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INTRODUCTION

This talk is a report on some joint work with
J. J. Duistermaat. Last summer at Stanford we announced some
results concerning the spectrum of a positive mth order self-
adjoint elliptic pseudodifferential operator P. Cm(|A[%X) -+ Cw(lAlix)
X being a compact manifold and [Ali the half-density bundle on
X. These results concerned the assymptotic behavior of the mth
roots of the eigenvalues of P, m/T;l m/XIZ ..., and the singu-
larities of the spectral function g ei WX;E

It seems unlikely that these results can be extended to
systems except in special cases. We have decided to describe
one such special case here, the case when the symbol of P admits
a smooth diagonal form, since it includes a number of examples
of interest to differential topologists (such as the Laplace

operator on forms).
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TRIVIALITIES

Let E » X be a vector bundle and let

L
1

p: C(E® [A[*) —— cT(E 8 [A[Y)

be an mth order pseudodifferential operator whose leading symbol

is a scalar multiple 4 of the identity. Let m: T*x + X be pro-
jection and let 1T*E be the pull-back of E. We will show that there
is dintrinsically associated to P a first order differential opera-
tor

@ * © *
LP: C (m E) C (m E)

with symbol equal to Hyp (i.e. LPf.A = fLP»O = (H’,f)A), Hy being

the vector field I o B ﬂi. Let P, be a pseudodifferen-
3¢, Ox; | Bx; 0&;

tial operator operating on half-densities with P (x,£) as leading

symbol. Let F: -n*E - ‘Il‘*Eo be a homogeneous trivialization of

*
T E, and let
L: &8 |Af) ——— C"(E, & |A[D)

be a zeroth order pseudodifferential operator with F as its lead-
ing symbol. Notice that P - P,# is of order m-1. Choose { of

order m-1 so that
(1.1) Fg - @p - P

is of order m-2. (Note that the symbol of Q’ depends only on F

not #.) Now set

‘ _oo=1,1 & s
(1.2) Lp = F (o %HF«» sub(P,)) F + o ()




PROPOSITION: The definition 1.2 is independent of the choice of

P, and F.

PROOF : It is clear that it is independent of the choice of P,
because of the sub(P,) term. To prove its independent of F we can
assume to begin with that E is trivial i.e. thct F is a function
on T*X/O with values in GL(N,C). With P = P, +&, we have to

show

L &

= HP-» sub(P,) + o(§,) =

F-l(%i %HP+ sub(P,)) F + o(&),

where o(§) is given by (1.1). After some obvious cancellations

this equation becomes

(1.3) 0(8s) = /—i_-l-p‘l {p, F} + o(@).

On the other hand, using local coordinates, we can write (1.1) in

the form
= g (OB 8P . 8P AP
Fo (&) =T (951 e 3, ) * TR
which is the same as (1.3). Q. E. D.

Now suppose the symbol of P is not a scalar multiple of the
identity but is smoothly diagonalizable in the following sense:

There exists a vector bundle splitting

*
(1.4) mTE = El ® ... 8 EN

such that o(P) preserves this splitting and is equal to a scalar

multiple £, of the identity on E; with £, (x,£) #'Pj(x,E) for all



(x,£). Then there exists an intrinsically defined first order

differential operator

i, = ®
L'p: C(E)) = C(E))

with its symbol equal to HFE. This is defined just as in (1.2)
except that F: n*E - w*E, is now a simultaneous trivialization
of all the Ei's.

Let y be a closed HP, solution curve of period T. Let
(x,€)ey. For each.ae(Ei)(xTE) we can find a unique solution-z of
Lip$'= 0 on the interval [0, T] with 3(0) =42, The map of (Ei)(x,ﬁ
onto itself given by © 0 (T) will be called the holonomy map
associated to y and denoted HY' Up to conjugacy it is independent

of the choice of (x,E).

EXAMPLE: Let X be an oriented Riemannian manifold and let P be
the square root of the Laplace operator, - 6 + d§ = A, on k forms.
Then HY is the usual holonomy map along closed geodesics. Before

proving this we will first prove a general fact.

