
fn(t)z_—_l Z —~c 1
G~ cepzy €D T 1
(This scaling by —1 also appears in the trivial tame conductor situation, but it is
incorporated into 6,). In the above definition, the Gauss sum G(n_l) of a Dirichlet
character n of conductor D is defined as in Definition 5.2, replacing the power of p
by D. Define F,(T) by substituting 7 + 1 for €', i.e.,

1 n(e)”!
Fy(T) = ———— Z — (5-3)
G (DD (1+T)ep —1
Expanding the geometric series, we find
[T LS S M-
n - —1 ¢ _ 1)k+1 :
G ce(Z/ D7) k>0 (ep— 1

This is an element of & [T']| for some sufficiently large finite extension L of Q,,
since the Gauss sum is a p-adic unit (indeed, we have G(n)G(n~") = n(—1)D
and D is coprime to p) and €§, — 1 € &/ (since it has norm dividing D). There
is therefore a measure u, € A(Z,), the Iwasawa algebra over &, corresponding
to F;, under the Mahler transform.

Lemma 5.9. We have L(f,,s)=—n(—=1)L(n,s). Hence for k > 0 we have
/ Ky = L(n, —k).
ZP
Proof. The first statement is proved in a similar manner to Lemma 5.5. The

second is proved by equating 0 with d/dt and using the general theory described
in Theorem 2.4. O

The following is the analogue of Lemma 4.7.
Lemma 5.10. We have ¥ (F,)) =n(p) F).
Proof. We show first that

1 3 1 B 1 (5-4)
P A+DEep—1 (1 +T)reh’ —1
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Expanding each summand as a geometric series, the left-hand side is
1 ¢
Y Sasree =Y nrg
P Eepup n=0 n>0

and summing the geometric series gives the right-hand side of (5-4). It follows that

(01/,)(}7)__;2 Z L)_l
P = G (I +T)Ees, — 1

Eeu, ce(Z/DT)x
_ 1 !
T GO h CG(Z%Z)X (1+T)rel’ —1
=n(p)e(Fy).
The result now follows from the injectivity of ¢. (]
We can now show the interpolation property at powers of x.
Lemma 5.11. We have

/Z oy = A=) P L@, k).

P

Proof. By Lemma 5.10 we have
Reszx (in) = (1 =@ o ¥)(py) = pn — n(p)(y),

fx"-w(un)=pk/ x5y
VA Z

p p

and

The result now follows from Lemma 5.9. O

Now let y be a Dirichlet character of conductor p" for some n > 0, and let
0 := xn the product (a Dirichlet character of conductor Dp™"). For such 8 = xn,
we define

po = (ty)y.- (5-5)
Using Lemma 5.4, we find easily that:
Lemma 5.12. The Mahler transform of g is
1 0(c)~!
Fo(T) =y (T) = —=oge ),
GO ) @/ DT (I+T)ep,m—1
Via a calculation essentially identical to the cases already seen, we can prove

/Zx(x)x"-un=f x* e =L, —k)

ZI’
and that
Resx (no) = (1 = 0(p)g) po- (5-6)
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(Here, note that if x is nontrivial, then wy is already supported on Z; but this is
consistent, as 8(p) = 0 in this case). Combining the above we find

[ 3oty = =020, 0,
zZ;

Finally, to complete the proof of Theorem 5.7 and to ensure compatibility with
the construction of ¢, we introduce a shift by 1. The following is directly analogous
to the construction of ¢,; note again that ¢, is truly a measure, not a pseudomeasure.

Definition 5.13. Define ¢, = x~! Reszx (1)
We see that

/ZX XX gy = (1= 0(p)p*HLO, 1-h),

P

which completes the proof of Theorem 5.7. ([

5.3. Analytic functions on 7, via the Mellin transform. The reader should hope-
fully now be convinced that measures are a natural language with which to discuss
p-adic L-functions. In this subsection, we use this (more powerful) language to
answer the question we originally posed in the introduction: namely, we define
analytic functions on Z, interpolating the values ¢ (1 —k) for k > 0. In passing from
measures to analytic functions on Z,, we lose the clean interpolation statements.
In particular, there is no single analytic function on Z,, interpolating the values
¢(1 —k) for all k > 0, but rather p — 1 different “branches” of the Kubota—Leopoldt
p-adic L-function on Z,, each interpolating a different range.

The reason we cannot define a single p-adic L-function on Z, is down to the
following technicality. We’d like to be able to define “¢, (s) = |; z; x-¢, forseZ,,.
The natural way to define the exponential x — x* is as

x* = exp(s - log(x)),
but unfortunately in the p-adic world the exponential map does not converge on all
of Z,, so this is not well defined for general x € Z7. Instead:

Lemma 5.14. The p-adic exponential map converges on pZ,. Hence, for any
s € Zp, the function 1 + pZ, — Z, given by x > x* := exp(s - log(x)) is well
defined.

