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Abstract

We prove a geometric refinement of Alexander duality for certain 2–complexes,
the so-called gropes, embedded into 4–space. This refinement can be roughly
formulated as saying that 4–dimensional Alexander duality preserves the dis-
joint Dwyer filtration.

In addition, we give new proofs and extended versions of two lemmas of Freed-
man and Lin which are of central importance in the A-B–slice problem, the
main open problem in the classification theory of topological 4–manifolds. Our
methods are group theoretical, rather than using Massey products and Milnor
µ–invariants as in the original proofs.
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1 Introduction

Consider a finite complex X PL–embedded into the n–dimensional sphere Sn .
Alexander duality identifies the (reduced integer) homology Hi(Sn rX) with
the cohomology Hn−1−i(X). This implies that the homology (or even the sta-
ble homotopy type) of the complement cannot distinguish between possibly
different embeddings of X into Sn . Note that there cannot be a duality for ho-
motopy groups as one can see by considering the fundamental group of classical
knot complements, ie the case X = S1 and n = 3.

However, one can still ask whether additional information about X does lead to
additional information about SnrX . For example, if X is a smooth closed (n−
1 − i)–dimensional manifold then the cohomological fundamental class is dual
to a spherical class in Hi(SnrX). Namely, it is represented by any meridional
i–sphere which by definition is the boundary of a normal disk at a point in X .
This geometric picture explains the dimension shift in the Alexander duality
theorem.

By reversing the roles of X and Sn rX in this example we see that it is not
true that Hi(X) being spherical implies that Hn−1−i(Sn r X) is spherical.
However, the following result shows that there is some kind of improved duality
if one does not consider linking dimensions. One should think of the Gropes in
our theorem as means of measuring how spherical a homology class is.

Theorem 1 (Grope Duality) If X ⊂ S4 is the disjoint union of closed em-
bedded Gropes of class k then H2(S4 rX) is freely generated by r disjointly
embedded closed Gropes of class k . Here r is the rank of H1(X) . Moreover,
H2(S4 r X) cannot be generated by r disjoint maps of closed gropes of class
k + 1.

As a corollary to this result we show in 4.2 that certain Milnor µ–invariants of
a link in S3 are unchanged under a Grope concordance.

The Gropes above are framed thickenings of very simple 2–complexes, called
gropes, which are inductively built out of surface stages, see Figure 1 and Sec-
tion 2. For example, a grope of class 2 is just a surface with a single boundary
component and gropes of bigger class contain information about the lower cen-
tral series of the fundamental group. Moreover, every closed grope has a fun-
damental class in H2(X) and one obtains a geometric definition of the Dwyer
filtration

π2(X) ⊆ . . . ⊆ φk(X) ⊆ . . . ⊆ φ3(X) ⊆ φ2(X) = H2(X)
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by defining φk(X) to be the set of all homology classes represented by maps
of closed gropes of class k into X . Theorem 1 can thus be roughly formulated
as saying that 4–dimensional Alexander duality preserves the disjoint Dwyer
filtration.

Figure 1: A grope of class 2 is a surface – two closed gropes of class 4

Figure 1 shows that each grope has a certain “type” which measures how the
surface stages are attached. In Section 2 this will be made precise using certain
rooted trees, compare Figure 2. In Section 4 we give a simple algorithm for
obtaining the trees corresponding to the dual Gropes constructed in Theorem 1.

The simplest application of Theorem 1 (with class k = 2) is as follows. Consider
the standard embedding of the 2–torus T 2 into S4 (which factors through the
usual unknotted picture of T 2 in S3 ). Then the boundary of the normal bundle
of T 2 restricted to the two essential circles gives two disjointly embedded tori
representing generators of H2(S4 r T 2) ∼= Z2 . Since both of these tori may be
surgered to (embedded) spheres, H2(S4 r T 2) is in fact spherical. However,
it cannot be generated by two maps of 2–spheres with disjoint images, since a
map of a sphere may be replaced by a map of a grope of arbitrarily big class.

This issue of disjointness leads us to study the relation of gropes to classical link
homotopy. We use Milnor group techniques to give new proofs and improved
versions of the two central results of [2], namely the Grope Lemma and the Link
Composition Lemma. Our generalization of the grope lemma reads as follows.

Theorem 2 Two n–component links in S3 are link homotopic if and only if
they cobound disjointly immersed annulus-like gropes of class n in S3 × I .

