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Cohomology of Fuchsian groups and Fourier interpolation

Mathilde Gerbelli-Gauthier and Akshay Venkatesh

We give a new proof of a Fourier interpolation result first proved by Radchenko
and Viazovska (2019), deriving it from a vanishing result of the first cohomology
of a Fuchsian group with coefficients in the Weil representation.

1. Introduction

Let S be the space of even Schwartz functions on the real line, and s the space of
sequences of complex numbers (an)n≥0 such that |an|nk is bounded for all k; we
write φ̂(k) =

∫
R
φ(x) e−2π ikx dx for the Fourier transform of φ ∈ S. Radchenko

and Viazovska [2019] proved the following beautiful “interpolation formula”:

Theorem 1.1. The map

9 : S → s⊕ s, φ 7→ (φ(
√

n), φ̂(
√

n))n≥0

is an isomorphism onto the codimension 1 subspace of s⊕ s cut out by the Poisson
summation formula, i.e., the subspace of (xn, yn) defined by

∑
n∈Z xn2 =

∑
n∈Z yn2 .

This is an abstract interpolation result: The statement implies the existence of a
universal formula that computes any value φ(x) of any even Schwartz function φ as
a linear combination

∑
an(x) φ(

√
n)+

∑
ân(x) φ̂(

√
n) for some an(x), ân(x), but

does not specify what those functions are. By contrast, Radchenko and Viazovska
first write down this explicit interpolation formula, and then deduce Theorem 1.1
from it. In a sense, what is accomplished in the present paper is to separate the
abstract content of this interpolation result from its computational aspect.

The morphism 9 is in fact a homeomorphism of topological vector spaces with
reference to natural topologies. We will give another proof of this theorem. The
first step of this proof is to notice that the evaluation points

√
n occur very naturally

in the theory of the oscillator representation defined by Segal, Shale and Weil (see
[Chan 2012] or [Lion and Vergne 1980] for introductions). Using this observation,
the theorem can be reduced to computing the cohomology of a certain Fuchsian
group with coefficients in this oscillator representation, and here we prove a more
general statement:
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Theorem 1.2. Let G be SL2(R) or a finite cover thereof , 0 a lattice in G , W an
irreducible infinite-dimensional (g, K )-module, and W ∗

−∞
the distributional global-

ization of its dual (see Section 2.4). Then H 1(0,W ∗
−∞
) is always finite-dimensional,

and in fact

dim H 1(0,W ∗

−∞
)= multiplicity of W cl in cusp forms on 0\G, (1)

where W cl is the complementary irreducible representation to W (see Section 2.3).

The theorem can be contrasted with usual Frobenius reciprocity:

dim H 0(0,W ∗

−∞
)= multiplicity of W in automorphic forms on 0\G. (2)

Note that, in the passage from (1) to (2), “cusp forms” have been replaced by “au-
tomorphic forms” and W cl by W. We also emphasize the surprising fact that, in the
theorem, the H 1 takes no account of the topology on W ∗

−∞
: it is simply the usual co-

homology of the discrete group 0 acting on the abstract vector space W ∗
−∞

. The cor-
responding determination for finite-dimensional W is the subject of automorphic co-
homology and is in particular completely understood, going back to [Eichler 1957].

A variant of Theorem 1.2, computing all the cohomology groups H i when W is a
spherical principal series representation, was already proved by Bunke and Olbrich
in the 1990s. We were unaware of this work when we first proved Theorem 1.2;
our original argument has many points in common with [Bunke and Olbrich 1998],
most importantly in our usage of surjectivity of the Laplacian both for analytic and
algebraic purposes, but also has some substantial differences of setup and emphasis.
We will correspondingly give two proofs: the first based on the results of [Bunke
and Olbrich 1998], and the second a shortened version of our original argument.

Some other interpolation consequences of Theorem 1.2, where interpolation is
understood in the abstract sense as discussed after Theorem 1.1, arise by replacing S
by other spaces of functions carrying natural representations of SL2(R) and its
finite covers; we discuss this in Section 6.4. For example, Hedenmalm and Montes-
Rodríguez [2011] have shown that the functions eiπαnt, eiπβn/t are weakly dense
in L∞ if and only if αβ = 1. We will show that an interpolation result holds at
the transition point αβ = 1; we thank the referee for bringing [Hedenmalm and
Montes-Rodríguez 2011] to our attention.

1.1. Theorem 1.2 implies Theorem 1.1. Here we give an outline of the argument
and refer to Section 6 for details.

We pass first to a dual situation. Denote by S∗ the space of tempered distributions,
i.e., the continuous dual of S. For our purposes we regard it as a vector space
without topology.

Similarly, we define s∗ as the continuous dual of s, where s is topologized by
means of the norms ∥(bn)∥k := supn bn(1 + |n|)k ; thus, s∗ may be identified with
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sequences (an) of complex numbers of polynomial growth, where the pairing of
(an) ∈ s∗ and (bn) ∈ s is given by the rule

∑
an bn . With this notation, the map

9∗
: s∗

⊕ s∗
→ S∗

dual to 9 takes the coordinate functions to the distributions δn and δ̂n:

(an, bn)n≥0 7→
∑

an δn + bn δ̂n,

where
δn(φ)= φ(

√
n), δ̂n(φ)= φ̂(

√
n).

Then Theorem 1.1 is equivalent to the assertion:

(Dual interpolation theorem): 9∗ is surjective and its kernel consists
precisely of the “Poisson summation” relation.

The equivalence of this statement and Theorem 1.1 is not a complete formality
because of issues of topology: see (52) for an argument that uses a theorem of
Banach.

The next key observation is that the space of distributions spanned by δn and
by δ̂n occur in a natural way in representation theory.

The closure of the span of δn (respectively, the closure of the span of δ̂n)
coincide with the e-fixed and f -fixed vectors on the space S∗ of tempered
distributions, where

e =

(
1 2
0 1

)
and f =

(
1 0
2 1

)
(3)

act on S∗ according to the oscillator representation (see Section 6.1 for
details), namely e and f multiply φ and φ̂, respectively, by e2π i x2

, see (51).

Let 0 be the group generated by e and f inside SL2(R): it is a free group, of
index 2 in 0(2), and it lifts to the double cover G of SL2(R). As explicated in
Section 6, computations of dimensions of modular forms and Theorem 1.2 yield

dim H 0(0,S∗)= 1, dim H 1(0,S∗)= 0. (4)

The final observation is that:

The kernel and cokernel of (S∗)e ⊕ (S∗) f
→ S∗ compute, respectively,

the H 0 and H 1 of 0 acting on S∗.

This follows from a Mayer–Vietoris-type long exact sequence that computes the
cohomology of the free group 0 [Brown 1982, Chapters II and III], namely,

0 → H 0(0,S∗)→ H 0(⟨e⟩,S∗)⊕ H 0(⟨ f ⟩,S∗)

→ H 0(1,S∗)→ H 1(0,S∗)→ · · · . (5)
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Combined with (4), we see that S∗
= (S∗)e + (S∗) f , i.e., the desired surjectiv-

ity of 9∗, and that the intersection of (S∗)e and (S∗) f is one-dimensional; this
corresponds exactly to the Poisson summation formula.

Another way to look at this is the following. The Poisson summation formula is
an obstruction to surjectivity in Theorem 1.1 and is closely related to the invariance
of the distribution

∑
δn ∈ S∗ by 0, i.e., the existence of a class in the zeroth

cohomology of 0 on S∗. The above discussion shows a less obvious statement: the
obstruction to injectivity in Theorem 1.1 is precisely the first cohomology of 0 on S∗.

1.2. The proof of Theorem 1.2. The analogue of Theorem 1.2 when W is finite-
dimensional and 0\G is compact is (by now) a straightforward exercise; as noted,
the ideas go back at least to [Eichler 1957], and the general case is documented in
[Borel and Wallach 2000]; the noncompact case is less standard but also well known,
see, e.g., [Casselman 1984] and [Franke 1998] for a comprehensive treatment.

The main complication of our case is that the coefficients are infinite-dimensional
and one might think this renders the question unmanageable. The key point is that W
is irreducible as a G-module. This says that, “relative to G”, it is just as good as a
finite-dimensional representation.

We will present two proofs of Theorem 1.2:

• The first proof, in Section 3, relies on the work of Bunke and Olbrich [1998], who
computed the cohomology of lattices in SL2(R) with coefficients in (the distribution
globalization of a) principal series representation. We give a sketch of the argument
of [Bunke and Olbrich 1998] for the convenience of the reader, and also because their
argument as written does not cover the situation we need. To deduce Theorem 1.2
from these results then requires us to pass from a principal series to a subquotient,
which we do in a rather ad hoc way.

• The second proof is our original argument prior to learning of the work of Bunke
and Olbrich just mentioned. It generalizes the standard way of computing 0-
cohomology with finite-dimensional coefficients, as given in [Borel and Wallach
2000], to the infinite-dimensional case — at least in cohomological degree 1. Given
the content of [Bunke and Olbrich 1998], we have permitted ourselves to abridge
some tedious parts of our original argument, and reproduce here in detail the part
that is perhaps most distinct from [Bunke and Olbrich 1998] — namely, we express
the desired cohomology groups in terms of certain Ext-groups of (g, K )-modules
and then compute these explicitly.

In both arguments the surjectivity of a Laplacian-type operator plays an essential
role. Such results are known since the work of Casselman [1984], and in their work,
Bunke and Olbrich prove and utilize such a result both at the level of G and 0\G.
We include a self-contained proof of such a result for 0\G in Section 5.
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1.3. Questions. As we have noted, we prove an abstract interpolation result. Can
one recover the explicit formula for the interpolating functions, as given in [Rad-
chenko and Viazovska 2019], from this approach? It seems to us that our proof is
sufficiently explicit that this is, at least, plausible.

It is very interesting to ask about the situation where 0 is not a lattice. Indeed,
if one were to ask about an interpolation formula with evaluation points 0.9

√
n,

one is immediately led to similar questions for a discrete but infinite covolume
subgroup of SL2(R), whereas considering 1.1

√
n leads to considering a nondiscrete

subgroup. Note that Kulikov, Nazarov and Sodin [Kulikov et al. 2025] have recently
shown very general results about Fourier uniqueness that imply, in particular, that
evaluating f and f̂ at 1.1

√
n do not suffice to determine f , but that evaluating

them at 0.9
√

n does.
Perhaps a more straightforward question is to establish an isomorphism

H i (0,W ∗

−∞
)≃ Extig,K (W, space of automorphic forms for 0\G), (6)

which is valid for general lattices 0 in semisimple Lie groups G and general irre-
ducible (smooth, moderate growth) representations V of G. Bunke and Olbrich have
proved this in the cocompact case, and our original argument proceeded by establish-
ing the case i = 1 for general lattices in SL2(R). Also, Deitmar and Hilgert [2005,
Corollary 3.3] prove a result of this type in great generality, but with the space of au-
tomorphic forms replaced by the larger space C∞(0\G) without growth constraints.

2. Covering groups of SL2(R)

Let q ≥ 1 be a positive integer and let G be the q-fold covering of the group
SL2(R), i.e., G is a connected Lie group equipped with a continuous homomorphism
G →SL2(R)with kernel of order q . This characterizes G up to unique isomorphism
covering the identity of SL2(R).

Denote by g the shared Lie algebra of G and of SL2(R) and exp : g → G the
exponential map. Also denote by K the preimage of SO2(R) inside G; it is abstractly
isomorphic as topological group to S1

= R/Z and we fix such an isomorphism
below.

The quotient G/K is identified with the hyperbolic plane H, on which G acts
by isometries. Define the norm of g ∈ G to be ∥g∥ := edistH(i,gi). Equivalently, we
could use

∥∥(a
c

b
d

)∥∥ =
√

a2 + b2 + c2 + d2 since either of these two norms is bounded
by a constant multiple of the other.

2.1. Lie algebra. Let H, X, Y be the standard basis for g:

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.
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We also use κ = i(X −Y ), 2p = H − i(X +Y ), 2m = H + i(X +Y ), or, in matrix
form

κ =

(
0 i

−i 0

)
, 2p =

(
1 −i

−i −1

)
, 2m =

(
1 i
i −1

)
. (7)

We have κ = ik, where k generates the Lie algebra of K .
The elements p,m and κ satisfy the commutation relations

[p,m] = κ, [κ, p] = 2p, [κ,m] = −2m, (8)

which say that p and m (shorthand for plus and minus) raise and lower κ-weights
by 2. The Casimir element C in the universal enveloping algebra determined by the
trace form is given by any of the equivalent formulas:

C =
1
2 H 2

+ XY +Y X =
1
2κ

2
+ pm +mp =

1
2κ

2
+κ+2mp =

1
2κ

2
−κ+2pm. (9)

2.2. Iwasawa decomposition. There is a decomposition

G = NAK , (10)

where A and N are the connected Lie subgroups of G with Lie algebra R.H and R.X
respectively. We will parameterize elements of A via

ay := exp
( 1

2 log(y)H
)
,

so that ay projects to the diagonal element of SL2(R) with entries y±1/2. We will
also write nx = exp(x X).

2.3. (g, K )-modules. Recall that a (g, K )-module W means a g-module equipped
with a compatible continuous action of K . Equivalently, it is described by the
following data:

• for each ζ ∈ q−1Z, a vector space Wζ giving the ζ -weight space of K , so that κ
acts on Wζ by ζ ;

• maps p : Wζ → Wζ+2 and m : Wζ → Wζ−2 satisfying [p,m] = κ .

We recall some facts about classification, see [Howe and Tan 1992] for details.
Irreducible, infinite-dimensional (g, K )-modules belong to one of three classes; in
each case, the weight spaces Wζ have dimension either zero or 1.

• Highest weight modules of weight ζ ; these are determined up to isomorphism by
the fact that their nonzero weight spaces occur in weights {ζ, ζ −2, ζ −4, . . . }. Wζ

is killed by p. One computes using (9) that on such modules, the Casimir element C
acts by 1

2ζ(ζ + 2).

• Lowest weight modules of weight ζ ; these are determined up to isomorphism
by the fact that their nonzero weight spaces occur in weights {ζ, ζ + 2, ζ + 4, . . . }.
Wζ is killed by m. Again, (9) shows that the Casimir element C acts by 1

2ζ(ζ − 2).

• Doubly infinite modules, in which the weights are of the form ζ +2Z for ζ ∈
1
q Z.
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Definition 2.1. For an infinite-dimensional irreducible (g, K )-module W we define
the complementary irreducible representation W cl to be

the irreducible (g, K )-module with highest weight ζ − 2 if W has lowest weight ζ ,

the irreducible (g, K )-module with lowest weight ζ + 2 if W has highest weight ζ ,

W otherwise.

The representation W cl can be finite-dimensional; this occurs exactly when W is
the underlying (g, K )-module of a discrete series representation on SL2(R).

In Section 4 we use the following key fact about (g, K )-modules.

Proposition 2.2. Let W be an irreducible infinite-dimensional (g, K )-module with
Casimir eigenvalue λ. Then, for any (g, K )-module V :

(a) If C − λ is surjective on V , then Ext1(g,K )(W, V )= 0.

(b) If V is irreducible, Ext1(g,K )(W, V ) is one-dimensional if V ≃ W cl, and is zero
otherwise.

Proof. We will prove these statements in the case where W is a lowest weight
module, which is the case of our main application. The same proof works with
slight modifications for W a highest weight or doubly infinite module: in every
case, one takes an arbitrary lift of a generating vector, and modifies it using the
surjectivity of an appropriate operator.

We prove (a). Take W to be generated by a vector vζ of lowest weight ζ with
mvζ = 0. This implies by the classification above that

λ=
1
2ζ(ζ − 2). (11)

Take an extension V → E → W ; to give a splitting we must lift wζ to a vector in E
of K-type ζ killed by m. Arbitrarily lift wζ to w̃ζ ∈ Eζ . Then mw̃ζ ∈ Vζ−2 and it
suffices to show that it lies inside the image of m : Vζ → Vζ−2, for we then modify
the choice of w̃ζ by any preimage to get the desired splitting. By (9) and (11) we
see that C−λ : Vζ−2 → Vζ−2 agrees with 2mp. Since it is surjective, it follows that
in particular m : Vζ → Vζ−2 is surjective.

We pass to (b). Suppose V is irreducible; then Ext1(g,K )(W, V ) vanishes unless V
has the same C-eigenvalue as W. The argument above exhibits an injection of

Ext1(g,K )(W, V ) ↪→
Vζ−2

mVζ

and inspection of K-types amongst those irreducibles with the same C-eigenvalue
as V shows that this also vanishes unless V ≃ W cl, in which case it is one-dimen-
sional. It remains only to exhibit a nontrivial extension of W by W cl, which is
readily done by explicit computation. □
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2.4. Globalizations. A globalization of a (g, K )-module W is any continuous G-
representation on a topological vector space W such that (W )K = W . We will
consider two instances of this: the smooth, or Casselman–Wallach globalization W∞,
and the distributional globalization W−∞.

Following [Casselman 1989], the representation W∞ is the unique globalization
of W as a moderate growth Fréchet G-representation. By definition, such a represen-
tation is a Fréchet space F (topologized with respect to a family of seminorms) such
that for any seminorm ∥ ·∥α , there is an integer Nα and a seminorm ∥ ·∥β for which

∥gw∥α ≤ ∥g∥
Nα∥w∥β .

The distributional globalization is a dual notion. Indeed, denote by W ∗ the
K-finite part of the dual of W, equipped with the contragredient (g, K )-module
structure. Then

(W∞)
∗
= (W ∗)−∞, (12)

where on the left-hand side, the dual is understood as continuous.
We recall an explicit construction of W−∞, see [Bunke and Olbrich 1998, Sections

2 and 3], although it will not be directly used in the rest of the paper: Given W ∗ as
above, let V ∗

⊂ W ∗ be a finite-dimensional K-stable subspace that generates W ∗ as
a (g, K )-module. Let (V ∗)∗ =: V ⊂ W viewed as a K-representation, and consider
the space

EV = { f ∈ C∞(G, V ) | f (gk)= k−1 f (g), g ∈ G, k ∈ K }.

Then the image of W under the map i : W → EV characterized by

⟨i(w)(g), v∗
⟩ := ⟨w, gv∗

⟩ (w ∈ W, v∗
∈ V ∗)

belongs to the space AG
V of sections of moderate growth, i.e., of functions f ∈ EV

such that for every X ∈ U (g), there is R = R( f, X) for which

∥ f ∥X,R = sup
g∈G

|X f (g)|
∥g∥R <∞. (13)

We note that this differs from the notion of uniform moderate growth, where one
requires R to be taken independently of X .

The space AG
V is topologized as the direct limit of Fréchet spaces with respect

to the seminorms ∥ · ∥X,R . The map i is injective since V ∗ generates W ∗, and the
distributional globalization is defined by

W−∞ := i(W )⊂ AG
V .

3. First proof of Theorem 1.2: resolutions of principal series

In this section, we derive Theorem 1.2 from the results of Bunke and Olbrich [1998],
adapting the arguments of Section 9 therein to nonspherical principal series. The
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two essential ingredients of this argument are the following points established by
Bunke and Olbrich, which we shall use as “black boxes”:

• acyclicity of 0 acting on spaces of moderate growth functions on G/K , and

• surjectivity of a Laplace-type operator acting on these spaces.

The first point, at least, is intuitively reasonable: it asserts that moderate growth
functions on G/K behave like a free 0-module; this is plausible since the 0-action
on G/K is (at least, virtually) free.

Given these, the idea of the argument for Theorem 1.2 is as follows. We will
first show that principal series representations are realized as spaces of moderate
growth Laplacian eigenfunctions on G/K ; by the two points mentioned above, this
gives a resolution of the principal series by 0-acyclic modules. This permits us to
compute cohomology of principal series representations. Finally, every irreducible
representation is realized as a subquotient of such a representation, and we will then
prove Theorem 1.2 by a study of the associated long exact sequence in cohomology.

3.1. Setup. Fix a Casimir eigenvalue λ, and a lattice 0 ⊂ G. Given ζ a one-
dimensional representation of K , define the following spaces of smooth functions
(compare with Section 2.4, and see (13) in particular for the notion of moderate
growth, which is not the same as uniform moderate growth):

AG (resp. A)= moderate growth functions on G (resp. on 0\G),

AG
ζ ,Aζ = subspace with right K-type ζ : f (gk)= f (g)ζ(k),

AG
ζ (λ),Aζ (λ)= subspace with right K-type ζ and Casimir eigenvalue λ,

Cuspζ (λ)= subspace of Aζ (λ) consisting of cuspforms.

(14)

We will first prove a variant of Theorem 1.2 for principal series. Let B be the
preimage of the upper triangular matrices inside G, which we recall is the q-fold
cover of SL2(R); we may write

B = MAN ,

where A and N are as in (10), and M = Z K (A) ≃ Z/2qZ. Denote by ξ ∈ C the
character of A sending ay 7→ yξ . Given a pair of characters (σ, ξ) of K and A
respectively, let

H = { f ∈ C∞(G) | f (mang)= aξ+1σ−1(m) f (g), f K-finite} (15)

be the Harish-Chandra module of K-finite vectors in the corresponding principal
series representation. This depends on σ and ξ , but to simplify the notation we
will not include them explicitly. We denote by H−∞ its distributional completion
(see Section 2.4); explicitly, if we identify H as above with functions on K which
transform on the left under the character σ−1, then H−∞ is the corresponding space
of distributions on K .
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Let us explicate this in the language of Section 2.3. We will parameterize σ by
the value of dσ at κ; this is a class in q−1Z that we will denote by ζ0. A K-basis
of H is given by vectors eζ with ζ ∈ ζ0 + 2Z, normalized to take value 1 at the
identity of G. The actions of raising and lowering operators are given by

peζ =
1
2(ζ + 1 + ξ) eζ+2 and meζ =

1
2(−ζ + 1 + ξ) eζ−2, (16)

and the action of the Casimir on eζ is thereby given by 1
2(ξ

2
− 1). From these

explicit formulas we readily deduce the following statements:

(a) If 1 + ξ does not belong to ±ζ0 + 2Z, then H is irreducible.

(b) If 1 + ξ belongs to either ζ0 + 2Z or −ζ0 + 2Z but not both, then H has the
structure

0 → V → H → V → 0, (17)

where V, V are irreducible (g, K )-modules; V is the module of highest (lowest)
weight ζ according to whether −ξ − 1 or 1 + ξ belongs to ζ0 + 2Z, and V = V cl.

(c) If 1 + ξ belongs to both1 ζ0 + 2Z and −ζ0 + 2Z, and ξ ≥ 1, then H has the
structure of an extension

V +
⊕ V −

→ H → F,

where V − is the highest weight representation of weight −ξ − 1, and V + the
lowest weight representation of weight ξ + 1, whereas F is the finite-dimensional
representation of dimension ξ with weights −ξ + 1,−ξ + 3, . . . , ξ − 1. A similar
dual description is valid when ξ ≤ 0, where the finite-dimensional representation
now occurs as a subrepresentation.

In the following proposition, we will assume that we are in either cases (a) or (b)
of the above classification, that is, H is either irreducible, or decomposes as

0 → V → H → V → 0, (18)

where both the subrepresentation and quotient are irreducible (g, K )-modules.

Proposition 3.1. Let G be the degree q connected cover of SL2(R). Denote by λ
the eigenvalue by which C acts on HK ; then there are natural isomorphisms

H 0(0, H−∞)≃ Aζ (λ), H 1(0, H−∞)≃ Cuspζ (λ),

H i (0, H−∞)= 0 for i ≥ 2,

where ζ is any K-weight generating the dual (g, K )-module H∗.

The condition on ζ is automatic when H is irreducible, and in the case when H
is reducible is equivalent to asking that ζ belongs to the K-weights of V ∗.

1This happens only when ζ0 ∈ Z, and in particular the representation descends to a representation
of SL2(R).
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Proof. In Section 9 of [Bunke and Olbrich 1998] this result is proven in the case
of q = 1 and the trivial K-type. We will outline the argument to make clear that it
remains valid in the situation where we now work, i.e., permitting a covering of
SL2(R) and an arbitrary K-type.

Fix v∗
∈ H∗ of K-type ζ , normalized as in the discussion preceding (16). Then

the rule sending D ∈ H−∞ to the function D(gv∗) on G induces an isomorphism

H−∞ ≃ AG
ζ (λ). (19)

We will outline a direct proof of this isomorphism. Injectivity, at least, follows
readily: if D lies in the kernel, it would annihilate the (g, K )-module generated
by v∗, which is all of H∗, and by continuity D is then zero.

For surjectivity, one first checks that K-finite functions lie in the image of
the map — that is to say, a function f of fixed right and left K-types, and with
a specified Casimir eigenvalue, occurs in the image of the map above. Such
an f is uniquely specified up to constants: using the decomposition G = KAK ,
the Casimir eigenvalue amounts to a second-order differential equation for the
function y 7→ f (ay) for y ∈ (1,∞), and of the two-dimensional space of solutions
only a one-dimensional subspace extends smoothly over y = 1; see [Kitaev 2017,
pp. 12 and 13] for an explicit description both of the differential equation and a
hypergeometric basis for the solutions.2 It follows from this uniqueness that f must
agree with D(gv∗) where D and v∗ match the left and right K-types of f . To pass
from surjectivity onto K-finite vectors to surjectivity, we take arbitrary f ∈ AG

ζ (λ)

and expand it as a sum
∑

ξ fξ of left K-type. Each fξ has a preimage vξ according
to the previous argument; so one must verify that

∑
ξ vξ converges inside H−∞, and

for this it is enough to show that ∥vξ∥ grows polynomially with respect to |ξ | (here
we compute ∥vξ∥ as the L2-norm restricted to K in (15)). For this we “effectivize”
the previous argument: The moderate growth property of f implies a bound of the
form | fξ (g)| ≤ c∥g∥

N , uniform in ξ . On the other hand, fξ = vξ (gv∗), and such a
matrix coefficient always is not too small:

|vξ (gv∗)| ≥ (1 + |ξ |)−M
∥vξ∥ for some choice of ∥g∥ ≤ (1 + |ξ |)M . (20)

Such lower estimates on matrix coefficients can be obtained by keeping track of
error bounds in asymptotic expressions. They are developed in greater generality in
the Casselman–Wallach theory, see, e.g., Corollary 12.4 of [Bernstein and Krötz
2014] for a closely related result. Combining (20) with the upper bound on fξ
shows that ∥vξ∥ ≤ c(1 + |ξ |)MN+M as desired.

2There are other references in the mathematical literature but Kitaev explicitly considers the
universal cover.
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This concludes our sketch of proof of (19), that is to say, H−∞ is the kernel of

AG
ζ

C−λ
−−→ AG

ζ (21)

in the notation of (14). We now invoke surjectivity of a Laplace operator: the
morphism C − λ of (21) is surjective, by [Bunke and Olbrich 1998, Theorem 2.1];
and consequently (21) is in fact a resolution of H−∞. Moreover, [Bunke and Olbrich
1998, Theorem 5.6] asserts that the higher cohomology of 0 acting on AG

ζ vanishes;
it is for this argument that Bunke and Olbrich use “moderate growth” rather than
“uniform moderate growth”. Consequently, the 0-cohomology of H−∞ can be
computed by taking 0-invariants on the complex (21):

(AG
ζ )
0 C−λ

−−→ (AG
ζ )
0.

Clearly, the H 0 here coincides with Aζ (λ). On the other hand, the image of C − λ

contains the orthogonal complement of cusp forms (see [Bunke and Olbrich 1998,
Theorem 6.3]; compare Proposition 4.1), and so the H 1 coincides with the cokernel
of C − λ acting on cusp forms; there we can pass to the orthogonal complement
and identify H 1

≃ Cuspζ (λ) as desired.3 □

Lemmas 3.2 and 3.3 below will be useful in the sequel. We omit the proof of
the first one.

Lemma 3.2. Let ζ be, as in Proposition 3.1, a K-weight on H∗ which generates the
latter as (g, K )-module; fix vζ ∈ H∗ nonzero of weight ζ . For any (g, K )-module V ,
there is an isomorphism

Hom(g,K )(H∗, V )→ Vζ (λ), f 7→ f (vζ ), (22)

where Vζ (λ) is the subspace of Vζ killed by C − λ.

The second is a precise statement of Frobenius reciprocity, stated in a less formal
way in (2).

Lemma 3.3. Let V be a finite length (g, K )-module. Then there is an isomorphism

H 0(0, V ∗

−∞
)≃ Hom(g,K )(V,AK ),

where V ∗
−∞

is the distributional globalization of V ∗.

One of the earliest versions of such a statement can be found in [Gelfand et al.
1969, Chapter 1, Section 4]. For completeness we outline the proof, in our language,
in Remark 4.3.

For reducible principal series as in (18), we prove:

3In fact, C − λ is adjoint to C − λ̄, but the kernel of the latter of either is only nonzero if λ is real,
so we do not keep track of the complex conjugate.
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Proposition 3.4. Let H−∞ with Casimir eigenvalue λ decompose as in (18). Then
the quotient map H → V induces an isomorphism, after passing to distribution
globalizations and 0-cohomology,

H 1(0, V−∞)≃ H 1(0, H−∞)(≃ Cuspζ (λ), by Proposition 3.1).

Proof. The discussion around (17) shows that inverting both ξ and σ gives rise to
another principal series H which fits into the exact sequence

0 → V → H → V → 0, (23)

i.e., for which the roles of subrepresentation and quotient are swapped between V
and V . We will deduce the result by playing off Proposition 3.1 applied to (the
distribution globalization of) H , and the same Proposition applied to H .

We first consider the long exact sequence associated to (the distribution global-
ization of) (18), namely

0 → H 0(0, V −∞)→ H 0(0, H−∞)
�

−→ H 0(0, V−∞)

→ H 1(0, V −∞)→ H 1(0, H−∞)
5

−→ H 1(0, V−∞)→ 0. (24)

We have used here that the next group H 2(0, V −∞) of the sequence vanishes:
it is isomorphic to H 3(0, V−∞) by the long exact sequence associated to (23)
and Proposition 3.1, and that H 3 vanishes always. Indeed, let 0 be the image
of 0 → PSL2(R), and µ ⩽ 0 the kernel of 0 → 0; if V is a C[0]-module then
H i (0, V )= H i (0, V µ), and being a lattice in PSL2(R), the virtual cohomological
dimension of 0 is at most 2.

We must show that the penultimate map 5 of (24) is an isomorphism. For this it
is enough to show that

dim cokernel�≥ dim H 1(0, V −∞).

By applying Proposition 3.1 to H , we find that H 1(0, V −∞) is a quotient of
Cuspχ (λ), for χ a weight in V ∗. It therefore suffices to show that

dim cokernel�≥ dim Cuspχ (λ). (25)

We will prove this by exhibiting a subspace

H 0(0, V−∞)
cusp

⊂ H 0(0, V−∞) (26)

of the codomain of �, which does not meet the image of �, and whose dimension
equals that of Cuspχ (λ).

The space H 0(0, V−∞) is identified, by means of Frobenius reciprocity (see
Lemma 3.3) with the space of homomorphisms from the dual (g, K )-module V ∗ to
the K-finite vectors AK in the space of automorphic forms. Define H 0(0, V−∞)

cusp
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to be the subspace corresponding to homomorphisms V ∗
→ AK that are actu-

ally valued in cusp forms. We now show the two properties of this subspace
H 0(0, V−∞)

cusp asserted after (26):

• Its dimension equals that of Cuspχ (λ). To see this, apply Lemma 3.2 to H ,
with ζ = χ and V the K-finite vectors of the space of cusp forms; it yields an
isomorphism

Hom(g,K )(H∗,CuspK )≃ Cuspχ (λ).

But homomorphisms from H∗ to CuspK factor through V ∗ by semisimplicity of
the space of cusp forms (which in turn follows by unitarity). This shows that the
space Hom(g,K )(V ∗,CuspK ) has the same dimension as Cuspχ (λ), as required.

• It intersects trivially the image of �. This amounts to the statement that no
homomorphism from V ∗ to CuspK can be extended to a homomorphism from H∗

to AK . Suppose, then, that f : H∗
→AK is a (g, K )-module homomorphism whose

restriction to V ∗ is nonzero and has cuspidal image. We now make use of the orthog-
onal projection map from all automorphic forms to cusp forms, which exists because
one can sensibly take the inner product of a cusp form with any function of moderate
growth. Post-composing f with this projection gives a morphism from H∗ to the
semisimple (g, K )-module CuspK ; since H∗ is a nontrivial extension of V ∗ by V ∗,
this morphism is necessarily trivial on the subrepresentation V ∗, a contradiction. □

Now let us deduce Theorem 1.2. We divide into three cases according to how
the representation W of the theorem can be fit into a principal series. Our division
corresponds to the division (a), (b), (c) enunciated after (16), and the statements
below about the structure of W can all be deduced from the statements given there.

• W is an irreducible principal series, equivalently, W is doubly infinite. In this
case, W cl

= W , and combining Proposition 3.1 and Lemma 3.2 gives the statement
of Theorem 1.2.

• W is an irreducible subquotient of a principal series H with exactly two com-
position factors. In this case we can suppose that W = V ∗ with notation as
in (18). In that notation we have W ∗

= V and W cl
= V ∗. Proposition 3.4 gives

H 1(0, V−∞)≃ Cuspζ (λ), and Lemma 3.2 shows that Cuspζ (λ) is identified with
the space of (g, K )-homomorphisms from H∗ to the space of cusp forms; by
semisimplicity of the target such a homomorphism factors through the irreducible
quotient V ∗

= W cl. This proves Theorem 1.2 in this case.

• W is an irreducible subquotient of a principal series with more than two compo-
sition factors. In this case, W is necessarily a highest- or lowest-weight module
factoring through SL2(R), and there is an exact sequence

F → H → D, (27)
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where F is finite-dimensional and D is the sum of W ∗ and another highest- or lowest-
weight module. Here, W cl

= F∗
≃ F and Theorem 1.2 is equivalent to the vanishing

of H 1(0,W ∗
−∞
). In the case of a discrete series that factors through PSL2(R), this

vanishing follows from [Bunke and Olbrich 1998, Proposition 8.2], and the remain-
ing case of an “odd” discrete series is handled by the same argument. Namely, use the
long exact sequence associated to (27); the argument of Proposition 3.1 shows that
H 1(0, H−∞)=0, and also H 2(0, F)=0 by Poincaré duality because F is nontrivial.
Thus also H 1(0,D−∞)= 0 and so its summand H 1(0,W ∗

−∞
) also vanishes.

4. Second proof of Theorem 1.2: extensions of (g, K )-modules

Our original proof of Theorem 1.2 proceeds by a reduction to a computation in the
category of (g, K )-modules. The two essential ingredients of this argument are:

(a) The Casselman–Wallach theory [Casselman 1989; Wallach 1992] which gives a
canonical equivalence between suitable categories of topological G-representa-
tions and algebraic (g, K )-modules.

(b) Surjectivity of a Laplace-type operator acting, now, on spaces of moderate
growth functions on 0\G.

We will not prove (a), although we will briefly sketch an elementary proof of
what we use from it. We will prove (b) in the next section.

Let λ be the eigenvalue by which the Casimir C ∈ Z(g) of (9) acts on W (the
irreducible (g, K )-module from the statement of Theorem 1.2). We will use the
notation A from (14) for the space of smooth, uniform moderate growth functions f
on 0\G, i.e., for which there exists R such that for all X ∈ U,

∥ f ∥X,R = sup
g∈G

|X f (g)|
∥g∥R <∞ (28)

(compare with (13), and beware that we are using the same notation as in Section 3,
but for a slightly different space). We use uniform moderate growth because it inter-
faces more readily with the Casselman–Wallach theory; by contrast, Section 3 used
moderate growth because this is used in the acyclicity result mentioned after (21).

Also consider the following subspaces of A:

Aλ−nil = K-finite functions on which C − λ acts nilpotently,

Cusp(λ)= subspace of Aλ−nil consisting of cusp forms.

The precise form of (b) we will use is this:

Proposition 4.1. The image of the map C−λ :AK →AK is precisely the orthogonal
complement to Cusp(λ) inside AK .
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This is almost [Bunke and Olbrich 1998, Theorem 6.3], except there the argument
is for moderate growth functions rather than uniform moderate growth; they state
on page 73 that the same proof remains valid in the uniform moderate growth
setting. Also, Cassleman [1984, Theorem 4.4] proves, for the trivial K-type, that
C is surjective on spaces of Eisenstein distributions, from which a similar result
can be extracted. Since the above statement is in a sense the crux of the argument,
and neither reference gives it in precisely this form, we have given a self-contained
proof in Section 5. Our proof follows a slightly different strategy and is perhaps of
independent interest.

4.1. Proof of Theorem 1.2: reduction to (g, K ) extensions. We begin the proof
of Theorem 1.2 assuming Proposition 4.1. This will proceed in three steps:

(i) First, using a topological version of Shapiro’s lemma, we make the identifica-
tion H 1(0,W ∗

−∞
)≃ Ext1G(W∞,A).

(ii) Next, we pass from the category of G-modules to that of (g, K )-modules and
produce an isomorphism Ext1G(W∞,A)≃ Ext1(g,K )(W,Aλ−nil).

(iii) Finally, we compute that Ext1(g,K )(W,Aλ−nil) is isomorphic to the promised
space of cuspforms, using the explicit computations from Section 2.3.

In practice, for technical reasons, we carry out (iii) first and then show that the
map of (ii) is an isomorphism.

We begin by constructing an isomorphism

H 1(0,W ∗

−∞
)≃ Ext1G(W∞,A), (29)

where W∞ is the smooth globalization of W.
On the left, we have the ordinary group cohomology of the discrete group 0

acting on the vector space W ∗
−∞

, without reference to topology. On the right here
we use a topological version of Ext defined as follows: present A as a directed
union lim

−−→
A(R) of moderate growth Fréchet G-representations (see Section 2.4)

obtained by imposing a specific exponent of growth R in (28). The right-hand side
is then defined to be the direct limit lim

−−→
Ext1G(W∞,A(R)), where the elements of

each Ext group are represented by isomorphism classes of short exact sequences4

A(R) →? → W∞, with ? a moderate growth Fréchet G-representation and the
maps are required to be continuous.

The statement (29) is then a version of Shapiro’s lemma in group cohomology. Let
us spell out the relationship: for G1 ≤ G2 of finite index, and W a finite-dimensional

4Here, the notion of exact sequence is the usual one, with no reference to topology: the first map
is injective, and its image is the kernel of the second, surjective map.
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G1-representation, Shapiro’s lemma supplies an isomorphism

H 1(G1,W ∗)
(i)
≃ H 1(G2, IG2

G1
W ∗)

(ii)
≃ H 1(G2, (I

G2
G1

C)⊗ W ∗)
(iii)
≃ Ext1G2

(W, IG2
G1

C). (30)

Here I G2
G1

is the induction from G1 to G2, and we used in (i) Shapiro’s lemma
in its standard form [Brown 1982, Chapter 3, Sections 5 and 6]; at step (ii) the
projection formula IG2

G1
W ∗

≃ IG2
G1

C ⊗ W ∗, and at step (iii) the relationship be-
tween group cohomology and Ext-groups which results by deriving the relationship
HomG2(W, V )= (V ⊗ W ∗)G2 .

Our statement (29) is precisely analogous to the isomorphism of (30) with 0
playing the role of G1, G playing the role of G2, and with topology inserted. It can
be proven simply by writing down the explicit maps from far left to far right in (30)
and checking that they respect topology and are inverse to one another. There is
only one point that is not formal: to prove that there is a well-defined map from left
to right, one needs to check that the extension of G-representations arising in (iii) by
“inflating” a cocycle j :0→ W ∗

−∞
indeed has moderate growth. This requires growth

bounds on j , and these follow simply by writing out j (γ ), for arbitrary γ ∈ 0, in
terms of the values of j on a generating set using the cocycle relation. We observe
that some “automatic continuity” argument of this nature is needed, because, in the
statement of (29), the topology of W figures on the right-hand side but not on the left.

As the next step towards Theorem 1.2, observe that there is a natural map

Ext1G(W∞,A)→ Ext1(g,K )(W,Aλ−nil), (31)

where the right-hand side is taken in the category of (g, K )-modules.
This “natural map” associates to an extension A → E → W∞ the underlying

sequence of K-finite vectors in each of A, E,W∞ which are annihilated by some
power of C − λ (in the case of W∞, this space is exactly W, on which C − λ

acts trivially). That the resulting sequence remains exact follows from surjectivity
of C−λ in the form of Proposition 4.1. We explicate this: one must verify that each
elementw∈ W has a preimage in EK killed by some power of (C−λ). First, take an
arbitrary preimage of w in E and average it over K to produce a preimage e ∈ EK .
Then (C − λ) e belongs to the image of AK , and can be written as f1 + f2 with
f1 ∈ Cusp(λ)⊂ ker(C−λ) and f2 ∈ Cusp(λ)⊥. Choose, by Proposition 4.1, a class
e′

∈ AK with (C − λ) e′
= f2; then e − e′ still lifts w and is now killed by (C − λ).

We will show in Section 4.2 that the right-hand side of (31) has dimension

m = the multiplicity of W cl in Cusp(λ),

and in Section 4.3 that (31) is actually an isomorphism. This will conclude the
proof, remembering that the left-hand side is identified, by means of (29), with
H 1(0,W ∗

−∞
).
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4.2. Evaluation of the (g, K )-ext. We compute the (g, K )-extension on the right-
hand side of (33). The space Cusp(λ) decomposes as a finite direct sum of irre-
ducible (g, K )-modules; this follows from the similar L2 statement, see [Borel 1997,
Section 8]. Since each of these irreducible summands has infinitesimal character λ,
their underlying (g, K )-modules can belong to at most three isomorphism classes,
as described in Section 2.3; among these is W cl, the “complementary (g, K )-module
to W ” from Definition 2.1. Accordingly we decompose

Aλ−nil = Cusp(λ)⊥ ⊕ (W cl)m ⊕
⊕

V ⊂Cusp(λ)
V ̸≃W cl

V, (32)

where Cusp(λ)⊥ is the orthogonal complement of Cusp(λ) within Aλ−nil, and m is
the multiplicity of W cl in Cusp(λ).

The splitting (32) induces a similar direct sum splitting of Ext1(g,K )(W,Aλ−nil).
But Proposition 4.1 implies that C − λ defines a surjection from Cusp(λ)⊥ to itself,
and so, applying Proposition 2.2,

Ext1(g,K )(W,Cusp(λ)⊥)= 0.

The remaining two summands evaluate via the second part of Proposition 2.2 to Cm

and 0 respectively. This yields

Ext1(g,K )(W,Aλ−nil)≃ Cm .

This concludes the proof that the right-hand side of (31) has dimension m.

4.3. Comparison of topology and (g, K ) extensions. To conclude, we must show
that the map of (31) is in fact an isomorphism.

Injectivity of the resulting map on Ext-groups follows using the Casselman–
Wallach theory of canonical globalization; the result is formulated in exactly the
form we need in [Bernstein and Krötz 2014, Proposition 11.2], namely, a splitting
at the level of (g, K )-modules automatically gives rise to a continuous splitting.5

For surjectivity, one cannot directly apply the Casselman–Wallach theory because
A is “too big”. However, we saw in Section 4.2 that the right-hand side of (31)
actually is generated by the image of Ext1(g,K )(W,Cusp(λ)). The space Cusp(λ)
has finite length, and then the results of [Casselman 1989] (in the form of the
equivalence of categories, see [Wallach 1992, Corollary, Section 11.6.8]) implies
that each such extension of (g, K )-modules arises from an extension of smooth
globalizations, which readily implies the desired surjectivity.

5We sketch the idea of the argument to emphasize that what we use is relatively elementary: Given
an abstract (g, K )-module splitting ϕ : W → A we must show that it does not distort norms too far.
Fixing a generating set w1, . . . , wr for W, one shows using bounds similar to (20) that any vector
w ∈ W can be written as

∑
hi ⋆wi where hi are bi-K-finite functions on G and the norms of the hi are

not too large in terms of the norms of w. This permits one to bound the size of ϕ(w)=
∑

hi ⋆ ϕ(wi ).



COHOMOLOGY OF FUCHSIAN GROUPS AND FOURIER INTERPOLATION 235

Remark 4.2. Together, the isomorphisms (29) and (31) give an isomorphism

H 1(0,W ∗

−∞
)≃ Ext1(g,K )(W,Aλ−nil). (33)

The analogous statement in all cohomological degrees has been proved for cocom-
pact 0 in [Bunke and Olbrich 1997, Theorem 1.4]. However, our argument does
not generalize to this case, at least in any routine way: it is not immediately clear
to us how to generalize the cocycle growth argument to H i for i > 1.

Remark 4.3. For completeness, because we made use of it earlier, we outline the
argument for the much easier degree 0 version of (33), i.e., “Frobenius reciprocity”:

H 0(0,W ∗

−∞
)≃ Hom(g,K )(W,Aλ−nil), (34)

where we now allow W to be any finite length (g, K )-module.
The standard construction of Frobenius reciprocity identifies H 0(0,W ∗

−∞
) with

continuous G-homomorphisms from W∞ to A; then, restriction to K-finite vectors
defines a class in Hom(g,K )(WK ,A)≃ Hom(g,K )(WK ,Aλ−nil). This restriction map
is an isomorphism by the Casselman–Wallach theory [Wallach 1992, Theorem,
Section 11.6.7], taking the target space to be the subspace of A comprising functions
which are (i) by killed by a fixed large power of (C−λ) and (ii) have finite norm (28)
for all X and for some fixed large R. This proves (34).

Now (34) implies Lemma 3.3: W is annihilated by an ideal of finite codimension
in Z(g); as such, the image of any (g, K )-homomorphism from W to moderate
growth functions automatically has image inside functions of uniform moderate
growth [Borel 1997, 5.6], and therefore has image in Aλ−nil.

5. Surjectivity of Casimir on the space of automorphic forms

The primary analytic ingredient in both proofs is the surjectivity of a Laplacian-
type operator; in the first proof this is used on spaces of functions both on G and
on 0\G, and in the second proof it is used only on 0\G. We will now give a
self-contained proof of the second version, Proposition 4.1. As noted after that
proposition, this statement is essentially in the literature, but given its importance it
seemed appropriate to give a self-contained proof.

We follow here the notation of Section 4; in particular, A is defined using the no-
tion of uniform moderate growth. It is enough to show that every function orthogonal
to Cusp(λ) occurs in the image of C−λ :AK →AK . The basic strategy is as follows:

(i) In Section 5.4, we decompose elements of AK into functions “near the cusp”
and functions of rapid decay.

(ii) In Section 5.5, we construct preimages under C − λ for functions in each sub-
space. Doing this “near the cusp” amounts to solving an ODE; the construction
of preimages for functions of rapid decay is carried out via L2-spectral theory.
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Since C − λ commutes with K , it suffices to prove Proposition 4.1 with AK re-
placed by its subspace Aζ with K-type ζ . In what follows, we will regard ζ as fixed.

5.1. Cusps. It is convenient to fix once and for all a fundamental domain for 0\G:
we take

F =
{
z ∈ H : d(z, i)≤ d(γ z, i) for all γ ∈ 0− {e}

}
, (35)

which describes a convex hyperbolic polygon which is (up to boundary) a funda-
mental domain for 0 acting on H; its pullback to G via g 7→ g · i is a fundamental
domain for 0\G, which will often be denoted by the same letter. In particular, F
can be decomposed in the following way, where the sets intersect only along their
boundary:

F = F0 ∪ C1 ∪ C2 ∪ · · · ∪ Ch, (36)

with F0 compact and each Ci a cusp, that is to say, a G-translate of a region of the
form {x + iy : a ≤ x ≤ b, y ≥ Y0}. In the Iwasawa coordinates G = NAK of (10),
the pullback of Ci to G therefore has the form

C̃i = gi · {nx ay k : a ≤ x ≤ b, y ≥ Y0, k ∈ K }. (37)

The map C̃i → 0\G is injective on the interior of C̃i . We will often identify C̃i with
its image in 0\G.

5.2. The constant term and moderate growth functions in the cusp. Let f ∈ Aζ .
Fix a cusp i ; we write 0N

i for 0∩gi Ng−1
i . The constant term f N

i : gi Ng−1
i \G → C

is defined by the rule

f N
i : x 7→ average value of f (gi nt g−1

i x) for t ∈ R. (38)

The function f (gi nt g−1
i x) is periodic in t and therefore the notion of its average

value makes sense. Moreover, the above map is right G-equivariant. A basic (and
elementary) fact is that f N

i is asymptotic to f inside C̃i ; indeed the function f − f N
i

has rapid decay in C̃i , as proved in [Borel 1997, 7.5]. Here, we say that a function
J : C̃i → C has rapid decay if, for any X1, . . . , Xr ∈ g and any positive integer N
we have

sup
C̃i

∥g∥
N
|X1 . . . Xr J (g)|<∞. (39)

Let us consider more generally functions f on G that are left N -invariant and
have fixed right K-type ζ . Such a function may be identified, by means of pullback
by y 7→ ay , with a function f on R+. The condition of the original N -invariant
function on G having finite norm under ∥ · ∥X,R for all X , with notation as in (28),
is equivalent to asking that∣∣∣∣(y

d
dy

) j

f
∣∣∣∣< C j · (|y|

−1
+ |y|)R for all j. (40)
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That this condition is necessary is seen by applying (28) to X a product of ele-
ments in Lie(A). To see that it is sufficient, we fix U belonging to the universal
enveloping algebra of g; now, for any k ∈ K , we may write U as a sum of terms∑

ci (k)(Ad(k−1)UN ,i )(Ad(k−1)UA,i )UK ,i where the terms belong to fixed bases
for the universal enveloping algebra of N , A and K respectively, and the coeffi-
cients ci (k) are bounded independently of k. This permits us to bound U f (nak)
and we see that the bound (40) suffices.

This motivates the following definition: Fix Y0 > 0 and denote by P≥Y0 the
space of smooth functions on R supported in y > Y0 satisfying (40) for some R.
Because of the restriction that y > Y0, this is equivalent to ask that all derivatives
are “uniformly” polynomially bounded, i.e., there is R such that, for all j , there
exists a constant C j with

|d j f/dy j
|< C j (2 + |y|)R− j . (41)

5.3. The subspace Eisλ of Eisenstein series with eigenvalue λ. To each cusp C j ,
we attach an Eisenstein series E j (s), which is an Aζ -valued meromorphic function
of the complex variable s, characterized by the fact that for Re(s)≫ 1 it equals

E j (s, g)=
∑

γ∈0i
N \0

H(g−1
i γ g)s,

where H is the unique function on G with right K-type ζ , invariant on the left
by N , and on A given by ay 7→ y.

The resulting vector-valued function is holomorphic when Re(s) =
1
2 and we

denote its value at s =
1
2 + i t by E j

t . In words, E j
t is the unitary Eisenstein series of

K-type ζ with parameter t ∈ R attached to the j -th cusp of 0\G. Finally, denoting
by λt the eigenvalue of C on E j

t , let

Eis(λ) :=
⊕

j
{span of all Eisenstein series E j

t , with t ∈ R, such that λt = λ},

so that Eis(λ) is a finite-dimensional subspace of Aζ annihilated by C−λ. However,
if the quadratic function t 7→ λt −λ happens to have a double zero, we include in the
above space the derivative d

dt E j
t , for this is also annihilated by C − λ. The Casimir

eigenvalue of E j (s, g) is quadratic in s and therefore the dimension of Eis(λ) is at
most twice the number of cusps.

5.4. Decomposition of Aζ . Consider the subspace of Aζ consisting of L2-eigen-
functions of the Casimir with eigenvalue λ; call this Discrete(λ).

Lemma 5.1. Let C̃i be the cusps for a fundamental domain for the action of 0 on G
as in (36). Then every f ∈Aζ , perpendicular to Cusp(λ), can be written as the sum

f = fs +
∑

i
fci , (42)
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where:

(i) The function fs is smooth, has rapid decay at all the cusps, and is perpendicular
to Eis(λ)⊕ Discrete(λ).

(ii) Each fci is supported in the cusp C̃i and, with reference to the identification (37):

C̃i = gi · {nx ay k : a ≤ x ≤ b, y ≥ Y0, k ∈ K }

has the form
nx ay k 7→ P(y)ζ(k), (43)

where P belongs to the space P≥Y0 described after (41).

Observe that, although f is only assumed orthogonal to cusp forms, we arrange
that fs is orthogonal also to Eis(λ) and all of Discrete(λ). This is possible because
there is a lot of freedom in the decomposition (42). It will be very convenient later.

Proof. This is a straightforward cut-off process; the only delicacy is to ensure that fs

is in fact perpendicular to Eis(λ) and Discrete(λ). We start from f N
i , the constant

term along the i-th cusp as defined in (38). Take ϕi , ψi smooth functions on R+

where:

• ϕi = 0 for y < Y0 and ϕi = 1 for y > 2Y0.

• ψi is supported in (Y0, 2Y0).

We consider ϕi and ψi as functions on C̃i described by the rules gi nx ay k 7→ ϕi (y)
and gi nx ay k 7→ψi (y)ζ(k) respectively. Now put fs = f −

∑
i (ϕi f N

i +ψi ) so that

f = fs +
∑
(ϕi f N

i +ψi )︸ ︷︷ ︸
fci

. (44)

We will show that, for suitable choice of ψi , (44) is the desired splitting of f . All
the properties except perpendicularity to Discrete(λ)⊕ Eis(λ) follow from general
properties of the constant term discussed in Section 5.2. In particular, the uniform
bound on the functions P associated — as in (43) — to the various fci follow from
the condition that f has uniform moderate growth.

Observe that ϕi f N
i and ψi are both perpendicular to all cuspidal functions and

in particular to Cusp(λ), because they both arise from functions on gi Ng−1
i ∩0\G

which are left invariant by gi Ng−1
i . Therefore fs is also perpendicular to Cusp(λ).

It remains to choose ψi in such a way that fs is indeed perpendicular to the
orthogonal complement of Cusp(λ) inside Discrete(λ)⊕ Eis(λ); call this space
∼

Eis(λ), as it is (potentially) a finite-dimensional enlargement of Eis(λ). To do this,
for each E ∈

∼

Eis(λ) we should have〈∑
i

f −ϕi f N
i , E

〉
=

∑
i
⟨ψi , EN

i ⟩C̃i
.
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The right-hand side can be considered as a linear mapping from the vector space of
possible ψi to the finite-dimensional dual

∼

Eis(λ)∗ of the vector space
∼

Eis(λ). It is
enough to show this mapping is surjective, and for this it is enough to show that its
dual is injective. But the dual map is identified with the constant term

∼

Eis(λ)→
⊕

i
C∞(Ti , 2Ti ), E 7→ (EN

i )(gi ay)

and this is injective: if ENi vanished in (Ti , 2Ti ) then it — being real-analytic —
vanishes identically; if this is so for all i , then E would be a cusp form, contradicting
the definition of

∼

Eis(λ). □

5.5. Surjectivity of C − λ. We now show surjectivity of C − λ on each of the two
pieces of Aζ corresponding to the decomposition of Lemma 5.1.

5.5.1. Surjectivity on the cusp.

Lemma 5.2. The operator C − λ is surjective on the space of functions on G which

• are left N-invariant and have fixed right K-type ζ , and

• lie in the space P≥Y0 described before (41) when pulled back to R+ by means
of y 7→ ay .

Proof. Let f : R+ → C be extended to a function F : G → C by left N -invariance
and with fixed κ-weight equal to ζ , so that F has the form

F(nay exp(θk))= f (y) eiζθ .

Observe that for arbitrary X1 ∈ n = Lie(N ) and X2, . . . , Xk ∈ g we have

(X1 . . . Xk F) is identically zero on NA.

Indeed, the left-hand side is the partial derivative ∂t1 . . . ∂tk of F(naet1 X1 . . . etk Xk )

evaluated at ti = 0, which vanishes since F is independent of t1. From this observa-
tion, it follows that the action of the operator C =

1
2 H 2

− H + 2XY on f agrees
with the action of 1

2 H 2
− H on f (y). Since H acts on f via 2y d

dy , we get that
C − λ acts as the differential operator

2y2 d2

dy2 − λ.

We show that C − λ is surjective on P≥Y0 explicitly, by constructing a g with
(C − λ)g = f via the method of variation of parameters.

The homogeneous solutions to the equation
(
2y2 d2

dy2 − λ
)

g = 0 are given
by y p1 , y p2 , where the pi are roots of 2p(1 − p)+λ= 0. We assume that p1 ̸= p2,
the p1 = p2 case is similar. A solution to (C−λ)g = f can then be found by taking

g = b1(y)y p1 + b2(y)y p2,
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where the bi satisfy
dbi

dy
= (−1)i

1/2
p1 − p2

f (y)y−pi −1.

Taking f as in (41), we take bi = ±
1
2(pi − p2)

∫ y
Y0

f (y)y−pi −1 for y > Y0 and
bi (y)= 0 for y ≤ Y0. By construction, if f belongs to P≥Y0 then so does bi and so
also g. □

5.5.2. Surjectivity on functions of rapid decay.

Proposition 5.3. The image of the map C − λ : Aζ → Aζ contains all functions of
rapid decay that are orthogonal to Eis(λ) and Discrete(λ).

Proof. Let f be such a function. We fix an orthonormal basis {ϕi } for the discrete
spectrum of C − λ on L2(0\G)ζ , where the subscript means that we restrict to
K-type ζ . For constants µ j depending only on the width of the various cusps, we
have, following, e.g., [Borel 1997, Section 13],

f =

∑
i

⟨ f, ϕi ⟩ϕi +µ j

∑
j

∫
t≥0

⟨ f, E j
t ⟩E j

t dt. (45)

A priori this is an equality inside L2. Let λi and λt be, respectively, the eigenvalues
of C−λ on ϕi and Et ; by the assumption on f , these are nonvanishing except when
⟨ f, ϕi ⟩ = 0 or when ⟨ f, Et ⟩ = 0.

Define f̄ ∈ L2 by the rule

f̄ =

∑
λi ̸=0

⟨ f, ϕi ⟩

λi
ϕi +

∑
j

∫
t∈R

⟨ f, E j
t ⟩

λt
E j

t dt. (46)

It is not hard to see that the right-hand side defines an L2-function: The function
⟨ f, E j

t ⟩ is holomorphic in a neighborhood of t ∈ iR, as follows from holomorphicity
of t 7→ E j

t and absolute convergence of the integral defining ⟨ f, E j
t ⟩. Moreover,

by assumption, this holomorphic function vanishes when λt = 0. In particular the
function ⟨ f, E j

t ⟩/λt is holomorphic, too; this follows from what we just said if the
quadratic function t 7→ λt has distinct zeroes, and in the case when it has a double
zero t0 we recall that the derivatives (d E j

t /dt)|t=t0 also belong to Eis(λ). Therefore,
the integrand in (46) is locally integrable in t , and then its global integrability
follows from (45).

We claim that f̄ has uniform moderate growth and

(C − λ) f̄ = f
as desired.

In fact, the summation and integrals in both (45) and (46) are absolutely conver-
gent, uniformly on compact sets, and they define functions of uniform moderate
growth; moreover, any derivative X f̄ coincides with the corresponding summation
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inserting X inside the sums and integrals. The proof of these claims follow from
nontrivial, but relatively standard, estimates. We summarize these estimates, with
references. A convenient general reference for all the analysis required is that of
Iwaniec [1995]; he works only with the trivial K-type, but analytical issues are
exactly the same if we work with a general K-type.

We examine the first summand of (46) first. Let λi be the (C − λ)-eigenvalue
of ϕi . Then the easy upper bound in Weyl’s law (compare [Iwaniec 1995, (7.11),
Corollary 11.2] for the sharp Weyl law in the spherical case; the same proof applies
with K-type) gives

#{i : |λi | ≤ T } ≤ const · T 2. (47)

For any r ≥ 0 we have an estimate

|⟨ f, ϕi ⟩| ≤ cr (1 + |λi |)
−r , (48)

arising from integration by parts and Cauchy–Schwarz (using ∥ϕi∥L2 = 1). Finally,
there is a constant N with the following property: for any invariant differential
operator X ∈ U of degree d , we have a bound

|Xϕi (g)| ≤ (1 + |λi |)
d+N

∥g∥
N . (49)

This is derivable from a Sobolev estimate, again using the normalization ∥ϕi∥L2 = 1;
see, e.g., [Bernstein and Reznikov 2002, (3.7)]. These estimates suffice to treat the
cuspidal summand of (46).

Now we discuss the integral summand of (46). To examine absolute convergence
of the integral, one reasons exactly as for cusp forms, but rather than pointwise
estimates in t one only looks at averages over T ≤ t ≤ T + 1. In place of the
L2-normalization of ϕi we have the estimate∫ T +1

T

∫
ht≤Y

|E j
t (g)|

2
≪ T 2

+ log(Y ),

where ht ≤ Y means that we integrate over the complement of the set y ≥ Y in each
cusp. This bound is derived from the Maass–Selberg relations (compare [Iwaniec
1995, Proposition 6.8 and (6.35) and (10.9)]) and average bounds on the scattering
matrix (equation (10.13) of the same reference). From this, one obtains in the same
way as the cuspidal case bounds on

∫ T +1
T |⟨ f, E j

t ⟩|
2 and

∫ T +1
T |X E j

t |
2 that are of

the same quality as (48) and (49) and the same analysis as for the cuspidal spectrum
goes through. □

5.6. Proof of the proposition. We now prove Proposition 4.1, that is to say, that
the image of C − λ is the orthogonal complement of cusp forms. Take f ∈ Aζ and
write f = fs +

∑
fci as in Lemma 5.1. By Lemma 5.2 and Proposition 5.3 there

are functions gi , g ∈ Aζ with

(C − λ)gi = fci , (C − λ)g = fs,
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where, in the case of gi , we use Lemma 5.2 to produce a function on C̃i , and then
extend it by zero to get an element of Aζ . Then g +

∑
i gi is the desired preimage

of f under C − λ. □

6. Interpolation and cohomology

We will recall background on the Segal–Shale–Weil representation (see [Lion and
Vergne 1980] for details) necessary to explain why the foregoing results imply
the interpolation formula of Radchenko and Viazovska [2019]. We have already
outlined the argument in Section 1.1 and what remains is to explain in detail where
the actual numbers in (4) come from.

6.1. The Weil representation. Let L2(R)+ be the Hilbert space of even square
integrable functions on R, and let S be the subspace of even Schwartz functions,
i.e., even smooth functions f such that

sup
x∈R

∣∣∣∣xn dm

dxm f (x)
∣∣∣∣<∞ (50)

for any pair (m, n) of nonnegative integers. Let G be the degree 2 cover of SL2(R).
There is a unique unitary representation of G on L2(R)+, the Weil (or oscillator)
representation, for which S is precisely the subspace of smooth vectors and such
that the action of g on S is given by

X ·φ(x)=−iπx2φ(x), Y ·φ(x)=
−i
4π

∂2

∂x2φ(x), H ·φ(x)=
(

x d
dx

+
1
2

)
φ(x).

It then follows that κ = i(X − Y ) acts by

κ ·φ(x)=

(
πx2

−
1

4π
∂2

∂x2

)
φ(x).

The normalization ensures that the action of G is unitary and that the rela-
tion σ Xσ−1

= Y is preserved, where σ : S → S is the Fourier transform

σ(φ)(ξ)= φ̂(ξ) :=

∫
R
φ(x) e−2π i xξ dx .

Moreover, with respect to the seminorms of (50), the topological vector space S
has the structure of a moderate growth Fréchet representation of G.

The vector v1/2 := e−πx2
has κ-weight 1

2 and Casimir eigenvalue −
3
8 . The

other K-finite vectors in S are spanned by its Lie algebra translates; they have the
form q(x) e−πx2

for q an even polynomial, and have κ-weights 1
2 ,

5
2 ,

9
2 , . . . .

6.2. The lattice 0. If X ∈g is nilpotent, the projection map identifies exp(RX)⊂ G
with the corresponding 1-parameter subgroup of SL2(R). In particular, the map
G → SL2(R) splits over any one-parameter unipotent subgroup; thus the groups of
upper and lower-triangular matrices have distinguished lifts in G.
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In particular, the elements e =
( 1

0
2
1

)
and f =

( 1
2

0
1

)
defined in (3) have distin-

guished lifts ẽ, f̃ to G. They act in the Weil representation by

ẽ ·φ(x)= e−2π i x2
φ(x), f̃ ·φ(x)= σ ẽσ−1φ(x). (51)

Let 0 ∈ SL2(Z) be the subgroup freely generated by e and f . It is the subgroup
of 0(2) whose diagonal entries are congruent to 1 mod 4, and is conjugate to 01(4).

Lemma 6.1. There is a splitting 0 → G which extends the splitting over the two
subgroups ⟨e⟩ and ⟨ f ⟩. The image of 0 in this splitting are precisely the elements
of its preimage leaving fixed the distribution Q :=

∑
n∈Z δn2 ; see Section 1.1 for the

definition of δn .

Proof. The lift ẽ of e to G fixes Q. By Poisson summation, so does the lift f̃ of f .
The group 0̃ The group 0̃ generated by ẽ and f̃ surjects onto 0 with kernel of size
at most two. But 0̃ fixes Q, and the two lifts of any g ∈ SL2(R) to G act on S by
different signs, so the map 0̃ → 0 is injective. □

6.3. Conclusion of the proof. We now fill in the deduction, already sketched in
the introduction, of the interpolation Theorem 1.1 from Theorem 1.2.