Proof. This is a standard result in the theory of local fields; see, for example, [11,
Section 12]. |

Definition 5.15. Recall that we assume p to be odd and that we have a decomposi-
tion Z; = pup—1 x (14 pZ,). Let

a):Z;—>Mp_1 and <->:z;—>1+pz,,,
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where o (x) := Teichmiiller lift of the reduction modulo p of x and (x) =~ (x)x
denote the projections to the first and second factors respectively. If x € Z7, then
we can write x = w (x)(x).

By Lemma 5.14, the function x — (x)* is well defined for any s € Z,,. For each
i=1,..., p—1 we can define an injection

Z, < Homes(Z5, C3), s+ [x —> o(x) (x)'],
and hence we can define a meromorphic function as follows.

Definition 5.16. We define the i-th branch of the p-adic zeta function as

(piily,—>Cp s> wx) (x)!* “Lp.
z;

This function does not interpolate as wide a range of values as the measure ¢,
because the character x* can be written in the form w(x)!(x)* if and only if
k =i (mod p — 1), and in this case x* is the value of w(x)!(x)!™* at the value
s = 1 —k. Then we have the following result.

Theorem 5.17. For all k > 1 with k =i (mod p — 1), we have
Epi(l—k) = (1= p e k.

Note that the above theorem implies that ¢, ; is identically zero whenever i is odd
(as by Corollary 2.8 the value ¢ (1 — k) is zero for every odd positive integer k > 1).
More generally, we can twist by Dirichlet characters as we have done before.

Definition 5.18. Let & = xn be a Dirichlet character, where n has conductor D
prime to p and x has conductor p” for n > 0. Define

L,©,s) = /Zxx(xxx)“-;,,, s€Zp.

¥4

Remark 5.19. An equivalent definition is

Ly(@.5)= / xo @) () = / X' O . (5T)
p P
Note here we use the measure (,, rather than the (shifted-by-1) analogue ¢,,. In [81],
the analytic functions L , (6, s) are constructed directly without using measures, and
the more direct approach differs from the one obtained using our measure-theoretic
approach by precisely this factor of w. This twist by 1 also appears naturally when
we study the Iwasawa Main Conjecture.

Theorem 5.20. For all k > 1, we have
L,0,1—k) =(—-00 (p)p""HLOw™ 1 k).
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Proof. We use the description of (5-7). From the definitions, we have

xo ') () = xo ™ (x) - T ) () = xoF ok,

so that
/ X))y = / xo  x T,
z, »
=1 -0 (p)p T HLO™ 1~ k),
as required. The last equality here is Lemma 5.11. (]

Remark 5.21. Directly from the definitions, we have ¢, ;(s) = L p(wi, s). Hence
for arbitrary k > 0, Theorem 5.20 gives

¢pi(1—k) =1 - (p)p* L@ 1-k).

Of course, ' ¥ is just the trivial character when i = k (mod p — 1), so we recover
Theorem 5.17 from Theorem 5.20.

In general, for any measure 1 on Z; one can define

Mel, ) = [ 00 00
z;
the Mellin transform of j ati. We have then ¢, ; (s) = Melgp,,- (1—s). This transform
gives a way to pass from p-adic measures on Z,, to analytic functions on Z,,.

Remark 5.22. The results of this section are simply a more concrete version of
Remark 3.47. There we described how a measure (resp. pseudomeasure) p on Z;
gives rise to a rigid analytic (resp. rigid meromorphic) function F,, on weight
space W(C)). The function ¢, ; above corresponds to the restriction of F, to the
open ball U,; C W(Z,) (again explaining why we need p — 1 such functions,
corresponding to the p — 1 disjoint open balls).

6. The valuesats =1

In the following we give an example of further remarkable links between the
classical and p-adic zeta functions. Let 6 be a nontrivial Dirichlet character, which
as usual we write in the form x n, where x has conductor p” and n has conductor D
prime to p. By Theorem 5.7, for any integer k > 0, we have

/ x(Ox* g, =LO,1-k).

z;

It’s natural to ask what happens outside the range of interpolation k > 0. In particular,
what happens when we take k = 0? Since this is outside the range of interpolation,
this value may a priori have nothing to do with classical L-values. Indeed, the
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classical value L (0, 1) is transcendental,'® so one cannot see it as a p-adic number
in a natural way. However, even though we cannot directly equate the two values,
it turns out that there is a formula for the p-adic L-function at s = 1 which is
strikingly similar to its classical analogue.

Theorem 6.1. Let 6 be a nontrivial Dirichlet character of conductor N, and let
denote a primitive N -th root of unity. Then:

(1) (classical value at s = 1). We have

1
GO

L, 1)=— > 070 log(l —£5).

ce(Z/NZ)*

(i1) (p-adic value at s = 1). We have

Ly@,1)=—(1-0(p)p™" Y 07N (o) log, (1 —&5).

