FOURIER INTEGRAL OPERATORS FOR SYSTEMS

by

V. GUILLEMIN

INTRODUCTION

This talk is a report on some joint work with J. J. Duistermaat. Last summer at Stanford we announced some results concerning the spectrum of a positive mth order self-adjoint elliptic pseudodifferential operator P. $C^{\infty}(|\Lambda|^{\frac{1}{\lambda}}X) \to C^{\infty}(|\Lambda|^{\frac{1}{\lambda}}X)$ X being a compact manifold and $|\Lambda|^{\frac{1}{\lambda}}$ the half-density bundle on X. These results concerned the assymptotic behavior of the mth roots of the eigenvalues of P, $\sqrt[m]{\lambda_0}$, $\sqrt[m]{\lambda_1}$, ..., and the singularities of the spectral function Σ $e^{\frac{1}{\lambda_0}\sqrt[m]{\lambda_1}t}$

It seems unlikely that these results can be extended to systems except in special cases. We have decided to describe one such special case here, the case when the symbol of P admits a smooth diagonal form, since it includes a number of examples of interest to differential topologists (such as the Laplace operator on forms).

TRIVIALITIES

Let E + X be a vector bundle and let

P:
$$C^{\infty}(E \otimes |\Lambda|^{\frac{1}{2}}) \longrightarrow C^{\infty}(E \otimes |\Lambda|^{\frac{1}{2}})$$

be an mth order pseudodifferential operator whose leading symbol is a scalar multiple ϕ of the identity. Let $\pi\colon \ T^*X \to X$ be projection and let π^*E be the pull-back of E. We will show that there is intrinsically associated to P a first order differential operator

$$L_{D}: C^{\infty}(\pi^{*}E) \longrightarrow C^{\infty}(\pi^{*}E)$$

with symbol equal to $H_{p'}(i.e. \quad L_pf\Delta - fL_p^\Delta = (H_pf)\Delta)$, H_p being the vector field $\Sigma \frac{\partial p}{\partial \xi_1} \frac{\partial}{\partial x_1} - \frac{\partial p}{\partial x_1} \frac{\partial}{\partial \xi_1}$. Let P_o be a pseudodifferential operator operating on half-densities with $P(x,\xi)$ as leading symbol. Let $F: \pi^*E \to \pi^*E_o$ be a homogeneous trivialization of π^*E , and let

$$\mathcal{Z}: C^{\infty}(E \otimes |\Lambda|^{\frac{1}{2}}) \longrightarrow C^{\infty}(E_{\circ} \otimes |\Lambda|^{\frac{1}{2}})$$

be a zeroth order pseudodifferential operator with F as its leading symbol. Notice that ${\sharp} P - P_o {\widetilde{\sharp}}$ is of order m-1. Choose ${\widetilde{Q}}$ of order m-1 so that

is of order m-2. (Note that the symbol of Q' depends only on F not $\vec{\mathcal{F}}$.) Now set

(1.2)
$$L_p = F^{-1}(\frac{1}{\sqrt{-1}} \stackrel{\forall}{\forall}_{H_{\phi}} + \text{sub}(P_{\phi})) F + \sigma (q')$$

<u>PROPOSITION</u>: The definition 1.2 is independent of the choice of P_n and F.

<u>PROOF</u>: It is clear that it is independent of the choice of P_o because of the $sub(P_o)$ term. To prove its independent of F we can assume to begin with that E is trivial i.e. that F is a function on T^*X/O with values in GL(N,C). With $P = P_o + \mathcal{Q}_o$ we have to show

$$\frac{1}{\sqrt{-1}} \stackrel{\raisebox{-.5ex}{$\raisebox{5pt}{$\raisebox$0.5ex}$}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox$0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox$0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox$0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox$0.5ex}}{\underset{\raisebox{-.5ex}{\raisebox0.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox$0.5ex}}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox$0.5ex}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox$0.5ex}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox$0.5ex}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}}}} \underset{\raisebox{-.5ex}}{\underset{\raisebox{-.5ex}{\raisebox}}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\underset{\raisebox{-.5ex}{\raisebox}}}}} \underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}} \underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}}} \underset{\raisebox{-.5ex}{\raisebox}}{\raisebox}} \underset{\raisebox{-.5ex}{\raisebox}}}{\raisebox}} \underset{\raisebox{-.5ex}{\raisebox}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}{\raisebox}}} \underset{\raisebox{-.5ex}{\raisebox}}} \underset{\raisebox{-.5ex}{\raisebox}}} {\underset{\raisebox{-.5ex}{\raisebox}}}} \underset{\raisebox{-.5ex}{\raisebox}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}{\raisebox}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \underset{\raisebox{-.5ex}}} \xrightarrow{-.} \xrightarrow{-.5ex}} \xrightarrow{-.} \xrightarrow{-.} \xrightarrow{-.5ex}} \xrightarrow{-.} \xrightarrow{-.5ex}} \xrightarrow{-.5ex} \xrightarrow{-.5ex}} \xrightarrow{-.$$