We first handle a detail of topology from the discussion of Section 1.1, namely,
the equivalence between the interpolation statement and its “dual” form. For a
Fréchet space F we denote its continuous dual by F∗; we regard it as an abstract
vector space without topology. Then, for η : E → F a continuous map of Fréchet
spaces,

if η∗
: F∗

→ E∗ is bijective, then η is a homeomorphism. (52)

Indeed, following [Trèves 1967, Theorem 37.2], a continuous homomorphism
η : E → F of Fréchet spaces is surjective if η∗ is injective and its image is weakly
closed. Applying this in the situation of (52), we see at least that η is surjective.
It is injective because the image of η∗ is orthogonal to the kernel of η, and then we
apply the open mapping theorem to see that it is a homeomorphism.

To verify the equivalence, asserted in Section 1.1, between Theorem 1.1 and
its dual version, we apply (52) to the map 9 of Theorem 1.1, with codomain the
closed subspace of s⊕ s defined by

∑
n∈Z φ(n)=

∑
n∈Z φ̂(n).

The other point that was not proved in Section 1.1 was (4), the actual evaluation
of H 0 and H 1 for the dual of the oscillator representation, namely

dim H 0(0,S∗)= 1, dim H 1(0,S∗)= 0. (53)

Now, S∗ is precisely the distribution globalization of the dual of SK , i.e., it is
the W ∗

−∞
of the statement of Theorem 1.2 if we take W to be SK . Therefore

Theorem 1.2 reduces us to showing that the multiplicity of SK (resp. Scl
K ) in the

space of automorphic forms (resp. cusp forms) for 0 equals 1 (resp. 0).
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From Section 6.1, the K-finite vectors SK are a realization of the (g, K )-module
of lowest weight 1

2 , whose complementary representation (SK )
cl is the (g, K )-

module of highest weight −
3
2 . In general, a homomorphism from a lowest weight

(g, K )-module to any (g, K )-module W is uniquely specified by the image of the
lowest weight vector, which can be an arbitrary element of W killed by m; and the
dual statement about highest weight modules is also valid.

It follows that (g, K )-homomorphisms from SK (respectively Scl
K ) to the space A

of automorphic forms correspond exactly to holomorphic forms of weight 1
2

(
respec-

tively, antiholomorphic forms of weight −
3
2

)
; the conditions of being killed by m

or p precisely translate to being holomorphic or antiholomorphic. The desired
conclusion (53) now follows from:

Lemma 6.2. (a) The space of holomorphic forms for 0 of weight 1
2 is one-

dimensional, and the space of cuspidal holomorphic forms of this weight
is trivial.

(b) The space of cuspidal holomorphic forms for 0 of weight 3
2 is trivial; therefore,

the space of cuspidal antiholomorphic forms for 0 of weight −
3
2 is also trivial.

Proof. For (a), the group 0 is conjugate to 01(4), for which the space of modular
forms of weight 1

2 is spanned by the theta series θ1/2(z)=
∑

n∈Z e2π i zn2
[Serre and

Stark 1977].
For (b), we use the fact that multiplication by θ injects the space of weight 3

2
forms into the space of weight 2 forms. The space of weight 2 cusp forms for 01(4)
is, however, trivial; indeed, the compactified modular curve X1(4) has genus zero.
The final assertion follows by complex conjugation. □

6.4. Variants: odd Schwartz functions, higher dimensions, Heisenberg unique-
ness. We now show how the same ideas give several other interpolation theorems
without changing the group 0 = ⟨e, f ⟩; it may also be of interest to consider
(∞, p, q)-triangle groups.

6.4.1. Odd Schwartz functions. The discussion of Section 6.1 on the even Weil rep-
resentation S carries verbatim to its odd counterpart T , whose (g, K )-module of K-
finite vectors is spanned by the translates of the lowest weight vector v3/2 = xe−πx2

.
As above, we compute using Theorem 1.2, to get

H 0(0, T ∗)= C, H 1(0, T ∗)= 0.

Indeed, the zeroth cohomology H 0(0, T ∗) is identified with the space of modular
forms of weight 3

2 , a one-dimensional space spanned by θ3, as can be deduced
from [Cohen and Oesterlé 1977]. As for H 1(0, T ∗), its dimension is equal to the
multiplicity of T cl in the space of cusp forms on 0. The representation T cl has
highest weight −1

2 , and the vanishing of H 1 results from the absence of holomorphic
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cusp forms of weight 1
2 on 0 as in Lemma 6.2. We then deduce an interpolation

theorem as in Section 1, noting that in addition to the δn the distributions φ 7→ φ′(0)
(resp. φ 7→ φ̂′(0)) are also e- (resp. f -)invariant. Arguing as in Section 1.1 recovers
a nonexplicit version of the interpolation theorem of Radchenko and Viazovska for
odd Schwartz functions, see [Radchenko and Viazovska 2019, Theorem 7].

6.4.2. Radial Schwartz functions on Rd . We may, similarly, consider instead the
representation Sd of SL2(R) on radial Schwartz functions on Rd . This is, for reasons
very similar to that enunciated in Section 6.1, a lowest weight representation of the
double cover of SL2(R), but now of lowest weight d

2 generated by e−π(x2
1+···+x2

d ). We
claim that in all cases the corresponding H 1 continues to vanish. Indeed, for d even
the complementary representation W cl is finite-dimensional and does not occur in
cusp forms; for d odd, occurrences of W cl in cusp forms correspond just as before
to holomorphic cusp forms of weight 1

2(4 − d) for 0(2), and these do not exist for
any odd d. Therefore we find that the values of f and f̂ at radii

√
n determine f ,

subject only to a finite-dimensional space of constraints (the dimension is equal to
that of weight d

2 holomorphic forms for 0(2)).

6.4.3. Heisenberg uniqueness. A result of Hedenmalm and Montes-Rodríguez
[2011] asserts that the map

L1(R)→ sequences, h 7→

∫
h(t) eπ iαnt dt,

∫
h(t) eπ iβn/t dt (54)

is injective if and only if αβ ≤ 1. In their terminology, this yields an example of a
“Heisenberg uniqueness pair”. We thank the referee for bringing this result to our
attention. Using our techniques, we show that an abstract interpolation formula —
admittedly, on a eccentric function space — holds at the transition point αβ = 1.

Theorem 6.3. Let H be the space of smooth functions on R with the property that
x−2h(x−1) extends from R − {0} to a smooth function on R. Fix α, β with αβ = 1
and for n ∈ Z write an =

∫
h(t) eπ iαnt dt and bn =

∫
h(t) eπ iβn/t dt. Then the map

h 7→

(
(an), (bn), h(0), lim

x→∞
x2h(x)

)
defines a linear isomorphism of H with a codimension 3 subspace S of 6 s2

⊕ C2.

In this form, this neither implies nor is implied by the results of [Hedenmalm
and Montes-Rodríguez 2011], but it would be interesting to see if our methods
can give results closer to theirs, e.g., by considering different completions of the
underlying representation.

We obtain Theorem 6.3 in a similar way to Theorem 1.1 — namely, by applying
Theorem 1.2 for the same 0, but with a different coefficient system. Note that we

6Note that integration by parts shows that an, bn indeed belong to the space s of sequences with
rapid decay, introduced in Section 1.
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can and will assume that α = β = 1 by rescaling. We now consider the space W of
smooth 1-forms on P1

R = R ∪ ∞, which we may think of equivalently as smooth
functions 8(x, y) on R2

− {0} satisfying

8(λx, λy)= λ−28(x, y).

The 1-form on P1
R associated to 8 is characterized by the fact that, when pulled

back to R2
− {0}, it gives the 1-form 8(x, y)(x dy − y dx). Write

an(8)=

∫
8(x, 1) eπ inx dx, bn(8)=

∫
8(1, y) eπ iny dy. (55)

Write h(x)=8(x, 1). We note that x−2h(1/x)=8(1, x), and so extends over 0.
The map 8 7→ h(x)=8(x, 1) thus identifies W with the space H described in the
theorem. We are reduced then to proving:

Claim. The rule
8 7→

(
an, bn,8(0, 1),8(1, 0)

)
(56)

defines an isomorphism of W with a codimension 3 subspace of s2
⊕ C2.

Proof of Claim. We apply Theorem 1.2 to the (g, K )-module WK ; the distribution
globalization “W ∗

−∞
” that appears in Theorem 1.2 is simply the topological dual W ∗

to W.
To analyze the e-invariants on W ∗, take an arbitrary e-invariant distribution D

on W. The identification 8 7→ h between the space of −2-homogeneous 8 and
h ∈H contains C∞

c (R) in its image; thus, we can consider D as a distribution on the
real line, i.e., given any h ∈C∞

c (R), we form the corresponding8 and evaluate D on
it. The result is a periodic distribution under x 7→ x +2 which must be in the closed
subspace spanned by the an for n ∈ Z — write this distribution

∑
c(n) an . Then the

difference D−
∑

c(n) an vanishes on C∞
c (R), and is therefore a linear combination

of the Taylor coefficients of 8(1, y) at y = 0; the only such distribution that is
invariant under e is 8 7→8(1, 0). It follows that (W ∗)e is spanned topologically
by the an and evaluation at (1, 0). Similarly, (W ∗) f is spanned topologically by
the bn and evaluation at (0, 1).

We will now compute the cohomology of 0 on W ∗.
The space W is identified with a reducible principal series of SL2(R) which is

an extension D+

2 ⊕ D−

2 → W → C, where D±

2 are the holomorphic and antiholo-
morphic discrete series of weight 2; the map W → C is the integration over P1

R.
Now Theorem 1.2 implies that H 1(0, (D±

2 )
∗) vanishes, whereas H 0(0, (D±

2 )
∗) has

dimension 2 in both the + and − cases. There is therefore an exact sequence

0 → C → H 0(0,W ∗)→ C4
→ H 1(0,C)→ H 1(0,W ∗)→ 0.

The map C4
→ H 1(0,C) is surjective with two-dimensional kernel, for it amounts

to the map from the four-dimensional space of (holomorphic and antiholomorphic)
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Eisenstein series for 0 to the two-dimensional cohomology.7 This proves that
H 1(0,W ∗) vanishes, whereas H 0(0,W ∗) is three-dimensional.

We now apply the Mayer–Vietoris sequence (5). In our current context, it implies
that (W ∗)e and (W ∗) f span all of W ∗, and their intersection is precisely three-
dimensional. This concludes the proof of the claim. □

It may be of interest to describe the three linear constraints that define this
codimension 3 subspace. We follow the notations above. The invariants of 0 on W ∗

have, as basis A, I, J where

A(8)=

∫
P1
8, I (8)=

∑
(m,n) ̸=(0,0)

8(m, n)− 2
∑
2|n
8(m, n),

J (8)=
∑

(m,n)̸=(0,0)
8(m, n)− 2

∑
2|m
8(m, n),

where in both cases the sum is conditionally convergent (e.g., one can sum over
large discs of increasing radii). Then A corresponds to the relation a0 = b0, whereas
both I and J give rise to a relation by expanding the stated intertwiner in two
different ways. For example, we compute I (8) in two ways, firstly by summing
first over n,∑
m ̸=0

m−2 ∑
n

(
8

(
1, n

m

)
− 28

(
1, 2n

m

))
+ 2

(∑
n−2

− 2
∑
(2n)−2

)
8(0, 1)

P.S.
= −

∑
m ̸=0, t∈Z

|m|
−1 bm(2t+1) +

π2

6
8(0, 1),

where P.S. stands for Poisson summation, and secondly by summing first over m,∑
n ̸=0

(
n−2 ∑

m
8

(m
n
,1

)
−

∑
m

2(2n)−28
( m

2n
,1

))
2
(∑

m−2
− 2

∑
(m)−2

)
8(1, 0)

P.S.
=

∑
|n|

−1 an(4t+2) −
π2

3
8(1, 0).

Thus we find that the image of W is cut out by the three relations a0 = b0,

π2

3
8(1, 0)+ π2

6
8(0, 1)=

∑
m ̸=0, t∈Z

|m|
−1 bm(2t+1) +

∑
n ̸=0, t∈Z

|n|
−1 an(4t+2),

and dually

π2

6
8(1, 0)+ π2

3
8(0, 1)=

∑
m ̸=0, t∈Z

|m|
−1 am(2t+1) +

∑
n ̸=0, t∈Z

|n|
−1 bn(4t+2).

7Indeed, this map records the obstruction to extending an embedding of D+

2 ⊕D−

2 into the space of
automorphic forms, to the larger space W. An embedding of D+

2 ⊕ D−

2 into the space of automorphic
forms corresponds to a pair ( f, g) of a holomorphic and antiholomorphic 1-form, and it extends to W
when f dz + g dz is an exact differential.
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Harder’s denominator problem for SL2(Z)

and its applications

Hohto Bekki and Ryotaro Sakamoto

We aim to give full details about the proof given by Harder of a theorem on the
denominator of the Eisenstein class for SL2(Z) and to show that the theorem
has some interesting applications including the proof of a recent conjecture by
Duke on the integrality of the higher Rademacher symbols. We also present a
sharp universal upper bound for the denominators of the values of partial zeta
functions associated with narrow ideal classes of real quadratic fields in terms of
the denominator of the values of the Riemann zeta function.
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1. Introduction

1.1. Background. Our main topic are the so-called Eisenstein classes (for SL2(Z)).
These are special elements in the cohomology of the modular curve SL2(Z)\H that
have many interesting applications in number theory. In this subsection, we briefly
review the background and motivation of the theory of Eisenstein classes from an
elementary point of view.
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1.1.1. Modular forms. Let k and N be positive integers. A modular form f (z)
of weight k and level 01(N ) is a holomorphic function on the upper half-plane H,
satisfying the transformation property

f
(

az + b
cz + d

)
= (cz + d)k f (z)

for any matrix
(

a b
c d

)
∈ 01(N ) :=

{
γ ∈ SL2(Z) | γ ≡

(
1 ∗
0 1

)
(mod N )

}
, and bounded

as Im(z) goes to ∞. By the transformation property, modular forms have a Fourier
series expansion: one can write

f (z) =

∞∑
m=0

am( f ) e2π i z
=

∞∑
m=0

am( f ) qm, z ∈ H, q := e2π i z.

If a0( f ) = 0, then f is called a cusp form. We denote respectively by Mk(01(N ))

and Sk(01(N )) the spaces of modular forms and cusp forms of weight k and
level 01(N ).

For a modular form f (z)=
∑

∞

m=0 am( f )qm
∈ Mk(01(N )), we have an associated

L-function defined by

L( f, s) :=

∞∑
m=1

am( f )

ms

which converges for Re(s) > k and is continued meromorphically to s ∈ C. (If f is
a cusp form then it is known that L( f, s) is holomorphic at all s ∈ C.)

Example 1.1. Suppose that N = 1. (In this case 01(1) = SL2(Z).)

(1) Let k ∈ 2Z≥2. The first examples are the holomorphic Eisenstein series de-
fined by

Ek(z) :=
1
2

∑
(c,d)∈Z2

(c,d)=1

1
(cz + d)k = 1 +

2
ζ(1 − k)

∞∑
m=1

σk−1(m)qm
∈ Mk(SL2(Z)),

where ζ(s) is the Riemann zeta function and ζ(1 − k) is its value at 1 − k, which
is known to be a nonzero rational number,1 and σk−1(m) :=

∑
0<d|m dk−1. In this

case the associated L-function L(Ek, s) becomes

L(Ek, s) =
2

ζ(1 − k)

∞∑
m=1

σk−1(m)

ms = 2
ζ(s)ζ(s + 1 − k)

ζ(1 − k)
.

(2) As an example of cusp forms, we have the discriminant function

1(z) =
1

1728
(E4(z)3

− E6(z)2) ∈ S12(SL2(Z)),

1Actually, it is well known that ζ(1 − k) = −Bk/k, where Bk is the k-th Bernoulli number.
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which is a cusp form of weight 12. The Fourier expansion of 1(z) is of the form

1(z) = q
∞∏

m=1

(1 − qm)24
=:

∞∑
m=1

τ(m)qm,

and the coefficient τ(m) is called the Ramanujan tau function. The L-function
L(1, s) =

∑
∞

m=1 τ(m)/ms is known to satisfy the Euler product formula:

L(1, s) =

∞∑
m=1

τ(m)

ms =

∏
p prime

(1 − τ(p)p−s
+ p11−2s)−1.

This fact, which was one of the most important discoveries in number theory in
the early 20th century, was first observed by Ramanujan, proved by Mordell, and
generalized by Hecke to Hecke-eigenforms.

Modular forms are highly geometric and arithmetic objects, of great interest
in number theory along with the study of L-functions. For example, the famous
Shimura–Taniyama conjecture (which is a part of the Langlands program) says
that the Hasse–Weil L-function L(E, s) associated with an elliptic curve E over Q

coincides with L( f, s) for some modular form f (z) of weight 2. It is well known
that Wiles and Taylor [Wiles 1995; Taylor and Wiles 1995] proved the Shimura–
Taniyama conjecture for any semistable elliptic curve and this result implies Fermat’s
last theorem. (Now the Shimura–Taniyama conjecture is proved for any elliptic
curve over Q, see [Breuil et al. 2001].) In such a case, when the Hasse–Weil L-
function of E coincides with the L-function of f , the Birch and Swinnerton-Dyer
conjecture (which is one of the most important problems in current number theory)
is concerned with the order of zeros and the leading term of L( f, s) at s = 1. (Here
the leading term of a holomorphic function F(s) at s = a ∈ C means the first
nonvanishing coefficient of the Taylor expansion of F(s) at s = a.)

More generally, for any “arithmetic object”, say X (e.g., number fields, algebraic
varieties over number fields, modular forms, automorphic representations, Galois
representations, etc.) we can consider its L-function L(X, s) with some nice prop-
erties, such as Euler product formula, analytic continuation to s ∈ C, functional
equations, etc. Then it is believed that the leading terms of L(X, s) at integers k ∈ Z

(they are called the special values of the L-function L(X, s)) are of the form

(interesting algebraic number) × (interesting transcendental number). (1-1)

This is a very deep and profound philosophical concept in number theory, and the
study of arithmetic properties of this algebraic part (its denominator, numerator,
p-adic interpolation, etc.) and transcendental part (motivicity, irrationality, tran-
scendence, etc.) is a very important research theme. See [Deligne 1979; Beilinson
1984; Kontsevich and Zagier 2001] for more detail.
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In the case of modular forms, for a normalized Hecke-eigenform f ∈ Mk(01(N )),
i.e., a simultaneous eigenvector of the Hecke operators Tm on Mk(01(N )) (m ∈Z≥1),
the special values of its L-function L( f, s) have been studied extensively and many
things are known. One key point in the study of special values of L-functions
L( f, s) of modular forms is to consider the cohomological interpretation of the
modular forms via the so-called Eichler–Shimura isomorphism.

1.1.2. Eichler–Shimura isomorphism. In the following, we restrict ourselves to the
case of level 01(1)= SL2(Z) and weight 2k with k ∈ Z≥2. Set 0 :=01(1)= SL2(Z).
We will explain briefly that there exists a natural Hecke-equivariant isomorphism

r : M2k(0) ⊕ S2k(0) ∼
−→ H 1(0,M∨

2k−2 ⊗ C), (1-2)

where
S2k(0) := { f̄ | f ∈ S2k(0)}

is the space of antiholomorphic cusp forms ( f̄ denotes the function that sends z ∈ H

to f (z)),

M2k−2 := {P(X1, X2) ∈ Z[X1, X2] | P is homogeneous of degree 2k − 2}

is the space of homogeneous polynomials of degree 2k − 2 over Z with a natural
action of 0 (see Section 2.3), M∨

2k−2 := HomZ(M2k−2, Z) is the dual 0-module of
M2k−2, and H 1(0,M∨

2k−2⊗C) is the first group cohomology of 0 with coefficients
in M∨

2k−2 ⊗ C. Note that any class φ ∈ H 1(0,M∨

2k−2 ⊗ C) is represented by a
1-cocycle

φ : 0 → M∨

2k−2 ⊗ C = HomZ(M2k−2, C),

i.e., φ is a map satisfying φ(γ1γ2) = γ1φ(γ2) + φ(γ1).
The Eichler–Shimura isomorphism (1-2) is defined by sending f ∈ M2k(0),

ḡ ∈ S2k(0) to r( f ), r(ḡ)∈ H 1(0,M∨

2k−2⊗C) represented by cocycles r( f ), r(ḡ)∈

Map(0,M∨

2k−2 ⊗ C) such that

r( f )(γ )(P) =

∫ γ τ

τ
f (z)P(z, 1) dz, r(ḡ)(γ )(P) =

∫ γ τ

τ
g(z)P(z̄, 1) dz̄

for τ ∈ H, γ ∈ 0, and P ∈ M2k−2. Note that r( f )(γ )(P) and r(ḡ)(γ )(P) are
independent of τ because f and g are modular forms. It is then known that r
is an isomorphism. Moreover, there is a natural action of Hecke operators on
H 1(0,M∨

2k−2 ⊗ C) and r is a Hecke-equivariant isomorphism. See, for example,
[Shimura 1994, Chapter 8; Hida 1993, Chapter 6; Bellaïche 2021, Section 5.3].

Now, a remarkable point is that the right-hand side H 1(0,M∨

2k−2 ⊗ C) of the
Eichler–Shimura isomorphism has very rich algebraic and arithmetic structures.
For example, it has a natural integral structure H 1(0,M∨

2k−2) that is stable under
the Hecke operators. Furthermore, the group cohomology H 1(0,M∨

2k−2) can be
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interpreted as a sheaf cohomology H 1(0\H,M∨

2k−2) of a modular curve 0\H

with coefficients in the corresponding sheaf M∨

2k−2 on 0\H. Then since the
modular curve 0\H has the structure of an algebraic curve over Q, the module
H 1(0\H,M∨

2k−2) admits an action of the absolute Galois group Gal(Q/Q) of Q

after tensoring Zℓ for a prime number ℓ.
As an application of such algebraic structures, especially the existence of an

integral structure H 1(0,M∨

2k−2), let us explain the so-called algebraicity of the
special (critical) values of the L-function L( f, s) of a normalized Hecke-eigenform
f ∈ M2k(0), which is an example of a formula of the type (1-1).

First, we consider the case of cusp forms. Let f ∈ S2k(0) be a normalized
Hecke-eigen-cusp form and let f ι

∈ S2k(0) be an antiholomorphic modular form
defined by f ι(z) = − f (−z̄). (In our case N = 1, we actually have f ι

= − f̄ ,
but f ι is more natural and useful in the following argument.) Then the Hecke-
equivariance of (1-2) and the existence of the integral structure H 1(0,M∨

2k−2) (as
well as the multiplicity one of Hecke eigenforms) imply that there exist rational
Hecke eigenclasses φ+, φ− ∈ H 1(0,M∨

2k−2⊗Q) and complex numbers ω+, ω− ∈C

such that
1
2(r( f ) ± r( f ι)) = ω±φ±.

By evaluating these cocycles at

γ =

(
0 −1
1 0

)
, Pj (X1, X2) = X j

1 X2k−2− j
2 , j = 0, . . . , 2k − 2,

we find that

r( f )(γ )(Pj )

= lim
τ→0

∫ γ τ

τ

f (z)z j dz =

∫
∞

0
f (iy)(iy) j d(iy) =

i j+1 j !
(2π) j+1 L( f, j + 1), (1-3)

and similarly, r( f ι)(γ )(Pj ) = −((−i) j+1 j !/(2π) j+1) L( f, j + 1). Therefore, we
obtain

j !
2(−2π i) j+1 (1 ± (−1) j )L( f, j + 1) = ω± φ±(γ )(Pj ).

Hence, if we set 3( f, s) := (2π)−s 0(s) L( f, s) (so that 3( f, s) satisfies the func-
tional equation 3( f, s) = 3( f, 2k − s)), we have

3( f, j + 1) = (−i) j+1φ±(γ )(Pj )ω± ∈ i j+1ω±Q,

where ± = sgn(−1) j . In particular, we see that the special values of L( f, s) at
s = 1, . . . , 2k − 1 are of the form (1-1). (Note that the transcendence of ω± is an
open problem. See [Kohnen 1989] for example.)
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Example 1.2. Let us consider the case f (z) = 1(z) in Example 1.1(2). It is known
that φ± can be taken from rational classes: φ± ∈ H 1(0,M∨

2k−2 ⊗ Q), and ω± are
(up to Q×) approximately

ω+ = i 0.045751 . . . , ω− = 0.046346 . . . .

Indeed, for such choices of ω±, we have

3(1, 1) = 3(1, 11) =
90ω+

691i
, 3(1, 2) = 3(1, 10) =

2ω−

25
,

3(1, 3) = 3(1, 9) =
ω+

18i
, 3(1, 4) = 3(1, 8) =

ω−

24
,

3(1, 5) = 3(1, 7) =
ω+

28i
, 3(1, 6) =

ω−

30
.

See [Kontsevich and Zagier 2001, §3.4].

1.1.3. Eisenstein classes. We consider the case of Eisenstein series, which we
will discuss further in this paper. More precisely, let us define the Eisenstein
class Eis2k−2 to be the image of the holomorphic Eisenstein series E2k under the
Eichler–Shimura isomorphism (1-2):2

Eis2k−2 := r(E2k) ∈ H 1(0,M∨

2k−2 ⊗ C) ≃ H 1(0\H,M∨

2k−2 ⊗ C).

In other words, the Eisenstein class Eis2k−2 can be seen as a cohomological inter-
pretation of the Eisenstein series E2k .

The situation is different for the case of cusp forms: namely, if we define
3(E2k, s) := (2π)−s0(s)L(E2k, s) (cf. Example 1.1(1)), then we know that

3(E2k, s) = sin
( 1

2π(s + 1)
)−1 ζ(1 − s)ζ(s + 1 − 2k)

ζ(1 − 2k)

and
3(E2k, 2), 3(E2k, 4), . . . , 3(E2k, 2k − 2) ∈ Q

by using Euler’s formula for the special values of ζ(s). (Again this is a formula of
type (1-1). Note also that 3(E2k, s) = 0 for every odd integer s ∈ {3, . . . , 2k − 3}.)
Then by using a similar argument as in the case of cusp forms in the reverse direction,
we see that Eis2k−2 is a rational cohomology class:

Eisk−2 ∈ H 1(0\H,M∨

2k−2 ⊗ Q).

See also Corollary 4.18.
Therefore, we can consider the denominator of the Eisenstein class Eis2k−2:

1(Eis2k−2) := min{1 ∈ Z>0 | 1Eis2k−2 ∈ H 1(0\H,M∨

2k−2)/(torsion)}.

2This definition is different from Harder’s [2023] definition of Eis2k−2, but we will see further on
that they coincide.
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Harder has been studying the denominator of the Eisenstein class (actually, he
studies Eisenstein classes for more general arithmetic groups) and he proved the
following explicit formula for 1(Eis2k−2).

Theorem 1.3 [Harder and Pink 1992, §1, Satz 2; Harder 2023, Theorem 5.1.2,
p. 217]. For any even integer k ≥ 2, we have

1(Eis2k−2) = numerator of ζ(1 − 2k).

This very beautiful formula is explained in Harder’s book in progress [2023]
(a weaker version was obtained by Haberland and Wang, see Remark 2.14), and
its analogues for some congruence subgroups, Bianchi groups, Hilbert modular
groups, etc. have been studied by many people. See Remark 2.15. One of the
interesting points in Theorem 1.3 is that on the Eisenstein parts QE2k−2 and QEis2k ,
the Betti integral structure coincides with the de Rham integral structure under the
Eichler–Shimura isomorphism. See [Harder 2021, §1.1] and Remark 2.16.

Harder also studies its application to the Galois representations obtained from
H 1(0\H,M∨

2k−2 ⊗ Zℓ) in [Harder 2023]. In the present paper, we also consider
some new applications of Theorem 1.3 to the special values of partial zeta functions
of real quadratic fields.

However, currently, the book [Harder 2023] is still under development, and some
important arguments and references for the proof of Theorem 1.3 are not given
completely. Therefore, it is still a little difficult to access Harder’s theory on the
denominators of Eisenstein classes.

1.1.4. Aims and features of the present paper. Taking this situation into account,
we aim to

(1) give a fully detailed proof of Theorem 1.3 based on Harder’s [2023] argument,
and

(2) present some new applications of Theorem 1.3 to the special values of partial
zeta functions of real quadratic fields.

We reformulated Harder’s original formulation and arguments entirely in terms
of classical holomorphic Eisenstein series. We hope this will make Harder’s theory
on the denominators of Eisenstein classes more accessible to a wider audience.
(Note that Harder’s original formulation is purely cohomological and has a big
advantage when we consider more general arithmetic groups.)

Let us now explain the strategy of the proof of Theorem 1.3.

1.2. Strategy of the proof of Theorem 1.3. Set n := 2k − 2 ≥ 2 and 0 := SL2(Z).
Recall that H := {z ∈ C | Im(z)> 0} denotes the upper half plane, on which 0 acts by
the linear fractional transformation. We denote by Y := 0\H the modular curve of
level 0, respectively by HBS and Y BS

= 0\HBS the Borel–Serre compactifications
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of H and of Y , and by ∂Y BS
:= Y BS

− Y the Borel–Serre boundary of Y . Note that
the inclusion map Y ↪→ Y BS is a homotopy equivalence.

Recall that Mn is the space of homogeneous polynomials of degree n over Z

with a left 0 action and that M∨
n := HomZ(Mn, Z). Since the 0-module M∨

n
naturally defines a sheaf on Y BS (which we also denote by M∨

n ), we can consider
the cohomology groups H •(Y BS,M∨

n ) and H •(∂Y BS,M∨
n ). In addition, since M∨

n
has a left action of M2(Z), these cohomology groups carry the structure of Hecke
modules.

The Eisenstein class Eisn ∈ H 1(Y,M∨
n ⊗Q)= H 1(Y BS,M∨

n ⊗Q) has the impor-
tant property that it gives rise to a Hecke-equivariant section of the canonical homo-
morphism H 1(Y BS,M∨

n ⊗Q)→ H 1(∂Y BS,M∨
n ⊗Q) induced by the inclusion map

∂Y BS ↪→ Y BS. Let us explain this fact. The boundary ∂Y BS is identified with 0∞\R,
where 0∞ :=

{(
1 a
0 1

)
|a ∈Z

}
. It is now easy to see that dimQ H 1(∂Y BS,M∨

n ⊗Q)=1
and we have a natural generator ωn ∈ H 1(∂Y BS,M∨

n )/(torsion). Harder considered
in his book [2023] a unique Hecke-equivariant section

H 1(∂Y BS,M∨

n ⊗ Q) → H 1(Y BS,M∨

n ⊗ Q)

of H 1(Y BS,M∨
n ⊗ Q) → H 1(∂Y BS,M∨

n ⊗ Q), and he defined the Eisenstein class

EisHarder
n ∈ H 1(Y BS,M∨

n ⊗ Q)

to be the image of ωn under this section.

Proposition 1.4 (Lemma 2.8 and Proposition 2.11). We have Eisn = EisHarder
n , i.e.,

our definition of the Eisenstein class coincides with Harder’s definition.

We review the strategy of the proof of Theorem 1.3, which is based on Harder’s
[2023] argument. First, note that for any prime number p, we have

ordp(1(Eisn))=min{δ∈Z≥0 | pδEisn ∈ H 1(Y BS,M∨

n ⊗ Z(p))}

=min{δ∈Z≥0 |⟨pδEisn,C⟩∈Z(p) for all C ∈ H1(Y BS,Mn ⊗ Z(p))},

where Z(p) is the localization of Z at p. Therefore, it suffices to prove that

ordp(numerator of ζ(−1 − n))

= min{δ ∈ Z≥0 | ⟨pδEisn, C⟩ ∈ Z(p) for all C ∈ H1(Y BS,Mn ⊗ Z(p))}

for each prime number p. The proof consists roughly of the following four parts.

(I) First, in Section 3, we consider 1-chains Cν(τ )={−1/τ, τ }⊗Xν
1 Xn−ν

2 (τ ∈HBS)
for each integer 1 ≤ ν ≤ n−1, where {−1/τ, τ } is a path from −1/τ to τ . Note that
Cν(τ ) is not a cycle: Cν(τ ) does not give an element of the cosheaf homology group
H1(Y BS,Mn ⊗ Q). However, by applying the p-th Hecke operator Tp sufficiently
many times (namely, m times for m ≥ n) and modifying them slightly, we obtain
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p-adically integral homology classes

[
∼

T m
p (Cν(τ ))] ∈ H1(Y BS,Mn ⊗ Z(p)).

Note that the homology class [
∼

T m
p (Cν(τ ))] is independent of the choice of τ ∈ H.

See Lemma 3.15.

(II) Next, in Section 4, we compute the p-adic limit of the value of the pairing

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩,

where ⟨ · , · ⟩ : H 1(Y BS,M∨
n ) × H1(Y BS,Mn) → Z is the pairing induced by

M∨
n ×Mn → Z; ( f, x) 7→ f (x). More precisely, we will show in Theorem 4.1 and

Corollary 7.2 that this p-adic limit can be described in terms of the Kubota–Leopoldt
p-adic L-functions: for any integer ν ∈ {1, . . . , n − 1} we obtain the interesting
formula

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩ =
1 − pn+1

(1 − pν)(1 − pn−ν)
Dp(n, ν), (1-4)

where

Dp(n,ν) :=
L p(−ν,ω1+ν)L p(ν − n,ωn−ν+1)

L p(−1 − n,ωn+2)
−L p(−ν,ω1+ν)−L p(ν−n,ωn−ν+1)

and L p(s, ωa) denotes the Kubota–Leopoldt p-adic L-function associated with the
a-th power of the Teichmüller character ω.

(III) In Section 5, we introduce the ordinary part of (co)homology groups which are
defined by the image of Hida’s ordinary projector. More precisely, Hida’s ordinary
projector eTp is defined by the p-adic limit of the m!-th power of the p-th Hecke
operator (acting on the homology group H1(Y BS,Mn ⊗ Zp)):

eTp := lim
m→∞

T m!

p ∈ EndZp(H1(Y BS,Mn ⊗ Zp)),

and then we define the ordinary part

H ord
1 (Y BS,Mn ⊗ Zp) := eTp H1(Y BS,Mn ⊗ Zp).

Since Eisn|T ′
p = (1+ pn+1)Eisn ,3 for any homology class C ∈ H1(Y BS,Mn ⊗Zp),

we have

⟨Eisn, eTp C⟩ = lim
m→∞

⟨Eisn, T m!

p (C)⟩ = lim
m→∞

⟨Eisn|(T ′

p)
m!, C⟩

= lim
m→∞

(1 + pn+1)m!
⟨Eisn, C⟩ = ⟨Eisn, C⟩.

This fact implies that

ordp(1(Eisn))=min{δ ∈Z≥0 | ⟨pδEisn, C⟩∈Zp for all C ∈ H ord
1 (Y BS,Mn⊗Zp)}.

3Here T ′
p denotes the p-th Hecke operator acting on the cohomology group H1(Y BS,Mn). See

Definition 2.3.
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Moreover, Proposition 5.7, together with Lemma 3.15(3), shows that

H ord
1 (Y BS,Mn ⊗ Zp) := H1(∂Y BS,Mn) ⊗ Zp +

n−1∑
ν=1

ZpeTp [
∼

T m
p (Cν(τ ))]

for any integer m ≥ n. Since ⟨Eisn, H1(∂Y BS,Mn)⟩ = Z, we obtain

ordp(1(Eisn))

= min{δ ∈ Z≥0 | ⟨pδEisn, eTp [
∼

T m
p (Cν(τ ))]⟩ ∈ Zp for any integer 1 ≤ ν ≤ n − 1},

for any integer m ≥ n. Since

⟨Eisn, eTp [
∼

T m
p (Cν(τ ))]⟩ = ⟨Eisn, [

∼

T m
p (Cν(τ ))]⟩,

by replacing m with m! and taking the p-adic limit as m → ∞, (1-4) shows that

ordp(1(Eisn)) = min{a ∈ Z≥0 | pa D(n, ν) ∈ Zp for any integer 1 ≤ ν ≤ n − 1}.

See Proposition 8.1.

(IV) In Section 8, we show that the right-hand side of this previous equation is
equal to the p-adic valuation of the numerator of ζ(−1 − n). We devote Section 6
and Section 7 to the preparation for proving this fact.

1.3. Applications to Duke’s conjecture and to the special values of the partial zeta
functions of real quadratic fields.

1.3.1. Duke’s conjecture. Duke [2024] defined a certain map

9k : 0 = SL2(Z) → Q

for each integer k ≥ 2, called the higher Rademacher symbol, which is a generaliza-
tion of the classical Rademacher symbol, and he conjectured the integrality of the
higher Rademacher symbol [Duke 2024, Conjecture, p. 4]. As a first application of
Theorem 1.3, we prove this conjecture.

Theorem 1.5 (Corollary 9.5). Duke’s conjecture holds true, that is, for any integer
k ≥ 2 and matrix γ ∈ 0, we have

9k(γ ) ∈ Z.

In fact, Duke [2024, Lemma 6] proved that the higher Rademacher symbols
can be written as the integral of the holomorphic Eisenstein series along certain
homology cycles (see Proposition 9.4). Therefore, we can derive Theorem 1.5
directly from Theorem 1.3.

Remark 1.6. Duke’s conjecture was recently also proved by O’Sullivan [2024]
using a more direct method.
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1.3.2. The denominators of the partial zeta functions of real quadratic fields. Next,
we discuss the denominators of the partial zeta functions associated with narrow
ideal classes of orders in real quadratic fields.

Let F ⊂ R be a real quadratic field, O ⊂ F be an order in F , and A ∈ Cl+O be a
narrow ideal class of O. Then we have the associated partial zeta function

ζO(A, s) =

∑
a⊂O,a∈A

1
Nas ,

which can be continued meromorphically to C, and it is known that

ζO(A, 1 − k) ∈ Q

for any integer k ≥ 2. We also define the positive integer J2k by

J2k := denominator of ζ(1 − 2k).

Then in Section 9.2, we obtain the following as another consequence of Theorem 1.3.

Proposition 1.7 (Corollary 9.12). Let k ≥ 2 be an integer. Then the integer J2k

gives a universal upper bound for the denominator of ζO(A, 1 − k) with respect to
orders O and narrow ideal classes A ∈ Cl+O . In other words, we have

J2kζO(A, 1 − k) ∈ Z

for all orders O in all real quadratic fields and narrow ideal classes A ∈ Cl+O .

In fact, one can construct a natural map zO,k : Cl+O → H1(Y BS,M2k−2) for any
integer k ≥ 2 (see Definition 9.6), and we show in Proposition 9.10 that

⟨Eis2k−2, zO,k(A−1)⟩ = (−1)k ζO(A, 1 − k)

ζ(1 − 2k)
= ±

J2kζO(A, 1 − k)

N2k
,

where N2k > 0 denotes the numerator of ζ(1 − 2k). Hence Proposition 1.7 follows
from Theorem 1.3. See also Remark 9.13 for the relation between Duke’s conjecture
and Proposition 1.7.

Next, we discuss the sharpness of Proposition 1.7’s universal upper bound.

Theorem 1.8 (Corollary 9.16). The universal upper bound in Proposition 1.7 is
sharp, that is, we have

J2k =min
{

J ∈Z>0 | JζO(A, 1−k)∈Z for all orders O in all real quadratic fields
and narrow ideal classes A ∈ Cl+O

}
.

In order to derive Theorem 1.8 from Theorem 1.3, we need to show that the
narrow ideal classes of orders in real quadratic fields produce sufficiently large
submodules of the homology group H1(Y BS,M2k−2), and this will be done in
Section 9.3 using some techniques from Hida theory.
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Remark 1.9. As for the denominator or the integrality of the special values of
partial zeta functions of real quadratic fields, or more generally of totally real fields,
many works have been done by Coates and Sinnott [1974a; 1974b; 1977], Deligne
and Ribet [1980], Cassou-Noguès [1979], Charollois, Dasgupta, and Greenberg
[Charollois et al. 2015], Beilinson, Kings, and Levin [Beilinson et al. 2018], Bannai,
Hagihara, Yamada, and Yamamoto [Bannai et al. 2022], Bergeron, Charollois, and
Garcia [Bergeron et al. 2020], etc., by using a variety of methods including Hilbert
modular forms, Shintani [1976] zeta functions, Sczech’s [1993] Eisenstein cocy-
cles, etc. Actually, when O = OF , the upper bound in Proposition 1.7 follows from
these preceding works. More precisely, the results proved by Coates and Sinnott
[1977] or Deligne and Ribet [1980] show that for any prime number p, we have

2−1(1 − p2k)ζOF (A, 1 − k) ∈ Z
[ 1

p

]
,

which implies that
J2kζOF (A, 1 − k) ∈ Z;

see [Zagier 1976, pp. 73, 75].
One feature of our method is that by using Theorem 1.3, we capture not only

the upper bound for the denominators of the partial zeta functions associated with
any orders, but also the sharpness of the upper bound.

Remark 1.10. Zagier [1977, p. 149, corollaire] proved a certain formula which
explicitly computes the special values ζO(A, 1 − k) of partial zeta functions of
orders of real quadratic fields at negative integers in a uniform way. Then by using
this formula, he obtained a universal upper bound dk for the denominators of the
values ζO(A, 1−k) and examined its sharpness briefly. More precisely, he observed
that the upper bound dk is not sharp and discussed how one can improve it when
k = 2, 3; see [Zagier 1977, pp. 149–150]. Theorem 1.8 can be seen as the complete
answer to this problem of determining the sharp universal upper bound for the
denominators of ζO(A, 1 − k).

2. Preliminaries and the Eisenstein class

In this section, we give the definition of the Eisenstein class and explain Theorem 1.3
(see Theorem 2.13).

Throughout this paper, n ≥ 2 denotes an even integer.

2.1. Definitions of modular curve and Borel–Serre compactification. Let

H := {z ∈ C | Im(z) > 0}

denote the upper half plane, and let

HBS
:= H ⊔

⊔
r∈P1(Q)

(P1(R) − {r})
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be the Borel–Serre compactification of H (see [Goresky 2005] or [Harder 2023,
§1, 2 and 7]) and let ∂HBS

:= HBS
− H. We set

0 := SL2(Z).

The group 0 acts on H and HBS by the linear fractional transformation as usual.
We denote respectively by

Y := 0\H and Y BS
:= 0\HBS

the modular curve of level SL2(Z) and its Borel–Serre compactification. We also
denote by ∂Y BS

:= Y BS
− Y the boundary of Y BS. The boundary ∂Y BS is home-

omorphic to the circle S1 and the fundamental group π1(∂Y BS) can be identified
with 0∞ :=

{(
1 a
0 1

)
| a ∈ Z

}
.

In the following, H? (resp. Y ?) refers to either H or HBS (resp. Y or Y BS). Any
left 0-module M can be regarded as a (co)sheaf on Y ? in a natural way, and we
can consider the homology groups

H•(Y ?,M), H•(∂Y BS,M), H•(Y BS, ∂Y BS,M),

which fit into the long exact sequence

· · ·→H1(∂Y BS,M)→H1(Y BS,M)→H1(Y BS,∂Y BS,M)→H0(∂Y BS,M)→··· .

Similarly, we have the cohomology groups

H •(Y ?,M), H •(∂Y BS,M), H •(Y BS, ∂Y BS,M),

which fit into the long exact sequence

· · · → H 1(Y BS, ∂Y BS,M) → H 1(Y BS,M) → H 1(∂Y BS,M)

→ H 2(Y BS, ∂Y BS,M) → · · · .

We note that the inclusion map Y ↪→ Y BS induces isomorphisms

H•(Y,M) ∼
−→ H•(Y BS,M) and H •(Y BS,M) ∼

−→ H •(Y,M).

If M has an action of M+

2 (Z) := {γ ∈ M2(Z) | det γ > 0}, then these homology
groups (resp. cohomology groups) carry the structure of Hecke modules. In other
words, for each prime number p we have a Hecke operator Tp (resp. T ′

p) on these
homology groups (resp. cohomology groups), and the above long exact sequences
are compatible with the Hecke operators.

In Section 2.2, we give a way to compute these (co)homology groups, and in
Section 2.4, we give an explicit description of the Hecke operators.

Remark 2.1. As a sheaf on Y , the stalk Mx at x ∈ Y coincides with M0x̃ , where
x̃ ∈ H is a lift of x ∈ Y and 0x̃ := {γ ∈ 0 | γ x̃ = γ }. This fact shows that a short
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exact sequence of left 0-modules does not give a short exact sequence of sheaves
on Y in general, that is, the sheafification functor is not exact. However, a short
exact sequence of left Z

[ 1
6

]
[0]-modules induces a short exact sequence of sheaves

on Y BS since the order of 0x̃ divides 6.

2.2. Modular symbols and (co)homology. Let X ∈ {H, HBS, ∂HBS
} and (S•(X), ∂)

denote the usual singular chain complex of X , i.e., Sq(X) is the free abelian group
generated by singular q-simplices in X and ∂ : Sq(X) → Sq−1(X) is the boundary
operator.

The left action of M+

2 (Z) on X induces a left action of M+

2 (Z) on S•(X), and
(S•(X), ∂) is actually an M+

2 (Z)-equivariant complex. Then it is known that for
any left M+

2 (Z)-module M, which is also seen as a (co)sheaf on 0\X , we have
natural isomorphisms

H•(0\X,M) ∼= H•((S•(X) ⊗M)0),

H•(Y BS, ∂Y BSM) ∼= H•((S•(H
BS)/S•(∂HBS) ⊗M)0),

where (−)0 denotes the 0-coinvariant functor. Here the left M+

2 (Z)-action on
S•(X) ⊗M is defined by

γ · (σ ⊗ m) := γ σ ⊗ γ m,

where σ ∈ S•(X), m ∈ M, and γ ∈ M+

2 (Z). Set

MS(X) := coker(S2(X)
∂

−→ S1(X)).

For any elements α, β ∈ X , we denote the equivalence class of a path from α to β

in MS(X) by
{α, β} ∈ MS(X).

This is a slight generalization of the usual modular symbols, which will be useful in
the following arguments since we don’t need to specify paths using this notation. The
boundary map ∂ : S1(X)→ S0(X) induces a 0-homomorphism ∂ :MS(X)→ S0(X),
and we have a natural isomorphism

H1(0\X,M) ∼= ker
(
(MS(X) ⊗M)0

∂
−→ (S0(X) ⊗M)0

)
.

Similarly, we also have natural isomorphisms

H •(0\X,M) ∼= H •(HomZ(S•(X),M)0),

H •(Y BS, ∂Y BSM) ∼= H •(HomZ(S•(H
BS)/S•(∂HBS),M)0),

where (−)0 denotes the 0-invariant functor. Here the left M+

2 (Z)-action on
HomZ(S•(X),M) is defined by

(γ φ)(σ ) := γ (φ(γ̃ σ )),
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where φ ∈ HomZ(S•(X),M), σ ∈ S•(X), and γ̃ is the adjugate of γ ∈ M+

2 (Z).
Since

ker
(
HomZ(S1(X),M) → HomZ(S2(X),M)

)
= HomZ(MS(X),M),

we have a natural isomorphism

H 1(0\X,M) ∼= coker
(
HomZ(S0(X),M)0 → HomZ(MS(X),M)0

)
.

2.3. M+

2 (Z)-modules Mn and M♭
n. For any 2 × 2 matrix γ =

(
a b
c d

)
, we denote

the adjugate of γ by

γ̃ :=

(
d −b

−c a

)
.

Note that if γ ∈ 0, then we have γ̃ = γ −1.
Let Z[X1, X2] denote the ring of polynomials of two variables over Z, and we

equip Z[X1, X2] with a left action of M+

2 (Z) by

(γ P)(X1, X2) := P(d X1 − bX2, −cX1 + aX2) = P((X1, X2) ·
tγ̃ ),

where P ∈ Z[X1, X2] and γ ∈ M+

2 (Z). For each integer 0 ≤ ν ≤ n, we set

eν := Xν
1 Xn−ν

2 and e♭
ν := (−1)n−ν

(n
ν

)
Xn−ν

1 Xν
2 .

We then define submodules Mn and M♭
n of Z[X1, X2] by

Mn :=

n⊕
ν=0

Zeν and M♭
n :=

n⊕
ν=0

Ze♭
ν .

The Z-modules Mn and M♭
n are closed under the left action of M+

2 (Z) on Z[X1, X2].
In particular, both Mn and M♭

n are left 0-modules. We also define the pairing

⟨ · , · ⟩ : M♭
n ×Mn → Z

by
⟨e♭

ν, eµ⟩ = δν,µ,

where δν,µ is the Kronecker delta. The pairing ⟨ · , · ⟩ is perfect and M+

2 (Z)-
equivariant in the sense that for any polynomials P ∈ M♭

n and Q ∈ Mn and
matrix γ ∈ M+

2 (Z), we have

⟨P, γ Q⟩ = ⟨γ̃ P, Q⟩.

Hence the pairing ⟨ · , · ⟩ induces an M+

2 (Z)-equivariant isomorphism

M♭
n

∼
−→ M∨

n := HomZ(Mn, Z), m′
7→ (m 7→ ⟨m′, m⟩).
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Here the left action of M+

2 (Z) on M∨
n = HomZ(Mn, Z) is given by

(γ φ)(Q) = φ(γ̃ Q),

where φ ∈ HomZ(Mn, Z), Q ∈ Mn , and γ ∈ M+

2 (Z).

Remark 2.2. The left actions of M+

2 (Z) on Mn and M♭
n are slightly different from

the left actions used in Harder’s book [2023, Equation (1.57), p. 37]. However,
since (

−1
1

)−1 (
a b
c d

) (
−1

1

)
=

(
d −b

−c a

)
,

they are isomorphic as left M+

2 (Z)-modules. Therefore, there are no essential
differences.

2.4. Hecke operators. Let X ∈ {H, HBS, ∂H} and M be a left M+

2 (Z)-module. Let
us define the Hecke operators on H•(0\X,M) and H •(0\X,M) explicitly.

For each prime number p, we have the coset decomposition

0

(
p

1

)
0 = 0

(
p

1

)
⊔

p−1⊔
j=0

0

(
1 j

p

)
.

Hence the endomorphism

M −→ M; m 7→

(
p 0
0 1

)
m +

p−1∑
j=0

(
1 j
0 p

)
m

induces an endomorphism of M0. Similarly, the endomorphism

M −→ M; m 7→

(̃
p 0
0 1

)
m +

p−1∑
j=0

(̃
1 j
0 p

)
m

induces an endomorphism of M0.

Definition 2.3. Let p be a prime number.

(1) We define the Hecke operator Tp at p on S•(X) ⊗M by

Tp(σ ⊗ P) :=

(
p 0
0 1

)
σ ⊗

(
p 0
0 1

)
P +

p−1∑
j=0

(
1 j
0 p

)
σ ⊗

(
1 j
0 p

)
P

for any simplex σ ∈ S•(X) and any element P ∈ M. The operator Tp induces
operators on MS(X) ⊗M and H•(0\X,M), etc., also written as Tp.
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(2) We define the Hecke operator T ′
p at p on HomZ(S•(X),M) by

(φ|T ′

p)(σ ) :=

(̃
p 0
0 1

)[
φ

((
p 0
0 1

)
σ

)]
+

p−1∑
j=0

(̃
1 j
0 p

)[
φ

((
1 j
0 p

)
σ

)]
for any homomorphism φ ∈ HomZ(S•(X),M♭

n) and any simplex σ ∈ S•(X). The
operator T ′

p induces operators on HomZ(MS(X),M) and H •(0\X,M), etc., also
written as T ′

p.

For later use, we also define auxiliary operators Up and Vp on S•(X) ⊗M by

Vp(σ ⊗ P) :=

(
p 0
0 1

)
σ ⊗

(
p 0
0 1

)
P, Up(σ ⊗ P) :=

p−1∑
j=0

(
1 j
0 p

)
σ ⊗

(
1 j
0 p

)
P,

so that Tp := Vp + Up.

Lemma 2.4. The composite VpUp acts on (S•(X)⊗Mn)0 and we have VpUp= pn+1

as operators on (S•(X) ⊗Mn)0.

Proof. Since diagonal matrices act trivially on X , we have

VpUp(σ ⊗ P) =

p−1∑
j=0

(
p pj
0 p

)
σ ⊗

(
p pj
0 p

)
P = pn

p−1∑
j=0

(
1 j
0 1

)
(σ ⊗ P)

for any simplex σ ∈ S•(X) and polynomial P ∈ Mn . Since
(1 j

0 1

)
∈ 0 for any

integer j , the lemma follows from the above equality. □

2.5. Formal duality. Let X ∈ {H, HBS, ∂HBS
}. As explained in Section 2.2, the

homology and cohomology groups can be computed as

H•(0\X,Mn)∼=H•((S•(X)⊗Mn)0), H •(0\X,M♭
n)

∼=H•(HomZ(S•(X),M♭
n)

0).

The pairing ⟨ · , · ⟩ : M♭
×M → Z induces a pairing

⟨ · , · ⟩ : HomZ(S•(X),M♭
n) × S•(X) ⊗Mn → Z,

which is computed as
⟨φ, σ ⊗ P⟩ := ⟨φ(σ), P⟩.

Note that for any matrix γ ∈ M+

2 (Z), we have

⟨γ̃ φ, σ ⊗ P⟩ = ⟨γ̃ φ(γ σ ), P⟩ = ⟨φ(γ σ), γ P⟩ = ⟨φ, γ (σ ⊗ P)⟩.

Therefore, we have

⟨φ|T ′

p, σ ⊗ P⟩ = ⟨φ, Tp(σ ⊗ P)⟩.
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In particular, we obtain a Hecke-equivariant pairing

⟨ · , · ⟩ : H •(0\X,M♭
n) × H•(0\X,Mn) → Z,

which induces an isomorphism

H •(0\X,M♭
n)/(torsion) ∼

−→ HomZ(H•(0\X,Mn), Z).

2.6. Eichler–Shimura homomorphism. Let Mn+2(0) denote the space of modular
forms of weight n + 2 and level 0 = SL2(Z). We define a homomorphism

r : Mn+2(0) → HomZ(MS(H),M♭
n ⊗ C)

by
r( f )({α, β}) :=

∫ β

α
f (z)(X1 − zX2)

n dz

for any modular form f ∈ Mn+2(0) and {α, β} ∈ MS(H). It is well known that

r(Mn+2(0)) ⊂ HomZ(MS(H),M♭
n ⊗ C)0,

and the homomorphism r induces an injective homomorphism

r : Mn+2(0) ↪→ H 1(Y,M♭
n) ⊗ C = H 1(Y BS,M♭

n) ⊗ C,

called Eichler–Shimura homomorphism. See [Bellaïche 2021, Section 5.3] for
example.

Remark 2.5. The definition of the Eichler–Shimura homomorphism shows that,
for any element σ = {α, β}⊗ P ∈ MS(H)⊗Mn and modular form f ∈ Mn+2(0),
the pairing ⟨r( f ), σ ⟩ can be computed as

⟨r( f ), σ ⟩ =

∫ β

α
f (z)P(z, 1) dz.

Remark 2.6. For each prime number p, the double coset operator T ′′
p := 0

(1
p
)
0

acts on the space Mn+2(0) of modular forms from the right by using the weight
n + 2 slash operator4

|[ · ]n+2. One can easily show that

r( f |[γ ]n+2) = γ̃ · r( f )

for any matrix γ ∈ M+

2 (Z). Hence the Eichler–Shimura homomorphism is Hecke-
equivariant, that is, for all prime numbers p, we have

r( f |T ′′

p ) = r( f )|T ′

p.

In other words, our Hecke operator T ′
p coincides with the usual one via the Eichler–

Shimura homomorphism.

4Here we adopt the normalization f |[γ ]n+2(z) := (det γ )n+1(cz+d)−n−2 f (γ z) for γ =
(a b

c d
)
∈

M2(Z) and z ∈ H.
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The following lemma is well known; see [Bellaïche 2021, Theorem 5.3.27] for
example.

Lemma 2.7. The Eichler–Shimura homomorphism induces a Hecke-equivariant
isomorphism

Mn+2(0)/Sn+2(0) ∼
−→ H 1(∂Y BS,M♭

n) ⊗ C.

Here Sn+2(0) denotes the space of cusp forms of weight n + 2 and level 0.

2.7. Definition of the Eisenstein class. We now define the Eisenstein class Eisn

and explain its basic properties.
We put i :=

√
−1 and we let σn+1(k) denote the sum-of-positive-divisors function,

namely, σn+1(k) :=
∑

0<d|k dn+1. Let

En+2(z) := 1 +
2

ζ(−1 − n)

∞∑
k=1

σn+1(k)e2π ikz
∈ Mn+2(0)

denote the normalized holomorphic Eisenstein series of weight n + 2.

Lemma 2.8. (1) For any element τ ∈ H, we have

⟨r(En+2), {τ, τ + 1} ⊗ e0⟩ = 1.

(2) For any prime number p, we have

r(En+2)|T ′

p = (1 + pn+1)r(En+2).

Proof. Claim (1) follows from the fact that the constant term of En+2 is 1, and
Claim (2) follows from the fact that En+2|T ′′

p = (1 + pn+1)En+2 and the Eichler–
Shimura homomorphism is Hecke-equivariant. □

Definition 2.9. We define the Eisenstein class Eisn ∈ H 1(Y BS,M♭
n) ⊗ C by

Eisn := r(En+2).

Remark 2.10. Our method of defining the Eisenstein class Eisn differs from the
method in Harder’s book [2023, §3.3.6, Equation (3.85), p. 130]. However, thanks
to Lemma 2.8, they coincide.

2.8. Main theorem.

Proposition 2.11. The Eisenstein class Eisn is rational: Eisn ∈ H 1(Y BS,M♭
n)⊗ Q.

This proposition is proved in Corollary 4.18.

Definition 2.12. For any 0-module M, we define

H 1
int(Y

BS,M) := im
(
H 1(Y BS,M) → H 1(Y BS,M) ⊗ Q

)
.
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Thanks to Proposition 2.11, we define the denominator 1(Eisn) of the Eisenstein
class Eisn with respect to the integral structure H 1

int(Y
BS,M♭

n) by

1(Eisn) := min{1 ∈ Z>0 | 1Eisn ∈ H 1
int(Y

BS,M♭
n)}.

The following is our main theorem.

Theorem 2.13 [Harder 2023, Theorem 5.1.2]. The denominator 1(Eisn) of the
Eisenstein class Eisn is equal to the numerator of the special value ζ(−1 − n) of
the Riemann zeta function.

Remark 2.14. (1) Haberland [1983, pp. 272–273] proved a weaker version of
Theorem 1.3. More precisely, let p be a prime number and assume that p > n.
Haberland obtained

ordp(1(Eisn)) ≤ ordp(numerator of ζ(−1 − n)).

If we further assume that p divides ζ(−1−n) and that there exists ν ∈ {1, . . . , n−1}

such that p ∤ ζ(−ν)ζ(ν − n), he obtained the equality

ordp(1(Eisn)) = ordp(numerator of ζ(−1 − n)).

(2) In his dissertation, Wang [1989] proved that p | 1(Eisn) and p | ζ(−1 − n) are
equivalent.

Remark 2.15. For any prime numbers p and ℓ with ℓ ∤ p(p −1), the denominators
over Zℓ of Eisenstein classes for 01(p) with a character were computed by Kaiser
in his diploma thesis [1990] (see also [Mahnkopf 2000] for the study of Eisenstein
classes for 01(peℓ)). The 3-adic version for congruence subgroups 01(N ) was
studied by [Ohta 2003]. Eisenstein classes for GL2 over totally real fields have
been studied by Maennel in his dissertation [1993]. Eisenstein classes for GL2 over
imaginary quadratic fields have been studied by Harder [1981; 1982], Weselmann
[1988], Berger [2008; 2009], and Branchereau [2023].

Remark 2.16. (1) Since H 1(Y BS,M♭
n) ⊗ Q = H 1(Y BS,Mn) ⊗ Q, we have an-

other integral structure H 1
int(Y

BS,Mn), and we can consider another denominator
1′(Eisn) of the Eisenstein class Eisn:

1′(Eisn) := min{1 ∈ Z>0 | 1Eisn ∈ H 1
int(Y

BS,Mn)}.

However, we show in Lemma 6.1 that 1(Eisn) = 1′(Eisn).

(2) By using the q-expansion at the cusp i∞, one can regard Mn+2(0) as a sub-
module of C[[q]], and we obtain the de Rham rational structure of Mn+2(0) by
Mn+2(0) ∩ Q[[q]]. The rationality of the critical values of the L-function asso-
ciated with a cusp form is obtained by studying the gap between the de Rham
and Betti rational structures via the Eichler–Shimura homomorphism r . However,
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Proposition 2.11 shows that the Eisenstein parts of the two rational structures
coincide. Moreover, Theorem 2.13 says that the Eisenstein parts of the two integral
structures Mn+2(0) ∩ Z[[q]] and H 1

int(Y
BS,M♭

n) coincide:

r(QEn+2(z) ∩ Z[[q]]) = QEisn ∩ H 1
int(Y

BS,M♭
n),

since 2 is a regular prime. See [Harder 2021, §1.1].

3. Construction of the cycle∼T m
p (Cν(τ))

Fix a prime number p. In this section, we construct a special homology cycle

[
∼

T m
p (Cν(τ ))] ∈ H1(Y BS,Mn ⊗ Z(p))

that is used to compute the p-part of the denominator 1(Eisn) of the Eisenstein
class Eisn .

For any integer 1 ≤ ν ≤ n − 1 and any element τ ∈ HBS, we set

Cν(τ ) :=

{
−

1
τ
, τ

}
⊗ eν ∈ MS(HBS) ⊗Mn,

where, as we recall, eν = Xν
1 Xn−ν

2 .

3.1. Computation of T m
p (Cν(τ)). Recall also the operators

Vp(σ ⊗ P) :=

(
p 0
0 1

)
σ ⊗

(
p 0
0 1

)
P, Up(σ ⊗ P) :=

p−1∑
j=0

(
1 j
0 p

)
σ ⊗

(
1 j
0 p

)
P

on S•(H
BS) ⊗Mn . We have Tp = Vp + Up. For each integer m ≥ 0, set

Wm :=

m∑
k=0

U k
p V m−k

p .

Note that W0 is the identity map. For any (commutative) ring R and cycle C ∈

S•(H
BS)⊗(Mn ⊗ R), we denote by [C] the image of C in (S•(H

BS)⊗(Mn ⊗ R))0 .

Lemma 3.1. Let m ≥ 1 be an integer and C ∈ S•(H
BS) ⊗Mn .

(1) Tp([Wm(C)]) = [Wm+1(C)] + pn+1
[Wm−1(C)] and Tp([W0(C)]) = [W1(C)].

(2) T m
p ([C]) =

⌊m/2⌋∑
A=0

c(m − A, A)p(n+1)A
[Wm−2A(C)],

where ⌊m/2⌋ is the greatest integer less than or equal to m/2 and

c(A, B) :=

(
1 −

B
A+1

)( A+B
B

)
=

( A+B
B

)
−

( A+B
B−1

)
∈ Z.

Here we assume
(a

b

)
= 0 if b < 0.
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Proof. Claim (1) follows from the fact that VpUp = pn+1 proved in Lemma 2.4.
Let us prove Claim (2). For notational simplicity, we put

wm := [Wm(C)].

Then Claim (1) shows that we can write

T m
p ([C]) =

m∑
k=0

a(m)
k wm−k

with a(m)
k ∈ Z such that

a(m)
0 = a(m−1)

0 = · · · = a(1)
0 = a(0)

0 = 1,

a(m)
1 = a(m−1)

1 = · · · = a(1)
1 = 0,

a(m)
k = a(m−1)

k + pn+1a(m−1)
k−2 (2 ≤ k ≤ m − 1),

a(m)
m = pn+1a(m−1)

m−2 .

Therefore, we have a(m)
2k+1 = 0 for any integer 0 ≤ k ≤

1
2(m − 1), and hence

T m
p ([C]) =

⌊m/2⌋∑
k=0

a(m)
2k wm−2k .

Let us show that a(m)
2k = c(m −k, k)pk(n+1) for any integer 0 ≤ k ≤

1
2 m by induction

on m. When m = 1 or k = 0, this claim is clear. If m > 1 and 1 ≤ k ≤
1
2(m − 1),

then the induction hypothesis shows that

a(m)
2k = a(m−1)

2k + pn+1a(m−1)
2k−2 = c(m − 1 − k, k)pk(n+1)

+ c(m − k, k + 1)pk(n+1)

= c(m − k, k)pk(n+1).

If m is even (let m = 2t) then we have

a(m)
m = pn+1a(m−1)

m−2 = c(t, t −1)pt (n+1)
=

1
t + 1

(2t)!
(t !)(t !)

pt (n+1)
= c(t, t)pt (n+1). □

By definition, we have

Wm−2A(Cν(τ )) =

m−2A∑
k=0

U k
p V m−2A−k

p (Cν(τ ))

=

m−2A∑
k=0

U k
p

(
pm−2A−k 0

0 1

) ({
−

1
τ
, τ

}
⊗ eν

)

=

m−2A∑
k=0

p(n−ν)(m−2A−k)U k
p

({
−

pm−2A−k

τ
, pm−2A−kτ

}
⊗ eν

)
.
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Definition 3.2. Take elements τ0, τ1 ∈ HBS. For any integers ν, j , and k satisfying
1 ≤ ν ≤ n − 1 and 0 ≤ j ≤ pk

− 1, we define

Cν,k, j (τ0, τ1) :=

(
1 j
0 pk

) {
−

1
τ0

, τ1

}
⊗

(
1 j
0 pk

)
eν

=

{
−1/τ0 + j

pk ,
τ1 + j

pk

}
⊗

(
1 j
0 pk

)
eν ∈ MS(HBS) ⊗Mn.

Note that we have

U k
p

({
−

1
τ0

, τ1

}
⊗ eν

)
=

pk
−1∑

j=0

Cν,k, j (τ0, τ1).

To sum up, we obtain the following corollary.

