Volume 4, issue 1 (2000)

Download this article
For printing
Recent Issues

Volume 28
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Normal all pseudo-Anosov subgroups of mapping class groups

Kim Whittlesey

Geometry & Topology 4 (2000) 293–307

arXiv: math.GT/9906133

Abstract

We construct the first known examples of nontrivial, normal, all pseudo-Anosov subgroups of mapping class groups of surfaces. Specifically, we construct such subgroups for the closed genus two surface and for the sphere with five or more punctures. Using the branched covering of the genus two surface over the sphere and results of Birman and Hilden, we prove that a reducible mapping class of the genus two surface projects to a reducible mapping class on the sphere with six punctures. The construction introduces “Brunnian” mapping classes of the sphere, which are analogous to Brunnian links.

Keywords
mapping class group, pseudo-Anosov, Brunnian
Mathematical Subject Classification 2000
Primary: 57M60
Secondary: 20F36, 57N05
References
Forward citations
Publication
Received: 24 November 1999
Revised: 28 September 2000
Accepted: 3 August 2000
Published: 10 October 2000
Proposed: Joan Birman
Seconded: Shigeyuki Morita, Walter Neumann
Authors
Kim Whittlesey
Department of Mathematics
The Ohio State University
231 West 18th Avenue
Columbus
Ohio 43210
USA