This result is stronger than the version given in [2] where the authors only make
a comparison with the trivial link. Moreover, our new proof is considerably
shorter than the original one.
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Our generalization of the link composition lemma is formulated as Theorem 3
in Section 5. The reader should be cautious about the proof given in [2]. It
turns out that our Milnor group approach contributes a beautiful feature to
Milnor’s algebraization of link homotopy: He proved in [10] that by forgetting
one component of the unlink one gets an abelian normal subgroup of the Milnor
group which is the additive group of a certain ring R . We observe that the
Magnus expansion of the free Milnor groups arises naturally from considering
the conjugation action of the quotient group on this ring R . Moreover, we
show in Lemma 5.3 that “composing” one link into another corresponds to
multiplication in that particular ring R . This fact is the key in our proof of
the link composition lemma.

Our proofs completely avoid the use of Massey products and Milnorµ–invariants
and we feel that they are more geometric and elementary than the original
proofs. This might be of some use in studying the still unsolved A-B–slice
problem which is the main motivation behind trying to relate gropes, their du-
ality and link homotopy. It is one form of the question whether topological
surgery and s–cobordism theorems hold in dimension 4 without fundamental
group restrictions. See [4] for new developments in that area.

Acknowledgements: It is a pleasure to thank Mike Freedman for many impor-
tant discussions and for providing an inspiring atmosphere in his seminars. In
particular, we would like to point out that the main construction of Theorem 1
is reminiscent of the methods used in the linear grope height raising procedure
of [5]. The second author would like to thank the Miller foundation at UC
Berkeley for their support.

2 Preliminary facts about gropes and the lower
central series

The following definitions are taken from [5].

Definition 2.1 A grope is a special pair (2–complex, circle). A grope has a
class k = 1, 2, . . . ,∞ . For k = 1 a grope is defined to be the pair (circle,
circle). For k = 2 a grope is precisely a compact oriented surface Σ with a
single boundary component. For k finite a k–grope is defined inductively as
follow: Let {αi, βi, i = 1, . . . , genus} be a standard symplectic basis of circles
for Σ. For any positive integers pi, qi with pi + qi ≥ k and pi0 + qi0 = k for
at least one index i0 , a k–grope is formed by gluing pi–gropes to each αi and
qi–gropes to each βi .
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The important information about the “branching” of a grope can be very well
captured in a rooted tree as follows: For k = 1 this tree consists of a single
vertex v0 which is called the root. For k = 2 one adds 2·genus(Σ) edges
to v0 and may label the new vertices by αi, βi . Inductively, one gets the
tree for a k–grope which is obtained by attaching pi–gropes to αi and qi–
gropes to βi by identifying the roots of the pi–(respectively qi–)gropes with
the vertices labeled by αi (respectively βi ). Figure 2 below should explain the
correspondence between gropes and trees.

root

leaves

Figure 2: A grope of class 5 and the associated tree

Note that the vertices of the tree which are above the root v0 come in pairs
corresponding to the symplectic pairs of circles in a surface stage and that such
rooted paired trees correspond bijectively to gropes. Under this bijection, the
leaves (:= 1–valent vertices) of the tree correspond to circles on the grope which
freely generate its fundamental group. We will sometimes refer to these circles
as the tips of the grope. The boundary of the first stage surface Σ will be
referred to as the bottom of the grope.

Given a group Γ, we will denote by Γk the k -th term in the lower central series
of Γ, defined inductively by Γ1 := Γ and Γk := [Γ,Γk−1] , the characteristic
subgroup of k–fold commutators in Γ.

Lemma 2.2 (Algebraic interpretation of gropes [5, 2.1]) For a space X, a loop
γ lies in π1(X)k, 1 ≤ k < ω , if and only if γ bounds a map of some k–grope.
Moreover, the class of a grope (G, γ) is the maximal k such that γ ∈ π1(G)k .

A closed k–grope is a 2–complex made by replacing a 2–cell in S2 with a k–
grope. A closed grope is sometimes also called a sphere-like grope. Similarly,
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one has annulus-like k–gropes which are obtained from an annulus by replacing
a 2–cell with a k–grope. Given a space X , the Dwyer’s subgroup φk(X) of
H2(X) is the set of all homology classes represented by maps of closed gropes of
class k into X . Compare [5, 2.3] for a translation to Dwyer’s original definition.

Theorem (Dwyer’s Theorem [1]) Let k be a positive integer and let f :
X −→ Y be a map inducing an isomorphism on H1 and an epimorphism on
H2/φk . Then f induces an isomorphism on π1/(π1)k .