Corollary 3.3. We have

T m
p ([Cν(τ )]) =

⌊m/2⌋∑
A=0

c(m − A, A)p(n+1)A

×

m−2A∑
k=0

p(n−ν)(m−2A−k)

pk
−1∑

j=0

[
Cν,k, j

(
τ

pm−2A−k , pm−2A−kτ

)]
.

3.2. Computation of the boundary ∂Cν,k, j (τ0, τ1). Next, we compute the bound-
ary ∂Cν,k, j (τ0, τ1).

Definition 3.4. (1) For any integers j and N with p ∤ j and N > 0, we denote by
dN ( j) and bN ( j) the integers uniquely determined by

1 ≤ dN ( j) < pN and jdN ( j) − pN bN ( j) = 1.

We also put d0( j) := 0 and b0( j) := −1 for any integer j .

(2) For any integers k and j , we set

lk( j) := min{ordp( j), k}.

Note that lk(0) = k. We also put j ′
:= j/plk( j).

In the following, for integers j and k with 0 ≤ j ≤ pk
− 1, we often write

l := lk( j), j ′
:= j/plk( j), d := dk−lk( j)( j ′), b := bk−lk( j)( j ′) (3-1)

for simplicity.

Definition 3.5. For any integers ν, j , and k with 1 ≤ ν ≤ n −1 and 0 ≤ j ≤ pk
−1,

we define homogeneous polynomials E (1)
ν,k, j and E (0)

ν,k, j in Mn by

E (1)
ν,k, j (X1, X2) := (pk X1 − j X2)

ν Xn−ν
2 ,

E (0)
ν,k, j (X1, X2) := (−1)ν+1(pl X2)

ν(pk−l X1 + d X2)
n−ν .
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Lemma 3.6. We have

∂[Cν,k, j (τ0, τ1)] =

[{
τ1 + j

pk

}
⊗ E (1)

ν,k, j +

{
plτ0 − d

pk−l

}
⊗ E (0)

ν,k, j

]
in (S0(H

BS) ⊗Mn)0.

Proof. By definition, we have

∂[Cν,k, j (τ0, τ1)] =

[(
1 j
0 pk

)
{τ1}⊗

(
1 j
0 pk

)
eν −

(
1 j
0 pk

) {
−

1
τ0

}
⊗

(
1 j
0 pk

)
eν

]
.

The definition of E (1)
ν,k, j shows that(

1 j
0 pk

)
{τ1} ⊗

(
1 j
0 pk

)
eν =

{
τ1 + j

pk

}
⊗ E (1)

ν,k, j .

Moreover, we have(
1 j
0 pk

) {
−

1
τ0

}
⊗

(
1 j
0 pk

)
eν =

(
1 j
0 pk

) (
0 −1
1 0

)
{τ0} ⊗

(
1 j
0 pk

)
eν

=

(
j ′ b

pk−l d

) (
pl

−d
0 pk−l

)
{τ0} ⊗

(
1 j
0 pk

)
eν .

Since[(
j ′ b

pk−l d

) (
pl

−d
0 pk−l

)
{τ0} ⊗

(
1 j
0 pk

)
eν

]
=

[(
pl

−d
0 pk−l

)
{τ0} ⊗

(
d −b

−pk−l j ′

) (
1 j
0 pk

)
eν

]
and

( d −b
−pk−l j ′

)(1 j
0 pk

)
eν = −E (0)

ν,k, j , we obtain[(
1 j
0 pk

) {
−

1
τ0

}
⊗

(
1 j
0 pk

)
eν

]
= −

[{
plτ0 − d

pk−l

}
⊗ E (0)

ν,k, j

]
. □

3.3. A cycle
∼

T m
p (Cν(τ)) in MS(HBS) ⊗ (Mn ⊗ Q). In this subsection, for each

integer 1 ≤ ν ≤ n − 1 and m ≥ n, we construct a p-adically integral cycle
∼

T m
p (Cν(τ )) in MS(HBS) ⊗ (Mn ⊗ Z(p)) such that the image of

∼

T m
p (Cν(τ )) in

H1(Y BS, ∂Y BS,Mn ⊗ Z(p)) is T m
p ([{0, i∞} ⊗ eν]).

3.3.1. Bernoulli polynomials. Since a key tool for constructing the cycle
∼

T m
p (Cν(τ ))

is the Bernoulli polynomials, we briefly recall their basic properties.
Let t be a nonnegative integer. We denote by Bt(x) the t-th Bernoulli polynomial

and by
Bt := Bt(0)
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the t-th Bernoulli number. For notational simplicity, we put

B̃t(x) :=
1
t
(Bt(x) − Bt).

We use the following well-known facts without any notice:

Bt(x) =

t∑
µ=0

(
t
µ

)
Bt−µxµ,

∫ x+1

x
Bt(x) dx = x t ,

∫ x

a
Bt(x) dx =

Bt+1(x) − Bt+1(a)

t + 1
, ordp(Bt) ≥ −1.

The last fact is called the von Staudt–Clausen theorem. We note that the second
and third facts imply that

x−1∑
j=0

j t
= B̃t+1(x).

3.3.2. P† and P‡. Set

Mn,(p) :=

n⊕
µ=0

Z(p)Xµ

1 Xn−µ

2 and M◦

n,(p) :=

n−1⊕
µ=0

Z(p)Xµ

1 Xn−µ

2 ,

and let

† : M◦

n,(p) ⊗ Q → Mn,(p) ⊗ Q; P 7→ P†

be the Q-linear map defined by

(Xµ

1 Xn−µ

2 )†
:= Xn

2
Bµ+1(X1/X2) − Bµ+1

µ + 1
= Xn

2 B̃µ+1(X1/X2).

For any integer µ ∈ {0, . . . , n − 1}, we have 1 + ordp(µ + 1) ≤ n, and hence
pn Xn

2 B̃µ+1(X1/X2) ∈ Mn,(p). This fact shows that

(M◦

n,(p))
†
⊂

1
pn Mn,(p),

where (M◦

n,(p))
† denotes the image of M◦

n,(p) under the map †. Similarly, let

‡ : M◦

n,(p) ⊗ Q → Mn ⊗ Q; P 7→ P‡

be the Q-linear map defined by

(Xµ

1 Xn−µ

2 )‡
:= Xn

2
(X1/X2)

µ+1
− Bµ+1

µ + 1
.

The following lemma follows from the definitions of P† and P‡.
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Lemma 3.7. For any polynomial P(X1, X2) ∈ M◦
n ⊗ Q, we have

P†(X1 + X2, X2) − P†(X1, X2) = P(X1, X2),∫ x+1

x
P†(z, 1) dz = P‡(x, 1),

∫ x2

x1

P(z, 1) dz = P‡(x2, 1) − P‡(x1, 1).

3.3.3. Definitions of polynomials P (1)
ν,k, j and P (0)

ν,k, j .

Definition 3.8. For any integers ν, j , and k with 1 ≤ ν ≤ n −1 and 0 ≤ j ≤ pk
−1,

we define polynomials P (1)
ν,k, j and P (0)

ν,k, j in Mn ⊗ Q by

P (1)
ν,k, j := E (1)†

ν,k, j , P (0)
ν,k, j := E (0)†

ν,k, j .

Lemma 3.9. For each i ∈ {0, 1}, we have P (i)
ν,k, j ∈ pmin{0,k−n}Mn,(p).

Proof. This follows from the fact that (M◦

n,(p))
†
⊂ p−nMn,(p) and (Xn

2)†
= X1 Xn−1

2
and that the coefficient of Xµ

1 Xn−µ

2 in E (i)
ν,k, j is divided by pk if µ ≥ 1. □

3.3.4. Definition of the cycle
∼

T m
p (Cν(τ )). Now we can define C̃ν,k, j (τ0, τ1) and

∼

T m
p (Cν(τ )).

Definition 3.10. Let τ0, τ1 ∈ HBS. For any integers ν, k, and j with 1 ≤ ν ≤ n − 1
and 0 ≤ j ≤ pk

−1, we define an element C̃ν,k, j (τ0, τ1)∈MS(HBS)⊗(Mn ⊗Q) by

C̃ν,k, j (τ0,τ1)

:=Cν,k, j (τ0,τ1)−

{
τ1 + j

pk ,
τ1 + j

pk +1
}
⊗P (1)

ν,k, j−

{
plτ0 − d

pk−l ,
plτ0 − d

pk−l +1
}
⊗P (0)

ν,k, j .

We also put

C̃ int
ν,k, j (τ0, τ1) := pmax{0,n−k}C̃ν,k, j (τ0, τ1).

Note that C̃ int
ν,k, j (τ0, τ1) ∈ MS(HBS) ⊗Mn,(p) by Lemma 3.9.

Lemma 3.11. We have

∂[C̃ int
ν,k, j (τ0, τ1)] = 0 in (S0(H

BS) ⊗Mn,(p))0.

In particular, [C̃ int
ν,k, j (τ0, τ1)] defines a homology class

[C̃ int
ν,k, j (τ0, τ1)] ∈ H1(Y BS,Mn,(p)).

Proof. This follows from Definitions 3.5 and 3.8 and Lemmas 3.6 and 3.7. □

Lemma 3.12. The homology class [C̃ int
ν,k, j (τ0, τ1)] is independent of the choices of

τ0 and τ1.
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Proof. Let τ ′

0 and τ ′

1 be another pair of points in HBS. We will prove that

[C̃ int
ν,k, j (τ0, τ1)] = [C̃ int

ν,k, j (τ
′

0, τ
′

1)] in H1(Y BS,Mn,(p)).

It suffices to construct an element h ∈ S2(H
BS) ⊗Mn,(p) such that

∂[h] = [C̃ int
ν,k, j (τ0, τ1)] − [C̃ int

ν,k, j (τ
′

0, τ
′

1)] in (MS(HBS) ⊗Mn,(p))0.

For notational simplicity, set q := pmax{0,n−k}. First, since HBS is simply connected,
there exist elements h1, h2, h3 ∈ S2(H

BS) such that

∂h1 =

{
−1/τ0 + j

pk ,
τ1 + j

pk

}
−

{
−1/τ ′

0 + j
pk ,

τ ′

1 + j
pk

}
−

{
τ ′

1 + j
pk

τ1 + j
pk

}
+

{
−1/τ ′

0 + j
pk ,

−1/τ0 + j
pk ,

}
,

∂h2 =

{
τ1 + j

pk ,
τ1 + j

pk + 1
}

−

{
τ ′

1 + j
pk ,

τ ′

1 + j
pk + 1

}
−

{
τ ′

1 + j
pk + 1,

τ1 + j
pk + 1

}
+

{
τ ′

1 + j
pk ,

τ1 + j
pk

}
,

∂h3 =

{
plτ0 − d

pk−l ,
plτ0 − d

pk−l + 1
}

−

{
plτ ′

0 − d
pk−l ,

plτ ′

0 − d
pk−l + 1

}
−

{
plτ ′

0 − d
pk−l + 1,

plτ0 − d
pk−l + 1

}
+

{
plτ ′

0 − d
pk−l ,

plτ0 − d
pk−l

}
.

Then we see that

h := q
(

h1 ⊗

(
1 j
0 pk

)
eν − h2 ⊗ P (1)

ν,k, j − h3 ⊗ P (0)
ν,k, j

)
satisfies the desired property. Indeed, we have

∂h = q(C̃ν,k, j (τ0, τ1) − C̃ν,k, j (τ
′

0, τ
′

1) − B(1)
− B(0)),

where

B(1)
:=

{
τ ′

1 + j
pk

τ1 + j
pk

}
⊗

(
1 j
0 pk

)
eν

−

{
τ ′

1 + j
pk + 1,

τ1 + j
pk + 1

}
⊗ P (1)

ν,k, j +

{
τ ′

1 + j
pk ,

τ1 + j
pk

}
⊗ P (1)

ν,k, j ,

B(0)
:= −

{
−1/τ ′

0 + j
pk ,

−1/τ0 + j
pk

}
⊗

(
1 j
0 pk

)
eν

−

{
plτ ′

0 − d
pk−l + 1,

plτ0 − d
pk−l + 1

}
⊗ P (0)

ν,k, j +

{
plτ ′

0 − d
pk−l ,

plτ0 − d
pk−l

}
⊗ P (0)

ν,k, j .
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Then the same computation as in the proof of Lemma 3.6 shows that

q B(1)

≡

{
τ ′

1 + j
pk

τ1 + j
pk

}
⊗q

(
E (1)

ν,k, j (X1, X2)−P (1)
ν,k, j (X1+X2, X2)+P (1)

ν,k, j (X1, X2)
)
=0,

q B(0)
≡

{
plτ ′

0 − d
pk−l + 1,

plτ0 − d
pk−l + 1

}
⊗ q

(
E (0)

ν,k, j (X1, X2) − P (0)
ν,k, j (X1 + X2, X2) + P (0)

ν,k, j (X1, X2)
)
= 0,

where ≡ means that it is an equality in the 0-coinvariant (MS(HBS) ⊗Mn,(p))0.
Hence we obtain ∂[h] = [C̃ int

ν,k, j (τ0, τ1)] − [C̃ int
ν,k, j (τ

′

0, τ
′

1)]. □

Definition 3.13. For any integer m ≥ 0 and element τ ∈ HBS, we define a cycle
∼

T m
p (Cν(τ )) ∈ MS(HBS) ⊗ (Mn ⊗ Q) by

∼

T m
p (Cν(τ )) :=

⌊m/2⌋∑
A=0

c(m − A, A)p(n+1)A

×

m−2A∑
k=0

p(n−ν)(m−2A−k)

pk
−1∑

j=0

C̃ν,k, j

(
τ

pm−2A−k , pm−2A−kτ

)
.

Definition 3.14. For any integer ν ∈ {0, . . . , n}, we define a homology class

[Cν] ∈ H1(Y BS, ∂Y BS,Mn)

to be the element represented by the cycle

Cν := {0, i∞} ⊗ eν,

where i∞ ∈ ∂HBS is a point such that

i∞ := lim
t∈R>0
t→∞

i t.

Lemma 3.15. Let 1 ≤ ν ≤ n − 1 be an integer.

(1) ∂[
∼

T m
p (Cν(τ ))] = 0 in (S0(H

BS) ⊗Mn ⊗ Q)0.

(2) If m ≥ n, then we have
∼

T m
p (Cν(τ )) ∈ MS(HBS)⊗Mn,(p). Hence

∼

T m
p (Cν(τ ))

defines a p-integral homology class [
∼

T m
p (Cν(τ ))] in H1(Y BS,Mn,(p)) which

is independent of the choice of τ .

(3) If m ≥ n, then the image of the homology class [
∼

T m
p (Cν(τ ))] under the homo-

morphism H1(Y BS,Mn,(p)) → H1(Y BS, ∂Y BS,Mn,(p)) is T m
p ([Cν]).
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Proof. Claim (1) follows from Lemma 3.11. Let us show Claim (2). By Lemma 3.9,
we have pmax{0,n−k}C̃ν,k, j (τ0, τ1) ∈ MS(HBS) ⊗Mn,(p). Since 1 ≤ ν ≤ n − 1 and
2 ≤ n, we have

(n + 1)A + (n − ν)(m − 2A − k) ≥ (n + 1)A + m − 2A − k ≥ m − k

for any nonnegative integer A. This fact shows that
∼

T m
p (Cν(τ )) ∈MS(H)⊗Mn,(p)

if m ≥ n. It follows from Lemma 3.12 that the homology class [
∼

T m
p (Cν(τ ))] does

not depend on the choice of τ . Claim (3) follows from the definition of
∼

T m
p (Cν(τ ))

and Lemma 3.1. □

Remark 3.16. The above construction of
∼

T m
p (Cν(τ )), especially Definition 3.10,

is called the spectacle construction since the cycle C̃ν,k, j (τ0, τ1) looks like a pair
of spectacles. See Funke–Millson [2011] for more detail.

4. Period

The aim of this section is to compute the value

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩

and its p-adic limit as m → ∞, that are independent of τ ∈ HBS by Lemma 3.15(2).
In the sequel, the symbol limm→∞ will always mean the p-adic limit. The following
is the main result of this section.

Theorem 4.1. For any τ ∈ HBS and any integer ν ∈ {1, . . . , n − 1}, we have

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩

= (1 − pn+1)

(
1

1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)
−

ζ(−ν)

1 − pn−ν
−

ζ(ν − n)

1 − pν

)
.

In fact, we show in Section 4.3 that

lim
m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉
=

1
1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)
−

ζ(−ν)

1 − pn−ν
−

ζ(ν − n)

1 − pν
. (4-1)

Hence Theorem 4.1 follows from (4-1) and the following lemma.

Lemma 4.2. Suppose that the p-adic limit

lim
m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉
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exists. We then have

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩

= (1 − pn+1) lim
m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉
.

Proof. For notational simplicity, we put

W (m)
:=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉
and W := limm→∞ W (m). We then have

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩ =

1
2 m!∑
A=0

c(m! − A, A)p(n+1)AW (m!−2A).

Take a positive integer Q. There is a positive integer r such that W (s)
−W ∈ pQZp

for any integer s ≥ r . Hence we have

⌊m/2⌋∑
A=0

c(m − A, A)p(n+1)A(W (m−2A)
− W )

≡

⌊m/2⌋∑
A=⌊(m−r)/2⌋+1

c(m − A, A)p(n+1)A(W (m−2A)
− W ) (mod pQZp).

The sequence (W (m)
− W )∞m=0 is bounded in Qp, and hence for any sufficiently

large integer m, we have

⌊m/2⌋∑
A=⌊(m−r)/2⌋+1

c(m − A, A)p(n+1)A(W (m−2A)
− W ) ∈ pQZp.

This implies that

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩ = lim
m→∞

1
2 m!∑
A=0

c(m! − A, A)p(n+1)AW .

Since c(m! − A, A) =
(m!

A

)
−

( m!

A−1

)
(note that

( m
−1

)
= 0), we have

1
2 m!∑
A=0

c(m! − A, A)p(n+1)A
=

1
2 m!∑
A=0

(m!

A

)
p(n+1)A

−

1
2 m!−1∑
A=0

(m!

A

)
p(n+1)(A+1)

= (1 − pn+1)

1
2 m!−1∑
A=0

(m!

A

)
p(n+1)A

+

( m!

1
2 m!

)
p

1
2 (n+1)m!.
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Since
1
2 m!−1∑
A=0

(m!

A

)
p(n+1)A

≡

m!∑
A=0

(m!

A

)
p(n+1)A (mod p

1
2 m!) = (1 + pn+1)m!,

we obtain that

lim
m→∞

1
2 m!∑
A=0

c(m! − A, A)p(n+1)A
= (1 − pn+1) lim

m→∞
(1 + pn+1)m!

= 1 − pn+1. □

Therefore, it remains to prove (4-1), and this will be done in Proposition 4.13.

4.1. ⟨Eisn, C̃ν,k, j (τ0, τ1)⟩. We start by computing the value ⟨Eisn, C̃ν,k, j (τ0, τ1)⟩.
In this subsection, we fix integers k and j with 0 ≤ j ≤ pk

− 1. Recall that

l := lk( j) and d := dk−lk( j)( j ′) = dk−lk( j)( j/plk( j))

are taken as in Definition 3.4 and (3-1) and that

C̃ν,k, j (τ0, τ1)

=

{
−1/τ0 + j

pk ,
τ1 + j

pk

}
⊗ (pk X1 − j X2)

ν Xn−ν
2 −

{
τ1 + j

pk ,
τ1 + j

pk + 1
}

⊗ P (1)
ν,k, j

−

{
plτ0 − d

pk−l ,
plτ0 − d

pk−l + 1
}

⊗ P (0)
ν,k, j .

Hence we have

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩

=

∫ (τ1+ j)/pk

(−1/τ0+ j)/pk
En+2(z)(pkz − j)ν dz −

∫ (τ1+ j)/pk
+1

(τ1+ j)/pk
En+2(z)P (1)

ν,k, j (z, 1) dz

−

∫ (plτ0−d)/pk−l
+1

(plτ0−d)/pk−l
En+2(z)P (0)

ν,k, j (z, 1) dz

=
1
pk

∫ τ1

−1/τ0

En+2

(
z + j

pk

)
zν dz −

∫ (τ1+ j)/pk
+1

(τ1+ j)/pk
En+2(z)P (1)

ν,k, j (z, 1) dz

−

∫ (plτ0−d)/pk−l
+1

(plτ0−d)/pk−l
En+2(z)P (0)

ν,k, j (z, 1) dz. (4-2)

The definition of the Eisenstein series En+2 shows that

En+2

(
z + j

pk

)
− 1 = O(e−2π Im(z)) for Im(z) ≥ 1,

En+2

(
z + j

pk

)
−

pl(n+2)

zn+2 = O
(

pl(n+2)

|z|n+2 e−2πp2l−k/ Im(z)
)

for Im(z) ≤ 1,
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where f (z) = O(g(z)) means that there is a constant C which does not depend on
k and j such that | f (z)| ≤ Cg(z). Set

Lk, j (s) :=

∫
∞

0

(
En+2

(
iy + j

pk

)
− 1

)
ys dy.

We have the following Lemma 4.3 and Proposition 4.4, whose proofs will be
given in Section 4.1.1 and Section 4.1.3, respectively.

Lemma 4.3. The function Lk, j (s) converges for Re(s) > n + 1, and is continued
to a meromorphic function on C. Moreover, it has at most simple poles at s = −1
and s = n + 1. In particular, Lk, j (s) is holomorphic at s = ν for any integer
1 ≤ ν ≤ n − 1.

Proposition 4.4. We have

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩ =
iν+1

pk Lk, j (ν) − E (1)‡
ν,k, j

(
j

pk , 1
)

− E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
.

Note that the value ⟨Eisn, C̃ν,k, j (τ0, τ1)⟩ does not depend on the choices of τ0

and τ1 since ∂[C̃ν,k, j (τ0, τ1)] = 0 by Lemma 3.11. Therefore, in the following we
take τ0 = i t0 and τ1 = i t1 for t0, t1 ∈ R>0.

4.1.1. Computation of the first term of (4-2). We compute the first term of (4-2):

1
pk

∫ i t1

i/t0
En+2

(
z + j

pk

)
zν dz.

This integral is transformed as follows:

1
pk

∫ i t1

i/t0
En+2

(
z + j

pk

)
zν dz

=
1
pk

∫
∞

i/t0

(
En+2

(
z + j

pk

)
− 1

)
zν dz +

1
pk

∫ i t1

i/t0
zν dz

−
1
pk

∫
∞

i t1

(
En+2

(
z + j

pk

)
− 1

)
zν dz

=
iν+1

pk

{∫
∞

1/t0

(
En+2

(
iy + j

pk

)
− 1

)
yν dy +

∫ t1

1/t0
yν dy

−

∫
∞

t1

(
En+2

(
iy + j

pk

)
− 1

)
yν dy

}
.
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Set

Sk, j (t0, t1, s) :=

∫
∞

1/t0

(
En+2

(
iy + j

pk

)
− 1

)
ys dy +

∫ t1

1/t0
ys dy,

R
(1)
k, j (t1, s) :=

∫
∞

t1

(
En+2

(
iy + j

pk

)
− 1

)
ys dy,

R
(0)
k, j (t0, s) :=

∫ 1/t0

0

(
En+2

(
iy + j

pk

)
−

pl(n+2)

(iy)n+2

)
ys dy.

Then we have

1
pk

∫ i t1

i/t0
En+2

(
z + j

pk

)
zν dz =

iν+1

pk (Sk, j (t0, t1, ν)− R
(1)
k, j (t1, ν)).

We see that:

• The first terms of Sk, j (t0, t1, s) and R
(i)
k, j (ti , s) converge for all s ∈ C.

• The second term of Sk, j (t0, t1, s) is meromorphic and has at most one simple
pole at s = −1.

In addition, we also see that

Sk, j (t0, t1, s) = Lk, j (s) − R
(0)
k, j (t0, s) −

∫ 1/t0

0

pl(n+2)

(iy)n+2 ys dy +

∫ t1

0
ys dy

= Lk, j (s) − R
(0)
k, j (t0, s) −

pl(n+2)

in+2

1
s − n − 1

1

t s−n−1
0

+
1

s + 1
t s+1
1 .

In particular, all of these functions are meromorphically continued to s ∈ C and are
holomorphic at s = ν. This proves Lemma 4.3, and we also get the following.

Lemma 4.5.
1
pk

∫ i t1

i/t0
En+2

(
z + j

pk

)
zν dz

=
iν+1

pk

{
Lk, j (ν) +

tν+1
1

ν + 1
+

pl(n+2)

in+2

tn−ν+1
0

n − ν + 1
− R

(1)
k, j (t1, ν)− R

(0)
k, j (t0, ν)

}
.

4.1.2. Computation of the second and the third terms of (4-2). Here we compute∫ (τ1+ j)/pk
+1

(τ1+ j)/pk
En+2(z)P (1)

ν,k, j (z, 1) dz +

∫ (plτ0−d)/pk−l
+1

(plτ0−d)/pk−l
En+2(z)P (0)

ν,k, j (z, 1) dz.

We put

Tν,k, j (τ0, τ1) :=

∫ (τ1+ j)/pk
+1

(τ1+ j)/pk
(En+2(z) − 1)P (1)

ν,k, j (z, 1) dz

+

∫ (plτ0−d)/pk−l
+1

(plτ0−d)/pk−l
(En+2(z) − 1)P (0)

ν,k, j (z, 1) dz.
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Note that Tν,k, j (τ0, τ1) → 0 as τ0, τ1 → ∞. On the other hand by Lemma 3.7,∫ (τ1+ j)/pk
+1

(τ1+ j)/pk
P (1)

ν,k, j (z, 1) dz = E (1)‡
ν,k, j

(
τ1 + j

pk , 1
)

= E (1)‡
ν,k, j

(
j

pk , 1
)

+

∫ (τ1+ j)/pk

j/pk
E (1)

ν,k, j (z, 1) dz

= E (1)‡
ν,k, j

(
j

pk , 1
)

+

∫ (τ1+ j)/pk

j/pk
(pkz − j)ν dz

= E (1)‡
ν,k, j

(
j

pk , 1
)

+
1
pk

(i t1)ν+1

ν + 1
.

Similarly, we have∫ (plτ0−d)/pk−l
+1

(plτ0−d)/pk−l
P (0)

ν,k, j (z, 1) dz = E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
+(−1)ν+1 pl(n+2)

pk

(i t0)n−ν+1

n − ν + 1
.

4.1.3. Proof of Proposition 4.4. By combining the computations in Sections 4.1.1
and 4.1.2, we find

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩

=
iν+1

pk Lν,k, j (ν) +
1
pk

(i t1)ν+1

ν + 1
+ (−1)ν−1 pl(n+2)

pk

(i t0)n−ν+1

n − ν + 1
− E (1)‡

ν,k, j

(
j

pk , 1
)

−
1
pk

(i t1)ν+1

ν + 1
− E (0)‡

ν,k, j

(
−

d
pk−l , 1

)
− (−1)ν+1 pl(n+2)

pk

(i t0)n−ν+1

n − ν + 1

−
iν+1

pk R
(1)
k, j (t1, ν)−

iν+1

pk R
(0)
k, j (t0, ν)− Tk, j (τ0, τ1),

and hence

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩ =
iν+1

pk Lk, j (ν) − E (1)‡
ν,k, j

(
j

pk , 1
)

− E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
−

iν+1

pk R
(1)
k, j (t1, ν)−

iν+1

pk R
(0)
k, j (t0, ν)− Tk, j (τ0, τ1).

The value ⟨C̃ν,k, j (τ0, τ1), Eisn⟩ does not depend on t0 and t1 and so we take the limit
t0, t1 → ∞. The last three terms vanish and we obtain the desired identity. □

4.2. Summation over j . In this subsection, we compute the sum

pk
−1∑

j=0

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩

=

pk
−1∑

j=0

{
iν+1

pk Lk, j (ν) − E (1)‡
ν,k, j

(
j

pk , 1
)

− E (0)‡
ν,k, j

(
−

d
pk−l , 1

)}
.
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We keep using the abbreviation

l := lk( j) and d := dk−lk( j)( j ′) = dk−lk( j)( j/plk( j))

that are actually depending on k and j . Recall that B̃t(x) = (Bt(x) − Bt)/t .

Lemma 4.6. The following equalities hold:

(1)
iν+1

pk

pk
−1∑

j=0

Lk, j (ν) =
(1 − p(n+1)(k+1)) − (1 − p(n+1)k)pn−ν

1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)
,

(2)

pk
−1∑

j=0

E (1)‡
ν,k, j

(
j

pk , 1
)

=
(−1)ν

(ν + 1)

1
pk B̃ν+2(pk) +

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1),

(3)

pk
−1∑

j=0

E (0)‡
ν,k, j

(
−

d
pk−l , 1

)

=
(−1)ν

n − ν + 1
1
pk

k−1∑
l ′=0

pl ′(ν+1)
(
B̃n−ν+2(pk−l ′) − pn−ν+1 B̃n−ν+2(pk−l ′−1)

)
+

pk
−1∑

j=0

E (0)‡
ν,k, j (0, 1).

Proof. (1) Recall that

Lk, j (s) =

∫
∞

0

(
En+2

(
iy + j

pk

)
− 1

)
ys dy.

Hence we have

1
pk

pk
−1∑

j=0

Lk, j (s) =
1
pk

pk
−1∑

j=0

2
ζ(−1 − n)

∞∑
µ=1

σn+1(µ)e2π iµj/pk
∫

∞

0
e−2πµy/pk

ys+1 dy
y

=
1
pk

2
ζ(−1 − n)

pk
−1∑

j=0

∞∑
µ=1

σn+1(µ)e2π iµj/pk pk(s+1)

(2πµ)s+1 0(s + 1)

=
2

ζ(−1 − n)

0(s + 1)pks

(2π)s+1

∞∑
µ=1

( pk
−1∑

j=0

e2π iµj/pk
)

σn+1(µ)

µs+1

=
20(s + 1)

ζ(−1 − n)(2π)s+1

∞∑
µ=1

σn+1(pkµ)

µs+1 .

For notational simplicity, we put

Ep(s) := 1 − p−s .
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We then have
∞∑

a=0

σn+1(pk+a)

pa(s+1)
=

∞∑
a=0

1
pa(s+1)

1 − p(k+a+1)(n+1)

1 − pn+1

=
Ep(1 + s)−1

− p(k+1)(n+1)Ep(s − n)−1

1 − pn+1

=
Ep(s − n) − p(k+1)(n+1)Ep(1 + s)

1 − pn+1 Ep(1 + s)−1Ep(s − n)−1.

Hence the well-known relation that ζ(1+s)ζ(s−n)=
∑

∞

a=1 σn+1(a)a−(s+1) implies
that

1
pk

pk
−1∑

j=0

Lk, j (s)

=
20(s + 1)

ζ(−1 − n)(2π)s+1

Ep(s − n) − p(k+1)(n+1)Ep(1 + s)
1 − pn+1 ζ(s + 1)ζ(s − n).

By setting s = ν and using the functional equation of the Riemann zeta function
(see [Hida 1993, p. 29] for example), we find

iν+1

pk

pk
−1∑

j=0

Lk, j (ν) =
Ep(ν − n) − p(k+1)(n+1)Ep(ν + 1)

1 − pn+1 ·
ζ(−ν)ζ(ν − n)

ζ(−1 − n)

=
(1 − p(n+1)(k+1)) − (1 − p(n+1)k)pn−ν

1 − pn+1 ·
ζ(−ν)ζ(ν − n)

ζ(−1 − n)
.

(2) By using Lemma 3.7, we find

pk
−1∑

j=0

E (1),‡
ν,k, j

(
j

pk , 1
)

=

pk
−1∑

j=0

(
E (1),‡

ν,k, j

(
j

pk , 1
)

− E (1),‡
ν,k, j (0, 1)

)
+

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1)

=

pk
−1∑

j=0

∫ j/pk

0
E (1)

ν,k, j (z, 1) dz +

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1)

=

pk
−1∑

j=0

∫ j/pk

0
(pkz − j)ν dz +

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1)

=
(−1)ν

(ν + 1)

1
pk

pk
−1∑

j=0

jν+1
+

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1).

Therefore, Claim (2) follows from the fact that
∑pk

−1
j=0 jν+1

= B̃ν+2(pk).
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(3) Lemma 3.7 shows that

E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
= −(−1)ν plν

∫
−d/pk−l

0
(pk−l z + d)n−ν dz + E (0)‡

ν,k, j (0, 1)

=
(−1)ν

n − ν + 1
1
pk pl(ν+1)dn−ν+1

+ E (0)‡
ν,k, j (0, 1).

Since d0(0) = 0, n − ν + 1 ≥ 2, and the map a 7→ dN (a) induces a permutation on
the set {1 ≤ a < pN

| (a, pN ) = 1}, we find

1
pk

pk
−1∑

j=0

pl(ν+1)dn−ν+1

=
1
pk

k−1∑
l ′=0

pl ′(ν+1)

pk−l′
−1∑

d ′
=1

(d ′,pk−l′ )=1

d ′n−ν+1

=
1
pk

k−1∑
l ′=0

pl ′(ν+1)(B̃n−ν+2(pk−l ′) − pn−ν+1 B̃n−ν+2(pk−l ′−1)). □

Lemma 4.7. The following equalities hold:

(1)

pk
−1∑

j=0

E (1)‡
ν,k, j (0, 1) = (−1)ν+1

ν∑
µ=0

(
ν

µ

)
(−1)µ pkµ Bµ+1

µ + 1
B̃ν−µ+1(pk),

(2)

pk
−1∑

j=0

E (0)‡
ν,k, j (0, 1)

= (−1)ν pkν Bn−ν+1

n − ν + 1
+ (−1)ν

n−ν∑
µ=0

(n−ν

µ

)
pkµ Bµ+1

µ + 1

k−1∑
l ′=0

pl ′(ν−µ)

× (B̃n−ν−µ+1(pk−l ′) − pn−ν−µ B̃n−ν−µ+1(pk−l ′−1)).

Proof. (1) Note that (Xµ

1 Xn−µ

2 )‡(0, 1) = −Bµ+1/(µ+ 1). Since E (1)
ν,k, j (X1, X2) =

(pk X1 − j X2)
ν Xn−ν

2 , we have

E (1)‡
ν,k, j (0, 1) =

ν∑
µ=0

(
ν

µ

)
pkµ

(
−

Bµ+1

µ + 1

)
(− j)ν−µ.

Hence we have

pk
−1∑

j=0

E (1)‡
ν,k, j (0, 1) = (−1)ν+1

ν∑
µ=0

(
ν

µ

)
(−1)µ pkµ Bµ+1

µ + 1
B̃ν−µ+1(pk).
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(2) Since E (0)
ν,k, j (X1, X2) = (−1)ν+1(pl X2)

ν(pk−l X1 + d X2)
n−ν , we have

E (0)‡
ν,k, j (0, 1) = (−1)ν+1 plν

n−ν∑
µ=0

(n−ν

µ

)
pµ(k−l)

(
−

Bµ+1

µ + 1

)
dn−ν−µ.

First note that in the case where j = 0, since d = d0(0) = 0, we find

E (0)‡
ν,k,0(0, 1) = (−1)ν pkν Bn−ν+1

n − ν + 1
.

Then by using the same argument as in the proof of Lemma 4.6(3), we also obtain

pk
−1∑

j=1

E (0)‡
ν,k, j (0, 1) = (−1)ν

k−1∑
l ′=0

pk−l′
−1∑

d ′
=1

(d ′,pk−l′ )=1

pl ′ν
n−ν∑
µ=0

(n−ν

µ

)
pµ(k−l ′) Bµ+1

µ + 1
d ′n−ν−µ

= (−1)ν
k−1∑
l ′=0

pl ′ν
n−ν∑
µ=0

(n−ν

µ

)
pµ(k−l ′) Bµ+1

µ + 1

× (B̃n−ν−µ+1(pk−l ′) − pn−ν−µ B̃n−ν−µ+1(pk−l ′−1)). □

4.3. Summation over k and the p-adic limits. We compute the value

W (m)
:=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉
and its p-adic limit as m →∞. This enables us to complete the proof of Theorem 4.1.

We keep the notation from the previous sections. Proposition 4.4 shows that

⟨Eisn, C̃ν,k, j (τ0, τ1)⟩ =
iν+1

pk Lk, j (ν) − E (1)‡
ν,k, j

(
j

pk , 1
)

− E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
,

and hence

W (m)
=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

(
iν+1

pk Lk, j (ν)− E (1)‡
ν,k, j

(
j

pk ,1
)

− E (0)‡
ν,k, j

(
−

d
pk−l ,1

))
.

We set

W
(m)

1 :=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

iν+1

pk Lk, j (ν),

W
(m)

2 :=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (1)‡
ν,k, j

(
j

pk , 1
)

,

W
(m)

3 :=

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
,
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so that we have W (m)
= W

(m)
1 − W

(m)
2 − W

(m)
3 .

Lemma 4.8. We have

lim
m→∞

W
(m)

1 =
1

1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)
.

Proof. Lemma 4.6(1) shows that

W
(m)

1

=
1

1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)

m∑
k=0

p(n−ν)(m−k)((1−p(n+1)(k+1))−(1−p(n+1)k)pn−ν).

Moreover, we have
m∑

k=0

p(n−ν)(m−k)((1 − p(n+1)(k+1)) − (1 − p(n+1)k)pn−ν)

= p(n−ν)m(1 − pn−ν)

m∑
k=0

p−(n−ν)k
− p(n−ν)m(pn+1

− pn−ν)

m∑
k=0

p(ν+1)k

= p(n−ν)m(1 − pn−ν)
1 − p−(n−ν)(m+1)

1 − p−(n−ν)
− p(n−ν)m(pn+1

− pn−ν)
1 − p(ν+1)(m+1)

1 − pν+1

= 1 − p(n−ν)(m+1)
− p(n−ν)m(pn+1

− pn−ν)
1 − p(ν+1)(m+1)

1 − pν+1

→ 1 (m → ∞). □

Lemma 4.9. Let s and t be integers with t > 0.

(1) For any positive integer u > 0, we have

lim
m→∞

m∑
k=0

pu(m−k)

pk−s B̃t(pk−s) =
Bt−1

1 − pu .

(2) For any integer u and any ε > 0 with u + ε > 0, we have

lim
m→∞

pmε

m∑
k=0

pu(m−k)

pk−s B̃t(pk−s) = 0.

Proof. We have

m∑
k=0

pu(m−k) 1
pk−s B̃t(pk−s)=

1
t

m∑
k=0

pu(m−k)

t∑
µ=1

( t
µ

)
Bt−µ p(µ−1)(k−s)

=
1
t

t∑
µ=1

( t
µ

)
Bt−µ

m∑
k=0

pu(m−k)+(µ−1)(k−s)
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=
1
t

t∑
µ=1

( t
µ

)
Bt−µ pum−(µ−1)s 1 − p(µ−1−u)(m+1)

1 − pµ−1−u

=
1
t

t∑
µ=1

( t
µ

)
Bt−µ

pum−(µ−1)s
− p−(µ−1)s+(m+1)(µ−1)−u

1 − pµ−1−u .

Hence Claim (2) is clear. Moreover if u > 0, then all the terms with µ ≥ 2 vanish
as m → ∞, and therefore,

lim
m→∞

m∑
k=0

pu(m−k)

pk−s B̃t(pk−s) = Bt−1
−p−u

1 − p−u =
Bt−1

1 − pu . □

Lemma 4.10. We have

lim
m→∞

W
(m)

2 =
(−1)ν

1 − pn−ν

Bν+1

ν + 1
=

1
1 − pn−ν

ζ(−ν).

Proof. Lemma 4.6(2) shows that

W
(m)

2 =

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (1)‡
ν,k, j

(
j

pk , 1
)

=

m∑
k=0

p(n−ν)(m−k)

(
(−1)ν

(ν + 1)

1
pk B̃ν+2(pk) +

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1)

)
.

Hence Lemma 4.9(1) implies that

lim
m→∞

W
(m)

2 =
(−1)ν

1 − pn−ν

Bν+1

ν + 1
+ lim

m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1).

Moreover, by Lemma 4.7, we have

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (1),‡
ν,k, j (0, 1)

=

m∑
k=0

p(n−ν)(m−k)

ν∑
µ=0

(−1)ν+µ+1
(

ν

µ

)
pk(µ+1) Bµ+1

µ + 1
B̃ν−µ+1(pk)

pk

=

ν∑
µ=0

(−1)ν+µ+1
(

ν

µ

) Bµ+1

µ + 1
pm(µ+1)

m∑
k=0

p(n−ν−µ−1)(m−k) B̃ν−µ+1(pk)

pk .

Since µ + 1 + n − ν − µ − 1 = n − ν > 0, Lemma 4.9(2) shows that

lim
m→∞

pm(µ+1)

m∑
k=0

p(n−ν−µ−1)(m−k) B̃ν−µ+1(pk)

pk = 0.
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Hence we conclude that

lim
m→∞

W
(m)

2 =
(−1)ν

1 − pn−ν

Bν+1

ν + 1
. □

Lemma 4.11. Let b, s, t , and u be integers with s ≥ 0 and t ≥ 0.

(1) If s > 0 and u > 0, then

lim
m→∞

m∑
k=0

pu(m−k)

k−1∑
l ′=0

pl ′s
(

B̃t+1(pk−l ′)

pk−l ′ − pb B̃t+1(pk−l ′−1)

pk−l ′−1

)
=

Bt

1 − ps

1 − pb

1 − pu .

(2) For any ε > 0 with u + ε > 0, we have

lim
m→∞

pεm
m∑

k=0

pu(m−k)

k−1∑
l ′=0

pl ′s
(

B̃t+1(pk−l ′)

pk−l ′ − pb B̃t+1(pk−l ′−1)

pk−l ′−1

)
= 0.

Proof. We have

m∑
k=0

pu(m−k)

k−1∑
l ′=0

pl ′s
(

B̃t+1(pk−l ′)

pk−l ′ − pb B̃t+1(pk−l ′−1)

pk−l ′−1

)

=
1

t + 1

m∑
k=0

pu(m−k)

k−1∑
l ′=0

pl ′s
t+1∑
µ=1

( t+1
µ

)
Bt+1−µ×(p(k−l ′)(µ−1)

− p(k−l ′−1)(µ−1)+b)

=
1

t + 1

t+1∑
µ=1

( t+1
µ

)
Bt+1−µ × (1 − pb−(µ−1))pum

m∑
k=0

pk(µ−1−u)

k−1∑
l ′=0

pl ′(s−µ+1)

=
1

t + 1

t+1∑
µ=1

( t+1
µ

)
Bt+1−µ × (1 − pb−(µ−1))pum

m∑
k=0

pk(µ−1−u) 1 − pk(s−µ+1)

1 − ps−µ+1

=
1

t + 1

t+1∑
µ=1

( t+1
µ

) Bt+1−µ

1 − ps−µ+1

×(1 − pb−(µ−1))

(
pum

− p(m+1)(µ−1)−u

1 − pµ−1−u −
pum

− p(m+1)s−u

1 − ps−u

)
,

which implies this lemma in the same way as in the proof of Lemma 4.9. □

Lemma 4.12. We have

lim
m→∞

W
(m)

3 =
(−1)ν

1 − pν

Bn−ν+1

n − ν + 1
=

1
1 − pν

ζ(ν − n).
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Proof. Recall that in Lemma 4.6(3) we have shown that

pk
−1∑

j=0

E (0)‡
ν,k, j

(
−

d
pk−l , 1

)
=

(−1)ν

n − ν + 1
1
pk

k−1∑
l ′=0

pl ′(ν+1)(B̃n−ν+2(pk−l ′) − pn−ν+1 B̃n−ν+2(pk−l ′−1))

+

pk
−1∑

j=0

E (0)‡
ν,k, j (0, 1).

Since 1 ≤ ν ≤ n − 1, Lemma 4.11(1) shows that, as m → ∞,
m∑

k=0

p(n−ν)(m−k)

k−1∑
l ′=0

pl ′ν
(

B̃n−ν+2(pk−l ′)

pk−l ′ − pn−ν B̃n−ν+2(pk−l ′−1)

pk−l ′−1

)
→

Bn−ν+1

1 − pν
.

By Lemma 4.7, we have
pk

−1∑
j=0

E (0)‡
ν,k, j (0, 1) = (−1)ν pkν Bn−ν+1

n − ν + 1
+(−1)ν

n−ν∑
µ=0

(n−ν

µ

)
pkµ Bµ+1

µ + 1

k−1∑
l ′=0

pl ′(ν−µ)

× (B̃n−ν−µ+1(pk−l ′) − pn−ν−µ B̃n−ν−µ+1(pk−l ′−1)).

Since (n − ν)(m − k)+ kµ = (n − ν −µ)(m − k)+ mµ and 0 ≤ µ ≤ n − ν, all the
terms with µ ≥ 1 vanish when m → ∞, and hence

lim
m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

E (0)‡
ν,k, j (0,1)

= lim
m→∞

m∑
k=0

(−1)ν p(n−ν)(m−k)+kν Bn−ν+1

n − ν + 1

+ (−1)ν B1 lim
m→∞

m∑
k=0

p(n−ν)(m−k)

k−1∑
l ′=0

pl ′ν(B̃n−ν+1(pk−l ′) − pn−ν B̃n−ν+1(pk−l ′−1)).

Since

lim
m→∞

m∑
k=0

p(n−ν)(m−k)+kν
= lim

m→∞

p(n−ν)(m+1)
− pν(m+1)

pn−ν − pν
= 0,

the first limit vanishes. Moreover, Lemma 4.11(2) implies that

m∑
k=0

p(n−ν)(m−k)

k−1∑
l ′=0

pl ′ν(B̃n−ν+1(pk−l ′) − pn−ν B̃n−ν+1(pk−l ′−1))

= pm
m∑

k=0

p(n−ν−1)(m−k)

k−1∑
l ′=0

pl ′(ν−1)

(
B̃n−ν+1(pk−l ′)

pk−l ′ − pn−ν−1 B̃n−ν+1(pk−l ′−1)

pk−l ′−1

)
→ 0 (m → ∞),
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which implies this lemma. □

By Lemmas 4.8, 4.10, and 4.12, we obtain the following.

Proposition 4.13. We have

lim
m→∞

m∑
k=0

p(n−ν)(m−k)

pk
−1∑

j=0

〈
Eisn, C̃ν,k, j

(
τ

pm−k , pm−kτ

)〉

=
1

1 − pn+1

ζ(−ν)ζ(ν − n)

ζ(−1 − n)
−

ζ(−ν)

1 − pn−ν
−

ζ(ν − n)

1 − pν
.

By the argument in the beginning of Section 4, this completes the proof of
Theorem 4.1.

4.4. Rationality of the Eisenstein class Eisn. The computations in (the proofs
of) Proposition 4.4 and Lemmas 4.6 and 4.7 imply the following proposition as a
special case.

Proposition 4.14. For any integer ν ∈ {1, . . . , n − 1}, we have

⟨Eisn, [
∼

Cν(τ )]⟩ =
ζ(−ν)ζ(ν − n)

ζ(−1 − n)
− ζ(−ν) − ζ(ν − n) ∈ Q,

where [
∼

Cν(τ )] is a special case of [
∼

T m
p (Cν(τ ))] for m = 0.

Proof. By Proposition 4.4, we have

⟨Eisn, [
∼

Cν(τ )]⟩ = ⟨Eisn, C̃ν,0,0⟩ = iν+1L0,0(ν) − E (1)‡
ν,0,0(0, 1) − E (0)‡

ν,0,0(0, 1).

By Lemma 4.6(1), we have

iν+1L0,0(ν) =
ζ(−ν)ζ(ν − n)

ζ(−1 − n)
.

Moreover, in the proof of Lemma 4.7, we showed that

E (1)‡
ν,0,0(0, 1) = ζ(−ν) and E (0)‡

ν,0,0(0, 1) = ζ(ν − n). □

The following lemma will be well known to experts. For instance, Harder [2023,
§5.1.3] mentioned that this was proved by Gebertz in her diploma thesis. Here we
give a proof for the completeness of the paper.

Lemma 4.15. The relative homology group H1(Y BS, ∂Y BS,Mn) is generated by
the set {[Cν] | 0 ≤ ν ≤ n}.

Proof. The relative homology group H1(Y BS, ∂Y BS,Mn) can be computed as

H1(Y BS, ∂Y BS,Mn)

= ker
(
((MS(HBS)/MS(∂HBS)) ⊗Mn)0

∂
−→ ((S0(H

BS)/S0(∂HBS)) ⊗Mn)0
)
.
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Let [σ ] ∈ H1(Y BS, ∂Y BS,Mn) be a class represented by a 1-chain

σ =

∑
j

{a j , bj } ⊗ Pj ∈ (MS(HBS)/MS(∂HBS)) ⊗Mn,

where a j , bj ∈ HBS and Pj ∈ Mn . The condition that

∂σ = 0 in ((S0(H
BS)/S0(∂HBS)) ⊗Mn)0

implies that∑
j

{bj } ⊗ Pj − {a j } ⊗ Pj =

∑
k

(γk − 1)({dk} ⊗ Qk) +

∑
l

{cl} ⊗ Rl (4-3)

in S0(H
BS)⊗Mn for some γk ∈ 0, dk ∈ HBS, cl ∈ ∂HBS, and Qk, Rl ∈ Mn . Then

we can rewrite the identity (4-3) as∑
τ∈HBS

{τ } ⊗

( ∑
j,bj =τ

Pj −

∑
j,a j =τ

Pj −

∑
k,γkdk=τ

γk Qk +

∑
k,dk=τ

Qk −

∑
l,cl=τ

Rl

)
= 0

in S0(H
BS)⊗Mn . Since S0(H

BS) =
⊕

τ∈HBS Z{τ }, this shows that for any τ ∈ HBS,
we have∑

j,bj =τ

Pj −

∑
j,a j =τ

Pj −

∑
k,γkdk=τ

γk Qk +

∑
k,dk=τ

Qk −

∑
l,cl=τ

Rl = 0 in Mn. (4-4)

Now, recall that i∞ ∈ ∂HBS denotes the point defined by

i∞ := lim
t∈R>0
t→∞

i t.

Then the identity (4-4) implies that in MS(HBS) ⊗Mn , we have∑
τ∈HBS

{i∞, τ }⊗

( ∑
j,bj =τ

Pj −

∑
j,a j =τ

Pj −

∑
k,γkdk=τ

γk Qk +

∑
k,dk=τ

Qk −

∑
l,cl=τ

Rl

)
= 0.

Using this last identity, in ((MS(HBS)/MS(∂HBS)) ⊗Mn)0, we compute

[σ ]

=

∑
j

[{i∞, bj } ⊗ Pj ] − [{i∞, a j } ⊗ Pj ]

=

∑
k

[{i∞, γkdk} ⊗ γk Qk] −

∑
k

[{i∞, dk} ⊗ Qk] +

∑
l

[{i∞, cl} ⊗ Rl]

=

∑
k

[(γk −1)({i∞, dk}⊗ Qk)]+
∑

k

[{i∞, γki∞}⊗γk Qk]+
∑

l

[{i∞, cl}⊗ Rl]

=

∑
k

[{i∞, γki∞} ⊗ γk Qk] +

∑
l

[{i∞, cl} ⊗ Rl].
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Moreover, as we are considering the relative homology classes, we may replace
cl with any point in the same connected component of ∂HBS, and in particular,
we may replace cl by gl i∞ for some gl ∈ 0. Thus we conclude that the class
[σ ] ∈ H1(Y BS, ∂Y BS,Mn) is represented by a 1-chain of the form

σ ′
=

∑
m

{i∞, γ ′

mi∞} ⊗ R′

m

for some γ ′
m ∈ 0 and R′

m ∈ Mn . The lemma follows from the facts that the group
0 = SL2(Z) is generated by matrices

(0 −1
1 0

)
and

(
1 1
0 1

)
and that

[{i∞, γ1γ2i∞} ⊗ P] = [{i∞, γ1i∞} ⊗ P] + [{i∞, γ2i∞} ⊗ γ −1
1 P]

for any γ1, γ2 ∈ 0 and P ∈ Mn . □

Recall that 0∞ is the subgroup of 0 generated by
(

1 1
0 1

)
. Since P1(R) = R∪{∞},

the boundary ∂Y BS can be identified with 0∞\R. Hence we obtain the following
lemma.

Lemma 4.16. We have an identification H0(∂Y BS,Mn) = (Mn)0∞
, and hence

H0(∂Y BS,Mn) ⊗ Q is a 1-dimensional Q-vector space generated by [en], where
en = Xn

1 .

Lemma 4.17. The kernel of the boundary homomorphism

∂ : H1(Y BS, ∂Y BS,Mn) ⊗ Q → H0(∂Y BS,Mn) ⊗ Q

is generated by the set {[Cν] | 1 ≤ ν ≤ n − 1}.

Proof. Let σ ∈ ker(H1(Y BS, ∂Y BS,Mn)⊗Q → H0(∂Y BS,Mn)⊗Q). Lemma 4.15
implies that we can write σ =

∑n
ν=0 aν[Cν] for some numbers a0, . . . , an ∈ Q.

Then by using Lemma 4.16, we find that

0 = ∂σ =

n∑
ν=0

aν[{i∞} ⊗ (eν − (−1)n−νen−ν)] = −(a0 − an)[{i∞} ⊗ en].

Therefore, Lemma 4.16 shows that a0 = an . On the other hand we see that

[C0] = −[Cν] in H1(Y BS, ∂Y BS,Mn). □

Corollary 4.18. We have Eisn ∈ H 1(Y BS,Mn) ⊗ Q.

Proof. By Lemma 4.17, the homology group H1(Y BS,Mn) ⊗ Q is generated by
the image of H1(∂Y BS,Mn) and the set {[C̃ν(τ )] | 1 ≤ ν ≤ n − 1}. Therefore, by
Lemma 2.8 and Proposition 4.14 we have

⟨Eisn, H1(Y BS,Mn) ⊗ Q⟩ ⊂ Q,

which implies Eisn ∈ H 1(Y BS,Mn) ⊗ Q. □
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5. Denominator of an ordinary cohomology class

In order to study the denominator 1(Eisn) of the Eisenstein class Eisn , in this section,
we interpret the denominator 1(Eisn) in terms of the values ⟨Eisn, [

∼

T m
p (Cν(τ ))]⟩

of the pairing between the Eisenstein class Eisn and the cycles [
∼

T m
p (Cν(τ ))] ∈

H1(Y BS,Mn,(p)).

5.1. Definition of the ordinary part. Let p be a prime number and M a finitely
generated Zp-module with an endomorphism f : M → M . We introduce the notion
of the f -ordinary part of M .

Since M is a finitely generated Zp-module, the p-adic limit

e f := lim
m→∞

f m!
∈ EndZp(M)

always exists, and e2
f = e f . We define the f -ordinary part Mord of M by

Mord := e f M,

and we say that m ∈ M is ( f -)ordinary if m ∈ Mord, that is, e f m = m. We also put
Mnilp := (1 − e f )M . We then have M = Mord ⊕ Mnilp.

The following lemma follows from the fact that e2
f = e f .

Lemma 5.1. The functor M 7→ Mord is exact.

5.2. Denominator of a cohomology class. Recall that

H 1
int(Y

BS,M♭
n) = im(H 1(Y BS,M♭

n) → H 1(Y BS,M♭
n) ⊗ Q).

Definition 5.2. For any cohomology class c ∈ H 1(Y BS,M♭
n) ⊗ Q, we define the

denominator 1(c) ∈ Z>0 of c by

1(c) := min{1 ∈ Z>0 | 1c ∈ H 1
int(Y

BS,M♭
n)},

and for each prime number p, we set

δp(c) := ordp(1(c)) and 1p(c) := pδp(c).

Lemma 5.3. Let c ∈ H 1(Y BS,M♭
n) ⊗ Q be a cohomology class. We have

1(c) = min{1 ∈ Z>0 | 1⟨c, H1(Y BS,Mn)⟩ ⊂ Z}.

Moreover, for any prime number p, we have

δp(c) = min{δ ∈ Z≥0 | pδ
⟨c, H1(Y BS,Mn ⊗ Zp)⟩ ⊂ Zp}.

Proof. This lemma follows immediately from the formal duality (see Section 2.5):

H •(0\X,M♭
n)/(torsion) ∼

−→ HomZ(H•(0\X,Mn), Z). □
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5.3. Denominator of an ordinary cohomology class. In this subsection, we fix a
prime number p.

Definition 5.4. (1) We put Mn,p := Mn ⊗ Zp and M♭
n,p := M♭

n ⊗ Zp.

(2) For any finitely generated Zp-algebra, we put

H ord
•

(Y BS,Mn,p ⊗ R) := eTp H•(Y BS,Mn,p ⊗ R),

H ord
•

(Y BS, ∂Y BS,Mn,p ⊗ R) := eTp H•(Y BS, ∂Y BS,Mn,p ⊗ R),

H ord
•

(∂Y BS,Mn,p ⊗ R) := eTp H•(∂Y BS,Mn,p ⊗ R).

(3) For any finitely generated Zp-algebra R, we put

H •

ord(Y
BS,M♭

n,p ⊗ R) := eT ′
p
H •(Y BS,M♭

n,p ⊗ R),

H •

ord(Y
BS, ∂Y BS,M♭

n,p ⊗ R) := eT ′
p
H •(Y BS, ∂Y BS,M♭

n,p ⊗ R),

H •

ord(∂Y BS,M♭
n,p ⊗ R) := eT ′

p
H •(∂Y BS,M♭

n,p ⊗ R).

Lemma 5.5. Let c ∈ H 1(Y BS,M♭
n,p)⊗ Qp be a cohomology class. For any homol-

ogy class C ∈ H1(Y BS,Mn,p) ⊗ Qp, we have

⟨c, eTp C⟩ = lim
m→∞

⟨c, T m!

p C⟩ = lim
m→∞

⟨c|T ′m!

p , C⟩ = ⟨eT ′
p
c, C⟩.

In particular, if c is ordinary, that is, eT ′
p
c = c, then

⟨c, C⟩ = ⟨c, eTp C⟩,

and hence

δp(c) = min{δ ∈ Z≥0 | pδ
⟨c, H ord

1 (Y BS,Mn,p)⟩ ⊂ Zp}.

Proof. This lemma follows from the facts that the pairing ⟨ · , · ⟩ is continuous and
⟨c|T ′

p, C⟩ = ⟨c, TpC⟩. □

Recall the identification H0(∂Y BS,Mn,p) = (Mn,p)0∞
by Lemma 4.16.

Lemma 5.6. The Zp-module H ord
0 (∂Y BS,Mn,p) = eTp(Mn,p)0∞

is free of rank 1
and is generated by eTp [en].

Proof. Let k ∈ {0, . . . , n} be an integer. Since ek = X k
1 Xn−k

2 , we have

Tp([ek]) = pn−k
[ek] +

p−1∑
j=0

k∑
k′=0

( k
k ′

)
pk′

(− j)k−k′

[ek′].

In particular, we have Tp([e0]) = (pn
+ p)[e0], and hence eTp [e0] = 0. Therefore,

inductively, we obtain that eTp [ek] = 0 for any integer k ∈ {0, . . . , n − 1} and that
eTp [en] = [en], which implies that the Zp-module eTp(Mn,p)0∞

is generated by
eTp [en]. Hence by Lemma 4.16, eTp(Mn,p)0∞

is a free Zp-module of rank 1. □

Recall that [Cν] = [{0, i∞} ⊗ eν] ∈ H1(Y BS, ∂Y BS,Mn).
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Proposition 5.7. For any integer m ≥ 0, the Zp-module H ord
1 (Y BS,Mn,p) is

generated by (the image of ) H ord
1 (∂Y BS,Mn,p) and a set of lifts of eTp T m

p [Cν]

(1 ≤ ν ≤ n − 1).

Proof. By definition, we have an exact sequence of Hecke modules

0 → H1(∂Y BS,Mn,p) → H1(Y,Mn,p) → H1(Y BS, ∂Y BS,Mn,p)

∂
−→ H0(∂Y BS,Mn,p) → 0.

By Lemma 4.15, the ordinary part H ord
1 (Y BS, ∂Y BS,Mn,p) of the relative homology

group is generated by the set {eTp [Cν] | 0 ≤ ν ≤ n}. Then by the same argument as
in Lemma 4.17 using Lemma 5.6 instead of Lemma 4.16, we find that the kernel of
the boundary map ∂ : H ord

1 (Y BS, ∂Y BS,Mn,p) → H ord
0 (∂Y BS,Mn,p) is generated

by the set {eTp [Cν] | 1 ≤ ν ≤ n − 1}. Since the homomorphism

Tp : H ord
1 (Y BS, ∂Y BS,Mn,p) → H ord

1 (Y BS, ∂Y BS,Mn,p)

is an isomorphism and the boundary map ∂ is Hecke equivariant, it follows that the
kernel of the boundary map is generated by the set {eTp T m

p [Cν] | 1 ≤ ν ≤ n − 1}.
This fact together with the above exact sequence implies the proposition. □

Corollary 5.8. Let m ≥ n be an integer. For each integer ν ∈ {1, . . . , n − 1}, recall
the cycle [

∼

T m
p (Cν(τ ))] ∈ H1(Y BS,Mn,(p)) defined in Definition 3.13 (see also

Lemma 3.15(2)). For any ordinary cohomology class c ∈ H 1
ord(Y

BS,Mn,p) ⊗ Qp

satisfying ⟨c, H1(∂Y BS,Mn)⟩ ⊂ Zp, we have

δp(c) = min{δ ∈ Z≥0 | pδ
⟨c, [
∼

T m
p (Cν(τ ))]⟩ ∈ Zp for any integer 1 ≤ ν ≤ n − 1}.

Proof. By Lemma 3.15(3), we see that eTp [
∼

T m
p (Cν(τ ))] ∈ H ord

1 (Y BS,Mn,p) maps
to eTp T m

p [Cν(τ )] ∈ H ord
1 (Y BS, ∂Y BS,Mn,p) under the homomorphism

H ord
1 (Y BS,Mn,p) → H ord

1 (Y BS, ∂Y BS,Mn,p).

Therefore, Proposition 5.7 shows that the Zp-module H ord
1 (Y BS,Mn,p) is generated

by the image of H ord
1 (∂Y BS,Mn) and the set {eTp [

∼

T m
p (Cν(τ ))] | 1 ≤ ν ≤ n − 1}.

On the other hand, by Lemma 5.5, we have

⟨c, eTp [
∼

T m
p (Cν(τ ))]⟩ = ⟨c, [

∼

T m
p (Cν(τ ))]⟩.

Now, since ⟨c, H1(∂Y BS,Mn)⟩ ⊂ Zp by assumption, Lemma 5.5 shows that

δp(c)= min{δ ∈ Z≥0 | pδ
⟨c, [
∼

T m
p (Cν(τ ))]⟩ ∈ Zp for any integer 1 ≤ ν ≤ n−1}. □

Corollary 5.9. For any integer m ≥ n, we have

δp(Eisn)=min{δ∈Z≥0 | pδ
⟨Eisn, [
∼

T m
p (Cν(τ ))]⟩∈Zp for any integer 1≤ν ≤n−1}.

Proof. By Lemma 2.8, we have ⟨Eisn, H1(∂Y BS,Mn)⟩ ⊂ Zp and eT ′
p
Eisn = Eisn .

The corollary thus follows from Corollary 5.8. □
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6. Relation between the denominators of the Eisenstein classes

Recall that 1p(Eisn) denotes the p-part of the denominator 1(Eisn) of the Eisen-
stein class (see Definition 5.2). In this section, we fix a prime number p ≥ 5
and discuss another expression for the denominator 1(Eisn) of the Eisenstein
class Eisn . We also study a relation of the denominators 1p(Eisn) and 1p(Eisn′)

of the Eisenstein classes when n and n′ are p-adically close.

6.1. Structure of the ordinary part of cohomology groups. We will study the
structure of the ordinary part of cohomology groups. Results similar to those
obtained in this subsection can be found in [Hida 1986]. Hida [1986; 1988] studied
the ordinary part of cohomology groups for 0′

\H in the case that 0′/{±1} is torsion-
free. However, in the present paper we consider the group 0 = SL2(Z) which has
torsion elements other than ±

(
1

1

)
. We will therefore provide proofs of all relevant

theorems for completeness.
Note that since we assume that p ≥ 5, any short exact sequence of 0-modules

induces a long exact sequence in cohomology.

Lemma 6.1. The inclusion map M♭
n,p ↪→ Mn,p induces an isomorphism

H •

ord(Y
BS,M♭

n,p)
∼

−→ H •

ord(Y
BS,Mn,p).

Proof. It suffices to prove that eT ′
p
H i (Y BS,Mn,p/M

♭
n,p) = 0 for any integer i ≥ 0.

Since Xn
1 , Xn

2 ∈ M♭
n,p, any element in Mn,p/M

♭
n,p can be represented by a poly-

nomial of the form X1 X2 f (X1, X2), where f ∈ Mn−2,p. Hence the fact that(̃
p

1

)
· X1 X2 f (X1, X2) = pX1 X2 f (pX1, X2),(̃

1 j
p

)
· X1 X2 f (X1, X2) = p(X1 + j X2)X2 f (X1 + j X2, pX2)

shows that eT ′
p
c =0 for any element c ∈HomZ(S•(H

BS),Mn,p/M
♭
n,p). In particular,

we have eT ′
p
H i (Y BS,Mn,p/M

♭
n,p) = 0. □

Thanks to Lemma 6.1, in the following, we focus on the ordinary cohomology
groups with coefficient Mn,p.

Lemma 6.2. For any polynomial f (X1, X2)∈Mn/pMn , we have f |(T ′
p)

2
∈ Fp Xn

2 .