1
—1
GE™) ce(Z/NZ)*

Remark 6.2. Part (ii) of Theorem 6.1 is due to Leopoldt. Values in the range
of interpolation, where the link to classical L-values is explicit, are often called
critical values. Values outside this range, such as those studied in Theorem 6.1, are
called noncritical values. The above result is an instance of the p-adic Beilinson or
Perrin-Riou conjectures, which give arithmetic descriptions of noncritical special
values of p-adic L-functions. We refer the interested reader to [67] (or Remark 6.8
below) for more details on this.

If 6 is an odd character, both sides of the p-adic formula vanish. In any case,
the formulae are identical up to replacing log with its p-adic avatar and, as usual,
deleting the Euler factor at p. This result can be used to prove a p-adic analogue
of the class number formula.

6.1. The complex value at s = 1. For completeness, we prove the complex case of
Theorem 6.1, following [81, Theorem 4.9].

Proof of Theorem 6.1 (i). Write

L@®,s)= Z 6(a) Z ns.

ac(Z/NZ)* n=a (mod D)

Using the fact that

1 Z g(a_,m:{o if n%a mod N,

_ e T
ccIND) 1 if n=a modN,

10This follows from Baker’s theorem and Theorem 6.1(1).
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we show that the above formula equals

Y sy Y Yo

ae(Z/NZ)* n>1ce(Z/NZ)

—nc

:% > ( > ek )ZN

ce(Z/NZ) *ae(Z/NZ)* n>1
= — G )Z
N ce(Z/NZ) n>1
0(—1) 1 ey’
= 07 Y -
=D
G(9 ) ce(Z/NZ)* n>1 n’
1 ghe
=56 Yo o) (6-1)
ce(Z/NZ)* n>1 n

The penultimate equality uses the standard identity G®)GO ") =06(—1)cond(v)
of Gauss sums (see Remark 5.3(i)) and that 0~ (c) = 0 if (¢, N) # 1, and the last
equality follows from the change of variables ¢ — —c.

Finally we evaluate this expression at s = 1. As 0 is not trivial we have N > 1,
so g, # 1 for any ¢ € (Z/NZ)*. Thus we may consider the Taylor series expansion

—log(l —¢y) = Zs"‘ -1
n>1
Substituting this into (6-1), we see the series converges at s = 1 to the required

result. O

Remark 6.3. We can further refine this expression depending on the parity of 6.
If 6 is even then 61 (c) log(1 — &%) +60 1 (—c) log(1 — &) =201 (c) log |1 — &,
S0, rearranging,

LO,1)=— > 07N o) log|l — &

1
-1
GO ce(Z/NZ)>

If 6 is odd, we can use the functional equation to obtain

. 1
L(G, 1) = —lﬂmBl’g—l,

where By 4-1 denotes the k-th twisted Bernoulli number (see [81, Chapter 4]).

6.2. The p-adic value at s =1. We now compute

Ly@.1) = /ZXX(X)X_I'Mn=fXX_l'M9- (6-2)

P P
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A tempting argument to study this goes as follows. Suppose that k is divisible
by p — 1. We know from (5-7) that

L,,(@,l-k):/

x ()X,
ZX

p
noting that 0! =¥ ~! =@ =¥ =1 as w has order p—1. For k > 0, we showed above that

/Z;

We want to compute this for £ = 0. Identically we could try to argue that

XXy = ey (k1,0 (0) = (1= () p* (B Fp)(0).

Lp(8,1) = Fresys -1 (0) = (1 = () p™) (97 Fp)(0). (6-3)
Then, recalling that by Lemma 5.12 we have
1 0(c)~!
R ==Ge 2 (I+T)ef — 1
ce(Z/NZ)* N

we observe that, if we define

- 1 .
FQ(T):_m > 07N log((1+ Tel, — 1),

ce(Z/NZ)>

then formally 81?59 = Fy; we will show this in the proof of Lemma 6.5 below. In
particular, Fpisa good candidate for 3! Fy. Plugging in T = 0 and combining
with (6-3) would give the claimed value of L, (0, 1).

In order to make this reasoning rigorous, one needs to deal with the fact that x !
is not a well-defined operation on measures on Z , rendering x ! g ill-defined. On
power series, this is captured by the indeterminacy in defining 3~!. In particular,
Fo (T) is not necessarily a bounded power series, so under the Mahler correspon-
dence, does not correspond to a p-adic measure. However we do have the following.
Recall that #* (from Remark 3.39) denotes the space of power series Y a, T" such
that |a,|r" — O forany 0 <r < 1.

Lemma 6.4. The power series ﬁg (T) is an element of #™.

