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Cohomology of Fuchsian groups and Fourier interpolation

Mathilde Gerbelli-Gauthier and Akshay Venkatesh

We give a new proof of a Fourier interpolation result first proved by Radchenko
and Viazovska (2019), deriving it from a vanishing result of the first cohomology
of a Fuchsian group with coefficients in the Weil representation.

1. Introduction

Let S be the space of even Schwartz functions on the real line, and s the space of
sequences of complex numbers (an)n≥0 such that |an|nk is bounded for all k; we
write φ̂(k) =

∫
R
φ(x) e−2π ikx dx for the Fourier transform of φ ∈ S. Radchenko

and Viazovska [2019] proved the following beautiful “interpolation formula”:

Theorem 1.1. The map

9 : S → s⊕ s, φ 7→ (φ(
√

n), φ̂(
√

n))n≥0

is an isomorphism onto the codimension 1 subspace of s⊕ s cut out by the Poisson
summation formula, i.e., the subspace of (xn, yn) defined by

∑
n∈Z xn2 =

∑
n∈Z yn2 .

This is an abstract interpolation result: The statement implies the existence of a
universal formula that computes any value φ(x) of any even Schwartz function φ as
a linear combination

∑
an(x) φ(

√
n)+

∑
ân(x) φ̂(

√
n) for some an(x), ân(x), but

does not specify what those functions are. By contrast, Radchenko and Viazovska
first write down this explicit interpolation formula, and then deduce Theorem 1.1
from it. In a sense, what is accomplished in the present paper is to separate the
abstract content of this interpolation result from its computational aspect.

The morphism 9 is in fact a homeomorphism of topological vector spaces with
reference to natural topologies. We will give another proof of this theorem. The
first step of this proof is to notice that the evaluation points

√
n occur very naturally

in the theory of the oscillator representation defined by Segal, Shale and Weil (see
[Chan 2012] or [Lion and Vergne 1980] for introductions). Using this observation,
the theorem can be reduced to computing the cohomology of a certain Fuchsian
group with coefficients in this oscillator representation, and here we prove a more
general statement:
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Theorem 1.2. Let G be SL2(R) or a finite cover thereof , 0 a lattice in G , W an
irreducible infinite-dimensional (g, K )-module, and W ∗

−∞
the distributional global-

ization of its dual (see Section 2.4). Then H 1(0,W ∗
−∞
) is always finite-dimensional,

and in fact

dim H 1(0,W ∗

−∞
)= multiplicity of W cl in cusp forms on 0\G, (1)

where W cl is the complementary irreducible representation to W (see Section 2.3).

The theorem can be contrasted with usual Frobenius reciprocity:

dim H 0(0,W ∗

−∞
)= multiplicity of W in automorphic forms on 0\G. (2)

Note that, in the passage from (1) to (2), “cusp forms” have been replaced by “au-
tomorphic forms” and W cl by W. We also emphasize the surprising fact that, in the
theorem, the H 1 takes no account of the topology on W ∗

−∞
: it is simply the usual co-

homology of the discrete group 0 acting on the abstract vector space W ∗
−∞

. The cor-
responding determination for finite-dimensional W is the subject of automorphic co-
homology and is in particular completely understood, going back to [Eichler 1957].

A variant of Theorem 1.2, computing all the cohomology groups H i when W is a
spherical principal series representation, was already proved by Bunke and Olbrich
in the 1990s. We were unaware of this work when we first proved Theorem 1.2;
our original argument has many points in common with [Bunke and Olbrich 1998],
most importantly in our usage of surjectivity of the Laplacian both for analytic and
algebraic purposes, but also has some substantial differences of setup and emphasis.
We will correspondingly give two proofs: the first based on the results of [Bunke
and Olbrich 1998], and the second a shortened version of our original argument.

Some other interpolation consequences of Theorem 1.2, where interpolation is
understood in the abstract sense as discussed after Theorem 1.1, arise by replacing S
by other spaces of functions carrying natural representations of SL2(R) and its
finite covers; we discuss this in Section 6.4. For example, Hedenmalm and Montes-
Rodríguez [2011] have shown that the functions eiπαnt, eiπβn/t are weakly dense
in L∞ if and only if αβ = 1. We will show that an interpolation result holds at
the transition point αβ = 1; we thank the referee for bringing [Hedenmalm and
Montes-Rodríguez 2011] to our attention.

1.1. Theorem 1.2 implies Theorem 1.1. Here we give an outline of the argument
and refer to Section 6 for details.

We pass first to a dual situation. Denote by S∗ the space of tempered distributions,
i.e., the continuous dual of S. For our purposes we regard it as a vector space
without topology.

Similarly, we define s∗ as the continuous dual of s, where s is topologized by
means of the norms ∥(bn)∥k := supn bn(1 + |n|)k ; thus, s∗ may be identified with
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sequences (an) of complex numbers of polynomial growth, where the pairing of
(an) ∈ s∗ and (bn) ∈ s is given by the rule

∑
an bn . With this notation, the map

9∗
: s∗

⊕ s∗
→ S∗

dual to 9 takes the coordinate functions to the distributions δn and δ̂n:

(an, bn)n≥0 7→
∑

an δn + bn δ̂n,

where
δn(φ)= φ(

√
n), δ̂n(φ)= φ̂(

√
n).

Then Theorem 1.1 is equivalent to the assertion:

(Dual interpolation theorem): 9∗ is surjective and its kernel consists
precisely of the “Poisson summation” relation.

The equivalence of this statement and Theorem 1.1 is not a complete formality
because of issues of topology: see (52) for an argument that uses a theorem of
Banach.

The next key observation is that the space of distributions spanned by δn and
by δ̂n occur in a natural way in representation theory.

The closure of the span of δn (respectively, the closure of the span of δ̂n)
coincide with the e-fixed and f -fixed vectors on the space S∗ of tempered
distributions, where

e =

(
1 2
0 1

)
and f =

(
1 0
2 1

)
(3)

act on S∗ according to the oscillator representation (see Section 6.1 for
details), namely e and f multiply φ and φ̂, respectively, by e2π i x2

, see (51).

Let 0 be the group generated by e and f inside SL2(R): it is a free group, of
index 2 in 0(2), and it lifts to the double cover G of SL2(R). As explicated in
Section 6, computations of dimensions of modular forms and Theorem 1.2 yield

dim H 0(0,S∗)= 1, dim H 1(0,S∗)= 0. (4)

The final observation is that:

The kernel and cokernel of (S∗)e ⊕ (S∗) f
→ S∗ compute, respectively,

the H 0 and H 1 of 0 acting on S∗.

This follows from a Mayer–Vietoris-type long exact sequence that computes the
cohomology of the free group 0 [Brown 1982, Chapters II and III], namely,

0 → H 0(0,S∗)→ H 0(⟨e⟩,S∗)⊕ H 0(⟨ f ⟩,S∗)

→ H 0(1,S∗)→ H 1(0,S∗)→ · · · . (5)



220 MATHILDE GERBELLI-GAUTHIER AND AKSHAY VENKATESH

Combined with (4), we see that S∗
= (S∗)e + (S∗) f , i.e., the desired surjectiv-

ity of 9∗, and that the intersection of (S∗)e and (S∗) f is one-dimensional; this
corresponds exactly to the Poisson summation formula.

Another way to look at this is the following. The Poisson summation formula is
an obstruction to surjectivity in Theorem 1.1 and is closely related to the invariance
of the distribution

∑
δn ∈ S∗ by 0, i.e., the existence of a class in the zeroth

cohomology of 0 on S∗. The above discussion shows a less obvious statement: the
obstruction to injectivity in Theorem 1.1 is precisely the first cohomology of 0 on S∗.

1.2. The proof of Theorem 1.2. The analogue of Theorem 1.2 when W is finite-
dimensional and 0\G is compact is (by now) a straightforward exercise; as noted,
the ideas go back at least to [Eichler 1957], and the general case is documented in
[Borel and Wallach 2000]; the noncompact case is less standard but also well known,
see, e.g., [Casselman 1984] and [Franke 1998] for a comprehensive treatment.

The main complication of our case is that the coefficients are infinite-dimensional
and one might think this renders the question unmanageable. The key point is that W
is irreducible as a G-module. This says that, “relative to G”, it is just as good as a
finite-dimensional representation.

We will present two proofs of Theorem 1.2:

• The first proof, in Section 3, relies on the work of Bunke and Olbrich [1998], who
computed the cohomology of lattices in SL2(R) with coefficients in (the distribution
globalization of a) principal series representation. We give a sketch of the argument
of [Bunke and Olbrich 1998] for the convenience of the reader, and also because their
argument as written does not cover the situation we need. To deduce Theorem 1.2
from these results then requires us to pass from a principal series to a subquotient,
which we do in a rather ad hoc way.

• The second proof is our original argument prior to learning of the work of Bunke
and Olbrich just mentioned. It generalizes the standard way of computing 0-
cohomology with finite-dimensional coefficients, as given in [Borel and Wallach
2000], to the infinite-dimensional case — at least in cohomological degree 1. Given
the content of [Bunke and Olbrich 1998], we have permitted ourselves to abridge
some tedious parts of our original argument, and reproduce here in detail the part
that is perhaps most distinct from [Bunke and Olbrich 1998] — namely, we express
the desired cohomology groups in terms of certain Ext-groups of (g, K )-modules
and then compute these explicitly.

In both arguments the surjectivity of a Laplacian-type operator plays an essential
role. Such results are known since the work of Casselman [1984], and in their work,
Bunke and Olbrich prove and utilize such a result both at the level of G and 0\G.
We include a self-contained proof of such a result for 0\G in Section 5.
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1.3. Questions. As we have noted, we prove an abstract interpolation result. Can
one recover the explicit formula for the interpolating functions, as given in [Rad-
chenko and Viazovska 2019], from this approach? It seems to us that our proof is
sufficiently explicit that this is, at least, plausible.