Proof. By definition, we have

( f |T ′

p)(X1, X2) = f (0, X2) +

p−1∑
j=0

f (X1 + j X2, 0).
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Hence we see that ( f |T ′
p)(X1, 0) =

∑p−1
j=0 f (X1, 0) = 0, and we obtain

( f |(T ′

p)
2)(X1, X2) = ( f |T ′

p)(0, X2) ∈ Fp Xn
2 . □

The boundary ∂Y BS is of real dimension 1, and hence H 2(∂Y BS,M) vanishes
for any 0-module M. Therefore, for any integer r ≥ 0, the short exact sequence
0 → Mn,p

×pr
−→ Mn,p → Mn,p/prMn,p → 0 induces an isomorphism

H 1
ord(∂Y BS,Mn,p) ⊗ Zp/(pr ) ∼

−→ H 1
ord(∂Y BS,Mn,p/prMn,p). (6-1)

Lemma 6.3. The ordinary part H 1
ord(∂Y BS,Mn,p) is torsion-free.

Proof. By using the exact sequence of M+

2 (Z)-modules

0 → Mn,p
×p
−→ Mn,p → Mn,p/pMn,p → 0,

we obtain an isomorphism of Hecke modules

coker
(
M0∞

n,p/pM0∞

n,p → (Mn,p/pMn,p)
0∞

)
∼

−→ H 1(∂Y BS,Mn,p)[p],

where for an abelian group M we write M[p] := ker(M ×p
−→ M) for the subgroup of

p-torsion elements of M . A direct computation shows that M0∞

n,p = Zp Xn
2 . Hence

Lemma 6.2 implies that

H 1
ord(∂Y BS,Mn,p)[p] = coker

(
Fp Xn

2 → eT ′
p
(Mn,p/pMn,p)

0∞

)
= 0. □

Corollary 6.4. (1) The ordinary part H 1
ord(∂Y BS,Mn,p) is a free Zp-module of

rank 1.

(2) We have a canonical isomorphism H 1
int(∂Y BS,Mn)⊗Zp

∼
−→ H 1

ord(∂Y BS,Mn,p).

(3) We have c|T ′

ℓ = (1 + ℓn+1)c for any element c ∈ H 1
ord(∂Y BS,Mn,p) and prime

number ℓ.

Proof. By Lemma 6.3, we have a surjective homomorphism

H 1
int(∂Y BS,Mn) ⊗ Zp → H 1

ord(∂Y BS,Mn,p).

Lemma 2.7 shows that H 1
int(∂Y BS,Mn)∼= Z and c|T ′

ℓ = (1+ℓn+1)c for any element
c ∈ H 1

int(∂Y BS,Mn) and prime number ℓ. These facts imply this corollary. □

Proposition 6.5. The ordinary part H 1
ord(Y

BS,Mn,p) is torsion-free.

Proof. Since H 0(Y BS,Mn) = M0
n = 0, the exact sequence

0 → Mn,p
×p
−→ Mn,p → Mn,p/pMn,p → 0

implies that

H 0
ord(Y

BS,Mn,p/pMn,p) = H 1
ord(Y

BS,Mn,p)[p].
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Since Fp Xn
2 ∩ H 0(Y BS,Mn,p/pMn,p) = (Fp Xn

2) ∩ (Mn,p/pMn,p)
0

= 0, we get
from Lemma 6.2 that the module H 0

ord(Y
BS,Mn,p/pMn,p) vanishes. □

Lemma 6.6. We have H 2
ord(Y

BS, ∂Y BS,Mn,p) = H 2
ord(Y

BS,Mn,p) = 0.

Proof. We have that H 2(∂Y BS,Mn,p) = 0 since the boundary ∂Y BS is homeomor-
phic to the circle, and hence the canonical homomorphism

H 2
ord(Y

BS, ∂Y BS,Mn,p) → H 2
ord(Y

BS,Mn,p)

is surjective. Therefore, we only need to show that H 2
ord(Y

BS, ∂Y BS,Mn,p) = 0.
Since Y is a two-dimensional real manifold, we have H 3(Y BS, ∂Y BS,Mn,p) = 0,

and hence the short exact sequence 0 → Mn,p
×p
−→ Mn,p → Mn,p/pMn,p → 0

induces an isomorphism

H 2(Y BS, ∂Y BS,Mn,p) ⊗ Z/(p) ∼
−→ H 2(Y BS, ∂Y BS,Mn,p/pMn,p).

Therefore, it suffices to prove that H 2
ord(Y

BS, ∂Y BS,Mn,p/pMn,p) = 0.
For notational simplicity, set Mn,p := Mn,p/pMn,p. Let

F ∈ S2(H
BS)

be a representative of a fundamental class of H2(Y BS, ∂Y BS, Z) ∼= Z. Then it
is known that the homomorphism HomZ(S2(H

BS),Mn,p) → Mn,p; φ 7→ φ(F )

induces an isomorphism

evF : H 2(Y BS, ∂Y BS,Mn,p)
∼

−→ (Mn,p)0. (6-2)

See [Shimura 1994, Proposition 8.2; Hida 1993, §6.1, Proposition 1] for example.
We will show that for any [φ] ∈ H 2(Y BS, ∂Y BS,Mn,p), we have [φ]|T ′

p
= 0. By

(6-2), it suffices to show that evF ([φ]|T ′
p
) ≡ 0. Here we use ≡ to emphasize that it

is an identity in (Mn,p)0. We then compute

evF ([φ]|T ′
p
)≡φ|T ′

p
(F )(X1,X2)

=

(̃
p 0
0 1

)
φ

((
p 0
0 1

)
F

)
(X1,X2) +

p−1∑
j=0

(̃
1 j
0 p

)
φ

((
1 j
0 p

)
F

)
(X1,X2)

≡φ

((
p 0
0 1

)
F

)
(0,X2) +

p−1∑
j=0

φ

((
1 j
0 p

)
F

)
(X1 + j X2,0).

Put

ap := φ

((
p 0
0 1

)
F

)
(0, 1) ∈ Fp, a j := φ

((
1 j
0 p

)
F

)
(1, 0) ∈ Fp.
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Then we find that

evF ([φ]|T ′
p
) ≡ ap Xn

2 +

p−1∑
j=0

a j (X1 + j X2)
n

= ap Xn
2 +

p−1∑
j=0

a j

(
1 1
0 1

)− j (
0 1

−1 0

)
Xn

2

≡ ap Xn
2 +

p−1∑
j=0

a j Xn
2

=

(
ap +

p−1∑
j=0

a j

)((
1 −1
0 1

)
− 1

)
X1 Xn−1

2

≡ 0. □

For any 0-module M, we define the inner cohomology H 1
!
(Y BS,M) by

H 1
!
(Y BS,M) := im

(
H 1(Y BS, ∂Y BSM) → H 1(Y BS,M)

)
and, when M is a finitely generated Zp-module, we put

H 1
!,ord(Y

BS,M) := eT ′
p
H 1

!
(Y BS,M).

Then the following corollary follows from Lemma 6.6 and the isomorphism (6-1).

Corollary 6.7. Let r be a nonnegative integer and M ∈ {Mn,p,Mn,p/prMn,p}.
Then we have a natural exact sequence of Hecke modules:

0 → H 1
!,ord(Y

BS,M) → H 1
ord(Y

BS,M) → H 1
ord(∂Y BS,M) → 0.

Proof. For notational simplicity, set Mn,p/pr
:= Mn,p/prMn,p. Consider the

natural commutative diagram

0 // H 1
!,ord(Y

BS,Mn,p) //

��

H 1
ord(Y

BS,Mn,p) //

��

H 1
ord(∂Y BS,Mn,p) //

��

0

0 // H 1
!,ord(Y

BS,Mn,p/pr ) // H 1
ord(Y

BS,Mn,p/pr ) // H 1
ord(∂Y BS,Mn,p/pr ) // 0

The upper row is exact by Lemma 6.6. Moreover, by (6-1), the right vertical map is
surjective, and the bottom row is also exact. □

Corollary 6.8. For any integer r ≥ 0, the canonical homomorphism Mn,p →

Mn,p/prMn,p induces isomorphisms

H 1
ord(Y

BS,Mn,p) ⊗ Zp/(pr ) ∼
−→ H 1

ord(Y
BS,Mn,p/prMn,p),

H 1
!,ord(Y

BS,Mn,p) ⊗ Zp/(pr ) ∼
−→ H 1

!,ord(Y
BS,Mn,p/prMn,p).



HARDER’S DENOMINATOR PROBLEM FOR SL2(Z) AND ITS APPLICATIONS 303

Proof. The exact sequence

0 → Mn,p
×pr
−→ Mn,p → Mn,p/prMn,p → 0

shows that we have an exact sequence

0 → H 1
ord(Y

BS,Mn,p) ⊗ Zp/(pr ) → H 1
ord(Y

BS,Mn,p/prMn,p)

→ H 2
ord(Y

BS,Mn,p)[pr
] → 0.

Hence by Lemma 6.6, we obtain the first isomorphism.
By Corollary 6.4(1), we see that TorZp

1 (H 1
ord(∂Y BS,Mn,p), Zp/(pr )) = 0, and

hence Corollary 6.7 for M = Mn,p shows that

H 1
!,ord(Y

BS,Mn,p) ⊗ Zp/(pr )

= ker
(
H 1

ord(Y
BS,Mn,p) ⊗ Zp/(pr ) → H 1

ord(∂Y BS,Mn,p) ⊗ Zp/(pr )
)
.

Hence the second isomorphism follows from the first isomorphism, the isomorphism
(6-1), and Corollary 6.7 for M = Mn,p/prMn,p. □

Theorem 6.9. For any positive integers r and n′ with n ≡ n′ (mod (p−1)pr−1), we
have the following canonical isomorphism of exact sequences which is T ′

ℓ-equivalent
for any prime number ℓ ̸= p:

0 // H 1
!,ord(Y

BS,Mn,p/pr )

∼=

��

// H 1
ord(Y

BS,Mn,p/pr )

∼=

��

// H 1
ord(∂Y BS,Mn,p/pr )

∼=

��

// 0

0 // H 1
!,ord(Y

BS,Mn′,p/pr ) // H 1
ord(Y

BS,Mn′,p/pr ) // H 1
ord(∂Y BS,Mn′,p/pr ) // 0

where Mn,p/pr
:= Mn,p/prMn,p.

Proof. Theorem 6.9 follows from the results proved by Hida [1986]; see also
[Harder 2011]. In the following, we briefly explain how we derive Theorem 6.9
from Hida’s [1986] results.

First, note that since p ≥ 5, we have canonical isomorphisms between a sheaf
cohomology on Y BS and a group cohomology of 0:

H 1(Y BS,Mm,p/pr ) ∼
−→ H 1(0,Mm,p/pr ). (6-3)

The inner cohomology group H 1
!
(Y BS,Mm,p/pr ) corresponds to the parabolic

subgroup H 1
P(0,Mm,p/pr ) of H 1(0,Mm,p/pr ) under the isomorphism (6-3) (see

[Hida 1986, Equation (4.1a)] for the definition of the parabolic subgroup).
Let m ∈ {n, n′

}. Hida [1986, Proposition 4.7] showed that we have isomorphisms

eT ′
p
H 1(0,Mm,p/pr ) ∼

−→ eU ′
p
H 1(00(pr ),Mm,p/pr ); x 7→ eU ′

p
res(x),

eT ′
p
H 1

P(0,Mm,p/pr ) ∼
−→ eU ′

p
H 1

P(00(pr ),Mm,p/pr ); x 7→ eU ′
p
res(x),

(6-4)
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which are T ′

ℓ-equivariant for any prime number ℓ ̸= p. Here res denotes the
restriction map.

Let Lm,r denote the 00(pr )-module whose underlying abelian group is Zp/(pr )

and the 00(pr )-action is given by the homomorphism 00(pr ) → (Zp/(pr ))×;(
a b
c d

)
7→ am mod pr . Hida also showed [1986, Corollary 4.5 and Equation (6.8)]

that the 00(pr )-homomorphism ir : Mm,p/pr
→ Lm,r ; f (X1, X2) 7→ f (1, 0)

induces Hecke-equivariant isomorphisms

eU ′
p
H 1(00(pr ),Mm,p/pr ) ∼

−→ eU ′
p
H 1(00(pr ), Lm,r ); x 7→ ir,∗(x),

eU ′
p
H 1

P(00(pr ),Mm,p/pr ) ∼
−→ eU ′

p
H 1

P(00(pr ), Lm,r ); x 7→ ir,∗(x).
(6-5)

Since n ≡ n′ (mod (p − 1)pr ), we have Ln,r = Ln′,r as 00(pr )-modules, by com-
bining the isomorphisms (6-4) and (6-5) for m = n, n′, we obtain the commutative
diagram

H 1
!,ord(Y

BS,Mn,p/pr )
� � //

∼=
��

H 1
ord(Y

BS,Mn,p/pr )

∼=
��

eU ′
p
H 1

P(00(pr ), Ln,r )
� � // eU ′

p
H 1

P(00(pr ), Ln,r )

eU ′
p
H 1

P(00(pr ), Ln′,r )
� � // eU ′

p
H 1

P(00(pr ), Ln′,r )

H 1
!,ord(Y

BS,Mn′,p/pr )

∼=

OO

� � // H 1
ord(Y

BS,Mn′,p/pr )

∼=

OO

where vertical arrows are isomorphisms and T ′

ℓ-equivariant for any prime num-
ber ℓ ̸= p. □

6.2. Another expression for 1 p(Eisn). Let p ≥ 5 be a prime number and take a
prime number ℓ ̸= p. Let

Hℓ,p := Zp[X ]

be the polynomial ring over Zp, and by using the Hecke operator T ′

ℓ at ℓ, we
regard cohomology groups that appear in the present paper as Hℓ,p-modules. For
notational simplicity, we put

xℓ,n := X − (1 + ℓn+1) and Bℓ,p,n := Hℓ,p/(xℓ,n).

Note that by Corollary 6.4, we have Bℓ,p,n
∼

−→ H 1
ord(∂Y BS,Mn,p); 1 7→ eT ′

p
[en]

as Hℓ,p-modules.

Lemma 6.10. Let c ∈ H 1(Y BS,Mn) ⊗ C be a cohomology class. If we have that
c|T ′

ℓ = (1 + ℓn+1)c, then c|T ′

ℓ′ = (1 + ℓ′n+1)c for any prime number ℓ′, that is, the
cohomology class c is a scalar multiple of Eisn .
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Proof. It is well known that one can take a T ′

ℓ-Hecke-eigenbasis f1, . . . , ft ∈

H 1(Y BS,Mn)⊗C such that f1 = Eisn and that the elements f2, . . . , ft correspond
to either cusp forms or their complex conjugates via the Eichler–Shimura homomor-
phism. Then the Ramanujan conjecture proved by Deligne shows that the absolute
value of the T ′

ℓ-eigenvalue of fi (2 ≤ i ≤ t) is less than 1+ℓn+1, which implies this
lemma. □

Lemma 6.11. We have H 1
ord(Y

BS,Mn,p)[xℓ,n] = Zp1p(Eisn)Eisn .

Proof. By Proposition 6.5 and Lemma 6.10, H 1
ord(Y

BS,Mn,p)[xℓ,n] ⊂ Qp · Eisn .
Hence this lemma follows from the definition of the denominator 1p(Eisn) of the
Eisenstein class Eisn and Lemmas 5.5 and 6.1. □

Definition 6.12. We define [Eℓ,p,n] ∈ Ext1Hℓ,p
(Bℓ,p,n, H 1

!,ord(Y
BS,Mn,p)) to be the

element corresponding to the exact sequence of Hℓ,p-modules in Corollary 6.7 for
M = Mn,p:

0 → H 1
!,ord(Y

BS,Mn,p) → H 1
ord(Y

BS,Mn,p) → Bℓ,p,n → 0.

The following lemma follows directly from Lemma 6.11.

Lemma 6.13. AnnZp([Eℓ,p,n]) = 1p(Eisn)Zp.

Lemma 6.14. We have a natural identification

H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n = Ext1Hℓ,p
(Bℓ,p,n, H 1

!,ord(Y
BS,Mn,p)).

Proof. Since xℓ,n is an regular element of Hℓ,p, we have an exact sequence of
Hℓ,p-modules

0 → Hℓ,p
×xℓ
−→ Hℓ,p → Bℓ,p,n −→ 0.

Applying the functor HomHℓ,p(−, H 1
!,ord(Y

BS,Mn,p)) to this short exact sequence,
we obtain the desired identification. □

Lemma 6.15. For any positive integers r and n′ with n ≡ n′ (mod (p − 1)pr−1),
we have a natural isomorphism of Hℓ,p-modules

H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n/(pr ) ∼= H 1
!,ord(Y

BS,Mn′,p) ⊗Hℓ,p Bℓ,p,n′/(pr ).

Moreover, the image of [Eℓ,p,n] mod pr is [Eℓ,p,n′] mod pr under this isomorphism
(and the identification in Lemma 6.14).

Proof. This lemma follows from Theorem 6.9 and Corollary 6.8. □

Definition 6.16. We define a polynomial 8ℓ,n(t) ∈ Zp[t] to be the characteristic
polynomial associated with T ′

ℓ : H 1
!,ord(Y

BS,Mn,p) → H 1
!,ord(Y

BS,Mn,p):

8ℓ,n(t) := det
(
t · id − T ′

ℓ | H 1
!,ord(Y

BS,Mn,p)
)
.
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Lemma 6.17. The Zp-module H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n is annihilated by
8ℓ,n(1 + ℓn+1).

Proof. By the Cayley–Hamilton theorem, the Hecke module H 1
!,ord(Y

BS,Mn,p) is
annihilated by 8ℓ,n(T ′

ℓ). Hence the Zp-module H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n is
annihilated by 8ℓ,n(1 + ℓn+1) since Bℓ,p,n = Hℓ,p/(X − (1 + ℓ1+n)). □

Lemma 6.18. Let r be a positive integer satisfying r > ordp(8ℓ,n(1+ℓn+1)). Then
for any even integer n′

≥ 2 with n ≡ n′ (mod (p − 1)pr−1), we have

ordp(8ℓ,n(1 + ℓn+1)) = ordp(8ℓ,n′(1 + ℓn′
+1)).

Proof. By Theorem 6.9, we have

8ℓ,n(t) ≡ 8ℓ,n′(t) (mod pr ).

The fact that n ≡ n′ (mod (p − 1)pr−1) implies that ℓn+1
≡ ℓn′

+1 (mod pr ), and
we obtain 8ℓ,n(1 + ℓn+1) ≡ 8ℓ,n′(1 + ℓn′

+1) (mod pr ). The assumption that r >

ordp(8ℓ,n(1+ℓn+1)) shows that ordp(8ℓ,n(1+ℓn+1))= ordp(8ℓ,n′(1+ℓn′
+1)). □

Proposition 6.19. Let r be a positive integer satisfying r > ordp(8ℓ,n(1 + ℓn+1)).
Then for any even integer n′

≥ 2 with n ≡ n′ (mod (p − 1)pr−1), we have

1p(Eisn) = 1p(Eisn′).

Proof. By Lemmas 6.15, 6.17, and 6.18, we have the natural isomorphism

H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n = H 1
!,ord(Y

BS,Mn,p) ⊗Hℓ,p Bℓ,p,n/(pr )

∼= H 1
!,ord(Y

BS,Mn′,p) ⊗Hℓ,p Bℓ,p,n′/(pr )

= H 1
!,ord(Y

BS,Mn′,p) ⊗Hℓ,p Bℓ,p,n′ .

Moreover, the image of [Eℓ,p,n] under this isomorphism is [Eℓ,p,n′], and Lemma 6.13
implies that

1p(Eisn)Zp = AnnZp([Eℓ,p,n]) = AnnZp([Eℓ,p,n′]) = 1p(Eisn′)Zp. □

7. Kubota–Leopoldt p-adic L-function

Let p be a prime number. In this section, we introduce the Kubota–Leopoldt p-adic
L-functions and prove certain congruence properties that will be used in the proof
of Theorem 2.13.

Let ω : Gal(Q/Q) → Z×
p denote the Teichmüller character, and let 1 denote the

trivial character. For any Dirichlet character χ , we denote by L p(s, χ) ∈ Cp[[s]] the
Kubota–Leopoldt p-adic L-function attached to χ .
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Proposition 7.1 [Washington 1997, Theorems 5.11 and 5.12, Exercises 5.11(1)].
(1) For any Dirichlet character χ , the p-adic L-function L p(s, χ) converges on

Zp − {1}. Moreover, for any integer m ≥ 2, we have

L p(1 − m, χ) = (1 − χω−m(p)pm−1)L(1 − m, χω−m).

In particular, we have ordp(L p(1 − m, ωm)) = ordp(ζ(1 − m)).

(2) We have

L p(s, 1) ∈
p − 1

p(s − 1)
+ Zp[[s − 1]].

(3) If m ̸≡ 0 (mod p − 1), then we have

L p(s, ωm) ∈ Zp + pZp[[s − 1]].

By using the Kubota–Leopoldt p-adic L-functions, Theorem 4.1 can be restated
as follows.

Corollary 7.2. If we put

Dp(n,ν) :=
L p(−ν,ω1+ν)L p(ν − n,ωn−ν+1)

L p(−1 − n,ωn+2)
−L p(−ν,ω1+ν)−L p(ν−n,ωn−ν+1),

then for any integer ν ∈ {1, . . . , n − 1} we have

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩ =
1 − pn+1

(1 − pν)(1 − pn−ν)
Dp(n, ν).

For any even integer m, we define a positive integer Nm by

Nm := numerator of ζ(1 − m).

Corollary 7.3. Let m ≥ 2 be an even integer.

(1) If m ̸≡ 0 (mod p − 1), then we have ordp(ζ(1 − m)) = ordp(Nm).

(2) If m ≡ 0 (mod p − 1), then we have ordp(Nm) = 0.

(3) Let r and m′ be positive integers with m ≡ m′ (mod (p − 1)pr−1). If r >

ordp(Nm), then
ordp(Nm) = ordp(Nm′).

Proof. Claims (1) and (2) follow immediately from Proposition 7.1. In the case
where m ≡ 0 (mod p − 1), Claim (3) follows from Claim (2). In the case where
m ̸≡ 0 (mod p − 1), Claim (3) follows from Proposition 7.1. □

Corollary 7.4. Let x be an integer with x ̸≡ 0 (mod p − 1). For any integer y, we
have

L p(1 − x, ωx)L p(1 − y, 1)

L p(1 − x − y, ωx)
∈ L p(1 − y, 1) +

Zp

L p(1 − x − y, ωx)
.
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Proof. Since x ̸≡ 0 (mod p − 1), by Proposition 7.1(3), we have

L p(1 − x, ωx) ∈ L p(1 − x − y, ωx) + pyZp.

Moreover, by Proposition 7.1(2), we have pyL p(1− y, 1) ∈ 1+ pZp, which shows

L p(1 − x, ωx)L p(1 − y, 1)

L p(1 − x − y, ωx)
∈ L p(1 − y, 1) +

Zp

L p(1 − x − y, ωx)
. □

Corollary 7.5. For any integers x and y, we have

L p(1 − x, 1)L p(1 − y, 1)

L p(1 − x − y, 1)
≡

p − 1
px

+
p − 1

py
(mod Zp)

≡ L p(1 − x, 1) + L p(1 − y, 1) (mod Zp).

Proof. For notational simplicity, we put

R(s) := −
p − 1

ps
and H(s − 1) := L p(s, 1) − R(1 − s).

By Proposition 7.1(2), we have H(s) ∈ Zp[[s]], x R(x), y R(y), (x + y)R(x + y) ∈

p−1Z×
p , and R(x + y)−1

= R(x)−1
+ R(y)−1. Since H(s) ∈ Zp[[s]], we have

H(x) ∈ H(x + y) + yZp, H(y) ∈ H(x + y) + xZp.

Put α := 1 + R(x + y)−1 H(x + y) ∈ 1 + pZp. Then

L p(1 − x, 1)L p(1 − y, 1)

L p(1 − x − y, 1)
∈

(R(x) + H(x + y) + yZp)(R(y) + H(x + y) + xZp)

R(x + y) + H(x + y)

and we have

(R(x) + H(x + y) + yZp)(R(y) + H(x + y) + xZp)

R(x + y) + H(x + y)

⊂
R(x)−1

+ R(y)−1

α
(R(x)R(y) + (R(x) + R(y))H(x + y) + p−1Zp)

= R(x) + R(y) + Zp. □

8. Proof of Theorem 2.13

Let p be a prime number. As in Corollary 7.2, for any integer 1 ≤ ν ≤ n − 1, we
define

Dp(n,ν) :=
L p(−ν,ω1+ν)L p(ν − n,ωn−ν+1)

L p(−1 − n,ωn+2)
−L p(−ν,ω1+ν)−L p(ν−n,ωn−ν+1)

and set
δp(n, ν) := max{−ordp(Dp(n, ν)), 0}.
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Proposition 8.1. We have

δp(Eisn) = max
1≤ν≤n−1

δp(n, ν).

Proof. By Corollary 7.2, we have

lim
m→∞

⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩ =
1 − pn+1

(1 − pν)(1 − pn−ν)
Dp(n, ν).

Hence, for any sufficiently large integer m, we have

ordp
(
⟨Eisn, [
∼

T m!

p (Cν(τ ))]⟩
)
= ordp(Dp(n, ν)),

and this proposition follows from Corollary 5.9. □

Recall that Nm denotes the numerator of ζ(1 − m).

Proposition 8.2. Let p be a prime number.

(1) δp(Eisn) ≤ ordp(Nn+2).

(2) If p < n, then δp(Eisn) = ordp(Nn+2).

The proof of Proposition 8.2 is given in Section 8.1. First, we give the proof of
Theorem 2.13 assuming Proposition 8.2, that is, we show that 1(Eisn) = Nn+2.

Proof of Theorem 2.13. Take a prime number p. It suffices to show that δp(Eisn) =

ordp(Nn+2). When p − 1 | n + 2, we have 0 ≤ δp(Eisn) ≤ ordp(Nn+2) = 0 by
Proposition 8.2, and hence we may assume that n ̸≡ −2 (mod p − 1). Note that
p ≥ 5 in this case. Take a prime number ℓ ̸= p, and positive integers r and n′

satisfying

• r > ordp(8ℓ,n(1 + ℓn)),

• p < n′,

• n ≡ n′ (mod pr−1(p − 1)).

Then by Proposition 8.2(2), we have δp(Eisn′) = ordp(Nn′+2), and Proposition 6.19
implies that

δp(Eisn) = δp(Eisn′) = ordp(Nn′+2).

Hence Corollary 7.3 shows that δp(Eisn) = ordp(Nn′+2) = ordp(Nn+2). □

8.1. Proof of Proposition 8.2. In this subsection, we prove Proposition 8.2. The
proof is divided into the following two cases:

• p − 1 ∤ n + 2.

• p − 1 | n + 2.
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8.1.1. p − 1 ∤ n + 2.

Lemma 8.3. If p − 1 ∤ n + 2, then we have δp(Eisn) ≤ ordp(Nn+2).

Proof. Take an integer ν ∈ {1, . . . , n −1}. When p −1 ∤ 1+ν and p −1 ∤ n −ν +1,
both L p(−ν, ω1+ν) and L p(ν −n, ωn−ν+1) are p-adic integers, and hence we have

δp(n, ν) ≤ ordp(L p(−1 − n, ωn+2)) = ordp(Nn+2).

Suppose p −1 | 1+ν (resp. p −1 | n −ν +1). Then since p −1 ∤ n +2, we see that
n −ν +1 (resp. 1+ν) is not divisible by p −1. Therefore, Corollary 7.4 shows that

Dp(n, ν) ∈
Zp

L p(−1 − n, ωn+2)
+ Zp,

which implies that δp(n, ν) ≤ ordp(Nn+2). Hence Proposition 8.1 implies this
lemma. □

Moreover, if p < n, the result of Carlitz concerning the index of irregularity of a
prime shows the following lemma.

Lemma 8.4. If p −1 ∤ n +2 and p < n, there is an (odd) integer ν ∈ {1, . . . , n −1}

such that δp(n, ν) = ordp(Nn+2). In particular, we have δp(Eisn) = ordp(Nn+2) in
this case.

Proof. By Lemma 8.3, for any regular prime p and (odd) integer ν ∈ {1, . . . , n −1},
we have δp(n, ν) = ordp(Nn+2) = 0. Therefore, we may assume that p is an
irregular prime. In particular, p ≥ 37.

We define the index d(p) of irregularity of the prime number p by

d(p):=#{1≤t≤ p−3|t∈2Z,Bt ∈ pZp}=#{1≤t≤ p−3|t∈2Z,L p(1−t,ωt)∈ pZp}.

Then by using the result of Carlitz [1961, Equation (21)], Skula [1980, Theorem 2.2,
Remark 2.3] proved that

d(p) < 1
4(p + 3) −

log 2
log p

(1
4(p − 1)

)
.

Hence if p ≥ 47, then we have

d(p) < 1
4(p − 5).

Since the only irregular prime smaller than 47 is 37 and d(37) = 1 < 1
4(37 − 5),

the inequality d(p) < 1
4(p − 5) holds true.

For any integer a, we define an integer [a]p−1 by

0 ≤ [a]p−1 ≤ p − 2 and [a]p−1 ≡ a (mod p − 1).

Since d(p) < 1
4(p − 5), there is an even integer t ∈ {2, 4, . . . , p − 3} with t ̸=

[n + 2]p−1 such that

L p(1 − t, ωt) ∈ Z×

p and L p(1 − [n + 2 − t]p−1, ω
[n+2−t]p−1) ∈ Z×

p .
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Furthermore, Proposition 7.1(3) shows that

L p(1 − [n + 2 − t]p−1, ω
[n+2−t]p−1) − L p(−1 + t − n, ωn+2−t) ∈ pZp,

and hence we have L p(−1 + t − n, ωn+2−t) ∈ Z×
p . Therefore, we put ν := t − 1

and get
δp(n, ν) = ordp(Nn+2). □

8.1.2. p − 1 | n + 2.

Lemma 8.5. If p − 1 | n + 2, we have δp(Eisn) = 0 = ordp(Nn+2).

Proof. The fact that ordp(Nn+2) = 0 follows from Corollary 7.3(2). Hence by
Proposition 8.1, it suffices to show that δp(n, ν) = 0 for any integer 1 ≤ ν ≤ n − 1.
Since p − 1 | n + 2, we have ordp(L p(−1 − n, ωn+2)) < 0. If p − 1 ∤ 1 + ν, then
we also have p − 1 ∤ n − ν + 1, and we get δp(n, ν) = 0 since L p(−ν, ω1+ν)

and L p(ν − n, ωn−ν+1) are p-adic integers. When p − 1 | 1 + ν, we also have
p − 1 | n − ν + 1, and Corollary 7.5 implies that Dp(n, ν) ∈ Zp.We thus obtain
δp(n, ν) = 0. □

This completes the proof of Proposition 8.2, and in particular of Theorem 2.13.

9. Applications

In this section, we discuss some applications of Theorem 2.13. For notational
simplicity, in the following, the (co)homology groups will be denoted by H •(Y,Mn)

(resp. H•(Y,Mn)) rather than H •(Y BS,Mn) (resp. H•(Y BS,Mn)) since they are
naturally isomorphic.

First note that we have the following corollary of Theorem 2.13.

Corollary 9.1. Let n ≥ 2 be an even integer and γ ∈ 0 a matrix. Take a polynomial
P(X1, X2) ∈Mn such that γ P(X1, X2) = P(X1, X2). Then for any element τ ∈ H,
we have

Nn+2

∫ γ τ

τ
En+2(z)P(z, 1) dz ∈ Z.

Here Nn+2 > 0 is the numerator of ζ(−1 − n).

Proof. Since γ P = P , we have ∂({τ, γ τ }⊗ P) = 0, and hence {τ, γ τ }⊗ P defines
an element in the homology group H1(Y,Mn). Therefore, by Theorem 2.13, we
obtain

Nn+2

∫ γ τ

τ
En+2(z)P(z, 1) dz = ⟨Nn+2Eisn, [{τ, γ τ } ⊗ P]⟩ ∈ Z. □
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9.1. Duke’s conjecture. Duke [2024] defined a certain map called the higher
Rademacher symbol

9k : 0 → Q

for each integer k ∈ Z≥2 which is a generalization of the classical Rademacher
symbol and gave a conjecture concerning the integrality of the higher Rademacher
symbol 9k .

Conjecture 9.2 [Duke 2024, Conjecture, p. 4]. For any integer k ∈ Z≥2 and matrix
γ ∈ 0, we have

9k(γ ) ∈ Z.

In the following, we show that Duke’s Conjecture 9.2 follows from Theorem 2.13.

Remark 9.3. Conjecture 9.2 was also recently proved by O’Sullivan [2024] using
a more direct method.

Here, instead of giving the original definition of the higher Rademacher symbols,
we recall an integral representation of the higher Rademacher symbols, also given
by Duke [2024], which is equivalent to the original definition and more suitable for
our purpose.

Proposition 9.4 [Duke 2024, Definition (2.4) and Lemma 6]. Let k ∈ Z≥2 be an
integer. For any matrix γ :=

(
a b
c d

)
∈ 0 − {±id2×2}, we define a binary quadratic

polynomial Qγ (X1, X2) ∈ M2 associated with γ by

Qγ (X1, X2) := −
sgn(a + d)

gcd(c, a − d, b)
(cX2

1 − (a − d)X1 X2 − bX2
2).

We also put Q±id2×2(X1, X2) := 0. Then for any element τ ∈ H, we have

9k(γ ) = N2k

∫ γ τ

τ
E2k(z)Qγ (z, 1)k−1 dz,

where N2k > 0 is the numerator of ζ(1 − 2k).

Corollary 9.5. Duke’s Conjecture 9.2 holds true.

Proof. By definition, the binary quadratic polynomial Qγ (X1, X2) defined in
Proposition 9.4 is γ -invariant. Hence Corollary 9.1 and Proposition 9.4 imply
that 9k(γ ) ∈ Z. □

9.2. Partial zeta functions of real quadratic fields. We discuss an application to
the denominators of the special values of the partial zeta functions of real quadratic
fields.

Let F be a real quadratic field, and let O ⊂ F be an order of F with discrimi-
nant DO. We denote by IO the group of proper fractional O-ideals and P+

O ⊂ IO
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the subgroup of totally positive principal ideals. We define the narrow ideal class
group Cl+O of O by

Cl+O := IO/P+

O .

See [Cox 2013, §7]. We fix an embedding F ⊂ R, and for any element α ∈ F ⊂ R,
we denote by α′

∈ F ⊂ R its conjugate over Q.
Let O×

+ denote the group of totally positive units in O, and let ε0 ∈ O×

+ denote
the generator of O×

+ such that ε0 > 1.

Definition 9.6. We define a map

zO,k : Cl+O → H1(Y,M2k−2)

as follows: let A ∈ Cl+O , and take a representative a ∈ IO of A. We also take a basis
α1, α2 ∈ a over Z such that α1α

′

2 − α′

1α2 > 0, and let γ0 ∈ 0 be a matrix such that

γ0

(
α1

α2

)
=

(
ε0α1

ε0α2

)
.

Moreover, set

Nα1,α2(X1, X2) := −
1

Na
(α2 X1 − α1 X2)(α

′

2 X1 − α′

1 X2).

We see that Nα1,α2(X1, X2)∈M2 and that γ0 Nα1,α2(X1, X2)= Nα1,α2(X1, X2). We
then define

zO,k(A) := [{τ, γ0τ } ⊗ Nα1,α2(X1, X2)
k−1

] ∈ H1(Y,M2k−2),

where τ is an arbitrary element in H.

Lemma 9.7. The homology class zO,k(A) does not depend on the choices we made.

Proof. The independence of τ ∈ H is clear. Let b ∈ A be another representative.
Then there exists a totally positive element α ∈ F× such that b = αa. Take a
basis β1, β2 ∈ a over Z with β1β

′

2 − β ′

1β2 > 0. Then we obtain a matrix γ0,b ∈ 0

and a binary quadratic polynomial Nαβ1,αβ2(X1, X2) from the basis αβ1, αβ2 of b.
Note that since α is totally positive, we have (αβ1)(α

′β ′

2)− (α′β ′

1)(αβ2) > 0. Let
γ ∈ GL2(Z) be a matrix satisfying(

β1

β2

)
= γ

(
α1

α2

)
.

Then the facts that α1α
′

2 − α′

1α2 > 0 and β1β
′

2 −β ′

1β2 > 0 imply that γ ∈ 0. Since
γ0,bγ

(
α1
α2

)
= γ

(
ε0α1
ε0α2

)
, we have γ −1γ0,bγ = γ0. Moreover,

(
X1 X2

)tγ̃

(
0 1

−1 0

)(
α1

α2

)
=

(
X1 X2

)(
0 1

−1 0

)
γ

(
α1

α2

)
=

(
X1 X2

)(
0 1

−1 0

)(
β1

β2

)
,
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which implies that Nαβ1,αβ2(X1, X2) = γ Nα1,α2(X1, X2). Therefore, we have

[{τ, γ0,bτ } ⊗ Nαβ1,αβ2(X1, X2)
k−1

] = [{τ, γ γ0γ
−1τ } ⊗ γ Nα1,α2(X1, X2)

k−1
]

= [{γ −1τ, γ0γ
−1τ } ⊗ Nα1,α2(X1, X2)

k−1
]

= [{τ, γ0τ } ⊗ Nα1,α2(X1, X2)
k−1

]

as elements of H1(Y,M2k−2). □

Remark 9.8. (1) Since the matrix γ0 in Definition 9.6 is hyperbolic (|trace(γ0)|>2),
we have dimQ{Q ∈ M2 ⊗ Q | γ Q = Q} = 1. This fact together with [Cox 2013,
Equation (7.6)] shows that Nα1,α2(X1, X2) = Qγ0(X1, X2).

(2) Gauss’s theory concerning binary quadratic forms (see [Cox 2013, Exercise 7.21]
for example) shows that for any hyperbolic element γ ∈ 0, there is an order O of a
real quadratic field and a narrow ideal class A ∈ Cl+O such that

[{z, γ z} ⊗ Qγ (X1, X2)] ∈ ZzO,2(A).

Definition 9.9. For each ideal class A ∈ Cl+O , the partial zeta function ζO(A, s)
associated with A is defined by

ζO(A, s) :=

∑
a⊂O,a∈A

1
(Na)s (Re(s) > 1),

and it is well known that ζO(A, s) can be continued meromorphically to s ∈ C and
has a simple pole at s = 1.

The following integral representation of the special values of the partial zeta
function is classically known.

Proposition 9.10. For any integer k ∈ Z≥2 and ideal class A ∈ Cl+O , we have

⟨Eis2k−2, zO,k(A)⟩ = (−1)k ζO(A−1, 1 − k)

ζ(1 − 2k)
.

Before we give a proof of Proposition 9.10, we recall (a special case of) the
so-called Feynman parametrization.

Lemma 9.11. Let x1, x2, a, b ∈ C be complex numbers such that x1a + x2 ̸= 0 and
x1b + x2 ̸= 0. Then for any nonnegative integers k1 and k2, we have∫ b

a

(b − z)k1(z − a)k2

(x1z + x2)2+k1+k2
dz =

k1!k2!

(k1 + k2 + 1)!

(b − a)k1+k2+1

(x1a + x2)k1+1(x1b + x2)k2+1 .

Proof. We may assume that a ̸= b. By setting y1 = x1a + x2 and y2 = x1b + x2, it
suffices to prove that

(b − a)

∫ b

a

(b − z)k1(z − a)k2

((b − z)y1 + (z − a)y2)2+k1+k2
dz =

k1!k2!

(k1 + k2 + 1)!

1

yk1+1
1 yk2+1

2

.
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The case where k1 = k2 = 0 is clear: we have

(b − a)

∫ b

a

1
((b − z)y1 + (z − a)y2)2 dz =

1
y1 y2

.

Then by viewing both sides as holomorphic functions in (y1, y2) ∈ C×
× C× and

applying the differential operator
(

∂
∂y1

)k1
(

∂
∂y2

)k2 , we obtain the desired identity. □

Proof of Proposition 9.10. We use the same notations as in Definition 9.6. Since

2ζ(2k)E2k(z) =

∑
(0,0) ̸=(m,n)∈Z2

1
(mz + n)2k

and Eis2k−2 = r(E2k), for any element τ ∈ H we have

2ζ(2k)⟨Eis2k−2, zO,k(A)⟩ =

∫ γ0τ

τ

∑
(0,0) ̸=(m,n)∈Z2

Nα1,α2(z, 1)k−1

(mz + n)2k dz.

Since Nα1,α2(γ0z, 1)= j (γ0, z)−2 Nα1,α2(z, 1), where j
((

a b
c d

)
, z

)
:= cz+d is the fac-

tor of automorphy, we fix a complete set Sγ0 of representatives of (Z2
−{(0, 0)})/γ Z

0
to have∫ γ0τ

τ

∑
(0,0)̸=(m,n)∈Z2

Nα1,α2(z, 1)k−1

(mz + n)2k dz

=

∫ γ0τ

τ

∑
l∈Z

∑
(m,n)∈Sγ0

Nα1,α2(z, 1)k−1

j (γ l
0, z)2k(m(γ l

0z) + n)2k
dz

=

∑
l∈Z

∫ γ l+1
0 τ

γ l
0τ

∑
(m,n)∈Sγ0

Nα1,α2(γ
−l
0 z, 1)k−1

j (γ l
0, γ

−l
0 z)2k(mz + n)2k

d(γ −l
0 z)

=

∑
l∈Z

∫ γ l+1
0 τ

γ l
0τ

∑
(m,n)∈Sγ0

Nα1,α2(z, 1)k−1

(mz + n)2k dz.

Set α0 := α1/α2 ∈ F ⊂ R. Then the point α0 ∈ R (resp. α′

0) is the attractive fixed
point (resp. repelling fixed point) of the hyperbolic matrix γ0 ∈ 0, i.e., we have
liml→∞ γ l

0τ = α0 and liml→∞ γ −l
0 τ = α′

0 in P1(C) for any element τ ∈ H. Hence
we obtain∑
l∈Z

∫ γ l+1
0 τ

γ l
0τ

∑
(m,n)∈Sγ0

Nα1,α2(z, 1)k−1

(mz + n)2k dz

=

∫ α0

α′

0

∑
(m,n)∈Sγ0

Nα1,α2(z, 1)k−1

(mz + n)2k dz

=
NF/Q(α2)

k−1

(Na)k−1

∑
(m,n)∈Sγ0

∫ α0

α′

0

((α0 − z)(z − α′

0))
k−1

(mz + n)2k dz.



316 HOHTO BEKKI AND RYOTARO SAKAMOTO

By using Lemma 9.11, we find∫ α0

α′

0

((α0 − z)(z − α′

0))
k−1

(mz + n)2k dz =
((k − 1)!)2

(2k − 1)!

(α0 − α′

0)
2k−1

NF/Q(mα0 + n)k .

Note that we have the identity α1α
′

2 − α′

1α2 =
√

DONa, and this shows that

NF/Q(α2)
k−1

(Na)k−1

∑
(m,n)∈Sγ0

(α0 − α′

0)
2k−1

NF/Q(mα0 + n)k = D
k−

1
2

O (Na)k
∑

α∈(a−{0})/O×

+

1
NF/Q(α)k .

For any subset X ⊂ F , we put

X+ := {α ∈ X | α > 0, α′ > 0}, X− := {α ∈ X | α > 0, α′ < 0}.

Let J ∈ Cl+O denote the ideal class containing the principal ideal (
√

DO) ⊂O. Note
that J −1

= J in Cl+O . Then we further compute

(Na)k
∑

α∈(a−{0})/O×

+

1
NF/Q(α)k =

∑
α∈a+/O×

+

2(Na)k

NF/Q(α)k +

∑
α∈a−/O×

+

2(Na)k

NF/Q(α)k

=

∑
α∈a+/O×

+

2(Na)k

NF/Q(α)k +(−1)k
∑

α∈(
√

DOa)+/O×

+

2N (
√

DOa)
k

NF/Q(α)k

= 2(ζO(A−1,k)+(−1)kζO(JA−1,k)).

We recall the functional equations of the partial zeta functions. Set

3+

O(A−1, s) := π−s0
( 1

2 s
)2 D

1
2 (s−1)

O (ζO(A−1, s) + ζO(A−1J , s)),

3−

O(A−1, s) := π−s0
( 1

2(s + 1)
)2 D

1
2 s
O (ζO(A−1, s) − ζO(A−1J , s)).

Then we have

3+

O(A−1, s) = 3+

O(A−1, 1 − s), 3−

O(A−1, s) = 3−

O(A−1, 1 − s).

See [Duke et al. 2018, Equations (59) and (60); Sczech 1993, p. 545] for example.
Although [Duke et al. 2018] deals only with the maximal orders, we can apply the
same argument to general orders. See also [Siegel 1980; Duke 2024, Equation (4.19);
Vlasenko and Zagier 2013, p. 42]. Using these functional equations, we find

D
k−

1
2

O (ζO(A−1, k) + (−1)kζO(JA−1, k)) =
(2π)2k

2((k − 1)!)2 ζO(A−1, 1 − k).

Therefore, by also using the functional equation for the Riemann zeta function (see,
for example, [Hida 1993, p. 29]), we obtain

⟨Eis2k−2, zO,k(A)⟩=
(2π)2k

2(2k − 1)!ζ(2k)
ζO(A−1, 1−k)= (−1)k ζO(A−1, 1 − k)

ζ(1 − 2k)
. □
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We define the positive integer J2k by

J2k := denominator of ζ(1 − 2k).

Corollary 9.12. Let F be a real quadratic field, O ⊂ F be an order in F , and let
A ∈ Cl+O be a narrow ideal class of O. Then for any integer k ≥ 2, we have

J2kζO(A, 1 − k) ∈ Z.

Proof. By Proposition 9.10, we have

N2k⟨Eis2k−2, zO,k(A−1)⟩ = ±N2k
ζO(A, 1 − k)

ζ(1 − 2k)
= ±J2kζO(A, 1 − k).

Since N2k⟨Eis2k−2, zO,k(A−1)⟩∈Z by Theorem 2.13, we obtain J2kζO(A, 1−k)∈Z.
□

Remark 9.13. By Proposition 9.4 [Duke 2024, Lemma 6] and Proposition 9.10,
we see that Duke’s Conjecture 9.2 is equivalent to Corollary 9.12.

Remark 9.14. As for the denominator of the special values of the Dedekind zeta
functions of real quadratic fields, or more generally of totally real fields, the same
(slightly stronger at p = 2) universal upper bound was obtained by Serre [1973, §2,
théorème 6]. If we fix a totally real field F , then a more refined description for the
denominators and even for the numerators of the special values of the Dedekind
zeta function of F is obtained from the classical Iwasawa main conjecture proved
by Wiles [1990] (see [Kolster 2004]).

9.3. Sharpness of the universal upper bound in Corollary 9.12. Let k ≥ 2 be
an integer. We define a Z-submodule Zk ⊂ H1(Y,M2k−2) to be the Z-submodule
generated by homology classes of the form zO,k(A), that is,

Zk := ⟨ zO,k(A) | O is an order of a real quadratic field and A ∈ Cl+O ⟩Z.

This subsection is devoted to proving the following theorem.

Theorem 9.15. We have ⟨Eis2k−2,Zk⟩ = (1/N2k)Z.

Theorem 9.15 has the following interesting application.

Corollary 9.16. The universal bound in Corollary 9.12 is sharp: for any prime
number p, there exist an order O of a real quadratic field and a narrow ideal class
A ∈ Cl+O such that

ordp(J2kζO(A, 1 − k)) = 0.

In other words, we have

J2k =min
{

J ∈Z>0 | JζO(A, 1−k)∈Z for all orders O in all real quadratic fields
and narrow ideal classes A ∈ Cl+O

}
.
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Proof. Let p be a prime number. The definition of the module Zk and Theorem 9.15
show that one can find an order O of a real quadratic field and a narrow ideal class
A ∈ Cl+O such that

ordp(⟨Eis2k−2, zO,k(A−1)⟩) = −ordp(N2k).

Since ζ(1 − 2k) = ±N2k/J2k , Proposition 9.10 shows that

0 = ordp(N2k) + ordp(⟨Eis2k−2, zO,k(A−1)⟩)

= ordp(N2k) − ordp(ζ(1 − 2k)) + ordp(ζO(A, 1 − k))

= ordp(J2kζO(A, 1 − k)). □

9.3.1. Preparations for proving Theorem 9.15. Let N ≥ 1 be an integer and define

01(N ) :=

{(
a b
c d

)
∈ 0

∣∣∣ a − 1 ≡ c ≡ d − 1 ≡ 0 (mod N )

}
.

We also put

Y1(N ) :=01(N )\H, Y1(N )BS
:=01(N )\HBS, ∂Y1(N )BS

:=Y1(N )BS
−Y1(N ).

We note that the similar facts in Section 2.1 and Section 2.2 hold true for the
congruence subgroup 01(N ). Moreover, the Hecke operators Tp (p ∤ N ) and Up

(p | N ) act on the homology group H1(Y1(N ),M2k−2).
Let k ≥1 be an integer. For any hyperbolic matrix γ ∈01(N ) (i.e., |trace(γ )|>2),

we set

z01(N ),k(γ ) := [{z, γ z} ⊗ Qγ (X1, X2)
k−1

] ∈ H1(Y1(N ),M2k−2).

Definition 9.17. For any integer k ≥ 1, we define a Z-submodule

Z01(N ),k ⊂ H1(Y1(N ),M2k−2)

by
Z01(N ),k := ⟨z01(N ),k(γ ) | γ ∈ 01(N ) with |trace(γ )| > 2⟩Z.

Remark 9.18. By Remark 9.8, we have Z01(1),k = Zk .

Lemma 9.19. For any integer N ≥ 1 and prime number p, we have

⟨[{z, γ z}] |γ ∈01(N p)−0(p) with |trace(γ )|>2⟩Z =Z01(N p),1 = H1(Y1(N p), Z).

Proof. It suffices to show that

⟨γ | γ ∈ 01(N p) − 0(p) with |trace(γ )| > 2⟩ = 01(N p).

Here ⟨ · ⟩ means the group generated by the elements inside the bracket. Moreover,
since 01(2) = ⟨01(6), 01(10)⟩, we may assume that N p ≥ 3. Put γ :=

( 1 1
N p 1+N p

)
.

Then the quotient group 01(N p)/(0(p)∩01(N p)) is generated by the image of γ .
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For any matrix γ ′
∈ 0(p) ∩ 01(N p), we have γ ′γ 1+ap

̸∈ 0(p) for any integer a.
Since trace(γ ) = N p+2 > 2 and det γ = 1, the matrix γ is hyperbolic, and one can
take a matrix Q ∈ GL2(R) such that Q−1γ Q =

(α
α−1

)
. If we put Q−1γ ′Q =:

(x y
z w

)
,

then trace(γ ′γ 1+ap) = xα1+ap
+ wα−1−ap. Since trace(γ ′γ 1+ap) ≡ 2 (mod N p)

and N p ≥3, we have trace(γ ′γ 1+ap) ̸=0. Hence the set {trace(γ ′γ 1+ap) |a ∈Z}⊂Z

is infinite. Therefore we can find an integer a such that |trace(γ ′γ 1+ap)| > 2. □

Next, we recall an important result proved by Hida [1986, Corollary 4.5; 1988,
Corollary 8.2]. Take an integer N ≥ 1 and a prime number p, and put q := pordp(N p).
Then we have a 01(q)-homomorphism

j : Z/(q) → M2k−2 ⊗ Z/(q); b 7→ bX2k−2
2 ,

which induces a Hecke-equivariant homomorphism

j∗ : H1(Y1(N p), Z/(q)) → H1(Y1(N p),M2k−2,p ⊗ Z/(q)).

Proposition 9.20. When N p ≥4, the homomorphism j induces a Hecke-equivariant
isomorphism

j∗ : H ord
1 (Y1(N p), Z/(q)) ∼

−→ H ord
1 (Y1(N p),M2k−2,p ⊗ Z/(q)).

Here we define H ord
1 (Y1(N p), −) := eUp H1(Y1(N p), −).

Proof. The proof of this proposition is essentially the same as that of [Hida 1993,
§7.2, Theorem 2] for cohomology groups. We note that 01(N p) is torsion-free
since N p ≥ 4. Hence any short exact sequence of 01(N p)-modules induces a long
exact sequence in homology.

If we put
C := (M2k−2/ZX2k−2

2 ) ⊗ Z/(q),

then the short exact sequence 0 → Z/(q)
j

−→ M2k−2 ⊗ Z/(q) → C → 0 induces
an exact sequence of Z/(q)-modules

H2(Y1(N p), C) → H1(Y1(N p), Z/(q))
j∗

−→ H1(Y1(N ),M2k−2 ⊗ Z/(q)) → H1(Y1(N p), C).

Since the operator Up is defined by Up =
∑p−1

u=0

(1 u
0 p

)
, we have(1 u

0 p
)
· P(X1, X2) ≡ P(−u X2, X2) (mod p) ∈ Fp X2k−2

2

for any polynomial P ∈ M2k−2. In other words, we have(1 u
0 p

)
(M2k−2/ZX2k−1

2 ) ⊂ p(M2k−2/ZX2k−1
2 ),

and this shows that H ord
1 (Y1(N ), C) = H ord

2 (Y1(N ), C) = 0. □
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Lemma 9.21. Let N be an integer and let p be a prime number. Set q := pordp(N p).
Then for any matrix γ ∈ 01(N p) − 0(p), we have

j∗(z01(N p),1(γ ) mod q) ∈ (Z/(q))× · z01(N p),k(γ ).

Proof. If we put γ :=
(

a b
c d

)
, then we have

Qγ (X1, X2) = −
sgn(a + d)

gcd(c, a − d, b)
(cX2

1 − (a − d)X1 X2 − bX2
2).

Since γ ∈ 01(N p) − 0(p), we have c ≡ a − d ≡ 0 (mod q) and b ̸≡ 0 (mod p),
which shows that

Qγ (X1, X2) ≡ ±
b

gcd(c, a − d, b)
X2

2 (mod q)

and

j∗(z01(N p),1(γ ) mod q) =

(
±

gcd(c, a − d, b)

b

)k−1

z01(N p),k(γ ) (mod q)

∈ (Z/(q))× · z01(N p),k(γ ). □

Theorem 9.22. For any integer N ≥ 1 and prime number p satisfying N p ≥ 4, we
have

eUp(Z01(N p),k ⊗ Zp) = H ord
1 (Y1(N p),M2k−2,p).

Proof. We first note that eUp H0(Y1(N p),M2k−2,p) = eUp((M2k−2,p)01(N p)) van-
ishes since Up · X2k−2

2 = pX2k−2
2 and

(1 u
0 p

)
· P(X1, X2) ≡ P(−u X2, X2) (mod p).

This fact implies that

H ord
1 (Y1(N p),M2k−2,p) ⊗ Z/(q) ∼

−→ H ord
1 (Y1(N p),M2k−2,p ⊗ Z/(q)).

Here q := pordp(N p). Hence this theorem follows from Proposition 9.20 and Lemmas
9.19 and 9.21. □

9.3.2. Proof of Theorem 9.15. Let k ≥ 2 be an integer. For any positive integers M
and N with M | N , we denote by

π N ,M
∗

: H1(Y1(N ),M2k−2) → H1(Y1(M),M2k−2),

π∗

M,N : H 1(Y1(M),M2k−2) → H 1(Y1(N ),M2k−2),

the homomorphisms induced by the natural projection Y1(N ) → Y1(M); z 7→ z.

Corollary 9.23. For any integer N ≥ 1 and prime number p, we have

Zp ⊂ ⟨Eis2k−2, π
N p,1
∗

(eUp(Z01(N p),k ⊗ Zp))⟩.

Proof. Take an element τ ∈ H. Since

Up([{τ, τ + 1} ⊗ X2k−2
2 ]) =

[{
τ

p
,
τ

p
+ 1

}
⊗ X2k−2

2

]
= [{τ, τ + 1} ⊗ X2k−2

2 ],
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we have

[{τ, τ + 1} ⊗ X2k−2
2 ] ∈ H ord

1 (∂Y1(N p)BS,M2k−2,p) ⊂ H ord
1 (Y1(N p),M2k−2,p).

On the other hand, since

π N p,1
∗

([{τ, τ + 1} ⊗ X2k−2
2 ]) = [{τ, τ + 1} ⊗ X2k−2

2 ] ∈ H1(Y,M2k−2),

we have
⟨Eis2k−2, π

N p,1
∗

([{τ, τ + 1} ⊗ X2k−2
2 ])⟩ = 1.

Therefore, when N p ≥ 4, Theorem 9.22 implies this lemma. When N p ≤ 3, we
have N = 1 and p | 6. Then this case follows from the case N = 3 and p | 6 since
π

3p,1
∗ (eUp(Z01(3p),k ⊗ Zp)) ⊂ π

p,1
∗ (eUp(Z01(p),k ⊗ Zp)). □

Lemma 9.24. Let N ≥ 1 be an integer and let p be a prime number. Then for any
homology class x ∈ H1(Y1(N p),M2k−2) ⊗ Cp we have

eTpπ
N p,1
∗

(eUp x) = π N p,1
∗

(eUp x).

Proof. By using the formal duality, it suffices to show that

eU ′
p
π∗

1,N p(eT ′
p
y) = eU ′

p
π∗

1,N p(y)

for any cohomology class y ∈ H 1(Y,M2k−2) ⊗ Cp. This claim is well known; see
[Gouvêa 1992, Lemma 2] for example. □

Corollary 9.25. For any prime number p ≥ 5, we have

⟨Eis2k−2, π
p,1
∗

(eUp(Z01(p),k ⊗ Zp))⟩ =
1

N2k
Zp.

Proof. Take a prime number p ≥ 5. Then Theorem 9.22 shows that

⟨Eis2k−2, π
p,1
∗

(eUp(Z01(p),k ⊗ Zp))⟩ = ⟨Eis2k−2, π
p,1
∗

(H ord
1 (Y1(p),M2k−2,p))⟩.

By Lemma 9.24, we have a natural homomorphism

π p,1
∗

: H ord
1 (Y1(p),M2k−2,p)/(torsion) → H ord

1 (Y,M2k−2,p)/(torsion),

which is the dual of the homomorphism

H 1
ord(Y,M2k−2,p) → H 1

ord(Y1(p),M2k−2,p); y 7→ eU ′
p
π∗

1,p(y).

The fact that the index [00(p) : 01(p)] = p − 1 is relatively prime to p together
with the isomorphism (6-4) implies that π

p,1
∗ : H ord

1 (Y1(p),M2k−2,p)/(torsion) →

H ord
1 (Y,M2k−2,p)/(torsion) is surjective. Hence we have

⟨Eis2k−2, π
p,1
∗

(H ord
1 (Y1(p),M2k−2,p))⟩ = ⟨Eis2k−2, H ord

1 (Y,M2k−2,p)⟩.

Therefore, this corollary follows from Theorem 2.13 and Lemma 5.5. □
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We note that for any prime number p, the operators Vp :=
( p 0

0 1

)
and V ′

p :=
(̃ p 0

0 1

)
induce homomorphisms

Vp : H1(Y1(N p),M2k−2) → H1(Y1(N ),M2k−2),

V ′

p : H 1(Y1(N ),M2k−2) → H 1(Y1(N p),M2k−2).

Lemma 9.26. For any prime number p and integer N ≥ 1, we have

eU ′
p
(π∗

1,N p(Eis2k−2)) =
1

1 − p2k−1 (π∗

1,N p(Eis2k−2) − π∗

1,N (Eis2k−2)|V ′

p).

Proof. We put

Eis(1)
2k−2 :=

1
1 − p2k−1 (π∗

1,N p(Eis2k−2) − π∗

1,N (Eis2k−2)|V ′

p),

Eis(p2k−1)

2k−2 :=
1

1 − p2k−1 (−p2k−1π∗

1,N p(Eis2k−2) + π∗

1,N (Eis2k−2)|V ′

p).

Since π∗

1,N pT ′
p = U ′

pπ
∗

1,N p + V ′
pπ

∗

1,N and U ′
pV ′

pπ
∗

1,N = p2k−1π∗

1,N p, the relation
Eis2k−2|T ′

p = (1 + p2k−1)Eis2k−2 shows that

Eis(1)
2k−2|U

′

p = Eis(1)
2k−2 and Eis(p2k−1)

2k−2 |U ′

p = p2k−1Eis(p2k−1)

2k−2 .

Since π∗

1,N p(Eis2k−2) = Eis(1)
2k−2 + Eis(p2k−1)

2k−2 , these facts imply the lemma. □

Lemma 9.27. For any integer N ≥ 1 and a prime number p, we have

⟨Eis2k−2, π
N p,1
∗

(eUp(Z01(N p),k ⊗ Zp))⟩ ⊂ ⟨Eis2k−2,Z01(1),k⟩Zp.

Proof. Lemma 9.26 implies that

⟨eU ′
p
π∗

N p,1(Eis2k−2),Z01(N p),k⟩

⊂ ⟨π∗

1,N p(Eis2k−2),Z01(N p),k⟩Zp + ⟨V ′

pπ
∗

1,N (Eis2k−2),Z01(N p),k⟩Zp

⊂ ⟨Eis2k−2,Z01(1),k⟩Zp + ⟨Eis2k−2, π
N ,1
∗

(VpZ01(N p),k)⟩Zp.

Hence we have

⟨Eis2k−2, π
N p,1
∗

(eUp(Z01(N p),k ⊗ Zp))⟩

= ⟨eU ′
p
π∗

1,N p(Eis2k−2),Z01(N ),k⟩Zp

⊂ ⟨Eis2k−2,Z01(1),k⟩Zp + ⟨Eis2k−2, π
N ,1
∗

(VpZ01(N p),k)⟩Zp.

Therefore, it suffices to show that VpZ01(N p),k ⊂ Z01(N ),k . Let γ ∈ 01(N p) be a
matrix. Then we have γp :=

( p 0
0 1

)
γ
( p 0

0 1

)−1
∈ 01(N ). By the definitions of z01(N ),k

and z01(N p),k , we obtain

Vp · z01(N p),k(γ ) ∈ Zz01(N ),k(γp).

In particular, we have VpZ01(N p),k ⊂ Z01(N ),k . □
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Proof of Theorem 9.15. By Theorem 2.13 and Remark 9.18, we only need to show
that

1
N2k

Zp ⊂ ⟨Eis2k−2,Z01(1),k⟩Zp

for any prime number p. When p ≥ 5, this claim follows from Corollary 9.25 and
Lemma 9.27 applied to N = 1. Suppose p = 2 or p = 3. Then since the primes
2 and 3 are regular, these primes does not divide N2k . Hence, Corollary 9.23 and
Lemma 9.27 show that

1
N2k

Zp = Zp ⊂ ⟨Eis2k−2,Z01(1),k⟩Zp. □
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The Bombieri–Pila determinant method

Thomas F. Bloom and Jared Duker Lichtman

We give a concise and accessible introduction to the real-analytic determinant
method for counting integral points on algebraic curves, based on the classic 1989
paper of Bombieri and Pila.

1. Introduction

Consider the problem of counting the number of integral points on an algebraic
curve in a box; that is, solutions (x, y) ∈ {1, . . . , N }

2 to the equation F(x, y) = 0
for an irreducible polynomial F ∈ R[x, y]. In breakthrough work in Diophantine
geometry, Bombieri and Pila [3] obtained an essentially sharp quantitative upper
bound for this problem.

Theorem 1 (Bombieri–Pila [3], Pila [20]). Let F ∈ R[x, y] be an irreducible
polynomial of degree d ≥ 2. If N is sufficiently large, depending only on d, then∣∣{(x, y) ∈ {1, . . . , N }

2
: F(x, y) = 0}

∣∣ ≤ (log N )O(d)N 1/d .

A particularly striking feature of the bound is that the implicit constants depend
only on d = deg F , not on the coefficients of F themselves (which may be arbitrarily
large).

Bombieri and Pila’s original method [3] gave a bound of the shape N 1/d+o(1) with
a weaker explicit form for N o(1). Pila [20] refined the method to yield the stronger
bound (log N )O(d)N 1/d . It is possible that the strong bound O(N 1/d) may hold.
If so, such a bound is best possible, as witnessed by the simple example x = yd .

In this note we give an accessible proof of Theorem 1. We follow [3; 20], but
simplify the presentation for the sake of clarity and to bring the key features of
the method to the fore. This note is essentially self-contained, appropriate for an
undergraduate level reader with basic familiarity with calculus (of a single variable)
and linear algebra. The only results cited without proof are Bézout’s theorem and
the implicit function theorem.

1.1. Features and scope of the exposition. Our primary aim is to present the key
ideas of the Bombieri–Pila real-analytic determinant method, in the setting of

MSC2020: 11C20, 11D45, 14G05.
Keywords: determinant method, integral points, algebraic curves, uniform bounds.

© 2025 COPYRIGHT INFORMATION WILL GO HERE

http://msp.org
http://msp.org/ent
https://doi.org/10.2140/ent.2025.4-2
https://doi.org/10.2140/ent.2025.4.327


328 THOMAS F. BLOOM AND JARED DUKER LICHTMAN

curves. We will not discuss the ideas behind subsequent works, such as the p-adic
determinant method of Heath-Brown [14] and a global version of Salberger [23].
The p-adic method is stronger than its real-analytic predecessor in several respects,
for example, in its treatment of singularities. However the real-analytic determinant
method does retain some advantages, for instance, to count points on transcendental
(higher-dimensional) varieties (see, for example, the work of Pila and Wilkie [21]),
or for problems of a more Archimedean nature, such as counting points ‘near’ (i.e.,
using the Archimedean metric) curves and higher-dimensional varieties. We give
an alternative application along these lines, to counting integral points on convex
curves, in Section 5.