A Grope is a special “untwisted” 4–dimensional thickening of a grope (G, γ);
it has a preferred solid torus (around the base circle γ ) in its boundary. This
“untwisted” thickening is obtained by first embedding G in R3 and taking
its thickening there, and then crossing it with the interval [0, 1]. The defini-
tion of a Grope is independent of the chosen embedding of G in R3 . One
can alternatively define it by a thickening of G such that all relevant relative
Euler numbers vanish. Similarly, one defines sphere- and annulus-like Gropes,
the capital letter indicating that one should take a 4–dimensional untwisted
thickening of the corresponding 2–complex.

3 The Grope Lemma

We first recall some material from [10]. Two n–component links L and L′ in
S3 are said to be link-homotopic if they are connected by a 1–parameter family
of immersions such that distinct components stay disjoint at all times. L is said
to be homotopically trivial if it is link-homotopic to the unlink. L is almost
homotopically trivial if each proper sublink of L is homotopically trivial.

For a group π normally generated by g1, . . . , gk its Milnor group Mπ (with
respect to g1, . . . , gk ) is defined to be the quotient of π by the normal subgroup
generated by the elements [gi, ghi ] , where h ∈ π is arbitrary. Here we use the
conventions

[g1, g2] := g1 · g2 · g−1
1 · g−1

2 and gh := h−1 · g · h.

Mπ is nilpotent of class ≤ k+1, ie it is a quotient of π/(π)k+1 , and is generated
by the quotient images of g1, . . . , gk , see [4]. The Milnor group M(L) of a link
L is defined to be Mπ1(S3 r L) with respect to its meridians mi . It is the
largest common quotient of the fundamental groups of all links link-homotopic
to L , hence one obtains:
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Theorem (Invariance under link homotopy [10]) If L and L′ are link homo-
topic then their Milnor groups are isomorphic.

The track of a link homotopy in S3 × I gives disjointly immersed annuli with
the additional property of being mapped in a level preserving way. However,
this is not really necessary for L and L′ to be link homotopic, as the following
result shows.

Lemma 3.1 (Singular concordance implies homotopy [6], [7], [9])
If L ⊂ S3 × {0} and L′ ⊂ S3 × {1} are connected in S3 × I by disjointly
immersed annuli then L and L′ are link-homotopic.

Remark This result was recently generalized to all dimensions, see [13].

Our Grope Lemma (Theorem 2 in the introduction) further weakens the con-
ditions on the objects that connect L and L′ .

Proof of Theorem 2 Let G1, . . . , Gn be disjointly immersed annulus-like
gropes of class n connecting L and L′ in S3×I . To apply the above Lemma 3.1,
we want to replace one Gi at a time by an immersed annulus Ai in the com-
plement of all gropes and annuli previously constructed.

Let’s start with G1 . Consider the circle c1 which consists of the union of the
first component l1 of L , then an arc in G1 leading from l1 to l′1 , then the first
component l′1 of L′ and finally the same arc back to the base point. Then the
n–grope G1 bounds c1 and thus c1 lies in the n-th term of the lower central
series of the group π1(S3 × I rG), where G denotes the union of G2, . . . , Gn .
As first observed by Casson, one may do finitely many finger moves on the
bottom stage surfaces of G (keeping the components Gi disjoint) such that the
natural projection induces an isomorphism

π1(S3 × I rG) ∼= Mπ1(S3 × I rG)

(see [4] for the precise argument, the key idea being that the relation [mi,m
h
i ]

can be achieved by a self finger move on Gi which follows the loop h .) But
the latter Milnor group is normally generated by (n− 1) meridians and is thus
nilpotent of class ≤ n . In particular, ci bounds a disk in S3 × I r G which
is equivalent to saying that l1 and l′1 cobound an annulus A1 , disjoint from
G2, . . . , Gn .

Since finger moves only change the immersions and not the type of a 2–complex,
ie an immersed annulus stays an immersed annulus, the above argument can
be repeated n times to get disjointly immersed annuli A1, . . . , An connecting
L and L′ .
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4 Grope Duality

In this section we give the proof of Theorem 1 and a refinement which explains
what the trees corresponding to the dual Gropes look like. Since we now con-
sider closed gropes, the following variation of the correspondence to trees turns
out to be extremely useful. Let G be a closed grope and let G′ denote G with
a small 2–cell removed from its bottom stage. We define the tree TG to be the
tree corresponding to G′ (as defined in Section 2) together with an edge added
to the root vertex. This edge represents the deleted 2–cell and it turns out to
be useful to define the root of TG to be the 1–valent vertex of this new edge.
See Figure 4 for an example of such a tree.