Proof. We can write

e T
log((1+They — 1) =logy(efy — ) +log(1 too 1>
N

(e
n (ey — D"

n

o0
=log, (e — D+ _
n=1

We now consider two cases. If (N, p) = 1, we know that (e}, — 1) is a p-adic
unit; then the coefficient of 7" has p-adic valuation bounded below by —v,(n).
This means the coefficients in Fy(7T) have logarithmic growth, and in particular
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Fy (T) € #*. More generally, suppose that N = Dp" with (D, p) = 1. We write
6 = nyx, with n and x characters of conductors D and p" respectively. Then, as in
Lemma 5.4 or Lemma 5.12, we have

~ ~ 1 ~
Fo(T) = (Fy)y(T) = NTrED) Z X F(1+T)es, — 1.
ce(Z/p" )"

As F,(T) € %%, the same holds for Fy(T). O

By Theorem 3.43, Fy (T) is the Mahler transform of a locally analytic distribution
Ito on Z,. We now relate this distribution to x~! ResZ; (o), as appeared in (6-2).

Lemma 6.5. We have
X[lo = [Lg.
In particular,
Resy (flg) = x~' Resz; (1)
Proof. The first equality can be checked on Mahler transforms. By Lemma 3.29,
this means showing

~ d ~
IF(T) =(1 +T)ﬁF9(T) =y (T). (6-4)

By Lemma 5.12, we have
6(c)!
JZ%M@(T):FG(T):_—_I Z P —
GO ey (I+T)ey —1
Then (6-4) follows immediately from the formula
(1+T)ep, | 1
(1+T)e -1 (1+T)e —1

and the fact that ZCE(Z/DZ)X 0~ 1(c) =0.

To see the second equality, note that as measures on Z7,
x Reszx (jtg) = Reszx (ug). It follows that Reszx (itg) = x~! Reszx (j16) as “multi-
plication by x” is an invertible operator on measures/distributions on Z 7. ]

dlog((1+T)es, — 1) =

we visibly have

From the above, we now know that

Lp©, 1) = -1 Resyx (1) (0) = FResz i) (0) = (1 —g o VF)(©0),  (6-5)

where the last equality follows from the formula for the restriction of a distribution
to Z; (see (3-8), and Remark 3.45). We are now ready to prove Theorem 6.1(ii).

Proof of Theorem 6.1 (ii). We compute the right-hand side of (6-5). Recall from
Section 3.5.5 that (pol/f(%) is the Mahler transform of Res 7, (iLg). Recall N = Dp"
and 6 = ny, where n has prime-to-p conductor D, and x has conductor p". To
compute this we break into two cases.
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(1) First assume that n > 1, so that x # 1; then, as x|,z, = 0, we see flg = (Ily)
is automatlcally supported on Z; by (5-1). In particular, Res 7, (itg) = 0, and thus
@o w(Fg) = 0. In particular, in thls case,

Ly(0,1) = Fy(0).
It is convenient to write this in the form L ,(0, 1) = (1 — O(p)p~! )fg (0) using that

0(p) =
(2) Now assume n =0, so N = D is coprime to p and hence 6 = n. By (3-9),

~ 1 ~
oy (Fg)=— Y Fp(1+T)s - 1)
péeup

1 1
=—Ga , 2 0@ ) log,((1+Tgef —1).
ce(Z/NZ)* feup

Evaluating at 7 = 0, we get

~ 1
o (F)(0) = ——— - — 07'c) ) log,(Ees — 1)
GO pce(Z/XN:zv sg;p ’
1 1
= 6711 P11
1 0(p) 1 o
=— S 6 1 —1
GO p c/e(ZX/I:VDx eyl
ZEFe(O)
14

Here, we used that, since pt N, the assignment ¢ — ¢’ = pc defines an automorphism
of (Z/NZ)*. Hence in this case we also find that

Ly, 1) =(1—gpoy)Fg)©0) = (1-6(p)p~ ") Fy(0).

To complete the proof, we simply evaluate the expression Fy (0) (and use that
log,(x) =log,(—x) for x € C;) to find, for all N, that

Y 0N olog,(1—ef). O

ce(Z/NZ)*

1
L6, 1)=-( —e<p>p—1)G(9_1)
Remark 6.6. Theorem 6.1 has been generalised by Coleman in [17] for every
positive integer value s = k > 1. More precisely, for s,z € C, let Liy(z) :=
> n>12"/n’ be the polylogarithm function; recall that it admits a unique analytic
continuation to C \ {z € R:z > 1}. In particular, one sees that Lis(1) = ¢(s),
and Li; (z) = —log(1 — z). Coleman constructed p-adic analogues Liy ,(z), which
are locally analytic functions on C,, \ {1}, and showed:
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Theorem 6.7 [17]. Let 6 be a nontrivial Dirichlet character of conductor N, let
k > 1 be an integer, and let ¢y denote a primitive N-th root of unity. Then:

(1) (classical value at s = k). We have

L0, k) = > 07 (o) Li(ey).