where $\sigma(\slash\hspace{-0.6em}Q)$ is given by (1.1). After some obvious cancellations this equation becomes

(1.3)
$$\sigma(Q_{\circ}) = \frac{1}{\sqrt{-1}} F^{-1} \{p, F\} + \sigma(Q).$$

On the other hand, using local coordinates, we can write (1.1) in the form

$$F\sigma(Q) = \frac{1}{\sqrt{-1}} \Sigma \left(\frac{\partial F}{\partial \xi_i} \frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial \xi_i} \frac{\partial F}{\partial x_i} \right) + F\sigma(Q_o),$$

which is the same as (1.3).

. E. D

Now suppose the symbol of P is not a scalar multiple of the identity but is smoothly diagonalizable in the following sense:

There exists a vector bundle splitting

$$\pi^* E = E_1 \oplus \ldots \oplus E_N$$

such that $\sigma(P)$ preserves this splitting and is equal to a scalar multiple p_i of the identity on E_i with $p_i(x,\xi) \neq p_j(x,\xi)$ for all

 $(\mathbf{x},\xi).$ Then there exists an intrinsically defined first order differential operator

$$L_{p}^{i}: C_{(E_{i})} \rightarrow C_{(E_{i})}$$

with its symbol equal to H $_p$. This is defined just as in (1.2) except that F: $_1$ *E $_2$ * $_2$ *E $_3$ * is now a simultaneous trivialization of all the E;'s.

Let γ be a closed H $_{p}$ solution curve of period T. Let $(x,\xi)\,\epsilon\gamma.\quad \text{For each}\,\delta\,\epsilon(E_{\underline{i}})\,_{\{x,\,\xi\}} \text{ we can find a unique solution }\stackrel{\sim}{\wp}\text{ of } L^{\underline{i}}_{p}\stackrel{\sim}{\wp}=0 \text{ on the interval }[0,\,T] \text{ with }\stackrel{\sim}{\wp}(0)={}^{\wp}.\quad \text{The map of }(E_{\underline{i}})_{\{x,\,\xi\}} \text{ onto itself given by } {}^{\wp}+\stackrel{\sim}{\wp}(T) \text{ will be called the } \underline{\text{holonomy map}}$ associated to γ and denoted H $_{\gamma}.\quad \text{Up to conjugacy it is independent of the choice of }(x,\xi).$

EXAMPLE: Let X be an oriented Riemannian manifold and let P be the square root of the Laplace operator, - δd + $d\delta$ = Δ , on k forms. Then H $_{\gamma}$ is the usual holonomy map along closed geodesics. Before proving this we will first prove a general fact.

<u>LEMMA</u>: Let P_1 and P_2 be pseudodifferential operators on $C^{\infty}(E \otimes |\Lambda|^{\frac{1}{L}})$ with scalar top symbols. Then

$$(1.5) \hspace{1cm} \mathtt{L}_{\mathtt{P}_{1}\mathtt{P}_{2}} \hspace{2mm} = \hspace{2mm} \sigma(\mathtt{P}_{1}) \hspace{2mm} \mathtt{L}_{\mathtt{P}_{2}} \hspace{2mm} + \hspace{2mm} \sigma(\mathtt{P}_{2}) \hspace{2mm} \mathtt{L}_{\mathtt{P}_{1}} \hspace{2mm} + \hspace{2mm} \frac{1}{2i} \hspace{2mm} \left\{ \sigma(\mathtt{P}_{1}) \hspace{2mm}, \hspace{2mm} \sigma(\mathtt{P}_{2}) \right\}$$