Proof of Theorem 1 Abusing notation, we denote by X the core grope of
the given 4–dimensional Grope in S4 . Thus X is a 2–complex which has a
particularly simple thickening in S4 which we may use as a regular neighbor-
hood. All constructions will take place in this regular neighborhood, so we may
assume that X has just one connected component. Let {αi,j , βi,j} denote a
standard symplectic basis of curves for the i-th stage Xi of X ; these curves
correspond to vertices at a distance i+ 1 from the root in the associated tree.
Here X1 is the bottom stage and thus a closed connected surface. For i > 1,
the Xi are disjoint unions of punctured surfaces. They are attached along some
of the curves αi−1,j or βi−1,j .

Let Ai,j denote the ε–circle bundle of Xi in S4 , restricted to a parallel dis-
placement of αi,j in Xi , see Figure 3. The corresponding ε–disk bundle, for
ε small enough, can be used to see that the 2–torus Ai,j has linking number
1 with βi,j and does not link other curves in the collection {αs,t, βs,t}. Note
that if there is a higher stage attached to βi,j then it intersects Ai,j in a single
point, while if there is no stage attached to βi,j then Ai,j is disjoint from X ,
and the generator of H2(S4rX) represented by Ai,j is Alexander-dual to βi,j .
Similarly, let Bi,j denote a 2–torus representative of the class dual to αi,j .
There are two inductive steps used in the construction of the stages of dual
Gropes.

Step 1 Let γ be a curve in the collection {αi,j , βi,j}, and let X ′ denote the
subgrope of X which is attached to γ . Since X is framed and embedded, a
parallel copy of γ in S4 bounds a parallel copy of X ′ in the complement of X .
If there is no higher stage attached to γ then the application of Step 1 to this
curve is empty.

Step 2 Let Σi be a connected component of the i-th stage of X , and let mi

denote a meridian of Σi in S4 , that is, mi is the boundary of a small normal
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Σi

βi,j

γ = αi,j

Ai,j
αi,j (displaced)

X ′

mi−1

βi−1,n ⊂ Σi−1

Σi

mi

αi−1,n

Figure 3: Steps 1 and 2

disk to Σi at an interior point. Suppose i > 1 and let Σi−1 denote the previous
stage, so that Σi is attached to Σi−1 along some curve, say αi−1,n . The torus
Bi−1,n meets Σi in a point, but making a puncture into Bi−1,n around this
intersection point and connecting it by a tube with mi exhibits mi as the
boundary of a punctured torus in the complement of X , see Figure 3.

By construction, H1(X) is generated by those curves {αi,j , βi,j} which do not
have a higher stage attached to them. Fix one of these curves, say βi,j . We will
show that its dual torus Ai,j is the first stage of an embedded Grope G ⊂ S4rX
of class k . The meridian mi and a parallel copy of αi,j form a symplectic basis
of circles for Ai,j . Apply Step 1 to αi,j . If i = 1, the result of Step 1 is a grope
at least of class k and we are done. If i > 1, apply in addition Step 2 to mi .
The result of Step 2 is a grope with a new genus 1 surface stage, the tips of
which are the meridian mi−1 and a parallel copy of one of the standard curves
in the previous stage, say βi−1,n . The next Step 1 – Step 2 cycle is applied to
these tips. Altogether there are i cycles, forming the grope G.

The trees corresponding to dual gropes constructed above may be read off the
tree associated to X , as follows. Start with the tree TX for X , and pick the tip
(1–valent vertex), corresponding to the curve βi,j . The algorithm for drawing
the tree TG of the grope G, Alexander-dual to βi,j , reflects Steps 1 and 2 above.
Consider the path p from βi,j to the root of TX , and start at the vertex αi−1,n ,
adjacent to βi,j . Erase all branches in TX , “growing” from αi−1,n , except for
the edge [βi,j αi−1,n] which has been previously considered, and its “partner”
branch [αi,j αi−1,n] , and then move one edge down along the path p . This step
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is repeated i times, until the root of TX is reached. The tree TG is obtained
by copying the part of TX which is not erased, with the tip βi,j drawn as the
root, see figure 4.

TX TG

αi−1,n

αi,j βi,j m1

m2

Figure 4: A dual tree: The branches in TX to be erased are drawn with dashed lines.

Note the “distinguished” path in TG , starting at the root and labelled by
mi,mi−1, . . . ,m1 . Each of the vertices mi,mi−1, . . . ,m2 is trivalent (this cor-
responds to the fact that all surfaces constructed by applications of Step 2 have
genus 1), see figures 4, 6. In particular, the class of G may be computed as the
sum of classes of the gropes attached to the “partner” vertices of mi, . . . ,m1 ,
plus 1.