To appreciate the bounds under study, we stress two key features: Firstly, the
determinant method obtains strong bounds when the degree d is large compared
to the number of variables n. In particular, as in [3] and some of [14], the bounds
improve as the degree d increases. Whereas in the opposite regime, when the
degree d is fixed and the number of variables n sufficiently large (depending on d),
the determinant method yields weaker results as compared to the circle method, for
example (as shown in spectacular fashion by Birch [2]).

We give a conceptual heuristic for this (which we outline more precisely in
Section 3): When n = 2, the Bombieri–Pila determinant method essentially con-
structs a vector space of polynomials F ∈Z[x, y], with dimension growing in d . The
goal is then to find one such polynomial which satisfies certain properties, including
to vanish on the integer points of our given curve. So as d grows, we have increasing
degrees of freedom to construct our desired polynomial. More generally, when n ≥3,
Heath-Brown constructs a certain vector space of polynomials F ∈ Z[x1, . . . , xn].
This turns out to work well when (n − 1)/d1/(n−2) is small, in particular when d is
large compared to n.

Secondly, the bounds under study are uniform in F . In particular, such uniformity
is essential for applications to higher-dimensional varieties, since then one may
induct on the dimension via ‘slicing’ arguments, applying uniform bounds at each
successive dimension. In [14], Heath-Brown introduced a post hoc trick to obtain
uniformity, which has recently been used in other contexts (see [4; 5]). If one does
not care about uniformity in F , then often alternative methods perform far better
(for example, if the points correspond to projective points on a curve of genus ≥ 2,
then Faltings’ theorem [10] implies that there are only finitely many integral points).

We hope this note will foster a wider understanding of the determinant method,
with large potential to spur further applications. Just in 2024, the determinant
method has been applied by Greenfeld, Iliopoulou, Peluse [11] (via [8]) to bound
integer distance sets, and by Browning, Lichtman, Teräväinen [7] (via [3] and [14])
to bound the exceptional set in the abc conjecture. Such recent examples highlight
the timeliness of our exposition.
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1.2. Further work. To offer a bit of broader context, in this section we will very
briefly highlight some related results involving counting integral points and the
determinant method. Since our primary goal is to give a short, elementary exposition
of the Bombieri–Pila method, we will not attempt by any means to give a complete
survey of the literature.

Let us introduce some convenient notation: for any n, d ≥ 2, we write

XA
n,d(N ) := sup

F

∣∣{x = (x1, . . . , xn) ∈ {1, . . . , N }
n

: F(x) = 0}
∣∣,

where the supremum ranges over all irreducible F ∈ Q[x1, . . . , xn] of degree d . In
this notation, the estimate in Theorem 1 of Bombieri–Pila gives

XA
2,d(N ) ≪d N 1/d+o(1).

Importantly, the implied constants depend only on the degree d , but are independent
of N . Pila [19] extended this result to higher dimensions by a slicing argument,
showing for any n ≥ 2,

XA
n,d(N ) ≪n,d N n−2+1/d+o(1). (1)

Here the implied constants depend only on n, d , but not on N . Again, the example
x1 = xd

2 shows that this exponent is the best possible.
Most of the subsequent progress has occurred in the projective setting, where

the aim is to provide bounds for

XP
n,d(N ) = sup

F

∣∣{x = (x0, . . . , xn) ∈ {1, . . . , N }
n+1

: gcd(x) = 1, F(x) = 0}
∣∣.

Here the supremum ranges over all homogeneous irreducible F ∈ Q[x0, . . . , xn] of
degree d. Note that (1) immediately implies XP

n,d(N ) ≪ N n−1+1/d+o(1).
Many results in the projective setting use a p-adic variant of the determinant

method, developed by Heath-Brown [14], which is inspired by the real-analytic
method of Bombieri–Pila presented here. As mentioned above, since our focus is
on the real-analytic method we will not discuss Heath-Brown’s p-adic determinant
method (and its subsequent generalisations) here. We restrict ourselves to very
briefly highlight the state of the art.

Notably, in [14] Heath-Brown obtained a variety of estimates, including

XP
2,d(N ) ≪d N 2/d+o(1) and XP

3,d(N ) ≪d N 2+o(1).

This result is sharp, as the example F(x0, x1, x2, x3) = xd
0 + xd

1 − xd
2 − xd

3 shows.
However, if we remove the ‘trivial’ solutions, then more can be said. In particular,
if we remove the points that lie on any lines on the surface F = 0 then Heath-Brown
improves this estimate to ≪d N 1+3/

√
d+o(1), with an even stronger result if F is

assumed to be nonsingular.
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Building on the global p-adic determinant method of Salberger [23] and others,
Walsh [28] removed the N o(1) factor, proving

XP
2,d(N ) ≪d N 2/d , (2)

which is sharp for d fixed. For explicit dependence on d, Castryck, Cluckers,
Dittmann, Nguyen [8] obtained

XP
2,d(N ) ≪ d4 N 2/d , XA

2,d(N ) ≪ d3(d + log N )N 1/d . (3)

Recently Binyamini, Cluckers, and Novikov [1] used real-analytic methods to prove

XP
2,d(N ) ≪ d2(log N )O(1)N 2/d , XA

2,d(N ) ≪ d2(log N )O(1)N 1/d , (4)

which they show is sharp in N and d , up to the (log N )O(1) factors. Notably, in (4)
the implicit constants are absolute, and so the bound (4) is preferred to (2) when d
is large compared to N .

In higher dimensions n ≥ 3, recall (1) implies that XP
n,d(N ) ≪n N n−1+1/d+o(1).

It is believed that, uniformly for all d ≥ 2,

XP
n,d(N ) ≪n,d N n−1+o(1). (5)

Heath-Brown’s work establishes this for n = 3, and furthermore the elementary
theory of quadratic forms may establish this bound for d = 2 and all n. Interestingly,
Marmon [17] has shown that an extension of the real-analytic method of Bombieri–
Pila can be used to recover the main results of Heath-Brown, rather than the p-adic
method employed there.

Further, (5) is a case of the uniform dimension growth conjecture, attributed
to Heath-Brown [14], which posits a bound of On,d(N dim X+o(1)) for any integral
projective variety X ⊂ Pn of degree d. This was resolved for d ≥ 4 in [23]; also
see [6]. (In fact, [23] fully resolves the ‘nonuniform’ dimension growth conjecture
for all n, d ≥ 3, where the implied constant may depend on F .) Again, one may
ask whether the factor of N o(1) in (5) may be sharpened, or simply removed. This
was achieved in [9], showing for d ≥ 5,

XP
n,d(N ) ≪n d7 N n−1.

For d = 2, at least a factor of (log N ) is required, as the example F(x0, x1, x2, x3)=

x0x1 − x2x3 shows; see Serre [25, p. 178].
As mentioned in Section 1.1, determinant methods work best when d is larger,

and by their nature are less suited to smaller d as compared to other approaches [2].
In particular, when d = 3 the best known bound is XP

n,3(N ) ≪n N n−1+1/7+o(1)

from [22]. As such, it is a key question for contemporary analytic number theory
to remove the factor N 1/7, so to obtain the conjectured bound (5) when d = 3.
All these results in turn are (type-I) cases of Serre’s conjecture for thin sets; see
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[25; 26] for further details. Finally, we mention that the determinant method may
be viewed as an example of ‘polynomial methods’. See [13] for an introductory
survey of this much broader topic, which has seen wide applications.

2. Covering integer points by curves

In this section we present the key ingredient of the proof of Theorem 1. The main
idea is that, given some smooth function f which has rapidly decaying derivatives,
we can cover the integer points on the graph (x, f (x)) by a small number of curves
drawn from a certain specified set. This quickly leads to efficient upper bounds for
the number of such points via an application of Bézout’s theorem.

Let M⊆ R[x, y] be a finite set of monomials. We write ⟨M⟩ for the span of M,
that is, those polynomials in R[x, y] whose monomials are all in M. We will
sometimes abuse notation and write j = ( j1, j2) ∈ M to mean x j1 y j2 ∈ M. Let

p = pM :=

∑
x j1 y j2∈M

j1 and q = qM :=

∑
x j1 y j2∈M

j2. (6)

The main example to keep in mind is the case when M = {x j1 y j2 : j1 + j2 ≤ d},
the set of all monomials of degree at most d . In this case we have

D = |M| =
1
2(d + 1)(d + 2) and p = q =

1
3 d D,

and ⟨M⟩ is simply the set of polynomials with degree at most d . The need to work
with the more general situation is because we will apply Bézout’s theorem to count
integer points on some curve F(x, y) = 0, and therefore need to make sure that
we are not constructing some G ∈ R[x, y] with F | G. The reader may like to look
ahead to Section 4 to see how to choose M to avoid this, but on first reading they
should just take M to be all monomials of degree at most d .

The driving force of the Bombieri–Pila determinant method is the following
lemma, which states that if a function f has rapidly decaying derivatives then
the integer points on any sufficiently short segment of the graph (x, f (x)) can
be covered by a single curve in ⟨M⟩. If one does not care about the quantitative
aspects, some result like this is trivial, since any D − 1 points are contained in a
curve in ⟨M⟩ by linear algebra. For sufficiently smooth functions, however, the
following bound is far superior.

Lemma 2 (Bombieri–Pila). Let M be a finite set of monomials of size D = |M| and
let p, q be defined as in (6). Let I ⊆ [0, N ] be a closed interval and f ∈ C D−1(I ).
Suppose that X > 0 and δ ≥ 1/N are such that, for all 0 ≤ i < D and x ∈ I ,∣∣∣∣ f (i)(x)

i !

∣∣∣∣ ≤ Xδi .
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If

|I | < 1
4δ−1((2N )p(DX)q)−1/(D

2)

then {(x, f (x)) : x ∈ I } ∩ Z2 is contained in some curve in ⟨M⟩ (that is, the zero
set of some F ∈ ⟨M⟩).

For applications, the following lemma is often more convenient to apply. It covers
longer pieces of the graph by (not too many) curves in ⟨M⟩. The proof is a simple
greedy application of Lemma 2.

Lemma 3 (Bombieri–Pila). Let M be a finite set of monomials of size D = |M| and
let p, q be defined as in (6). Let I ⊆ [0, N ] be a closed interval and f ∈ C D−1(I ).
Suppose that X > 0 and δ ≥ 1/N are such that, for all 0 ≤ i < D and x ∈ I ,∣∣∣∣ f (i)(x)

i !

∣∣∣∣ ≤ Xδi .

The integer points {(x, f (x)) : x ∈ I } ∩ Z2 are contained in the union of at most

4δ|I |((2N )p(DX)q)1/(D
2) + 1

many curves in ⟨M⟩.

We can trivially cover such integer points by at most |I | + 1 many curves, and
so this lemma gives a significant saving over this trivial upper bound roughly
when δ ≪ (N p Dq Xq)−1/(D

2).

Proof. Let {(x, f (x)) : x ∈ I }∩ Z2
= {z1, . . . , zt }, say, arranged in increasing order

of their x-coordinates. Define a sequence of integers n0, n1, n2, . . . by n0 = 0 and
recursively let nℓ denote the largest index for which the points

{zi : nℓ−1 ≤ i < nℓ}

are contained in a single curve in ⟨M⟩. Suppose the sequence n0, n1, . . . , nm

terminates after m + 1 elements. For 0 ≤ ℓ < m the set {znℓ
, . . . , znℓ+1} is not

contained in a single curve in ⟨M⟩, and so Lemma 2 implies that the length of the
interval [xnℓ

, xnℓ+1] is

xnℓ+1 − xnℓ
≥

1
4δ−1((2N )p(DX)q)−1/(D

2).

On the other hand, since xn0, . . . , xnm ∈ I , we have

|I | ≥ xnm − xn0 =

∑
0≤ℓ<m

(xnℓ+1 − xnℓ
) ≥

1
4 mδ−1((2N )p(DX)q)−1/(D

2).

Rearranging gives the desired bound on m + 1, the number of curves in M. □



THE BOMBIERI–PILA DETERMINANT METHOD 333

3. The determinant method

In this section we will prove Lemma 2, and explain the main idea behind the (real)
determinant method. The basic structure of the proof is as follows:

(0) We would like to find some polynomial F ∈ ⟨M⟩ which vanishes on all points
in S = {(x, f (x)) : x ∈ I } ∩ Z2.

(1) Consider the matrix A with entries z j
= (x j1, f (x) j2), for z ∈ S and j ∈ M.

If A has rank < |S|, then there is some linear dependency between the rows of A,
which will mean some F ∈ ⟨M⟩ vanishes on S, as desired (see Lemma 4).

(2) For sake of contradiction, suppose this does not happen. Then there is some
nonsingular |S| × |S| submatrix A′. Importantly, this submatrix A′ has integer
values, and hence its determinant will be at least 1 in absolute value.

(3) We force a contradiction by proving |det A′
| < 1 directly. To do this, we control

det(x j1 f (x) j2) by a determinant involving the derivatives of f which we then
bound trivially, using the Leibniz determinant formula and the assumption that the
derivatives of f decay rapidly. This is shown in Lemma 6.

We begin with step (1), converting the problem into one concerning a matrix of
monomials. By interpolation, any D − 1 points in the plane lie on a common curve
in ⟨M⟩. The key insight driving the Bombieri–Pila method (and most instances of
the so-called polynomial method) is that this common curve can cover even more
points, assuming the rank of the associated monomial matrix is not maximal.

Lemma 4. Let M⊂ R[x, y] be a finite set of monomials. For any z1, . . . , zt ∈ R2 if

rank(z j
i ) i≤t

j∈M
< |M|,

then z1, . . . , zt are contained in a curve in ⟨M⟩.

Remark 5. We shall not need it, but the converse of Lemma 4 also holds: if z1, . . . , zt

are contained in a curve in ⟨M⟩, then the rank is less than |M|.

Proof. Let N ⊆ M and S ⊆ {1, . . . , t} be such that zNS := (z j
i )i∈S, j∈N is an r×r

minor of maximal rank. By assumption r < |M|, and so there exists k ∈ M \N .
Consider f ∈ R[x, y] given by

f (x, y) := det
(

(x, y)N (x, y)k

zNS zk
S

)
=

∑
j∈N∪{k}

(
ϵ j det(z l

i ) i∈S
l∈N∪{k}\{ j}

)
x j1 y j2, (7)

for some ϵ j ∈ {±1}. Here in the second equality we have used the definition of
determinant. From the right-hand side of (7), we see f (x, y) defines a curve in ⟨M⟩.
(In fact this curve is in the Z-linear span of M if z1, . . . , zt ∈ Z2.) It remains to note
that f (zi ) = 0 for all 1 ≤ i ≤ t . Indeed, if i ∈ S, the matrix in (7) above has repeated
rows, while if i /∈ S, the determinant f (x, y) is zero by maximality of r . □
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To profitably apply Lemma 4, we will need to be able to bound the determinant
in a nontrivial way. This is accomplished, in the Bombieri–Pila method, via the
following lemma.

Lemma 6. Let n ≥1 and I ⊂R be some closed interval with x1, . . . , xn ∈ I . Suppose
f1, . . . , fn ∈ Cn−1(I ) and Ai j ≥ 0 are such that for 1 ≤ i, j ≤ n and all x ∈ I ,∣∣∣∣ f (i−1)

j (x)

(i − 1)!

∣∣∣∣ ≤ Ai j .

Then we have

|det( f j (xi ))| ≤

( ∏
i> j

|xi − x j |

) ∑
σ∈Sn

∏
1≤i≤n

Aiσ(i),

where Sn is the standard group of bijections σ : {1, . . . , n} → {1, . . . , n}.

Proof. We first claim that for every 1 ≤ i, j ≤ n there exists some ξi j ∈ I such that

f (i−1)
j (ξi j )

(i − 1)!
=

∑
ℓ≤i

f j (xℓ)
∏
m≤i
m ̸=ℓ

1
xℓ − xm

. (8)

This fact is a consequence of Lagrange interpolation: consider the polynomial,
of degree < i ,

gi j (ξ) =

∑
ℓ≤i

f j (xℓ)
∏
m≤i
m ̸=ℓ

ξ − xm

xℓ − xm
.

By construction, gi j agrees with f j at i many points (namely f j (xk) = gi j (xk)

for k ≤ i). That is, the function f j − gi j has i many zeros in I , and hence by
repeated applications of Rolle’s theorem, the (i−1)-fold derivative will have some
zero in I . That is, there is some ξi j ∈ I such that f (i−1)

j (ξi j ) = g(i−1)
i j (ξi j ). Hence

(8) follows, since the right-hand side is precisely the derivative g(i−1)
i j (which is

constant, since deg gi j < i).
Let Gℓ(x1, . . . , xi ) = (i − 1)!

∏
m≤i
m ̸=ℓ

1
xℓ−xm

. By (8) it follows that

det( f (i−1)
j (ξi j )) = det

( ∑
ℓ≤i

f j (xℓ)Gℓ(x1, . . . , xi )

)

=

( ∏
1≤i≤n

Gi (x1, . . . , xi )

)
det( f j (xi )). (9)

Here we used the general fact that det
(∑

ℓ≤i a jℓbℓi
)
=

(∏
i bi i

)
det(a j i ), since the

matrix on the left can be factored as (a jℓ) times the lower triangular matrix (bℓi )ℓ≤i ,
the determinant of which is equal to the product of its diagonal entries.
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Therefore, since Gi (x1, . . . , xi )
−1

=
1

(i−1)!

∏
m<i (xi−xm), the identity (9) implies

|det( f j (xi ))| ≤

( ∏
1≤i≤n

|Gi (x1, . . . , xi )|

)−1

|det( f (i−1)
j (ξi j ))|

≤

( ∏
i> j

|xi − x j |

) ∑
σ∈Sn

∏
i≤n

| f (i−1)
σ (i) (ξiσ(i))|

(i − 1)!

≤

( ∏
i> j

|xi − x j |

) ∑
σ∈Sn

∏
1≤i≤n

Aiσ(i)

by the Leibniz formula and assumed bound on the derivatives. □

We will apply the previous lemma with f j (x) = x j1 f (x) j2 , and so it will be
necessary to bound the derivatives of such functions. This lemma is the only place
we use the assumption that I ⊆ [0, N ].

Lemma 7. Let k ≥ 1, I ⊆ [0, N ] a closed interval, and f ∈ Ck(I ). Suppose that
X > 0 and δ ≥ 1/N are such that, for all 0 ≤ i ≤ k and x ∈ I ,∣∣∣∣ f (i)(x)

i !

∣∣∣∣ ≤ Xδi .

For any integer pair j = ( j1, j2) ∈ Z2
≥0, the function f j (x) = x j1 f (x) j2 satisfies∣∣∣∣ f (i−1)

j (x)

(i − 1)!

∣∣∣∣ ≤ (2N ) j1(i X) j2δi−1

for all 1 ≤ i ≤ k and x ∈ I .

Proof. For any 1 ≤ i ≤ k, the product rule gives

f (i−1)
j (x)

(i − 1)!
=

∑
i0+i1+···+i j2=i−1

(
j1
i0

)
x j1−i0

f (i1)(x)

i1!
· · ·

f (i j2 )(x)

i j2 !
.

Using the assumed derivative bounds on f (i), since
( j1

i0

)
≤ 2 j1 and |x | ≤ N for x ∈ I ,∣∣∣∣ f (i−1)

j (x)

(i − 1)!

∣∣∣∣ ≤

∑
i0+i1+···+i j2=i−1

(
j1
i0

)
|x |

j1−i0(Xδi1) · · · (Xδi j2 )

≤

∑
i0+i1+···+i j2=i−1

2 j1 N j1−i0 X j2δi−i0−1

≤ i j22 j1 N j1 X j2δi−1,

using δN ≥1, and bounding the number of partitions of i−1 into m parts by im−1. □
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We now have enough tools to prove Lemma 2.

Proof of Lemma 2. Let {(x, f (x)) : x ∈ I }∩Z2
= {z1, . . . , zt }, say. By Lemma 4, it

suffices to show that the matrix M = (z j
i )1≤i≤t, j∈M has rank < D. If not, then M

must have maximal rank D, and hence there is a subset of D indices S ⊆ {1, . . . , t}
such that

1 := det(z j
i )i∈S

j∈M
̸= 0. (10)

Since each zi ∈ Z2 we must have 1 ∈ Z, and so in particular |1| ≥ 1. Relabelling
if necessary, we can assume that S = {1, . . . , D}.

Let f j (x) = x j1 f (x) j2 , so that f j (xi ) = z j
i . By Lemma 7 and the assumption

on the derivatives of f , we have, for all 1 ≤ i, j ≤ D and x ∈ I ,∣∣∣∣ f (i−1)
j (x)

(i − 1)!

∣∣∣∣ ≤ (2N ) j1(DX) j2δi−1.

Thus by Lemma 6 with f j (x) := x j1 f (x) j2 for j = ( j1, j2) ∈ M and Ai j =

(2N ) j1(DX) j2δi−1,

1 ≤ |1| = |det( f j (xi )) i∈S
j∈M

| ≤

( ∏
i> j

|xi − x j |

) ∑
σ

∏
i∈S

Aiσ(i)

≤

∏
i> j

|I |
∑
σ

∏
i∈S

(2N )σ(i)1(DX)σ(i)2δi−1

≤ |I |(
D
2)D! (2N )p(DX)qδ(

D
2), (11)

recalling the quantities p and q from (6). Here σ ranges over all bijections
from S → M. Using the crude bounds D! ≤ DD and D2/(D−1)

≤ 4 for all D ≥ 2,
isolating |I | in (11) above gives

|I | ≥ D−D/(D
2)[(2N )p(DX)q

]
−1/(D

2)δ−1

= D−2/(D−1)
[(2N )p(DX)q

]
−1/(D

2)δ−1

≥
1
4δ−1

[(2N )p(DX)q
]
−1/(D

2),

which contradicts our assumption. Hence rank(M) < D, and thus an application
of Lemma 4 covers {z1, . . . , zt } with a single curve in M, as desired. □

4. Application of the key lemma

We now show how to use the determinant method (more precisely, its consequence
in the form of Lemma 3) to bound the number of integral points on curves. This
uses Bézout’s theorem.
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Theorem 8 (Bézout’s theorem). Let F, G ∈ R[x, y] be nonconstant polynomi-
als with no common divisor in R[x, y]. There are at most deg F · deg G many
points (x, y) ∈ R2, counted with multiplicity, such that F(x, y) = G(x, y) = 0.

We will only require Bézout’s theorem for irreducible F , where it takes the
following form. Recall that F ∈ R[x, y] is irreducible if it cannot be factored into
the product of two nonconstant polynomials in R[x, y].

Corollary 9. Let F ∈ R[x, y] be an irreducible polynomial and G ∈ R[x, y] such
that F ∤G. There are at most deg F · deg G many points (x, y) ∈ R2 such that
F(x, y) = G(x, y) = 0.

We use Bézout’s theorem as our fundamental tool to count integer points on
arbitrary curves, by covering such points with other curves of bounded degree.

Lemma 10. Let ℓ ≥ d ≥ 2. Let I ⊆ [0, N ] be a closed interval, and f ∈ C∞(I )
with F(x, f ) = 0 for some irreducible polynomial F ∈ R[x, y] of degree d ≥ 2.
Suppose that N > 0 and δ ≥ 1/|I | satisfy∣∣∣∣ f (i)(x)

i !

∣∣∣∣ ≤ Nδi for all x ∈ I,

for every 0 ≤ i < D = d(ℓ − d + 1). Then we have∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣ ≪ (dℓ)2 N 1/d+O(1/ℓ)δ|I |.

In particular if the i-th derivative of f decays like |I |−i N 1+o(1) (as we will
shortly show can be arranged in practice) then Lemma 10 gives the desired upper
bound of N 1/d+o(1), taking ℓ = O(log N ).

Proof. Let iF = i be the maximal index such that xd−iF yiF is a monomial in F .
Define

M = {x j1 y j2 : d ≤ j1 + j2 ≤ ℓ and xd−iF yiF ∤ x j1 y j2}.

Next for each integer h ∈ [d, ℓ], we observe∣∣{( j1, j2) ∈ M : h = j1 + j2}
∣∣ = d.

Indeed, such j are of the form j = ( j1, h − j1) for j1 ∈ [0, h]. The condi-
tion xd−iF yiF ∤ x j1 y j2 implies d − iF > j1 or iF > h − j1. The first case gives
j1 ∈ [0, d − iF ), and the second case gives j1 ∈ (h − iF , h]. Since h ≥ d these
combine for d − iF + iF = d choices of j1. Hence

∣∣{( j1, j2) ∈M : h = j1 + j2}
∣∣ = d .

Thus we obtain

D = |M| =

∑
d≤h≤ℓ

d = d(ℓ − d + 1) = dℓ + O(d2) (12)
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and
p + q =

∑
d≤h≤ℓ

hd =
1
2 d(ℓ(ℓ + 1) − d(d − 1))

≤
1
2ℓ2d + O(ℓd) =

D2

2d
+ O

(
D2

ℓ

)
(13)

for p, q as in (6). In particular,

p + q(D
2

) =
2(p + q)

D(D − 1)
≤

D
d + O

( D
ℓ

)
D − 1

≤
1
d

+ O
(

1
ℓ

)
. (14)

Now we claim that F ∤G for all G = G(x, y)∈⟨M⟩. Indeed, if not then G = FH ,
where H has degree d ′, say. Let iH be maximal such that xd ′

−iH yiH is a monomial
in H . Then xd+d ′

−iF −iH yiF +iH is a monomial in G (by maximality of iF and iH no
other monomial of degree d + d ′ can cancel it) which is divisible by xd−iF yiF , and
hence is not in M, a contradiction. Hence F ∤G.

Therefore, by Bézout’s theorem in the form of Corollary 9, each curve G(x, y) ∈

⟨M⟩ can contain at most dℓ many points in the graph 0 = {(x, f (x)) : x ∈ R}. We
may take

≤ 4δ|I |((2N )p(DN )q)1/(D
2) + 1

many curves G(x, y) ∈ ⟨M⟩ to cover 0 ∩ Z2, by Lemma 3. Hence we conclude

|0 ∩ Z2
| ≪ dℓ(δ|I |(N p+q Dq)1/(D

2) + 1)

≪ dℓ(δ|I |(N D)1/d+O(1/ℓ)
+ 1)

≪ (dℓ)2δ|I |N 1/d+O(1/ℓ)

using 1/δ ≤ |I | and (14). □

To deduce Theorem 1 from Lemma 10 it remains to divide the curve inside
{1, . . . , N }

2 into a small number of pieces which locally look like a graph (x, f (x))

for some f with sufficiently rapidly decaying derivatives. This can be done in several
ways; in particular Pila and Wilkie [21] have shown that this can be efficiently done
using a lemma of Gromov [12] and Yomdin [29]. This method was used (and simpli-
fied) by Marmon [17] in his recent extension of the real-analytic method. Here we
will follow Bombieri and Pila and use a less efficient but more elementary approach,
greedily dividing the curve into pieces with small derivatives aside from a small
number of (very short) exceptional intervals on which the derivative is too large.

The following technical lemma is preparation for such a division.

Lemma 11. Suppose F(x, y) ∈ R[x, y] is an irreducible polynomial of degree d.
Let I be an interval and f ∈ C∞(I ) satisfy F(x, f (x)) = 0. Then for any k ≥ 1
and c ∈ R\{0},

|{x ∈ I : f (k)(x) = c}| ≪ kd2.
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Proof. Suppose first that f is a polynomial, necessarily of degree ≤ d. Then f (k)

is a polynomial of degree ≤ d − k, whence f (k)(x) = c has at most d − k many
solutions.

We may now assume that f is not a polynomial. We claim that for each 1 ≤ k ≤ d ,
there is a polynomial Hk ∈ R[x, y] of degree at most dk := (k − 1)(2d − 3)+ d − 1
such that, for all x ∈ I ,

Hk(x, f ) + Fy(x, f )2k−1 f (k)(x) = 0, (15)

where we write Fy(x, y) =
∂
∂y F(x, y), which is a polynomial of degree ≤ d − 1.

We prove (15) by induction on k. For k = 1, differentiating F(x, f ) = 0 with
respect to x gives Fx(x, f ) + Fy(x, f ) f ′(x) = 0, with H1 = Fx of degree d − 1.
For the inductive step, assuming (15) holds for k ≥ 1, differentiating with respect
to x gives

0 = (Hk)x(x, f ) + (Hk)y(x, f ) f ′(x) + Fy(x, f )2k−1 f (k+1)(x)

+ (2k − 1)Fy(x, f )2k−2 f (k)(x)
(
Fxy(x, f ) + Fyy(x, f ) f ′(x)

)
.

We then multiply this equation by F2
y , giving

0 = F2
y
(
(Hk)x + (Hk)y f ′

)
+ F2k+1

y f (k+1)
+ (2k − 1)F2k

y f (k)(Fxy + Fyy f ′).

Eliminating f (k) and f ′, using F2k−1
y f (k)

= −Hk from (15) and Fy f ′
= −Fx ,

0 = F2
y (Hk)x − Fy Fx(Hk)y − (2k − 1)Hk(Fy Fxy − Fx Fyy) + F2k+1

y f (k+1)

=: Hk+1(x, f ) + F2k+1
y f (k+1),

where Hk+1 has degree at most dk + 2d − 3 = dk+1. This completes the induction
for (15).

It follows that, for any constant c ∈ R, the solutions x ∈ I to f (k)(x) = c must
satisfy Rc(x, f (x)) = 0, where Rc(x, y) = Hk(x, y) + Fy(x, y)2k−1c. Since they
must also satisfy F(x, f (x)) = 0, it suffices to show F ∤ Rc, whence Bézout’s
theorem in the form of Corollary 9 bounds the number of common points x
by (deg F)(deg Rc) ≤ d(2kd) ≪ kd2, as desired.

It remains to derive a contradiction if F | Rc. Note that this means that F(x, y)=0
implies Rc(x, y)= 0 for any x, y ∈ R. In particular, our assumption F(x, f (x))= 0
for all x ∈ I implies

0 = Rc(x, f (x)) = Hk(x, f (x)) + Fy(x, f (x))2k−1c

= Fy(x, f (x))2k−1(c − f (k)(x)) (16)

for all x ∈ I , recalling (15). Since Fy(x, f (x)) is a polynomial of degree ≤ d − 1,
by Corollary 9 there are O(d2) (in particular finitely many) x ∈ I such that
Fy(x, f (x)) = 0. Thus by (16), f (k)(x) = c holds, except for at most finitely
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many values x ∈ I . Since f is assumed to be C∞ this implies f (k) is identically
a constant, so that f is a polynomial of degree at most k, but this is a contradiction.
Hence F ∤ Rc, and the proof is complete. □

We now apply Lemma 11 to obtain our desired division into subintervals with
control on the derivatives in each subinterval.

Lemma 12. Suppose F(x, y)∈R[x, y] is an irreducible polynomial of degree d ≥2.
Let I be an interval and f (x)∈ C∞(I ) satisfy F(x, f )= 0. Let A1, . . . , Ak > 0. We
may partition I into O(k2d2) many subintervals Iν such that, for each interval Iν
and each 1 ≤ i ≤ k,

(i) | f (i)(x)| ≤ Ai for all x ∈ Iν , or

(ii) | f (i)(x)| ≥ Ai for all x ∈ Iν .

Proof. By Lemma 11 there are O(kd2) solutions to f (i)(x)=±Ai for each 1≤ i ≤ k.
Let x1, . . . , xr be the union of all such solutions for 1 ≤ i ≤ k (so r = O(k2d2)),
ordered such that x0 ≤ x1 < · · ·< xr ≤ xr+1, writing I =[x0, xr+1]. By construction
f satisfies (i) or (ii) on each of the r subintervals Iν = [xν, xν+1] for ν ≤ r . The
number of subintervals is r = O(k2d2), as required. □

The previous lemma allows a division into subintervals where we can control
the size of the derivatives. For an application of Lemma 10 we specifically require
that the derivatives be small, and hence will need a different method to handle
the contribution from subintervals where the derivative remains large. Following
Bombieri and Pila this is managed by the following lemma, which shows that such
a subinterval must at least be very short, and then a trivial bound will suffice.

Lemma 13. Let k ≥ 1, 0 < δ < 1, and X > 0. Let I be an interval and f ∈ Ck(I ). If∣∣∣∣ f (i)(x)

i !

∣∣∣∣ ≤ Xδi for all 0 ≤ i < k while
∣∣∣∣ f (k)(x)

k!

∣∣∣∣ ≥ Xδk

for every x ∈ I , then |I | ≤ 2/δ.

Proof. Write I = [a, b]. Considering the Taylor expansion at x = a, there exists
ξ ∈ I for which

f (b) − f (a) =

∑
1≤i<k

f (i)(a)

i !
(b − a)i

+
f (k)(ξ)

k!
(b − a)k .

Since | f (b)|, | f (a)| ≤ X by assumption, isolating the remainder term gives

Xδk
|I |k ≤

∣∣∣∣ f (k)(ξ)

k!
(b − a)k

∣∣∣∣ ≤ 2X + X
∑

1≤i<k

δi
|I |i .
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Defining λ = δ|I |, it follows that

λk
≤ 2 +

∑
1≤i<k

λi
= 2 +

λk
− λ

λ − 1
.

We can assume λ > 1 or we are done, and then we deduce λk(λ − 2) ≤ λ − 2,
whence λ ≤ 2 as required. □

We can now use the previous lemmas to deduce a bound for the number of
integral points on the graph of a sufficiently smooth function along a curve of
bounded degree.

Theorem 14. Let d ≥ 2 and N ≥ 1 be some integer sufficiently large in terms of d,
and let I be some interval of length N. Let f ∈ C∞(I ) be such that | f ′(x)| ≤ 1
for all x ∈ I . If there exists some irreducible polynomial F(x, y) ∈ R[x, y] of
degree d ≥ 2 such that F(x, f (x)) = 0, identically as a function of x , then∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣ ≤ (log N )O(d)N 1/d .

Proof. For any real N > 0 define

G(N ) := sup
|I |≤N

sup
f ∈C∞(I )
| f ′

|≤1

∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣.
We shall prove that for any integer ℓ ≥ d there exists some K = K (d, ℓ) satisfying
2 ≤ K ≤ ℓO(1) such that for any N > 0 we have

G(N ) ≤ K O(d)N 1/d+O(1/ℓ)
+ KG(K −2d N ). (17)

We first show how (17) implies Theorem 14. Fix some large N > 0 and ℓ ≥ d
(which will depend on N ). Iteratively applying (17), since K (K −2d)1/d

= K −1
≤

1
2

(assuming ℓ is large enough), it follows by induction that, for any n ≥ 1,

G(N ) ≤ K O(d)N 1/d+O(1/ℓ)
∑

0≤ j<n

2− j
+ K nG(K −2nd N ).

In particular, if we choose n large enough such that K 2nd
∈ [N , K 2d N ), we have

K n
≤ K N 1/2d and G(K −2nd N ) ≤ G(1) ≤ 1, so that

G(N ) ≪ K O(d)N 1/d+O(1/ℓ)
+ K N 1/2d

≪ ℓO(d)N 1/d+O(1/ℓ)
≪ (log N )O(d)N 1/d ,

recalling K ≤ ℓO(1) and choosing ℓ = ⌈log N⌉. Thus (17) implies the result.
Now to prove (17) itself, we fix some interval I of length N and f ∈ C∞(I )

with | f ′
| ≤ 1. Without loss of generality, translating the graph of f by an integer if

necessary, we may assume that I = [0, N ] and | f (x)| ≤ N for all x ∈ I . Fix some
ℓ ≥ d and let δ = δ(d, ℓ) ∈ (2/N , 1) be some quantity to be chosen later.
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We shall apply Lemma 12 with Ai = Nδi , and recall D = |M| ≪ dℓ from (12).
Indeed, by Lemma 12 we may partition I into at most O(d2 D2) subintervals Iν
such that, for each Iν and each 1 ≤ i < D, either

(i)
∣∣ f (i)(x)

i !

∣∣ ≤ Nδi for all x ∈ Iν , or

(ii)
∣∣ f (i)(x)

i !

∣∣ ≥ Nδi for all x ∈ Iν .

Suppose first that Iν satisfies |Iν | ≥ 1/δ and (i) holds for every 1 ≤ i < D. Then
applying Lemma 10 we have∣∣{(x, f (x)) : x ∈ Iν} ∩ Z2∣∣ ≪ (dℓ)2 N 1/d+O(1/ℓ)δ|Iν |.

Otherwise, either |Iν | ≤ 1/δ, or there exists a (minimal) 1 ≤ k < D such that (ii)
holds for k, but (i) holds for all i < k. In this case, Lemma 13 implies |Iν | ≤ 2δ−1.

Summing the contribution from each Iν we deduce that∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣ =

∑
ν≪d2 D2

∣∣{(x, f (x)) : x ∈ Iν} ∩ Z2∣∣
≪ (dℓ)2 N 1/d+O(1/ℓ)δ

∑
ν≪d2 D2

|Iν | + d2 D2G(2δ−1)

≪ d4ℓ2(N 1/d+O(1/ℓ)δN + G(2δ−1)),

using the fact that
∑

ν |Iν | = |I | ≤ N . This gives (17) for some K ≪ d4ℓ2
≤ ℓO(1),

after choosing δ = 2K 2d/N . □

We are now prepared to conclude the main result. This follows from the previous
theorem and some elementary algebraic geometry, coupled with the inverse function
theorem, to divide the curve into O(1) many pieces with flat first derivatives.

Proof of Theorem 1. Let C = {(x, y) ∈ R2
: F(x, y) = 0}. We first claim that

C ∩ [0, N ]
2 has O(d2) many connected components. To show this, each connected

component of C ∩ [0, N ]
2 forms either a loop, or a path from one boundary point

of [0, N ]
2 to another. In the case of a path, C may intersect each of the boundary

lines [0, N ]
2 at O(d) many points, by Corollary 9, and hence O(d2) many such

paths. In the case of a loop, it must contain a point (x, y) such that Fx(x, y) = 0
or Fy(x, y)=0, where Fx =

∂
∂x F(x, y) and Fy =

∂
∂y F(x, y). And since both Fx and

Fy are polynomials in R[x, y] of degree ≤ d − 1, by Corollary 9 there are at most
O(d2) many points (x, y) ∈ C such that Fx(x, y) = 0 or Fy(x, y) = 0. Hence in
total there are O(d2) components. We fix one of these components, and call this Ci .

We now claim that there are O(d2) many points in [0, N ]
2, which we remove, and

t = O(d2) many open sets U1, . . . , Ut which cover the remainder of Ci , such that

Fx(x, y) ̸= 0 and Fy(x, y) ̸= 0 for all (x, y) ∈

⋃
i

Ui ,
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and for all 1 ≤ i ≤ t either

(i) |Fx(x, y)| ≤ |Fy(x, y)| for all (x, y) ∈ Ui , or

(ii) |Fy(x, y)| ≥ |Fx(x, y)| for all (x, y) ∈ Ui .

As above there are O(d2) many points where Fx = 0 or Fy = 0, which we remove. If
Fx =±Fy then (i) and (ii) automatically hold. Otherwise, Fx ∓Fy is a nonzero poly-
nomial of degree ≤d−1, and hence by Corollary 9 there are O(d2) many (x, y)∈Ci

such that Fx(x, y)=±Fy(x, y). We can remove all such points by excising a further
O(d2) many points, and then by continuity, either (i) or (ii) must hold along each
segment of Ci that remains after removing any of these O(d2) many points. The
claim now follows, letting Ui be some open narrow tube around each curve segment.

Now for each open Ui ⊆ (0, N )2 as above, without loss of generality, (i) holds:
|Fx | ≤ |Fy| on Ui . By the implicit function theorem [16, Theorem 3.16], there is
an interval Ii ⊆ [0, N ] and a smooth function fi : Ii → R such that

C ∩ Ui = {(x, fi (x)) : x ∈ Ii }

and
f ′

i (x) = −
Fx(x, fi (x))

Fy(x, fi (x))
for all x ∈ Ii .

In particular | f ′

i (x)| ≤ 1 for all x ∈ Ii by (i). Hence by Theorem 14,

|C ∩ Ui ∩ {1, . . . , N }
2
| ≪ (log N )O(d)N 1/d . (18)

Since the open Ui cover C , we conclude |C∩{1, . . . , N }
2
|≪d2(log N )O(d)N 1/d . □

5. Integer points on convex graphs

In this final section we give another application of Bombieri and Pila’s work [3].
This application highlights the versatility of the real-analytic determinant method;
in particular this application is beyond the scope of the p-adic determinant method.

We say a function f : R → R is strictly convex if, between any two points on its
graph, the line between those points lies strictly above the graph. That is, for any
x, y ∈ R and t ∈ (0, 1) we have

f (t x + (1 − t)y) < t f (x) + (1 − t) f (y).

If f is differentiable, this is equivalent to the derivative of f being strictly increasing;
if f is twice differentiable, this is equivalent to f ′′(x) > 0 pointwise.

It is natural question how many integer points lie on the graph of a strictly convex
function, inside [0, N ]

2 say. The example of f (x) = x2 shows that ≫ N 1/2 is
possible. Some experimentation may suggest that this lower bound could be sharp,
but this turns out to be false. As we shall prove, Jarnik [15] constructed a strictly
convex function with ≫ N 2/3 many points in [0, N ]

2, which is best possible.
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Theorem 15 (Jarnik [15]). If f : [0, N ] → [0, N ] is a strictly convex function, then∣∣{(x, f (x)) : x ∈ [0, N ]} ∩ Z2∣∣ ≪ N 2/3.

Moreover, for all large N there exists a strictly convex function f : [0, N ] → [0, N ]

such that ∣∣{(x, f (x)) : x ∈ [0, N ]} ∩ Z2∣∣ ≫ N 2/3.

In particular, the implied constants are absolute and do not depend on f .

Proof. We first prove the upper bound. Suppose there are 0 ≤ n1 < · · ·< nt ≤ N such
that f (ni ) ∈ Z for all 1 ≤ i ≤ t . Let ai = ni+1 −ni and bi = f (ni+1)− f (ni ). Since∑

i ai ≤ N there are at least 3
4 t many indices i such that ai ≤ 4N/t , and similarly

there are at least 3
4 t many indices i such that bi ≤ 4N/t . It follows there are at least

1
2 t many indices i such that max(ai , bi ) ≤ 4N/t . We note, however, that each ni

gives rise to a distinct pair (ai , bi ), since by strict convexity we have, if ni < n j ,
bi

ai
=

f (ni+1) − f (ni )

ni+1 − ni
<

f (n j+1) − f (n j )

n j+1 − n j
=

b j

a j
.

Thus 1
2 t ≤ #{(ai , bi ) : max(ai , bi ) ≤ 4N/t} ≤ (4N/t)2; hence t ≪ N 2/3 as claimed.

We now construct the function for the lower bound. Let H be some parameter
to be chosen later. We consider all integer vectors v = (q, a) with gcd(a, q) = 1
and 1 ≤ a, q ≤ H , and order them as v1, . . . , vt such that ai/qi < ai+1/qi+1. Let
Ai =

∑
1≤ j≤i a j and Qi =

∑
1≤ j≤i q j . Let f̃ : [0, Qt ] → [0, At ] be the piecewise

linear function connecting the points (Qi , Ai ) for 0 ≤ i ≤ t . Notice that

Qt =

∑
1≤ j≤t

q j =

∑
1≤q≤H

∑
1≤a≤H
(a,q)=1

q ≤ H 3,

(by symmetry, At = Qt ≤ H 3) and the number of integer points on the graph of f̃ is

≥ t =

∑
1≤a,q≤H
(a,q)=1

1 ≫ H 2.

Since the gradient of the line segments is strictly increasing (the gradient between
(Qi , Ai ) and (Qi+1, Ai+1) is precisely ai+1/qi+1) the graph of f̃ is strictly convex
if we consider only pairs of points on different line segments. We can make
the entire graph strictly convex if we replace each line segment f̃ by a slight
curve fϵ . To make this explicit, one would compute f̃ (x) by linear interpolation
through the endpoints (Qi , Ai ) and (Qi+1, Ai+1). Then for Q =

1
2 Qi + Qi+1, one

defines f̃ϵ(x) by Lagrange interpolation through the endpoints with the additional
point (Q, f̃ (Q)+ ϵ). Each parabolic segment of f̃ϵ now lies above its secant line,
hence strictly convex, for ϵ = ϵN , f̃ > 0 sufficiently small.

This creates the graph of a strictly convex function f : [0, H 3
] → [0, H 3

] with
t ≫ H 2 many integer points (Qi , Ai ). Setting H = ⌊N 1/3

⌋ completes the proof. □
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It may seem that this is the end of the story: we have lower and upper bounds
of the same order of magnitude (and in fact Jarnik even gave refined bounds that
match exactly up to lower-order terms). Note, however, that Jarnik’s construction of
a strictly convex function with many integer points was piecemeal, and in particular
was not smooth. Indeed, it is not even in C1. One may hope, therefore, that the
upper bound for the number of integral points can be improved granted additional
smoothness hypotheses.

Swinnerton-Dyer [27] showed this is indeed true, proving an upper bound
of O f (N 3/5+o(1)) provided f ∈ C3. A uniform (with no dependence on f ) version
of this result was proved by Schmidt [24], under the additional assumption that
f (3)

̸= 0 in [0, N ]. Schmidt conjectured that the 3
5 here could be improved to 1

2
under the same assumptions.

In [3] Bombieri and Pila gave, as another application of their determinant method,
a proof that an upper bound of the strength N 1/2+o(1) can be achieved provided f is
sufficiently smooth. As above, the example f (x) = x2 shows that an exponent of 1

2
is the best possible here. The proof is very similar to that of Theorem 14, except
that the assumption of strict convexity plays the role of Bézout’s theorem, when
bounding the number of integral points on the graph intersected with a line.

Theorem 16 (Bombieri–Pila [3]). Let d ≥ 2 and set D = (d + 1)(d + 2)/2. Let
f : [0, N ]→[0, N ] be a strictly convex function. If f ∈C D([0, N ]) and f (D)(x) ̸=0
for all x ∈ [0, N ] then∣∣{(x, f (x)) : x ∈ [0, N ]} ∩ Z2∣∣ ≪d N

1
2 +

8
3(d+3)

+o(1)
.

In particular, the implied constant depends only on d but not on f .

Proof. For any real N > 0 define

G(N ) := sup
|I |≤N

sup
f

∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣,
where the second supremum is over all strictly convex functions f : I → [0, N ]

such that f ∈ C D(I ). We shall prove that there exists some K = K (d) satisfying
2 ≤ K ≤ d O(1) such that for any N > 0 we have

G(N ) ≤ K O(d)N
1
2 +

8
3(d+3) + KG(K −2d N ). (19)

This implies the result by an identical argument to that in the proof of Theorem 14.
To prove (19), as in the proof of Theorem 14, we let δ ≥ 1/N be some parameter
to be chosen later and want to divide [0, N ] into d O(1) many subintervals Iν such
that, for each Iν and each 1 ≤ i < D, either

(i)
∣∣ f (i)(x)

i !

∣∣ ≤ Nδi for all x ∈ Iν , or

(ii)
∣∣ f (i)(x)

i !

∣∣ ≥ Nδi for all x ∈ Iν .
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This time we do not have an assumption like F(x, f ) = 0 where F has bounded
degree, and so Lemma 11 is not available. Instead, we note that the assumption
that f (D)

̸= 0 directly implies f (i)(x) = c has at most D − i solutions x ∈ I , for
any c ∈ R and 1 ≤ i < D. This can be used in place of Lemma 11, and hence such
a subdivision can be found proceeding as in the proof of Lemma 12.

The length of an interval such that (ii) holds for some 1 ≤ i < D is, by Lemma 13,
at most 2/δ. If (i) holds for all 1 ≤ i < D, then by Lemma 3 we can cover the
integer points from Iν by

≪d δ|Iν |N
2d D
3(D

2 ) + 1 = δ|Iν |N
8

3(d+3) + 1

many integral curves of degree ≤ d, where we choose M to be the set of all
monomials of degree ≤ d (so that D = (d + 1)(d + 2)/2 and p = q = d D/3).
We now note that, by strict convexity, any line intersects the graph of f (x) in
at most two points. The number of integer points on any curve of degree d ≥ 2
inside [0, N ]

2 is, by Theorem 1, at most N 1/2+o(1). It follows that

G(N ) ≤ d O(1)δ|I |N
1
2 +

8
3(d+3)

+o(1)
+ G

(
2
δ

)
.

The conclusion follows choosing K =dC and δ=K C ′d/N for some constants C , C ′. □

We close by restating the conjecture of Schmidt that asks for the same quality
bound, while assuming a much weaker smoothness condition on f .

Conjecture 17 (Schmidt [24]). If f : [0, N ] → [0, N ] is a strictly convex function
such that f ∈ C3([0, N ]) and f (3)(x) ̸= 0 for all x ∈ [0, N ] then∣∣{(x, f (x)) : x ∈ I } ∩ Z2∣∣ ≪ N

1
2 +o(1).

While still very much open, Schmidt’s conjecture was stated as a central motiva-
tion for Bombieri and Pila’s work [3]. Using a strengthening of the real-analytic
determinant method presented here, Pila [18] has proved that such a bound holds
if f (105) exists and does not vanish, as well as nonvanishing determinant of a 3×3
matrix involving the first five derivatives of f — this may be viewed as an ‘enhanced
convexity’ condition.
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The trace formula is a versatile tool for computing sums of spectral data across
families of automorphic forms. Using specialized test functions, one can treat
small families with refined spectral properties. This has proven fruitful in analytic
applications. We detail such methodology here, with the aim of counting new-
forms in certain small families. The result is a general formula for the number
of holomorphic newforms of weight k and level N whose local representation
type at each p | N is a fixed supercuspidal representation σp of GL2(Qp). This
is given in terms of local elliptic orbital integrals attached to matrix coefficients
of the σp. We evaluate the formula explicitly in the case where each σp has
conductor ≤ p3. The technical heart of the paper is the explicit calculation of
elliptic orbital integrals attached to such σp. We also compute the traces of Hecke
operators on the span of these newforms. Some applications are given to biases
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1. Introduction

1.1. Overview. Modular forms are holomorphic functions on the complex upper
half-plane H that obey a type of symmetry under the action of SL2(Z) (or a con-
gruence subgroup) on H by linear fractional transformations. They belong to the
realm of analysis, but this symmetry embodies a deep link with number theory
and algebra. Indeed, Langlands’ famous functoriality conjecture predicts that there
is a precise connection between the algebraic structure of the field Q of rational
numbers (as captured by representations of its absolute Galois group) and spectral
properties of automorphic forms (the latter being simultaneous eigenfunctions of the
Laplace operator and its p-adic analogs, the Hecke operators) [13]. This connection
is expressed as an equality of L-functions.

Automorphic forms can be elusive, and for most purposes it is not feasible to
study them and their L-functions one at a time. The trace formula is a technique
that provides access to averages of spectral data across families of forms, where
the family is determined by a choice of test function. For instance, by choosing
a test function with certain invariance properties, one obtains a sum of Hecke
eigenvalues λn(h) for all eigenforms h of a given level and weight, i.e., the trace of
the Hecke operator Tn on Sk(N ) (see, for example, [23]).

The trace formula and its relative cousins have seen widespread use in analytic
number theory, with applications to such problems as estimating moments of L-
functions with consequent subconvexity bounds for a single L-function, determining
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the asymptotic distribution of the Hecke eigenvalues of a growing family of cusp
forms (vertical Sato–Tate laws), and finding densities of low-lying zeros of families
L-functions (Katz–Sarnak philosophy). See [3] for a recent survey of these and
other applications.

Our aim in the present article is to train the trace formula microscope more
narrowly through the use of specialized test functions, thereby providing access to
thinner families in the automorphic spectrum. This is achieved using the “simple
trace formula”, variants of which have been in use since the 1970s [15, (7.21)].
Our motivation (described in the next section) is to count cusp forms in these
thin families. But the explicit and flexible local-to-global techniques detailed here
for GL(2) can be used in many other applications.

Counterintuitively, by considering smaller families, in some situations one obtains
simpler trace formulas and stronger analytic results. We mention here some exam-
ples that illustrate this. First, Hu [18] and Hu, Petrow and Young [19] have recently
developed Fourier relative trace formulas for newforms with certain prescribed
local representation types. This is used to estimate thin averages of Rankin–Selberg
L-functions, leading to improved hybrid subconvexity bounds.

In a different direction, in 2007 Booker and Strömbergsson [4] used the Selberg
trace formula to provide evidence for Selberg’s conjecture that the first Laplace
eigenvalue in the cuspidal spectrum of 0\H for a congruence subgroup 0⊆ SL2(Z)

is ≥
1
4 . In verifying the conjecture for 0 = 01(N ) for square-free N < 857, they

observed that the trace formula simplifies upon sieving out the contribution of
oldforms in this case. They were also able to restrict to the even (or odd) part of
the spectrum. With Lee in [5], they subsequently extended this work to remove
the square-free hypothesis on N . However, in this case removing the oldform
contribution introduces further complication. To proceed, they developed a novel
method to sieve the spectrum down further to twist-minimal newforms, arriving
at a simpler formula. In both papers, working with a thinner family extended the
reach of their numerical computations.

A general discussion about the value of isolating small families of automorphic
forms is given in [45, Section 1.5]. In the breakthrough papers [44; 45], Petrow
and Young established Weyl-type subconvexity bounds for Dirichlet L-functions
using a family of Maass forms that is locally principal series at all finite places.

1.2. Description of main results. Given an integer

N =

∏
p | N

pNp > 1,

let Hk(N ) be the set of cuspidal Hecke newforms of level N and weight k. Each
h ∈ Hk(N ) corresponds to a cuspidal automorphic representation πh of G(A) =

G(R)
∏

′

p G(Qp) where G = PGL2. The representation πh factors as a restricted
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tensor product
πh ∼=

⊗
′

p≤∞

πh,p

of infinite-dimensional irreducible admissible representations of the local groups.
We know that πh,∞ = πk is the weight k discrete series representation, that for
each prime p ∤ N , πh,p is an unramified principal series representation with Satake
parameters determined by the p-th Hecke eigenvalue of h, and that for each p | N ,
πh,p is ramified of conductor pNp (see, for example, [12]).

There is an algorithm, due to Loeffler and Weinstein [35], to determine the
isomorphism class of each ramified πh,p given h. Here we consider the opposite
problem, namely to understand the cusp forms h with prescribed local ramification
behavior. To this end, we define the following spaces of newforms. For each p | N ,
fix an irreducible admissible representation σp of PGL2(Qp) of conductor pNp , and
let σ̂ = (σp)p | N . We then let Hk(σ̂ ) be the set of weight k newforms of level N
having the local representation type σp at each p | N :

Hk(σ̂ )= {h ∈ Hk(N ) | πh,p ∼= σp for all p | N }.

Defining
Sk(σ̂ )= Span Hk(σ̂ ), Snew

k (N )= Span Hk(N ),

we have
Snew

k (N )=

⊕
σ̂

Sk(σ̂ ), (1-1)

where σ̂ ranges over all tuples as above.
The dimensions of the spaces Snew

k (N ) have been computed by Greg Martin
in [37], by sieving the well-known dimension formulas for the full spaces Sk(N ).
It is an open problem to refine these dimension formulas by computing dim Sk(σ̂ )=

|Hk(σ̂ )| for each tuple σ̂ . More generally one can ask for the traces of Hecke
operators on Sk(σ̂ ). A complete solution to this problem seems well out of reach,
but even special cases are of great interest. For example, such information would
enable investigations into the effect of the underlying representation type on various
statistical properties of cusp forms.

In some special cases, asymptotic results about |Hk(σ̂ )| are known. When p is
a finite prime, the representation σp of G(Qp) is either principal series, special,
or supercuspidal [7, Section 9.11]. Only the latter two types are square-integrable
(assuming unitary central character), and these are amenable to study via the
trace formula. Kim, Shin and Templier [21] gave asymptotics for automorphic
representations with prescribed supercuspidal local behavior in a quite general
setting. In the case of PGL2(Q), their work shows that if each σp is supercuspidal,

|Hk(σ̂ )| ∼
1
12(k − 1)

∏
p | N

dσp (1-2)
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as k, N → ∞, where dσp is the formal degree of σp, suitably normalized. They use
the trace formula, and the main technical input is a bound for the elliptic orbital
integrals attached to supercuspidal matrix coefficients. In a related earlier work,
Weinstein [56] gave asymptotics for cusp forms with prescribed local inertial types,
concluding that the set of types lacking global realization is finite. Fixing inertial
type is weaker than fixing the local representation, but this result includes types
which are not square-integrable. This is discussed further in a recent paper of
Dieulefait, Pacetti and Tsaknias [10].

We remark that in Corollary 7.2 we will show that the asymptotic (1-2) is in fact
an equality when k ≥ 3 is odd (so in particular the nebentypus is nontrivial) and N
has a prime factor p > 3 with ordp(N ) odd.

When N is square-free, each σp is necessarily special. Going beyond asymptotics,
Kimball Martin [38] computed |Hk(σ̂ )| explicitly in this case, by applying Ya-
mauchi’s trace formula for Atkin–Lehner operators. As an interesting consequence,
he discovered that there is a bias among newforms of square-free level, favoring root
number +1: letting S±

k (N ) denote the span of the newforms of root number ±1,
we have

dim S+

k (N )− dim S−

k (N )≥ 0,

when N is square-free, with the inequality being strict with finitely many explicit
exceptions. For example, if N > 3 and k > 2,

dim S+

k (N )− dim S−

k (N )= cN h(−N ), (1-3)

where cN ∈
{1

2 , 1, 2
}

is a constant depending on the equivalence class of N modulo 8,
and h(−N ) is the class number of Q(

√
−N ).

In the present paper, we further investigate the case where each σp is supercuspi-
dal. Our first main result is Theorem 4.2 giving, for such tuples σ̂ , a general formula
for the trace of a Hecke operator Tn on Sk(σ̂ ) as a main term plus a finite sum of
elliptic orbital integrals 8(γ, f ). This theorem is obtained from the adelic GL2

trace formula using a test function f built using supercuspidal matrix coefficients at
the ramified places. In Section 3.3 we show how each global elliptic orbital integral
can be factorized into a product of local ones, multiplied by a global measure term
that is computed in Theorem 4.16. This global measure is the source of the class
numbers of quadratic number fields that appear in classical trace formulas. The
local orbital integrals at primes not dividing the level are evaluated explicitly over
an arbitrary local field of characteristic 0 in Sections 4.4 and 4.5. We have kept
these calculations as general as possible in order that they may find use in other
applications of the trace formula.

Theorem 4.2 thereby reduces explicit evaluation of tr(Tn |Sk(σ̂ )) to the calcula-
tion of certain local elliptic orbital integrals at the places dividing the level. We
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demonstrate proof of concept in Sections 5 and 6 by carrying out the latter in the
special case where each σp has conductor ≤ p3. As recalled in Section 3.1, the
supercuspidals come in two series: the unramified supercuspidals, of conductor p2r ,
and the ramified supercuspidals, of conductor p2r+1. We thus treat the first (r = 1)
family in each series. The result is the following explicit formula for tr(Tn |Sk(σ̂ ))

under this restriction. We allow nontrivial nebentypus, which requires the tuple σ̂
to satisfy a global central character constraint described in Section 5.3. Of course,
when dim Sk(σ̂ )= 1 as sometimes happens when k and N are small, it provides a
direct way to compute the Fourier coefficients of the associated newform.

Theorem 1.1. Let N = S2T 3 > 1 for S, T relatively prime and square-free, and let
ω′ be a Dirichlet character of level N and conductor dividing ST . Let σ̂ = (σp)p | N

be a tuple of supercuspidal representations, with σp of conductor p2 (resp. p3)
if p |S (resp. p |T ), chosen compatibly with ω′ as in Section 5.3. For k> 2 satisfying
ω′(−1) = (−1)k , let Sk(σ̂ ) ⊆ Snew

k (N , ω′) be the associated space of newforms.
Then for (n, N )= 1 and Tn the usual Hecke operator defined in Section 4.1,

tr(Tn |Sk(σ̂ ))

= n(k/2)−1
[
ω′(

√
n) 1

12(k − 1)
∏
p |S

(p − 1)
∏
p |T

1
2(p

2
− 1)

+
1
2

∑
M |T

8

((
−nM

1

))
+

∑
M |T

∑
1≤r<

√
4n/M

8

((
0 −nM
1 r M

))]
,

where ω′(
√

n) is taken to be 0 if n is not a perfect square. Each orbital integral8(γ )
as above may be evaluated explicitly using

8(γ )=
2h(E)
wE 2ω(dE )

8∞(γ )
∏
p | N

8p(γ )
∏

ℓ|1γ ,ℓ∤N

8ℓ(γ ). (1-4)

Here, ℓ and p denote prime numbers, 1γ is the discriminant of the characteristic
polynomial of γ , E = Q[γ ] is an imaginary quadratic field with class number h(E),
discriminant dE (with ω(dE) distinct prime factors) and wE roots of unity. Given

γ =

(
0 −nM
1 r M

)
for 0 ≤ r <

√
4n/M , the factors in (1-4) are given explicitly as follows.

Taking θγ = arctan(
√

|1γ |/r M)
(
interpreted as π

2 if r = 0
)
,

8∞(γ )= −
sin((k − 1)θγ )

sin(θγ )

(as in Proposition 4.3).



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 355

Suppose ℓ|1γ and ℓ ∤ N. Then if γ is hyperbolic in G(Qℓ),

8ℓ(γ )= |1γ |
−1/2
ℓ

(as in Proposition 4.4). If γ is elliptic in G(Qℓ), then (as in Proposition 4.8
and (4-20), (4-21))

8ℓ(γ )= eγ (ℓ)
ordℓ(b)∑

j=0

ℓ j
(

1 +
2 − eγ (ℓ)

ℓ
δ j>0

)
,

where δ j>0 is an indicator function, eγ (ℓ) ∈ {1, 2} is 2 if and only if ℓ ramifies in E ,
and b is defined by 1γ = b2dE for dE the discriminant of E.

Suppose p | N. If γ is hyperbolic in G(Qp), then 8p(γ )= 0. So we will assume
that γ is elliptic in G(Qp). We consider the three cases p | M , p |(T/M), and p |S
separately. If p | M , then 8p(γ )= 0 unless there exists y such that y2

≡ −ptp/nM
mod p, where tp is the parameter of the fixed supercuspidal representation σp = σ

ζp
tp

of conductor p3 (see Section 5.2). In this case,

8p

((
0 −nM
1 r M

))
= ζp

[
e
(

−
yr M

p2

)
ωp(y)+ δ(p ̸= 2) e

(
yr M

p2

)
ωp(−y)

]
(as in Proposition 6.4), where ζp and ωp are the root number and central character
of σp respectively, e(x)= e2π i x and δ is an indicator function.

If p |(T/M), then 8p(γ )= 0 unless the characteristic polynomial Pγ of γ has a
nonzero double root modulo p, say

Pγ (X)≡ (X − z)2 mod p for some z ∈ (Z/pZ)∗. (1-5)

Under this condition, we have (as in Proposition 6.5 and its remarks)

8p(γ )=
ωp(z)

p

ordp(1γ )−1∑
n=1

∑
c mod p

Nγ (c, n)
p−1∑
y=1

e
(

yc
zp

)
e
(

−
tp

yzp

)δ(n=1)

,

where tp ∈ (Z/pZ)∗ is the parameter of σp = σ
ζp
tp

, ωp is its central character,
e(x)= e2π i x , and

Nγ (c, n)= #{b mod pn+1
| Pγ (b)≡ cpn mod pn+1

}.

Finally, suppose p |S. If (1-5) is satisfied, then (as in Proposition 6.8),

8p(γ )= −ωp(z)+
ωp(z)

p

ordp(1γ )−1∑
n=1

[
(p − 1)Nγ (0, n)−

p−1∑
c=1

Nγ (c, n)
]

for Nγ (c, n) as above. On the other hand, if Pγ is irreducible modulo p, then

8p(γ )= −ν(γ )− ν p(γ ),
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where ν is the primitive character of F∗
p2 attached to the fixed supercuspidal σp of

conductor p2 (see Section 5.1), ωp = ν|F∗
p
, and we interpret the above to mean

−ν(x)−ν p(x) if x ∈ F∗
p2 has the same minimum polynomial over Fp as the reduction

of γ mod p.

Remarks. (1) What we call Sk(N , ω′) is usually called Sk(N , ω′−1
). See the

beginning of Section 4 for explanation. The reason we assume that the conductor
of ω′ divides ST is that this is necessary for the existence of tuples σ̂ given the
conductor hypotheses, by [55, Proposition 3.4].

(2) The theorem contains various simple conditions under which an orbital integral
as in (1-4) vanishes. These are summarized and established in Proposition 5.6.

(3) Analytic applications often require uniform bounds for the orbital integrals
appearing on the geometric side. Such bounds were established in a much more
general context by Kim, Shin and Templier [21, (1.5), (1.6), (1.8)]. Using these,
they proved a vertical (fixed p) equidistribution result for p-th Hecke eigenvalues
in Sk(σ̂ ) as N → ∞, refining the result of Serre [51]. Their paper includes several
helpful examples to explain their results in the setting of PGL(2). The explicit
formulas for local orbital integrals developed in the present paper illustrate their
bounds; see the remarks after Proposition 6.5, for example.

(4) Although we describe some interesting consequences of Theorem 1.1 below in
Section 1.3, perhaps the main utility of this article is the methodology leading to the
theorem, rather than this particular trace formula. Indeed, there are any number of
variants that one could pursue simply by doing some additional local computations
and updating the set of relevant global γ ’s on the geometric side:

• One could capture newforms with prescribed representation type at some places,
and, less restrictively, prescribed local conductor at some other places. For the latter
places, the local elliptic orbital integral calculation is carried out in [28].