<u>PROOF</u>: Let P_1 and P_2 be the symbols of P_1 and P_2 . Fix a trivialization of E, and let P_{10} and P_{20} be scalar operators with P_1 and P_2 as leading symbols. Let $P_1 = P_{10} + Q_1$ and $P_2 = P_{20} + Q_2$. Then

$$(1.6) P_1P_2 = P_{10}P_{20} + P_{10}Q_2 + P_{20}Q_1 + \cdots$$

The principal symbol of $P_{10}P_{20}$ is P_1P_2 , and the subprincipal symbol is $P_1 \text{sub}(P_{20}) + P_2 \text{sub}(P_{10}) + \frac{1}{2i} \{P_1, P_2\}$. (see (2)). Therefore, from the right hand side of (1.6), we get (1.5) as asserted.

$$\underline{\text{COROLLARY}}: \qquad \qquad \underline{L}_{pm} = m\sigma(P)^{m-1}\underline{L}_{P}$$

In particular the holonomy map associated with the Laplacian is the same as the holonomy map for the square root of the Laplacian; so we only have to check the assertion above for the Laplacian. Let $\mathbf{x}_{\circ} \in X$. Trivialize the k form bundle in a neighborhood of \mathbf{x}_{\circ} by means of the geodesic coordinate system centered at \mathbf{x}_{\circ} . Then by the Weitzenbock theorem (See [5]) $\Delta = \Delta_{\circ} + \mathcal{Q}$ where Δ_{\circ} is the scalar Laplacian and \mathcal{Q} is a first order operator whose coefficients are linear combinations of the Christoffel symbols, hence equal to zero at \mathbf{x}_{\circ} . Therefore, at any point $(\mathbf{x}_{\circ}, \ \xi_{\circ})$, $\mathbf{L}_{\Delta} = \mathcal{L}_{\Xi}$, where Ξ is the vector field defining geodesic flow. The trivialization of the k form bundle is such that along the geodesic through $(\mathbf{x}_{\circ}, \ \xi_{\circ})$ the trivialization is by means of parallel transport. So \mathcal{L}_{Ξ} is just covariant differentiation in the direction of Ξ at $(\mathbf{x}_{\circ}, \ \xi_{\circ})$

Finally, let Λ be a Lagrangian manifold on which $\phi_1=0$. Then there exists an intrinsic first order differential operator on the tensor product:

$$(E_{\underline{i}} \ 1 \ \Lambda) \ \otimes \ |\Lambda|^{\frac{1}{2}} \ \otimes \ (Maslov) \ (\Lambda)$$

defined by

$$\mathtt{L^{i}}_{p}(\lozenge \otimes \mu \otimes \mathtt{m}) \quad = \quad \mathtt{L^{i}}_{p} \lozenge \otimes \mu \otimes \mathtt{m} \quad + \quad \diamondsuit \quad \varnothing \stackrel{\times}{\bowtie}_{\mathsf{H}_{f_{i}}} \quad \mu \otimes \quad \mathtt{m}$$

where $^{\mathcal{D}}$ is a section of $E_{1}l\Lambda$, μ a half-density, and m a constant section of the Maslov bundle. To check that L^{1}_{p} is well defined we must show that

when
$$\triangle$$
 = fo' and μ ' = f μ , f \neq 0. Since the symbol of $L^{\dot{i}}_{\ p}$ is $H_{\dot{p}_{\dot{i}}}$
$$L^{\dot{i}}_{\ p}$$
fo' = $fL^{\dot{i}}_{\ p}$ o' + $(H_{\dot{p}_{\dot{i}}}$ f)o' so $L^{\dot{i}}_{\ p}$ ($\triangle \otimes \mu$) = $L^{\dot{i}}_{\ p}$ o' $\otimes \mu$ ' + $(H_{\dot{p}_{\dot{i}}}$ f/f)o' $\otimes \mu$ ' + o' $\otimes \mathcal{L}_{\dot{H}_{\dot{p}_{\dot{i}}}}^{\dot{\mu}}$ = $L^{\dot{i}}_{\ p}$ (o' $\otimes \mu$ ')

SOME RESULTS ON THE SPECTRUM OF P

Now assume that X is compact and P self adjoint, elliptic, and positive definite, with spectrum: $0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \cdots$. By a bicharacteristic of P we will mean an H_{p_i} integral curve, γ , normalized so that $p_i = 1$ on γ .