We will now prove that the dual grope G is at least of class k . The proof is
by induction on the class of X . For surfaces (class = 2) the construction gives
tori in the collection {Ai,j, Bi,j}. Suppose the statement holds for Gropes of
class less than k , and let X be a Grope of class k . By definition, for each
standard pair of dual circles α, β in the first stage Σ of X there is a p–grope
Xα attached to α and a q–grope Xβ attached to β with p+ q ≥ k . Let γ be
one of the tips of Xα . By the induction hypothesis, the grope Gα dual to γ ,
given by the construction above for Xα , is at least of class p . G is obtained
from Gα by first attaching a genus 1 surface to m2 , with new tips m1 and a
parallel copy of β (Step 2), and then attaching a parallel copy of Xβ (Step 1).
According to the computation above of the class of G in terms of its tree, it is
equal to p+ q ≥ k .

It remains to show that the dual gropes can be made disjoint, and that they
are 0–framed. Each dual grope may be arranged to lie in the boundary of a
regular ε–neighborhood of X , for some small ε . Figure 5 shows how Steps 1
and 2 are performed at a distance ε from X . Note that although tori Ai,j and
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Bi,j intersect, at most one of them is used in the construction of a dual grope
for each index (i, j). Taking distinct values ε1, . . . , εr , the gropes are arranged
to be pairwise disjoint. The same argument shows that each grope G has a
parallel copy G′ with G ∩G′ = ∅, hence its thickening in S4 is standard.

Ai,j

a parallel
copy of X ′

X ′

αi,j

βi,j ⊂ Σi

punctured Bi,j

mi

αi,j (displaced)

ε

ε

ε

ε

Figure 5: Steps 1 and 2 at a distance ε from X

To prove the converse part of the theorem, suppose that H2(S4 rX) is gener-
ated by r disjoint maps of closed gropes. Perturb the maps in the complement
of X , so that they are immersions and their images have at most a finite num-
ber of transverse self-intersection points. The usual pushing down and twisting
procedures from [3] produce closed disjoint 0–framed gropes G1, . . . , Gr whose
only failure to being actual Gropes lies in possible self-intersections of the bot-
tom stage surfaces. The Gi still lie in the complement of X and have class k+1.
The proof of the first part of Theorem 1 shows that H2(Y )/φk+1(Y ) is gener-
ated by the “Clifford tori” in the neighborhoods of self-intersection points of the
Gi , where Y denotes the complement of all Gi in S4 . Assume X is connected
(otherwise consider a connected component of X ), and let X ′ denote X with
a 2–cell removed from its bottom stage. The relations given by the Clifford
tori are among the defining relations of the Milnor group on meridians to the
gropes, and Dwyer’s theorem shows (as in [5], Lemma 2.6) that the inclusion
map induces an isomorphism

Mπ1(X ′)/Mπ1(X ′)k+1 ∼= Mπ1(Y )/Mπ1(Y )k+1.

Consider the boundary curve γ of X ′ . Since X is a grope of class k , by
Lemma 4.1 below we get γ /∈ Mπ1(X ′)k+1 . On the other hand, γ bounds a
disk in Y , hence γ = 1 ∈ Mπ1(Y ). This contradiction concludes the proof of
Theorem 1.

Lemma 4.1 Let (G, γ) be a grope of class k . Then γ /∈Mπ1(G)k+1 .
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Proof This is best proven by an induction on k , starting with the fact that
π1(Σ) is freely generated by all αi and βi . Here Σ is the bottom surface stage of
the grope (G, γ) with a standard symplectic basis of circles αi, βi . The Magnus
expansion for the free Milnor group (see [10], [5] or the proof of Theorem 3)
shows that γ =

∏
[αi, βi] does not lie in Mπ1(Σ)3 . Similarly, for k > 2, π1(G)

is freely generated by those circles in a standard symplectic basis of a surface
stage in G to which nothing else is attached. Now assume that the k–grope
(G, γ) is obtained by attaching pi–gropes Gαi to αi and qi–gropes Gβi to
βi, pi + qi ≥ k . By induction, αi /∈ Mπ1(Gαi)

pi+1 and βi /∈ Mπ1(Gβi)
qi+1

since pi, qi ≥ 1. But the free generators of π1(Gαi) and π1(Gβi) are contained
in the set of free generators of π1(G) and therefore γ =

∏
[αi, βi] /∈Mπ1(G)k+1 .

Again, this may be seen by applying the Magnus expansion to Mπ1(G).

Remark In the case when all stages of a Grope X are tori, the correspondence
between its tree TX and the trees of the dual Gropes, given in the proof of
theorem 1, is particularly appealing and easy to describe. Let γ be a tip of
TX . The tree for the Grope, Alexander-dual to γ , is obtained by redrawing
TX , only with γ drawn as the root, see Figure 6.

