Volume 4, issue 1 (2000)

Download this article
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Kleinian groups and the complex of curves

Yair N Minsky

Geometry & Topology 4 (2000) 117–148

arXiv: math.GT/9907070

Abstract

We examine the internal geometry of a Kleinian surface group and its relations to the asymptotic geometry of its ends, using the combinatorial structure of the complex of curves on the surface. Our main results give necessary conditions for the Kleinian group to have ‘bounded geometry’ (lower bounds on injectivity radius) in terms of a sequence of coefficients (subsurface projections) computed using the ending invariants of the group and the complex of curves.

These results are directly analogous to those obtained in the case of punctured-torus surface groups. In that setting the ending invariants are points in the closed unit disk and the coefficients are closely related to classical continued-fraction coefficients. The estimates obtained play an essential role in the solution of Thurston’s ending lamination conjecture in that case.

Keywords
Kleinian group, ending lamination, complex of curves, pleated surface, bounded geometry, injectivity radius
Mathematical Subject Classification 2000
Primary: 30F40
Secondary: 57M50
References
Forward citations
Publication
Received: 16 July 1999
Revised: 9 November 1999
Accepted: 20 February 2000
Published: 29 February 2000
Proposed: David Gabai
Seconded: Jean-Pierre Otal, Walter Neumann
Authors
Yair N Minsky
Department of Mathematics
SUNY at Stony Brook
Stony Brook
New York 11794
USA