It is very interesting to ask about the situation where 0 is not a lattice. Indeed,
if one were to ask about an interpolation formula with evaluation points 0.9

√
n,

one is immediately led to similar questions for a discrete but infinite covolume
subgroup of SL2(R), whereas considering 1.1

√
n leads to considering a nondiscrete

subgroup. Note that Kulikov, Nazarov and Sodin [Kulikov et al. 2025] have recently
shown very general results about Fourier uniqueness that imply, in particular, that
evaluating f and f̂ at 1.1

√
n do not suffice to determine f , but that evaluating

them at 0.9
√

n does.
Perhaps a more straightforward question is to establish an isomorphism

H i (0,W ∗

−∞
)≃ Extig,K (W, space of automorphic forms for 0\G), (6)

which is valid for general lattices 0 in semisimple Lie groups G and general irre-
ducible (smooth, moderate growth) representations V of G. Bunke and Olbrich have
proved this in the cocompact case, and our original argument proceeded by establish-
ing the case i = 1 for general lattices in SL2(R). Also, Deitmar and Hilgert [2005,
Corollary 3.3] prove a result of this type in great generality, but with the space of au-
tomorphic forms replaced by the larger space C∞(0\G) without growth constraints.

2. Covering groups of SL2(R)

Let q ≥ 1 be a positive integer and let G be the q-fold covering of the group
SL2(R), i.e., G is a connected Lie group equipped with a continuous homomorphism
G →SL2(R)with kernel of order q . This characterizes G up to unique isomorphism
covering the identity of SL2(R).

Denote by g the shared Lie algebra of G and of SL2(R) and exp : g → G the
exponential map. Also denote by K the preimage of SO2(R) inside G; it is abstractly
isomorphic as topological group to S1

= R/Z and we fix such an isomorphism
below.

The quotient G/K is identified with the hyperbolic plane H, on which G acts
by isometries. Define the norm of g ∈ G to be ∥g∥ := edistH(i,gi). Equivalently, we
could use

∥∥(a
c

b
d

)∥∥ =
√

a2 + b2 + c2 + d2 since either of these two norms is bounded
by a constant multiple of the other.

2.1. Lie algebra. Let H, X, Y be the standard basis for g:

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.
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We also use κ = i(X −Y ), 2p = H − i(X +Y ), 2m = H + i(X +Y ), or, in matrix
form

κ =

(
0 i

−i 0

)
, 2p =

(
1 −i

−i −1

)
, 2m =

(
1 i
i −1

)
. (7)

We have κ = ik, where k generates the Lie algebra of K .
The elements p,m and κ satisfy the commutation relations

[p,m] = κ, [κ, p] = 2p, [κ,m] = −2m, (8)

which say that p and m (shorthand for plus and minus) raise and lower κ-weights
by 2. The Casimir element C in the universal enveloping algebra determined by the
trace form is given by any of the equivalent formulas:

C =
1
2 H 2

+ XY +Y X =
1
2κ

2
+ pm +mp =

1
2κ

2
+κ+2mp =

1
2κ

2
−κ+2pm. (9)

2.2. Iwasawa decomposition. There is a decomposition

G = NAK , (10)

where A and N are the connected Lie subgroups of G with Lie algebra R.H and R.X
respectively. We will parameterize elements of A via

ay := exp
(1

2 log(y)H
)
,

so that ay projects to the diagonal element of SL2(R) with entries y±1/2. We will
also write nx = exp(x X).

2.3. (g, K )-modules. Recall that a (g, K )-module W means a g-module equipped
with a compatible continuous action of K . Equivalently, it is described by the
following data:

• for each ζ ∈ q−1Z, a vector space Wζ giving the ζ -weight space of K , so that κ
acts on Wζ by ζ ;

• maps p : Wζ → Wζ+2 and m : Wζ → Wζ−2 satisfying [p,m] = κ .

We recall some facts about classification, see [Howe and Tan 1992] for details.
Irreducible, infinite-dimensional (g, K )-modules belong to one of three classes; in
each case, the weight spaces Wζ have dimension either zero or 1.

• Highest weight modules of weight ζ ; these are determined up to isomorphism by
the fact that their nonzero weight spaces occur in weights {ζ, ζ −2, ζ −4, . . . }. Wζ

is killed by p. One computes using (9) that on such modules, the Casimir element C
acts by 1

2ζ(ζ + 2).

• Lowest weight modules of weight ζ ; these are determined up to isomorphism
by the fact that their nonzero weight spaces occur in weights {ζ, ζ + 2, ζ + 4, . . . }.
Wζ is killed by m. Again, (9) shows that the Casimir element C acts by 1

2ζ(ζ − 2).

• Doubly infinite modules, in which the weights are of the form ζ +2Z for ζ ∈
1
q Z.



COHOMOLOGY OF FUCHSIAN GROUPS AND FOURIER INTERPOLATION 223

Definition 2.1. For an infinite-dimensional irreducible (g, K )-module W we define
the complementary irreducible representation W cl to be

the irreducible (g, K )-module with highest weight ζ − 2 if W has lowest weight ζ ,

the irreducible (g, K )-module with lowest weight ζ + 2 if W has highest weight ζ ,

W otherwise.

The representation W cl can be finite-dimensional; this occurs exactly when W is
the underlying (g, K )-module of a discrete series representation on SL2(R).

In Section 4 we use the following key fact about (g, K )-modules.

Proposition 2.2. Let W be an irreducible infinite-dimensional (g, K )-module with
Casimir eigenvalue λ. Then, for any (g, K )-module V :

(a) If C − λ is surjective on V , then Ext1(g,K )(W, V )= 0.

(b) If V is irreducible, Ext1(g,K )(W, V ) is one-dimensional if V ≃ W cl, and is zero
otherwise.

Proof. We will prove these statements in the case where W is a lowest weight
module, which is the case of our main application. The same proof works with
slight modifications for W a highest weight or doubly infinite module: in every
case, one takes an arbitrary lift of a generating vector, and modifies it using the
surjectivity of an appropriate operator.

We prove (a). Take W to be generated by a vector vζ of lowest weight ζ with
mvζ = 0. This implies by the classification above that

λ=
1
2ζ(ζ − 2). (11)

Take an extension V → E → W ; to give a splitting we must lift wζ to a vector in E
of K-type ζ killed by m. Arbitrarily lift wζ to w̃ζ ∈ Eζ . Then mw̃ζ ∈ Vζ−2 and it
suffices to show that it lies inside the image of m : Vζ → Vζ−2, for we then modify
the choice of w̃ζ by any preimage to get the desired splitting. By (9) and (11) we
see that C−λ : Vζ−2 → Vζ−2 agrees with 2mp. Since it is surjective, it follows that
in particular m : Vζ → Vζ−2 is surjective.

We pass to (b). Suppose V is irreducible; then Ext1(g,K )(W, V ) vanishes unless V
has the same C-eigenvalue as W. The argument above exhibits an injection of

Ext1(g,K )(W, V ) ↪→
Vζ−2

mVζ

and inspection of K-types amongst those irreducibles with the same C-eigenvalue
as V shows that this also vanishes unless V ≃ W cl, in which case it is one-dimen-
sional. It remains only to exhibit a nontrivial extension of W by W cl, which is
readily done by explicit computation. □
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2.4. Globalizations. A globalization of a (g, K )-module W is any continuous G-
representation on a topological vector space W such that (W )K = W . We will
consider two instances of this: the smooth, or Casselman–Wallach globalization W∞,
and the distributional globalization W−∞.

Following [Casselman 1989], the representation W∞ is the unique globalization
of W as a moderate growth Fréchet G-representation. By definition, such a represen-
tation is a Fréchet space F (topologized with respect to a family of seminorms) such
that for any seminorm ∥ ·∥α , there is an integer Nα and a seminorm ∥ ·∥β for which

∥gw∥α ≤ ∥g∥
Nα∥w∥β .

The distributional globalization is a dual notion. Indeed, denote by W ∗ the
K-finite part of the dual of W, equipped with the contragredient (g, K )-module
structure. Then

(W∞)
∗
= (W ∗)−∞, (12)

where on the left-hand side, the dual is understood as continuous.
We recall an explicit construction of W−∞, see [Bunke and Olbrich 1998, Sections

2 and 3], although it will not be directly used in the rest of the paper: Given W ∗ as
above, let V ∗

⊂ W ∗ be a finite-dimensional K-stable subspace that generates W ∗ as
a (g, K )-module. Let (V ∗)∗ =: V ⊂ W viewed as a K-representation, and consider
the space

EV = { f ∈ C∞(G, V ) | f (gk)= k−1 f (g), g ∈ G, k ∈ K }.

Then the image of W under the map i : W → EV characterized by

⟨i(w)(g), v∗
⟩ := ⟨w, gv∗

⟩ (w ∈ W, v∗
∈ V ∗)

belongs to the space AG
V of sections of moderate growth, i.e., of functions f ∈ EV

such that for every X ∈ U (g), there is R = R( f, X) for which

∥ f ∥X,R = sup
g∈G

|X f (g)|
∥g∥R <∞. (13)

We note that this differs from the notion of uniform moderate growth, where one
requires R to be taken independently of X .

The space AG
V is topologized as the direct limit of Fréchet spaces with respect

to the seminorms ∥ · ∥X,R . The map i is injective since V ∗ generates W ∗, and the
distributional globalization is defined by

W−∞ := i(W )⊂ AG
V .

3. First proof of Theorem 1.2: resolutions of principal series

In this section, we derive Theorem 1.2 from the results of Bunke and Olbrich [1998],
adapting the arguments of Section 9 therein to nonspherical principal series. The
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two essential ingredients of this argument are the following points established by
Bunke and Olbrich, which we shall use as “black boxes”:

• acyclicity of 0 acting on spaces of moderate growth functions on G/K , and

• surjectivity of a Laplace-type operator acting on these spaces.

The first point, at least, is intuitively reasonable: it asserts that moderate growth
functions on G/K behave like a free 0-module; this is plausible since the 0-action
on G/K is (at least, virtually) free.