• We have excluded the case where ordp(N )= 1 at a prime p for the same reason
that we impose k > 2: the matrix coefficients of the local representations in such
cases are square-integrable but not integrable [23, Proposition 14.3; 53]. So these
functions cannot be used directly in the trace formula. One could incorporate these
representation types either by using pseudocoefficients [21, Example 6.6; 30; 43],
or, via the Jacquet–Langlands correspondence, by computing the corresponding
local orbital integrals on a quaternion algebra [22].

• One could capture Maass newforms with prescribed local behavior by taking
the archimedean component f∞ of the test function to be bi-SO(2)-invariant, as
described, for example, in [26, Chapters 3 and 4]. In this case, the inclusion of a
supercuspidal matrix coefficient at some place p will annihilate the continuous and
residual spectra, but at least two such places would be needed in order to annihilate



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 357

the hyperbolic and unipotent terms on the geometric side of the trace formula, as
explained in Theorem 3.3 below. Further, in this case γ need no longer be elliptic
in G(R) in order to contribute nontrivially, so there are more relevant γ ’s that would
have to be considered.

• The nonarchimedean local calculations in the present paper are all carried out
over arbitrary p-adic fields, so with some additional global considerations one could
work over a number field.

The technical heart of the paper is Section 6, in which we calculate local elliptic
orbital integrals attached to the supercuspidal representations of conductor ≤ p3.
Character values of supercuspidal representations on various groups appear in many
places, but the orbital integral calculations in Section 6 are new. Some related calcu-
lations were made by Palm in his doctoral thesis [43, Section 9.11]. Although there
are some errors in that work, the methods have been adapted for our computations.

In Section 7 we illustrate Theorem 1.1 by computing dimension formulas and
some examples of tr(Tn |Sk(σ̂ )) for n> 1.

1.3. Dimension formulas and root number bias. Upon taking n=1 in Theorem 4.2,
we obtain a general formula for dim Sk(σ̂ ), given in Theorem 7.1. As shown there,
the list of relevant γ can be narrowed considerably when n = 1; only M = T, T

2
contribute to the formula when T > 3. We will state some special cases below, but
first we provide some additional motivation.

Simple supercuspidals are the representations of GL2(Qp) with conductor p3.
Assuming trivial central character, they can be parametrized by the pairs (t, ζ )
where t ∈ (Z/pZ)∗ and ζ ∈ {±1}. There are thus 2(p − 1) such representations,
denoted σ ζt , and each is constructed in the same way via compact induction from a
character χt,ζ of a certain open compact-mod-center subgroup H ′

t of GL2(Qp).
An interesting question is whether each member of such a local family has the

same global multiplicity, in the following sense. For T > 1 square-free, consider
N = T 3 in (1-1), with σ̂ running over all tuples (σ ζp

tp
)p |T . (We assume trivial central

character for the moment, though the general case is considered in the main body
of this paper.) In this case we have the dimension formula

dim Snew
k (T 3)=

1
12(k − 1)

∏
p |T

(p2
− 1)(p − 1) (1-6)

as in [37]. Since there is no immediately apparent reason for nature favoring one
simple supercuspidal over another, one might surmise that the subspaces Sk(σ̂ )

all have the same dimension, i.e., that the asymptotic (1-2), which in the present
situation becomes

dim Sk(σ̂ )∼
1

12(k − 1)
∏
p |T

1
2(p

2
− 1), (1-7)
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is an equality. (Note that the right-hand side of (1-7) results from dividing (1-6) by
the number 2(p − 1) of simple supercuspidals at each place p |T .) This would be
consistent with a 2011 calculation of Gross [17, p. 1255], who fixed the tuple of
parameters (tp)p | N and allowed the ζp parameters to vary. Using the trace formula
he showed ∑

(ζp)p |T

dim Sk((σ
ζp
tp
)p |T )=

1
12(k − 1)

∏
p |T

(p2
− 1), (1-8)

which is what one would expect, upon dividing (1-6) by the number of tuples (tp)p |T .
However, equation (1-7) is not in fact an equality in general, for the simple

reason that, as we spell out at (5-22), the right-hand side of (1-7) fails to be an
integer for infinitely many values of T . This is manifested in recent work of Pi
and Qi [46], who considered a sum different from that treated by Gross, namely,
varying the tp and ζp parameters subject to the constraint (−1)k/2

∏
p |T ζp = ϵ for

fixed ϵ ∈ {±1}. This amounts to counting the newforms with root number ϵ. They
found, for k ≥ 4 even and square-free T > 3, that

dim Snew
k (T 3)± =

1
24(k − 1)

∏
p |T

(p2
− 1)(p − 1)± 1

2 cT ϕ(T )h(−T ), (1-9)

where cT and h are as in (1-3) and ϕ is Euler’s ϕ-function. This shows that, just
as in the case of square-free level, there is a bias in favor of positive root number.
Instead of the Arthur–Selberg trace formula, they used a Petersson formula obtained
using the simple supercuspidal new vector matrix coefficient from [27].

By evaluating the S = n = 1 case of Theorem 1.1, in Section 7.4 we obtain an
explicit formula for dim Sk(σ̂ ) that refines each of the above results. For example,
we have the following.

Theorem 1.2. Let N = T 3 for T > 3 odd and square-free, let k > 2 be even, and let
σ̂ = (σ

ζp
tp
)p | N be a tuple of simple supercuspidal representations with trivial central

characters. Then

dim Sk(σ̂ )=
1
12(k − 1)

∏
p | N

1
2(p

2
− 1)+1(t̂ ) ϵ(k, ζ̂ ) bT h(−T ), (1-10)

where 1(t̂ ) ∈ {0, 1} is nonzero if and only if −ptp/T is a square modulo p for
each p |T , ϵ(k, ζ̂ ) = (−1)k/2

∏
p | N ζp is the common global root number of the

newforms comprising Hk(σ̂ ), bT is a certain power of 2 depending on T mod 8,
and h(−T ) is the class number of Q[

√
−T ].

This is a special case of Theorem 7.17, which also allows for T even. The
presence of 1(t̂ ) demonstrates that the dimension is not simply a function of the
weight, level and root number (even when the right-hand side of (1-7) is an integer).
Indeed, as described in [6] for example, each σp has attached a ramified quadratic
extension of Qp, namely Eσp = Qp(

√
tp p), which depends only on the Legendre
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symbol (tp/p). So dim Sk(σ̂ ) depends only on T, k, the fields Eσp , and the global
root number. (If T is even, the dimension also depends on the local root number ζ2.)

The second term in (1-10) comes from an elliptic orbital integral. These do not
appear in (1-8), but combine to form the error term in (1-9). Indeed, the local
root number already appears as a coefficient in our local test function at the places
dividing T , so the global root number naturally appears in the elliptic orbital integral
that yields the error term in (1-10). This helps explain the positive bias of the root
number in this situation.

At the end of Section 7.4, we indicate how our results recover the dimension
formula (1-6) and the root number bias (1-9). In Theorem 7.16 we find that the
root numbers of newforms of level 27 have a strict bias toward −1 (among the
possibilities ±1,±i) when k ≡ 5 mod 6 and the nebentypus has conductor 3.

In a more recent paper, K. Martin [39] addressed the question of root number
bias in Snew

k (N ) for arbitrary levels. He showed that there is a bias towards root
number +1 with one exception: when N = S2 for a square-free number S and
(−1)k/2 = −

∏
p |S(−1), then the root number has a strict negative bias when k is

sufficiently large. In discussing why the exceptions arise, he noted that the picture
is obscured by the existence of newforms of level S2 which are twists of forms of
lower level. (No such forms exist in the N = T 3 case discussed above.)

Theorem 1.1 allows us to investigate this further, since the subspace Smin
k (S2)⊆

Snew
k (S2) spanned by the newforms which are not twists of newforms of lower level

is the direct sum
Smin

k (S2)=

⊕
σ̂

Sk(σ̂ ),

ranging over all σ̂ = (σp)p |S with each σp a supercuspidal representation of con-
ductor p2 (a “depth zero” supercuspidal) and trivial central character.

In fact, even without using a specialized trace formula, we can infer the existence
of negative bias for the root numbers in Smin

k (S2) for many pairs (S, k) by the
following heuristic coming from finite fields (see Section 5.1 for more detail and a
summary of the construction of depth zero supercuspidals). Given an odd prime p,
there are p − 1 primitive characters of F∗

p2 with trivial restriction to F∗
p . It follows

that the number of σp as above is 1
2(p − 1). If p ≡ 3 mod 4, this number is odd, so

the set of such σp contains a preponderance either of local root number ϵp = +1 or
ϵp = −1. So if S is a product of such primes, then for some integer c ≥ 1 there are c
more tuples σ̂ with one nonarchimedean sign ϵfin =

∏
p |S ϵp than the other. By (1-2),

the spaces Sk(σ̂ ) all have roughly the same dimension 1
12(k −1)

∏
p |S(p−1), up to

variations of lower magnitude when k + S is sufficiently large. Then with k/2 of the
appropriate parity, there is a bias towards root number ϵ = (−1)k/2ϵfin = −1, with
roughly c 1

12(k − 1)
∏

p |S(p − 1) more forms of global root number −1 than +1.
(We will show that in fact c = 1; see Proposition 7.6.)
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To make a precise statement, we first apply Theorem 1.1 with n = T = 1 to
obtain the following.

Theorem 1.3. Let N = S2 for S > 1 square-free, let k > 2 be even, and let
σ̂ = (σνp)p | N be a tuple of depth zero supercuspidal representations with trivial
central characters, with νp the primitive character of F∗

p2 associated to σp. Then

dim Sk(σ̂ )=
1

12(k − 1)
∏
p |S

(p − 1)+ D4(S) 1
4ϵ(k, σ̂ )∏

odd p |S

2 + D3(S) b(k) 1
3(−1)δ3|S

∏
p |S,p ̸=3

B(νp), (1-11)

where ϵ(k, σ̂ ) is the common global root number of the newforms in Sk(σ̂ ), D4(S)∈
{0, 1} is 0 if and only if S is divisible by a prime p ≡ 1 mod 4, D3(S) ∈ {0, 1} is 0
if and only if S is divisible by a prime p ≡ 1 mod 3, δ is the indicator function
defined in (2-1),

b(k)=


1 if 6|k,

−1 if k ≡ 2 mod 6,
0 otherwise,

(1-12)

and, for p ≡ 2 mod 3,

B(νp)=

{
−2 if the order of νp (in the character group of F∗

p2) divides 1
3(p + 1),

1 otherwise.

The above is a special case of Theorem 7.3, which allows for nontrivial nebenty-
pus and k odd. We will use Theorem 1.3 to derive an explicit formula for the bias

1(S2, k)min
= dim Smin

k (S2)+ − dim Smin
k (S2)−

for k > 2 even and S > 1 square-free. This is given in Proposition 7.6. For the
time being, we just state the following consequence, which is somewhat different
from the behavior observed for the larger spaces of newforms of level S2 appearing
in [39, Theorem 1.1(3) and Proposition 1.3].

Proposition 1.4. Assume k ≥ 4 is even. With notation as above, 1(S2, k)min
= 0 in

each of the following situations: (i) D4(S)= D3(S)= 0, (ii) S is divisible by some
prime p ≡ 5 mod 12, (iii) D4(S)= 0 and k ≡ 4 mod 6.

If D4(S) = 0, k ≡ 0, 2 mod 6, D3(S) ̸= 0, and case (ii) does not apply, then
1(S2, k)min

̸= 0 and

sgn1(S2, k)min
= (−1)δ(k≡6, 8 mod 12)µ(S)

for the indicator δ as in (2-1) and the Möbius function µ.
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If D4(S)=1 and k≥6, then apart from the two exceptions Smin
8 (22)=Smin

6 (32)=0,
1(S2, k)min

̸= 0, and

sgn1(S2, k)min
= (−1)δ(2|S)+k/2.

If D4(S)= 1 and k = 4, then 1(S2, 4)min
≥ 0 for all square-free S > 1:

1(S2, 4)min
=

{1
2

∏
p |S(p − 1) if 2 ∤ S,

0 if 2|S.

Remark. A noteworthy difference between the above and the bias for the full space
of newforms is that here for any fixed even k ≥ 6 there are infinitely many levels S2

for which 1(S2, k)min < 0, whereas by [39, Theorem 1.1(3)], for any fixed even k
there are only finitely many levels N for which 1(N , k)new < 0.

2. Notation and Haar measure

If P is a statement, then we will frequently use the indicator function

δ(P)= δP =

{
1 if P is true,
0 if P is false.

(2-1)

We also use the shorthand
e(x)= e2π i x .

For rings R, we let R∗ denote the group of units in R.
Let G be the group GL(2), and set G = G/Z , where Z is the center of G. If H is

a subgroup of G, then H will denote the group H Z/Z ∼= H/(H ∩ Z). For ℓ prime,
we set Zℓ = Z(Qℓ) the center and Kℓ = G(Zℓ) the maximal compact subgroup
of G(Qℓ). Groups K0(p), K1(p

j ), K ′ will be defined in Sections 3.1 and 5.2.
Let A be the adele ring of the rational numbers Q. We give G(A) the standard

Haar measure for which

meas(G(Q)\G(A))=
π

3
,

with the discrete group G(Q) receiving the counting measure. We normalize Haar
measure on G(Qℓ) so that Kℓ has measure 1. With this choice, there is a unique Haar
measure on G(R) for which the above measure on G(A) is the restricted product
of the measures on G(Qℓ) for ℓ≤ ∞. It has the form dm dn dk, where dm is the
measure (dx/|x |)2 on the diagonal subgroup M ∼= R∗

× R∗, dn is the measure dx
on the unipotent subgroup N ∼= R, and dk is the measure on K∞ = SO(2) of total
measure 1 [23, Corollary 7.45].

For a unitary Hecke character ω, let L2(ω)= L2(G(Q)\G(A), ω) be the space
of (classes of) measurable C-valued functions φ on G(A) transforming under the
center by ω and square integrable modulo Z(A)G(Q). Let L1(ω)= L1(G(A), ω)
be defined in the analogous way; its elements are integrable modulo Z(A).
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3. The simple trace formula

3.1. Background on supercuspidal representations of GL(2). Let F be a nonar-
chimedean local field of characteristic 0 with integer ring O and prime ideal p. In this
section only, let G = GL2(F), B = B(F) the upper-triangular Borel subgroup,
N = N (F) the unipotent subgroup of B, M the diagonal subgroup, Z the center,
and K = G(O) the standard maximal compact subgroup.

Given a smooth irreducible representation (π, V ) of G, it is supercuspidal if it
satisfies any of the following equivalent conditions (see, e.g., [7, Sections 9 and 10]):

• V is the span of the vectors of the form π(n)v− v for v ∈ V and n ∈ N .

• The matrix coefficients of π are compactly supported modulo the center.

• π is not principal series or special, i.e., not a subquotient of a representation
induced from a character of B.

The following property found by Harish-Chandra is crucial in what follows. We
sketch a proof here for the reader’s convenience, following [52, Section 2.2].

Proposition 3.1. Suppose that π is a supercuspidal representation of G, and that
f (g)= ⟨π(g)v, v′

⟩ is a matrix coefficient. Then for all g, h ∈ G,∫
N

f (gnh) dn = 0. (3-1)

Proof. We assume for simplicity that π is unitary, which is always the case if the
central character is unitary. Then

f (gnh)= ⟨π(g) π(n) π(h)v, v′
⟩ = ⟨π(n) π(h)v, π(g−1)v′

⟩,

so we can assume without loss of generality that g = h = 1. By linearity and the
first bullet point above, we may also assume that v = π(n0)w−w for some w ∈ V
and n0 ∈ N .

Let N (v) be an open compact subgroup of N containing n0. Then∫
N (v)

π(n)vdn =

∫
N (v)

π(n)(π(n0)w−w)dn =

∫
N (v)

π(n)wdn−

∫
N (v)

π(n)wdn =0.

(By smoothness, there exists an open compact subgroup N ′ of N (v) that fixes w,
so the above integrals are really just finite sums.) Since f has compact support,
the support of f |N is contained in some open compact subgroup N (v) as above.
Therefore∫

N
f (n) dn =

∫
N (v)

⟨π(n)v, v′
⟩ dn =

〈∫
N (v)

π(n)v dn, v′

〉
= 0. □

Corollary 3.2. If f is a matrix coefficient of a supercuspidal representation, then
for any g, h ∈ G and m ∈ M (M being the diagonal subgroup),∫

N
f (gn−1mnh) dn = 0.
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Proof. This follows from n−1mn = mn′, making a change of variables to integrate
over n′, and applying the above proposition. □

For any supercuspidal representation σ of G, there exists an open and closed
subgroup H ⊆ G containing Z , with H/Z compact, and an irreducible repre-
sentation ρ of H , such that σ is compactly induced from ρ: σ = c-IndG

H (ρ). Let
K0(p)=

(O∗

p
O
O∗

)
be the Iwahori subgroup of G, and fix a prime elementϖ of O. Up

to conjugacy, there are two maximal compact-mod-center subgroups of G, namely

J =

{
Z K (the unramified case),
Z K0(p)∪ Z

(
ϖ

1)
K0(p) (the ramified case).

(3-2)

The latter is the normalizer of K0(p). Without loss of generality, one of these
contains H , and we call σ unramified or ramified accordingly.1 There is a unique
ideal p j , called the conductor of σ , such that the space of vectors in σ fixed by the
group

K1(p
j )=

(
O∗ O
p j 1 + p j

)
is one-dimensional. By [55], j ≥ 2, and as explained in [6], j is even in the
unramified case, and odd in the ramified case.

3.2. Simple trace formula. Given a unitary Hecke character ω and a function
f ∈ L1(ω), we define the operator R( f ) on L2(ω) via

R( f ) φ(x)=

∫
G(A)

f (g) φ(xg) dg. (3-3)

For k > 2, let Ck denote the space of all continuous factorizable functions
f = f∞

∏
ℓ<∞

fℓ on G(A) which transform under the center by ω, such that fℓ is
smooth and compactly supported modulo the center Zℓ for all ℓ, there is a finite
set S of places of Q such that for all ℓ /∈ S, fℓ is supported on ZℓKℓ and has the
value 1 on Kℓ, and lastly,

f∞

((
a b
c d

))
≪k

(ad − bc)k/2

(a2 + b2 + c2 + d2 + 2|ad − bc|)k/2
.

Then Ck ⊆ L1(ω), and we can consider the operators R( f ) for such f .
Recall that γ ∈ G(Q) is elliptic if its characteristic polynomial is irreducible.

This concept is well defined on conjugacy classes and cosets of the center. We will
use the following simple trace formula.

1It should be borne in mind that in standard terminology, all supercuspidals are ramified in the
sense that they have no K-fixed vector. We are using the word in a different sense here, reflecting the
nature of the quadratic extension E/F determined by σ [6].
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Theorem 3.3. For f ∈ Ck , suppose that for some finite place v of Q, fv is a matrix
coefficient of a supercuspidal representation of Gv = G(Qv), and therefore by
Corollary 3.2 its local hyperbolic orbital integrals vanish identically:∫

Mv\Gv

fv

(
g−1

(
a

1

)
g
)

dg = 0 (3-4)

for all a ∈ Q∗
v, where Mv is the diagonal subgroup of Gv . Suppose further that (3-4)

is also satisfied at a second place w ̸= v (which may be archimedean). Then

tr R( f )= meas(G(Q)\G(A)) f (1)+
∑

o elliptic in G(Q)

8(o, f ),

where, for an elliptic conjugacy class o ⊆ G(Q), the orbital integral is defined by

8(o, f )=

∫
G(Q)\G(A)

∑
γ∈o

f (g−1γ g) dg. (3-5)

Proof. See [14, Proposition V.2.1 and Theorem V.3.1]. The idea is that the validity
of (3-4) at two distinct places kills off the hyperbolic and (nonidentity) unipotent
terms on the geometric side of the Arthur–Selberg trace formula, while the stronger
condition (3-1) on fv also forces the operator R( f ) to have purely cuspidal image,
so the continuous and residual spectral terms vanish as well. In Gelbart’s exposition
it is assumed that f is compactly supported, but for f ∈ Ck everything still converges
absolutely as shown in [23], so the same proof is valid. □

3.3. Factorization of orbital integrals. Here we explain how to compute elliptic
orbital integrals locally. The statements and proofs in this section are applicable
over an arbitrary number field, though we express everything in terms of Q.

For γ ∈ G(Q), let Gγ be its centralizer. There are two related groups that will
be needed. First, since Z(Q)⊆ Gγ (Q), we may form the quotient, denoted Gγ (Q).
Second, the centralizer of γ (or, more accurately, of the coset γ Z(Q)) in G(Q)
is denoted Gγ (Q). In general these are distinct subgroups of G(Q). This will be
clarified in the proof of Lemma 3.4 below.

Giving the discrete group Gγ (Q) the counting measure, define

8(γ, f )=

∫
Gγ (Q)\G(A)

f (g−1γ g) dg.

For fixed measures on Gγ (R) and Gγ (Qℓ), we also define the local orbital integrals

8(γ, f∞)=

∫
Gγ (R)\G(R)

f∞(g−1γ g) dg

and
8(γ, fℓ)=

∫
Gγ (Qℓ)\G(Qℓ)

fℓ(g−1γ g) dg.
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For compatibility, some care must be taken regarding the normalization of measures.
See the statement of Proposition 3.5 below.

Lemma 3.4. For an elliptic element γ ∈ G(Q), let o be its conjugacy class in G(Q).
Then with notation as above and in (3-5),

8(o, f )=

{
8(γ, f ) if tr γ ̸= 0,
1
28(γ, f ) if tr γ = 0.

Proof. By definition,

8(o, f )=
∫

G(Q)\G(A)

∑
δ∈Gγ (Q)\G(Q)

f (g−1δ−1γ δg) dg =

∫
Gγ (Q)\G(A)

f (g−1γ g) dg.

Notice that in the definition of 8(γ, f ), the quotient object is Gγ (Q) rather than
Gγ (Q). The former is a subgroup of the latter, and we claim that

[Gγ (Q) : Gγ (Q)] =

{
1 if tr γ ̸= 0,
2 if tr γ = 0.

The lemma follows immediately from this claim. To prove the claim, note that

Gγ (Q)= {δ ∈ G(Q) | δ−1γ δ = γ }/Z(Q)
and

Gγ (Q)= {δ ∈ G(Q) | δ−1γ δ = zγ for some z ∈ Q∗
}/Z(Q).

For any such z, taking determinants we see that z2
= 1, so z = ±1. We also see

that tr γ = z tr γ , so z = 1 if tr γ ̸= 0, and in this case the two groups are equal, as
claimed. On the other hand, if tr γ = 0, then γ is conjugate in G(Q) to its rational
canonical form

( 0
1

−det γ
0

)
, and(

1
−1

) (
0 −det γ
1 0

) (
1

−1

)
=

(
0 det γ

−1 0

)
,

from which it follows that δ−1γ δ = −γ has a solution δ. Given any such δ, we
find easily that

Gγ (Q)= Gγ (Q)∪ δGγ (Q). □

Proposition 3.5. Let f ∈ Ck as defined in Section 3.2, and let γ ∈ G(Q) be an
elliptic element. Then for any fixed choice of Haar measures on G(A) and Gγ (A),

8(γ, f )= meas(Gγ (Q)\Gγ (A))
∏
ℓ≤∞

8(γ, fℓ), (3-6)

where the measures on the groups G(Qℓ) are chosen (noncanonically) so that the
measure on G(A) is the restricted product of these local measures relative to the max-
imal compact subgroups almost everywhere, and likewise the measures on the groups
Gγ (Qℓ) are chosen compatibly with the fixed measure on Gγ (A)=

∏
′

ℓ≤∞
Gγ (Qℓ).
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Remarks. (1) This is well known, but as we have not found a proof in the literature,
we include one below. Tate’s thesis shows that if the product is absolutely convergent,
then the left-hand integral converges absolutely and the equality holds. But here we
need a kind of converse: we know a priori that 8(γ, f ) is absolutely convergent.

(2) The specific choice of measures to be used in this paper is summarized in
Section 4.7.3, where it is shown that the quotient space Gγ (Q)\Gγ (A) is compact,
and its measure is computed explicitly in the more general setting with Q replaced
by an arbitrary number field.

Proof. Observe that

8(γ, f )=

∫
Gγ (Q)\G(A)

f (g−1γ g) dg

= meas(Gγ (Q)\Gγ (A))

∫
Gγ (A)\G(A)

f (g−1γ g) dg

for any choice of Haar measure on Gγ (A). Absolute convergence is proven for
f ∈ Ck in [23, Corollary 19.3].

For notational convenience, write φ(g)= f (g−1γ g) (a function on G(A)), and
φℓ(gℓ)= fℓ(g−1

ℓ γ gℓ) for ℓ≤ ∞, so φ(g)=
∏
ℓ≤∞

φℓ(gℓ). Also, define

X = Gγ (A)\G(A).

Then X is the restricted product of the spaces

Xℓ = Gγ (Qℓ)\G(Qℓ),

relative to the open compact subsets Hℓ = Gγ (Qℓ)\Gγ (Qℓ)Kℓ ⊆ Xℓ. Indeed, the
natural map from G(A) to

∏
′Xℓ is clearly surjective, with kernel Gγ (A).

Fix Haar measures on each of the local groups G(Qℓ) and Gγ (Qℓ) compatibly
with the fixed Haar measures on G(A) and Gγ (A). This determines a right-G(Qℓ)-
invariant measure on Xℓ with the property that Hℓ has measure 1 for almost all ℓ.
Let S be the finite set of places of Q outside of which fℓ is supported on Z(Qℓ)Kℓ

with fℓ(zk) = ω(z). Let S′ be a finite set of places outside of which (1) γ ∈ Kℓ,
and (2) Hℓ has measure 1. Then setting S0 = S ∪ S′, for ℓ /∈ S0 we have∫

Hℓ
φℓ(h) dh =

∫
Hℓ

fℓ(k−1γ k) dk = meas(Hℓ)= 1.

Let
S0 ⊆ S1 ⊆ S2 ⊆ . . .

be a sequence of finite sets of primes (including ∞) whose union is the full set of
primes. Let χn be the characteristic function of X Sn =

∏
ℓ∈Sn

Xℓ ×
∏
ℓ/∈Sn

Hℓ, and
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let φn = φ ·χn . Note that φn → φ pointwise. Since φ ∈ L1(X) as mentioned above,
so is φn . By the dominated convergence theorem,∫

X
φ(x) dx = lim

n→∞

∫
X
φn(x) dx = lim

n→∞

∏
ℓ∈Sn

∫
Xℓ
φℓ(xℓ) dxℓ,

as needed. □

4. Counting locally supercuspidal newforms

Here we explain how to use the simple trace formula to count cusp forms with
prescribed supercuspidal ramification. To set notation, let N =

∏
p | N pNp > 1 be a

positive integer with the property that Np ≥ 2 for each prime p | N . Fix a Dirichlet
character ω′ modulo N of conductor dividing

∏
p | N p⌊Np/2⌋. This requirement

comes from the fact that the central character of a supercuspidal representation of
conductor pNp divides p⌊Np/2⌋ [55, Proposition 3.4]. Let ω : A∗

→ C∗ be the finite
order Hecke character associated to ω′ via

A∗
= Q∗(R+

× Ẑ∗)→ Ẑ∗/(1 + N Ẑ)∼= (Z/NZ)∗ → C∗, (4-1)

where the last arrow is ω′. Letting ωp be the restriction of ω to Q∗
p, for any

prime p | N we have

ωp(p)= ω(1, . . . , 1, p, 1, . . . )

= ω(p−1, . . . , p−1, 1, p−1, . . . )=
∏

ℓ| N ,ℓ ̸=p
ωℓ(p−1). (4-2)

Fix an integer k ≥ 2 satisfying

ω′(−1)= (−1)k,

and let Sk(N , ω′) be the space of cusp forms h satisfying

h
(

az + b
cz + d

)
= ω′(d)−1(cz + d)kh(z)

for
(a

c
b
d

)
∈ 00(N ). The inverse on ω′(d) is somewhat nonstandard. It ensures that

the adelic cusp form attached to h has central character ω rather than ω−1; see, e.g.,
[23, Sections 12.2–12.4]. Because we mostly work in the adelic setting, it eases the
notation to include the inverse in the classical setting.

For each p | N , fix a supercuspidal representation σp of GL2(Qp) of conduc-
tor pNp and central character ωp, and let σ̂ = {σp}p | N . We define Hk(σ̂ ) to be the
set of newforms h ∈ Sk(N , ω′) whose associated cuspidal representation πh has
the local representation type σp at each p | N . We set Sk(σ̂ ) = Span Hk(σ̂ ). The
Dirichlet character ω′ is uniquely determined by the tuple σ̂ via

ω′(d)=
∏
p | N

ωp(d) ((d, N )= 1), (4-3)
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and this justifies our suppression of the central character ω′ from the notation Sk(σ̂ ).
At a certain point we will use the fact that∏

p | N

ωp(N )= ω(N−1, . . . , N−1, 1, . . . , 1, N−1, N−1, . . .)= ω′(1)= 1. (4-4)

4.1. Isolating Sk(σ̂ ) spectrally. For each prime p | N , we can write σp = c-IndGp
Hp
ρ,

where Hp is contained either in Z p Kp or the normalizer of an Iwahori subgroup, as
in (3-2). By [29, Proposition 2.1], there exists a unit vector wp in the space of σp

such that the matrix coefficient ⟨σp(g)wp, wp⟩ is supported in Hp. Fix once and
for all such a vector wp for each p | N . Based on this choice, we define a subspace
Ak(σ̂ )⊆ L2(ω) by

Ak(σ̂ )=

⊕
π

Cwπ ,

where π ranges over the cuspidal automorphic representations with central char-
acter ω for which π∞ = πk , πp = σp for each p | N , and πℓ is unramified for all
finite primes ℓ ∤ N , and wπ = ⊗wπℓ is defined by

wπℓ =


unit lowest weight vector if ℓ= ∞,

unit spherical vector if ℓ ∤ N∞,

wp (fixed above) if ℓ= p | N .
(4-5)

Here, for almost all ℓ, the spherical vector is the one predetermined by the restricted
tensor product π ∼=

⊗
′

ℓ≤∞
πℓ. The space Ak(σ̂ ) does not consist of adelic newforms

in general because at places p | N , wp is not necessarily a new vector in the space
of the local representation σp. Nevertheless, Ak(σ̂ ) has the same dimension as the
space of newforms Sk(σ̂ )= Span Hk(σ̂ ).

Using matrix coefficients, we can define a test function f ∈ L1(ω) for which
R( f ) is the orthogonal projection of L2(ω) onto Ak(σ̂ ). Without much extra work,
we can incorporate a Hecke operator into the test function.

Fix an integer n > 1 with gcd(n, N ) = 1, and let Tn be the classical Hecke
operator defined by

Tn h(z)= nk−1
∑
ad=n
a>0

∑
r mod d

ω′(a)−1 d−kh
(

az + r
d

)
(h ∈ Sk(N , ω′), z ∈ H).

When n = 1, Tn is simply the identity operator.
The operator Tn can be realized adelically. Let

M(n)ℓ = {g ∈ M2(Zℓ) | det g ∈ nZ∗

ℓ}

for each prime ℓ ∤ N . (If working over a larger number field F , one would take n to
be an ideal of the integer ring and set M(n)v = {g ∈ M2(Ov) | (det g)Ov = n} for a
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place v <∞.) Define a function f n
ℓ : G(Qℓ)→ C by

f n
ℓ (g)=

{
ωℓ(z) if g = zm for z ∈ Zℓ, m ∈ M(n)ℓ,
0 if g /∈ ZℓM(n)ℓ,

(4-6)

where ωℓ is the local component of the Hecke character ω. Note that f n
ℓ is bi-Kℓ-

invariant, and indeed when n ∈ Z∗

ℓ , this function is given by

fℓ(g)=

{
ωℓ(z) if g = zk ∈ ZℓKℓ,

0 if g /∈ ZℓKℓ.
(4-7)

Next, let πk be the discrete series representation of G(R) of weight k, and let v
be a lowest weight unit vector in the space of πk . We define f∞ = dk⟨πk(g)v, v⟩,
where dk =

k−1
4π is the formal degree of πk . Explicitly, with Haar measure on G(R)

normalized as in Section 2,

f∞

((
a b
c d

))
=

{k−1
4π

(ad−bc)k/2(2i)k

(−b+c+(a+d)i)k
if ad − bc > 0,

0 otherwise
(4-8)

[23, Theorem 14.5]. This function is integrable over G(R) exactly when k > 2, so
the latter will be assumed throughout. It would be possible to treat the k = 2 case by
using a pseudocoefficient of πk , but we have not attempted to carry this out (see [43]).

At places p | N , define

fp(g)= dσp⟨σp(g)wp, wp⟩, (4-9)

where dσp is the formal degree and wp is the unit vector fixed above. The formal
degree depends on a choice of Haar measure on G(Qp), which we normalize as in
Section 2. By our choice of wp, the support of fp is contained in one of the two
groups (3-2), according to whether or not σp is ramified.

Finally, we define the global test function

f n
= f∞

∏
p | N

fp

∏
ℓ∤N

f n
ℓ (4-10)

for f∞ of weight k as in (4-8), fp as in (4-9), and f n
ℓ as in (4-6).

Proposition 4.1. With the above definition of f n, the operator R( f n) (defined
in (3-3) taking Haar measure on G(A) as normalized in Section 2) factors through
the orthogonal projection onto the finite dimensional subspace Ak(σ̂ ). On this
space, R( f n) acts diagonally, with the vectors wπ being eigenvectors. In more
detail, given a newform h ∈ Hk(σ̂ ) with Tnh = an(h)h, let w ∈ Ak(σ̂ ) be the vector
associated to πh as in (4-5). Then

R( f n)w = n1−(k/2)an(h)w.
Consequently,

tr(Tn |Sk(σ̂ ))= n(k/2)−1 tr R( f n).
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Remarks. (1) The vector w is defined only up to unitary scaling, but of course
the eigenvalue is independent of the choice.

(2) One can also take fp to be the complex conjugate of the trace of the repre-
sentation ρ inducing σp, if normalized correctly. See Proposition 5.5 and its
remark.

Proof. The first statement is proven in [25, Proposition 2.3], but we need to
reproduce some of the argument here for the second part. Let h ∈ Hk(σ̂ ), let π be
the associated cuspidal representation, and let w = wπ ∈ Ak(σ̂ ). For each place
v |∞N , the test function fv was chosen so that

πv( fv)wv = wv

[23, Corollary 10.26]. Write

w = w∞ ⊗
⊗
p | N

wp ⊗w′
⊗

⊗
ℓ|n
wℓ,

where w′
= ⊗ℓ∤Nnwℓ. We may likewise decompose π as

π = π∞ ⊗
⊗
p | N

πp ⊗π ′
⊗

⊗
ℓ|n
πℓ,

where π ′ is a representation of G ′
=

∏
′

p∤Nn G(Qp). Then letting f ′
=

∏
p∤Nn fp,

it is elementary to show that π ′( f ′)w′
=w′. Therefore (by [23, Proposition 13.17])

R( f n)w = π∞( f∞)w∞ ⊗
⊗
p | N

πp( fp)wp ⊗π ′( f ′)w′
⊗

⊗
ℓ|n
πℓ( f n

ℓ )wℓ

= w∞ ⊗
⊗
p | N

wp ⊗w′
⊗

⊗
ℓ|n
πℓ( f n

ℓ )wℓ.

Since wℓ is an unramified unit vector in the principal series representation πℓ =

π(χ1, χ2) (say), we have πℓ( f n
ℓ )wℓ = λℓwℓ for

λℓ = ℓa/2
a∑

j=0
χ1(ℓ)

jχ2(ℓ)
a− j , a = ordℓ(n)

(see, e.g., [24, Proposition 4.4]). Thus R( f n)w = λw, where λ =
∏
ℓ|nλℓ. The

result now follows by the well-known fact that
∏
ℓ|nλℓ = n1−k/2an(h). The latter

may be proven as follows. If we let v (denoted ϕh in [23]) be the adelic new vector
attached to h, then v is a pure tensor, differing from w only at the places p | N .
A test function f̃ n, say, is used in [23] that differs from f n only at the places p | N .
By the same argument as above,

R( f̃ n)v = v∞ ⊗
⊗
p | N

vp ⊗ v′
⊗

⊗
ℓ|n

R( f n
ℓ )vℓ.

Since vℓ = wℓ at places ℓ|n, the eigenvalues are the same, i.e., R( f̃ n)v = λv. By
[23, Theorem 13.14] (which uses a global argument), λ= n1−k/2an(h). □
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4.2. First main result: the trace of a Hecke operator. We now state our first main
theorem, which is a general formula for the trace of Tn on Sk(σ̂ ). Its proof will
occupy the remainder of Section 4.

Theorem 4.2. Let k > 2, let the level N , nebentypus ω′, and tuple σ̂ = (σp)p | N of
supercuspidals be fixed as at the beginning of Section 4 (ensuring compatibility of
central characters with ω′), and let f = f n as in (4-10). Let T be the product of all
primes p | N with ordp(N ) odd. Then

tr(Tn |Sk(σ̂ ))= n(k/2)−1
[
ω′(n1/2)

1
12
(k − 1)

∏
p | N

dσp +
1
2

∑
M |T

8

((
−nM

1

)
, f

)
+

∑
M |T

∑
1≤r<

√
4n/M

8

((
0 −nM
1 r M

)
, f

)]
,

where ω′(n1/2) is taken to be 0 if n is not a perfect square, dσp is the formal degree
of σp relative to Haar measure fixed in Section 2, and the orbital integrals 8(γ, f )
are defined in Section 3.3.

An orbital integral 8(γ, f ) as above vanishes unless γ is elliptic in G(Qp) for
each p | N. Assuming this condition is satisfied, let E = Q[γ ] be the imaginary
quadratic extension of Q generated by γ , and let h(E), w(E), and dE be the class
number, number of units, and discriminant of E respectively. Then

8(γ, f )= −
2h(E)

w(E)2ω(dE )

sin((k − 1)θγ )
sin(θγ )

∏
p |1γ N

8(γ, fp), (4-11)

where 1γ is the discriminant of γ , θγ = arctan(
√

|1γ |/tr γ ) (interpreted as π
2

if tr γ = 0) is the argument of one of the complex eigenvalues of γ , ω(dE) is
the number of prime factors of dE , and our choice of measure for 8(γ, fp) is
summarized in Section 4.7.3 below.

Remarks. (1) For primes p ∤ N , the local orbital integrals 8(γ, fp) are com-
puted explicitly in Sections 4.4 and 4.5 below. Thus, for the explicit calculation
of tr(Tn |Sk(σ̂ )) it only remains to calculate the local orbital integrals 8(γ, fp)

for p | N .

(2) When n = 1, the set of relevant γ is considerably smaller than what appears
above if T > 1, due to local considerations at p |T . See Theorem 7.1.

The proof of Theorem 4.2 involves results from the rest of Section 4, outlined as
follows. First, the test function f satisfies the hypotheses of Theorem 3.3. Indeed,
the hyperbolic orbital integrals of f∞ vanish as shown in [23, Proposition 24.2], and
the fact that f ∈ Ck is a consequence of the formula for f∞ (see [23, Lemma 14.2]).
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Since we are normalizing measure so that meas(G(Q)\G(A))=
π
3 , the identity

term in Theorem 3.3 is
π

3
f (1)=

1
12(k − 1)

∏
p | N

dσp

∏
ℓ|n

f n
ℓ (1).

From the definition (4-6) of f n
ℓ , we see that f n

ℓ (1) ̸= 0 only if 1 ∈ ZℓM(n)ℓ, which
holds if and only if n is a perfect square. Assuming this is the case,

f n
ℓ (1)= f n

ℓ

((√
n

√
n

)−1(√
n

√
n

))
= ωℓ(

√
n).

Note that by (4-3),∏
ℓ|n
ωℓ(

√
n)=

∏
ℓ∤N
ωℓ(

√
n)=

∏
ℓ| N

ωℓ(
√

n)= ω′(
√

n).

Therefore the identity term is
π

3
f (1)= ω′(

√
n) 1

12(k − 1)
∏
p | N

dσp ,

where it is to be understood that ω′(
√

n)= 0 if n is not a perfect square.
The structure of the first part of Theorem 4.2 is then immediate from Theorem 3.3,

Lemma 3.4, and Proposition 4.1. The set of relevant γ is determined in Section 4.6
below, simply by considering the supports of the local test functions. The vanishing
of 8(γ, f ) if γ is hyperbolic in G(R) or G(Qp) for some p | N is explained in
Proposition 4.3 below.

As for (4-11), the first factor is equal to meas(Gγ (Q)\Gγ (A)) under our normal-
ization of Haar measures on G(A) and Gγ (A). This is shown in Theorem 4.16 below.
The second factor of (4-11) (along with the negative sign) is 8(γ, f∞) as in (4-12)
below. In Sections 4.4 and 4.5 we explicitly compute the local orbital integrals away
from the level, and see in particular that the value is 1 at places not dividing 1γ N .

The local orbital integrals at the places dividing N of course depend on the
choice of supercuspidal representations. The method we use to treat the special
cases of simple supercuspidals and depth zero supercuspidals in the second part of
this paper is presumably applicable to other cases as well.

4.3. Known results about the elliptic terms. We record here some basic properties
of the elliptic orbital integrals that arise in Theorem 4.2.

Proposition 4.3. Let γ be elliptic in G(Q). Then for the test function f = f n

of (4-10):

(1) 8(γ, f ) is absolutely convergent.

(2) 8(γ, f ) depends only on the conjugacy class of γ in G(A) (rather than
in G(Q)), and likewise for any prime ℓ, 8(γ, fℓ) depends only on the G(Qℓ)-
conjugacy class of γ .
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(3) 8(γ, f ) = 0 unless: det γ > 0 and γ is elliptic both in G(R) and in G(Qp)

for each p | M.

(4) If γ is elliptic in G(R) with a complex eigenvalue ρ = reiθ , then

8(γ, f∞)= −r2−k ρ
k−1

− ρ̄k−1

ρ− ρ̄

= −
ei(k−1)θ

− e−i(k−1)θ

eiθ − e−iθ = −
sin((k − 1)θ)

sin(θ)
. (4-12)

Remarks. If γ has discriminant 1γ < 0 and nonzero trace, then we may take
θ = arctan(

√
|1γ |/tr γ ) in (4-12). If γ has the form

(
1

u )
, then we may take θ =

π
2 ,

giving

8

((
u

1

)
, f∞

)
= −

[
ik−1

− (−i)k−1

2i

]
=

{
(−1)k/2 if k is even,
0 if k is odd.

(4-13)

Proof. Nearly everything is proven in [23, pp. 295–302]. The only remaining point
is that 8(γ, fp)= 0 if γ is hyperbolic in G(Qp) for some p | M . For such γ , after
conjugating we can take γ diagonal, so Gγ (Qp)= M(Qp). The orbital integral is
then taken over Mp\Gp and involves integrating over N (Qp) (see (4-15) below).
We can use (3-1) to show that it vanishes (as in (3-4)). □

4.4. Local orbital integrals at primes ℓ ∤ N: hyperbolic case. If γ ∈ G(Q) is
elliptic, then for each prime ℓ, γ is either hyperbolic or elliptic in G(Qℓ). In this
section and the next we evaluate the local elliptic orbital integrals at primes ℓ ∤ N .
The methods are standard and the results are presumably not new. For the dimension
formulas we require the test function fℓ given by (4-7). However, without any extra
work we can consider a general local Hecke operator, and consider an arbitrary
p-adic field.

Thus, we let F be a p-adic field with valuation v, uniformizer ϖ , ring of
integers OF , maximal ideal p =ϖOF , and qv = |OF/p|. Fix an unramified unitary
character ωv : F∗

→ C∗. For an integral ideal nv ⊆ OF , define

M(nv)= {g ∈ M2(OF ) | (det g)OF = nv}

and

f nv (g)=

{
ωv(z) if g = zm ∈ Z(F)M(nv),
0 if g /∈ Z(F)M(nv).

(4-14)

If γ is hyperbolic in G(F), then replacing it by a conjugate if necessary, we
can assume that it is diagonal. In this case, Gγ (F)= M(F) is the set of invertible
diagonal matrices. We may integrate over G(F) using the Iwasawa coordinates∫

G(F)
φ(g) dg =

∫
M(F)

∫
N (F)

∫
Kv

φ(mnk) dm dn dk,
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where Kv = G(OF ). Therefore if φ is M(F)-invariant,∫
Gγ (F)\G(F)

φ(g) dg =

∫
N (F)

∫
Kv

φ(nk) dn dk. (4-15)

We normalize the measures dn and dk by taking meas(N (OF ))= meas(Kv)= 1.

Proposition 4.4. For F as above, suppose γ is hyperbolic in G(F). Assuming
γ ∈ M(nv), and letting1γ ∈OF be its discriminant, we have8(γ, f nv )=|1γ |

−1/2
v .

In particular, if 1γ is a unit, then 8(γ, f nv )= 1.

Proof. We may assume that γ =
(
α
β

)
for some distinct α, β ∈ OF . By (4-15) and

the fact that f nv is right Kv-invariant,

8(γ, f nv )=

∫
F

f nv
((

1 −t
1

) (
α

β

) (
1 t

1

))
dt =

∫
F

f nv
((
α t (α−β)

β

))
dt.

Choose j ≥ 0 so that α−β ∈ϖ jO∗

F . By hypothesis, α, β ∈ OF and αβOF = nv,
so the integrand is nonzero if and only if t (α− β) ∈ OF , which is equivalent to
t ∈ϖ− jOF . Therefore

8(γ, f nv )= meas(ϖ− jOF )= q j
v = |α−β|

−1
v .

Now let D = det γ and r = tr γ . Note that

4D = 4αβ = (α+β)2 − (α−β)2 = r2
− (α−β)2. (4-16)

Therefore
8(γ, f nv )= |α−β|

−1
v = |r2

− 4D|
−1/2
v ,

as claimed. □

4.5. Local orbital integrals at primes ℓ ∤ N: elliptic case. If γ is elliptic over a
field F of characteristic 0, then E = F[γ ] is a quadratic field extension of F , and

Gγ (F)= E∗

(see [23, Proposition 26.1]). The center Z(F) is isomorphic to F∗.

Proposition 4.5. Let F be a local field of characteristic 0, and suppose γ is elliptic
in G(F). Then Gγ (F)/Z(F) is compact.

Proof. If F = R, then Gγ (R)= R[γ ]
∗ ∼= C∗, and the map z 7→ z/|z| gives rise to

C∗/R∗ ∼= SO(2)/{±1}, which is compact.
Now suppose that F is nonarchimedean, with valuation v and integer ring OF .

Let E = F[γ ], and choose a prime element π ∈ OE . Then letting e ∈ {1, 2} be the
ramification index of E/F ,

Gγ (F)/Z(F)∼= E∗/F∗
=

e−1⋃
j=0
π jO∗

E/O
∗

F , (4-17)

which is compact. □
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Consider a p-adic field F , with all notation as in the previous subsection. For γ
elliptic in G(F), the above leads to the following natural choice of G(F)-invariant
measure on the quotient space Gγ (F)\G(F). We assign the compact group Gγ (F)
a total volume of 1. We assign G(F) the Haar measure for which G(OF ) has
measure 1. Together these choices determine the quotient measure via∫

Gγ (F)\G(F)

∫
Gγ (F)

φ(xy) dx dy =

∫
G(F)

φ(g) dg.

In fact, by our normalization, if φ is left Gγ (F)-invariant, then∫
Gγ (F)\G(F)

φ(y) dy =

∫
G(F)

φ(g) dg, (4-18)

when γ is elliptic in G(F).
For such γ , E = F[γ ] is a quadratic extension of F . Fix an F-integral basis {1, ε}

for the ring of integers OE , so

OE = OF +OF ε. (4-19)

We will need some facts about orders and lattices in E . Recall that an F-order in E
is a subring containing OF which has rank 2 as an OF -module.

Proposition 4.6. Let OE/F denote the set of all F-orders in E. For r ≥ 0 and ε as
above, define

Or = OF + prε,

where p is the maximal ideal of OF , so in particular O0 = OE . Then

OE/F = {Or | r ≥ 0}.

Furthermore, letting e = e(E/F) be the ramification index, for r > 0 we have

[O∗

E : O∗

r ] =

{
qr
v if e = 2,

qr
v + qr−1

v if e = 1.
(4-20)

Proof. See also [40, Sections 6.6 and 6.7] for the case F = Qp. Here we loosely
follow Okada [42, Section 2.3]. Clearly Or ∈ OE/F . Conversely, let O ∈ OE/F .
The elements of O are integral over E [41, Proposition I.2.2] so O ⊆ OE . Hence
there exists α ∈ O ⊆ OE such that

O = OF +OF α.

Since α /∈ OF , by topological considerations we see that there exists r ≥ 0 such
that α ∈ OF +ϖ rOE = Or but α /∈ OF +ϖ r+1OE = Or+1. Hence

Or+1 ⊊O ⊆ Or .
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We see easily that Or/Or+1 ∼= pr/pr+1 ∼= OF/p as OF -modules. Since the latter is
1-dimensional as a vector space over OF/p, it has no nonzero proper submodules.
It follows that O = Or .

For the second part, consider the sequence

1 → O∗

F/(1 + pr )→ O∗

E/(1 + prOE)→ O∗

E/O
∗

r → 1,

where the maps are the obvious ones. It is straightforward to check that the sequence
is exact. Therefore

[O∗

E : O∗

r ] =
|O∗

E/(1 + prOE)|

|O∗

F/(1 + pr )|
.

Let e = e(E/F), so that pOE = Pe, where P is the maximal ideal of OE . Then

|O∗

E/(1 + prOE)| = |O∗

E/(1 +Per )|

= [O∗

E : 1 +P]

er∏
j=2

[1 +P j−1
: 1 +P j

] = (qE − 1) qer−1
E

(see [41, p. 139]). Here,

qE = |OE/P| =

{qv if e = 2,
q2
v if e = 1.

Likewise |O∗

F/(1 + pr )| = (qv − 1) qr−1
v , and (4-20) follows immediately. □

For the purposes of this subsection, a lattice in F2
= F × F is an OF -submodule

of rank 2. The group F∗ acts by multiplication on the set of lattices, and the orbits
are called lattice classes. The map g 7→ L = g

(OF
OF

)
from G(F) to the set of lattices

in F2 induces a bijection between G(F)/Kv and the set of lattice classes, since Kv

is the stabilizer of
(OF
OF

)
.

With notation as in (4-19), we may identify a lattice L ⊆ F2 with the lattice
(1 ε)L ⊆ E , so that in particular

(OF
OF

)
is identified with OE . Given η ∈ E∗, it acts

by scalar multiplication on the set of lattices in E , and by matrix multiplication (via
E = F[γ ]) on the lattices in F2. In general, these actions are not compatible with
the above identification. However, as shown in [23, Lemma 26.20], after possibly
replacing γ (or equivalently, ε) by a G(F)-conjugate, these two actions do coincide
for all η ∈ E∗. Explicitly, for any g ∈ G(F),

η(1 ε)g
(
OF

OF

)
= (1 ε)ηg

(
OF

OF

)
,

where on the left η acts as a scalar via η(1 ε)= (η ηε), and on the right it is acting
by matrix multiplication. We will assume that γ is chosen in this way, as we may
since the value of the orbital integral depends only on γ ’s conjugacy class in G(F).
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We associate to any lattice L ⊆ E the order

OL = {µ ∈ E | µL ⊆ L}.

This depends only on the lattice class to which L belongs. Since E is local, every
lattice in E is principal in the sense that there exists y ∈ E∗ such that yL = OL .
(One may adapt the proof of [23, Proposition 26.13], which follows [33]).

Given an order O, L is a proper O-lattice if OL = O. Two proper O-lattices yO
and zO (for y, z ∈ E∗) are equal if and only if y/z ∈ O∗. Therefore the set of all
proper O-lattices corresponds bijectively with E∗/O∗.

Lemma 4.7. Suppose (det γ )OF = nv and g ∈ G(F). Then for f nv given by (4-14),
f nv (g−1γ g) ̸= 0 if and only if γ ∈ OL for L = g

(OF
OF

)
.

Proof. We observe that

γ ∈OL ⇐⇒ γ L ⊆ L ⇐⇒ g−1γ g
(
OF

OF

)
⊆

(
OF

OF

)
⇐⇒ g−1γ g ∈ M2(OF ).

Given that ordv(det γ )= ordv(nv), the above is equivalent to g−1γ g belonging to
the support Z(F)M(nv) of f nv . □

Proposition 4.8. Let f nv be given by (4-14). Then for γ ∈ G(F) elliptic, the orbital
integral

8(γ, f nv )=

∫
Gγ (F)\G(F)

f nv (g−1γ g) dg

vanishes unless some conjugate of γ lies in Z(F)M(nv). Taking γ ∈ M(nv), with
measure normalized as in (4-18) we have

8(γ, f nv )= eγ

nγ∑
r=0

[O∗

E : O∗

r ],

where E = F[γ ] is the associated quadratic extension of F with ramification index
eγ ∈ {1, 2} and ring of integers OE = OF +OF ε,

Or = OF + prε

is the order of index qr
v inside OE , and nγ ≥ 0 is defined by Oγ = OF +OF γ = Or

for r = nγ . In particular, if Oγ = OE and p is inert in E , then 8(γ, f nv )= 1.

Remarks. (1) Let Pγ (X) ∈ OF [X ] be the characteristic polynomial of γ . If Pγ is
irreducible modulo p, then eγ = 1 and Oγ = OE [50, p. 18]. Hence 8(γ, f nv )= 1
in this case.

(2) The index [O∗

E : O∗
r ] is given explicitly in (4-20) when r > 0 (and is 1 when

r = 0).
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(3) Let dE/F = det
( 1

1
ε
ε̄

)2OF be the relative discriminant (with the bar denoting
Galois conjugation), write γ = s + bε for s, b ∈ OF , and let 1γ = r2

− 4D be the
discriminant of γ . Then

nγ = ordv(b)=
1
2(ordv(1γ )− ordv(dE/F )). (4-21)

This follows from the fact that the relative discriminant of

Oγ = OF +OF γ = OF +OF bε

is given on the one hand by

det
(

1 bε
1 bε̄

)2

OF = b2dE/F ,

and also (using (4-16)) by

det
(

1 γ

1 γ

)2

OF = (γ − γ )2OF =1γOF .

Further, if F is the completion of a number field L at a place v, {1, εL} is an
integral basis of L[γ ] over L , and we write γ = sL + bLεL , then (4-21) also holds
with bL in place of b. Indeed the same argument applies in the global case to give
b2

LdL[γ ]/L = 1γOL . By the fact By the fact that the global discriminant is the
product of the local ones and (due to γ being elliptic in G(F)) there is only one
prime of L[γ ] lying over v, we see that ordv(bL)= ordv(b).

(4) If E = Qℓ[
√

d] for d ∈ Z square-free, then (see [36, Section 6.10], for example)

OE =

{
Z2

[1
2(1 +

√
−3)

]
if ℓ= 2, E = Q2[

√
−3],

Zℓ[
√

d] otherwise.
(4-22)

In particular, if ℓ > 2 and the valuation α = vℓ(1γ ) of the discriminant of γ is odd,
then eγ = 2, nγ =

1
2(α− 1), and assuming γ ∈ M(n)ℓ,

8(γ, f n
ℓ )= 2

(α−1)/2∑
r=0

ℓr . (4-23)

Proof of Proposition 4.8. The first statement is clear. Now suppose γ ∈ M(nv).
By (4-18),

8(γ, f nv )=

∫
G(F)

f nv (g−1γ g) dg.

The integrand is right Kv-invariant as a function of g. Since Kv is open with
measure 1, G(F)/Kv is discrete with the counting measure. Therefore

8(γ, f nv )=
∑

g∈G(F)/Kv

f nv (g−1γ g).



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 379

By our earlier remarks, we can view the sum as a sum over the lattice classes, and
by Lemma 4.7, 8(γ, f nv ) is equal to the number of lattice classes preserved by γ .

Since γ ∈ E is integral over OF , Oγ = OF +OF γ is an order in E (see [23,
Lemma 26.10]). We claim that γOr ⊆ Or if and only if 0 ≤ r ≤ nγ , where qnγ

v is
the index of Oγ . Indeed,

γOr ⊆ Or ⇐⇒ γ ∈ Or ⇐⇒ Oγ ⊆ Or ⇐⇒ r ≤ nγ .

It follows that

8(γ, f nv )=

nγ∑
r=0

(# of classes of proper Or -lattices).

Recall from earlier that the set of proper Or -lattices corresponds bijectively with
E∗/O∗

r . Since we are counting F∗-classes of lattices rather than lattices themselves,
we find

8(γ, f nv )=

∑
0≤r≤nγ

|E∗/F∗O∗

r | (Oγ = Onγ ).

Because O∗

F ⊆ O∗
r , it follows from (4-17) that |E∗/F∗O∗

r | = eγ [O∗

E : O∗
r ], where

eγ ∈ {1, 2} is the ramification index of E/F . The result now follows. □

Corollary 4.9. For f nv as in (4-14), let γ ∈ M(nv) have characteristic polynomial
Pγ (X) = X2

− r X + D ∈ OF [X ] with discriminant 1γ = r2
− 4D. Then if γ is

hyperbolic in G(F), 8(γ, f nv ) = |1γ |
−1/2
v . If γ is elliptic in G(F) and Pγ (X)

does not have a double root in OF/p, then 8(γ, f nv )= 1.
Consequently, for γ ∈ M(nv) elliptic or hyperbolic in G(F), 8(γ, f nv )= 1 if

1γ /∈ p.

Proof. The hyperbolic case is just a restatement of Proposition 4.4. Suppose γ is
elliptic. If Pγ does not have a double root in OF/p, then it cannot have a simple
root either, because otherwise that root would lift to a root in F by Hensel’s lemma.
By the first remark after Proposition 4.8, 8(γ, f nv )= 1.

Furthermore, suppose p ∤ 2, and note that P ′
γ (X) = 2X − r vanishes only at

r
2 ∈ OF/p. On the other hand,

Pγ
(

r
2

)
= D −

r2

4
,

which shows that Pγ has a repeated root modulo p if and only if p | (r2
− 4D).

Hence when p ∤ 2 and 1γ /∈ p, 8(γ, f nv )= 1.
If p|2 and (r2

−4D) /∈ p, then r ∈O∗

F , and therefore P ′
γ (X)= 2X −r is nonzero

mod p. Hence Pγ does not have a repeated root, and 8(γ, f nv ) = 1 in this case
as well. □
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Although the result of Proposition 4.8 appears complicated, it is not so hard
to evaluate it by hand, using the remarks that follow the proposition and standard
results about quadratic extensions of p-adic fields.

Example 4.10. Let ℓ be a prime not dividing D, and let γ =
(0

1
−D

0

)
. Then for fℓ

as in (4-7),

8(γ, fℓ)=


2 if ℓ= 2 and D ≡ 1, 5, 7 mod 8,
4 if ℓ= 2 and D ≡ 3 mod 8,
1 if ℓ ̸= 2.

Remark. Some additional examples are given in Section 7.5.

Proof. First suppose ℓ ̸= 2. Since the discriminant −4D of Pγ (X)= X2
+ D is not

divisible by ℓ, 8(γ, fℓ)= 1 by Corollary 4.9.
Now suppose ℓ= 2, so D is odd since ℓ ∤ D. Recall that the squares of Q∗

2 are
exactly the elements of the set 22Z(1 + 8Z2) [49, Theorem II.4]. Thus −D is a
square in Q∗

2 if and only if
D ≡ 7 mod 8.

When this congruence is satisfied, γ is hyperbolic, and by Corollary 4.9,

8(γ, f2)= |−4D|
−1/2
2 = 2.

Now suppose that −D is not a square in Q2, i.e., it is not 1 mod 8. We recall
some facts about the quadratic extensions of Q2 (see, e.g., [36, Chapter 6]). There
are exactly seven such extensions, namely Q2[

√
d] for

d = −1,±3,±2,±6,

with Q2[
√

−3] being the unique unramified quadratic extension. With the exception
of d = −3, the ring of integers is Z2[

√
d]. For d = −3, the ring of integers is

Z2
[1

2(1+
√

−3)
]
. Under the given hypothesis, −D ≡ d mod 8, where d ∈ {−1,±3}.

So −D =dx for some x ∈1+8Z2, and hence −D =dy2 for some y ∈Z∗

2. Therefore,
writing E = Q2[

√
−D], we have OE = Oγ unless d = −3. In the former case,

E/Q2 is ramified, so by Proposition 4.8,

8(γ, f2)= 2 (D ≡ 1, 5 mod 8).

If D ≡ 3 mod 8, then OE = Z2 + Z2ε for ε =
1
2(1 +

√
−3). Hence

Oγ = Z2 + Z2
√

−D = Z2 + Z2
√

−3 = Z2 + Z2 2ε.

So in the notation of Proposition 4.8, nγ =1. Since E/Q2 is unramified, using (4-20),
we have

8(γ, f2)= [O∗

E : O∗

E ] + [O∗

E : O∗

γ ] = 1 + 3 = 4. □
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4.6. The set of relevant γ . Here we determine explicitly the finite set of conjugacy
classes in G(Q) that can have a nonzero contribution to the trace of R( f ) for f as
in (4-10). Writing N =

∏
p | N pNp , define the square-free integers

S =

∏
p | N ,Np even

p, T =

∏
p | N ,Np odd

p.

We say that an elliptic element γ ∈ G(Qp) is unramified (at p) if vp(det γ ) is even,
and ramified otherwise.

Lemma 4.11. Let γ ∈ G(Q) be elliptic, and suppose8(γ, f ) ̸= 0 for f = f n as in
(4-10). Then there exists a unique positive divisor M |T and a scalar z ∈ Q∗ such
that tr(γ z)≥ 0 is an integer and

det(zγ )= nM.

In particular, the rational canonical form of zγ lies in M2(Z).

Proof. If p |S, then γ is unramified at p since fp is supported in Z p Kp. For p |T ,
the support of fp has both ramified and unramified elements (see (3-2)). Let M be
the product of those primes p |T at which γ is ramified. For each prime ℓ ∤ N , some
conjugate of γ must lie in Supp( f n

ℓ )= ZℓM(n)ℓ since otherwise the integrand of
8(γ, f ) vanishes. It follows that vp(det γ/nM) is even for all primes p, where vp is
the p-adic valuation. Hence det γ ∈±nMQ∗2, where Q∗2 is the set of squares in Q∗.
Because f∞ is supported on G(R)+, there is a scalar z ∈Q∗ such that det(zγ )=nM ,
as claimed. Because8(zγ, f )=8(γ, f ) ̸=0, some G(Afin)-conjugate of zγ lies in∏

p | M

(
1

p

)
Kp ×

∏
p |(ST/M)

Kp ×

∏
ℓ∤N

M(n)ℓ ⊆ M2(Ẑ) (4-24)

(recall that fp is supported in the group J of (3-2)). In particular, tr(zγ )∈ Ẑ∩Q = Z.
Scaling z by −1 if necessary, we may arrange further that tr(zγ )≥ 0. □

Lemma 4.12. Let F be a p-adic field, and γ an elliptic element of G(F) with
tr γ ∈ OF and det γ ∈ p. Then tr γ ∈ p.

Proof. Denote the characteristic polynomial of γ by

Pγ (X)= X2
− d X + det γ,

where d = tr γ . Notice that Pγ (0) ≡ 0 mod p. Furthermore, P ′
γ (0) ≡ −d mod p.

If d is nonzero modulo p, then by Hensel’s lemma, Pγ has a root in p, contradicting
the fact that γ is elliptic in G(F). Hence d ∈ p. □

Proposition 4.13. For γ ∈ G(Q) elliptic, and f = f n the test function defined
in (5-21),8(γ, f )= 0 unless the conjugacy class of γ has a representative in G(Q)
of the form

( 0
1

−nM
r M

)
for some M |T and 0 ≤ r <

√
4n/M.
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Remark. If the characteristic polynomial of γ =
( 0

1
−nM

r M

)
has a root in Qp, then

8(γ, f )= 0 by Proposition 4.3.

Proof. Let o be an elliptic conjugacy class in G(Q) with 8(o, f ) ̸= 0. By
Lemma 4.11, o has a unique representative γ ∈ G(Q)with characteristic polynomial
of the form

Pγ (X)= X2
− d X + nM ∈ Z[X ],

where d = tr γ ≥ 0 and M |T . By Proposition 4.3, we know that γ is elliptic
in G(Qp) for each p | N and also in G(R). It follows by Lemma 4.12 that M |d.
Write d = r M . Given that γ is elliptic in G(R), we have d2 < 4nM , i.e.,

r2 M < 4n.

So, taking γ in rational canonical form as we may, it has the form

γ =

(
0 −nM
1 r M

)
, 0 ≤ r <

√
4n/M . □

4.7. The measure of Gγ (F)\Gγ (AF). Let F be a number field with adele ring AF ,
and let γ be an elliptic element of G(F). With Gγ the centralizer of γ in G, here we
will compute the measure of Gγ (F)\Gγ (AF ). The result is given in Theorem 4.16
below. A related discussion can be found in [16, Section 5].

The basic idea is straightforward: we know that Gγ (AF )= AF [γ ]
∗
= A∗

E , where
E = F[γ ] is a quadratic extension of F . (The proof of this fact given in [23,
Proposition 26.1] for F = Q applies to any number field.) The center of G(AF ) is
isomorphic to A∗

F , so
Gγ (AF )∼= A∗

F\A∗

E (4-25)

topologically and algebraically. Finally, Gγ (F)∼= F[γ ]
∗
= E∗ by loc. cit., so

Gγ (F)\Gγ (AF )= A∗

F E∗
\A∗

E
∼= (F∗

\A∗

F )\(E
∗
\A∗

E)
∼= (F∗

\A1
F )\(E

∗
\A1

E),

where the superscript 1 indicates ideles of norm 1, and the latter isomorphism
comes from modding out by an embedded copy of R+ in A∗

F ⊆ A∗

E . For any
number field L the measure of L∗

\A1
L is computed in Tate’s thesis under suitable

normalization, which we may use with L = E, F to obtain the measure of the above
space. However, as will be seen, we need to be very careful about the normalization
of measures, particularly in the last step.

