Volume 5, issue 2 (2001)

Download this article
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Homology surgery and invariants of 3–manifolds

Stavros Garoufalidis and Jerome Levine

Geometry & Topology 5 (2001) 551–578

arXiv: math.GT/0005280

Abstract

We introduce a homology surgery problem in dimension 3 which has the property that the vanishing of its algebraic obstruction leads to a canonical class of π–algebraically-split links in 3–manifolds with fundamental group π. Using this class of links, we define a theory of finite type invariants of 3–manifolds in such a way that invariants of degree 0 are precisely those of conventional algebraic topology and surgery theory. When finite type invariants are reformulated in terms of clovers, we deduce upper bounds for the number of invariants in terms of π–decorated trivalent graphs. We also consider an associated notion of surgery equivalence of π–algebraically split links and prove a classification theorem using a generalization of Milnor’s μ̄–invariants to this class of links.

Keywords
homology surgery, finite type invariants, 3–manifolds, clovers
Mathematical Subject Classification 2000
Primary: 57N10
Secondary: 57M25
References
Forward citations
Publication
Received: 31 May 2000
Revised: 2 May 2001
Published: 17 June 2001
Proposed: Robion Kirby
Seconded: Joan Birman, Cameron Gordon
Authors
Stavros Garoufalidis
School of Mathematics
Georgia Institute of Technology
Atlanta
Georgia 30332-0160
USA
Jerome Levine
Department of Mathematics
Brandeis University
Waltham
Massachusetts 02254-9110
USA