Given these, the idea of the argument for Theorem 1.2 is as follows. We will
first show that principal series representations are realized as spaces of moderate
growth Laplacian eigenfunctions on G/K ; by the two points mentioned above, this
gives a resolution of the principal series by 0-acyclic modules. This permits us to
compute cohomology of principal series representations. Finally, every irreducible
representation is realized as a subquotient of such a representation, and we will then
prove Theorem 1.2 by a study of the associated long exact sequence in cohomology.

3.1. Setup. Fix a Casimir eigenvalue λ, and a lattice 0 ⊂ G. Given ζ a one-
dimensional representation of K , define the following spaces of smooth functions
(compare with Section 2.4, and see (13) in particular for the notion of moderate
growth, which is not the same as uniform moderate growth):

AG (resp. A)= moderate growth functions on G (resp. on 0\G),

AG
ζ ,Aζ = subspace with right K-type ζ : f (gk)= f (g)ζ(k),

AG
ζ (λ),Aζ (λ)= subspace with right K-type ζ and Casimir eigenvalue λ,

Cuspζ (λ)= subspace of Aζ (λ) consisting of cuspforms.

(14)

We will first prove a variant of Theorem 1.2 for principal series. Let B be the
preimage of the upper triangular matrices inside G, which we recall is the q-fold
cover of SL2(R); we may write

B = MAN ,

where A and N are as in (10), and M = Z K (A) ≃ Z/2qZ. Denote by ξ ∈ C the
character of A sending ay 7→ yξ . Given a pair of characters (σ, ξ) of K and A
respectively, let

H = { f ∈ C∞(G) | f (mang)= aξ+1σ−1(m) f (g), f K-finite} (15)

be the Harish-Chandra module of K-finite vectors in the corresponding principal
series representation. This depends on σ and ξ , but to simplify the notation we
will not include them explicitly. We denote by H−∞ its distributional completion
(see Section 2.4); explicitly, if we identify H as above with functions on K which
transform on the left under the character σ−1, then H−∞ is the corresponding space
of distributions on K .
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Let us explicate this in the language of Section 2.3. We will parameterize σ by
the value of dσ at κ; this is a class in q−1Z that we will denote by ζ0. A K-basis
of H is given by vectors eζ with ζ ∈ ζ0 + 2Z, normalized to take value 1 at the
identity of G. The actions of raising and lowering operators are given by

peζ =
1
2(ζ + 1 + ξ) eζ+2 and meζ =

1
2(−ζ + 1 + ξ) eζ−2, (16)

and the action of the Casimir on eζ is thereby given by 1
2(ξ

2
− 1). From these

explicit formulas we readily deduce the following statements:

(a) If 1 + ξ does not belong to ±ζ0 + 2Z, then H is irreducible.

(b) If 1 + ξ belongs to either ζ0 + 2Z or −ζ0 + 2Z but not both, then H has the
structure

0 → V → H → V → 0, (17)

where V, V are irreducible (g, K )-modules; V is the module of highest (lowest)
weight ζ according to whether −ξ − 1 or 1 + ξ belongs to ζ0 + 2Z, and V = V cl.

(c) If 1 + ξ belongs to both1 ζ0 + 2Z and −ζ0 + 2Z, and ξ ≥ 1, then H has the
structure of an extension

V +
⊕ V −

→ H → F,

where V − is the highest weight representation of weight −ξ − 1, and V + the
lowest weight representation of weight ξ + 1, whereas F is the finite-dimensional
representation of dimension ξ with weights −ξ + 1,−ξ + 3, . . . , ξ − 1. A similar
dual description is valid when ξ ≤ 0, where the finite-dimensional representation
now occurs as a subrepresentation.

In the following proposition, we will assume that we are in either cases (a) or (b)
of the above classification, that is, H is either irreducible, or decomposes as

0 → V → H → V → 0, (18)

where both the subrepresentation and quotient are irreducible (g, K )-modules.

Proposition 3.1. Let G be the degree q connected cover of SL2(R). Denote by λ
the eigenvalue by which C acts on HK ; then there are natural isomorphisms

H 0(0, H−∞)≃ Aζ (λ), H 1(0, H−∞)≃ Cuspζ (λ),

H i (0, H−∞)= 0 for i ≥ 2,

where ζ is any K-weight generating the dual (g, K )-module H∗.

The condition on ζ is automatic when H is irreducible, and in the case when H
is reducible is equivalent to asking that ζ belongs to the K-weights of V ∗.

1This happens only when ζ0 ∈ Z, and in particular the representation descends to a representation
of SL2(R).
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Proof. In Section 9 of [Bunke and Olbrich 1998] this result is proven in the case
of q = 1 and the trivial K-type. We will outline the argument to make clear that it
remains valid in the situation where we now work, i.e., permitting a covering of
SL2(R) and an arbitrary K-type.

Fix v∗
∈ H∗ of K-type ζ , normalized as in the discussion preceding (16). Then

the rule sending D ∈ H−∞ to the function D(gv∗) on G induces an isomorphism

H−∞ ≃ AG
ζ (λ). (19)

We will outline a direct proof of this isomorphism. Injectivity, at least, follows
readily: if D lies in the kernel, it would annihilate the (g, K )-module generated
by v∗, which is all of H∗, and by continuity D is then zero.

For surjectivity, one first checks that K-finite functions lie in the image of
the map — that is to say, a function f of fixed right and left K-types, and with
a specified Casimir eigenvalue, occurs in the image of the map above. Such
an f is uniquely specified up to constants: using the decomposition G = KAK ,
the Casimir eigenvalue amounts to a second-order differential equation for the
function y 7→ f (ay) for y ∈ (1,∞), and of the two-dimensional space of solutions
only a one-dimensional subspace extends smoothly over y = 1; see [Kitaev 2017,
pp. 12 and 13] for an explicit description both of the differential equation and a
hypergeometric basis for the solutions.2 It follows from this uniqueness that f must
agree with D(gv∗) where D and v∗ match the left and right K-types of f . To pass
from surjectivity onto K-finite vectors to surjectivity, we take arbitrary f ∈ AG

ζ (λ)

and expand it as a sum
∑

ξ fξ of left K-type. Each fξ has a preimage vξ according
to the previous argument; so one must verify that

∑
ξ vξ converges inside H−∞, and

for this it is enough to show that ∥vξ∥ grows polynomially with respect to |ξ | (here
we compute ∥vξ∥ as the L2-norm restricted to K in (15)). For this we “effectivize”
the previous argument: The moderate growth property of f implies a bound of the
form | fξ (g)| ≤ c∥g∥

N , uniform in ξ . On the other hand, fξ = vξ (gv∗), and such a
matrix coefficient always is not too small:

|vξ (gv∗)| ≥ (1 + |ξ |)−M
∥vξ∥ for some choice of ∥g∥ ≤ (1 + |ξ |)M . (20)

Such lower estimates on matrix coefficients can be obtained by keeping track of
error bounds in asymptotic expressions. They are developed in greater generality in
the Casselman–Wallach theory, see, e.g., Corollary 12.4 of [Bernstein and Krötz
2014] for a closely related result. Combining (20) with the upper bound on fξ
shows that ∥vξ∥ ≤ c(1 + |ξ |)MN+M as desired.

2There are other references in the mathematical literature but Kitaev explicitly considers the
universal cover.
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This concludes our sketch of proof of (19), that is to say, H−∞ is the kernel of

AG
ζ

C−λ
−−→ AG

ζ (21)

in the notation of (14). We now invoke surjectivity of a Laplace operator: the
morphism C − λ of (21) is surjective, by [Bunke and Olbrich 1998, Theorem 2.1];
and consequently (21) is in fact a resolution of H−∞. Moreover, [Bunke and Olbrich
1998, Theorem 5.6] asserts that the higher cohomology of 0 acting on AG

ζ vanishes;
it is for this argument that Bunke and Olbrich use “moderate growth” rather than
“uniform moderate growth”. Consequently, the 0-cohomology of H−∞ can be
computed by taking 0-invariants on the complex (21):

(AG
ζ )
0 C−λ

−−→ (AG
ζ )
0.

Clearly, the H 0 here coincides with Aζ (λ). On the other hand, the image of C − λ

contains the orthogonal complement of cusp forms (see [Bunke and Olbrich 1998,
Theorem 6.3]; compare Proposition 4.1), and so the H 1 coincides with the cokernel
of C − λ acting on cusp forms; there we can pass to the orthogonal complement
and identify H 1

≃ Cuspζ (λ) as desired.3 □

Lemmas 3.2 and 3.3 below will be useful in the sequel. We omit the proof of
the first one.

Lemma 3.2. Let ζ be, as in Proposition 3.1, a K-weight on H∗ which generates the
latter as (g, K )-module; fix vζ ∈ H∗ nonzero of weight ζ . For any (g, K )-module V ,
there is an isomorphism

Hom(g,K )(H∗, V )→ Vζ (λ), f 7→ f (vζ ), (22)

where Vζ (λ) is the subspace of Vζ killed by C − λ.

The second is a precise statement of Frobenius reciprocity, stated in a less formal
way in (2).

Lemma 3.3. Let V be a finite length (g, K )-module. Then there is an isomorphism

H 0(0, V ∗

−∞
)≃ Hom(g,K )(V,AK ),

where V ∗
−∞

is the distributional globalization of V ∗.

One of the earliest versions of such a statement can be found in [Gelfand et al.
1969, Chapter 1, Section 4]. For completeness we outline the proof, in our language,
in Remark 4.3.

For reducible principal series as in (18), we prove:

3In fact, C − λ is adjoint to C − λ̄, but the kernel of the latter of either is only nonzero if λ is real,
so we do not keep track of the complex conjugate.
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Proposition 3.4. Let H−∞ with Casimir eigenvalue λ decompose as in (18). Then
the quotient map H → V induces an isomorphism, after passing to distribution
globalizations and 0-cohomology,

H 1(0, V−∞)≃ H 1(0, H−∞)(≃ Cuspζ (λ), by Proposition 3.1).

