Volume 6, issue 1 (2002)

Download this article
For printing
Recent Issues

Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Seifert forms and concordance

Charles Livingston

Geometry & Topology 6 (2002) 403–408

arXiv: math.GT/0101035

Abstract

If a knot K has Seifert matrix V K and has a prime power cyclic branched cover that is not a homology sphere, then there is an infinite family of non–concordant knots having Seifert matrix V K.

Keywords
concordance, Seifert matrix, Alexander polynomial
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57N70
References
Forward citations
Publication
Received: 21 August 2001
Revised: 21 April 2002
Accepted: 22 August 2002
Published: 5 September 2002
Proposed: Cameron Gordon
Seconded: Ronald Stern, Walter Neumann
Authors
Charles Livingston
Department of Mathematics
Indiana University
Bloomington
Indiana 47405
USA