Volume 2, issue 1 (1998)

Download this article
For printing
Recent Issues

Volume 29
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1 \times B^3$

Clifford Henry Taubes

Geometry & Topology 2 (1998) 221–332
Bibliography
1 N Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235 MR0092067
2 S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279 MR710056
3 S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 MR868974
4 M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 MR679066
5 M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
6 H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 MR1395676
7 H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisation IV: Asymptotics with degeneracies, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78 MR1432460
8 H Hofer, M Kriener, Holomorphic curves in contact dynamics, from: "Differential equations: La Pietra 1996 (Florence)", Proc. Sympos. Pure Math. 65, Amer. Math. Soc. (1999) 77 MR1662750
9 K Honda, Harmonic forms for generic metrics, preprint (1997)
10 K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105 MR2108214
11 C LeBrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 MR1487727
12 C Luttinger, unpublished,
13 D McDuff, Singularities and positivity of intersections of $J$–holomorphic curves, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 191 MR1274930
14 D McDuff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994) MR1286255
15 C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966) MR0202511
16 P Pansu, Compactness, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 233 MR1274932
17 T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63 MR1197017
18 C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299 MR1677891
19 C H Taubes, Self-dual connections on 4–manifolds with indefinite intersection matrix, J. Differential Geom. 19 (1984) 517 MR755237
20 C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
21 C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "$SW = Gr$: The Equivalence of the Seiberg–Witten and Gromov Invariants" (editor R Stern), to appear, International Press
22 C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167 MR1697181
23 C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Proceedings of the International Congress of Mathematicians, Berlin 1998, Vol II", Documenta Mathematica (1998) 493
24 R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671 MR1176088