Proof. The discussion around (17) shows that inverting both ξ and σ gives rise to
another principal series H which fits into the exact sequence

0 → V → H → V → 0, (23)

i.e., for which the roles of subrepresentation and quotient are swapped between V
and V . We will deduce the result by playing off Proposition 3.1 applied to (the
distribution globalization of) H , and the same Proposition applied to H .

We first consider the long exact sequence associated to (the distribution global-
ization of) (18), namely

0 → H 0(0, V −∞)→ H 0(0, H−∞)
�

−→ H 0(0, V−∞)

→ H 1(0, V −∞)→ H 1(0, H−∞)
5

−→ H 1(0, V−∞)→ 0. (24)

We have used here that the next group H 2(0, V −∞) of the sequence vanishes:
it is isomorphic to H 3(0, V−∞) by the long exact sequence associated to (23)
and Proposition 3.1, and that H 3 vanishes always. Indeed, let 0 be the image
of 0 → PSL2(R), and µ ⩽ 0 the kernel of 0 → 0; if V is a C[0]-module then
H i (0, V )= H i (0, V µ), and being a lattice in PSL2(R), the virtual cohomological
dimension of 0 is at most 2.

We must show that the penultimate map 5 of (24) is an isomorphism. For this it
is enough to show that

dim cokernel�≥ dim H 1(0, V −∞).

By applying Proposition 3.1 to H , we find that H 1(0, V −∞) is a quotient of
Cuspχ (λ), for χ a weight in V ∗. It therefore suffices to show that

dim cokernel�≥ dim Cuspχ (λ). (25)

We will prove this by exhibiting a subspace

H 0(0, V−∞)
cusp

⊂ H 0(0, V−∞) (26)

of the codomain of �, which does not meet the image of �, and whose dimension
equals that of Cuspχ (λ).

The space H 0(0, V−∞) is identified, by means of Frobenius reciprocity (see
Lemma 3.3) with the space of homomorphisms from the dual (g, K )-module V ∗ to
the K-finite vectors AK in the space of automorphic forms. Define H 0(0, V−∞)

cusp
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to be the subspace corresponding to homomorphisms V ∗
→ AK that are actu-

ally valued in cusp forms. We now show the two properties of this subspace
H 0(0, V−∞)

cusp asserted after (26):

• Its dimension equals that of Cuspχ (λ). To see this, apply Lemma 3.2 to H ,
with ζ = χ and V the K-finite vectors of the space of cusp forms; it yields an
isomorphism

Hom(g,K )(H∗,CuspK )≃ Cuspχ (λ).

But homomorphisms from H∗ to CuspK factor through V ∗ by semisimplicity of
the space of cusp forms (which in turn follows by unitarity). This shows that the
space Hom(g,K )(V ∗,CuspK ) has the same dimension as Cuspχ (λ), as required.

• It intersects trivially the image of �. This amounts to the statement that no
homomorphism from V ∗ to CuspK can be extended to a homomorphism from H∗

to AK . Suppose, then, that f : H∗
→AK is a (g, K )-module homomorphism whose

restriction to V ∗ is nonzero and has cuspidal image. We now make use of the orthog-
onal projection map from all automorphic forms to cusp forms, which exists because
one can sensibly take the inner product of a cusp form with any function of moderate
growth. Post-composing f with this projection gives a morphism from H∗ to the
semisimple (g, K )-module CuspK ; since H∗ is a nontrivial extension of V ∗ by V ∗,
this morphism is necessarily trivial on the subrepresentation V ∗, a contradiction. □

Now let us deduce Theorem 1.2. We divide into three cases according to how
the representation W of the theorem can be fit into a principal series. Our division
corresponds to the division (a), (b), (c) enunciated after (16), and the statements
below about the structure of W can all be deduced from the statements given there.

• W is an irreducible principal series, equivalently, W is doubly infinite. In this
case, W cl

= W , and combining Proposition 3.1 and Lemma 3.2 gives the statement
of Theorem 1.2.

• W is an irreducible subquotient of a principal series H with exactly two com-
position factors. In this case we can suppose that W = V ∗ with notation as
in (18). In that notation we have W ∗

= V and W cl
= V ∗. Proposition 3.4 gives

H 1(0, V−∞)≃ Cuspζ (λ), and Lemma 3.2 shows that Cuspζ (λ) is identified with
the space of (g, K )-homomorphisms from H∗ to the space of cusp forms; by
semisimplicity of the target such a homomorphism factors through the irreducible
quotient V ∗

= W cl. This proves Theorem 1.2 in this case.

• W is an irreducible subquotient of a principal series with more than two compo-
sition factors. In this case, W is necessarily a highest- or lowest-weight module
factoring through SL2(R), and there is an exact sequence

F → H → D, (27)
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where F is finite-dimensional and D is the sum of W ∗ and another highest- or lowest-
weight module. Here, W cl

= F∗
≃ F and Theorem 1.2 is equivalent to the vanishing

of H 1(0,W ∗
−∞
). In the case of a discrete series that factors through PSL2(R), this

vanishing follows from [Bunke and Olbrich 1998, Proposition 8.2], and the remain-
ing case of an “odd” discrete series is handled by the same argument. Namely, use the
long exact sequence associated to (27); the argument of Proposition 3.1 shows that
H 1(0, H−∞)=0, and also H 2(0, F)=0 by Poincaré duality because F is nontrivial.
Thus also H 1(0,D−∞)= 0 and so its summand H 1(0,W ∗

−∞
) also vanishes.

4. Second proof of Theorem 1.2: extensions of (g, K )-modules

Our original proof of Theorem 1.2 proceeds by a reduction to a computation in the
category of (g, K )-modules. The two essential ingredients of this argument are:

(a) The Casselman–Wallach theory [Casselman 1989; Wallach 1992] which gives a
canonical equivalence between suitable categories of topological G-representa-
tions and algebraic (g, K )-modules.

(b) Surjectivity of a Laplace-type operator acting, now, on spaces of moderate
growth functions on 0\G.

We will not prove (a), although we will briefly sketch an elementary proof of
what we use from it. We will prove (b) in the next section.

Let λ be the eigenvalue by which the Casimir C ∈ Z(g) of (9) acts on W (the
irreducible (g, K )-module from the statement of Theorem 1.2). We will use the
notation A from (14) for the space of smooth, uniform moderate growth functions f
on 0\G, i.e., for which there exists R such that for all X ∈ U,

∥ f ∥X,R = sup
g∈G

|X f (g)|
∥g∥R <∞ (28)

(compare with (13), and beware that we are using the same notation as in Section 3,
but for a slightly different space). We use uniform moderate growth because it inter-
faces more readily with the Casselman–Wallach theory; by contrast, Section 3 used
moderate growth because this is used in the acyclicity result mentioned after (21).

Also consider the following subspaces of A:

Aλ−nil = K-finite functions on which C − λ acts nilpotently,

Cusp(λ)= subspace of Aλ−nil consisting of cusp forms.

The precise form of (b) we will use is this:

Proposition 4.1. The image of the map C−λ :AK →AK is precisely the orthogonal
complement to Cusp(λ) inside AK .
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This is almost [Bunke and Olbrich 1998, Theorem 6.3], except there the argument
is for moderate growth functions rather than uniform moderate growth; they state
on page 73 that the same proof remains valid in the uniform moderate growth
setting. Also, Cassleman [1984, Theorem 4.4] proves, for the trivial K-type, that
C is surjective on spaces of Eisenstein distributions, from which a similar result
can be extracted. Since the above statement is in a sense the crux of the argument,
and neither reference gives it in precisely this form, we have given a self-contained
proof in Section 5. Our proof follows a slightly different strategy and is perhaps of
independent interest.

4.1. Proof of Theorem 1.2: reduction to (g, K ) extensions. We begin the proof
of Theorem 1.2 assuming Proposition 4.1. This will proceed in three steps:

(i) First, using a topological version of Shapiro’s lemma, we make the identifica-
tion H 1(0,W ∗

−∞
)≃ Ext1G(W∞,A).

(ii) Next, we pass from the category of G-modules to that of (g, K )-modules and
produce an isomorphism Ext1G(W∞,A)≃ Ext1(g,K )(W,Aλ−nil).

(iii) Finally, we compute that Ext1(g,K )(W,Aλ−nil) is isomorphic to the promised
space of cuspforms, using the explicit computations from Section 2.3.

In practice, for technical reasons, we carry out (iii) first and then show that the
map of (ii) is an isomorphism.

We begin by constructing an isomorphism

H 1(0,W ∗

−∞
)≃ Ext1G(W∞,A), (29)

where W∞ is the smooth globalization of W.
On the left, we have the ordinary group cohomology of the discrete group 0

acting on the vector space W ∗
−∞

, without reference to topology. On the right here
we use a topological version of Ext defined as follows: present A as a directed
union lim

−−→
A(R) of moderate growth Fréchet G-representations (see Section 2.4)

obtained by imposing a specific exponent of growth R in (28). The right-hand side
is then defined to be the direct limit lim

−−→
Ext1G(W∞,A(R)), where the elements of

each Ext group are represented by isomorphism classes of short exact sequences4

A(R) →? → W∞, with ? a moderate growth Fréchet G-representation and the
maps are required to be continuous.

The statement (29) is then a version of Shapiro’s lemma in group cohomology. Let
us spell out the relationship: for G1 ≤ G2 of finite index, and W a finite-dimensional

4Here, the notion of exact sequence is the usual one, with no reference to topology: the first map
is injective, and its image is the kernel of the second, surjective map.
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G1-representation, Shapiro’s lemma supplies an isomorphism

H 1(G1,W ∗)
(i)
≃ H 1(G2, IG2

G1
W ∗)

(ii)
≃ H 1(G2, (I

G2
G1

C)⊗ W ∗)
(iii)
≃ Ext1G2

(W, IG2
G1

C). (30)

Here I G2
G1

is the induction from G1 to G2, and we used in (i) Shapiro’s lemma
in its standard form [Brown 1982, Chapter 3, Sections 5 and 6]; at step (ii) the
projection formula IG2

G1
W ∗

≃ IG2
G1

C ⊗ W ∗, and at step (iii) the relationship be-
tween group cohomology and Ext-groups which results by deriving the relationship
HomG2(W, V )= (V ⊗ W ∗)G2 .