4.7.1. Quotient measure. Recall that if H < G are unimodular locally compact
groups with Haar measures µH and µG and H closed in G, there is a unique left
G-invariant quotient measure µG/H on G/H satisfying∫

G/H

[∫
H

f (gh) dµH (h)
]

dµG/H (g)=

∫
G

f (g) dµG(g) for all f ∈ Cc(G).
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Lemma 4.14. Let H, K and T be unimodular locally compact groups, with Haar
measures µT , µH , µK , respectively. Assume that H < K , and let G = T × K
and J = T × H. Then relative to the product measures µG = µT × µK and
µJ = µT ×µH , we have µG/J = µK/H on the group G/J ∼= K/H.

Proof. For f ∈ Cc(G),∫
K/H

[∫
J

f (xy) dµJ (y)
]

dµK/H (x)

=

∫
K/H

[∫
H

∫
T

f (xht) dµT (t) dµH (h)
]

dµK/H (x)

=

∫
K

[∫
T

f (kt) dµT (t)
]

dµK (k)=

∫
G

f (g) dµG(g). □

4.7.2. A volume from Tate’s thesis. Let L be a number field with adele ring AL =∏
′

v Lv, where v ranges over the places of L . In Tate’s thesis, measures µv on the
local multiplicative groups L∗

v are normalized as follows. If v is real,

dµv(x)=
dx
|x |

(4-26)

for x ∈ R∗. If v is complex,

dµv(z)= 2
dx dy

x2 + y2 =
2
r

dr dθ (4-27)

for z = x + iy = reiθ
∈ C∗. Finally, at a nonarchimedean place v, µv is the Haar

measure on L∗
v satisfying

µv(O∗

v)= (NDv)
−1/2, (4-28)

where Ov is the ring of integers of Lv , Dv is the different of Lv and NDv =|Ov/Dv|.
Taking the restricted product of the above local measures, we obtain a Haar measure

µL =

∏
v

′

µv on A∗

L .

Let L∗
∞

=
∏
v |∞

L∗
v; we embed it into A∗

L by taking 1’s at the nonarchimedean
components. We embed R+ into L∗

∞
and hence into A∗

L via

λ(t)= (t1/n, t1/n, . . . , t1/n),

where n = nL = [L : Q]. Then if L has r1 real embeddings and 2r2 complex
embeddings, for t ∈ R+ we have

|λ(t)|AL =

∏
v |∞

|t |1/n
v = t (r1+2r2)/n

= t

(recall that in the ideles we take the square of the usual absolute value at the complex
places).
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Let T ∼= R+ denote the image of the map λ. We give it the Haar measure dt/t .
We have

A∗

L
∼= T × A1

L , (4-29)

where A1
L is the subgroup consisting of ideles of norm 1. There is a unique

measure µ1
L on A1

L
∼= A∗

L/T such that

µL =
dt
t

×µ1
L .

The multiplicative group L∗ embeds diagonally in A∗

L as a discrete subgroup,
and by the product formula, L∗

⊆ A1
L .

Theorem 4.15 [54, Theorem 4.3.2]. The group L∗ is discrete and cocompact in A1
L .

Giving L∗ the counting measure, for µ1
L as above we have

µ1
L(L

∗
\A1

L)=
2r1(2π)r2h(L)RL

|dL |1/2wL
,

where h(L), RL , dL and wL are the class number, regulator, discriminant, and
number of roots of unity of L , respectively.

Remark. This is the residue of the Dedekind zeta function of L at s = 1.

4.7.3. Haar measure for orbital integrals. Let γ ∈ G(F) be an elliptic element.
Here we define a Haar measure η on Gγ (AF ) which is convenient to use for
computing the elliptic orbital integrals. Given a nonarchimedean place v of F ,
γ is necessarily either elliptic or hyperbolic in G(Fv). We select a compact open
subgroup Hv of Gγ (Fv) = Z(Fv)\Gγ (Fv) as follows. If γ is elliptic in G(Fv),
then the full group is compact by Proposition 4.5, and we take Hv = Gγ (Fv). If γ
is hyperbolic in G(Fv), then Gγ (Fv) is conjugate to the diagonal subgroup M(Fv).
In this case we define Hv to be the subgroup of Gγ (Fv) taken by this conjugation
to M(Ov)∼= O∗

v , where Ov is the ring of integers of Fv.
Next, we choose a local Haar measure ηv on Gγ (Fv) for each place v of F

as follows. If v ∤ ∞, we normalize ηv so that ηv(Hv) = 1. If v |∞ is a real
place of F and γ is elliptic over Fv, we take ηv(Gγ (Fv)) = 1. If v |∞ and γ is
hyperbolic over Fv, then Gγ (Fv)∼= M(Fv)/F∗

v
∼= F∗

v , and we give it the measure
dηv(x)= dµv(x) for µv as in (4-26) or (4-27).2

Note that
Gγ (AF )=

∏
v

′

Gγ (Fv),

where the product is restricted relative to the subgroups Hv . We let η denote the Haar
measure on Gγ (AF ) which is the restricted product of the above local measures ηv .

2With F = Q, these are the measures that are used in the local orbital integral calculations in the
present paper. See Sections 4.4 and 4.5 for finite ℓ ∤ N and [23, Section 26.2] for the ℓ= ∞ calculation
yielding (4-12). For ℓ| N , in Section 6 we will use the same measure used in Section 4.5.
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As explained in (4-25), for E = F[γ ] we have

Gγ (AF )∼= A∗

E/A
∗

F .

So another natural measure on Gγ (AF ) is the quotient measure µE/F coming from
the Haar measures µE and µF on A∗

E and A∗

F obtained by taking L = E and L = F
respectively in Section 4.7.2.

Let us next determine the constant relating the two measures η and µE/F . For
a place v of F and a place w of E lying over v, we have defined the measures
µv and µw on F∗

v and E∗
w in Section 4.7.2. We let µ′

v =
∏
w |v µw be the product

measure on E∗
v =

∏
w |v E∗

w, and define µ′
v to be the corresponding quotient measure

on E∗
v/F∗

v
∼= Gγ (Fv). Then µE/F =

∏
′

v µ
′
v where v runs over the places of F . For

each v we need to find the constant relating ηv to µ′
v.

Let v be a nonarchimedean place of F . Suppose γ is hyperbolic in G(Fv), so
that ηv(M(Ov))= 1. Let w,w be the primes of E lying over v. Then

Ev := E ⊗ Fv ∼= Ew ⊕ Ew,

and µ′
v = µw ×µw on

Gγ (Fv)∼= E∗

v
∼= E∗

w × E∗

w
∼= F∗

v × F∗

v .

Hence

µ′

v(O
∗

w ×O∗

w)= µw(O∗

w)µw(O
∗

w)= (NDw)
−1/2(NDw)

−1/2

by (4-28). (This is in fact equal to NDv, but we prefer to leave it unsimplified for
global reasons.) Likewise, the diagonally embedded subgroup F∗

v ⊆ E∗
v has measure

µv(O∗
v) = (NDv)

−1/2. Therefore the quotient measure µ′
v on E∗

v/F∗
v

∼= Gγ (Fv)
gives the open subgroup (O∗

w ×O∗

w)/O
∗
v

∼= M(Ov) the measure (NDw)
−1/2(NDw)

−1/2

(NDv)−1/2 .
Consequently,

ηv =
(NDw)

1/2(NDw)
1/2

(NDv)1/2
µ′

v

for such v.
Now suppose γ is elliptic in G(Fv) (again with v nonarchimedean). Then there

is a unique valuation w of E extending v, and Ew = Fv[γ ] is a quadratic extension
of Fv . Let Ow be its ring of integers, with a uniformizerϖ . Then for the ramification
index ev = e(w/v) ∈ {1, 2},

Gγ (Fv)∼= E∗

w/F∗

v =

ev−1⋃
j=0

ϖ jO∗

w/O
∗

v

as in (4-17). By definition of the local componentµw ofµE , µw(O∗
w)= (NDw)

−1/2.
The local component of µF at v gives meas(O∗

v) = (NDv)
−1/2. Therefore the
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quotient measure µ′
v satisfies

µ′

v(O
∗

w/O
∗

v)=
(NDw)

−1/2

(NDv)−1/2 .

Since ηv(Gγ (Fv))= 1, it follows that

ηv =
1
ev

(NDw)
1/2

(NDv)1/2
µ′

v

for such v.
Suppose Fv = R and γ is elliptic in G(Fv). Then Ew = C∗ and Gγ (Fv)= C∗/R∗.

A set of representatives in C∗ is {eiθ
| θ ∈ [0, π)}. Since the measure µv(x)= dx/|x |

on R∗ matches the factor dr/r in µw(z)= (2dr dθ)/r given in (4-27), it follows that

µ′

v(C
∗/R∗)= 2π.

Since ηv(Gγ (R))= 1,

ηv =
1

2π
µ′

v

for such v.
If Fv = R or C and γ is hyperbolic in G(Fv), then as in the analogous nonar-

chimedean case,
E∗

v = Ew × Ew ∼= F∗

v × F∗

v ,

and the quotient measure on Gγ (Fv) ∼= E∗
v/F∗

v
∼= F∗

v is µ′
v(x) = µv(x). In such

cases we have likewise defined ηv = µv. So ηv = µ′
v for such v.

Putting everything together, we have shown that

η =

[ ∏
v∤∞

1
ev

∏
w |v(NDw)

1/2

(NDv)1/2

][ ∏
v |∞,γ elliptic in G(Fv)

1
2π

]
µE/F .

We can simplify using three well-known facts from algebraic number theory (see,
e.g., [41, Section III.2]):

(1) ev = 2 if and only if pv |dE/F where dE/F is the relative discriminant.

(2) The absolute discriminant of a local field is the absolute norm of the different.

(3) The product of the local discriminants is the global discriminant.

It follows that taking dF , dE ∈ Z to be the discriminants of F and E respectively,

η =
|dE |

1/2

|dF |1/2

1
2ωF (dE/F )

1
(2π)αγ

µE/F , (4-30)

where ωF (dE/F ) is the number of distinct prime factors of dE/F in OF , and αγ is
the number of (real) archimedean places v of F for which γ is elliptic in G(Fv).
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4.7.4. The quotient measure. We turn now to the quotient space whose measure
we need to compute, namely Gγ (F)\Gγ (AF )∼= E∗A∗

F\A∗

E
∼= A∗

E/A
∗

F E∗. We have
defined the quotient measure µE/F on A∗

E/A
∗

F . By (4-29), we have

A∗

F = T × A1
F , A∗

E = T × A1
E .

We regard A∗

F as a subset of A∗

E , so T is the set

T = {(a, a, . . . , a) ∈ E∗

∞
| a > 0} ⊆ A∗

E .

We will use Lemma 4.14 to relate µE/F to the quotient measure on A1
E/A

1
F coming

from the measures µ1
E and µ1

F defined below (4-29). Recall that T is given the
measure dµT (t) = dt/t , where t1/nE = a for nE = [E : Q]. In terms of the
parameter a,

dµT (t)= nE
da
a
.

Notice that this is not the measure given to R+ upon taking L = F in (4-29), which
is nF (da/a)= (nF/nE) dµT (t). In other words, for µT normalized as above, µ1

F
is defined by

µF =
1

[E : F]
µT ×µ1

F .

Therefore

µF = µT ×
1

[E : F]
µ1

F = µT ×
1
2µ

1
F .

Hence by Lemma 4.14, the quotient measure µE/F on A∗

E/A
∗

F
∼= A1

E/A
1
F is the

same as the quotient measure coming from µ1
E and 1

2µ
1
F . We denote this quotient

measure by µ1
E/F .

Finally, taking the quotient by the discrete subgroup E∗ we have

µE/F (A
∗

E/E∗A∗

F )= µ1
E/F

(
(A1

E/E∗)

(A1
F E∗/E∗)

)
=
µ1

E(A
1
E/E∗)

1
2µ

1
F (A

1
F/F∗)

. (4-31)

As a technical point, the measure on the disjoint union

A1
F E∗

=
⋃

α∈E∗/F∗

A1
F α

is simply 1
2µ

1
F on each component since E∗ is given the counting measure. This

explains why the quotient measure on A1
F E∗/E∗ is the same as 1

2µ
1
F on A1

F/F∗.
Applying Theorem 4.15 and (4-30) to (4-31), we immediately obtain the following.

Theorem 4.16. Let γ ∈ G(F) be an elliptic element, and let η be the measure
introduced in Section 4.7.3. Then for E = F[γ ],

η(Gγ (F)\Gγ (AF ))=
2r1(E)(2π)r2(E)h(E)RE

2r1(F)(2π)r2(F)h(F)RF
·
wF

wE
·

2
2ωF (dE/F )(2π)αγ

,

with notation as in Theorem 4.15, where ωF (dE/F ) is the number of distinct prime
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ideals of OF dividing the relative discriminant dE/F , and αγ is the number of (real)
archimedean places v of F for which γ is elliptic in G(Fv).

In the special case where F = Q and E = Q[γ ] is quadratic imaginary, we have
αγ = 1, wF = 2, h(F)= RE = RF = 1, so

η(Gγ (Q)\Gγ (A))=
2h(E)
wE 2ω(dE )

, (4-32)

where ω(dE) is the number of distinct prime factors of the discriminant dE .

With the above in place, the proof of Theorem 4.2 is complete.

5. The case N = S2T 3: proof of Theorem 1.1

Henceforth, we will focus on the case where N = S2T 3 for S and T relatively prime
square-free integers. In order to prove Theorem 1.1, by Theorem 4.2 we just need
to compute the orbital integrals at the primes dividing N . We begin in Sections 5.1
and 5.2 by reviewing the construction of supercuspidals of conductor p2 (depth zero
case) and of conductor p3 (simple case), giving explicit formulas for the local test
functions to be used. In Section 5.3 we outline the global setup, and then compute
the required orbital integrals in Section 6 to complete the proof.

5.1. Depth zero supercuspidal representations. Let F be a p-adic field, with
ring of integers O, maximal ideal p = ϖO, and residue field k = O/p of size q.
The supercuspidal representations of G(F) of minimal conductor are the so-called
depth zero supercuspidals, with conductor p2. They have the form σ = c-IndG(F)

Z K (ρ),
where ρ is a (q − 1)-dimensional representation of K = G(O) inflated from a
cuspidal representation of G(k), and c-Ind denotes compact induction. Some of
their properties are summarized below (see, e.g., [29] for more detail).

Temporarily, write G = G(k). Let L be the unique quadratic extension of k. The
multiplicative group L∗ embeds as a nonsplit torus T ⊆ G, with k∗ mapping onto
the center Z ⊆ G. A character ν : L∗

→ C∗ is primitive (or regular) if ν ̸= νq , or
equivalently, if ν is not of the form χ ◦ N L

k for a character χ of k∗, where N L
k is

the norm map. There are q(q − 1) primitive characters of L∗. Given a character ω
of k∗, let [ω] denote the set of primitive characters ν satisfying ν|k∗ = ω. By [29,
Proposition 2.3], the cardinality of [ω] is

Pω =


q − 1 if q is odd and ω(q−1)/2 is trivial,
q + 1 if q is odd and ω(q−1)/2 is nontrivial,
q if q is even.

(5-1)

Let U =
(1

0
k
1

)
be the upper triangular unipotent subgroup of G. A representation

of G is cuspidal if it does not contain a U -fixed vector. Fix a nontrivial additive
character

ψ : k → C∗.
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We will always take ψ(x)= e(x/p)= e2π i x/p if k = Z/pZ. We may view ψ as a
character of U in the obvious way.

Given a primitive character ν of T, there is a unique irreducible cuspidal repre-
sentation ρν of dimension q − 1 satisfying

IndG
ZU (k)(ν⊗ψ)= ρν ⊕ IndG

T ν.

Every cuspidal representation arises in this way, and ρν ∼= ρν′ if and only if ν ′
∈

{ν, νq
}.

We have the following well-known formula for the character of ρν . For x ∈ G(k),

tr ρν(x)=


(q − 1)ν(x) if x ∈ Z ,
−ν(z) if x = zu, z ∈ Z , u ∈ U, u ̸= 1,
−ν(x)− νq(x) if x ∈ T, x ̸∈ Z ,
0 if no conjugate of x belongs to T ∪ ZU .

(5-2)

Because ν(c−1xc)= ν(xq) for all c ∈ NG(T)− T, there is no ambiguity evaluating
tr ρν(y) using the third row above if y is conjugate in G(k) to x ∈ T.

Working now in the group G(F), given the surjection K → G(k) obtained by
reduction modulo p, we may view ρν as a representation of K . Its central character
is given by z 7→ ν(z(1 + p)) for z ∈ O∗. By choosing a complex number ν(ϖ) of
norm 1, we may extend ρν to a representation of Z K , and then

σν = c-IndG(F)
Z K (ρν)

is an irreducible unitary supercuspidal representation of conductor p2. Its formal
degree under the normalization meas(K )= 1 is

dσν = dim ρν = q − 1. (5-3)

The only equivalences among the representations σν are σν ∼= σνq (provided νq(ϖ)

is defined to be the same complex number as ν(ϖ)).
We define the test function fp : G(F)→ C by

fp(g)=

{
tr ρν(g) if g ∈ Z K ,
0 otherwise,

(5-4)

where tr ρν is given in (5-2).

Proposition 5.1. Suppose σν has trivial central character. Then its root number is
given by

ϵν = ϵ
( 1

2 , σν, ψ
)
=

{
−(−1)(q+1)/r if q is odd,
−1 if q is even,

(5-5)

where r is the order of ν in the character group of L∗. Suppose further that q is odd
and 4 ∤ (q − 1) so that α2

= −1 for some α ∈ L∗
− k∗. Then

ϵν = −ν(α). (5-6)
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Remark. Under the hypothesis, ν|k∗ is trivial, which is equivalent to r |(q + 1)
when q is odd.

Proof. The root number coincides with the Atkin–Lehner sign of the representation
[48, 3.2.2 Theorem]. We will show that it is a Gauss sum for ν, which can be
evaluated explicitly. The Atkin–Lehner sign ϵν is defined by

σν

((
1

ϖ 2

))
ϕ = ϵν ϕ,

where ϕ is a new vector in the space of σν . Note that ϵ2
ν = 1 since σ

((
ϖ 2

1)2 )
=

σ
((
ϖ 2

ϖ 2

))
acts trivially under the hypothesis of trivial central character.

A model for ρν on the space C[k∗
] of complex-valued functions on k∗ is described

in [29], following [47]. In terms of this model, the new space (c-IndG(F)
Z K (ρν))

K1(p
2)

is spanned by the function ϕ :G(F)→C[k∗
] supported on the coset Z K

(
ϖ

1

)
K1(p

2)

and defined by

ϕ

(
zk

(
ϖ

1

))
= ρν(zk)w (z ∈ Z , k ∈ K ),

where w ∈ C[k∗
] is the constant function 1 [29, Proposition 3.1]. In particular,

ϕ

((
ϖ

1

))
(1)= w(1)= 1.

Therefore the Atkin–Lehner eigenvalue is given by

ϵν =

[
σν

((
1

ϖ 2

))
ϕ

]((
ϖ

1

))
(1)= ϕ

((
ϖ

1

) (
1

ϖ 2

))
(1)

= ϕ

((
ϖ

ϖ

) (
1

1

) (
ϖ

1

))
(1)

= ν(ϖ)

(
ρν

((
1

1

))
w

)
(1)

=

(
ρν

((
1

−1

) (
−1

1

))
w

)
(1),

since we are assuming ν|F∗ = 1. Let fa ∈ C[k∗
] be the characteristic function of

a ∈ k∗, so that w =
∑

a∈k∗ fa . Using [29, (2-11)] we see that ρν
((

−1
1

))
w = w,

and just below (2-16) of the same reference, we have(
ρν

((
1

−1

))
fa

)
(1)= −

1
q
ν(a−1)

∑
u∈L∗

N (u)=a

ψ(trL
k (u))ν(u) for all a ∈ k∗.
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We are assuming that ν|k∗ = 1, so ν(a−1)= 1, and summing over a ∈ k∗ we have

ϵν = −
1
q

∑
u∈L∗

ψ(trL
k (u))ν(u).

This Gauss sum can be evaluated explicitly by an elementary calculation, giving
(5-5); see [2, Theorem 11.6.1] for details.

Now suppose q is odd and 4 ∤ (q − 1), and let t be a generator of the cyclic
group L∗, so in particular t (q

2
−1)/2

= −1. If ν has order r , there exists j with
gcd( j, r)= 1 such that ν(t)= e( j/r). Taking α = t (q

2
−1)/4,

ν(α)= e
(

j (q + 1)(q − 1)
4r

)
= (−1)

j (q+1)
r

q−1
2 = (−1)

j (q+1)
r ,

since 1
2(q − 1) is odd by hypothesis. The above is equal to (−1)(q+1)/r

= −ϵν ,
since r is odd when j is even, and 2|(q + 1). This proves (5-6). □

Corollary 5.2. Fix ϵ ∈ {±1}. Then the number of depth zero supercuspidal repre-
sentations of G(F) with trivial central character and root number ϵ is

1
4(q − 1) if q ≡ 1 mod 4,
1
4(q + 1) if q ≡ 3 mod 4 and ϵ = 1,
1
4(q − 3) if q ≡ 3 mod 4 and ϵ = −1,
0 if q is even and ϵ = 1,
1
2q if q is even and ϵ = −1.

Proof. With notation as in (5-1), the number of supercuspidals with a given central
character ω is 1

2 Pω. (We divide by 2 to account for the fact that ν and νq induce the
same supercuspidal.) So the assertion for q even is immediate from (5-1) and (5-5).

Let q be odd, and let t be a generator of the cyclic group L∗. Then tq+1 is a
generator of k∗. The characters of L∗ are the maps νm defined by

νm(t)= e
(

m
q2 − 1

)
for 0 ≤ m < q2

− 1. We consider only those characters satisfying νm |k∗ = 1, i.e.,
(q −1)|m. Notice that νm is imprimitive if and only if νq−1

m = 1, which holds if and
only if (q + 1)|m. So we consider the values m = k(q − 1) (for 1 ≤ k < (q + 1))
which are not multiples of q + 1, i.e., k ̸=

1
2(q + 1).

The order of νm is

q2
− 1

gcd(m, q2 − 1)
=

q + 1
gcd(k, q + 1)

. (5-7)

By (5-5), σνm has root number

ϵνm = −(−1)gcd(k,q+1)
= −(−1)k, (5-8)
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since q + 1 is even. Notice that the removed value 1
2(q + 1) of k is odd if and only

if q ≡ 1 mod 4. So in this case, among the remaining q −1 values of k, half are odd
and half are even. If q ≡ 3 mod 4, then 1

2(q − 1)+ 1 =
1
2(q + 1) of the remaining

values of k are odd, and 1
2(q − 1)− 1 =

1
2(q − 3) are even.

To count supercuspidal representations, we divide the number of relevant k’s
by 2 since the distinct characters νm and νq

m induce the same representation. □

5.2. Simple supercuspidal representations. With notation as in the previous sec-
tion, we recall here the construction of the supercuspidal representations of G(F)
of conductor p3. The central character of any such representation is at most tamely
ramified. So we begin by fixing a character ωp of the center Z = Z(F) ∼= F∗

of G(F), trivial on 1 + p.
Define the following compact open subgroup of G(F):

K ′
=

(
1 + p O
p 1 + p

)
.

Fix a nontrivial character
ψ : k → C∗,

which we also regard as a character of O trivial on p. Given t ∈k∗, define a character
χ = χt : K ′

→ C∗ by

χ

((
a b

cϖ d

))
= ψ(b + tc). (5-9)

The matrix

gt = gχ =

(
t

ϖ

)
normalizes K ′, and furthermore

χ(g−1
χ kgχ )= χ(k) for all k ∈ K ′. (5-10)

Given χ as above, let
H ′

= Z K ′
∪ gχ Z K ′. (5-11)

Although it is not reflected in the notation H ′, this set depends on both t and the
fixed choice ofϖ . Given that g2

χ = tϖ , we may extend χ to a character χζ of H ′ via

χζ (gd
χ zk)= ζ dωp(z)χ(k) (5-12)

for z ∈ Z and k ∈ K ′, where ζ is a fixed complex number satisfying

ζ 2
= ωp(tϖ). (5-13)

Proposition 5.3. The compactly induced representation σ ζχ = c-IndG(F)
H ′ (χζ ) is an

irreducible supercuspidal representation of conductor p3, with root number

ϵ
( 1

2 , σ
ζ
χ , ψ

)
= ζ.
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Conversely, every irreducible admissible representation of G(F) of conductor p3

with central character trivial on 1 + p arises in this way.

Proof. See [31]. For a more recent treatment using the above notation (but on GLn),
see [27, Sections 4 and 5 and Proposition 7.2]. The root number is computed in [1,
Corollary 3.12]. □

We will also use the notation

σ
ζ
t = σ ζχ

for t, χ as in (5-9), though it should be borne in mind that the representation depends
also on the choice of additive character ψ and uniformizer ϖ . When F = Qp, we
will always take ϖ = p and

ψ(x)= e(x/p)= e2π i x/p for x ∈ Z/pZ.

Henceforth we assume that ωp, and hence also σ ζt , is unitary. Under the normal-
ization meas(G(O))= 1, the formal degree of σ ζχ is

dχ =
1
2(q

2
− 1). (5-14)

This is seen, e.g., from (6.4) of [27] and the last line of the proof of Corollary 6.5
of the same paper.

We define the matrix coefficient fp : G(F)→ C by

fp(g)= dχ

〈
σ
ζ
t (g)

φ

∥φ∥
,
φ

∥φ∥

〉
,

where φ ∈ c-IndG(F)
H ′ (χζ ) is the function

φ(g)=

{
χζ (g) if g ∈ H ′,

0 otherwise.
(5-15)

Note that
∥φ∥

2
=

∫
G(F)

|φ(g)|2 dg = meas(H ′). (5-16)

Likewise,

⟨σ
ζ
t (g) φ, φ⟩ =

∫
G(F)

φ(xg) φ(x) dx =

∫
H ′

φ(xg)χζ (x) dx

=

{
meas(H ′)χζ (g) if g ∈ H ′,

0 otherwise.
(5-17)

By (5-14), (5-16), and (5-17), we have

fp(g)=

{
1
2(q

2
− 1)χζ (g) if g ∈ H ′,

0 otherwise.
(5-18)
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5.3. Global setup. Fix square-free integers S, T >0 with ST >1 and gcd(S, T )=1,
and let k > 2. Set N = S2T 3, and let ω′ be a Dirichlet character of modulus N
satisfying

ω′(−1)= (−1)k . (5-19)

Let ω be the Hecke character attached to ω′ in (4-1). We assume in addition that
for each p | N , ωp is trivial on 1+ pZp, since this is true of the central character of
every supercuspidal representation of conductor ≤ p3. Equivalently, the conductor
of ω′ divides ST .

Proposition 5.4. If N = 22 or 23 and k is odd, there is no such character.

Proof. If N is a power of 2, then by (4-3) and (5-19), (−1)k =ω′(−1)=ω2(−1)= 1
since ω2 is trivial on Z∗

2 = 1 + 2Z2. So k must be even. □

Under the stated hypotheses, for each p |S, ωp is trivial on 1 + pZp. We may
thus view ωp as a character of (Zp/pZp)

∗
= F∗

p . For each such p, fix a primitive
character νp of F∗

p2 such that νp|F∗
p

= ωp. Recall that the number Pωp > 0 of
such primitive characters is given in (5-1). We define νp(p)= ωp(p) and extend
multiplicatively so that νp can also be viewed as a character of Q∗

p, which allows
us to view ρνp as a representation of Z p Kp with central character ωp. We let

σp = σνp = c-IndG(Qp)

Z p Kp
(ρνp)

be the associated supercuspidal representation of G(Qp). The number of iso-
morphism classes of supercuspidal representations of conductor p2 and central
character ωp is 1

2 Pωp .
For each prime p |T , fix a simple supercuspidal representation σp =σ

ζp
tp

of G(Qp)

with central character ωp, where tp ∈ (Z/pZ)∗ and ζ 2
p =ωp(tp p). When the prime p

is understood, we sometimes write t, ζ instead of tp, ζp. By (4-2),

ζ 2
p = ωp(tp p)= ωp(tp)

∏
ℓ| N ,ℓ ̸=p

ωℓ(p−1). (5-20)

In particular, when N = p3 for p prime, ζ 2
p = ωp(tp).

Having made the above choices, we let σ̂ = (σp)p | N denote this tuple of local
representations. Then Sk(σ̂ )⊆ Snew

k (S2T 3, ω′).
Now consider the test function

f = f n
= f∞

∏
p | N

fp

∏
ℓ∤N

f n
ℓ (5-21)

as in (4-10) with N = S2T 3, where, for p |S (resp. p |T ), fp is the chosen test
function given in (5-4) (resp. in (5-18)).

The above setup is slightly different from that used in (4-10) and Proposition 4.1
since fp is not a single matrix coefficient when p |S, but a certain sum of matrix
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coefficients, and without the formal degree coefficient. Nevertheless, the conclusions
of Proposition 4.1 do hold for the above test function, as the next result shows.

Proposition 5.5. With f defined above, tr(Tn |Sk(σ̂ ))= n(k/2)−1 tr R( f ).

Remark. This is not special to depth zero supercuspidals. By [29, Proposition 1.2],
the proof below applies with any unramified (even power conductor) supercus-
pidals σp at p |S, using dσp = dim ρ in place of p − 1, where σp = c-IndG

Z K (ρ).
(Ramified supercuspidals may be induced from a character of an appropriately
chosen open compact-mod-center subgroup, so for these, one can use a test function
analogous to (5-18).)

Proof. In the proof of Proposition 4.1, we used the fact [23, Corollary 10.26] that
for σ = σp, the operator σ(dσ ⟨σ(g)w,w⟩) is the orthogonal projection of the space
of σ onto Cw. For fp in (5-4), by [29, Proposition 1.1], there is an orthonormal set
{w1, . . . , wp−1} of vectors in the space of σ such that

fp(g)=

p−1∑
j=1

⟨σ(g)w j , w j ⟩.

So σ(dσ fp)= σ((p −1) fp) is the orthogonal projection onto Span{w1, . . . , wp−1}.
Therefore using this local test function in the proof of Proposition 4.1 would give
us a block sum of p −1 copies of the matrix for n1−(k/2)Tn. To get the correct trace,
we would need to divide by p − 1, which is achieved by simply taking fp instead
of (p − 1) fp. □

Noting that fp(1) = dim ρν = p − 1 = dσp for p |S, the identity term in the
formula for tr R( f ) is

ω′(n1/2) 1
12(k − 1)

∏
p |S

(p − 1)
∏
p |T

1
2(p

2
− 1), (5-22)

as seen between the brackets in Theorem 4.2. We remark that this is not always an
integer when n = 1. For example consider the case where S = 1. For p ≥ 3 prime,

v2(p2
− 1)= v2(p − 1)+ v2(p + 1)≥ 3,

with equality holding precisely when p ≡ 3, 5 mod 8. (Here, v2 is the 2-adic valua-
tion.) It follows easily that when n = 1, the identity term 1

12(k −1)
∏

p |T
1
2(p

2
−1)

fails to be an integer in exactly the following situations:

• T = 2 and k ̸≡ 1 mod 8.

• T = 3 and k ̸≡ 1 mod 3.

• T = 2p for some p ≡ 3, 5 mod 8, and k is even.
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So in such instances, when S = n = 1 the elliptic contribution to |Hk(σ̂ )| in
Theorem 4.2 must be nonzero for this simple reason.

The list of relevant matrices in the trace formula of Theorem 4.2 can be refined
in certain situations.

Proposition 5.6. Let N = S2T 3 as above, let f = f n be the test function defined
in (5-21), let M |T , and 0 ≤ r <

√
4n/M. Then 8

(( 0
1

−nM
r M

)
, f

)
= 0 in each of the

following situations:

• r = 0 and k is odd.

• There exists p | N such that X2
− r M X + nM has a root in Qp.

• There exists p | M such that −ptp/nM is not a square modulo p, where tp is
the parameter of the local representation σ ζp

tp
.

• There exists p |(T/M) such that X2
− r M X + nM ≡ (X − z)2 mod p has no

solution z ∈ (Z/pZ)∗.

Remark. For the case n = 1, we can refine the list of relevant γ even further (see
Proposition 7.9 below).

Proof. The first bullet point follows from (4-13).
Let γ =

(
1

−nM
r M

)
, and suppose that 8(γ, f ) ̸= 0. Then by Proposition 4.3, γ is

elliptic in G(Qp), which gives the second bullet point.
For the third bullet point, suppose p | M . Write det γ = up for some u ∈ Z∗

p.
Assuming the local orbital integral 8(γ, fp) is nonzero, fp(g−1γ g) ̸= 0 for some
g ∈ G(Qp). Then g−1γ g belongs to the ramified component of Supp( fp), i.e.,
writing t = tp,

g−1γ g = z
(

t
p

) (
a b
pc d

)
∈ Zgχp K ′

for some b, c ∈ Zp, a, d ∈ 1 + pZp, and z ∈ Z∗
p. Taking determinants, we have

up = −tpz2(ad − pbc),

and hence
u ≡ −t z2 mod p. (5-23)

This shows that −t/u is a quadratic residue modulo p.
Finally, if p |(N/M), then det γ ∈ Z∗

p so if8(γ, fp) ̸= 0, some conjugate g−1γ g
lies in the unramified component of Supp( fp):

g−1γ g = z
(

a b
pc d

)
∈ Z K ′

for z, a, b, c, d as above. Taking determinants, det γ ≡ z2 mod p. Taking the trace,
tr γ ≡ 2z mod p. Hence Pγ (X)≡ X2

− 2zX + z2
≡ (X − z)2 mod p. □
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6. Local orbital integrals at primes p| N for N = S2T 3

Our goal here is to compute

8(γ, fp)=

∫
Gγ (Qp)\G(Qp)

fp(g−1γ g) dg

taking for fp the test functions given in (5-4) and (5-18), and for γ the matrices
given in Theorem 4.2, and using the quotient measure defined in Section 4.5, so

8(γ, fp)=

∫
G(Qp)

fp(g−1γ g) dg.

With these calculations, Theorem 1.1 will follow immediately from Theorem 4.2.
We will use the strategy adopted by Palm in [43, Proposition 9.11.3] which

avoids the use of lattices or buildings. There are errors in the statement and proof of
his proposition, so we cannot simply quote the result. However, the basic method
is sound and can be adapted to give the result in the cases of interest to us here.

The following lemma will allow us to rewrite the integral in such a way as to
exploit the structure of the support of fp.

Lemma 6.1 [43, Lemma 6.4.10]. Let G be a unimodular locally compact group,
and suppose I1, I2 are two open compact subgroups of G, each given total Haar
measure 1. Then for any choice of Haar measure on G we have∫

G
φ(g) dg =

∑
x∈I1\G/I2

measG(I1x I2)
∫

I1

∫
I2

φ(i1xi2) di2 di1 (6-1)

for all φ ∈ Cc(G).

Proof. For φ ∈ Cc(G), we see that∫
G
φ(g) dg =

∫
G

∫
I1

∫
I2

φ(i1gi2) di2 di1 dg

by changing the order of integration and using the bi-invariance of dg. The inner
double integral defines a compactly supported function F of g ∈ G which is constant
on double cosets I1gI2, and is therefore a finite linear combination of characteristic
functions of such double cosets. The identity (6-1) clearly holds for the characteristic
function of a double coset. By linearity it holds for F as well, so∫

G
φ(g) dg =

∫
G

F(g) dg

=
∑

x∈I1\G/I2

measG(I1x I2)
∫

I1

∫
I2

F(i1xi2) di2 di1

=
∑

x∈I1\G/I2

measG(I1x I2)F(x)

=
∑

x∈I1\G/I2

measG(I1x I2)
∫

I1

∫
I2

φ(i1xi2) di2 di1. □
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6.1. Preliminaries when p|T. Throughout much of this section, we will work
over a p-adic field F with notation as in Section 5.2, and write G for G(F), and G
for G/Z . Having fixed a simple supercuspidal representation σ ζt of G with unitary
central character ωp, we take fp to be the test function given in (5-18).

Applying Lemma 6.1 to (4-18), we have

8(γ, fp)=

∫
G

fp(g−1γ g) dg

=

∑
x∈K ′\G/K ′

measG(K
′x K ′)

∫
K ′

∫
K ′

fp(h−1
2 x−1h−1

1 γ h1 xh2) dh1 dh2,

where each dhi is normalized to have total measure 1. Since fp|K ′ is a character,
h2 has no effect, and we obtain

8(γ, fp)=

∑
x∈K ′\G/K ′

measG(K
′x K ′)

∫
K ′

fp(x−1h−1γ hx) dh. (6-2)

In order to compute the above, we need a few preparations. First, recall the affine
Bruhat decomposition

G = K ′MK ′
∪ K ′MwK ′

= K ′MK ′
∪ K ′MgχK ′,

where w =
(

1
−1)

and M is the diagonal subgroup [7, Proposition 17.1]. Accord-
ingly, we may take as a set of representatives x ∈ K ′

\G/K ′ the elements x = m
and x = mgχ for

m ∈

{(
y

1

)
,

(
y
ϖ j

)
,

(
ϖ n

y

)∣∣∣∣ j > 0, n > 0, y ∈ (O/p)∗
}
. (6-3)

For each such x we need to compute the integral in (6-2), which we denote by

Kγ (x)=

∫
K ′

fp(x−1h−1γ hx) dh.

By (5-10),
fp(g−1

χ ggχ )= fp(g) for all g.

Therefore Kγ (xgχ )= Kγ (x). Furthermore, since gχ normalizes K ′, the measure
of K ′x K ′ is unchanged if x is replaced by xgχ . It follows that

8(γ, fp)= 2
∑

x in (6-3)

measG(K
′x K ′)Kγ (x). (6-4)

Lemma 6.2. Let x =
(
ϖ n

y

)
or

( y
ϖ n

)
for n ≥ 0 and y ∈ O∗. Then with measure

on G normalized so that meas(K )= 1,

measG(K
′x K ′)=

qn

q2 − 1
. (6-5)
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Proof. We may assume that y = 1 since, for example,

meas
(

K ′

(
ϖ n

y

)
K ′

)
= meas

(
K ′

(
ϖ n

1

)
K ′

(
1

y

))
= meas

(
K ′

(
ϖ n

1

)
K ′

)
.

Likewise, since gχ normalizes K ′ and g−1
χ

(
ϖ n

1

)
gχ =

( 1
ϖ n

)
, we may assume that

x =
(
ϖ n

1

)
.

We claim that for n ≥ 0,

K ′

(
ϖ n

1

)
K ′

=

⋃
b∈O/pn

(
ϖ n b
0 1

)
K ′, (6-6)

a disjoint union. The union is disjoint since(
ϖ n b1

0 1

)−1(
ϖ n b2

0 1

)
=

(
1 b2−b1

ϖ n

0 1

)
,

which is in K ′ if and only if b1 ≡ b2 mod pn . The inclusion ⊇ in (6-6) follows from(
ϖ n b
0 1

)
=

(
1 b
0 1

) (
ϖ n

1

)
∈ K ′

(
ϖ n

1

)
.

The reverse inclusion follows from(
a b
c d

) (
ϖ n

1

)
=

(
ϖ n bd−1

0 1

) (
a − cbd−1 0

cϖ n d

)
.

By the decomposition (6-6),

meas
(

K ′

(
ϖ n

1

)
K ′

)
= qn meas(K ′)=

qn

q2 − 1
,

since meas(K ′) = 1/(q2
− 1) when meas(K ) = 1, as shown in the proof of [27,

Corollary 6.5]. □

If x =
( y

1

)
, then Kγ (x) = fp(γ y) where γ y

=
( y−1

1

)
γ
( y

1

)
, since fp is a

character of K ′,
( y

1

)
normalizes K ′, and we give K ′ measure 1. Thus, in view of

the above lemma, (6-4) now becomes

8(γ, fp)=
2

q2 − 1

∑
y∈(O/p)∗

fp(γ y)

+ 2
∞∑

n=1

qn

q2 − 1

∑
y∈(O/p)∗

[
Kγ

((
ϖ n

y

))
+ Kγ

((
y
ϖ n

))]
. (6-7)

To compute Kγ (x), we fix coordinates on K ′ with the following.
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Lemma 6.3. Let G, H, K be compact topological groups, with G = HK and
H ∩ K = {1}. Let dh and dk be the respective Haar measures on H, K of total
measure 1. Then the Haar measure on G of measure 1 is given by∫

G
f (g) dg =

∫
H

∫
K

f (hk) dk dh.

Proof. This is a special case of [23, Lemma 7.13]. □

We will use the Iwahori decomposition [7, (7.3.1)] of K ′. Letting M(1 + p)=( 1+p
1+p

)
, N (O)=

( 1
0
O
1

)
, and N ′(p)=

( 1
p

0
1

)
, the decomposition

K ′
= N (O) · N ′(p) · M(1 + p)

is a (topological) direct product, and the same is true for any ordering of the three
factors. We will take meas(K ′)= meas(K ′)= 1, so that applying the above lemma,
this Haar measure on K ′ is given by both of the following:∫

K ′

φ(k) dk =

∫
O

∫
O

∫
M(1+p)

φ

((
1 0
ϖc 1

) (
1 b
0 1

)
m

)
dm db dc (6-8)

=

∫
O

∫
O

∫
M(1+p)

φ

((
1 b
0 1

) (
1 0
ϖc 1

)
m

)
dm dc db, (6-9)

where dm, db, dc each have total measure 1.

6.2. The case where p|T and γ is ramified. The aim here is to compute 8(γ, fp)

when p | N and γ is ramified at p, i.e., vp(det γ ) is odd. As above we work over
a p-adic field F with uniformizer ϖ , and a fixed supercuspidal representation σ ζt
of G(F) as in Section 5.2. We can assume that vp(det γ ) = 1, and further, by
Lemma 4.12, that vp(tr γ ) ≥ 1. So we will consider matrices in the F-rational
canonical form

γ =

(
0 −uϖ
1 vϖ

)
= w

(
1 vϖ

0 uϖ

)
(6-10)

for u ∈ O∗, v ∈ O, and w =
(

1
−1)

.

Proposition 6.4. For γ as in (6-10) and fp as in (5-18), 8(γ, fp)= 0 unless −t/u
is a square modulo p. If the latter condition holds and y2

≡ −t/u mod p, then

8

((
0 −uϖ
1 vϖ

)
, fp

)
= ζ̄

(
ψ(yv) ωp(y)+ δ(p ∤ 2) ψ(−yv) ωp(−y)

)
,

where ψ is the nontrivial character of O/p used in (5-9). Thus, in the case of trivial
central character (so ζ 2

= 1), we have

8(γ, fp)=

{
2ζ Re(ψ(yv)) if p ∤ 2,
ψ(yv)ζ if p|2.



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 401

When the central character is trivial, F = Qp, and v ∈ Z, this gives

8(γ, fp)=

{
2ζ cos

( 2πyv
p

)
if p ̸= 2,

(−1)v ζ if p = 2.
(6-11)

Proof. We need to compute each term of (6-7). First, note that for y ∈ (O/p)∗,

γ y
=

(
0 −uϖ/y
y vϖ

)
=

(
t

ϖ

) (
y/ϖ v

−uϖ/t y

)
does not belong to the support of fp. Hence fp(γ y)= Kγ

(( y
1

))
= 0.

Next, suppose x =
( y

ϖ j

)
with j > 0 and y ∈ O∗. Then we use the measure

in (6-8):

Kγ (x)

=

∫
O

∫
O

∫
M(1+p)

fp

(
x−1m−1

(
1 −b
0 1

)(
1 0

−ϖc 1

)
γ

(
1 0
ϖc 1

)(
1 b
0 1

)
mx

)
dm dbdc.

Note that m commutes with x , and lies in the kernel of fp. Therefore the integration
over M(1 + p) has no effect, and

Kγ (x)=

∫
O

∫
O

fp

(
x−1

(
1 −b
0 1

)(
1 0

−ϖc 1

)
γ

(
1 0
ϖc 1

)(
1 b
0 1

)
x
)

db dc.

Likewise (
1 b
0 1

)
x =

(
1 b
0 1

)(
y
ϖ j

)
=

(
y
ϖ j

)(
1 bϖ j/y

1

)
.

Note that the matrix on the right lies in K ′ since j > 0, and in fact it is in the kernel
of fp. Therefore the integral over b also has no effect, and

Kγ (x)=

∫
p

fp

(
x−1

(
1 0

−r 1

)
γ

(
1 0
r 1

)
x
)

dr, (6-12)

where dr gives p the measure 1.
Taking γ = w

( 1
0
vϖ
uϖ

)
as in (6-10),(

1 0
−r 1

)
w

(
1 vϖ

0 uϖ

)(
1 0
r 1

)
= w

(
1 r
0 1

)(
1 + rvϖ vϖ

ruϖ uϖ

)
= w

(
1 + r2uϖ + rvϖ (v+ ru)ϖ

ruϖ uϖ

)
.
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Writing the above as w
(a

c
b
d

)
∈ w

( 1+p2

p2
p

ϖO∗

)
,

x−1
(

1 0
−r 1

)
γ

(
1 0
r 1

)
x =

(
y−1

ϖ− j

)
w

(
a b
c d

) (
y
ϖ j

)
= w

(
ϖ− j

y−1

) (
ay bϖ j

cy dϖ j

)
= w

(
ay/ϖ j b

c dϖ j/y

)
= gχ

(
ϖ−1

−t−1

) (
ay/ϖ j b

c dϖ j/y

)
= gχ

(
ay/ϖ j+1 b/ϖ

−c/t −dϖ j/t y

)
.

Since the determinant is uϖ , this belongs to the support of fp if and only if the
matrix on the right belongs to O∗K ′. But this would require j + 1 = 0, which is
impossible since j > 0. Hence

Kγ

((
y
ϖ j

))
= 0

for all j > 0 and all y ∈ O∗.
Lastly, consider x =

(
ϖ n

y

)
for n > 0 and y ∈ O∗. We proceed in just the same

way, only this time using the coordinates given in (6-9). Taking −b in place of b for
convenience, and eliminating the integral over M(1 +p) with the same justification
as before,

Kγ (x)=

∫
O

∫
O

fp

(
x−1

(
1 0

−ϖc 1

)(
1 b
0 1

)
γ

(
1 −b
0 1

)(
1 0
ϖc 1

)
x
)

db dc.

Now (
1 0

cϖ 1

)
x =

(
1 0

cϖ 1

) (
ϖ n

y

)
=

(
ϖ n

y

) (
1

cϖ 1+n/y 1

)
.

The matrix on the right lies in the kernel of fp. Therefore

Kγ (x)=

∫
O

fp

(
x−1

(
1 b
0 1

)
γ

(
1 −b
0 1

)
x
)

db. (6-13)

Taking γ = w
( 1

0
vϖ
uϖ

)
, we have(

1 b
0 1

)
w

(
1 vϖ

uϖ

)(
1 −b
0 1

)
= w

(
1 0

−b 1

)(
1 −b + vϖ

0 uϖ

)
= w

(
1 −b + vϖ

−b b2
− vϖb + uϖ

)
.
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Thus letting Pγ (X) denote the characteristic polynomial of γ ,

x−1
(

1 b
0 1

)
γ

(
1 −b
0 1

)
x =

(
ϖ−n

y−1

)
w

(
1 −b + vϖ

−b Pγ (b)

)(
ϖ n

y

)
= w

(
y−1

ϖ−n

)(
ϖ n y(−b + vϖ)

−bϖ n y Pγ (b)

)
= w

(
ϖ n/y −b + vϖ

−b y Pγ (b)/ϖ n

)
= gχ

(
ϖ−1

−t−1

) (
ϖ n/y −b + vϖ

−b y Pγ (b)/ϖ n

)
= gχ

(
ϖ n−1/y v− b/ϖ

b/t −y Pγ (b)/tϖ n

)
. (6-14)

Since the determinant is uϖ , the above belongs to the support of fp if and only
if the matrix on the right belongs to O∗K ′. This means in particular that n = 1
and b ∈ p. Make the change of variables b = cϖ , db = |ϖ |dc = q−1 dc. Then

Pγ (b)=ϖ(u − vcϖ + c2ϖ),

and

Kγ

((
ϖ

y

))
= q−1

∫
O

fp

(
gχ y−1

(
1 yv− cy

cyϖ/t −y2(u − vcϖ + c2ϖ)/t

))
dc.

From the definition of K ′, the integrand is nonzero if and only if y2
≡ −t/u mod p.

(We have already seen in Proposition 5.6 that −t/u must be a square mod p.)
Assuming this to be the case, then from (5-9), (5-12), and (5-18), we have

Kγ (x)= q−1ωp(y−1)ζdχ

∫
O
ψ(yv− cy + cy) dc

= q−1ωp(y)ζ̄dχψ(yv)=
q2

− 1
2q

ωp(y)ζψ(yv). (6-15)

To recap, for γ =
(0

1
−uϖ
vϖ

)
, Kγ (x)= 0 unless x =

(
ϖ

y

)
for y2

≡ −t/u mod p,
so (6-7) becomes

8(γ, fp)=
2q

q2 − 1

∑
y∈(O/p)∗

Kγ

((
ϖ

y

))
= ζ̄

∑
ε∈{±1 mod p}

ψ(εy0v) ωp(εy0),

where y0 is any fixed solution to y2
0 ≡ −t/u mod p. Note that when p|2, we can

take ε = 1, and if F = Q2 we can also take y0 = 1. □

6.3. The case where p|T and γ is unramified. We adopt the same notation used in
the previous subsection. Suppose γ is unramified, i.e., ordp(det γ ) is even. Scaling
if needed, we may assume that det γ ∈ O∗. For the nonvanishing of 8(γ, fp), it is
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necessary that some conjugate of γ belong to the unramified component of the
support of fp, namely Z K ′

p. Given that u = det γ ∈ O∗, this means that tr γ must
also be integral. So we may take γ in rational canonical form

γ =

(
0 −u
1 v

)
(6-16)

for some u ∈ O∗ and v ∈ O.

Proposition 6.5. For γ elliptic in G(F) and of the form (6-16),8(γ, fp)= 0 unless
the characteristic polynomial Pγ has a nonzero double root modulo p:

Pγ (X)≡ (X − z)2 mod p (6-17)

for some z ∈ (O/p)∗. Under this condition,

8(γ, fp)=
ωp(z)

q

∞∑
n=1

∑
c mod p

Nγ (c, n)
∑

y∈(O/p)∗
ψ

(
yc
z

)
ψ

(
−

t
yz

)δ(n=1)

, (6-18)

whereψ is the nontrivial character of O/p used in (5-9), t ∈ (O/p)∗ is the parameter
of σ ζt , and

Nγ (c, n)= #{b mod pn+1
| Pγ (b)≡ cϖ n mod pn+1

}.

Remarks. (1) Since Pγ is irreducible over F , there exists r such that Pγ (X)≡ 0
mod pr has no solution, and hence Nγ (c, n)= 0 for all pairs (c, n) with n ≥ r . So
the series is actually a finite sum.

(2) When n = 1 the sum over y is a Kloosterman sum. When n > 1,∑
y

ψ

(
yc
z

)
=

{
q − 1 if c ≡ 0 mod p,

−1 otherwise.

(3) When F = Qp, the integer Nγ (c, n) is given explicitly in [26, Lemma 9.6],
and presumably there is a version of that lemma for an arbitrary p-adic field. In
particular, Nγ (c, n)= 0 unless n ≤ ordp(1γ )− 1, and for such n,

Nγ (c, n)≤ p⌊(n+1)/2⌋

assuming γ is elliptic in G(Qp) and satisfies (6-17). This gives the following bound
for the orbital integral: setting δ = ordp(1γ ),

|8(γ, fp)| ≤

δ−1∑
n=1

(p − 1)(p1/2)n+1
= p(p − 1)

δ−2∑
n=0

(p1/2)n

= p(p − 1)
(p1/2)δ−1

− 1
p1/2 − 1

= p(p1/2
+ 1)(p−1/2 pδ/2 − 1)≤ 2p|1γ |

−1/2
p .
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This illustrates the general bound given in [21, (1.8) and Theorem 3.11], according
to which

|8(γ, fp)| ≤ C · (dσp)
η
|1γ |

−1/2
p ,

where C > 0 and η < 1 depend only on G(F).

Proof of Proposition 6.5. The first statement was proven in Proposition 5.6. Suppose
8(γ, fp) ̸= 0 for γ as in (6-16). We will compute each term of (6-7). It is not hard
to check that fp(γ y)= 0 and Kγ

(( y
ϖ n

))
= 0, since the matrices involved do not

intersect the support of fp. Therefore

8(γ, fp)= 2
∞∑

n=1

qn

q2 − 1

∑
y∈(O/p)∗

Kγ

((
ϖ n

y

))
. (6-19)

Now fix n ≥ 1 and y ∈ O∗ and let x =
(
ϖ n

y

)
. As in (6-13), we have

Kγ (x)=

∫
O

fp

(
x−1

(
1 b
0 1

)
γ

(
1 −b
0 1

)
x
)

db.

By a quick calculation (see (6-14) with u, v in place of uϖ, vϖ ),

x−1
(

1 b
0 1

)
γ

(
1 −b
0 1

)
x =

(
b −y Pγ (b)/ϖ n

ϖ n/y v− b

)
. (6-20)

Since the determinant is u ∈ O∗, this belongs to the support of fp only if it belongs
to O∗K ′. In particular, b ∈ O∗ and Pγ (b)≡ 0 mod pn . Therefore b ∈ z + p for z as
in (6-17). From (6-17) we see that v≡ 2z mod p so v−b ∈ z+p as well. Therefore,
pulling out a factor of z from the above matrix,

Kγ

((
ϖ n

y

))
= ωp(z)

∫
z+p

fp

((
1 −y Pγ (b)/zϖ n

ϖ n/yz 1

))
db.

Writing Pγ (b)≡ cϖ n mod pn+1 for some c ∈O/p, by (5-18) the integrand becomes

fp

((
1 −yc/z

ϖ n/yz 1

))
=

1
2(q

2
− 1)ψ

(
−

yc
z

+
tϖ n−1

yz

)
.

This depends (via c) only on the coset b + pn+1 (in fact it depends only on b + pn

but we will not use this). Each such coset has measure q−(n+1). Therefore if we let

Nγ (c, n)= #{b mod pn+1
| Pγ (b)≡ cϖ n mod pn+1

}

for c ∈ O/p, we find that

Kγ (x)= ωp(z)
q2

− 1
2qn+1

∑
c mod p

ψ

(
yc
z

)
ψ

(
−

t
yz

)δ(n=1)

Nγ (c, n).

Inserting this into (6-19) gives the result. □
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Example 6.6. For M ∈ Z∗

2 and f2 as in (5-18),

8

((
−M

1

)
, f2

)
=


1 if M ≡ 1 mod 4,

−3 if M ≡ 3 mod 8,
0 if M ≡ 7 mod 8.

Proof. First, γ =
(

1
−M )

is hyperbolic in G(Q2) if and only if −M is a square
in Q2, which holds if and only if M ≡ 7 mod 8. In this case, 8(γ, f2)= 0 by (3-4).

Assuming M ̸≡ 7 mod 8, we may apply Proposition 6.5. We need to determine

Nγ (0, n)= number of solutions to x2
≡ −M mod 2n+1

and
Nγ (1, n)= number of solutions to x2

≡ 2n
− M mod 2n+1.

Given any odd integer D, the number of solutions to x2
≡ D mod 2 j is

1, j = 1,
2, j = 2, D ≡ 1 mod 4,
0, j = 2, D ≡ 3 mod 4,
4, j > 2, D ≡ 1 mod 8,
0, j > 2, D ̸≡ 1 mod 8

[32, Theorem 87]. Therefore

Nγ (0, n)=


2 if n = 1 and M ≡ 3 mod 4,
0 if n = 1 and M ≡ 1 mod 4,
4 if n ≥ 2 and M ≡ 7 mod 8,
0 if n ≥ 2 and M ̸≡ 7 mod 8,

Nγ (1, n)=



0 if n = 1 and M ≡ 3 mod 4,
2 if n = 1 and M ≡ 1 mod 4,
4 if n = 2 and M ≡ 3 mod 8,
0 if n = 2 and M ̸≡ 3 mod 8,
4 if n ≥ 3 and M ≡ 7 mod 8,
0 if n ≥ 3 and M ̸≡ 7 mod 8.

By definition, ψ2(x) = (−1)x for x ∈ Z, and ω2 is trivial on 1 + 2Z2 = Z∗

2. So
by (6-18) and the above,

8(γ, f2)=
1
2 [Nγ (0, 1)ψ2(0)ψ2(1)+Nγ (1, 1)ψ2(1)2]

+
1
2 [Nγ (0, 2)ψ2(0)+Nγ (1, 2)ψ2(1)]

=

{ 1
2 [0 + 2] +

1
2 [0 + 0] = 1 if M ≡ 1 mod 4,

1
2 [−2 + 0] +

1
2 [0 − 4] = −3 if M ≡ 3 mod 8. □
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Example 6.7. For f3 as in (5-18) and any m ∈ Z∗

3,

8

((
0 −m2

1 m

)
, f3

)
= ω3(−m) t · 2t=1,

where 2t=1 is a factor of 2 which is present only when t =1. Here, t∈{±1}= (Z/3Z)∗

is the parameter of the fixed simple supercuspidal representation σ ζt of G(Q3).

Remark. When N = 3, we have ω3(−1)= ω′(−1)= (−1)k , so

ω3(−m)=

{
(−1)k if m ∈ 1 + 3Z3,

1 if m ∈ −1 + 3Z3.

Proof. We will apply Proposition 6.5. First note that

Pγ (X)= X2
− m X + m2

≡ (X + m)2 mod 3,

so we can take z = −m in (6-17). We need to find

Nγ (c, n)= #{b | b2
− mb + m2

≡ c3n mod 3n+1
}.

If b ∈ Z∗

3 is a double root of Pγ modulo 3, then we may write b = −m + 3d , so

Pγ (b)= (−m + 3d)2 − m(−m + 3d)+ m2
= 3m2

+ 9(d2
− md) ∈ 3Z∗

3.

Thus, ord3(Pγ (b)) = 1, which means that Nγ (c, n) = 0 for all n ≥ 2, and also
Nγ (0, 1) = 0. Some elementary calculations show that independently of m,
Nγ (−1, 1)= 0 and Nγ (1, 1)= 3. In view of (6-18), this means

8(γ, f3)=
1
3(ω3(−m))Nγ (1, 1)

(
ψ3

(
1

−m

)
ψ3

(
−t
−m

)
+ψ3

(
1
m

)
ψ3

(
−t
m

))
= ω3(−m)

(
e
(

1−t
−3m

)
+ e

(
1−t
3m

))
= ω3(−m)

[
e
(

t−1
3

)
+ e

(
1−t

3

)]
.

When t = 1 (resp. t = −1), the expression in the brackets equals 2 (resp. −1). □

6.4. The case where p| S. When p |S, the support of fp is contained in Z p Kp, so
the orbital integral vanishes unless γ is unramified. We again work over a p-adic
field F , with the usual notation, and fix a depth zero supercuspidal representation σν
of G = G(F) for ν a primitive character of F∗

q2 .

Proposition 6.8. Let fp be the test function defined in (5-4), and let γ =
(

1
−u
v

)
be

an elliptic element of G(F), where u ∈ O∗ and v ∈ O. If there exists z ∈ (O/p)∗

such that
Pγ (X)≡ (X − z)2 mod p,
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then

8(γ, fp)= −ωp(z)+
ωp(z)

q

∞∑
n=1

[
(q − 1)Nγ (0, n)−

∑
c∈(O/p)∗

Nγ (c, n)
]
, (6-21)

where Nγ (c, n)= #{b mod pn+1
| Pγ (b)≡ cϖ n mod pn+1

}.
If Pγ (X) is irreducible modulo p, then

8(γ, fp)= −ν(γ )− νq(γ ), (6-22)

where we interpret the above to mean −ν(x) − νq(x) if x ∈ F∗

q2 has the same
minimum polynomial over Fq as the reduction of γ mod p, i.e., γ is conjugate to
x ∈ T.

Remarks. (1) The remaining possibility where Pγ (X) has two distinct roots mod p
cannot occur due to Hensel’s Lemma, since we are assuming that γ is elliptic
in G(F).

(2) See the remarks after Proposition 6.5 regarding Nγ (c, n). In particular, the
sum in (6-21) is finite, and when F = Qp we find |8(γ, fp)| ≤ 1+4|1γ |

−1/2
p .

Proof. In this proof we write G for G(F), Z for Z(F), and K for G(O). By
Lemma 6.1,

8(γ, fp)=

∫
G

fp(g−1γ g) dg

=

∑
x∈K\G/K

measG(K x K )
∫

K

∫
K

fp(h−1
2 x−1h−1

1 γ h1 xh2) dh1 dh2,

with dh1 and dh2 each having total measure 1. The integrand is nonzero only if
x−1h−1

1 γ h1x ∈ Z K . Therefore, since fp is a trace, h2 has no effect, so

8(γ, fp)=

∑
x∈K\G/K

measG(K x K )
∫

K
fp(x−1hγ h−1x) dh.

(For convenience in what follows, we have set h = h−1
1 .)

By the Cartan decomposition of G, a set of representatives for K\G/K is given by{(
ϖ n

1

)∣∣∣∣ n ≥ 0
}
.

Arguing as in [36, Lemma 4.5.6(2)], for x =
(
ϖ n

1

)
,

|K\K x K | =

{
qn−1(q + 1) if n > 0,
1 if n = 0.
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Therefore measG(K x K )= qn−1(q + 1) when n > 0, so

8(γ, fp)= fp(γ )+
∞∑

n=1

qn−1(q + 1)Kγ (n), (6-23)

where

Kγ (n)=

∫
K

fp

((
ϖ−n

1

)
hγ h−1

(
ϖ n

1

))
dh (n > 0).

(We may integrate over K since both K and K have measure 1.) Write hγ h−1
=(

w
y

x
z

)
∈ K . Then(

ϖ−n

1

)(
w x
y z

)(
ϖ n

1

)
=

(
w x/ϖ n

yϖ n z

)
. (6-24)

This belongs to the support of fp only if x ∈ pn .
In the integrand above, we can freely multiply h by a diagonal element of K

since such an element commutes with x and can be eliminated since fp is a trace.
In particular, we can assume det h = 1. Write h =

(a
c

b
d

)
, det h = 1. Then

hγ h−1
=

(
∗ −b2

+ abv− a2u
∗ ∗

)
.

If a ∈ p then we must have b ∈ O∗ since
(a

c
b
d

)
∈ K . But then the upper-right entry

above cannot belong to pn , so the integrand vanishes by (6-24). Therefore we may
assume a ∈ O∗, i.e., h ∈ A, where

A =

(
O∗

∗

∗ ∗

)
∩ K .

Let’s find the measure of A. Let K (p)= 1 + M2(p)⊆ A. This is the kernel of the
reduction mod p map K → G(O/p). Since |G(O/p)| = (q2

− 1)(q2
− q), we see

that meas(K (p))= 1/((q2
− 1)(q2

− q)). Let A = A mod K (p). Thinking of A as
a set of matrices in G(O/p), we see that

|A| = (q − 1) q(q2
− q).

(There are (q − 1) q possible top rows, and then q2
− q remaining choices for the

bottom row.) Hence

meas(A)=
(q − 1) q(q2

− q)
(q2 − 1)(q2 − q)

=
q

q + 1
.

It is not hard to show that

A =

(
O∗

O∗

)(
1
O 1

)(
1 O

1

)
,
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and that the corresponding decomposition of any element of A is unique. Therefore
by Lemma 6.3 we can use the above as a coordinate system for integration over A.
Since, as noted above, the diagonal component has no effect on the value of the
integral, we have

Kγ (n)=
q

q + 1

∫
O

∫
O

fp

(
x−1

(
1
c 1

)(
1 b

1

)
γ

(
1 −b

1

)(
1

−c 1

)
x
)

db dc,

where x =
(
ϖ n

1

)
, and db and dc each have total measure 1. The integral over c

can be eliminated, since
( 1

−c 1

)(
ϖ n

1

)
=

(
ϖ n

1

)( 1
−ϖ nc 1

)
, and the rightmost matrix

belongs to K . Therefore

Kγ (n)=
q

q + 1

∫
O

fp

((
ϖ−n

1

)(
1 b

1

)(
−u

1 v

)(
1 −b

1

)(
ϖ n

1

))
db

=
q

q + 1

∫
O∗

fp

((
b −Pγ (b)/ϖ n

0 v− b

))
db

as in (6-20). (As a reminder, db is additive measure.) We have replaced the lower-
left entry by 0, using the fact that by definition (see (5-4)), fp is sensitive only to the
reduction of its argument mod p. Further, the integrand is nonzero only if Pγ (b)∈pn .
Under this condition, given that the characteristic polynomial of the matrix in the
integrand is Pγ (X), and this cannot have distinct roots mod p as γ is elliptic
in G(Qp), there exists z ∈ (O/p)∗ such that b ≡ v − b ≡ z mod p. In particular,
the matrix (viewed modulo p) belongs to ZU , with notation as in (5-2). Write
Pγ (b)≡ cϖ n mod pn+1, for c ∈ O/p. The integrand becomes

ωp(z) fp

((
1 −c/z
0 1

))
=

{
ωp(z)(q − 1) if c = 0,
−ωp(z) if c ∈ (O/p)∗.