—
GO ce(Z/NZ)*
(i1) (p-adic value at s = k). We have

1
GO

Ly®,k)=(1—-6(p)p™) Y 07N @ Lik p(e)-

ce(Z/NT)>

Remark 6.8. We highlighted in Remark 6.2 that Theorem 6.1(ii) is an instance
of Perrin-Riou’s p-adic Beilinson conjectures. More precisely, her conjectures
describe special, noncritical values of p-adic L-functions of motives in terms of
arithmetic data. Specialised to the case of the Kubota—Leopoldt p-adic L-function
(see [67, Section 4.3.3]), this gives formulas for the values of L, (6, k) in terms
of p-adic regulators of the cyclotomic units, special elements that we will see later;
the right-hand sides of Theorems 6.1(ii) and 6.7(ii) can be reinterpreted in such
terms, justifying Remark 6.2. We refer to [67] for more details, and [18] for an
excellent survey on all of this.

We also mention the pioneering work of Gross [38], based on Coleman’s work, as
well as [50], for another approach expressing values of Dirichlet p-adic L-functions
at odd positive integers in terms of syntomic regulators and K -theory.

7. The residue of ¢, ats =1

In the previous section, we described the value of the Dirichlet p-adic L-functions
L,(9,s) ats =1 for a nontrivial Dirichlet character 6. We now turn to the value at
s = 1 of the untwisted p-adic zeta function, that is, the analogue when 6 is trivial.
Recall the Riemann zeta function has a simple pole at s = 1 with residue 1 and that,
in the p-adic world, we have defined the p-adic zeta function as a pseudomeasure
(rather than a measure) which implies, as explained in Remark 3.47, that there
might be a potential pole at the trivial character. We now show that there is indeed
a simple pole here, and calculate its residue.

As with L, (0, s), it is convenient to use the language of analytic functions ¢, ;
from Definition 5.16. The behaviour of ¢, at the trivial character is captured by the
behaviour of ¢, ,_1(s) at s = 1. The main result of this section is the following.

Theorem 7.1. Leti € {1,2, ..., p— 1}. The following assertions hold:
() If i # p —1,then ¢, ; is analytic at s = 1.
(i1) The function §, 1 has a simple pole at s = 1 with residue (1 — p~h.



AN INTRODUCTION TO p-ADIC L-FUNCTIONS 155

The proof will occupy the rest of this section.
Foranyi € {l1,2,..., p— 1}, by Definition 5.16 we have

£pi(s) = / 0@ X)) g,

P
Now, from Definition 4.10, we have
¢ x~! RGSZ; (a) x! RCSZ; (1a)
P 0 ~ lal-q
where a is any topological generator of Z7. Thus by the expression (3-11) for
evaluating pseudomeasures, we find

fZ; w(x)i<x>l—xx—l - U B fZ; w(x)s+i—1x—s - a

w(a)i(a)!=s —1  w@ia) s —1

Epi(s) = ; (7-1)

where we have used (x) = ™! (x)x in the second equality. Let
8ai(s) = w(@ (@) ™ ~1
be the denominator of (7-1).
Lemma 7.2. The following assertions hold.
(1) If i # p—1, then g,.;(1) # 0. In particular, Theorem 7.1 (i) holds.
(i1) We have g, p—1(1) =0, and
lim(s — 1)~ g4, p—1(s) = —log,, (a).
s—1

Proof. Since a is a topological generator of Z*, we see w(a) is a primitive (p—1)-th
root of unity. Hence the denominator w (a)’ (a)!~* — 1 of (7-1) vanishes at s = 1 if
and only if i = p — 1. This already implies Theorem 7.1(i), as the expression (7-1)
does not have a pole at s = 1.

Ifi =p—1, we know w(a)’ =1, so 8a,p—1(1) = 0. Moreover,

Sap-1() =@ Ha) ™ 1= (@) —1

=a-9Y (,Z)w@-1. a2

where in the last equality we have used the identity (' *) = &=£( ) forn > 1.
The sum in (7-2) evaluates at s = 1 to

1 -1 -1 n—1
Z ;(n_1>(<a) -D'= X} ( rz ((@) = 1" =log,((a)) = log ,(a),
n>1 n=
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where we have used (nill) = (—1)""! (direct from Definition 3.20). We deduce that

lim[(s — )" gas—1(5)] = —log,, (a). O
s—1
Combining Lemma 7.2(ii) with (7-1), we deduce
I 7
li -1 _ =——r 7-3
sgr}(s )Ep.p—1(5) log, (@) (7-3)