Our statement (29) is precisely analogous to the isomorphism of (30) with 0
playing the role of G1, G playing the role of G2, and with topology inserted. It can
be proven simply by writing down the explicit maps from far left to far right in (30)
and checking that they respect topology and are inverse to one another. There is
only one point that is not formal: to prove that there is a well-defined map from left
to right, one needs to check that the extension of G-representations arising in (iii) by
“inflating” a cocycle j :0→ W ∗

−∞
indeed has moderate growth. This requires growth

bounds on j , and these follow simply by writing out j (γ ), for arbitrary γ ∈ 0, in
terms of the values of j on a generating set using the cocycle relation. We observe
that some “automatic continuity” argument of this nature is needed, because, in the
statement of (29), the topology of W figures on the right-hand side but not on the left.

As the next step towards Theorem 1.2, observe that there is a natural map

Ext1G(W∞,A)→ Ext1(g,K )(W,Aλ−nil), (31)

where the right-hand side is taken in the category of (g, K )-modules.
This “natural map” associates to an extension A → E → W∞ the underlying

sequence of K-finite vectors in each of A, E,W∞ which are annihilated by some
power of C − λ (in the case of W∞, this space is exactly W, on which C − λ

acts trivially). That the resulting sequence remains exact follows from surjectivity
of C−λ in the form of Proposition 4.1. We explicate this: one must verify that each
elementw∈ W has a preimage in EK killed by some power of (C−λ). First, take an
arbitrary preimage of w in E and average it over K to produce a preimage e ∈ EK .
Then (C − λ) e belongs to the image of AK , and can be written as f1 + f2 with
f1 ∈ Cusp(λ)⊂ ker(C−λ) and f2 ∈ Cusp(λ)⊥. Choose, by Proposition 4.1, a class
e′

∈ AK with (C − λ) e′
= f2; then e − e′ still lifts w and is now killed by (C − λ).

We will show in Section 4.2 that the right-hand side of (31) has dimension

m = the multiplicity of W cl in Cusp(λ),

and in Section 4.3 that (31) is actually an isomorphism. This will conclude the
proof, remembering that the left-hand side is identified, by means of (29), with
H 1(0,W ∗

−∞
).
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4.2. Evaluation of the (g, K )-ext. We compute the (g, K )-extension on the right-
hand side of (33). The space Cusp(λ) decomposes as a finite direct sum of irre-
ducible (g, K )-modules; this follows from the similar L2 statement, see [Borel 1997,
Section 8]. Since each of these irreducible summands has infinitesimal character λ,
their underlying (g, K )-modules can belong to at most three isomorphism classes,
as described in Section 2.3; among these is W cl, the “complementary (g, K )-module
to W ” from Definition 2.1. Accordingly we decompose

Aλ−nil = Cusp(λ)⊥ ⊕ (W cl)m ⊕
⊕

V ⊂Cusp(λ)
V ̸≃W cl

V, (32)

where Cusp(λ)⊥ is the orthogonal complement of Cusp(λ) within Aλ−nil, and m is
the multiplicity of W cl in Cusp(λ).

The splitting (32) induces a similar direct sum splitting of Ext1(g,K )(W,Aλ−nil).
But Proposition 4.1 implies that C − λ defines a surjection from Cusp(λ)⊥ to itself,
and so, applying Proposition 2.2,

Ext1(g,K )(W,Cusp(λ)⊥)= 0.

The remaining two summands evaluate via the second part of Proposition 2.2 to Cm

and 0 respectively. This yields

Ext1(g,K )(W,Aλ−nil)≃ Cm .

This concludes the proof that the right-hand side of (31) has dimension m.

4.3. Comparison of topology and (g, K ) extensions. To conclude, we must show
that the map of (31) is in fact an isomorphism.

Injectivity of the resulting map on Ext-groups follows using the Casselman–
Wallach theory of canonical globalization; the result is formulated in exactly the
form we need in [Bernstein and Krötz 2014, Proposition 11.2], namely, a splitting
at the level of (g, K )-modules automatically gives rise to a continuous splitting.5

For surjectivity, one cannot directly apply the Casselman–Wallach theory because
A is “too big”. However, we saw in Section 4.2 that the right-hand side of (31)
actually is generated by the image of Ext1(g,K )(W,Cusp(λ)). The space Cusp(λ)
has finite length, and then the results of [Casselman 1989] (in the form of the
equivalence of categories, see [Wallach 1992, Corollary, Section 11.6.8]) implies
that each such extension of (g, K )-modules arises from an extension of smooth
globalizations, which readily implies the desired surjectivity.

5We sketch the idea of the argument to emphasize that what we use is relatively elementary: Given
an abstract (g, K )-module splitting ϕ : W → A we must show that it does not distort norms too far.
Fixing a generating set w1, . . . , wr for W, one shows using bounds similar to (20) that any vector
w ∈ W can be written as

∑
hi ⋆wi where hi are bi-K-finite functions on G and the norms of the hi are

not too large in terms of the norms of w. This permits one to bound the size of ϕ(w)=
∑

hi ⋆ ϕ(wi ).
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Remark 4.2. Together, the isomorphisms (29) and (31) give an isomorphism

H 1(0,W ∗

−∞
)≃ Ext1(g,K )(W,Aλ−nil). (33)

The analogous statement in all cohomological degrees has been proved for cocom-
pact 0 in [Bunke and Olbrich 1997, Theorem 1.4]. However, our argument does
not generalize to this case, at least in any routine way: it is not immediately clear
to us how to generalize the cocycle growth argument to H i for i > 1.

Remark 4.3. For completeness, because we made use of it earlier, we outline the
argument for the much easier degree 0 version of (33), i.e., “Frobenius reciprocity”:

H 0(0,W ∗

−∞
)≃ Hom(g,K )(W,Aλ−nil), (34)

where we now allow W to be any finite length (g, K )-module.
The standard construction of Frobenius reciprocity identifies H 0(0,W ∗

−∞
) with

continuous G-homomorphisms from W∞ to A; then, restriction to K-finite vectors
defines a class in Hom(g,K )(WK ,A)≃ Hom(g,K )(WK ,Aλ−nil). This restriction map
is an isomorphism by the Casselman–Wallach theory [Wallach 1992, Theorem,
Section 11.6.7], taking the target space to be the subspace of A comprising functions
which are (i) by killed by a fixed large power of (C−λ) and (ii) have finite norm (28)
for all X and for some fixed large R. This proves (34).

Now (34) implies Lemma 3.3: W is annihilated by an ideal of finite codimension
in Z(g); as such, the image of any (g, K )-homomorphism from W to moderate
growth functions automatically has image inside functions of uniform moderate
growth [Borel 1997, 5.6], and therefore has image in Aλ−nil.

5. Surjectivity of Casimir on the space of automorphic forms

The primary analytic ingredient in both proofs is the surjectivity of a Laplacian-
type operator; in the first proof this is used on spaces of functions both on G and
on 0\G, and in the second proof it is used only on 0\G. We will now give a
self-contained proof of the second version, Proposition 4.1. As noted after that
proposition, this statement is essentially in the literature, but given its importance it
seemed appropriate to give a self-contained proof.

We follow here the notation of Section 4; in particular, A is defined using the no-
tion of uniform moderate growth. It is enough to show that every function orthogonal
to Cusp(λ) occurs in the image of C−λ :AK →AK . The basic strategy is as follows:

(i) In Section 5.4, we decompose elements of AK into functions “near the cusp”
and functions of rapid decay.

(ii) In Section 5.5, we construct preimages under C − λ for functions in each sub-
space. Doing this “near the cusp” amounts to solving an ODE; the construction
of preimages for functions of rapid decay is carried out via L2-spectral theory.
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Since C − λ commutes with K , it suffices to prove Proposition 4.1 with AK re-
placed by its subspace Aζ with K-type ζ . In what follows, we will regard ζ as fixed.

5.1. Cusps. It is convenient to fix once and for all a fundamental domain for 0\G:
we take

F =
{
z ∈ H : d(z, i)≤ d(γ z, i) for all γ ∈ 0− {e}

}
, (35)

which describes a convex hyperbolic polygon which is (up to boundary) a funda-
mental domain for 0 acting on H; its pullback to G via g 7→ g · i is a fundamental
domain for 0\G, which will often be denoted by the same letter. In particular, F
can be decomposed in the following way, where the sets intersect only along their
boundary:

F = F0 ∪ C1 ∪ C2 ∪ · · · ∪ Ch, (36)

with F0 compact and each Ci a cusp, that is to say, a G-translate of a region of the
form {x + iy : a ≤ x ≤ b, y ≥ Y0}. In the Iwasawa coordinates G = NAK of (10),
the pullback of Ci to G therefore has the form

C̃i = gi · {nx ay k : a ≤ x ≤ b, y ≥ Y0, k ∈ K }. (37)

The map C̃i → 0\G is injective on the interior of C̃i . We will often identify C̃i with
its image in 0\G.