This depends (via c) only on the coset b + pn+1, which has measure q−(n+1).
Therefore

Kγ (n)= ωp(z) ·
q

q + 1
·

1
qn+1

[
(q − 1)Nγ (0, n)−

∑
c∈(O/p)∗

Nγ (c, n)
]
.

Plugging the above into (6-23), equation (6-21) follows. (Note that fp(γ )= −ωp(z)
in this case, since γ − z =

(
−z

1
−u
v−z

)
̸≡ 0 mod p, so γ is conjugate mod p to zu for

some 1 ̸= u ∈ U ).
By the above discussion Kγ (n)=0 for all n>0 if Pγ (X) is irreducible mod p. So

in this case (6-23) gives 8(γ, fp)= fp(γ )= −ν(γ )−νq(γ ) by (5-2) and (5-4). □
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7. General dimension formula, and examples with N = S2T 3

When n = 1, the list of relevant γ in Theorem 4.2 can be simplified. The result is
the following general dimension formula.

Theorem 7.1. Let N =
∏

p | N pNp > 1 with Np ≥ 2 for all p | N. Fix k > 2 and a
tuple σ̂ = (σp)p | N of supercuspidal representations so that Sk(σ̂ ) ⊆ Snew

k (N , ω′)

for a Dirichlet character ω′, as detailed at the beginning of Section 4. Let T be the
product of all primes p | N with Np odd. Let f = f 1 be the test function defined
in (4-10) with n = 1 but with fp chosen as in (7-10) below for all p |T . Then

dim Sk(σ̂ )=
1
12
(k − 1)

∏
p | N

dσp +
1
2
8

((
−T

1

)
, f

)
+

1
2
δT ∈2Z+ 8

((
−T/2

1

)
, f

)
+ δT =28

((
0 −2
1 2

)
, f

)
+ δT =38

((
0 −3
1 3

)
, f

)
+ δT ∈{1,3}8

((
0 −1
1 1

)
, f

)
.

Here, dσp is the formal degree of σp relative to the Haar measure fixed in Section 2,
and the orbital integrals 8(γ, f ) are given as in Theorem 4.2.

Proof. The case where T = 1 is already contained in Theorem 4.2 by taking n = 1.
The simplifications when T > 1 are proven in Proposition 7.9 below. □

As with Theorem 1.1, using the results of Section 6 we can compute the above
explicitly in any case of interest when N = S2T 3 with S and T square-free relatively
prime positive integers. Although there is not a particularly nice formula for all such
levels, as an illustration we will work everything out in the two special cases where
N = S2 and N = T 3. These results are stated in Sections 7.1 and 7.4 respectively.
In Section 7.5 we give some examples to illustrate Theorem 1.1 with n> 1.

First, we highlight the following consequence of Theorem 7.1.

Corollary 7.2. In the setting of Theorem 7.1 above, suppose that the weight k is
odd, so ω′(−1)=−1. For T as in Theorem 7.1, if T > 3 the elliptic terms vanish, so

dim Sk(σ̂ )=
1
12(k − 1)

∏
p | N

dσp (k > 2 odd, T > 3).

Remark. If N = 22 or N = 23, then Sk(σ̂ ) is undefined when k is odd since by
Proposition 5.4 there is no appropriate nebentypus.

Proof. If γ =
(

1
−T )

or
(

1
−T/2)

, then 8(γ, f∞)= 0 when k is odd, by (4-13). □

7.1. Dimension formula and root number bias when N = S2. When we set T = 1
and take N = S2, the formula in Theorem 7.1 gives the following.
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Theorem 7.3. Let N = S2 for S square-free, k > 2, ω′ a Dirichlet character of
modulus N and conductor dividing S, and let σ̂ = (σp)p |S be a tuple of depth zero
supercuspidal representations chosen compatibly with ω′ as in Section 5.3, with
T = 1. Then the subspace Sk(σ̂ )⊆ Snew

k (S2, ω′) has dimension

dim Sk(σ̂ )=
1

12(k − 1)
∏
p | N

(p − 1)+ A1 + A2,

where

A1 =
1
4(−1)S+1+(k/2) δk∈2Z

∏
odd p | N

(−νp(α)− ν
p
p (α)) δp≡3 mod 4, (7-1)

where νp is the primitive character of F∗
p2 defining σp and α ∈ F∗

p2 satisfies α2
= −1,

and

A2 =
1
3(δk≡0,2 mod 3) (−1)δk≡2,3 mod 6(−ω3(−1))δ(3| N )∏

p | N , p ̸=3

(−νp(β)− ν
p
p (β)) δp≡2 mod 3, (7-2)

where β ∈ F∗
p2 satisfies β2

−β + 1 = 0.

Remarks. (1) Note that A1 = A2 = 0 in each of the following situations: (i) k ≡ 1
mod 6, (ii) there exist primes p, q | N (which could be equal) such that p ≡ 1 mod 4
and q ≡ 1 mod 3, (iii) k is odd and p ≡ 1 mod 3 for some p | N , (iv) k ≡ 1 mod 3
and p ≡ 1 mod 4 for some p | N .

(2) By summing the above formula over all tuples σ̂ , one obtains a formula for the di-
mension of the space Smin

k (S2, ω′) of twist-minimal newforms. See Proposition 7.7.

(3) Theorem 1.3 from the introduction follows from the above by taking ω′ trivial.
We will prove this after first proving the above result.

Proof. Taking T = 1 in Theorem 7.1, we have

dim Sk(σ̂ )=
1
12
(k − 1)

∏
p | N

(p − 1)+ 1
2
8

((
−1

1

)
, f

)
+8

((
−1

1 1

)
, f

)
.

Consider γ =
(

1
−1)

. Its discriminant is 1γ = −4, and we adopt the shorthand

8(γ )= m8∞82
∏

odd p | N

8p

for (1-4), where m = 2h(E)/(w(E)2ω(dE )) for E = Q[γ ]. We find that m =
1
4 and

8∞ = (−1)k/2δk∈2Z. If S is odd, then 82 = 2 by Example 4.10. If S is even, 82 is
given by (6-21). Here, Nγ (c, n)= 0 for all n ≥ 2, Nγ (0, 1)= 0 and Nγ (1, 1)= 2.
So 82 = −1 +

1
2(−2)= −2. Thus in both cases, 82 = 2(−1)S+1. Finally, for odd

p |S, γ is elliptic in G(Qp) if and only if −1 is not a square in Qp, i.e., p ≡3 mod 4.
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In such cases, Pγ (X) is irreducible modulo p, so by (6-22), 8p = −νp(γ )−ν
p
p (γ ).

Multiplying everything together, we see that 1
28

((
1

−1)
, f

)
gives (7-1).

Now consider γ =
(

1
−1

1

)
. Then 1γ = −3, so

8(γ )= m8∞83
∏

p | N , p ̸=3

8p.

We find that m =
1
6 , and

8∞ = −
sin((k − 1) π/3)

sin(π/3)
=


0 if k ≡ 1 mod 3,
1 if k ≡ 0, 5 mod 6,

−1 if k ≡ 2, 3 mod 6.

If 3 ∤ N , then by Proposition 4.8, 83 = 2 since 3 is ramified in Q3[γ ] = Q3[
√

−3]

and Oγ = Z3
[ 1

2(1 +
√

−3)
]
= Z3[

√
−3] is the full ring of integers. If 3| N , then

83 is given by (6-21) with z = −1. We find that Nγ (c, n) = 0 for all n ≥ 2,
Nγ (1, 1)= 3, and Nγ (0, 1)= Nγ (2, 1)= 0. So

83 = −ω3(−1)+ 1
3ω3(−1)(−3)= −2ω3(−1).

For p | N with p ̸= 3, Pγ (X)= X2
− X + 1 is irreducible in Qp if and only if −3

is not a square in Qp, or equivalently, p ≡ 2 mod 3 (see [23, Lemma 27.4]). For
such p, 8p is given by (6-22). Multiplying these factors together gives (7-2), and
the theorem follows. □

Now suppose ω′ is trivial, so k > 2 is even. In this case we can simplify the
expressions for A1 and A2 to obtain Theorem 1.3, as follows.

Proof of Theorem 1.3. Recall that by (5-6), when p ≡ 3 mod 4 and ωp is trivial,
−νp(α)= −ν

p
p (α)= ϵp is the root number of σp. Likewise, by (5-5), (−1)S+1

= ϵ2

when S is even (and 1 otherwise). So in this case, we simply have

A1 =
1
4(ϵ(k, σ̂ ))D4(S)

∏
odd p |S

2, (7-3)

where ϵ(k, σ̂ ) = (−1)k/2
∏

p |S ϵp is the common global root number of the new-
forms in Sk(σ̂ ), and D4(S) ∈ {0, 1} vanishes exactly when S is divisible by a prime
p ≡ 1 mod 4.

Turning to (7-2), if p ≡ 2 mod 3, the polynomial X2
− X + 1 is irreducible

over Fp. So L = Fp2 has a root β ∈ L∗
− F∗

p . Let t be a generator of the cyclic
group L∗. The dual group of L∗ is the set {νm | 1 ≤ m ≤ p2

− 1}, where νm = νp,m

is defined by

νm(t)= νp,m(t)= e
(

m
p2 − 1

)
.
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Suppose p is odd. As shown in the proof of Corollary 5.2, the list of depth zero
supercuspidal representations of G(Qp) with trivial central character is

{σνp−1, σν2(p−1), . . . σν p−1
2 (p−1)

}.

So there exists m = k(p − 1) such that the primitive character νp of F∗
p2 fixed in

Theorem 1.3 is given by
νp = νp,m = νm .

Hopefully this conflict of notation (νp = νm) will cause no confusion, since m
cannot equal p.

Noting that β3
= −1, we can take β = t (p

2
−1)/6. Then for m = k(p − 1),

νm(β)= e
(

k(p − 1)(p2
− 1)

6(p2 − 1)

)
= e

(
k(p − 1)

6

)
=

{
1 if 3|k,

−
1
2 ± i

√
3

2 otherwise.

Therefore

B(νp) := −νp(β)− νp(β p)= −2 Re(νm(β))=

{
−2 if 3|k,

1 if 3 ∤ k.
(7-4)

When p = 2, there is only one supercuspidal, corresponding to m = k = 1, we can
take t = β, and (7-4) holds as well. By (5-7), 3|k if and only if the order of νm

divides 1
3(p + 1). So the above coincides with B(νp) defined in Theorem 1.3, and

the theorem follows from (7-3) and (7-4). □

Next we will use Theorem 1.3 to count the locally supercuspidal newforms of
level S2 with a given global root number. (What we will actually compute is the
bias in global root number, but the count for each sign could be determined easily
by following the proof of Proposition 7.6.)

To understand the impact of the local root numbers on the product of B(νp)

in (1-11), the primes of interest are equivalent to 2 mod 3, so aside from p = 2, we
have p ≡ 5 mod 6. It is helpful to look at two typical examples:

ν ν10 ν20 ν30 ν40 ν50

p = 11 AL + − + − +

B(ν) 1 1 −2 1 1

ν ν16 ν2·16 ν3·16 ν4·16 ν5·16 ν6·16 ν7·16 ν8·16

p = 17 AL + − + − + − + −

B(ν) 1 1 −2 1 1 −2 1 1

(7-5)

The Atkin–Lehner sign (AL) in the second row comes from (5-8), and the third row
is from (7-4).

Lemma 7.4. Given S > 1 square-free, let H+

S (resp. H−

S ) denote the set of tuples
σ̂ = (σp)p |S satisfying:
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• For each p |S, σp has trivial central character and conductor p2.

•
∏

p |S ϵp = 1 (resp. −1), where ϵp is the root number of σp.

For νp the primitive character of F∗
p2 attached to σp, and B(νp) defined in (7-4),

define
B(S)± =

∑
σ̂∈H±

S

∏
p |S, p ̸=3

B(νp).

Suppose D3(S) = 1 (in the notation of Theorem 1.3), and let ω(S) denote the
number of prime factors of S. Then if gcd(S, 6)= 1,

B(S)+ =


2ω(S)−1 if there exists p |S with p ≡ 5 mod 12,
2ω(S) if ω(S) is even and p ≡ 11 mod 12 for all p |S,
0 if ω(S) is odd and p ≡ 11 mod 12 for all p |S,

(7-6)

and B(S)− is the same but with “even” and “odd” interchanged, i.e., B(S)− =

2ω(S) −B(S)+.
If S is odd and 3|S, then B(S)± = B

( S
3

)± if S > 3, and B(3)+ = 1, B(3)− = 0.
If S is even, then B(S)± = B

( S
2

)∓ if S > 2, and B(2)+ = 0, B(2)− = 1.

Proof. Suppose gcd(S, 6)= 1. We prove (7-6) by induction on ω(S). For the base
case, we take S = p for a prime p ≡ 5 mod 6. As in (7-5), there are 1

3(p + 1)
representations with B(νp) = 1, of which 1

6(p + 1) have ϵp = 1 and 1
6(p + 1)

have ϵp = −1. There are 1
6(p − 5) representations with B(νp) = −2, of which⌈ 1

12(p − 5)
⌉

have ϵp = 1, and
⌊ 1

12(p − 5)
⌋

have ϵp = −1. Therefore

B(p)+ =

∑
σp∈H+

p

B(νp)=
1
6(p + 1)− 2

⌈ 1
12(p − 5)

⌉
=

{
1 if p ≡ 5 mod 12,
0 if p ≡ 11 mod 12.

Likewise

B(p)− =

∑
σp∈H−

p

B(νp)=
1
6(p + 1)− 2

⌊ 1
12(p − 5)

⌋
=

{
1 if p ≡ 5 mod 12,
2 if p ≡ 11 mod 12.

This proves the base case. Suppose (7-6) holds for some S > 1 with gcd(S, 6)= 1,
and ℓ≡ 5 mod 6 is a prime not dividing S. Then the result follows, by considering
cases, from the fact that

B(Sℓ)+ = B(S)+ ·B(ℓ)+ +B(S)− ·B(ℓ)−

and
B(Sℓ)− = B(S)+ ·B(ℓ)− +B(S)− ·B(ℓ)+.

When 3|S, the claim follows from the fact that there is a unique depth zero super-
cuspidal representation of PGL2(Q3), and it has root number +1 (see Corollary 5.2).
When 2|S, the claim follows from the fact that there is a unique depth zero supercus-
pidal representation σν of PGL(Q2), and it has B(ν)= 1 and root number −1. □
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Lemma 7.5. Let H+

S and H−

S be defined as in Lemma 7.4 above. As in (1-11),
define D4(S) ∈ {0, 1} to be 0 if and only if S is divisible by a prime p ≡ 1 mod 4.
Then

|H±

S | =

{
1
2

∏
odd p |S

1
2(p − 1) if D4(S)= 0,

1
2

∏
odd p |S

1
2(p − 1)± 1

2(−1)δ(2|S) if D4(S)= 1.

Proof. For each odd prime p, there are 1
2(p − 1) depth zero supercuspidals with

trivial central character (see Section 5.1). For p = 2, there is only one. Therefore
for all square-free S > 1, the total number of tuples σ̂ = (σp)p |S with each σp

having depth zero and trivial central character is

|H+

S | + |H−

S | =

∏
odd p |S

1
2(p − 1). (7-7)

Now suppose S is divisible by a prime p0 ≡ 1 mod 4. Fix ϵfin = ±1. By the
above, the number of tuples (σp)p |(S/p0) is

∏
odd p |(S/p0)

1
2(p − 1). Having fixed

one such tuple, by Corollary 5.2 there are then 1
4(p0 − 1) choices for σp0 subject to∏

p |S ϵσp = ϵfin. This proves the result when D4(S)= 0.
Now suppose p ≡ 3 mod 4 for all odd p |S. For this case, in view of (7-7),

the given formula is equivalent to |H+

S | − |H−

S | = (−1)δ(2|S). We will prove the
latter by induction on the number ω(S) of primes dividing S. If S = 2, the given
formula holds since there is just one representation σ2, and it has ϵσ2 = −1. If
S = p ≡ 3 mod 4, the given formula holds by Corollary 5.2. Having established
the base case, suppose now that the given formula holds for some S satisfying
D4(S) = 1, and that p0 ∤ S is a prime satisfying p0 ≡ 3 mod 4. We construct a
tuple σ̂ = (σp)p |Sp0 by first choosing the components at p |S, and then at p0. Let
P = |H+

S | and Q = |H+
p0

|, so |H−

S | = P − (−1)δ(2|S) and |H−
p0

| = Q − 1 by the
inductive hypothesis. Then

|H+

Sp0
| = P Q + (P − (−1)δ(2|S))(Q −1)= 2P Q − P − (−1)δ(2|S)Q + (−1)δ(2|S),

and

|H−

Sp0
| = P(Q − 1)+ (P − (−1)δ(2|S))Q = 2P Q − P − (−1)δ(2|S)Q.

Subtracting,
|H+

Sp0
| − |H−

Sp0
| = (−1)δ(2|Sp0),

as needed. □

Proposition 7.6. For S > 1 square-free, let

1(S2, k)min
= dim Smin

k (S2)+ − dim Smin
k (S2)−.

Then for k > 2 even,

1(S2, k)min
=1M +1A1 +1A2, (7-8)



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 417

where

1M = D4(S)(−1)k/2+δ(2|S) 1
12(k − 1)

∏
p |S

(p − 1), 1A1 =
1
4(D4(S))

∏
p |S

(p − 1)

for D4(S) as in Lemma 7.5 above, and

1A2 = δ(k ≡ 0, 2 mod 6)1
3(D3(S))(−1)δ(k≡6,8 mod 12)µ(S)�0(S′),

where D3(S)∈{0,1} is 0 if and only if p≡1 mod 3 for some p |S, µ(S)=
∏

p |S(−1)
is the Möbius function, and for S′

= S/gcd(S, 6),

�0(S′)=

{
0 if there exists p |S′ such that p ≡ 5 mod 12,
2ω(S

′) if p ≡ 11 mod 12 for all p |S′,

where ω(S′)=
∑

p |S′ 1. (Note that �0(1)= 1.)

Remark. Proposition 1.4, which summarizes the conditions under which1(S2,k)min

vanishes, is positive, or is negative, follows easily. The claim in the third paragraph
of Proposition 1.4 is due to the fact that when D4(S)= 1,

|1A1 +1A2 | ≤
1
4

∏
p |S

(p − 1)+ 1
3

∏
p |S′

2

=

[
1
4

+
1
3

∏
p |S′

2
p−1

∏
p |gcd(S,6)

1
p−1

] ∏
p |S

(p − 1)≤
7

12

∏
p |S

(p − 1),

where the last inequality is strict if S > 2. So if k ≥ 10, or k = 8 and S > 2, it
follows that |1A1 +1A2 | < |1M |, and hence the sign of 1M is the sign of the
bias. One checks by hand (or LMFDB) that Smin

8 (22)= 0. The case k = 6 follows
similarly, replacing the rightmost inequality by < 5

12

∏
p |S(p − 1) when S > 6 and

D4(S)= 1, and checking the S |6 cases by hand.

Proof of Proposition 7.6. We have

1(S2, k)min
=

∑
σ̂ :ϵ(k,σ̂ )=1

dim Sk(σ̂ )−
∑

σ̂ :ϵ(k,σ̂ )=−1

dim Sk(σ̂ ). (7-9)

Applying Theorem 1.3 to each summand, we get a sum of three terms as in (7-8).
Since the archimedean factor of the global root number is (−1)k/2 (see [20, Theorem
14.17] and [9]), the set of tuples σ̂ with global root number ϵ is H (−1)k/2ϵ

S , with
notation as in Lemma 7.4. Therefore the contribution of the main term is

1M =
1
12(k − 1)

∏
p |S

(p − 1)(|H (−1)k/2
S | − |H−(−1)k/2

S |),

and using Lemma 7.5 we obtain the formula given for 1M .
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Likewise, the contribution of the A1 term of Theorem 1.3 to (7-9) is

1A1 = |H (−1)k/2
S |

1
4 D4(S) · 1

∏
odd p |S

2 − |H−(−1)k/2
S |

1
4 D4(S) · (−1)

∏
odd p |S

2

=
1
4 D4(S)(|H+

S | + |H−

S |)
∏

odd p |S

2,

and the given formula follows from (7-7).
In the notation of Theorem 1.3 and Lemma 7.4, the contribution of A2 to (7-9) is

1A2 =
1
3(D3(S) b(k)(−1)δ(3|S))(B(S)(−1)k/2

−B(S)−(−1)k/2)

=
1
3(D3(S) b(k)(−1)δ(3|S)+k/2)(B(S)+ −B(S)−).

By considering possibilities for gcd(6, S), it is easy to check using Lemma 7.4 that

B(S)+ −B(S)− = (−1)δ(2|S)µ(S′)�0(S′).

The result then follows from (−1)δ(2|S)+δ(3|S)µ(S′)= µ(S) and the fact that

(−1)k/2 b(k)=


1 if k ≡ 0, 2 mod 12,

−1 if k ≡ 6, 8 mod 12,
0 if k ≡ 4 mod 6. □

By similar arguments, we obtain the dimension of the space of twist-minimal
forms of level S2.

Proposition 7.7. For S > 1 square-free and k > 2 even,

dim Smin
k (S2)=

1
12(k − 1)

∏
odd p |S

1
2(p − 1)2 +

1
4(D4(S))(−1)δ(2|S)+k/2

∏
odd p |S

2

+
1
3(D3(S) b(k))(−1)δ(3|S)

∏
p |(S/gcd(6,S))

2

for

b(k)=


1 if 6|k,

−1 if k ≡ 2 mod 6,
0 otherwise.

Remark. Although we have assumed k > 2, the above formula is valid when k = 2
as well. More generally, the dimension of Smin

k (N , χ) has been computed by Child
[8, Section 5.1].

Proof. We have

dim Sk(S2)min
= dM + dA1 + dA2,
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where
dM =

1
12(k − 1)

∏
p |S
(p − 1)(|H (−1)k/2

S | + |H−(−1)k/2
S |),

dA1 =
1
4(D4(S))(−1)k/2(|H+

S | − |H−

S |)
∏

odd p |S
2,

and
dA2 =

1
3(D3(S) b(k)(−1)δ(3|S))(B(S)+ +B(S)−).

The result follows upon applying (7-7) to dM , Lemma 7.5 to dA1 , and the fact that
B(S)+ +B(S)− = 2ω(S

′)
=

∏
p |S′ 2, for S′

= S/gcd(6, S). □

7.2. Simplification when n = 1 and T > 1. We return to the general setting of
Theorem 4.2 with no constraint on the conductor exponents of the σp. Our aim here
is to cull the list of matrices that appear in Theorem 4.2 when n = 1 and T > 1.
The result is Proposition 7.9, from which Theorem 7.1 follows.

Recall that for p |T , σp is a supercuspidal representation whose conductor is
of the form pn with n ≥ 3 odd. It is well known (see, e.g., [6, Section A.3.8])
that there is a ramified quadratic extension E/Qp with E∗ embedded in G(Qp)

such that σp is compactly induced from a character χ of Jn = E∗U (n−1)/2, where
U r

= 1+
( pZp

pZp

Zp
pZp

)r is an open compact subgroup of G(Qp) and χ |F∗ =ωp. In the
notation of Section 5.2, U 1 coincides with K ′, J3 with H ′, and in general Jn ⊆ H ′.
We use the local test function defined for g ∈ G(Qp) by

fp(g)=

{
dσpχ(g) if g ∈ Jn,

0 otherwise,
(7-10)

where dσp is the formal degree (depending only on the conductor). This coincides
with (5-18) when n = 3.

If p |T , the support of fp is the disjoint union of its unramified and ramified
elements:

Supp( fp)= Jn = (Jn ∩ Z K ′)∪ (Jn ∩πE Z K ′), (7-11)

where πE is a prime element of E whose square is a prime element of Qp. We may
decompose fp as fp = fu + fr , a sum of two functions supported on the unramified
and ramified elements of Jn respectively. In the paper of Gross [17, p. 1240],
discussed in Section 1.3, n = 3 and the local test function used is a multiple of fu .
The following is largely contained in [17, Proposition 5.1].

Proposition 7.8. Let f 1
= f n for n = 1. Suppose γ is elliptic in G(Q) and

unramified at some prime p |T . Then either γ has p-torsion in G(Q) and p ∈ {2, 3},
or 8(γ, f 1)= 0. As a result, 8(γ, f 1)= 0 in each of the following situations:

(1) γ is unramified at some prime p |T with p > 3.

(2) γ is unramified at 3|T and T ̸= 3.
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Proof. Write f = f 1. Suppose 8(γ, f ) ̸= 0. By Proposition 4.3, γ is elliptic
in G(R) and det γ > 0. Hence it belongs to a compact-mod-center subgroup U∞

of G(R) (U∞ being some conjugate of R∗
·SO(2)). Likewise, at every finite place v,

the support of fv is a compact-mod-center subgroup Jv of Gv (here is where we
use n = 1), and γ belongs to some conjugate Uv of Jv. (In fact since γ ∈ Kv a.e.,
we can take Uv = Kv a.e.) Hence γ belongs to a compact-mod-center subgroup∏
v Uv of G(A). Identifying γ with its image modulo the center, we have

γ ∈ G(Q)∩
∏
v

Uv.

This is a finite group since G(Q) is discrete in G(A) [23, Section 7.11]. In particular,
γ is a torsion element of G(Q), i.e., some power of γ lies in the center Z(Q).

Since γ is unramified at p |T , some conjugate of γ belongs to the unramified
part of the support of fp, which is a subset of the pro-p group K ′. (Recall that K ′ is
the pro-p-Sylow subgroup of the Iwahori subgroup of G(Qp)). It follows that the
order of γ in G(Q) is a power of p. However, it is known that any torsion element
of G(Q) has order 1, 2, 3, 4, or 6 [11, Lemma 1]. Since γ ̸= 1, we conclude that
p ≤ 3. This proves (1).

The 3-torsion elements of G(Q) comprise a single conjugacy class containing( 0
1

−1
1

)
[11, Lemma 1]. Therefore, if p = 3, γ is conjugate in G(Q) to a matrix of the

form
( 0

z
−z

z

)
and is hence everywhere unramified. By the above, this means T is not

divisible by any prime p > 3. It is also odd, because otherwise γ would somehow
simultaneously have 3-torsion and 2-power torsion. Hence T = 3, which proves (2).

By the same reference, the 4-torsion elements of G(Q) are all conjugate to
( 1

1
−1

1

)
.

But such an element is ramified at 2. Hence γ has 2-torsion if p = 2. □

Proposition 7.9. With notation as in Section 4.1, let T be the product of the primes p
for which ordp(N ) is odd, and for p |T take fp as in (7-10). Then for γ ∈ G(Q),
8(γ, f 1)= 0 unless either γ = 1 or the conjugacy class of γ has a representative
in G(Q) of one of the forms given in the table below:

form of T list of relevant elliptic γ for n = 1

even T ̸= 2
(

1
−T )

,
(

1
−T/2)

T = 2
(

1
−2)

,
(

1
−1)

,
( 0

1
−2

2

)
odd T > 3

(
1

−T )
T = 3

(
1

−3)
,
( 0

1
−3

3

)
,
( 0

1
−1

1

)
T = 1

(
1

−1)
,
( 0

1
−1

1

)
Remark. When T/2 ≡ 7 mod 8, the matrix

(
1

−T/2)
is hyperbolic (rather than

elliptic) in G(Q2), so its orbital integral vanishes. All other entries in the above
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table are elliptic in G(Qp) for each p |T , but for p |S this needs to be checked on a
case-by-case basis.

Proof. The case where T = 1 is already contained in Theorem 4.2, taking n = 1. So
suppose T > 1 and 8(γ, f ) ̸= 0. By Proposition 4.13, we may take γ =

( 0
1

−M
r M

)
for some M |T and 0 ≤ r <

√
4/M . Notice that if M > 3 then r = 0. Suppose first

that T ̸= 3. By Proposition 7.8, γ must be ramified at all odd primes dividing T , so
M = T or M = T/2. If T is odd, this means M = T and we obtain the third row
of the above table. Suppose T is even and M = T/2. By Proposition 7.8, γ has
2-torsion in G(Q). Note that

γ 2
=

(
−M −r M2

r M r2 M2
− M

)
is a scalar matrix if and only if r = 0. Therefore γ =

( 0
1

−M
0

)
. This establishes

the top two rows of the table. (When M = T = 2, r = 1 is admissible, and for
γ =

( 0
1

−2
2

)
, Pγ (X) = X2

− 2X + 2 is an Eisenstein polynomial for the prime 2,
which is indeed irreducible in Q2[X ] [50, p. 19].)

Now suppose T = 3. Then M = 1 or M = 3. In the latter case, γ =
( 0

1
−3
3r

)
for

r = 0, 1. If M = 1, then γ =
( 0

1
−1

r

)
for r = 0, 1, and γ is unramified at 3. If r = 0,

this matrix has 2-torsion, in violation of Proposition 7.8. Hence γ =
( 0

1
−1

1

)
. (In

this case, Pγ (X)= X2
− X + 1 has discriminant −3, which is not a square in Q3,

and hence γ is indeed elliptic in G(Q3).) □

7.3. Global orbital integrals for n = 1, N = T 3. Here we will evaluate the global
elliptic orbital integrals of Theorem 7.1 explicitly when N = T 3 > 1 for T square-
free. We must consider

γ =

(
−T

1

)
,

(
−T/2

1

)
(T even)

,

(
0 −2
1 2

)
(T =2)

,

(
0 −1
1 1

)
(T =3)

,

(
0 −3
1 3

)
(T =3)

as appearing in Proposition 7.9.
We introduce some notation before stating the global results. Given our tuple

σ̂ = (σ
ζp
tp
)p |T of simple supercuspidal representations, for k > 2 define

ϵ(k, σ̂ )= ik
∏
p | N

ζp. (7-12)

This is the common global root number of the cusp forms comprising Hk(σ̂ ) (see
Proposition 5.3 and [9; 20, Theorem 14.17]). Throughout this section f = f 1 as
in (5-21).

Proposition 7.10. For N = T 3, with notation as above, suppose that for each odd
prime factor p of the square-free integer T > 1, −ptp/T is a square modulo p.
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Then for k ≥ 4 even,

8

((
−T

1

)
, f

)
=
ϵ(k, σ̂ ) 27 43 h(−T )

3T =3 2ω(T )
∑

y

ω′(y),

where numbers with subscripts are present only when T falls into the subscript’s
equivalence class modulo 8, 3T =3 is a factor of 3 which is present only when T = 3,
and y ranges over all integers modulo T that satisfy y2

≡ −ptp/T mod p for
all p |T . If the central character is trivial, the above simplifies to

8

((
−T

1

)
, f

)
=
ϵ(k, σ̂ )h(−T )wT

3T =3
, (7-13)

where

wT =


1
2 if T is even,

1 if T ≡ 1 mod 4,
2 if T ≡ 7 mod 8,
4 if T ≡ 3 mod 8.

Remark. If the first hypothesis is not satisfied or k is odd, then 8(γ, f )= 0; see
Proposition 5.6.

Proof. Take γ =
(

1
−T )

, 1γ = −4T , and let M be the odd part of T , so that
T = 2a M for some a ∈ {0, 1}. Corresponding to (1-4), write

8(γ, f )= m8∞82
∏
p | M

8p = m(−1)k/282
∏
p | M

ζp

∑
yp

ωp(yp),

where we have applied (4-13) and Proposition 6.4, with yp running over the two
(since p is odd) solutions to y2

p ≡ −ptp/T mod p. We can exchange the sum and
product. To each of the 2ω(M) tuples (yp)p | M , the Chinese remainder theorem
assigns a unique integer y modulo T satisfying y ≡ yp mod p for all p |T , where
we take y2 = 1 if T is even. Further,

ω′(y)=

∏
p |T

ωp(y)=

∏
p |T

ωp(yp)=

∏
p | M

ωp(yp).

The first equality holds because gcd(y, T )= 1 (see [23, (12.4)]); the second holds
since each ωp is trivial on 1+ pZp. By Example 4.10 (for T odd) or Proposition 6.4
(for T even),

82 =


ζ2 if T is even,
2 if T ≡ 1, 5, 7 mod 8,
4 if T ≡ 3 mod 8.

It follows that
8(γ, f )=

2h(E)
wE 2ω(dE )

ϵ(k, σ̂ ) aT

∑
y

ω′(y)
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for y as in the statement of the proposition,

aT =


1 if T is even,
2 if T ≡ 1, 5, 7 mod 8,
4 if T ≡ 3 mod 8,

and E = Q(
√

−T ). Since T > 1, we know that

wE = |O∗

E | =

{
6 if T = 3,
2 otherwise.

So 1
2wE = 3T =3 and 2h(E)/wE = h(−T )/3T =3. Recall that

dE =

{
−4T, −T ≡ 2, 3 mod 4,
−T, −T ≡ 1 mod 4.

Therefore, placing the congruence condition on T rather than −T ,

2ω(dE ) =

{
2 · 2ω(T ) if T ≡ 1 mod 4,
2ω(T ) if T ≡ 2, 3 mod 4.

Hence using the definition of aT in the following numerator,

8(γ, f )= ϵ(k, σ̂ ) h(−T )
21,5,7 · 43

3T =3 · 21,5 · 2ω(T )
∑

y

ω′(y),

where numbers with subscripts are only present when T falls into one of the subscript
equivalence classes modulo 8. The general result now follows.

If ω′ is trivial, the sum over y equals the number of terms, namely 2ω(M). Then
(7-13) follows from

2ω(M)

2ω(T )
=

{
1 if T is odd,
1
2 if T is even

and the fact that ϵ(k, σ̂ ) ∈ {±1} is real in this case. □

Proposition 7.11. For N = T 3, suppose that the square-free integer T = 2M is
even, and that for each prime factor p of T , −ptp/M is a square modulo p. Then
for even k ≥ 4,

8

((
−M

1

)
, f

)
= h(−M)

ϵ(k, σ̂ )
ζ2

·
zM

2M=1 3M=3 2ω(M)
∑

y

ω′(y),

where 2M=1 is a factor of 2 which is present only when M = 1, 3M=3 is defined
similarly,

zM =


1
2 if M ≡ 1 mod 4,

−3 if M ≡ 3 mod 8,
0 if M ≡ 7 mod 8,
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and y ranges over all elements modulo M that satisfy y2
≡−ptp/M mod p for each

p | M. If ω′ is trivial, the sum over y simply cancels with the factor of 2ω(M). (Again,
if the condition on the tp fails to hold or k is odd, the orbital integral vanishes.)

Proof. We use the same proof as for the previous proposition, with minor modifica-
tions. First, by Example 6.6,

8

((
−M

1

)
, f2

)
=


1 if M ≡ 1 mod 4,

−3 if M ≡ 3 mod 8,
0 if M ≡ 7 mod 8.

Taking E = Q[
√

−M] we have

2ω(dE ) =

{
2 · 2ω(M) if M ≡ 1 mod 4,
2ω(M) if M ≡ 3 mod 4

as in the previous proof, and 2h(E)/wE = h(−M)/(3M=3 2M=1) since Q[
√

−1]

has unit group of order 4 when M = 1. Hence (assuming M ̸≡ 7 mod 8)

8

((
−M

1

)
, f

)
=

h(−M)(−3)3
3M=3 2M=1 21,5 2ω(M)

ϵ(k, σ̂ )
ζ2

∑
y

ω′(y),

where numerical subscripts refer to the congruence class of M modulo 8. □

Proposition 7.12. Suppose N = 23, ζ ∈ {±1} and σ = σ ζ is our fixed simple
supercuspidal representation of G(Q2) (the parameter t must equal 1 when p = 2).
Then

8

((
0 −2
1 2

)
, f

)
=

1
4ϵ(k, σ ) g8(k),

where g8(k)= −1 if k ≡ 0, 2 mod 8, and g8(k)= 1 if k ≡ 4, 6 mod 8.

Remark. In view of Proposition 5.4, we assume that k is even.

Proof. Given that γ has characteristic polynomial X2
− 2X + 2 with discriminant

1γ = −4, we find E = Q[γ ] = Q[i]. Hence h(E) = 1, wE = |O∗

E | = 4, and
dE = −4. By (1-4),

8(γ, f )= m8∞82 =
1
48∞82.

Applying Proposition 6.4 with p = 2 and v = 1, we have 82 = −ζ . So

8(γ, f )= −
1
48∞ ζ. (7-14)

The complex eigenvalues of γ are 1 ± i , so we apply (4-12) with θ =
π
4 to get

8∞ = −
√

2 sin
(1

4(k − 1) π
)
=

{
1 if k ≡ 0, 6 mod 8,

−1 if k ≡ 2, 4 mod 8.

Multiplying this by −1 as in (7-14) yields (−1)k/2g8(k) with g8 as given. □
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Proposition 7.13. Suppose T = 3 so N = 33, and let σ = σ
ζ
t be our fixed simple

supercuspidal representation of G(Q3), for t = ±1. Then

8

((
0 −1
1 1

)
, f

)
=

t
2t=−1

c3(k),

where c3(k)=
1
3 +

⌊ k
3

⌋
−

k
3 .

Proof. Let E = Q[γ ] = Q[
√

−3]. Then h(E)= 1, dE = −3, and wE = |O∗

E | = 6.
By (1-4) and taking m = 1 in Example 6.7 and its remark,

8(γ, f )=8∞ ·
1
6((−1)k t · 2t=1)=

1
3((−1)k8∞)

t
2t=−1

.

By (4-12), we find that

(−1)k8(γ, f∞)= (−1)k+1 sin
(
(k−1) π

3

)
sin(π/3)

=


1 if k ≡ 0 mod 3,
0 if k ≡ 1 mod 3,

−1 if k ≡ 2 mod 3.
(7-15)

Using the above, we see that 1
3((−1)k8(γ, f∞))=

1
3 +

⌊ k
3

⌋
−

k
3 . □

Proposition 7.14. Suppose N = 33, and let σ = σ
ζ
t be a fixed simple supercuspidal

representation of G(Q3). Then

8

((
0 −3
1 3

)
, f

)
=

{
0 if t = 1,
ϵ(k, σ )g6(k) if t = −1,

where

g6(k)=



0 if k ≡ 1 mod 6,
−

1
6 if k ≡ 0, 2 mod 6,
1
2 if k ≡ 3 mod 6,
1
3 if k ≡ 4 mod 6,

−
1
2 if k ≡ 5 mod 6.

Proof. Let γ =
( 0

1
−3

3

)
, so1γ =−3. We have E = Q[γ ]= Q[

√
−3], so the measure

factor is 1
6 as in the previous proof. Therefore as in (1-4), we may write

8(γ, f )=
1
68∞83. (7-16)

By Proposition 6.4, 83 = 0 unless −t is a square modulo 3, i.e., unless t = −1.
Assuming this holds, we have

83 = ζ̄ ·
(
ψ(1)ω3(1)+ψ(−1)ω3(−1)

)
= ζ̄ · (e−2π i/3

+ (−1)ke2π i/3)= −ζ̄ [i
√

3]k odd,

where the factor of i
√

3 is present only when k is odd.
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By (4-4) with N = 3, ω3(3)= 1. So ζ 2
=ω3(t)=ω3(−1)= (−1)k , so ζ =±(ik).

In particular, the global root number ε(σ, ζ )= ikζ is real and ζ̄ = (−1)kζ .
The complex roots of Pγ (X)= X2

− 3X + 3 are 1
2(3 ± i

√
3)=

√
3
( 1

2(
√

3 ± i)
)
,

so in (4-12) we can take θ =
π
6 and 8(γ, f∞)= −2 sin

( 1
6(k − 1) π

)
. Hence (7-16)

becomes

8(γ, f )=
1
3(−1)kζ sin

( 1
6(k − 1) π

)
[i

√
3]k odd =



ζ/3 if k ≡ 4 mod 12,
−iζ/2 if k ≡ 3, 5 mod 12,
ζ/6 if k ≡ 2, 6 mod 12,
0 if k ≡ 1, 7 mod 12,

−ζ/6 if k ≡ 0, 8 mod 12,
iζ/2 if k ≡ 9, 11 mod 12,

−ζ/3 if k ≡ 10 mod 12.

Upon factoring out ϵ(k, σ )= ikζ , we obtain g6(k) as given. □

7.4. Dimension formulas when N = T 3. Here we put everything together to
compute |Hk(σ̂ )| = dim Sk(σ̂ ) for σ̂ = (σp)p | N a tuple of simple supercuspidal
representations of G(Qp) as in Theorem 7.1 with S = 1.

We begin with the case N = 23, where the central character is necessarily trivial
due to (4-2) and Proposition 5.4.

Theorem 7.15. Let N = 23, fix ζ ∈ {±1}, and let σ = σζ be the associated simple
supercuspidal representation of G(Q2) with trivial central character. Then

|Hk(σ )| =


0 if k is odd,⌊ k

8

⌋
if k ≡ 0, 2 mod 8,⌊ k

8

⌋
+

1
2(1 + ϵ(k, σ )) if k ≡ 4, 6 mod 8,

where ϵ(k, σ )= (−1)k/2ζ is the global root number.

Proof. When k is odd, the assertion follows from Proposition 5.4. Suppose k is
even. By Theorem 7.1,

|Hk(σ )|=
1
12(k−1)· 3

2+
1
28

((
−2

1

)
, f

)
+

1
28

((
−1

1

)
, f

)
+8

((
0 −2
1 2

)
, f

)
.

Applying the results of Section 7.3 using h(−2)= h(−1)= 1, we find

|Hk(σ )| =
1
8(k − 1)+ 1

4((−1)k/2ζ )+ 1
8((−1)k/2)+ 1

4((−1)k/2ζ )g8(k)

for

g8(k)=

{
−1 if k ≡ 0, 2 mod 8,

1 if k ≡ 4, 6 mod 8.

The result follows upon simplifying each of the cases. □
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Theorem 7.16. Let N = 33, fix t ∈ {±1}, a character ω3 of Q∗

3 trivial on 1 + 3Z3,
ζ ∈ C with ζ 2

= ω3(t) (see (4-2)), and let σ = σ
ζ
t be the associated simple

supercuspidal representation of G(Q3) with central character ω3. Then for k > 2,
setting ϵ = ikζ , we have

|Hk(σ )| =



⌊ k
3

⌋
+

1
2(ϵ− 1) if k ≡ 0 mod 3 and t = −1,⌊ k

3

⌋
if k ≡ 1 mod 6 or t = 1,⌊ k

3

⌋
+

1
2(ϵ+ 1) if k ≡ 2 mod 6 and t = −1,⌊ k

3

⌋
+ ϵ if k ≡ 4 mod 6 and t = −1,⌊ k

3

⌋
+

1
2(1 − ϵ) if k ≡ 5 mod 6 and t = −1.

Remarks. (1) If t = −1, then ζ 2
= ω3(−1)= (−1)k , so ζ = ±ik , as noted earlier.

Therefore ϵ ∈ {±1} when t = −1. When t = 1 and k is odd, ϵ = ±i .

(2) There is one more newform with ϵ = −1 than with ϵ = 1, i , or −i when
k ≡ 5 mod 6, i.e., the root number has a slight bias toward −1 in this case. For
example, when k = 5 and ω′ is the Dirichlet character of conductor 3, there are
five newforms of level 27, with respective root numbers 1, −1, −1, i , −i . These
newforms are discussed further in Section 7.5.

Proof. By Theorem 7.1,

|Hk(σ )| =
1

12
(k−1)· 8

2
+

1
2
8

((
−3

1

)
, f

)
+8

((
0 −1
1 1

)
, f

)
+8

((
0 −3
1 3

)
, f

)
=

1
3
(k − 1)+ 2ϵ

3
δt=−1 · δk∈2Z +

t
2t=−1

c3(k)+ ϵg6(k) δt=−1,

where we have applied Propositions 7.10, 7.13, and 7.14, and c3(k), g6(k) are re-
called below. (For nonvanishing of8

((
1

−3)
, f

)
, the hypothesis in Proposition 7.10

requires that −t be a square modulo 3, i.e., t = −1, and k even. Then ϵ̄ = ϵ and
the sum over y in that result is 1 + (−1)k = 2.)

If t = 1, then because c3(k)=
1
3(1 − k)+

⌊ k
3

⌋
, the above simplifies to

⌊ k
3

⌋
, as

needed.
Now suppose t = −1, and write k = a +6c for some 0 ≤ a ≤ 5. If k is odd, then

|Hk(σ )| =
1
3(k − 1)− 1

2

( 1
3(1 − k)+

⌊ k
3

⌋)
+ ϵg6(k)=

1
2(k − 1)− 1

2

⌊ k
3

⌋
+ ϵg6(k).

Using the fact that g6(k)= 0, 1
2 ,−

1
2 when a = 1, 3, 5 respectively, we get

|Hk(σ )| =


2c =

⌊ k
3

⌋
if a = 1,

2c + 1 +
1
2(ϵ− 1)=

⌊ k
3

⌋
+

1
2(ϵ− 1) if a = 3,

2c + 1 +
1
2(1 − ϵ)=

⌊ k
3

⌋
+

1
2(1 − ϵ) if a = 5.



428 ANDREW KNIGHTLY

If k is even, then there is one extra term, namely 2ϵ
3 , so

|Hk(σ )| =
1
2(k − 1)− 1

2

⌊ k
3

⌋
+ ϵ

( 2
3 + g6(k)

)
.

Here, g6(k)= −
1
6 ,−

1
6 ,

1
3 when a = 0, 2, 4 respectively. Upon simplifying,

|Hk(σ )| =


2c +

1
2(ϵ− 1)=

⌊ k
3

⌋
+

1
2(ϵ− 1) if a = 0,

2c +
1
2(1 + ϵ)=

⌊ k
3

⌋
+

1
2(1 + ϵ) if a = 2,

2c + 1 + ϵ =
⌊ k

3

⌋
+ ε if a = 4. □

Theorem 7.17. Suppose N = T 3 with T > 3 square-free, M =
T
2 , k ≥ 4 is even,

and σ̂ = (σ
ζp
tp
)p | N is a tuple of simple supercuspidal representations with trivial

central characters. Then

|Hk(σ̂ )| =
1

12(k − 1)
∏
p |T

1
2(p

2
− 1)+11(t̂ ) ϵ(k, σ̂ ) bT h(−T )

+12(t̂ )
ϵ(k, σ̂ ) jM h(−M)

ζ2 3M=3
, (7-17)

where ϵ(k, σ̂ ) ∈ {±1} is the common global root number of the newforms in Hk(σ̂ )

given in (7-12),

bT =


1
4 if T is even,
1
2 if T ≡ 1 mod 4,
1 if T ≡ 7 mod 8,
2 if T ≡ 3 mod 8,

jM =


1
4 if M ≡ 1 mod 4,

−
3
2 if M ≡ 3 mod 8,
0 if M ≡ 7 mod 8,

h(d) is the class number of Q[
√

−d], and 1i (t̂ ) ∈ {0, 1} is nonzero if and only if
(i) T is even in the case i = 2, and (ii) −2i−1 ptp/T is a square modulo p for each
odd p |T .

Remarks. To keep the formula simple, we have restricted ourselves to the case of
trivial central character; the general case is obtained similarly. Even in the general
case, one may restrict to k even because by Corollary 7.2,

|Hk(σ̂ )| =
1

12(k − 1)
∏
p | N

1
2(p

2
− 1) (T > 3, k odd). (7-18)

Proof. This follows from Theorem 7.1 and Propositions 7.10 and 7.11. □

As a corollary, we recover the following dimension formulas of [37].

Corollary 7.18. For T = 2, 3 and k ≥ 4 even,

dim Snew
k (8)=

⌊ k
4

⌋
, dim Snew

k (27)= k − 1 +
⌊ k

3

⌋
.

For T > 3 square-free, and k ≥ 4 even,

dim Snew
k (T 3)=

1
12(k − 1)

∏
p |T

(p − 1)2(p + 1). (7-19)
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Remarks. As shown in [37], the formula is also valid for k = 2. When k is odd
and ω′ has conductor dividing T , dim Snew

k (T 3, ω′) is also equal to (7-19). This
follows from (7-18).

Proof. For T = 2, by Theorem 7.15,

|Hk(23)| = |Hk(σ
+)| + |Hk(σ

−)| =

{
2
⌊ k

8

⌋
if k ≡ 0, 2 mod 8,

2
⌊ k

8

⌋
+ 1 if k ≡ 4, 6 mod 8.

This is easily seen to be the same as
⌊ k

4

⌋
.

For T = 3, for fixed k we add the formula in Theorem 7.16 over all t, ζ ∈ {±1},
or equivalently, t, ϵ ∈ {±1}. Writing the t = 1 contribution first, we obtain

|Hk(33)| = 2
⌊ k

3

⌋
+


2
⌊ k

3

⌋
− 1 if k ≡ 0 mod 3,

2
⌊ k

3

⌋
if k ≡ 1 mod 3,

2
⌊ k

3

⌋
+ 1 if k ≡ 2 mod 3.

The above is easily seen to equal k − 1 +
⌊ k

3

⌋
, as required.

For T > 3 we have

dim Snew
k (T 3)= |Hk(T 3)| =

∑
σ̂

|Hk(σ̂ )|,

where σ̂ ranges over the
∏

p |T 2(p−1) tuples (tp, ζp), with trivial central character.
By (7-17), this equals

1
12(k − 1)

∏
p |T

1
2(p

2
− 1) 2(p − 1)+

∑
σ̂

11(t̂ ) ϵ(k, σ̂ ) bT h(−T )

+

∑
σ̂

12(t̂ )
ϵ(k, σ̂ ) jM h(−M)

ζ2 3M=3
.

Clearly, from (7-12), exactly half of the σ̂ satisfying 11(t̂ )= 1 have ϵ(k, σ̂ )= +1,
and half have ϵ(k, σ̂ ) = −1. So the first sum over σ̂ vanishes. Likewise if T is
even, ϵ(k, σ̂ )/ζ2 = +1 (resp. −1) exactly half of the time since T is divisible by at
least one prime different from 2, so the second sum also vanishes. □

Next, we compute the dimension of the subspace of forms with a given root
number, which recovers the main result (1-9) of [46].

Corollary 7.19 [46]. For T > 3 square-free and k ≥ 4 even, the subspace of
Snew

k (T 3) with root number ±1 has dimension

|H±

k (T
3)| =

1
24(k − 1)

∏
p |T

(p − 1)2(p + 1)± 1
2(cT h(−T ))

∏
p |T

(p − 1),
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where cT = bT if T is odd, and cT = 2bT if T is even, i.e.,

cT =


1
2 if T ≡ 1, 2 mod 4,
1 if T ≡ 7 mod 8,
2 if T ≡ 3 mod 8.

(7-20)

Proof. Given σ̂ = (σ
ζp
tp
)p |T , let t̂ = (tp)p |T and ζ̂ = (ζp)p |T . The root number is deter-

mined by ζ̂ and k. Let A±

k be the set of all tuples ζ̂ for which (−1)k/2
∏

p |T ζp =±1.
Then

|A+

k | = |A−

k | =
1
2

∏
p |T

2. (7-21)

By (7-17), we see that

|H±

k (T
3)|

=

∑
ζ̂∈A±

k

∑
t̂

|Hk(σ̂ )|

=

∑
ζ̂∈A±

k

∑
t̂

(
1

12(k − 1)
∏
p |T

1
2(p

2
− 1)± bT h(−T )11(t̂ )± ζ2

jM h(−M)
3M=3

12(t̂ )
)
,

where M is the odd part of T . Recall that 12(t̂ ) = 0 if T odd. If T is even,
upon summing over ζ2 = ±1 the last term will be eliminated, so we can ignore it
henceforth. For any given odd prime p, exactly half of the elements tp ∈ (Z/pZ)∗

have the property that −ptp/T is a square. Therefore, the number of tuples t̂ for
which 11(t̂ ) ̸= 0 is

∏
p | M

1
2(p−1). The total number of tuples t̂ is

∏
p |T (p−1)=∏

p | M(p − 1). It follows that

|H±

k (T
3)| =

∑
ζ̂∈A±

k

(
1
12(k − 1)

∏
p |T

1
2(p

2
− 1)(p − 1)± bT h(−T )

∏
p | M

1
2(p − 1)

)
.

By (7-21), we obtain

|H±

k (T
3)| =

1
24(k − 1)

∏
p |T

(p − 1)2(p + 1)± 1
2(2T bT h(−T ))

∏
p |T

(p − 1),

where 2T is a factor of 2 which is only present when T is even. We see immediately
that 2T bT = cT as given. □

7.5. Some examples with n > 1. In this section we illustrate Theorem 1.1 with
some examples. (A different set of examples is given in the earliest version of
this paper posted on the arXiv.) We will compare with the Galois orbits of new-
forms tabulated in LMFDB [34]. Though Sk(σ̂ ) occasionally forms a Galois orbit,
typically the orbit is a direct sum of more than one such space. It also happens
that a space Sk(σ̂ ) decomposes as a direct sum of more than one Galois orbit.



COUNTING LOCALLY SUPERCUSPIDAL NEWFORMS 431

Examples of these phenomena can be found in Smin
4 (232), where Theorem 1.3

gives dim S4(σ̂ )=
1
2(11 + ϵ) ∈ {5, 6}, but the twist-minimal Galois orbits can have

dimensions 1, 2, 5, 6, 12 or 24.

7.5.1. We first consider an example with odd weight. Take N = 33, k = 5, and ω′

the Dirichlet character of modulus 27 and conductor 3. We consider simple super-
cuspidal representations σ ζt , where t ∈ {±1} and ζ 2

= ω′(t). In LMFDB [34] we
find the following data for the space S5(27, ω′):

LMFDB label ϵ dim tr T4 tr T7 (ζ, t)

27.5.b.a 1 1 16 71 (−i,−1)
27.5.b.b −1 2 −76 34 (i,−1)
27.5.b.c ±i 2 14 −38 (1, 1)⊕ (−1, 1)

The final column, using the shorthand (ζ, t)= S5(σ
ζ
t ), is immediate upon comparing

Theorem 7.16 with the ϵ and dim columns. Using Theorem 7.17 we find the
following, which refines the above.

Example 7.20. With notation as above,

tr(T4 |S5(σ
ζ
t ))=

1
2(37t − 23)+ 46iζ · δt=−1,

tr(T7 |S5(σ
ζ
t ))=

1
4(67 − 143t)+ 1

2(37iζ )δt=−1.

We will give an indication of the proof of the above formulas. The calculations
for n = 7 are a little bit more interesting, so we start with this case. By Theorem 1.1,

tr(T7 |S5(σ
ζ
t ))

= 73/2
[
8

((
−21

1 3

))
+8

((
−21

1 6

))
+8

((
−21

1 9

))
+

5∑
r=1

8

((
−7

1 r

))]
.

We have used (4-13) to eliminate the trace zero matrices, since k is odd. The matrix(
1

−7
3

)
is unramified at p = 3 but has no double characteristic root mod 3. So its

orbital integral vanishes by Proposition 5.6. The first three integrals vanish unless

y2
≡ −

t
7

≡ −t mod 3

has a solution, i.e., t = −1. In this case, applying Proposition 6.4 to γ =
(

1
−21

9

)
and

p = 3, we see that v= 3 so the local integral has the value ζ5(ω3(1)+ω3(−1))= 0.
Hence this γ can be discarded. We compute the remaining orbital integrals locally
as summarized in the following table, where m = 2h(E)/(w(E)2ω(dE )) is the global
measure factor for E = Q[γ ], and ℓ denotes a prime factor of the discriminant 1γ
other than 3 (if such exists). The global orbital integral is then 8 = m8∞838ℓ.
The factor

8∞ = −
sin(4 arctan(

√
|1γ |/tr γ ))

sin(arctan(
√

|1γ |/tr γ ))
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was computed using software.

γ 1γ ℓ m 8∞ 83 8ℓ(
1

−21
3

)
−3 · 52 5 1

6 11
√

3 · 7−3/2
−i ζ̄

√
3 · δt=−1 7(

1
−21

6

)
−24

· 3 2 1
6 4

√
3 · 7−3/2 i ζ̄

√
3 · δt=−1 10(

1
−7

1

)
−33 1

6 13 · 7−3/2 4(
1

−7
2

)
−23

· 3 2 1
2 20 · 7−3/2 1

2 (1 − 3t) 2(
1

−7
4

)
−22

· 3 2 1
6 −8 · 7−3/2

−
1
2 (3t + 1) 4(

1
−7

5

)
−3 1

6 −55 · 7−3/2 1
2 (3t + 1)

The formula for tr T7 in Example 7.20 follows upon simplifying. Most of the
entries in the above table are straightforward, but we highlight a few. For example,
γ =

(
1

−21
6

)
is elliptic in G(Q2), and by the quadratic formula,

Z2[γ ] = Z2
[ 1

2(6 + 22
√

−3)
]
= Z2 + Z222ε,

where ε =
1
2(1 +

√
−3). So nγ = 2 and 82(γ ) = 1 + (2 + 1)+ (4 + 2) = 10 by

Proposition 4.8 and (4-20).
The matrix γ =

(
1

−7
1

)
is unramified at p = 3, so 83(γ ) is computed us-

ing Proposition 6.5. We find (using software) that Nγ (0, 1) = Nγ (0, 2) = 3,
Nγ (1, 2) = 6, Nγ (1, 3) = 9, and Nγ (c, n) = 0 for all other pairs (c, n). Since
Pγ (X) ≡ (X + 1)2 mod 3, we take z = −1, so, using the third remark after
Proposition 6.5, for t = ±1 we have

83

((
−7

1 1

))
=

−1
3

[
3
(

e
(

t
3

)
+ e

(
−t
3

))
+ 3(2)+ 6(−1)+ 9(−1)

]
= 4.

Finally, γ =
(

1
−7

2

)
is unramified at p = 3 and Nγ (−1, 1)= 3 is the only nonzero

value of Nγ (c, n). We take z = 1 in Proposition 6.5 to get

83

((
−7

1 2

))
=

1
3

·3
[
e
(

−1−t
3

)
+ e

(
1+t

3

)]
= 2 cos 2π(1+t)

3
=

{
−1 if t = 1,

2 if t = −1.

This equals 1
2(1 − 3t) for t = ±1. The remaining entries in the above T7 table are

found in a similar fashion.
For tr T4, in the identity term we have ω′(

√
4)= −1. So

tr(T4 |S5(σ
ζ
t ))= 8

[
−

4
3

+8

((
−12

1 3

))
+8

((
−12

1 6

))
+8

((
−4

1 1

))
+8

((
−4

1 2

))
+8

((
−4

1 3

))]
.
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The last term can be eliminated since it is unramified at p = 3 and it has no
characteristic root modulo 3. The remaining orbital integrals are computed locally
as follows, and the formula for tr T4 in Example 7.20 follows upon simplification.

γ 1γ ℓ m 8∞ 83 8ℓ(
1

−12
3

)
−3 · 13 13 1 5

√
3 · 8−1

−i ζ̄
√

3 · δt=−1 2(
1

−12
6

)
−22

· 3 2 1
6 −

√
3 i ζ̄

√
3 · δt=−1 4(

1
−4

1

)
−3 · 5 5 1

2 7 · 8−1 1
2 (3t − 1) 2(

1
−4

2

)
−22

· 3 2 1
6 1 1

2 (3t + 1) 4

7.5.2. Let N = 23112 and k = 6, and let σ ζ be a simple supercuspidal representation
of PGL2(Q2) and σν a depth zero supercuspidal representation of PGL2(Q11).
Here, ζ ∈ {±1}, and ν is one of the five primitive characters of L∗ listed in (7-5),
where L = F112 and we take the generator t of L∗ to be a root of the polynomial
X2

+ 7X + 2 ∈ F11[X ]. Let σ̂ be the associated tuple. Then by Theorem 7.1,

dim S6(σ̂ )=
25
4

+
1
2
8

((
−2

1

)
, f 1

)
+

1
2
8

((
−1

1

)
, f 1

)
+8

((
−2

1 2

)
, f 1

)
.

Over F11, X2
+ 2 = (x + 3)(x − 3), so

(
1

−2)
is hyperbolic in G(Q11) by Hensel’s

lemma, and therefore its orbital integral vanishes. Using Example 6.6 and the
argument at (7-3),

1
2
8

((
−1

1

))
=

1
2

m8∞82811 =
1
2

·
1
4

· (−1)6/2 · 1 · 2ϵ11 = −
1
4
ϵ11.

Taking γ =
(

1
−2

2

)
, Pγ (X)= X2

− 2X + 2 is irreducible over F11, so by (6-22),

811 = −ν(γ )− ν11(γ ).

For L∗
= ⟨t⟩ as above, we find (using software) that t51 has minimum polyno-

mial Pγ (X). Therefore, if ν = νm for m = 10w ∈ {10, 20, 30, 40, 50} as in (7-5)
where µm(t)= e

( m
120

)
, we have

νm(γ )= e
(51m

120

)
= e

(17w
4

)
= e

(
w

4

)
= iw.

Using this, 811(γ ) is given by

ν ν10 ν20 ν30 ν40 ν50

ϵ11 + − + − +

811 0 2 0 −2 0

(7-22)
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As in the proof of Proposition 7.12, m =
1
4 , 8∞ = 1 (since k = 6), and 82 = −ζ .

Hence 8(γ )= −
1
4ζ811 for 811 as above. Thus

dim S6(σ̂ )=
25
4 −

1
4ϵ11 −

1
4ζ811 =


6 if ϵ11 = 1, or ζ = 1 and ν = ν20,

or ζ = −1 and ν = ν40,

7 if ζ = 1 and ν = ν40,

or ζ = −1 and ν = ν20.

(7-23)

We would like to match the above spaces to Galois orbits of twist-minimal
newforms in Snew

6 (23112). In the table below, the first five columns show LMFDB
[34] data, with AL entries corresponding to the Atkin–Lehner signs at p = 2, 11.
These are equal to ζ and ϵ11 respectively. The dim column gives the size of the
orbit.

LMFDB label dim tr T7 AL 2 AL 11 (ζ, ν)

968.6.a.f 6 −124 − − (−1, ν40)

968.6.a.g 6 124 + − (1, ν20)

968.6.a.h 6 −88 + + (1, ν30)

968.6.a.i 6 88 − + (−1, ν30)

968.6.a.j 7 −62 − − (−1, ν20)

968.6.a.k 7 62 + − (1, ν40)

968.6.a.l 6 −206 + + (1, ν10)⊕ (1, ν50)

968.6.a.m 6 206 − + (−1, ν10)⊕ (−1, ν50)

In the final column we have adopted the notation S6(σ̂ )= (ζ, ν). This column was
obtained as follows. Comparing (7-22) and (7-23) with the AL and dim columns,
we immediately infer the entries with ϵ11 = −1, i.e., with ν20 and ν40. We can
distinguish the remaining entries by looking at Hecke eigenvalues. For this we
apply Theorem 1.1 to compute tr(T7 |S6(σ̂ )). The result is the following.

Example 7.21. Let N = 23112 and σ̂ = (σ ζ , σν) be a tuple of supercuspidal
representations of conductors 23 and 112 respectively, as above. Then

tr(T7 |S6(σ̂ ))= −98ζϵ11 − 5ζ X11 − 31Y11,

where ϵ11, X11 and Y11 are given as follows:

ν ν10 ν20 ν30 ν40 ν50

ϵ11 + − + − +

X11 1 1 −2 1 1
Y11

√
3 −1 0 1 −

√
3

For example, in the notation used above,

tr(T7 |(1, ν10))= −103 − 31
√

3, tr(T7 |(1, ν50))= −103 + 31
√

3.
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We sketch the proof as follows. By Theorem 1.1,

tr(T7 |S6(σ̂ ))

=72
[

1
2
8

((
−7

1

))
+

1
2
8

((
−14

1

))
+

5∑
r=1

8

((
−7

1 r

))
+

3∑
r=1

8

((
−14

1 2r

))]
.

All but three of the orbital integrals vanish for simple reasons. The matrices
(

1
−7)

,(
1

−7
2

)
,
(

1
−7

3

)
,
(

1
−14

1

)
, and

(
1

−14
2

)
are hyperbolic in G(Q11), since their charac-

teristic polynomials have two distinct roots modulo 11. The matrices
(

1
−7

1

)
,
(

1
−7

5

)
are unramified at p = 2 but do not have characteristic roots modulo 2. So the
associated orbital integrals vanish by Proposition 5.6, and

tr(T7 |S6(σ̂ ))= 72
[

1
2
8

((
−14

1

))
+8

((
−7

1 4

))
+8

((
−14

1 6

))]
.

The formula in Example 7.21 follows upon computing each of these terms locally.
The local results are shown in the following table, with notation as in the previous
N = 27 example. The global orbital integral for a given row is8= m8∞828118ℓ.

γ 1γ ℓ m 8∞ 82 811 8ℓ(
1

−14)
−23

· 7 7 1 −1 ζ 2ϵ11 2(
1

−14
6

)
−22

· 5 5 1
2

5
72 −ζ X11 2(

1
−7

4

)
−22

· 3 3 1
6

31
72 −3 Y11 2

The 811 column was determined as follows. As described earlier, F∗

112 = ⟨t⟩ where
t2

+7t +2 = 0. For each γ as above, there is a power t j whose minimum polynomial
over F11 is Pγ (X). The power j was found with software, and is given as follows:

γ
(

1
−14) (

1
−14

6

) (
1

−7
4

)
j 18 8 17

In each case, (6-22) implies that

811 = −ν(γ )− ν11(γ )= −ν(t j )− ν(t11 j ).

By definition, νm(t)= e
( m

120

)
, so if ν = νm for m = 10w,

811(γ )= −e
(
−

jw
12

)
− e

(
−

11 jw
12

)
,

which can be evaluated by hand or using software to obtain the 811 column in the
above table.
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