Volume 2, issue 1 (1998)

Download this article
For printing
Recent Issues

Volume 29
Issue 7, 3345–3919
Issue 6, 2783–3343
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1 \times B^3$

Clifford Henry Taubes

Geometry & Topology 2 (1998) 221–332
Bibliography
1 N Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235 MR0092067
2 S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279 MR710056
3 S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 MR868974
4 M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 MR679066
5 M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
6 H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 MR1395676
7 H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisation IV: Asymptotics with degeneracies, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78 MR1432460
8 H Hofer, M Kriener, Holomorphic curves in contact dynamics, from: "Differential equations: La Pietra 1996 (Florence)", Proc. Sympos. Pure Math. 65, Amer. Math. Soc. (1999) 77 MR1662750
9 K Honda, Harmonic forms for generic metrics, preprint (1997)
10 K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105 MR2108214
11 C LeBrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 MR1487727
12 C Luttinger, unpublished,
13 D McDuff, Singularities and positivity of intersections of $J$–holomorphic curves, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 191 MR1274930
14 D McDuff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994) MR1286255
15 C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966) MR0202511
16 P Pansu, Compactness, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 233 MR1274932
17 T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63 MR1197017
18 C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299 MR1677891
19 C H Taubes, Self-dual connections on 4–manifolds with indefinite intersection matrix, J. Differential Geom. 19 (1984) 517 MR755237
20 C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
21 C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "$SW = Gr$: The Equivalence of the Seiberg–Witten and Gromov Invariants" (editor R Stern), to appear, International Press
22 C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167 MR1697181
23 C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Proceedings of the International Congress of Mathematicians, Berlin 1998, Vol II", Documenta Mathematica (1998) 493
24 R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671 MR1176088