We calculate the numerator in this expression via similar methods to those used
in Section 6.2. Recall that F,(T) = (l/T) —a/((1+ T)“ — 1) is the Mahler
transform of u,; we find a power series F (T) such that 8F (T) = F,(T), where
a=0+T) ddT. Then, via Lemma 6.5 and directly analogously to (6-5), we find

| = =pewFo. (7-4)

P

To this end, let

fu(T) = log< 4+ 1) )

1+7 (1+T)i—1
Lemma 7.3. Formally, we have
0Fu(T) = Fu(T).
Proof. We let the reader check that
(1+T)*—1 a
dlog = .
(14+T) (14+T)yr—1

In particular, taking a = 1, we also get

T 1
dlog| —— | =—.
14T T
We conclude as

~ T 14+T)—1
IF,(T) =10 log(H_—T> -9 1og<%)

1
—— ¢ _ F.(T). O
T (A+47)—-1
As in Lemma 6.4, we must also check that fa(T) e #* to use the Mahler
correspondence.

Lemma 7.4. We have F,(T) € #*.

Proof. It is convenient to note

~ T
F.(T)= 1og(m 1+ T)”_l). (7-5)
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As in Proposition 4.4, write

A+T) =1 =aT(+Tg(T), gT)=Y a ()12

n>2

Recall from the proof of that proposition that we have

1 1
m == ﬁ(l + Th(T)), (7-6)
with
h(T)=> (=1)"T"'g(T)" € Z,ITI.
n>1
We thus see that
r _ -1

whose logarithm is given by

T
o () = oo +1os - Ther)

(_1)n+1

n

= —log, (@) + ) T"h(T)". (7-7)

n>1

As in Lemma 6.4, the coefficients here have logarithmic growth in n, so this lies
in 7. Identically, (1 + Y l'=14T anl (a;l)T”_1 also has well-defined
logarithm in #*. Adding these two elements of Z* yields F,(T) and completes
the proof. ([

Lemma 7.5. We have (1 — ¢ o ¥)F,)(0) = —(1 — p~") log,,(a).

Proof. First, by (7-5) we know that

Fo = log( _ Hlog((1+ 1) Hly—g = ~log, (@) +0, (7-8)

T
=il

where we use (7-7) to evaluate the first summand. Secondly, we have

~ 1 ~
poy(F)(T)=— Y F((1+T)E—1)

Eeup
1 Zlog((1+T)§—l 4Ty )
P (I+1)E  (+7)% -1

_! A+DE-1 a-1ga-1
log((1+T)a§a_1 (I1+T7T)"'& )
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This rearranges to
1 1+T)—1
~ log l_[ A+TE-1 1+ T)* lge!
p (I+T)*se—1
geﬂp
1 (I1+T7T)r -1
p +T)yw —1
Here we simplify both terms of the fraction using Hé}eup (XE—-1)=XP —1,

in the denominator noting that as a is a topological generator of Z;, we have

{§9:& € up} = pp. In the final term we use that HSEMP gal = (Héeup g)a_l =1.
Writing

(1 +T)<”—1>P).

. 1 1
A+ =1 =pT A+ TITN, = o+ TR,

analogously to (7-6), we find ultimately that
~ 1 1 . a—
oy (F)(T) = log( - (1+ T (M) +T(T) - (1 +T)7),
and the right-hand side at T = 0 collapses to —p~! log p(a). Combining with (7-8),
(1= 9o Y) F)(0) = Fu(0) = (9 oY) Fu(0)
= —log,(a) — p~'log,(a) = —(1— p~")log,, (a),
as required. U
Combining (7-3) and (7-4) with Lemma 7.5, we deduce that
lim(s = 1)¢p p1(9) =1-p~,

completing the proof of Theorem 7.1(ii). (]

8. The p-adic family of Eisenstein series

We finally take a brief detour to illustrate another example of p-adic variation in
number theory, namely the p-adic variation of modular forms. In constructing the
Kubota—Leopoldt p-adic L-function, we have seen many of the key ideas that go
into the simplest example of this, namely the p-adic family of Eisenstein series,
which we will illustrate below.

Let k£ > 4 be an even integer. The Eisenstein series of level k, defined as

1
Gi(z) = Z m, z€H:={z€C:Im(z) > 0},
c,de”
(¢,d)#(0,0)

can be viewed as a two-dimensional analogue of the zeta value ¢ (k). It is an
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example of a modular form of weight k. In the classical theory of modular forms,
one computes the normalised Fourier expansion of such an object to be

G k—1)! 1—k
Ey(z) = kz(‘zgm)k) =& 5 ) +> o 1mq”,
n>1

where o _1(n) =Y _4, d* " and ¢ = €*™*. In particular, it is a power series with
rational coefficients. (This is a standard exercise; see [30, Chapter 1.1] for details).