THEOREM I: $e(t) = \sum_e i \sqrt{\lambda_k t}$ is well defined as a generalized function, and if T ϵ sing. supp. e, there exists a periodic bicharacteristic of period T.

Compared with [1], theorem 1

THEOREM II: Suppose that there are only a finite number of bicharacteristics of period T: $\gamma_1, \gamma_2, \ldots, \gamma_N$ and that for each γ_i the Poincare map P_{γ_i} satisfies the Lefschetz condition, $\det(I-P_{\gamma}) \neq 0$. Then e(t) is smooth in an interval 0 < |t-T| < a and $\lim_{t \to T} (t-T) = (t)$ exists and is equal to

$$\Sigma(\text{trace } H_{\gamma_{i}}) \frac{|\underline{T}|}{2\pi} (\sqrt{-1})^{\sigma_{i}} | \det(\underline{I-P_{\gamma}})|^{-\frac{1}{2}}$$

where $\boldsymbol{\sigma}_{\boldsymbol{i}}$ is the Maslov index of $\boldsymbol{\gamma}_{\boldsymbol{i}}$

Compare with [1], theorem 2

THEOREM III: Let $f(\lambda)$ be the number of eigenvalues of P less than λ . Then

$$f(\lambda) = \sum_{i} \dim_{i} E_{i} \frac{vol(B_{i})}{(2\pi)^{n}} \lambda^{n} + O(\lambda^{n-1})$$

where $vol(B_i)$ is the volume, in T^*X , of the ball $\{(x,\xi), p_i(x,\xi) \le 1\}$ (with respect to the symplectic volume form).

Compare with Hormander [3]

In [1] we studied the relationship between periodic bicharacteristic flow and "clustering" of the eigenvalues of $^{m}/P$ when P is a scalar operator. By "clustering" we mean there exist numbers α and B such that most of the eigenvalues lie near the lattice points $\alpha n+B, \ n=0,\ 1,\ 2,$ etc.. More precisely given $\epsilon>0$ let $f_{\epsilon}(\lambda)$ be the number of eigenvalues less than λ lying in one of the intervals

$$(2.1) |\lambda - \alpha n + B| < \frac{\varepsilon}{\sqrt{n}}$$

Then clustering means that for every ϵ , $f_{\epsilon}(\lambda)/f(\lambda) + 1$ as $\lambda + \alpha$. We showed this phenomenon occurs if and only if the bicharacteristic flow is periodic, (and, if it occurs, α and B are related in a simple way to the period and Maslov index of the flow). We now state a generalization of this result for systems satisfying (1.4).

THEOREM IV: The spectrum of ${}^m\sqrt{P}$ clusters if and only if there exists a fixed T and σ such that the bicharacteristic flow for all the P_i 's is periodic of period T and index σ and, in addition, the holonomy map, H_γ , around every periodic bicharacteristic γ of period T is the identity.

These results can be refined to allow for clustering with respect to the eigenvalues associated with certain modes (i.e. with certain $\mathbf{E_i}$) and not with respect to others. We won't bother to discuss these refinements here.

SOME REMARKS ON THE PROOFS OF THEOREMS I - IV

Let E + X be a vector bundle, and $\Lambda \subset T^*X \setminus 0$ a homogeneous Lagrangian manifold. We will denote by $I^k(E,\Lambda)$ the space of all generalized sections of E $\otimes |\Lambda|^{\frac{1}{L}}X$ which can be written in the form

$$(3.1) e_1 \otimes \mu_1 + \dots + e_N \otimes \mu_N$$

where the e_i 's are ordinary sections of E and the μ_i 's are elements of $I^k(X,\Lambda)$. (For the definition of these spaces see Hormander [4].) The symbol of (3.1) is defined to be

$$\texttt{e_1} \, \, \texttt{0} \, \, \texttt{\sigma(\mu_1)} \, \, + \, \dots \, + \, \texttt{e_N} \, \, \texttt{0} \, \, \texttt{\sigma(\mu_N)}$$

and is to be viewed as a section of the vector bundle:

$$(\pi^* \text{El}\Lambda) \otimes |\Lambda|^{\frac{1}{2}}\Lambda \otimes \text{Maslov}(\Lambda).$$