TX TG

γ m1

m2

m3

Figure 6: Tree duality in the genus 1 case

As a corollary of Theorem 1 we get the following result.

Corollary 4.2 Let L = (l1, . . . , ln) and L′ = (l′1, . . . , l
′
n) be two links in S3 ×

{0} and S3×{1} respectively. Suppose there are disjointly embedded annulus-
like Gropes A1, . . . , An of class k in S3× [0, 1] with ∂Ai = li ∪ l′i , i = 1, . . . , n .
Then there is an isomorphism of nilpotent quotients

π1(S3 r L)/π1(S3 r L)k ∼= π1(S3 r L′)/π1(S3 r L′)k
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Remark For those readers who are familiar with Milnor’s µ̄–invariants we
should mention that the above statement directly implies that for any multi-
index I of length |I| ≤ k one gets µ̄L(I) = µ̄L′(I). For a different proof of this
consequence see [8].

Proof of Corollary 4.2 The proof is a φk –version of Stallings’ proof of the
concordance invariance of all nilpotent quotients of π1(S3rL), see [12]. Namely,
Alexander duality and Theorem 1 imply that the inclusion maps

(S3 × {0} r L) ↪→ (S3 × [0, 1] r (A1 ∪ . . . ∪An))←↩ (S3 × {1} r L′)

induce isomorphisms on H1( . ) and on H2( . )/φk . So by Dwyer’s Theorem
they induce isomorphisms on π1/(π1)k .

5 The Link Composition Lemma

The Link Composition Lemma was originally formulated in [2]. The reader
should be cautious about its proof given there; it can be made precise using
Milnor’s µ̄–invariants with repeating coefficients, while this section presents an
alternative proof.

Given a link L̂ = (l1, . . . , lk+1) in S3 and a link Q = (q1, . . . , qm) in the solid
torus S1×D2 , their “composition” is obtained by replacing the last component
of L̂ with Q . More precisely, it is defined as L ∪ φ(Q) where L = (l1, . . . , lk)
and φ: S1 × D2 ↪→ S3 is a 0–framed embedding whose image is a tubular
neighborhood of lk+1 . The meridian {1} × ∂D2 of the solid torus will be
denoted by ∧ and we put Q̂ := Q∪∧ . We sometimes think of Q or Q̂ as links
in S3 via the standard embedding S1 ×D2 ↪→ S3 .

Theorem 3 (Link Composition Lemma)
(i) If L̂ and Q̂ are both homotopically essential in S3 then L ∪ φ(Q) is also
homotopically essential.
(ii) Conversely, if L∪φ(Q) is homotopically essential and if both L̂ and Q̂ are
almost homotopically trivial, then both L̂ and Q̂ are homotopically essential
in S3 .

Remark Part (ii) does not hold without the almost triviality assumption on
L̂ and Q̂ . For example, let L̂ consist of just one component l1 , and let Q be
a Hopf link contained in a small ball in S1 × D2 . Then L ∪ φ(Q) = φ(Q) is
homotopically essential, yet L̂ is trivial.
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L

φ(S1 ×D2)

φ(∧)

∧′

Figure 7: In this example L̂ is the Borromean rings, and Q is the Bing double of the
core circle of S1 ×D2 .

In part (i), if either L or Q is homotopically essential, then their composition
L∪φ(Q) is also essential. (Note that Q̂ and φ(Q̂) are homotopically equivalent,
see Lemma 3.2 in [2].) If neither L nor Q is homotopically essential, then by
deleting some components of L and Q if necessary, one may assume that L̂
and Q̂ are almost homotopically trivial (and still homotopically essential). In
the case when L ∪ φ(Q) is not almost homotopically trivial part (i) follows
immediately. Similarly, part (ii) can be proved in this case easily by induction
on the number of components of L and Q .

Therefore, we will assume from now on that L̂, Q̂ and L ∪ φ(Q) are almost
homotopically trivial links in S3 .

Lemma 5.1 If L̂ and Q̂ are both homotopically trivial in S3 then φ(∧) rep-
resents the trivial element in the Milnor group M(L ∪ φ(Q)) .

Proof Let ∧′ denote φ(S1×{1}). The Milnor group M(L∪φ(Q)) is nilpotent
of class k + m + 1, so it suffices to show that φ(∧) represents an element in
π1(S3r (L∪ φ(Q)))k+m+1 . This will be achieved by constructing an ∞–grope
G bounded by φ(∧) in the complement of L ∪ φ(Q). In fact, the construction
also gives an ∞–grope G′ ⊂ S3 r (L ∪ φ(Q)) bounded by ∧′ .