LEMMA: Let Pl and Pz be pseudodifferential operators on
c”(E ® |A|*) with scalar top symbols. Then
1
2

(1.5) = o(P,)L, + o(P,)L, + 35— {0(P;), o(P,)}
Lp e, e 2t *or 1 2

PROOF: Let P, and P, be the symbols of P, and P,. Fix a triviali-

zation of E, and let Pl0 and PZO be scalar operators with Pl and PZ

as leading symbols. Let Py = P o + §, and P, = Pyo + €,. Then



(1.6) PP, = PyPoy + Py @, 4 ponl e

The principal symbol of PIOPZO is ?lfa, and the subprincipal sym-
. 1

bol is ¥ﬁsub(P20) + stub(Plo) + 37 {Pl, Pz}. (see (2 )).

Therefore, from the right hand side of (1.6), we get (1.5) as

asserted. Q. E. D.

COROLLARY : L = mo (P)m_le

In particular the holonomy map associated with the Laplacian
is the same as the holonomy map for the square root of the
Laplacian; so we only have to check the assertion above for the
Laplacian. Let X,eX. Trivialize the k form bundle in a neighbor-
nood of x, by means of the geodesic coordinate system centered
at Xo,. Then by the Weitzenbock theorem (See [5 ]) A = A, +
where A, is the scalar Laplacian and Q is a first order operator
whose coefficients are linear combinations of the Christoffel
symbols, hence equal to zero at X,. Therefore, at any point
(Xoy Eol s LA = iE' where £ is the vector field defining geodesic
flow. The trivialization of the k form bundle is such that along
the geodesic through (x,, £,) the trivialization is by means of
parallel transport. So iE is just covariant differentiation in
the direction of I at (x,, £,) Q. E. D.

Finally, let A be a Lagrangian manifold on which*‘Pi = 0.
Then there exists an intrinsic first order differential operator

on the tensor product:
&
(E; 1A) e [A]® @ (Maslov) (A)

defined by



i i
= 2
L', (00 uem 'poepem + @impuem
i
where £ is a section of EilA, ¥ a half-density, and m a constant
section of the Maslov bundle. To check that LlP is well defined

we must show that

i = i
(1:7) LP(AQu) = LP('O' ® u')
when » = f»' and p' = fu, £ # 0. Since the symbol of LiP is H‘P
; ; ; ; i
i
LI E8 = fL 00 + (Hpif).o' so L' (08 1) = L' 0" 8 u' + (HPif/fM' & u'

(Hp £/£)0' 8 u' + o @JHP u!
1 A

. 1

i (o' @ u")

Q. E. D.



SOME RESULTS ON THE SPECTRUM OF P

Now assume that X is compact and P self adjoint, elliptic,
and positive definite, with spectrum: 0 < X6 £ Al < Az were: w
By a bicharacteristic of P we will mean an HP integral curve, vy,
i

normalized so that Py =1lony.

THEOREM I: e(t) = % ei ‘Akt is well defined as a generaljzed
function, and if T e sing. supp. e, there exists a periodic
bicharacteristic of period T.

Compared with [ 1 ], theorem 1

THEOREM II: Suppose that there are only a finite number of bi-
characteristics of period T: Yir Yor seer Yy and that for each
Yi the Poincare map PYi satisfies the Lefschetz condition,

det(I-PY) # 0. Then e(t) is smooth in an interval 0 < [t-T| < a

and lim (t-T) e (t) exists and is equal to
t-T

1
Irl = _ ~Z
I (trace H,Yi) > (1) | det(z py)|

where o is the Maslov index of Yi

Compare with [ 1 ], theorem 2

THEOREM III: Let £(X) be the number of eigenvalues of P less
than A. Then

vol(B,) -
£0) = raimE ——3i " + oMY
(2m)



where vol(B,) is the volume, in T'X, of the ball {(x,£), Pix8) <1}
(with respect to the symplectic volume form).

Compare with Hormander [ 3 ]

In [ 1] we studied the relationship between periodic bi-
characteristic flow and "clustering" of the eigenvalues of m/p
when P is a scalar operator. By "clustering” we mean there exist
numbers & and B such that most of the eigenvalues lie near the
lattice points on + B, n = 0, 1, 2, etc.. More precisely given
€ >0 let fE(A) be the number of eigenvalues less than X lying in
one of the intervals
(2.1) [A - an + B| < &

/o

Then clustering means that for every e, fE(A)/f(A) + 1 as A > o
We showed this phenomenon occurs if and only if the bicharacteris-
tic flow is periodic, (and, if it occurs, o and B are related in
a simple way to the period and Maslov index of the flow). We now

state a generalization of this result for systems satisfying (1.4).