From the definition, we see the Kubota—Leopoldt p-adic L-function as a pseu-
domeasure that, when evaluated at x¥ with k > 4 even, gives (up to an Euler factor)
the constant coefficient of the Eisenstein series of weight k. The idea now is to
find measures giving similar interpolations of the other coefficients. Fortunately,
these are much easier to deal with: we only need interpolations of the functions
k — d*, where k is varying p-adically. When d is coprime to p, we do this by
viewing d as an element of Z* and considering the Dirac measure §; at d (that is,
evaluation at d). Indeed, fzf, xk .8, =d* for any k € Z.

When d is divisible by p, however, we run into an immutable obstacle. There is
no Dirac measure on Z; corresponding to evaluation at p, since p ¢ Z7. Moreover,
the function k — p* can never be interpolated continuously p-adically; it simply
behaves too badly for this to be possible. Suppose there was indeed a measure 6,

with
/ xk'0p=pk9
YA

X
P

and then suppose k, is a strictly increasing sequence of integers p-adically tending

to k. Then
phr = f
z

which is clearly impossible since p* tends to 0.
We get around this issue by taking p-stabilisations to kill the coefficients at p.

k k k
x"-@,,—>/ xt-0,=p",
zZ;

X
P

Definition 8.1. We define the p-stabilisation of Ej to be
E{”(2) = Ex(2) — p* Ex(p2).
An easy check shows that

EP =10 p e =k +Y ol 00g",

n>1
where
p k—1
ol ()= Y d".
0<d|n
ptd

Note E,ip) is a modular form of weight k and level I'g(p) = {(‘C‘ Z) eSLy(2): p| c}.



160 JOAQUIN RODRIGUES JACINTO AND CHRIS WILLIAMS

We’ve done all the work in proving the following result.
Theorem 8.2. There exists a power series
E@) =) A" € QZ}lql

n>0

such that:
(a) Ag is a pseudomeasure, and A,, € A(Z;)for alln > 1.

(b) For all even k > 4, we have

/ 1 E@G) = Z(/ Xk 'An>qn = E/Ep)(Z)-
z Z;

; n>0
Proof. The pseudomeasure Ag is simply x¢,/2 (shifting by 1 again, but in the
opposite direction to before). We then define
Av= ) 84€ANZ}).

0<d|n
ptd

By the interpolation property of the Kubota—Leopoldt p-adic L-function, A inter-
polates the constant term of the Eisenstein series. We also have

/Xxkl.An: Z /xxklad: de*l=o_kp_l(n)’
P

14 0<d|n 0<d|n
pid pid
so we get the required interpolation property. (]

Remark 8.3. (1) The power series E(z) is an example of a A-adic modular form.
In particular, it can be colloquially described as the statement:

Eisenstein series vary p-adically continuously as you change the weight;
if k and k' are close p-adically, then the Fourier expansions of E; and
Ey are close p-adically.

The theory of p-adic modular forms, and in particular the construction and study
of p-adic families of Eisenstein series, was introduced by Serre [73] to give a new
construction of the p-adic zeta function of a totally real number field. Indeed, the
main idea of Serre’s paper (see [73, Corollaire 2]) was to show that if one can
interpolate all of the nonconstant coefficients — which, as we saw above, is quite
simple — then this automatically gives an interpolation of the constant term, namely
the p-adic zeta function, which is much more difficult to interpolate directly.

(2) These results are often presented instead using the weight space W from
Remark 3.47. The integers are naturally a subset of WW(C,) via the maps «y : x > xk,
and two integers k and k' lie in the same unit ball if and only if k =k’ (mod p — 1).
Let 07 (W) be the space of bounded rigid analytic functions on W (corresponding
to measures on Z ), and Q(WV) the space of rigid meromorphic functions on W
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with a possible (simple) pole only at the trivial character (corresponding to pseudo-
measures on Z;). Then we can view E as a power series E(g) = ano B,q" €
AW)lq], with B, € 6T (W) for all n > 0, such that for all k > 4, we have
E(q)(ky) = ano B, (kr)g" = E ,ﬁp )(z). Hence we see E as a p-adic interpolation
of the Eisenstein series over the weight space.

(3) These two remarks go hand in hand. Indeed, pioneering work of Hida went
much further on the study of p-adic weight families of modular forms, showing
that similar families (known as Hida families) exist for far more general modular
forms. His work has been vastly generalised to the theory of Coleman families and
eigenvarieties, parametrising the p-adic variation of modular/automorphic forms
over appropriate weight spaces. Such families have important applications to the
construction and study of p-adic L-functions; notable constructions in this direction
are given in [4; 68]. For a flavour of the theory of Hida and Coleman families of
modular forms, see the books [41] or [5].