Consider S1 ×D2 as a standard unknotted solid torus in S3 , and let c denote
the core of the complementary solid torus D2 × S1 . Since Q̂ is homotopically
trivial, after changing Q by an appropriate link homotopy in S1×D2 , ∧ bounds
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an immersed disk ∆ ⊂ S3 in the complement of the new link. Denote the new
link by Q again. Similarly L can be changed so that the untwisted parallel
copy ∧′ of lk+1 bounds a disk ∆′ ⊂ S3 r L . Recall that M(L ∪ φ(Q)) does
not change if L ∪ φ(Q) is modified by a link homotopy.

The intersection number of ∆ with c is trivial, since ∧ and c do not link.
Replace the union of disks ∆ ∩ (D2 × S1) by annuli lying in ∂(D2 × S1) to
get Σ ⊂ S1 × D2 r Q , an immersed surface bounded by ∧ . Similarly the
intersection number of ∆′ with the core circle of φ(S1 ×D2) is trivial, and ∧′
bounds Σ′ ⊂ S3 r (L ∪ φ(Q)). The surfaces φ(Σ) and Σ′ are the first stages
of the gropes G and G′ respectively.

Notice that half of the basis for H1(φ(Σ)) is represented by parallel copies of ∧′ .
They bound the obvious surfaces: annuli connecting them with ∧′ union with
Σ′ , which provide the second stage for G. Since this construction is symmetric,
it provides all higher stages for both G and G′ .

Lemma 5.2 Let i: S3r neighborhood (L̂rl1) −→ S3r(L∪φ(Q)rl1) denote
the inclusion map, and let i# be the induced map on π1 . Then i# induces a
well defined map i∗ of Milnor groups.

Remark Given two groups G and H normally generated by gi respectively
hj , let MG and MH be their Milnor groups defined with respect to the given
sets of normal generators. If a homomorphism φ: G −→ H maps each gi to
one of the hj then it induces a homomorphism Mφ: MG −→MH . In general,
φ: G −→ H induces a homomorphism of the Milnor groups if and only if φ(gi)
commutes with φ(gi)φ(g) in MH for all i and all g ∈ G.

Proof of Lemma 5.2 The Milnor groups M(L̂r l1) and M(L ∪ φ(Q) r l1)
are generated by meridians. Moreover, i#(mi) = mi for i = 2, . . . , k and
i#(mk+1) = φ(∧) where m1, . . . ,mk+1 are meridians to the components of L̂ .
Hence to show that i∗ is well-defined it suffices to prove that all the commuta-
tors

[φ(∧), (φ∧)i#(g)], g ∈ π1(S3 r (L̂r l1)),

are trivial in M(L∪φ(Q)rl1)). Consider the following exact sequence, obtained
by deleting the component q1 of Q .

ker(ψ) −→M(L ∪ φ(Q)r l1)
ψ−→M(L ∪ φ(Q)r (l1 ∪ φ(q1))) −→ 0
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An application of Lemma 5.1 to (L̂rl1) and to (Q̂rq1) shows that ψ(φ(∧)) = 1
and hence φ(∧), φ(∧)g ∈ ker(ψ). The observation that ker(ψ) is generated
by the meridians to φ(q1) and hence is commutative finishes the proof of
Lemma 5.2.

Proof of Theorem 3 Let M(Fm1,...,ms+1) be the Milnor group of a free group,
ie the Milnor group of the trivial link on s+ 1 components with meridians mi .
Let R(y1, . . . , ys) be the quotient of the free associative ring on generators
y1, . . . , ys by the ideal generated by the monomials yi1 · · · yir with one index
occurring at least twice. The additive group (R(y1, . . . , ys),+) of this ring is
free abelian on generators yi1 · · · yir where all indices are distinct. Milnor [10]
showed that setting ms+1 = 1 induces a short exact sequence of groups

1 −→ (R(y1, . . . , ys),+) r−→M(Fm1,...,ms+1) i−→M(Fm1,...,ms) −→ 1

where r is defined on the above free generators by left-iterated commutators
with ms+1 :

r(yj1 · · · yjk) := [mj1, [mj2 , . . . , [mjk ,ms+1] . . .]]