5.2. The constant term and moderate growth functions in the cusp. Let f ∈ Aζ .
Fix a cusp i ; we write 0N

i for 0∩gi Ng−1
i . The constant term f N

i : gi Ng−1
i \G → C

is defined by the rule

f N
i : x 7→ average value of f (gi nt g−1

i x) for t ∈ R. (38)

The function f (gi nt g−1
i x) is periodic in t and therefore the notion of its average

value makes sense. Moreover, the above map is right G-equivariant. A basic (and
elementary) fact is that f N

i is asymptotic to f inside C̃i ; indeed the function f − f N
i

has rapid decay in C̃i , as proved in [Borel 1997, 7.5]. Here, we say that a function
J : C̃i → C has rapid decay if, for any X1, . . . , Xr ∈ g and any positive integer N
we have

sup
C̃i

∥g∥
N
|X1 . . . Xr J (g)|<∞. (39)

Let us consider more generally functions f on G that are left N -invariant and
have fixed right K-type ζ . Such a function may be identified, by means of pullback
by y 7→ ay , with a function f on R+. The condition of the original N -invariant
function on G having finite norm under ∥ · ∥X,R for all X , with notation as in (28),
is equivalent to asking that∣∣∣∣(y

d
dy

) j

f
∣∣∣∣< C j · (|y|

−1
+ |y|)R for all j. (40)
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That this condition is necessary is seen by applying (28) to X a product of ele-
ments in Lie(A). To see that it is sufficient, we fix U belonging to the universal
enveloping algebra of g; now, for any k ∈ K , we may write U as a sum of terms∑

ci (k)(Ad(k−1)UN ,i )(Ad(k−1)UA,i )UK ,i where the terms belong to fixed bases
for the universal enveloping algebra of N , A and K respectively, and the coeffi-
cients ci (k) are bounded independently of k. This permits us to bound U f (nak)
and we see that the bound (40) suffices.

This motivates the following definition: Fix Y0 > 0 and denote by P≥Y0 the
space of smooth functions on R supported in y > Y0 satisfying (40) for some R.
Because of the restriction that y > Y0, this is equivalent to ask that all derivatives
are “uniformly” polynomially bounded, i.e., there is R such that, for all j , there
exists a constant C j with

|d j f/dy j
|< C j (2 + |y|)R− j . (41)

5.3. The subspace Eisλ of Eisenstein series with eigenvalue λ. To each cusp C j ,
we attach an Eisenstein series E j (s), which is an Aζ -valued meromorphic function
of the complex variable s, characterized by the fact that for Re(s)≫ 1 it equals

E j (s, g)=
∑

γ∈0i
N \0

H(g−1
i γ g)s,

where H is the unique function on G with right K-type ζ , invariant on the left
by N , and on A given by ay 7→ y.

The resulting vector-valued function is holomorphic when Re(s) =
1
2 and we

denote its value at s =
1
2 + i t by E j

t . In words, E j
t is the unitary Eisenstein series of

K-type ζ with parameter t ∈ R attached to the j -th cusp of 0\G. Finally, denoting
by λt the eigenvalue of C on E j

t , let

Eis(λ) :=
⊕

j
{span of all Eisenstein series E j

t , with t ∈ R, such that λt = λ},

so that Eis(λ) is a finite-dimensional subspace of Aζ annihilated by C−λ. However,
if the quadratic function t 7→ λt −λ happens to have a double zero, we include in the
above space the derivative d

dt E j
t , for this is also annihilated by C − λ. The Casimir

eigenvalue of E j (s, g) is quadratic in s and therefore the dimension of Eis(λ) is at
most twice the number of cusps.

5.4. Decomposition of Aζ . Consider the subspace of Aζ consisting of L2-eigen-
functions of the Casimir with eigenvalue λ; call this Discrete(λ).

Lemma 5.1. Let C̃i be the cusps for a fundamental domain for the action of 0 on G
as in (36). Then every f ∈Aζ , perpendicular to Cusp(λ), can be written as the sum

f = fs +
∑

i
fci , (42)
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where:

(i) The function fs is smooth, has rapid decay at all the cusps, and is perpendicular
to Eis(λ)⊕ Discrete(λ).

(ii) Each fci is supported in the cusp C̃i and, with reference to the identification (37):

C̃i = gi · {nx ay k : a ≤ x ≤ b, y ≥ Y0, k ∈ K }

has the form
nx ay k 7→ P(y)ζ(k), (43)

where P belongs to the space P≥Y0 described after (41).

Observe that, although f is only assumed orthogonal to cusp forms, we arrange
that fs is orthogonal also to Eis(λ) and all of Discrete(λ). This is possible because
there is a lot of freedom in the decomposition (42). It will be very convenient later.

Proof. This is a straightforward cut-off process; the only delicacy is to ensure that fs

is in fact perpendicular to Eis(λ) and Discrete(λ). We start from f N
i , the constant

term along the i-th cusp as defined in (38). Take ϕi , ψi smooth functions on R+

where:

• ϕi = 0 for y < Y0 and ϕi = 1 for y > 2Y0.

• ψi is supported in (Y0, 2Y0).

We consider ϕi and ψi as functions on C̃i described by the rules gi nx ay k 7→ ϕi (y)
and gi nx ay k 7→ψi (y)ζ(k) respectively. Now put fs = f −

∑
i (ϕi f N

i +ψi ) so that

f = fs +
∑
(ϕi f N

i +ψi )︸ ︷︷ ︸
fci

. (44)

We will show that, for suitable choice of ψi , (44) is the desired splitting of f . All
the properties except perpendicularity to Discrete(λ)⊕ Eis(λ) follow from general
properties of the constant term discussed in Section 5.2. In particular, the uniform
bound on the functions P associated — as in (43) — to the various fci follow from
the condition that f has uniform moderate growth.

Observe that ϕi f N
i and ψi are both perpendicular to all cuspidal functions and

in particular to Cusp(λ), because they both arise from functions on gi Ng−1
i ∩0\G

which are left invariant by gi Ng−1
i . Therefore fs is also perpendicular to Cusp(λ).

It remains to choose ψi in such a way that fs is indeed perpendicular to the
orthogonal complement of Cusp(λ) inside Discrete(λ)⊕ Eis(λ); call this space
∼

Eis(λ), as it is (potentially) a finite-dimensional enlargement of Eis(λ). To do this,
for each E ∈

∼

Eis(λ) we should have〈∑
i

f −ϕi f N
i , E

〉
=

∑
i
⟨ψi , EN

i ⟩C̃i
.
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The right-hand side can be considered as a linear mapping from the vector space of
possible ψi to the finite-dimensional dual

∼

Eis(λ)∗ of the vector space
∼

Eis(λ). It is
enough to show this mapping is surjective, and for this it is enough to show that its
dual is injective. But the dual map is identified with the constant term

∼

Eis(λ)→
⊕

i
C∞(Ti , 2Ti ), E 7→ (EN

i )(gi ay)

and this is injective: if ENi vanished in (Ti , 2Ti ) then it — being real-analytic —
vanishes identically; if this is so for all i , then E would be a cusp form, contradicting
the definition of

∼

Eis(λ). □

5.5. Surjectivity of C − λ. We now show surjectivity of C − λ on each of the two
pieces of Aζ corresponding to the decomposition of Lemma 5.1.

5.5.1. Surjectivity on the cusp.

Lemma 5.2. The operator C − λ is surjective on the space of functions on G which

• are left N-invariant and have fixed right K-type ζ , and

• lie in the space P≥Y0 described before (41) when pulled back to R+ by means
of y 7→ ay .

Proof. Let f : R+ → C be extended to a function F : G → C by left N -invariance
and with fixed κ-weight equal to ζ , so that F has the form

F(nay exp(θk))= f (y) eiζθ .

Observe that for arbitrary X1 ∈ n = Lie(N ) and X2, . . . , Xk ∈ g we have

(X1 . . . Xk F) is identically zero on NA.

Indeed, the left-hand side is the partial derivative ∂t1 . . . ∂tk of F(naet1 X1 . . . etk Xk )

evaluated at ti = 0, which vanishes since F is independent of t1. From this observa-
tion, it follows that the action of the operator C =

1
2 H 2

− H + 2XY on f agrees
with the action of 1

2 H 2
− H on f (y). Since H acts on f via 2y d

dy , we get that
C − λ acts as the differential operator

2y2 d2

dy2 − λ.

We show that C − λ is surjective on P≥Y0 explicitly, by constructing a g with
(C − λ)g = f via the method of variation of parameters.

The homogeneous solutions to the equation
(
2y2 d2

dy2 − λ
)

g = 0 are given
by y p1 , y p2 , where the pi are roots of 2p(1 − p)+λ= 0. We assume that p1 ̸= p2,
the p1 = p2 case is similar. A solution to (C−λ)g = f can then be found by taking

g = b1(y)y p1 + b2(y)y p2,
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where the bi satisfy
dbi

dy
= (−1)i

1/2
p1 − p2

f (y)y−pi −1.

Taking f as in (41), we take bi = ±
1
2(pi − p2)

∫ y
Y0

f (y)y−pi −1 for y > Y0 and
bi (y)= 0 for y ≤ Y0. By construction, if f belongs to P≥Y0 then so does bi and so
also g. □

5.5.2. Surjectivity on functions of rapid decay.

Proposition 5.3. The image of the map C − λ : Aζ → Aζ contains all functions of
rapid decay that are orthogonal to Eis(λ) and Discrete(λ).

Proof. Let f be such a function. We fix an orthonormal basis {ϕi } for the discrete
spectrum of C − λ on L2(0\G)ζ , where the subscript means that we restrict to
K-type ζ . For constants µ j depending only on the width of the various cusps, we
have, following, e.g., [Borel 1997, Section 13],

f =

∑
i

⟨ f, ϕi ⟩ϕi +µ j

∑
j

∫
t≥0

⟨ f, E j
t ⟩E j

t dt. (45)

A priori this is an equality inside L2. Let λi and λt be, respectively, the eigenvalues
of C−λ on ϕi and Et ; by the assumption on f , these are nonvanishing except when
⟨ f, ϕi ⟩ = 0 or when ⟨ f, Et ⟩ = 0.

Define f̄ ∈ L2 by the rule

f̄ =

∑
λi ̸=0

⟨ f, ϕi ⟩

λi
ϕi +

∑
j

∫
t∈R

⟨ f, E j
t ⟩

λt
E j

t dt. (46)

It is not hard to see that the right-hand side defines an L2-function: The function
⟨ f, E j

t ⟩ is holomorphic in a neighborhood of t ∈ iR, as follows from holomorphicity
of t 7→ E j

t and absolute convergence of the integral defining ⟨ f, E j
t ⟩. Moreover,

by assumption, this holomorphic function vanishes when λt = 0. In particular the
function ⟨ f, E j

t ⟩/λt is holomorphic, too; this follows from what we just said if the
quadratic function t 7→ λt has distinct zeroes, and in the case when it has a double
zero t0 we recall that the derivatives (d E j

t /dt)|t=t0 also belong to Eis(λ). Therefore,
the integrand in (46) is locally integrable in t , and then its global integrability
follows from (45).