If P: $C^{\infty}(E \otimes |\Lambda|^{\frac{1}{4}}) + C^{\infty}(E \otimes |\Lambda|^{\frac{1}{2}})$ is a pseudodifferential operator of order m then P maps $I^{k}(E,\Lambda)$ into $I^{k+m}(E,\Lambda)$, and

$$(3.2) \sigma(Pu) = \sigma(P)\sigma(u)$$

If $\sigma(P)$ is a scalar multiple of the identity and $\beta=0$ on Λ then by (3.2) $P\mu$ ϵ $I^{k+m-1}(E,\Lambda)$. In this case the symbol of $P\mu$ is given by the transport equation

(3.3)
$$\sigma(P\mu) = L_p \sigma(\mu)$$

More generally, suppose $\sigma(P)$ is smoothly diagonalizable in the

sense of (1.4) and p_i = 0 on Λ . Then if the E_j components of $\sigma(\mu)$, $j \neq i$, are zero the E_i component of $\sigma(P\mu)$ is $L^i_{\ \ p}\sigma(\mu)$. (Compare with Duistermaat - Hormander, [2], (5.3.1).)

In the case of a single equation the proofs of theorems I-IV depended on finding a fairly explicit analytical description of the operator $\mu(t)$ = exp $\sqrt{-1}$ t P. More precisely we needed the

THEOREM: Let $\mu(x, y, t)$ be the Schwartz kernel of the operator $\mu(t)$ viewed as a generalized half-density on $X \times X \times IR$. Then $\mu \in I^{-\frac{1}{\tau}}(X \times X \times R, C)$ where

$$C = \{(x, \xi, y, \eta, t, \tau), \tau = p(x, \xi), (y, \eta) = (\exp t H_p) (x, -\xi)\}$$

moreover the symbol of μ , ignoring Maslov factors, is equal to $\sqrt{\pi} \frac{1}{4} \frac{1}{4$

The proof of this theorem, which can be found in Duistermaat-Hormander, ($\S5.3$) involves an iterated solution of the transport equation with initial data at t = 0 prescribed by $\mu(0)$ = 1d. Using the transport equation described in the previous paragraph one can prove a similar result for exp/-1tp, P being an operator on a vector bundle, providing the symbol of P satisfies (1.4). Note that $\mu(x, y, t)$ is now a generalized section of

$$\operatorname{Hom}(\rho_1^* E, \rho_2^* E) = |\Lambda|^{\frac{1}{2}}(X \times Y)$$

where ρ_1 : X × X × \mathbb{R} + X and ρ_2 : X × X × \mathbb{R} + X are the projections (x, y, t) + x and (x, y, t) + y.

Moreover the symbol of μ_i is equal, modulo Maslov factors, to the tensor product of the half-density $\sqrt{\pi}^* dx \wedge d\xi$ and the following section, H^i , of $\text{Hom}(\rho_1^* E, \rho_2^* E)$ l C_i : Let $(x, -\xi, y, \eta, t, \tau)$ be a point of C_i . Define H^i at $(x, -\xi, y, \eta, t, \tau)$ to be the map which maps $E^j_{(x,\xi)}$ onto zero for $j \neq i$ and maps $E^i_{(x,\xi)}$ onto $E^i_{(y,\eta)}$ by the map $\Delta \in E^i_{(x,\xi)} \to \Delta' \in E^i_{(y,\eta)}$ where Δ' is obtained from Δ by solving $L^i_{p}\widetilde{\partial} = 0$ along the bicharacteristic joining (x,ξ) to (y,η) with $\widetilde{\partial}(0) = \Delta$.

With this description of exp √-ltP, the proofs of theorems I - IV proceed along the same general lines as for the analogous theorems discussed in [1].

BIBLIOGRAPHY

- J. J. DUISTERMAAT and V. GUILLEMIN, "The spectrum of positive elliptic operators and periodic geodesics", Proc. AMS Summer Institute on Diff. Geom., Stanford 1973 (to appear).
- J. J. DUISTERMAAT and L. HORMANDER, "Fourier integral operators II", Acta Math. 128 (1972) 183 - 269.
- L. HORMANDER, "The spectral function of an elliptic operator", Acta Math. Vol. 121 (1968), 193 - 218.
- L. HORMANDER, "Fourier integral operators I", Acta. Math. 127 (1971), 79 - 183.
- G. de RHAM, <u>Varietés</u> <u>Differentiables</u> <u>et Varietés</u> <u>Riemanniens</u>,
 Hermann Paris, 1950.