In particular, r(0) = 1 and r(1) = ms+1 . Obviously, the above extension
of groups splits by sending mi to mi . This splitting induces the following
conjugation action of M(Fm1,...,ms) on R(y1, . . . , ys). Let Y := yj1 · · · yjk , then

mi · r(Y ) ·m−1
i = [mi, r(Y )] · r(Y ) =

[mi, [mj1, [mj2 , . . . , [mjk ,ms+1] . . .]] · r(Y ) = r((yi + 1) · Y )

which implies that mi acts on R(y1, . . . , ys) by ring multiplication with yi + 1
on the left. Since mi generate the group M(Fm1,...,ms) this defines a well
defined homomorphism of M(Fm1,...,ms) into the units of the ring R(y1, . . . ,
ys). In fact, this is the Magnus expansion, well known in the context of free
groups (rather than free Milnor groups). We conclude in particular, that the
abelian group (R(y1, . . . , ys),+) is generated by yi as a module over the group
M(Fm1,...,ms).

Returning to the notation of Theorem 3, we have the following commutative
diagram of group extensions. We use the fact that the links L∪ φ(Q)r l1 and
L̂r l1 are homotopically trivial. Here yi are the variables corresponding to the
link L and zj are the variables corresponding to φ(Q). We introduce short
notations R(Y) := R(y1, . . . , yk) and R(Y,Z) := R(y1, . . . , yk, z2, . . . , zm).
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R(Y,Z) r−−−→ M(L ∪ φ(Q)r l1) i−−−→ M(L ∪ φ(Q)r (l1 ∪ φ(q1)))xσ xlc xlc
R(Y) r̄−−−→ M(L̂r l1)

j−−−→ M(Lr l1)

Recall that by definition lc(mi) = mi for all meridians m2, . . . ,mk of Lr l1 .
Moreover, the link composition map lc sends the meridian mk+1 to the ∧–curve
of φ(Q).

The existence of the homomorphism lc on the Milnor group level already implies
our claim (ii) in Theorem 3: By assumption, l1 represents the trivial element
in M(L̂r l1) since L̂ is homotopically trivial. Consequently, lc(l1) = l1 is also
trivial in M(L∪φ(Q)r l1) and hence by [10] the link L∪φ(Q) is homotopically
trivial.

The key fact in our approach to part (i) of Theorem 3 is the following result
which says that link composition corresponds to ring multiplication.

Lemma 5.3 The homomorphism σ:R(y2, . . . , yk) −→ R(y2, . . . , yk, z2, . . . , zm)
is given by ring multiplication with r−1(∧) on the right.

Note that by Lemma 5.1 ∧ is trivial in M(L ∪ φ(Q) r (l1 ∪ φ(q1))), so that it
makes sense to consider r−1(∧). We will abbreviate this important element by
∧R .

Proof of Lemma 5.3 Since the above diagram commutes and (R(y2, . . . , yk),
+) is generated by yi as a module over the group M(Fm2,...,mk) it suffices to
check our claim for these generators yi . We get by definition

lc(r̄(yi)) = lc([mi,mk+1]) = [mi,∧] = (mi · ∧ ·m−1
i ) · ∧−1

= r((yi + 1) · ∧R) · ∧−1 = r(yi · ∧R).

We are using the fact that conjugation by mi corresponds to left multiplication
by (yi + 1).

Since L is homotopically trivial and L̂ is homotopically essential, it follows
that 0 6= l1 ∈ ker(j). After possibly reordering the yi this implies in addition
that for some integer a 6= 0 we have

r̄−1(l1) = a · (y2 · · · yk) + terms obtained by permutations from y2 · · · yk.
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Setting all the meridians mi of L to 1 (which implies setting the variables yi
to 0), we get a commutative diagram of group extensions

R(Z) r−−−→ M(φ(Q)) i−−−→ M(φ(Q)r φ(q1))xp x x
R(Y,Z) r−−−→ M(L ∪ φ(Q)r l1) i−−−→ M(L ∪ φ(Q)r (l1 ∪ φ(q1)))

As before, R(Z) and R(Y,Z) are short notations for R(z2, . . . , zm) and R(y1,
. . . , yk, z2, . . . , zm) respectively. Since Q̂ (and equivalently φ(Q̂)) is homotopi-
cally essential we have 0 6= ∧ ∈ ker(i). This shows that p(∧R) 6= 0. The almost
triviality of Q̂ implies in addition that after possibly reordering the zj we have
for some integer b 6= 0

p(∧R) = b · (z2 · · · zm) + terms obtained by permutations from z2 · · · zm.

It follows from Lemma 5.3 that r−1(l1) = r̄−1(l1) · ∧R . This product contains
the term

ab · (y2 · · · yk · z2 · · · zm),

the coefficient ab of which is non-zero. This completes the proof of Theorem 3.

Remark Those readers who are familiar with Milnor’s µ̄–invariants will have
recognized that the above proof in fact shows that the first non-vanishing µ̄–
invariants are multiplicative under link composition.
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