Part II: Iwasawa’s Main Conjecture

The second part of this work is devoted to the motivation, formulation and study
of Iwasawa’s Main Conjecture. We will start by studying the Coleman map, a
map between towers of local units and p-adic measures. This gives a connection
between the tower of cyclotomic units — historically important for their connection
to class numbers — and the Kubota—Leopoldt p-adic L-function ¢, from Part I, and
hence a new arithmetic construction of ¢, (Theorem 10.15). This construction can
be seen as an arithmetic manifestation of the Euler product expression of the zeta
function, and this point of view has led to beautiful generalisations now known as
the theory of Euler systems. We then prove a theorem of Iwasawa (Theorem 12.23)
relating the zeros of the p-adic L-function to arithmetic information in terms of
units. Using these two results and class field theory, we will naturally arrive at the
formulation and proof of (a special case of) the Main Conjecture (Theorem 13.8).

9. Notation

Our study of the Iwasawa Main Conjecture requires a certain amount of notation,
which we introduce straight away for convenience. The following should be used
as an index of the key notation, and the reader is urged to consult the definition of
new objects as they appear in the text.
Let p be an odd prime. Throughout this section, we work with coefficient field
L =Q,. Forn € N, write
Fy=Qup), Ff=Qumt, V= oF . AN ﬁ;;,

Kl’l = @p(ﬂp")a K; = @p(ﬂp’1)+, %n = ﬁxn’ %n+ = ﬁ;;;r’
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where (—)" denotes the maximal totally real subfield (i.e., the fixed points under
complex conjugation). The extensions F,/Q, K,/Q,, F,;f/Q and K, /Q, are
Galois and totally ramified at p (the first two of degree (p — 1) p"~! and the last
two of degree %( p—1)p"~1) and we denote by p,, (resp. p;5) the unique prime ideal
of F, (resp. F,) above the rational prime p. We let

Foo= Qup=) = JF, Fi=F"=JF/

n>1 n>1
Kooz@p(upoc):UKn, Kt = (Koo)+=UK,'f,
n>1 n>1

and denote by p (resp. p*) the unique prime of Fy, (resp. F) above p.

Write I := Gal(Fso/Q) and I't := Gal(F1/Q) = I'/(c), where ¢ denotes the
complex conjugation. Since Gal(F, /Q) sends a primitive p"-th root of unity to a
primitive p”-th root of unity, one deduces an isomorphism

Xn : Gal(F,/Q) = (Z/p"2)*

determined by the identity
o) =£1,

for o € Gal(F, /Q) and & € 11 ,» any primitive p"-th root of unity. By infinite Galois
theory,

I' = Gal(Foo/Q) := lim Gal(F,/Q) > lim(Z/p"2)* =75,  (9-1)

via the cyclotomic character x :=lim x,. Note x induces an isomorphism rt=
Z; /{x£1}.
We also define

Un1 ={u € Uy :u=1(modp,)}, X\ =U10%. (9-2)

The subsets %,,1 and %nfl are important as they have the structure of Z,-modules
(indeed, if u € %, or %,5 anda € Z ), then u® = 3", o (;)(u — DX converges).
By contrast, the full local units %, and %, are only Z-modules.

In general, our notation satisfies the following logic: if X, is any subgroup of %,,
then we let X = X, N%*, Xy1 =X, N\ %, and X;FJ =Xn %nfl. Observe
that, since ¥, C %, the same applies for any subgroup X, of ;.

It will be essential for our constructions and methods to consider these modules
at all levels simultaneously. We define

%oo = I(Ln%}'h %00,1 = l(iLn%n,la (9_3)
n n
U =lim %", % =lim7,,

n n
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where all limits are taken with respect to the norm maps. All of these infinite-
level modules are compact Z,-modules (since they are inverse limits of compact
Z ,-modules) and moreover they are all endowed with natural continuous actions
of I' = Gal(Fso/Q) or I't = Gal(F1;/Q). Accordingly, they are endowed with
continuous actions of the Iwasawa algebras A (I') or A(I'") (which is the primary
reason for passing to infinite-level objects).

We fix once and for all a compatible system of roots of unity (§,),en, that is,
a sequence where £, is a primitive p"-th root of unity such that §7.+1 = §,» for
all n € N. We let r,, = §,» — 1, which is a uniformiser of K.

10. The Coleman map

In this section we prove a theorem of Coleman relating local units to power series
over Z,. Using this result, we construct in Section 10 the Coleman map, a device
for constructing p-adic L-functions from the data of a compatible system of units.
We will explain how the Kubota—Leopoldt p-adic L-function can be constructed
from towers of cyclotomic units using the Coleman map. This map thus provides
an important bridge between analytic objects (p-adic L-functions) and arithmetic
structures (cyclotomic units), and will serve as the key step in our formulation of
the Main Conjecture.

In Section 10.5, we discuss a program started by Perrin-Riou to generalise
Coleman’s work. Given a p-adic Galois representation