We claim that f̄ has uniform moderate growth and

(C − λ) f̄ = f
as desired.

In fact, the summation and integrals in both (45) and (46) are absolutely conver-
gent, uniformly on compact sets, and they define functions of uniform moderate
growth; moreover, any derivative X f̄ coincides with the corresponding summation
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inserting X inside the sums and integrals. The proof of these claims follow from
nontrivial, but relatively standard, estimates. We summarize these estimates, with
references. A convenient general reference for all the analysis required is that of
Iwaniec [1995]; he works only with the trivial K-type, but analytical issues are
exactly the same if we work with a general K-type.

We examine the first summand of (46) first. Let λi be the (C − λ)-eigenvalue
of ϕi . Then the easy upper bound in Weyl’s law (compare [Iwaniec 1995, (7.11),
Corollary 11.2] for the sharp Weyl law in the spherical case; the same proof applies
with K-type) gives

#{i : |λi | ≤ T } ≤ const · T 2. (47)

For any r ≥ 0 we have an estimate

|⟨ f, ϕi ⟩| ≤ cr (1 + |λi |)
−r , (48)

arising from integration by parts and Cauchy–Schwarz (using ∥ϕi∥L2 = 1). Finally,
there is a constant N with the following property: for any invariant differential
operator X ∈ U of degree d , we have a bound

|Xϕi (g)| ≤ (1 + |λi |)
d+N

∥g∥
N . (49)

This is derivable from a Sobolev estimate, again using the normalization ∥ϕi∥L2 = 1;
see, e.g., [Bernstein and Reznikov 2002, (3.7)]. These estimates suffice to treat the
cuspidal summand of (46).

Now we discuss the integral summand of (46). To examine absolute convergence
of the integral, one reasons exactly as for cusp forms, but rather than pointwise
estimates in t one only looks at averages over T ≤ t ≤ T + 1. In place of the
L2-normalization of ϕi we have the estimate∫ T +1

T

∫
ht≤Y

|E j
t (g)|

2
≪ T 2

+ log(Y ),

where ht ≤ Y means that we integrate over the complement of the set y ≥ Y in each
cusp. This bound is derived from the Maass–Selberg relations (compare [Iwaniec
1995, Proposition 6.8 and (6.35) and (10.9)]) and average bounds on the scattering
matrix (equation (10.13) of the same reference). From this, one obtains in the same
way as the cuspidal case bounds on

∫ T +1
T |⟨ f, E j

t ⟩|
2 and

∫ T +1
T |X E j

t |
2 that are of

the same quality as (48) and (49) and the same analysis as for the cuspidal spectrum
goes through. □

5.6. Proof of the proposition. We now prove Proposition 4.1, that is to say, that
the image of C − λ is the orthogonal complement of cusp forms. Take f ∈ Aζ and
write f = fs +

∑
fci as in Lemma 5.1. By Lemma 5.2 and Proposition 5.3 there

are functions gi , g ∈ Aζ with

(C − λ)gi = fci , (C − λ)g = fs,
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where, in the case of gi , we use Lemma 5.2 to produce a function on C̃i , and then
extend it by zero to get an element of Aζ . Then g +

∑
i gi is the desired preimage

of f under C − λ. □

6. Interpolation and cohomology

We will recall background on the Segal–Shale–Weil representation (see [Lion and
Vergne 1980] for details) necessary to explain why the foregoing results imply
the interpolation formula of Radchenko and Viazovska [2019]. We have already
outlined the argument in Section 1.1 and what remains is to explain in detail where
the actual numbers in (4) come from.

6.1. The Weil representation. Let L2(R)+ be the Hilbert space of even square
integrable functions on R, and let S be the subspace of even Schwartz functions,
i.e., even smooth functions f such that

sup
x∈R

∣∣∣∣xn dm

dxm f (x)
∣∣∣∣<∞ (50)

for any pair (m, n) of nonnegative integers. Let G be the degree 2 cover of SL2(R).
There is a unique unitary representation of G on L2(R)+, the Weil (or oscillator)
representation, for which S is precisely the subspace of smooth vectors and such
that the action of g on S is given by

X ·φ(x)=−iπx2φ(x), Y ·φ(x)=
−i
4π

∂2

∂x2φ(x), H ·φ(x)=
(

x d
dx

+
1
2

)
φ(x).

It then follows that κ = i(X − Y ) acts by

κ ·φ(x)=

(
πx2

−
1

4π
∂2

∂x2

)
φ(x).

The normalization ensures that the action of G is unitary and that the rela-
tion σ Xσ−1

= Y is preserved, where σ : S → S is the Fourier transform

σ(φ)(ξ)= φ̂(ξ) :=

∫
R
φ(x) e−2π i xξ dx .

Moreover, with respect to the seminorms of (50), the topological vector space S
has the structure of a moderate growth Fréchet representation of G.

The vector v1/2 := e−πx2
has κ-weight 1

2 and Casimir eigenvalue −
3
8 . The

other K-finite vectors in S are spanned by its Lie algebra translates; they have the
form q(x) e−πx2

for q an even polynomial, and have κ-weights 1
2 ,

5
2 ,

9
2 , . . . .

6.2. The lattice 0. If X ∈g is nilpotent, the projection map identifies exp(RX)⊂ G
with the corresponding 1-parameter subgroup of SL2(R). In particular, the map
G → SL2(R) splits over any one-parameter unipotent subgroup; thus the groups of
upper and lower-triangular matrices have distinguished lifts in G.
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In particular, the elements e =
( 1

0
2
1

)
and f =

( 1
2

0
1

)
defined in (3) have distin-

guished lifts ẽ, f̃ to G. They act in the Weil representation by

ẽ ·φ(x)= e−2π i x2
φ(x), f̃ ·φ(x)= σ ẽσ−1φ(x). (51)

Let 0 ∈ SL2(Z) be the subgroup freely generated by e and f . It is the subgroup
of 0(2) whose diagonal entries are congruent to 1 mod 4, and is conjugate to 01(4).

Lemma 6.1. There is a splitting 0 → G which extends the splitting over the two
subgroups ⟨e⟩ and ⟨ f ⟩. The image of 0 in this splitting are precisely the elements
of its preimage leaving fixed the distribution Q :=

∑
n∈Z δn2 ; see Section 1.1 for the

definition of δn .

Proof. The lift ẽ of e to G fixes Q. By Poisson summation, so does the lift f̃ of f .
The group 0̃ The group 0̃ generated by ẽ and f̃ surjects onto 0 with kernel of size
at most two. But 0̃ fixes Q, and the two lifts of any g ∈ SL2(R) to G act on S by
different signs, so the map 0̃ → 0 is injective. □

6.3. Conclusion of the proof. We now fill in the deduction, already sketched in
the introduction, of the interpolation Theorem 1.1 from Theorem 1.2.

We first handle a detail of topology from the discussion of Section 1.1, namely,
the equivalence between the interpolation statement and its “dual” form. For a
Fréchet space F we denote its continuous dual by F∗; we regard it as an abstract
vector space without topology. Then, for η : E → F a continuous map of Fréchet
spaces,

if η∗
: F∗

→ E∗ is bijective, then η is a homeomorphism. (52)

Indeed, following [Trèves 1967, Theorem 37.2], a continuous homomorphism
η : E → F of Fréchet spaces is surjective if η∗ is injective and its image is weakly
closed. Applying this in the situation of (52), we see at least that η is surjective.
It is injective because the image of η∗ is orthogonal to the kernel of η, and then we
apply the open mapping theorem to see that it is a homeomorphism.

To verify the equivalence, asserted in Section 1.1, between Theorem 1.1 and
its dual version, we apply (52) to the map 9 of Theorem 1.1, with codomain the
closed subspace of s⊕ s defined by

∑
n∈Z φ(n)=

∑
n∈Z φ̂(n).

The other point that was not proved in Section 1.1 was (4), the actual evaluation
of H 0 and H 1 for the dual of the oscillator representation, namely

dim H 0(0,S∗)= 1, dim H 1(0,S∗)= 0. (53)

Now, S∗ is precisely the distribution globalization of the dual of SK , i.e., it is
the W ∗

−∞
of the statement of Theorem 1.2 if we take W to be SK . Therefore

Theorem 1.2 reduces us to showing that the multiplicity of SK (resp. Scl
K ) in the

space of automorphic forms (resp. cusp forms) for 0 equals 1 (resp. 0).
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From Section 6.1, the K-finite vectors SK are a realization of the (g, K )-module
of lowest weight 1

2 , whose complementary representation (SK )
cl is the (g, K )-

module of highest weight −
3
2 . In general, a homomorphism from a lowest weight

(g, K )-module to any (g, K )-module W is uniquely specified by the image of the
lowest weight vector, which can be an arbitrary element of W killed by m; and the
dual statement about highest weight modules is also valid.

It follows that (g, K )-homomorphisms from SK (respectively Scl
K ) to the space A

of automorphic forms correspond exactly to holomorphic forms of weight 1
2

(
respec-

tively, antiholomorphic forms of weight −
3
2

)
; the conditions of being killed by m

or p precisely translate to being holomorphic or antiholomorphic. The desired
conclusion (53) now follows from:

Lemma 6.2. (a) The space of holomorphic forms for 0 of weight 1
2 is one-

dimensional, and the space of cuspidal holomorphic forms of this weight
is trivial.

(b) The space of cuspidal holomorphic forms for 0 of weight 3
2 is trivial; therefore,

the space of cuspidal antiholomorphic forms for 0 of weight −
3
2 is also trivial.