THEOREM IV: The spectrum of ™/F clusters if and only if there
exists a fixed T and ¢ such that the bicharacteristic flow for
all the Pi's is periodic of period T and index ¢ and, in addition,
the holonomy map, Hy, around every periodic bicharacteristic y of
period T is the identity.

These results can be refined to allow for clustering with
respect to the eigenvalues associated with certain modes (i.e. with
certain Ei) and not with respect to others. We won't bother to

discuss these refinements here.
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Let E + X be a vector bundle, and AT X\0 a homogeneous
Lagrangian manifold. We will denote by Ik(E,A) the space of all
i

generalized sections of E ® |A|*X which can be written in the

form

(3.1) e ® ¥y * aene ey ® My

where the ei's are ordinary sections of E and the ui's are elements
of Ik(x,A). (For the definition of these spaces see Hormander
[ 41.) The symbol of (3.1) is defined to be
e) 8 aluy) + v + ey ® oluy)
and is to be viewed as a section of the vector bundle:

* =
(m E1A)  ©  |A[*A ® Maslov(A).

If P: CT(E ® [A|T) » CT(E ® |[A[*) is a pseudodifferential

k+m

operator of order m then P maps Ik(E,A) into I (E,A), and

(3.2) o (Pu) =  o(P)o(n)

If o(P) is a scalar multiple of the identity and p = 0 on

k+m-1

A then by (3.2) Pue T (E,A). In this case the symbol of Pu

is giveﬁ by the transport equation
(3.3) o (Pu) = Lpo(u)

More generally, suppose o (P) is smoothly diagonalizable in the



sense of (1.4) and Pi = 0 on A. Then if the Ej components of
o(u), j # i, are zero the Ei component of o (Pu) is Lipc(u). (Com-
pare with Duistermaat - Hormander, [ 2 1, (5.3.1 ).)

In the case of a single equation the proofs of theorems I-IV
depended on finding a fairly explicit analytical description of

the operator u(t) = expvy-1l t P. More precisely we needed the

THEOREM: Let u(x, y, t) be the Schwartz kernel of the operator
u(t) viewed as a generalized half-density on X x X xIR. Then

e I-‘LP(XXXXIR,C) where
c = {(x, & y, n, t, ), T=P(x,8), (yn) = (expt Hp) (x, -£)}

moreover the symbol of u, ignoring Maslov factors, is equal to

/-nd_*TAdg where m: C + T X is the map (X, € y, n, t, 1) + (%, E).
The proof of this theorem, which can be found in Duistermaat-

Hormander, ( §5,3 ) involves an iterated solution of the transport

equation with initial data at t = 0 prescribed by u(0) = 1d.

Using the transport equation described in the previous paragraph

one can prove a similar result for exp/-1tP, P being an operator

on a vector bundle, providing the symbol of P satisfies (1.4).

Note that u(x, y, t) is now a generalized section of
* * <
Hom(p, E, p, E) ®  [A[Z(xxY)

where p1: X x X xR + X and Pyt X X X xR + X are the projections

(x, y, t) » x and (x, y, t) + y.

N

-1 * *
THEOREM: wu(x, y, t) = i£1 u;(x, y, £) with u; €I *(Hom(p, E,p0, E).C;)

where C; = {(x,&,y,n,t, 1), T =P, (x,8), (y,n) = exp tHp (x,-8)}
1



Moreover the symbol of W, is equal, modulo Maslov factors, to
i
the tensor product of the half-density V7 dxAdf and the following
i * *
section, HY, of Hom(pl E/py E) 1 Ci: Let (x, =&, y, n, t, 1) be
a point of Ci' Define H' at (x, =&, y, n, t, 1) to be the map

which maps EJ onto zero for j # i and maps E* onto
(x,£)
’

(x,8)

E by the map 0 ¢ et +0' ¢ ET where 0' is obtained

l(yn'r) . (x8) (y,n)
from 9 by solving Llpo = 0 along the bicharacteristic joining
(x,€) to (y,n) with 2(0) =2.

With this description of exp vV=1tP, the proofs of theorems
I - IV proceed along the same general lines as for the analogous

theorems discussed in [ 1 ].
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