Proof. For (a), the group 0 is conjugate to 01(4), for which the space of modular
forms of weight 1

2 is spanned by the theta series θ1/2(z)=
∑

n∈Z e2π i zn2
[Serre and

Stark 1977].
For (b), we use the fact that multiplication by θ injects the space of weight 3

2
forms into the space of weight 2 forms. The space of weight 2 cusp forms for 01(4)
is, however, trivial; indeed, the compactified modular curve X1(4) has genus zero.
The final assertion follows by complex conjugation. □

6.4. Variants: odd Schwartz functions, higher dimensions, Heisenberg unique-
ness. We now show how the same ideas give several other interpolation theorems
without changing the group 0 = ⟨e, f ⟩; it may also be of interest to consider
(∞, p, q)-triangle groups.

6.4.1. Odd Schwartz functions. The discussion of Section 6.1 on the even Weil rep-
resentation S carries verbatim to its odd counterpart T , whose (g, K )-module of K-
finite vectors is spanned by the translates of the lowest weight vector v3/2 = xe−πx2

.
As above, we compute using Theorem 1.2, to get

H 0(0, T ∗)= C, H 1(0, T ∗)= 0.

Indeed, the zeroth cohomology H 0(0, T ∗) is identified with the space of modular
forms of weight 3

2 , a one-dimensional space spanned by θ3, as can be deduced
from [Cohen and Oesterlé 1977]. As for H 1(0, T ∗), its dimension is equal to the
multiplicity of T cl in the space of cusp forms on 0. The representation T cl has
highest weight − 1

2 , and the vanishing of H 1 results from the absence of holomorphic
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cusp forms of weight 1
2 on 0 as in Lemma 6.2. We then deduce an interpolation

theorem as in Section 1, noting that in addition to the δn the distributions φ 7→ φ′(0)
(resp. φ 7→ φ̂′(0)) are also e- (resp. f -)invariant. Arguing as in Section 1.1 recovers
a nonexplicit version of the interpolation theorem of Radchenko and Viazovska for
odd Schwartz functions, see [Radchenko and Viazovska 2019, Theorem 7].

6.4.2. Radial Schwartz functions on Rd . We may, similarly, consider instead the
representation Sd of SL2(R) on radial Schwartz functions on Rd . This is, for reasons
very similar to that enunciated in Section 6.1, a lowest weight representation of the
double cover of SL2(R), but now of lowest weight d

2 generated by e−π(x2
1+···+x2

d ). We
claim that in all cases the corresponding H 1 continues to vanish. Indeed, for d even
the complementary representation W cl is finite-dimensional and does not occur in
cusp forms; for d odd, occurrences of W cl in cusp forms correspond just as before
to holomorphic cusp forms of weight 1

2(4 − d) for 0(2), and these do not exist for
any odd d. Therefore we find that the values of f and f̂ at radii

√
n determine f ,

subject only to a finite-dimensional space of constraints (the dimension is equal to
that of weight d

2 holomorphic forms for 0(2)).

6.4.3. Heisenberg uniqueness. A result of Hedenmalm and Montes-Rodríguez
[2011] asserts that the map

L1(R)→ sequences, h 7→

∫
h(t) eπ iαnt dt,

∫
h(t) eπ iβn/t dt (54)

is injective if and only if αβ ≤ 1. In their terminology, this yields an example of a
“Heisenberg uniqueness pair”. We thank the referee for bringing this result to our
attention. Using our techniques, we show that an abstract interpolation formula —
admittedly, on a eccentric function space — holds at the transition point αβ = 1.

Theorem 6.3. Let H be the space of smooth functions on R with the property that
x−2h(x−1) extends from R − {0} to a smooth function on R. Fix α, β with αβ = 1
and for n ∈ Z write an =

∫
h(t) eπ iαnt dt and bn =

∫
h(t) eπ iβn/t dt. Then the map

h 7→

(
(an), (bn), h(0), lim

x→∞
x2h(x)

)
defines a linear isomorphism of H with a codimension 3 subspace S of 6 s2

⊕ C2.

In this form, this neither implies nor is implied by the results of [Hedenmalm
and Montes-Rodríguez 2011], but it would be interesting to see if our methods
can give results closer to theirs, e.g., by considering different completions of the
underlying representation.

We obtain Theorem 6.3 in a similar way to Theorem 1.1 — namely, by applying
Theorem 1.2 for the same 0, but with a different coefficient system. Note that we

6Note that integration by parts shows that an, bn indeed belong to the space s of sequences with
rapid decay, introduced in Section 1.
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can and will assume that α = β = 1 by rescaling. We now consider the space W of
smooth 1-forms on P1

R = R ∪ ∞, which we may think of equivalently as smooth
functions 8(x, y) on R2

− {0} satisfying

8(λx, λy)= λ−28(x, y).

The 1-form on P1
R associated to 8 is characterized by the fact that, when pulled

back to R2
− {0}, it gives the 1-form 8(x, y)(x dy − y dx). Write

an(8)=

∫
8(x, 1) eπ inx dx, bn(8)=

∫
8(1, y) eπ iny dy. (55)

Write h(x)=8(x, 1). We note that x−2h(1/x)=8(1, x), and so extends over 0.
The map 8 7→ h(x)=8(x, 1) thus identifies W with the space H described in the
theorem. We are reduced then to proving:

Claim. The rule
8 7→

(
an, bn,8(0, 1),8(1, 0)

)
(56)

defines an isomorphism of W with a codimension 3 subspace of s2
⊕ C2.

Proof of Claim. We apply Theorem 1.2 to the (g, K )-module WK ; the distribution
globalization “W ∗

−∞
” that appears in Theorem 1.2 is simply the topological dual W ∗

to W.
To analyze the e-invariants on W ∗, take an arbitrary e-invariant distribution D

on W. The identification 8 7→ h between the space of −2-homogeneous 8 and
h ∈H contains C∞

c (R) in its image; thus, we can consider D as a distribution on the
real line, i.e., given any h ∈C∞

c (R), we form the corresponding8 and evaluate D on
it. The result is a periodic distribution under x 7→ x +2 which must be in the closed
subspace spanned by the an for n ∈ Z — write this distribution

∑
c(n) an . Then the

difference D−
∑

c(n) an vanishes on C∞
c (R), and is therefore a linear combination

of the Taylor coefficients of 8(1, y) at y = 0; the only such distribution that is
invariant under e is 8 7→8(1, 0). It follows that (W ∗)e is spanned topologically
by the an and evaluation at (1, 0). Similarly, (W ∗) f is spanned topologically by
the bn and evaluation at (0, 1).

We will now compute the cohomology of 0 on W ∗.
The space W is identified with a reducible principal series of SL2(R) which is

an extension D+

2 ⊕ D−

2 → W → C, where D±

2 are the holomorphic and antiholo-
morphic discrete series of weight 2; the map W → C is the integration over P1

R.
Now Theorem 1.2 implies that H 1(0, (D±

2 )
∗) vanishes, whereas H 0(0, (D±

2 )
∗) has

dimension 2 in both the + and − cases. There is therefore an exact sequence

0 → C → H 0(0,W ∗)→ C4
→ H 1(0,C)→ H 1(0,W ∗)→ 0.

The map C4
→ H 1(0,C) is surjective with two-dimensional kernel, for it amounts

to the map from the four-dimensional space of (holomorphic and antiholomorphic)
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Eisenstein series for 0 to the two-dimensional cohomology.7 This proves that
H 1(0,W ∗) vanishes, whereas H 0(0,W ∗) is three-dimensional.

We now apply the Mayer–Vietoris sequence (5). In our current context, it implies
that (W ∗)e and (W ∗) f span all of W ∗, and their intersection is precisely three-
dimensional. This concludes the proof of the claim. □

It may be of interest to describe the three linear constraints that define this
codimension 3 subspace. We follow the notations above. The invariants of 0 on W ∗

have, as basis A, I, J where

A(8)=

∫
P1
8, I (8)=

∑
(m,n) ̸=(0,0)

8(m, n)− 2
∑
2|n
8(m, n),

J (8)=
∑

(m,n) ̸=(0,0)
8(m, n)− 2

∑
2|m
8(m, n),

where in both cases the sum is conditionally convergent (e.g., one can sum over
large discs of increasing radii). Then A corresponds to the relation a0 = b0, whereas
both I and J give rise to a relation by expanding the stated intertwiner in two
different ways. For example, we compute I (8) in two ways, firstly by summing
first over n,∑
m ̸=0

m−2 ∑
n

(
8

(
1, n

m

)
− 28

(
1, 2n

m

))
+ 2

(∑
n−2

− 2
∑
(2n)−2

)
8(0, 1)

P.S.
= −

∑
m ̸=0, t∈Z

|m|
−1 bm(2t+1) +

π2

6
8(0, 1),

where P.S. stands for Poisson summation, and secondly by summing first over m,∑
n ̸=0

(
n−2 ∑

m
8

(m
n
,1

)
−

∑
m

2(2n)−28
( m

2n
,1

))
2
(∑

m−2
− 2

∑
(m)−2

)
8(1, 0)

P.S.
=

∑
|n|

−1 an(4t+2) −
π2

3
8(1, 0).

Thus we find that the image of W is cut out by the three relations a0 = b0,

π2

3
8(1, 0)+ π2

6
8(0, 1)=

∑
m ̸=0, t∈Z

|m|
−1 bm(2t+1) +

∑
n ̸=0, t∈Z

|n|
−1 an(4t+2),

and dually

π2

6
8(1, 0)+ π2

3
8(0, 1)=

∑
m ̸=0, t∈Z

|m|
−1 am(2t+1) +

∑
n ̸=0, t∈Z

|n|
−1 bn(4t+2).

7Indeed, this map records the obstruction to extending an embedding of D+

2 ⊕D−

2 into the space of
automorphic forms, to the larger space W. An embedding of D+

2 ⊕ D−

2 into the space of automorphic
forms corresponds to a pair ( f, g) of a holomorphic and antiholomorphic 1-form, and it extends to W
when f dz + g dz is an exact differential.
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